
Leakage-Resilient Cryptography from Puncturable Primitives

and Obfuscation

Yu Chen ∗ Yuyu Wang † Hong-sheng Zhou ‡

Abstract

In this work, we develop a framework for building leakage-resilient cryptosystems in the
bounded leakage model from puncturable primitives and indistinguishability obfuscation
(iO). Our main results are as follows:

• We build leakage-resilient weak pseudorandom functions (PRFs) from weak punc-
turable PRFs and iO, which readily imply leakage-resilient secret-key encryption.

• We build leakage-resilient publicly evaluable pseudorandom functions (PEPRFs) from
puncturable PEPRFs and iO, which readily imply leakage-resilient key encapsulation
mechanism and thus public-key encryption. As a building block of independent in-
terest, we realize puncturable PEPRFs from either new puncturable objects including
puncturable trapdoor functions and puncturable extractable hash proof systems or
existing puncturable PRFs with iO.

• We construct the first leakage-resilient public-coin signature from selective puncturable
PRFs, leakage-resilient one-way functions and iO. This settles the open problem posed
by Boyle, Segev and Wichs (Eurocrypt 2011).

By further assuming the existence of lossy functions, all the above constructions can achieve
optimal leakage rate of 1− o(1). Such a leakage rate is not known to be achievable for weak
PRFs, PEPRFs and public-coin signatures before.

∗State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences. State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China. School of Cyber Security,
University of Chinese Academy of Sciences. Email: chenyu@iie.ac.cn

†Tokyo Institute of Technology, IOHK, AIST. Email: wang.y.ar@m.titech.ac.jp
‡Virginia Commonwealth University. Email: hongsheng.zhou@gmail.com

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Our Contributions . 3
1.3 Overview of Our Techniques . 4
1.4 Related Work . 8

2 Preliminaries 8
2.1 Entropy and Randomness Extraction . 9
2.2 Leakage Types . 9
2.3 Cryptographic Primitives . 10

3 Leakage-Resilient SKE 14
3.1 Leakage-Resilient Weak PRFs . 14
3.2 Weak Puncturable PRFs . 15
3.3 Leakage-Resilient wPRFs from wPPRFs and iO 16

4 Leakage-Resilient KEM 18
4.1 Leakage-Resilient PEPRFs . 18
4.2 Puncturable PEPRFs . 20
4.3 Leakage-Resilient PEPRFs from PPEPRFs and iO 20
4.4 Construction with Improved Leakage Rate . 22

5 Leakage-Resilient Signature 24
5.1 Selective Construction from sPPRFs, Leakage-Resilient OWFs and iO 24
5.2 Construction with Improved Leakage Rate . 27

A Puncturable TDFs 34
A.1 Construction from Correlate-Product TDFs . 34

B Puncturable Extractable Hash Proof System 35
B.1 Construction from DEHPS . 38

C Constructions of PPEPRFs 38
C.1 Construction from PTDFs . 38
C.2 Construction from PEHPS . 40
C.3 Construction from wPPRFs and iO . 41

D Leakage-Resilient Signature with Adaptive Security 43

2

1 Introduction

A main line in cryptography is to design cryptosystems in security models that capture a
wide range of possible attacks. Based on the idealized assumption that software/hardware
implementations of cryptosystems perfectly hide the internal secrets, traditional security models
(following the seminal work of Goldwasser and Micali [GM84]) only give an adversary “black-
box” access to cryptosystems. However, advancements of cryptanalysis indicate that such an
idealized assumption is false in real world: an adversary can launch a variety of key leakage
attacks (such as [Koc96, BDL97, BS97, KJJ99, HSH+08]) to get some partial information about
secret keys.

To thwart key leakage attacks in a systematic manner, the research community has paid
extensive efforts on the design of provably secure leakage-resilient cryptosystems in the last
decade, spreading from basic primitives (including one-way functions, pseudorandom functions,
message authentication codes, encryptions, and signatures) to advanced protocols (including
identifications, authenticated key agreements, and zero-knowledge proof systems).

Leakage models. Briefly speaking, leakage models are defined by strengthening standard
models with a leakage oracle Oleak(·), from which an adversary can (adaptively) specify a series
of leakage functions fi : {0, 1}∗ → {0, 1}ℓi and learn the result of fi applied to the internal secret
state. Over the years, several leakage models have been proposed in the literature, differing in
the specifications of fi. In this work we focus on a simple yet general model called bounded
leakage model, introduced by Akavia et al. [AGV09]. In the bounded leakage model, all secrets
in memory are subject to leakage, i.e., the input of fi could be entire secret key sk, while fi
could be arbitrary subjected to the natural restriction that

∑
i ℓi is bounded by some parameter

ℓ, called the leakage bound. The leakage rate is defined as the ratio of ℓ to the secret key size
|sk|, i.e., ℓ/|sk|. Obviously, the optimal leakage rate is 1 − o(1) since otherwise the adversary
can trivially learn the entire secret via querying Oleak(·).

To date, the bounded leakage model has been widely adopted in many works [NS09, KV09,
CDRW10, BG10, GKPV10, HL11, BK12, BCH12]. The results from the bounded leakage model
are usually used as building blocks for leakage-resilient schemes in more complex leakage models.

Approach towards leakage resilience. From the perspective of provable security, the main
technical hurdle to achieve leakage-resilience is that the reduction must be able to handle leakage
queries w.r.t. arbitrary functions chosen from L, where L is the ensemble of admissible leak-
age functions. This seemingly stipulates that the reduction should know the secret key while
typically this is not the case because the underlying intractable problems is usually embedded
in the secret key. This intuition has been formalized as “useless attacker paradox” in [Wic13].
Prior works overcome this paradox by taking the following two approaches.

One approach is directly resorting to leakage-resilient assumptions (which might be well
packed as advanced assumptions). Following this approach, the reduction can easily handle leak-
age queries by simply forwarding them to its own challenger. Goldwasser et al. [GKPV10] proved
that the LWE assumption itself is leakage-resilient and then built a leakage-resilient secret-key
encryption from it. Akavia et al. [AGV09] proved that meaningful and meaningless public keys
are computationally indistinguishable even in the presence of secret key leakage based on the
LWE assumption, and then utilized this leakage-resilient “assumption” to show that Regev’s
PKE [Reg05] is actually leakage-resilient. Katz and Vaikuntanathan [KV09] built a leakage-
resilient signature from universal one-way hash functions (UOWHFs)1 together with PKE and
simulation-sound non-interactive zero knowledge (NIZK) proof system, where the UOWHFs

1This is sometimes called second pre-image resistant functions.

1

are actually used as leakage-resilient one-way functions. Similar strategy is also adopted for
constructing other leakage-resilient signature schemes [DHLW10, BSW11, MTVY11].

Another approach is combining key detached strategy and leakage-resilient facts/assumptions,
which is mainly used in the constructions of leakage-resilient PKE. Informally, the key detached
strategy means the underlying intractable problems are not embedded to the secret keys, but to
the ciphertexts. Following this approach, the reduction can easily handle key leakage queries by
either owning the secret key or relying on leakage-resilient assumptions. Naor and Segev [NS09]
utilized hash proof system (HPS) as a powerful tool to construct leakage-resilient PKE. In
the security proof, valid ciphertexts are first switched to invalid ones (such switching is com-
putationally indistinguishable even given the whole secret key because the underlying subset
membership problem and secret keys are detached) to ensure that the hash proof π has high
min-entropy, then the leftover hash lemma is used to prove the session key of the form ext(π, s)
is random even in the presence of bounded key leakage.2 Subsequently, Alwen et al. [ADN+10]
and Hazay et al. [HLWW13] extended HPS to the identity-based and symmetric-key setting
respectively, and used them to construct leakage-resilient identity-based encryption and secret-
key encryption. Dodis et al. [DGK+10] constructed leakage-resilient PKE in the auxiliary input
model via a similar method. In the security proof, valid ciphertexts are also first switched to
invalid ones, then the generalized Goldreich-Levin theorem is used to argue that the session key
of the form hc(sk) is pseudorandom even given auxiliary-input of the secret key sk.3

1.1 Motivation

So far, a broad range of leakage-resilient cryptographic schemes under various leakage models
have been proposed in the literature. Nevertheless, several interesting problems are still left
open around lower-level, “workhorse” primitives like SKE, PKE, and signature under the basic
bounded leakage model.

For leakage-resilient SKE, the task can be reduced to constructing leakage-resilient weak
PRFs (wPRFs) in the bounded leakage model. However, the literature on this topic is sparse.
[Pie09, DY13] showed that any wPRF is already leakage-resilient for a logarithmic leakage bound
ℓ = O(log λ). Hazay et al. [HLWW13] built leakage-resilient wPRF from any one-way functions.
Their construction only requires minimal assumption, but its leakage rate is O(log(λ)/|sk|),
which is rather poor. To date, essentially nothing better was known for generic construction of
leakage-resilient SKE with optimal leakage rate, beyond simply using leakage-resilient PKE in
the symmetric-key setting.

For leakage-resilient PKE, existing constructions [AGV09, BG10, DGK+10, NS09, ADN+10]
are based on either specific assumptions such as LWE, DDH, DCR, QR, or somewhat more gen-
erally the hash proof systems4. It is intriguing to know if there is a generic construction. In par-
ticular, whether the generic constructions of PKE based on trapdoor functions/relations [PW08,
RS09, KMO10, Wee10] can be made leakage-resilient is still unclear. On the other hand, se-
mantic security against chosen-ciphertext attacks (CCA) is the strongest notion for PKE in the
traditional security model [GM84]. Several previous works [NS09, LWZ13, QL13, QL14, CQX18]
studied how to achieve leakage-resilience and CCA security simultaneously via dedicated com-
position of separate techniques. Nevertheless, no prior work considered the orthogonal problem:

2Leftover hash lemma could be interpreted as a leakage-resilient fact, which stipulates ext(x, s) is close to
uniform even given a correlated value z, as long as s is a random seed chosen independently and x still has high
min-entropy given leakage z.

3Goldreich-Levin theorem can be interpreted as a leakage-resilient assumption, which states that if h is one-
way then hc(x) is pseudorandom even in the presence of h(x). Here hc serves as a computational randomness
extractor and h(x) could be viewed as leakage on x.

4Following current conventions, we do not regard hash proof systems [CS02] as a general assumption.

2

whether we can acquire leakage-resilience from CCA security. We observe that in the CCA secu-
rity experiment, responses to decryption queries can be viewed as a certain form of key leakage
(the leakage function f is tied to decryption algorithm but with unbounded output length). It
is interesting to know whether there is a general connection between the two important security
notions for PKE.

For leakage-resilient signature, achieving fully leakage-resilience is of particular interest since
it better captures real attacks [KV09]. This notion requires a signature to remain existentially
unforgeable under chosen-message attacks even when an adversary obtains bounded leakage
information on all intermediate states, including the secret keys and internal random coins.
Clearly, if the signing procedure is deterministic or public-coin5, standard leakage resilience
automatically implies fully leakage resilience. To date, all the known fully leakage-resilient
signature schemes [BSW11, MTVY11, LLW11, GJS11] in the standard model are randomized
and secret-coin. The existence of leakage-resilient deterministic or public-coin signature is un-
clear and was left as an open problem by Boyle et al. [BSW11]. Earlier, the leakage-resilient
signature scheme by Katz and Vaikuntanathan [KV09] is deterministic but only “one-time”
secure. Recently, Wang et al. [WMHT16] proposed a leakage-resilient public-coin signature
scheme. However, their construction is only secure against selective leakage attacks, i.e., an
adversary has to declare the leakage function before seeing the verification key. Besides, their
construction requires differing-input obfuscation [BGI+12], whose existence is seriously cast in
doubt [GGHW14, BSW16]. From this perspective, the problem posed by Boyle et al. is still
largely open.

1.2 Our Contributions

With the preceding discussion in mind, in this work we focus on generic constructions of leakage-
resilient encryption and signature in the bounded leakage model. We summarize our main results
(depicted in Figure 1) as below.

Leakage-resilient SKE. As shown in [HLWW13], the classic construction of CPA-secure
SKE from wPRF is leakage-resilience-preserving. So, we restrict our attention to construct-
ing leakage-resilient wPRFs. Towards this goal, in Section 3.2 we first put forward a new notion
called weak puncturable PRFs (wPPRFs), which could be thought of as the puncturable version
of wPRFs. We then show wPPRFs and selective puncturable PRFs (sPPRFs) [SW14] imply
each other, while the latter is implied by the GGM-tree based PRFs [GGM86]. Finally, in
Section 3.3 we build leakage-resilient wPRFs from wPPRFs and iO.

Leakage-resilient KEM. The KEM-DEM paradigm (here KEM stands for key encapsulation
mechanism, DEM stands for data encapsulation mechanism) is a modular and efficient approach
for building PKE. In the leakage setting, one can build a leakage-resilient PKE by combining
a leakage-resilient KEM with a standard DEM. In the rest of this work, we only focus on
the construction of leakage-resilient KEM. Chen and Zhang [CZ14] put forward the notion of
publicly evaluable PRFs (PEPRFs), which encompasses almost all the known constructions of
KEM. We observe that leakage-resilient PEPRFs naturally imply leakage-resilient KEM. So,
the task is reduced to acquiring leakage resilience for PEPRFs.

To this end, in Section 4.2 we first put forward the notion of puncturable PEPRFs, then
build leakage-resilient PEPRFs from puncturable PEPRFs and iO in Section 4.3. Moreover, we

5A signature is secret-coin if its security breaks down when the randomness used in the signing procedure is
revealed. On the contrary, a signature is public-coin if it stays secure even when the random coins used in the
signing procedure are revealed (i.e., provided in-the-clear by the signature). In other words, public-coin signature
is secure even when the entire random coins used for signing are leaked.

3

instantiate puncturable PEPRFs from either newly introduced primitives such as puncturable
trapdoor functions and puncturable extractable hash proof systems, or existing puncturable
PRFs with iO.

This result provides a unified framework for constructing leakage-resilient KEM, which not
only clarifies and encompasses the construction by Dachman-Soled et al. [DGL+16, Section
5.1], but also indicates that the PKE constructions based on “puncturable” trapdoor func-
tions/relations (which in turn implied by correlated-product trapdoor functions [RS09] or ex-
tractable hash proof systems [Wee10] with puncturable property) can be made leakage resilient!
Recently, Matsuda and Hanaoka [MH15] introduced a new primitive called puncturable KEM
(PKEM), which captures a common pattern towards CCA security underlying many construc-
tions of CCA-secure PKE. We remark that PPEPRFs imply PKEM with perfect strong punc-
tured decapsulation soundness. This result establishes a somewhat surprising connection be-
tween CCA security and leakage resilience, that is, CCA security obtained along the puncturable
road can be converted to leakage-resilience in a non-black-box manner via obfuscation.

Leakage-resilient signature. In Section 5, we show how to build leakage-resilient signature
from selective puncturable PRFs, iO, and leakage-resilient one-way functions. Our basic scheme
is deterministic but only achieves selective security6. To attain adaptive security, several boot-
strapping techniques can be used without compromising leakage resilience. More precisely, as
we elaborate in Section D, one can either use the magic method enabled by extremely lossy
function [Zha16], obtaining the first deterministic leakage-resilient signature scheme, or apply
the “prefix-guessing technique” [HW09, RW14], yielding the first public-coin leakage-resilient
signature scheme.

We highlight that in our construction the signature size is exactly the output size of a
puncturable PRF7, which is very close to the leakage bound. Clearly, signature size cannot be
shorter than leakage bound, since otherwise an adversary can directly obtain a forged signature
from leakage. In this sense, our constructions also enjoy the almost optimal signature size.

All the basic constructions described above can tolerate L bits of leakage for any polynomial
L of security parameter λ. However, the leakage rate is low due to the fact that secret keys
are obfuscated programs, which could be very huge. By further assuming the existence of lossy
functions [PW08], we can remarkably shrink the size of secret keys and achieve optimal leakage
rate 1−o(1), as we demonstrate in Section 4.4 and Section 5.2. Such a leakage rate is not known
to be achievable for weak PRFs, PEPRFs and deterministic/public-coin signatures before.

1.3 Overview of Our Techniques

As we summarized before, a common theme of the two main approaches towards leakage re-
silience in the literature is that the reduction always try to simulate leakage oracle perfectly,
i.e., answering leakage queries with real leakage. To do so, we have to either rely on leakage-
resilient assumptions or resort to sophisticated design with specific structure. It is interesting
to investigate the possibility of simulating leakage oracle computationally, namely answering
leakage queries with simulated leakage, as long as it is computationally indistinguishable from
real leakage. This would possibly lend new techniques to address the unsolved problems in
leakage-resilient cryptography.

6In selective security model, the adversary must declare the message m∗ on which it will make a forgery before
seeing the verification key, but then can adaptively make signing queries on messages distinct from m∗.

7In the case of our adaptively secure construction, a signature additionally contains a public coin of size λc

for any constant c < 1.

4

wPPRF

LR-wPRF

LR-SKE

Sec.3.3 iO

sPPRF+LR-OWF

LR-SIG

Sec.5 iO

Sec.3.2

PPEPRF

LR-PEPRF

LR-PKE

Sec.4.3 iO

PTDF

CP-TDF

Sec.C.1

Sec.A.1

PEHPS

Sec.C.2

DEHPS

Sec.B.1

wPPRF+PRG+iO

Sec.C.3

Figure 1: The bold lines and rectangles denote our contributions (the thin lines denote those
that are straightforward or follow readily from previous work).

Very recently, Dachman-Soled et al. [DGL+16] discovered powerful applications of iO to
leakage-resilient cryptography. In the continual leakage model, they presented an iO-based
compiler that transforms any public-key encryption or signature scheme with consecutive con-
tinual leakage-resilience to continual leakage resilience allowing leakage on key updates. In
the bounded leakage model, they showed how to modify the Sahai-Waters PKE to be leakage-
resilient. We observe that their work essentially embodies the idea of simulating leakage oracle
computationally.

Simulate leakage via obfuscation. At the heart of our leakage-resilient encryptions and
signatures is a general approach of simulating leakages enabled by puncturable primitives and
obfuscation, which is largely inspired by the leakage-resilient variant of Sahai-Waters PKE due
to Dachman-Soled et al. [DGL+16]. Next, we first distill and extend the idea underlying the
work of [DGL+16], then carry out a systematic study of its applicability to leakage-resilient
cryptography.

Recall that the common technical hurdle towards leakage resilience is to handle leakage
queries. As opposed to the naive strategy of answering leakage queries with real secret keys,
another promising strategy is simulating leakage with “faked” secret keys. By the composition
lemma, as long as the faked secret keys are indistinguishable from the real ones, the simu-
lated leakages are also indistinguishable from the real leakages because all leakage functions are
efficiently computable.

Our approach adopts the second strategy. First, a secret key sk of any cryptographic
scheme can always be expressed as a program Eval with sk hardwired. If a cryptographic
scheme is puncturable (e.g., puncturable PRFs), then the reduction may build a functional-
equivalent program Eval′ with skx∗ and y∗ hardwired, where skx∗ is the punctured secret key
at input x∗ and y∗ = Eval(x∗). Secondly, note that indistinguishability obfuscation preserves
functionality and guarantees that the obfuscations of any two functional-equivalent programs
are computationally indistinguishable. Therefore, by setting the new secret key as iO(Eval),
the reduction is able to simulate leakage queries with iO(Eval′). This approach abstracts the
high-level idea of how to acquire leakage-resilience when puncturable primitives meet iO.

Obfuscate key and extract randomness. Our leakage-resilient encryptions exactly follow
this approach. In a nutshell, we use iO to compile weak (resp. publicly evaluable) puncturable

5

PRFs into leakage-resilient weak (resp. publicly evaluable) PRFs, which immediately yield
leakage-resilient secret-key (resp. public-key) encryption.

To best illustrate our approach, we focus here on the secret-key setting, as it already em-
phasizes the main ideas underlying our approach. Starting from a weak puncturable PRF
F : K × X → {0, 1}n, we use iO to compile it into a leakage-resilient weak PRF with a ran-
domness extractor ext : {0, 1}n × S → Z. The construction is instructive: (1) generate a secret
key k for F , then create a program Eval with k hardwired, which on input x and s outputs
ext(Fk(x), s); (2) set the secret key as iO(Eval). This defines a weak PRF F̂ : {0, 1}n×S → Z.
To establish security, the hybrid argument starts with the real game for leakage-resilient wPRF,
where leakage and evaluation queries are handled with real secret key iO(Eval). In the next
game, the challenger picks the challenge input x∗ and s∗ at the very beginning, create a program
Eval′ with the same input-output behavior as Eval, where kx∗ is the punctured key for k w.r.t.
x∗ and y∗ = Fk(x

∗). The leakage and evaluation queries are thus handled with iO(Eval′). Such
modifications are undetectable by the security of iO. In the final game, the challenger switches
y∗ from Fk(x

∗) to a random value. This transition is undetectable by the weak pseudorandom-
ness of the starting puncturable PRF. An important fact is that the responses to evaluation
queries are determined by kx∗ , and thus do not leak any information about y∗. Now, we can ar-
gue the desired security in purely information-theoretic way. By appropriate parameter choice,
y∗ still retains high min-entropy in the presence of leakage, and thus the value ext(y∗, s∗) is
statistically close to uniform distribution.

In the public-key setting, our construction essentially follows the same approach. We use
iO to compile puncturable PEPRF into leakage-resilient PEPRF, which readily yield leakage-
resilient CPA-secure KEM. The main technical novelty lies in realizing puncturable PEPRFs
from a variety of puncturable primitives. More precisely, we build puncturable PEPRFs from:
(1) newly introduced notion of puncturable TDFs, which is in turn implied by correlated-
product TDFs [RS09]; (2) newly introduced notion of puncturable EHPS, which is implied by
EHPS [Wee10] satisfying derivable property; (3) selective puncturable PRFs, pseudorandom
generator, and iO (adapted from the Sahai-Waters PKE [SW14]). This provides us a unified
method to build leakage-resilient KEM from various puncturable primitives and iO.

Obfuscate key and translate leakage. Along our approach towards leakage resilience, we
investigate the possibility of building leakage-resilient signature from puncturable primitives
and iO. We choose the short “hash-and-sign” selectively secure signature by Sahai and Wa-
ters [SW14] as our starting point, since it inherits the puncturable property from its underlying
selective puncturable PRFs. To best illustrate the idea of our adaption, we first briefly review
the Sahai-Waters signature scheme.

The Sahai-Waters signature is essentially a PRF-based MAC with public verifiability. The
signing key sk is simply a secret key of selective puncturable PRF (sPPRF), and the signature
on m is σ ← Fk(m). The verification key vk is set as iO(Vefy) where Vefy is a program
that can check the MAC publicly. To excise out the information about Fk(m

∗) (here m∗

denotes the target message), Vefy computes g(Fk(m)) and compares the result for equality
to g(σ), where g is a one-way function and σ is the claimed signature on m. To establish
security, the hybrid argument starts with the real game for selective signature. The intermediate
hybrid game builds an equivalent verification program using a punctured key km∗ and y∗ ←
g(σ∗) where σ∗ = Fk(m

∗). The final hybrid game replaces σ∗ with a random value. The first
transition is undetectable by the security of iO, while the second transition is undetectable by
the pseudorandomness of sPPRF. In the final game, no PPT adversary is able to output a valid
forgery (find the preimage σ∗) with non-negligible advantage by the one-wayness of g.

Following the new approach of simulating leakage, a tempting idea to make the Sahai-Waters
signature leakage-resilient is setting the signing key as iO(Sign), where Sign is a program that on

6

input m outputs Fk(m). Among the transitions of hybrid games, Sign is replaced by Sign′ (with
km∗ and σ∗ hardwired). In this way, leakage and signing queries can be handled with “faked”
signing key. However, we are unable to reduce the leakage-resilient unforgeability to the one-
wayness of g. This is because in addition to y∗ = g(σ∗) revealed in vk, the information of σ∗ may
also be leaked via leakage queries on signing key iO(Sign′). Therefore, the security proof breaks
down in the final game, i.e., the reduction has to build Sign′ while σ∗ is unknown.8 We overcome
this obstacle by using leakage-resilient OWF to replace standard OWF. Briefly, OWF is leakage-
resilient if one-wayness remains in the presence of certain leakage on the preimage. Also observe
that a leakage function f about the signing key iO(Sign′) can be efficiently translated to leakage
about σ∗, since both f and iO are efficiently computable. With such enhancement, in the final
game the reduction can handle signing queries using km∗ and handle leakage queries on signing
key iO(Sign′) by translating them to leakage queries on preimage σ∗ to the underlying leakage-
resilient OWF. See Section 5 for technical details.

Improving leakage rate via lossy functions. Applying the above approach in a straight-
forward manner will incur poor leakage rate, because the secret keys are obfuscated programs,
which could be very large.

In [DGL+16], the authors showed how to modify their basic leakage-resilient PKE construc-
tion to achieve optimal leakage rate. Next, we briefly revisit their technique in the context of
our construction of leakage-resilient wPRF. Now, the key generation algorithm works as follows:
(1) pick a random key ke for a SKE scheme and generate a dummy ciphertext ct← Enc(ke, 0

n)
as the secret key sk; (2) pick a collision-resistant hash h and compute η∗ ← h(ct); (3) pick a
random key k for the underlying weak PRF, obfuscate a program Eval and store the obfuscated
result Ceval into public parameters. Here, the program Eval is hardwired with k and t∗, which
on input sk and (x, s) outputs ext(Fk(x), s) if and only if h(sk) = η∗. Intuitively, ct acts as a
trigger of Ceval, which only works when h(ct) matches η∗. In this way, the size of secret key is
greatly reduced.

In the security proof, the first game is the real game. In the next game, ct is switched to an
encryption of the PRF value y∗ ← Fk(x

∗). This modification is undetectable by the semantic
security of SKE. Then, Ceval is switched to C ′eval, which is an obfuscation of program Eval′.
With ke and a punctured PRF key kx∗ hardwired, Eval′ works if and only if the hash value
of its input ct matches η∗. When h(ct) = t∗, it evaluates with kx∗ if x ̸= x∗, otherwise it
evaluates after decrypting ct to y∗. In the final game, y∗ is switched to a uniformly random
value. The rest security analysis is routine. A subtle problem arised is that now Eval and Eval′

have differing inputs, because h is compressing and thus a collision ct′ (i.e., h(ct′) = η∗ = h(ct))
that encrypts a value y′ ̸= y∗ is likely to exist. Therefore, they have to rely on public-coin
differing-input obfuscation [IPS15], which is stronger than indistinguishability obfuscation.

As analyzed above, the usage of CRHF leads to the reliance on differing-input obfuscation,
while the choice of CRHF seems necessary to ensure that η∗ only leaks partial information
about y∗ (encrypted in ct), which is crucial to achieve high leakage rate. Can we achieve higher
leakage rate without resorting to differing-input obfuscation? The answer is affirmative. Our
idea is to replace CRHFs with lossy functions [PW08]. In the real construction, h is generated
as an injective function. By this choice, η∗ uniquely fixes its preimage ct and thus the value y∗,
With this setting, Eval and Eval′ agree on all inputs, and iO suffices to guarantee the switching
from Eval to Eval′ is undetectable. To argue the high leakage rate we can attain, in the last
game we switches h to a lossy function that significantly lose the information about y∗. By
the security of lossy functions, this change is undetectable. Clearly, in the last game y∗ still

8Note that this dilemma does not occur in the case of encryption, since the argument in the final game is
information-theoretic.

7

maintains sufficiently large min-entropy even in the presence of η∗ and leakage. By appropriate
choice of parameter, optimal leakage rate is achievable. The above technique carries over to the
constructions of leakage-resilient PEPRF and signature as well, except some subtle issues need
to be carefully dealt with for the case of signature. See the discussion at the end of Section 5.2
for details.

We believe that the our technique of improving leakage rate by interplaying iO with lossy
functions will also be instructive for avoiding using differing-input obfuscation in other places.

1.4 Related Work

Leakage models. Several leakage models have been proposed in the literature. In the seminal
work, Micali and Reyzin [MR04] initiated the formal study of side-channel attacks by introduc-
ing the “only computation leaks information” model. Unfortunately, it fails to capture many
practical leakage attacks, such as the cold-boot attack of [HSH+08].

To capture more general side-channel attacks known as memory attacks, Akavia et al. [AGV09]
introduced the bounded leakage model, in which the adversary can obtain arbitrary length-
bounded leakage. The follow-up works considered various strengthens to accommodate more
complex and general leakage scenarios. Naor and Segev [NS09] generalized the bounded leakage
model to noisy leakage model (also known as entropy leakage model), where length-bounded
leakage is relaxed to entropy-bounded leakage. Alwen et al. [ADW09a, ADN+10] suggested the
bounded-retrieval model, which imposes an additional requirement that the tolerated leakage
amount can grow by proportionally expanding the secret key without increasing the size of
public key, or computation/bandwidth efficiency. Dodis et al. [DHLAW10] and Brakerski et
al. [BKKV10] introduced the continual leakage model for public-key schemes, where the secret
key can be periodically self-refreshed while the public key remains the same. This model allows
bounded leakage between any two successive refreshes without a-priori bound on the overall
amount of leakage throughout the lifetime of the system.

The bottomline of the bounded leakage model and its variants interpret the following re-
striction on the leakage: it is information-theoretically impossible to recover the secret key
from the leakage. Dodis et al. [DKL09, DGK+10] introduced the auxiliary input model (AIM),
in which the total amount of leakage could be unbounded, as long as the secret key remains
hard-to-invert given the leakage (but even if the secret key is fully determined in an information-
theoretic sense). As noted in [KV09], a drawback of this model is that given some collection
of leakage functions {fi} there is no way to tell, in general, whether they satisfy the stated
requirement or not. Furthermore, existing constructions in this model require super-polynomial
hardness assumptions.

Leakage-resilient cryptosystems. There is a large body of constructions of leakage-resilient
cryptosystems in various models. In the bounded leakage model, there are OWF [KV09,
Kom16], MAC and SKE [HLWW13], PKE [AGV09, NS09, LWZ13, QL13, QL14, CQX18],
IBE [AGV09, ADN+10, CDRW10], signature [KV09, ADW09a], AKE [ADW09a], and zero-
knowledge proofs [GJS11]. In the continual leakage model, there are PKE [DHLAW10, BKKV10],
IBE [LRW11, YCZY12, YXZ+15], and signature [BSW11, MTVY11, LLW11]. In the auxiliary
input model, there are SKE [DKL09], PKE [DGK+10], and signature [WMHT16].

2 Preliminaries

Notation. For a distribution or random variable X, we write x
R←− X to denote the operation

of sampling a random x according to X. For a set X, we use x
R←− X to denote the operation

8

of sampling x uniformly at random from X, and use |X| to denote its size. We use UX to
denote the uniform distribution over X. For a positive integer n, we use [n] to denote the
set {1, . . . , n}. Unless described otherwise, all quantities are implicitly functions of a security
parameter denoted λ. We say that a quantity is negligible, written negl(λ), if it vanishes faster
than the inverse of any polynomial in λ. A probabilistic polynomial time (PPT) algorithm is
a randomized algorithm that runs in time poly(λ). If A is a randomized algorithm, we write
z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r.
For notational clarity we usually omit r and write z ← A(x1, . . . , xn).

2.1 Entropy and Randomness Extraction

We use capital letters (e.g. X) for random variables, standard letters (e.g. x) for values, and
calligraphic letters (e.g. X) for sets. The min-entropy of a random variable X over X is the
negative (base-2) logarithm of the unpredictability of X: H∞(X) = − log (maxx∈X Pr[X = x]).

In many natural settings, the variable X is correlated with another variable Y whose value
is known to an adversary. In such scenarios, it is most convenient to use the notion of average
min-entropy as defined by Dodis et al. [DORS08], which captures the average unpredictability
of X conditioned on Y :

H̃∞(X|Y) = − log

(
Ey←Y

[
max
x∈X

Pr[X = x|Y = y]

])
The following bound of average min-entropy was proved in [DORS08].

Lemma 2.1 ([DORS08]). Let X,Y, Z be arbitrarily correlated random variables where the
support of Y has at most 2r elements. Then H̃∞(X|(Y, Z)) ≥ H∞(X|Z) − r. In particular,
H̃∞(X|Y) ≥ H∞(X)− r.

In cryptographic applications, we usually need to derive nearly uniform bits from a weakly
random source X that has some average min-entropy. This is accomplished via an appropri-
ate type of randomness extractor. We recall the definition of average-case strong extractor
from [DORS08].

Definition 2.1 (Randomness Extractor). An efficient function ext : X ×S → Y is an average-
case (n, ϵ)-strong extractor if for all (correlated) random variables (X,Z) s.t. H̃∞(X|Z) ≥ n, it
holds that:

∆((ext(X,S), S, Z), (Y, S, Z)) ≤ ϵ,

where S is uniform over S and Y is uniform over Y, respectively.

Dodis et al. [DORS08] proved that any strong extractor is in fact an average-case strong
extractor for appropriate setting of the parameters. As a specific example, they proved that
any family of universal hash functions is an average-case strong extractor.

Lemma 2.2 ([DORS08]). Let X and Z be random variables such that H̃∞(X|Z) ≥ n, and
H = {hS : X → Y}S∈S be a family of universal hash functions. Then ext(X,S) := hS(X) is a
(n, ϵ)-extractor as long as n ≥ log |Y|+ 2 log(1/ϵ).

2.2 Leakage Types

In the standard bounded leakage model [AGV09], the amount of leakage that the adversary
learns is measured by the output length of leakage function f , which is refereed to as length-
bounded leakage [BSW11]. However, this is not the most general way of measuring leakage.

9

As an alternative suggested by Naor and Segev [NS09], Dodis et al. [DHLAW10], and Boyle et
al. [BSW11], we could measure the amount of leakage via the entropy loss to the input of f ,
given the output of f . By relaxing the requirement on leakage functions from length-bounded
to entropy-bounded, the standard bounded leakage model strengthens to entropy leakage model.
Next, we formally recall the notion of entropy-bounded function from [BSW11] as below.

Definition 2.2 (ℓ-entropy-bounded functions). A (possibly randomized) efficiently computable
function f : {0, 1}∗ → {0, 1}∗ is ℓ-entropy-bounded if there exists some (possibly inefficiently
computable) function f ′ such that:

• For all x ∈ {0, 1}∗, f(x) ≈s f
′(x) (over the randomness of f and f ′).

• For all integers n ≥ 1, H̃∞(Un|f ′(Un)) ≥ n− ℓ, where Un is the uniform distribution over
{0, 1}n.

Notice that any function f : {0, 1}∗ → {0, 1}ℓ is ℓ-entropy-bounded. Clearly, there are func-
tions which are ℓ-entropy-bounded but whose output lengths can be arbitrarily long. Therefore,
resilience to ℓ-bit of entropy leakage is a seemingly stronger notion of security than resilience to
ℓ-bit of length-bounded leakage.

2.3 Cryptographic Primitives

2.3.1 Lossy Functions

Lossy functions are the trapdoor-free version of lossy trapdoor functions introduced by Peikert
and Waters [PW08].

Definition 2.3 (Lossy Functions). A family of (n, τ)-lossy functions G from X = {0, 1}n to Y
is given by three polynomial time algorithms satisfying the following properties:

• GenInj(λ): on input a security parameter λ, output a function index i such that G(i, ·) is
an injective function from X to Y .

• GenLossy(λ): on input a security parameter λ, output a function index i such that G(i, ·)
is a lossy function from X to Y whose image has size at most 2τ . The lossiness is defined
as n− τ .
• Eval(i, x): on input a function index i and an element x, outputs G(i, x).9

Hard to distinguish injective from lossy. The outputs of GenInj(λ) and GenLossy(λ) are
computationally indistinguishable.

2.3.2 One-way Functions

Roughly, a one-way function g : {0, 1}n → {0, 1}m is leakage-resilient if it remains one-way even
in the presence of some leakage about preimage. Boyle et al. [BSW11] formalized the notion of
leakage-resilient one-wayness w.r.t. either length-bounded leakage or entropy-bounded leakage
(which is more general), which we recall as below.

Leakage-resilient one-wayness. Let A be an adversary against g and define its advantage
in the following experiment:

AdvA(λ) = Pr

[
g(x) = y∗ :

x∗
R←− {0, 1}n, y∗ ← g(x∗);

x← AOleak(·)(y∗);

]
.

9For simplicity, we write gi(x) to represent G(i, x) and drop the subscript index when the context is clear.

10

Here Oleak(·) is a leakage oracle that on input f : {0, 1}n → {0, 1}∗ returns f(x∗), subjected
to the restriction that its total output lengths is at most ℓ. We say g is ℓ-leakage-resilient
one-way if for any PPT adversary A its advantage defined as above is negligible in λ.

Constructions of LR-OWFs. As implicitly or explicitly shown in [KV09, ADW09b, DHLW10,
BSW11, Kom16], a universal one-way hash function with n-bit inputs and m-bit outputs auto-
matically constitutes an ℓ-leakage-resilient OWF as long as n−m− ℓ ≥ ω(log λ). The leakage
amount ℓ is roughly the number of bits by which the UOWHF shrinks its input.

Chen et al. [CQX18] realized that any lossy (non-trapdoor) functions [PW08] yield a family
of leakage-resilient injective OWFs. Let LF be a collection of (n, τ)-lossy functions and ℓ be
the amount of leakage. They proved that for n− τ − ℓ ≥ ω(log λ), the functions in the injective
mode readily constitute a family of ℓ-leakage-resilient injective OWFs. The leakage amount ℓ
is roughly the lossiness (n− τ) and the leakage rate could be 1− o(1) by setting τ = o(n).

The above leakage-resilient results also hold in the entropy leakage model.

2.3.3 Signatures

Definition 2.4 (Signatures). A signature scheme with message space M and signature space
Σ consists of three polynomial time algorithms as follows.

• Gen(λ): on input a security parameter λ, output a verification key vk and a signing key
sk.

• Sign(sk,m): on input sk and a message m ∈M , output a signature σ ∈ Σ.

• Verify(vk,m, σ): on input vk, a message m, and a purported signature σ, output 1 indi-
cating acceptance or 0 indicating rejection.

Correctness. For all (vk, sk)← Gen(λ) and allm ∈M , we have Verify(vk,m, Sign(sk,m)) = 1.

The definition of leakage resilience for signature is the standard notion of existential un-
forgeability under adaptive chosen-message attacks (EUF-CMA), except that the adversary is
additionally given access to a leakage oracle.

Leakage-resilient EUF-CMA. Let A = (A1,A2) be an adversary against signature and
define its advantage in the following experiment:

AdvA(λ) = Pr

[
Verify(vk,m∗, σ∗) = 1

∧ m∗ /∈ Q :
(vk, sk)← Gen(λ);

(m∗, σ∗)← AOsign(·),Oleak(·)(vk);

]
.

Here Oleak(·) is a leakage oracle that on input f : SK → {0, 1}∗ returns f(sk), subjected
to the restriction that the total output length of all f is at most ℓ. Osign(·) is a signing oracle
that on input m outputs σ ← Sign(sk,m). The set Q records queries to Osign(·). A signature
is ℓ-leakage-resilient EUF-CMA if no PPT adversary A has non-negligible advantage in the
above security experiment. A weaker notion called leakage-resilient selectively EUF-CMA can
be defined in exactly the same way except that the adversary is asked to declare m∗ even before
seeing vk.

2.3.4 Secret-Key Encryption

Definition 2.5 (Secret-Key Encryption). An SKE scheme with message space M , ciphertext
space C and secret key space K consists of three polynomial time algorithms as follows.

• Gen(λ): on input a security parameter λ, output a random secret key k
R←− K.

11

• Enc(k,m): on input a secret key k and a message m ∈M , output a ciphertext c ∈ C.
• Dec(k, c): on input a secret key k and a ciphertext c ∈ C, output a message m ∈M .

Correctness. For all k ← Gen(λ) and all m ∈M , we have Dec(k,Enc(k,m)) = m.

We recall leakage-resilient chosen-plaintext security (LR-CPA) for SKE as follows.

Leakage-resilient CPA. Let A = (A1,A2) be an adversary against SKE and define its ad-
vantage in the following experiment:

AdvA(λ) = Pr

β = β′ :

k ← Gen(λ);

(state,m0,m1)← AOleak(·),Oenc

1 (λ);

β
R←− {0, 1};

c∗ ← Enc(k,mβ);
β′ ← A2(state, c

∗);

−
1

2
.

Here Oleak(·) is a leakage oracle that on input f : SK → {0, 1}∗ returns f(sk), subjected to
the restriction that the sum of its output lengths is at most ℓ. Oenc is an encryption oracle that
on input m ∈ M outputs Enc(k,m). (When Enc is randomized, Oenc uses fresh randomness
each time it answers a query.) A SKE is ℓ-leakage-resilient CPA-secure if no PPT adversary
has non-negligible advantage in the above security experiment.

2.3.5 Key Encapsulation Mechanism

Definition 2.6 (Key Encapsulation Mechanism). A KEM with message space M , ciphertext
space C and encapsulated key space K consists of three polynomial time algorithms as below.

• Gen(λ): on input a security parameter λ, output a public key pk and a secret key sk.

• Encaps(pk): on input a public key pk, output a ciphertext c ∈ C and an encapsulated key
k ∈ K.

• Decaps(sk, c): on input a secret key sk and a ciphertext c ∈ C, output an encapsulated
key k ∈ K or a distinguished symbol ⊥ indicating that c is invalid.

Correctness. For all (pk, sk)← Gen(λ) and all (c, k)← Encaps(pk), we have Decaps(sk, c) = k.

We recall leakage-resilient chosen-plaintext security (LR-CPA) for KEM as follows.

Leakage-resilient CPA. Let A = (A1,A2) be an adversary against KEM and define its
advantage in the following experiment:

AdvA(λ) = Pr

β = β′ :

(pk, sk)← Gen(λ);

state← AOleak(·)
1 (pk);

(c∗, k∗0)← Encaps(pk), k∗1
R←− K;

β
R←− {0, 1};

β′ ← A2(state, c
∗, k∗β);

−
1

2
.

Here Oleak(·) is a leakage oracle that on input f : SK → {0, 1}∗ returns f(sk), subjected
to the restriction that the sum of its output lengths is at most ℓ. A KEM is ℓ-leakage-resilient
CPA-secure if no PPT adversary has non-negligible advantage in the above security experiment.

Remark 2.1. The KEM-DEM approach also works in the leakage setting, i.e., one can build
leakage-resilient PKE by combining a leakage-resilient KEM and a standard DEM. The resulting
PKE inherits the same leakage-resilience from the underlying KEM.

12

2.3.6 Puncturable Pseudorandom Functions

Puncturable PRFs (PPRFs) [SW14] is the simplest type of constrained PRFs [KPTZ13, BW13,
BGI14]. In a PPRF, the constrained key is associated with an element x∗ ∈ X, which allows
evaluation on all elements x ̸= x∗. Next, we recall the definition and security notion of PPRFs
as below.

Definition 2.7 (PPRFs). A PPRF F : K×X → Y consists of four polynomial time algorithms:

• Gen(λ): on input λ, output public parameter pp and a secret key k
R←− K. pp will be used

as an implicit input of PrivEval, Puncture and PuncEval.

• PrivEval(k, x): on input a secret key k and x ∈ X, output F (k, x).

• Puncture(k, x∗): on input a secret key k and x∗ ∈ X, output a punctured key k({x∗}).10
• PuncEval(kx∗ , x): on input a punctured key kx∗ and an element x ∈ X, output F (k, x) if
x ̸= x∗ and a special reject symbol ⊥ otherwise.

For ease of notation, we write kx∗ to represent k({x∗}), write Fk(x) and F (k, x) interchangeably
and write Fkx∗ (x) or F (kx∗ , x) to represent PuncEval(kx∗ , x).

Sahai and Waters [SW14] defined selective pseudorandomness for PPRFs, which is weaker
than full pseudorandomness in that the adversary must commit to the target input x∗ even
before seeing the public parameter.

Selective pseudorandomness. Let A = (A1,A2) be an adversary against PPRFs and define
its advantage in the following experiment:

AdvA(λ) = Pr

β = β′ :

(state, x∗)← A1(λ);
(pp, k)← Gen(λ);
kx∗ ← Puncture(k, x∗);

y∗0 ← Fk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A2(state, pp, kx∗ , y∗β);

− 1

2
.

A PPRF is said to be selectively pseudorandom if for any PPT adversary A its advantage
defined as above is negligible in λ. For simplicity, we refer to selectively pseudorandom PPRFs
as sPPRFs. sPPRFs with fixed-length domain are easily obtained from the GGM tree-based
PRFs [GGM86], as observed in [BW13, BGI14, KPTZ13]. Ramchen and Waters [RW14] also
showed the existence of sPPRFs with variable-length domain.

2.3.7 Indistinguishability Obfuscation for Circuits

We recall the definition and security notion of indistinguishability obfuscator from [GGH+13]
as below.

Definition 2.8 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• (Preserving Functionality) For all security parameter λ ∈ N, for all C ∈ Cλ, and for all
inputs x ∈ {0, 1}∗, we have:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

10Without loss of generality, we assume that k({x∗}) includes the information of x∗ in plain.

13

• (Indistinguishability of Obfuscation) For any PPT adversaries (S,D), there exists a neg-
ligible function α such that the following holds: if Pr[∀x,C0(x) = C1(x) : (C0, C1, aux)←
S(λ)] ≥ 1− α(λ), then we have:

|Pr[D(aux, iO(λ,C0)) = 1]− Pr[D(aux, iO(λ,C1)) = 1]| ≤ α(λ)

3 Leakage-Resilient SKE

We begin this section by recalling the notion of leakage-resilient wPRFs and their application in
building leakage-resilient CPA-secure SKE from [HLWW13]. We then introduce a new notion
called weak puncturable PRFs (weak PPRFs), and show how to compile weak PPRFs to leakage-
resilient wPRFs via iO.

3.1 Leakage-Resilient Weak PRFs

Standard PRFs require full pseudorandomness: given polynomially many arbitrarily inputs
x1, . . . , xq, the outputs Fk(x1), . . . , Fk(xq) look pseudorandom. Sometimes, the full power of
PRFs is not needed and it is sufficient to have weak PRFs which only claim weak pseudo-
randomness, where pseudorandomness holds for uniformly random choice of inputs {xi}. The
corresponding leakage-resilient notion requires that weak pseudorandomness holds even if the
adversary can learn some leakage about the secret key k. Now, we recall the formal definition
of leakage-resilient weak pseudorandomness from [HLWW13].

Leakage-resilient weak pseudorandomness. Let A = (A1,A2) be a PPT adversary against
PRFs and define its advantage in the following experiment.

AdvA(λ) = Pr

β = β′ :

(pp, k)← Gen(λ);

state← AOleak(·),Oeval($)
1 (pp);

x∗
R←− X;

y∗0 ← Fk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← AOeval($)
2 (state, x∗, y∗β);

− 1

2
.

Here Oleak(·) is a leakage oracle that on input leakage function f : K → {0, 1}∗ returns
f(k), subjected to the restriction that the sum of its output lengths is at most ℓ. Oeval($) is
an evaluation oracle that does not take any input and on each invocation, chooses a freshly
random x ∈ X and outputs (x, Fk(x)). A PRF is ℓ-leakage-resilient weakly pseudorandom if no
PPT adversary has non-negligible advantage in the above experiment.

Remark 3.1. As pointed out in [HLWW13], since the adversary can always learn a few bits of
Fk(x) for some x of its choice (via leakage query), we cannot hope to achieve full pseudoran-
domness in the presence of leakage, and hence setting for weak pseudorandomness is a natural
choice.

Leakage-resilient SKE. The construction of LR CPA-secure SKE from LR wPRF is obvious.
We sketch the construction from [HLWW13] for completeness. Assume F : K × X → Y is
a leakage-resilient wPRF, whose range Y is an additive group (e.g., bit-strings under XOR).
The secret key is exactly the key of the underlying wPRF. To encrypt a message m ∈ Y , one
samples x

R←− X and outputs the ciphertext (x, Fk(x) +m). The decryption process is obvious.
The desired LR CPA security of SKE follows readily from the LR weak pseudorandomness of
the wPRF.

14

3.2 Weak Puncturable PRFs

Towards the construction of leakage-resilient wPRFs, we put forward a new notion called weak
PPRFs by introducing weak pseudorandomness for PPRFs. We show that weak PPRFs and
selective PPRFs imply each other, while the latter is directly implied by the GGM-tree based
PRFs [GGM86].

Next, we formally introduce weak pseudorandomness for PPRFs, which differs from selective
pseudorandomness (cf. definition in Section 2.3.6) in that the target input x∗ is uniformly chosen
by the challenger, rather than being arbitrarily chosen by the adversary before seeing the public
parameter.

Weak pseudorandomness. Let A = (A1,A2) be an adversary against PPRFs and define its
advantage in the following experiment:

AdvA(λ) = Pr

β = β′ :

(pp, k)← Gen(λ);

x∗
R←− X;

kx∗ ← Puncture(k, x∗);

y∗0 ← Fk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A(pp, x∗, kx∗ , y∗β);

− 1

2
.

A PPRF is weakly pseudorandom if no PPT adversary has non-negligible advantage in the
above experiment. For simplicity, we refer to weakly pseudorandom PPRFs as wPPRFs.

Interestingly, we show that wPPRFs and sPPRFs imply each other.

Theorem 3.1. wPPRFs and sPPRFs imply each other.

Proof. We first show that “wPPRFs imply sPPRFs” by building sPPRFs from wPPRFs. Let
F : K ×X → Y be a wPPRF, we build a sPPRF F̂ : K ×X → Y from F as below.

• Gen(λ): run (pp, k)← F.Gen(λ), pick r∗
R←− X, set p̂p = (pp, r∗) and k as the secret key.

• PrivEval(k, x): on input k and x, output ŷ ← Fk(x+r
∗) via computing F.PrivEval(k, x+r∗).

This algorithm defines F̂k(x) := Fk(x+ r∗).

• Puncture(k, x∗): compute kx∗+r∗ ← F.Puncture(k, x∗ + r∗), output k̂x∗ = kx∗+r∗ .

• PuncEval(k̂x∗ , x): parse k̂x∗ as kx∗+r∗ , if x ̸= x∗ output y ← Fkx∗+r∗ (x+r
∗) via computing

F.PuncEval(kx∗+r∗ , x+ r∗), else output ⊥.

We now reduce the selective pseudorandomness of the above construction to the weak pseu-
dorandomness of the underlying wPPRF. Let A be an adversary against sPPRF with advantage
AdvA(λ), we build an adversary B that breaks wPPRF with the same advantage. B interacts
with A in the selective pseudorandomness experiment of sPPRF as below:

1. Commit: A submits its target input x̂∗.

2. Setup and Challenge: B invokes its wPPRF challenger and receives back the wPPRF
challenge instance (pp, kx∗ , x∗, y∗β) where x

∗ is randomly chosen from X, y∗β is either Fk(x
∗)

if β = 0 or randomly chosen from Y if β = 1. B then sets r∗ = x∗ − x̂∗, p̂p = (pp, r∗),
k̂x̂∗ = kx∗ , sends (p̂p, k̂x̂∗ , y∗β) to A as the sPPRF challenge.

3. Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Note that x∗ is distributed uniformly at random over X, thereby so is r∗. According to
the construction, the punctured key k̂x̂∗ at point x̂∗ in sPPRF F̂ equals the punctured key

15

kx̂∗+r∗ = kx∗ at point x∗ in wPPRF F . Therefore, B’s simulation is perfect and has the same
advantage as A. This proves the forward implication.

The reverse direction that “sPPRFs imply wPPRFs” follows by a simple reduction of weak
pseudorandomness to selective pseudorandomness. Let A be an adversary against wPPRF with
advantage AdvA(λ), we build an adversary B that breaks sPPRF with the same advantage. B
interacts with A in the weak pseudorandomness experiment of wPPRF as below:

1. Setup and Challenge: B picks x∗
R←− X and submits x∗ to its own sPPRF challenger. Upon

receiving back (pp, kx∗ , y∗β) where yβ is either Fk(x
∗) if β = 0 or randomly chosen from Y

if β = 1, B sends (pp, x∗, kx∗ , y∗β) to A as the wPPRF challenge.

2. Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Note that x∗ is distributed uniformly over X. Therefore, B’s simulation is perfect and has
the same advantage as A. This proves the inverse implication.

The theorem immediately follows.

3.3 Leakage-Resilient wPRFs from wPPRFs and iO

Now, we show how to construct leakage-resilient wPRFs from wPPRFs and iO. Let F : K×X →
Y be a wPPRF, iO be an indistinguishability obfuscator, and ext : Y × S → Z be an average-
case (n, ϵ)-strong extractor. In what follows, we build a LR wPRF F̂ : K̂ × X̂ → Z, where
X̂ = X × S.

• Gen(λ): run (pp, k)← F.Gen(λ), output pp and k̂ ← iO(PrivEval), where PrivEval is the
program defined in Figure 2.

• PrivEval(k̂, x̂): on input k̂ and x̂ = (x, s) ∈ X × S, output y ← k̂(x, s). This algorithm
implicitly defines F̂k̂(x̂) := ext(Fk(x), s).

PrivEval

Constants: wPPRF key k

Input: x̂ = (x, s)

1. Output z ← ext(Fk(x), s).

Figure 2: Program PrivEval. This program is appropriately padded to the maximum of the
size of itself and program PrivEval∗ defined in Figure 3.

PrivEval∗

Constants: wPPRF punctured key kx∗ , x∗, y∗

Input: x̂ = (x, s)

1. If x = x∗, output z ← ext(y∗, s).

2. Else, output z ← ext(Fkx∗ (x), s).

Figure 3: Program PrivEval∗

16

Theorem 3.2. If F is a secure wPPRF, iO is indistinguishably secure, ext is an average-case
(n, ϵ)-strong extractor, the above construction is a ℓ-LR wPRF as long as ℓ ≤ log |Y | − n.

Proof. We proceed via a sequence of games. Let Si be the event that A wins in Game i.

Game 0. This game is the standard leakage-resilient weak pseudorandomness game for wPRFs.
CH interacts with A as below:

Setup: CH runs (pp, k)← F.Gen(λ), creates k̂ ← iO(PrivEval), where the program PrivEval is
defined in Figure 2. CH then sends pp to A.
Phase 1: A can make evaluation queries and leakage queries. For each evaluation query, CH
chooses x

R←− X and s
R←− S and returns (x, s, k̂(x, s)). For each leakage query ⟨f⟩, CH responds

with f(k̂).

Challenge: CH chooses x∗
R←− X, s∗

R←− S and computes y∗ ← Fk(x
∗), then computes z∗0 ←

ext(y∗, s∗), picks z∗1
R←− Z and β

R←− {0, 1}, sends z∗β to A.
Phase 2: A continues to make evaluation queries. CH responds the same way as in Phase 1.

Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH chooses x∗
R←− X, s∗

R←− S and computes y∗ ← Fk(x
∗)

in the Setup stage. This change is only conceptual and thus we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH directly aborts when handling evaluation queries
for x = x∗.

Let E be the event that there exists one random sample x that equals x∗ when CH emulates
evaluation oracle. Clearly, if E never happens, then Game 1 and Game 2 are identical. Suppose
A makes at most qe evaluation queries. Since A is a PPT adversary, qe is bounded by a
polynomial in λ. Therefore, Pr[E] ≤ qe/|X| ≤ negl(λ), we have:

|Pr[S2]− Pr[S1]| ≤ Pr[E] ≤ negl(λ)

Game 3. Same as Game 2 except that CH computes kx∗ ← F.Puncture(k, x∗), y∗ ← Fk(x
∗),

and creates k̂ ← iO(PrivEval∗) in the Setup stage. Here, the program PrivEval∗ (defined in
Figure 3) is built from constants kx∗ , x∗, y∗.

By the correctness of wPPRFs, the two programs PrivEval and PrivEval∗ agree on all inputs.
By the security of iO, we have:

|Pr[S3]− Pr[S2]| ≤ AdviOA

Game 4. Same as Game 3 except that CH picks y∗
R←− Y rather than setting y∗ ← Fk(x

∗) in
the Setup stage.

By a simple reduction to the weak pseudorandomness of wPPRFs, this modification is
undetectable for all PPT adversaries. Thus, we have:

|Pr[S4]− Pr[S3]| ≤ AdvwPPRF
A

17

Game 5. Same as Game 4 except that CH picks z∗0
R←− Z rather than setting z∗0 ← ext(y∗, s∗)

in the Challenge stage.
We denote by V the set of public parameter pp, (x∗, s∗), the responses to all evaluation

queries (determined by kx∗), z∗1 and β. In both Game 4 and Game 5, y∗ is uniformly chosen
from Y (independent of V), thus H∞(y∗|V) = log |Y |. Observe that A also obtains at most
ℓ bits leakage on k̂ (denote by leak) which is correlated to y∗, it follows by Lemma 2.1 that
H̃∞(y∗|(V, leak)) ≥ H∞(y∗|V) − ℓ = log |Y | − ℓ. Since ext is an average-case (n, ϵ)-strong

extractor, we conclude that ext(y∗, s∗) is ϵ-close to a uniformly random z∗0
R←− Z, even given

V and leakage. Note that A’s view in Game 4 and Game 5 is fully determined by z∗0 , V and
leak, while V and leak are distributed identically in Game 4 and Game 5. Thereby, A’s view
in Game 4 and Game 5 are ϵ/2-close. Thus, we have:

|Pr[S5]− Pr[S4]| ≤ ϵ/2 ≤ negl(λ)

In Game 5, both z∗0 and z∗1 are randomly chosen from Z. Therefore, we have:

Pr[S5] = 1/2

Putting all the above together, the theorem immediately follows.

We have sketched how to achieve optimal leakage rate in Section 1.3. To avoid repetition,
we omit the details here.

Comparison with prior constructions. [Pie09, DY13] showed that any wPRF is already
leakage-resilient for a logarithmic leakage bound ℓ = O(log λ). Hazay et al. [HLWW13] showed
a black-box construction of LR wPRF from any wPRF F : K × X → Y . Their construction
is somewhat involved: they first constructed symmetric-key weak HPS from wPRF, then built
LR wPRF from parallel repetition of symmetric-key weak HPS. The consequence is that it is
not flexible and efficient. To make the output size larger than n log |Y |, they have to invoke n
independent copies of the basic wPRF, and the domain size must be larger than n(|X|+log |Y |).
Besides, its leakage rate is rather poor, say, O(log(λ)/|k|). In contrast, our construction enjoys
flexible parameter choice and optimal leakage rate, which is benefited from the non-black-box
use of underlying wPPRF via iO.

We also mention a few conceptually different approaches to leakage-resilient symmetric-key
cryptosystems such as leakage-resilient SKE based on the minimal use of leak-free compo-
nents [PSV15] or leakage-resilient PRF in the random oracle or generic group model [BMOS17],
which are incomparable to ours.

4 Leakage-Resilient KEM

We begin this section by formally defining leakage-resilient PEPRFs. We then show that leakage-
resilient PEPRFs naturally yield leakage-resilient KEM. Towards achieving leakage-resilience for
PEPRFs, we first introduce a new notion called puncturable PEPRFs, and construct them from
various puncturable primitives, which we believe is of independent interest. Finally, we show
how to compile puncturable PEPRFs to leakage-resilient PEPRFs via iO.

4.1 Leakage-Resilient PEPRFs

Chen and Zhang [CZ14] put forwarded the notion of PEPRFs, which is best viewed as a coun-
terpart of weak PRFs in the public-key setting. In PEPRFs, each secret key is associated with
a public key, and there is a collection of NP languages (indexed by public key) defined over

18

domain. For any element in the language, in addition to evaluating its PRF value using secret
key, one can also evaluate it publicly with public key and the associated witness.

PEPRFs neatly capture the essence of KEM, and they can be instantiated from either
specific assumptions or more general assumptions such as (extractable) hash proof systems and
trapdoor functions. In what follows, we recall the standard definition of PEPRFs from [CZ14]
and proceed to introduce leakage resilience for them.

Definition 4.1 (PEPRFs). Let L = {Lpk}pk∈PK be a collection of NP languages defined over
X. A PEPRF F : SK × X → Y ∪ ⊥11 for L consists of three polynomial time algorithms as
below:

• Gen(λ): on input λ, output a public key pk and a secret key sk.

• PrivEval(sk, x): on input sk and x ∈ X, output y ← Fsk(x) ∈ Y ∪ ⊥.
• PubEval(pk, x, w): on input pk and x ∈ Lpk together with a witness w, output y ←
Fsk(x) ∈ Y .

To be applicable, L is required to be efficiently samplable, i.e., for each pk ∈ PK, there exists
an efficient sampling algorithm SampRel that on input pk outputs a random element x ∈ Lpk

together with a witness w.

Leakage-resilient weak pseudorandomness. Let A be an adversary against PEPRFs and
define its advantage as below:

AdvA(λ) = Pr

β′ = β :

(pk, sk)← Gen(λ);

state← AOleak(·)(pk);
(x∗, w∗)← SampRel(pk);

y∗0 ← Fsk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A(pk, x∗, y∗β);

− 1

2
.

Here Oleak(·) is a leakage oracle that on input f : SK → {0, 1}∗ returns f(sk), subjected
to the restriction that the sum of its output lengths is at most ℓ. A PEPRF is ℓ-leakage-
resilient weakly pseudorandom if no PPT adversary has non-negligible advantage in the above
experiment. As pointed out in [CZ14], full pseudorandomness is impossible due to the publicly
evaluable property.

Leakage-Resilient KEM. [CZ14] showed that weakly pseudorandom PEPRF naturally imply
CPA-secure KEM. We observe that this implication applies in the leakage setting as well. We
sketch the construction here for completeness. Assume F : SK ×X → Y is a leakage-resilient
PEPRF for L = {Lpk}pk∈PK , where the range Y is an additive group. The key pair is exactly

the key pair of the underlying PEPRF. To encrypt a message m ∈ Y , one picks x
R←− Lpk with a

witness w, computes k ← PubEval(pk, x, w) and outputs ciphertext (x, k +m). The decryption
process re-computes k via PrivEval(k, x). The LR CPA security of KEM readily follows from
the LR weak pseudorandomness of the underlying PEPRF. The resulting LR CPA-secure KEM
can be boosted to LR CPA-secure PKE by combining data encapsulation mechanism (DEM)
with appropriate security properties [CS02].

11In a PEPRF, when the input x is not in Lpk, its PRF value Fsk(x) may not be well defined and will be
denoted by a distinguished symbol ⊥.

19

4.2 Puncturable PEPRFs

To construct leakage-resilient PEPRFs, we first introduce the puncturable version of PEPRFs,
called puncturable PEPRFs (PPEPRFs), which could also be viewed as an extension of PPRFs
in the public-key setting. We formally define PPEPRFs as below and defer their realizations to
Section C.

Definition 4.2 (PPEPRFs). Let L = {Lpk} be a collection of NP languages defined over X.
A PPEPRF F : SK ×X → Y ∪ ⊥ for L consists of the following polynomial time algorithms:

• Gen(λ): on input λ, output a public key pk and a secret key sk.

• PrivEval(sk, x): on input sk and x ∈ X, output y ← Fsk(x) ∈ Y ∪ ⊥.
• Puncture(sk, x∗): on input sk and x∗ ∈ Lpk, output a punctured key skx∗ .

• PuncEval(skx∗ , x): on input a punctured key skx∗ and x ≠ x∗, output y ← Fsk(x) ∈ Y ∪⊥.
• PubEval(pk, x, w): on input pk and x ∈ Lpk together with a witness w, output y ←
Fsk(x) ∈ Y .

For security, we require that weak pseudorandomness remains even when the adversary is
given a punctured secret key.

Weak pseudorandomness. Let A be an adversary against PPEPRFs and define its advantage
as below:

AdvA(λ) = Pr

β′ = β :

(pk, sk)← Gen(λ);
(x∗, w∗)← SampRel(pk);
skx∗ ← Puncture(sk, x∗);

y∗0 ← Fsk(x
∗), y∗1

R←− Y ;

β
R←− {0, 1};

β′ ← A(pk, skx∗ , x∗, y∗β);

− 1

2
.

A PPEPRF is weakly pseudorandom if for any PPT adversary A its advantage in the above
experiment is negligible in λ.

Remark 4.1. We note that our notion of PPEPRFs implies puncturable KEM with perfect strong
punctured decapsulation soundness [MH15]. As we will see shortly in Section C, PPEPRFs can
be constructed from various puncturable primitives. This greatly enriches the constructions of
puncturable KEM, which we believe is of independent interest.

4.3 Leakage-Resilient PEPRFs from PPEPRFs and iO

Let F : SK × X → Y ∪ ⊥ be a PPEPRF for L = {Lpk}pk∈PK , iO be an indistinguishability
obfuscation, and ext : Y × S → Z be an average-case (n, ϵ)-strong extractor. Without loss of
generality, we assume that Y = {0, 1}ρ. In what follows, we build a leakage-resilient PEPRF
F̂ : ˆSK × X̂ → Z ∪ ⊥ for L̂ = {L̂pk}pk∈PK , where X̂ = X × S and L̂pk = {x̂ = (x, s) : x ∈
Lpk ∧ s ∈ S}. According to the definition of L̂, a witness w for x ∈ Lpk is also a witness for

x̂ = (x, s) ∈ L̂pk, where s could be any seed from S.

• Gen(λ): run F.Gen(λ) to obtain (pk, sk), create ŝk ← iO(PrivEval), where the program
PrivEval is defined in Figure 4; output (pk, ŝk).

• PrivEval(ŝk, x̂): on input ŝk and x̂ = (x, s) ∈ X̂, output ŷ ← ŝk(x̂). This actually defines
F̂ŝk(x̂) := ext(Fsk(x), s), where x̂ = (x, s).

• PubEval(pk, x̂, w): on input pk, x̂ = (x, s) ∈ L̂pk and a witness w for x̂, compute y ←
Fsk(x) via F.PubEval(pk, x, w), output ŷ ← ext(y, s).

20

PrivEval

Constants: PPEPRF secret key sk

Input: x̂ = (x, s)

1. Output ext(Fsk(x), s).

Figure 4: Program PrivEval. The program is appropriately padded to the maximum of the size
of itself and program PrivEval∗ described in Figure 5.

PrivEval∗

Constants: PPEPRF punctured secret key skx∗ , x∗ and y∗

Input: x̂ = (x, s)

1. If x = x∗, output ext(y∗, s).

2. Else, output ext(Fskx∗ (x), s).

Figure 5: Program PrivEval∗

Theorem 4.1. If F is a secure PPEPRF, iO is indistinguishably secure, and ext is an average-
case (n, ϵ)-strong extractor, the above PEPRF construction is ℓ-leakage-resilient weakly pseudo-
random as long as ℓ ≤ ρ− n.

Proof. We proceed via a sequence of games. Let Si be the event that A succeeds in Game i.

Game 0. This is the standard leakage-resilient weak pseudorandomness game for PEPRFs.
CH interacts with A as below.

1. Setup: CH runs (pk, sk)← F.Gen(λ), creates ŝk ← iO(PrivEval), then sends pk to A.
2. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(ŝk) as long as the

total length of leakage is less than ℓ.

3. Challenge: CH samples (x∗, w∗) ← SampRel(pk), picks s∗
R←− S, computes y∗ ← Fsk(x

∗)

via F.PubEval(pk, x∗, w∗), z∗0 ← ext(y∗, s∗), samples z∗1
R←− Z, β

R←− {0, 1}. Finally, CH
sends x̂∗ = (x∗, s∗) and z∗β to A.

4. Guess: A outputs a guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH samples x∗, w∗ and computes y∗ ← Fsk(x
∗) in the

Setup stage. This change is purely conceptual and thus we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH also computes skx∗ ← F.Puncture(sk, x∗) and creates
ŝk ← iO(PuncPriv) in the Setup stage. Here, the program PrivEval∗ (defined in Figure 5) is
built from constants skx∗ , x∗, and y∗.

It is easy to verify that the two programs PrivEval and PrivEval∗ agree on all inputs. By a
direct reduction to the security of iO, we conclude that:

|Pr[S2]− Pr[S1]| ≤ AdviOA ≤ negl(λ)

21

Game 3. Same as Game 2 except that CH picks y∗
R←− Y rather than setting y∗ ← Fsk(x

∗) in
the Setup stage.

Assuming the weak pseudorandomness of the underlying PPEPRF, this modification is
undetectable by any PPT adversaries. Thus, we have:

|Pr[S3]− Pr[S2]| ≤ AdvPPEPRF
A ≤ negl(λ)

Game 4. Same as Game 3 except that CH picks z∗0
R←− Z rather than setting z∗0 ← ext(y∗, s∗)

in the Challenge stage.
We denote by V the set of public key pk, x∗ and s∗. In both Game 3 and Game 4, y∗ is

uniformly chosen from Y (independent of V), thus H∞(y∗|V) = ρ. Observe that A also obtains
at most ℓ bits leakage on k̂ (denote by leak) which is correlated to y∗, it follows by Lemma 2.1
that H̃∞(y∗|(V, leak)) ≥ H∞(y∗|V)− ℓ = ρ− ℓ, which is greater than n by the parameter choice.
Since ext is an average-case (n, ϵ)-strong extractor, we conclude that ext(y∗, s∗) is ϵ-close to a
uniformly random z∗0 ∈ Z, even given V and leakage. Observe that A’s views in Game 3 and
Game 4 are fully determined by z∗0 , z

∗
1 , β

∗, V and leak, while z∗1 , β
∗, V and leak are distributed

identically in Game 3 and Game 4. Thereby, A’s views in Game 3 and Game 4 are ϵ/2-close.
Thus, we have:

|Pr[S4]− Pr[S3]| ≤ ϵ/2 ≤ negl(λ)

In Game 4, both z∗0 and z∗1 are randomly chosen from Z. Therefore, we have:

Pr[S4] = 1/2

Putting all the above together, the theorem immediately follows.

4.4 Construction with Improved Leakage Rate

The leakage rate of the above basic construction is low. Next, we show how to modify it to
achieve optimal leakage rate. We need two extra primitives: (1) an IND-CPA secure SKE with
message space {0, 1}ρ and ciphertext space {0, 1}v; (2) a family of (v, τ)-lossy functions. The
construction is as below.

• Gen(λ): run (pk, sk) ← F.Gen(λ), h ← LF.GenInj(λ), ke ← SKE.Gen(λ), generate a
dummy ciphertext ct ← SKE.Enc(ke, 0

ρ) as ŝk, compute η∗ ← h(ct), create Ceval ←
iO(PrivEval) (here the program PrivEval is defined in Figure 6 and η∗ acts as its trigger),
set p̂k = (pk, Ceval), output (p̂k, ŝk).

• PrivEval(ŝk, x̂): on input ŝk and x̂ = (x, s) ∈ X̂, output ŷ ← Ceval(ŝk, x̂). This actually
defines F̂ŝk(x̂) := ext(Fsk(x), s), where x̂ = (x, s).

• PubEval(p̂k, x̂, w): on input p̂k = (pk, Ceval, t), x̂ = (x, s) ∈ L̂pk and a witness w for x̂,
compute y ← Fsk(x) via F.PubEval(pk, x, w), output ŷ ← ext(y, s).

Theorem 4.2. If F is a secure PPEPRF, iO is indistinguishably secure, SKE is an IND-CPA
secure secret-key encryption, LF is a family of (v, τ)-lossy functions, ext is an average-case
(n, ϵ)-strong extractor. the above PEPRF construction is ℓ-leakage-resilient weakly pseudoran-
dom as long as ℓ ≤ ρ− n− τ .

Proof. By appropriate parameter choice (e.g. setting v = ρ+o(ρ), n = o(ρ), τ = o(v)), we have
|ŝk| = v = ρ+ o(ρ) and ℓ = ρ− o(ρ) and thus the leakage rate is optimal.

We proceed via a sequence of games. Let Si be the event that A succeeds in Game i.

22

PrivEval

Constants: PPEPRF secret key sk, η∗

Input: ŝk, x̂ = (x, s)

1. If h(ŝk) ̸= η∗, output ⊥.
2. Else, output ext(Fsk(x), s).

Figure 6: Program PrivEval. This program is appropriately padded to the maximum of the
size of itself and the program PrivEval∗ described in Figure 7.

PrivEval∗

Constants: PPEPRF punctured secret key skx∗ , ke, x
∗ and η∗

Input: ŝk, x̂ = (x, s)

1. If h(ŝk) ̸= η∗, output ⊥.
2. If x = x∗, set y∗ ← SKE.Dec(ke, ŝk), output ext(y

∗, s).

3. Else, output ext(Fskx∗ (x), s).

Figure 7: Program PuncEval

Game 0. This is the standard leakage-resilient weak pseudorandomness game for PEPRFs.
CH interacts with A as below.

1. Setup: CH runs (pk, sk) ← F.Gen(λ), h ← LF.GenInj(λ), samples ke ← SKE.Gen(λ),

generates a dummy ciphertext ct← SKE.Enc(ke, 0
ρ) as ŝk, computes η∗ ← h(ct), creates

Ceval ← iO(PrivEval). CH sets p̂k = (pk, Ceval) and sends it to A.
2. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(ŝk) as long as the

total leakage is less than ℓ.

3. Challenge: CH samples (x∗, w∗) ← SampRel(pk), picks s∗
R←− S, computes y∗ ← Fsk(x

∗)

via F.PubEval(pk, x∗, w∗), z∗0 ← ext(y∗, s∗), samples z∗1
R←− Z, β

R←− {0, 1}. Finally, CH
sends x̂∗ = (x∗, s∗) and z∗β to A.

4. Guess: A outputs a guess β′ for β and wins if β′ = β.

According to the definition, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH samples x∗, w∗ and computes y∗ ← Fsk(x
∗) in the

Setup stage. This change is purely conceptual and thus we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH computes ct ← SKE.Enc(ke, y
∗) rather than

ct ← SKE.Enc(ke, 0
ρ) in the Setup stage. By a direct reduction to the IND-CPA security of

SKE, we have:
|Pr[S2]− Pr[S1]| ≤ AdvSKE

A

23

Game 3. Same as Game 2 except that CH also computes skx∗ ← F.Puncture(sk, x∗) and creates
Ceval ← iO(PrivEval) in the Setup stage. Here, the program PrivEval∗ (defined in Figure 7) is
built from constants (skx∗ , x∗, y∗).

By the injectivity of h and the correctness of SKE and PPEPRF, the two programs PrivEval
and PuncPriv agree on all inputs. By a direct reduction to the security of iO, we conclude that:

|Pr[S3]− Pr[S2]| ≤ AdviOA

Game 4. Same as Game 3 except that in the Setup stage CH picks y∗
R←− Y rather than setting

y∗ ← Fsk(x
∗).

Assuming the weak pseudorandomness of the underlying PPEPRF, this modification is
undetectable by all PPT adversaries. Thus, we have:

|Pr[S4]− Pr[S3]| ≤ AdvPPEPRF
A

Game 5. Same as Game 4 except that CH samples a lossy function h via LF.GenLossy(λ)
rather than sampling an injective function in the Setup stage. By a direct reduction to the
security of lossy functions, we conclude that:

|Pr[S5]− Pr[S4]| ≤ AdvLFA

Game 6. Same as Game 5 except that CH picks z∗0
R←− Z rather than setting z∗0 ← ext(y∗, s∗)

in the Challenge stage.
We denote by V the set of public key p̂k = (pk, Ceval), x

∗ and s∗. In both Game 5 and
Game 6, y∗ is uniformly chosen from Y (independent of skx∗ , x∗ and s∗) and but is correlated
to η∗ which has at most 2τ values, we have H∞(y∗|V) ≥ ρ− τ by Lemma 2.1. Observe that A
also obtains at most ℓ bits leakage on ŝk (denote by leak) which is correlated to y∗, it follows
by Lemma 2.1 that H̃∞(y∗|(V, leak)) ≥ H∞(y∗|V) − ℓ = ρ − τ − ℓ, which is greater than n
by the parameter choice. Since ext is an average-case (n, ϵ)-strong extractor, we conclude that
ext(y∗, s∗) is ϵ-close to a uniformly random z∗0 ∈ Z, even given V and leakage. Observe that
A’s view in Game 5 and Game 6 are fully determined by z∗0 , z

∗
1 , β

∗, V and leak, while z∗1 , β
∗,

V and leak are distributed identically in Game 5 and Game 6. Thereby, A’s view in Game 5
and Game 6 are ϵ/2-close. Thus, we have:

|Pr[S6]− Pr[S5]| ≤ ϵ/2 ≤ negl(λ)

In Game 6, both z∗0 and z∗1 are randomly chosen from Z. Therefore, we have:

Pr[S6] = 1/2

Putting all the above together, the theorem immediately follows.

5 Leakage-Resilient Signature

To best illustrate our idea, in the section we only present the construction with selective security.
The construction with adaptive security is deferred to Section D.

5.1 Selective Construction from sPPRFs, Leakage-Resilient OWFs and iO

Let F : K ×M → {0, 1}n be a sPPRF, iO be an indistinguishability obfuscator, g : {0, 1}n →
{0, 1}µ be a leakage-resilient OWF. We build a leakage-resilient signature as below.

24

• Gen(λ): run (pp, k) ← F.Gen(λ), create sk ← iO(Sign) and vk ← iO(Verify). The
programs Sign and Verify are defined in Figure 8 and Figure 10 respectively.

• Sign(sk,m): output σ ← sk(m).

• Verify(vk,m, σ): output vk(m,σ).

Sign

Constants: sPPRF key k

Input: message m

1. Compute σ ← F (k,m).

Figure 8: Program Sign. This program is appropriately padded to the maximum of the size of
itself and program Sign∗ defined in Figure 9.

Sign∗

Constants: sPPRF punctured key km∗ , m∗, σ∗

Input: message m

1. If m = m∗, output σ∗.

2. Else, output σ ← F (km∗ ,m).

Figure 9: Program Sign∗

Verify

Constants: sPPRF key k

Input: message m and signature σ

1. Test if g(σ) = g(F (k,m)), output 1 if true and 0 if false.

Figure 10: Program Verify. This program is appropriately padded to the maximum of the size
of itself and the program Verify∗ defined in Figure 11.

Verify∗

Constants: sPPRF punctured key km∗ , m∗ and y∗

Input: message m and signature σ

1. If m = m∗, test whether g(σ) = y∗. Output 1 if true and 0 if false.

2. Else, test if g(σ) = g(F (km∗ ,m)). Output 1 if true and 0 if false.

Figure 11: Program Verify∗

Theorem 5.1. If F is a secure sPPRF, iO is indistinguishably secure, g is ℓ-leakage-resilient
one-way, the above construction is ℓ-leakage-resilient EUF-CMA in the selective sense.

25

Proof. We proceed via a sequence of games. Let Si be the probability that A wins in Game i.

Game 0. This is the standard leakage-resilient selective EUF-CMA game for signature. CH
interacts with A as follows:

1. Commit: A submits the target message m∗ to CH.
2. Setup: CH runs (pp, k) ← F.Gen(λ), creates sk ← iO(Sign), vk ← iO(Verify). CH sends
vk to A.

3. Signing Query: Upon receiving signing query ⟨m⟩ ̸= ⟨m∗⟩, CH responds with σ ← sk(m).

4. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(sk).

5. Forge: A outputs a forgery σ′ and wins if Verify(vk,m∗, σ′) = 1.

According to the definition of A, we have:

AdvA(λ) = Pr[S0]

Game 1. Same as Game 0 except that in the Setup stage CH computes σ∗ ← F (k,m∗),
y∗ ← g(σ∗), and km∗ ← F.Puncture(k,m∗), creates vk ← iO(Verify∗), where the program
Verify∗ is defined in Figure 11.

It is easy to check that the programs Verify and Verify∗ agree on all inputs. By the security
of iO, we have:

|Pr[S1]− Pr[S0]| ≤ AdviOA

Game 2. Same as Game 1 except that CH uses km∗ to handle signing queries, i.e., returning
σ ← F (km∗ ,m) for m ̸= m∗. By the correctness of sPPRF, Game 1 and Game 2 are identical
in A’s view. Thus, we have:

Pr[S2] = Pr[S1]

Game 3. Same as Game 2 except that CH creates sk ← iO(Sign∗) in the Setup stage. Here
the program Sign∗ (defined in Figure 9) is built from constants km∗ , m∗ and σ∗.

It is easy to check that the two programs Sign and Sign∗ agree on all inputs. By the security
of iO, we have:

|Pr[S3]− Pr[S2]| ≤ AdviOA

Game 4. Same as Game 3 except that in Setup stage CH picks σ∗
R←− {0, 1}n rather than

setting σ∗ ← F (k,m∗).
By the selective pseudorandomness of sPPRF, we have:

|Pr[S4]− Pr[S3]| ≤ AdvsPPRF
A (1)

It remains to analyze Pr[S4]. We have the following claim.

Claim 5.2. If g is an ℓ-leakage-resilient OWF, then the advantage of any PPT adversary in
Game 4 is negligible in λ.

Proof. Let A be a PPT adversary wins Game 4 with advantage AdvA(λ). We construct an
adversary B that breaks the assumed leakage-resilient one-wayness of g with the same advantage,
implying that Pr[S4] must be negligible.

Given (g, y∗) where y∗ ← g(σ∗) for some σ∗
R←− {0, 1}n, B interacts with A in Game 4 with

the aim to output σ′ such that g(σ′) = y∗.

1. Commit: A submits the target message m∗ to CH.

26

2. Setup: B runs (pp, k) ← F.Gen(λ), computes km∗ ← F.Puncture(k,m∗), creates vk ←
iO(Verify∗), and sends vk to A. B also picks random coins r used for obfuscating the
program Sign∗ (with constants km∗ ,m∗, σ∗ hardwired) for later simulation. Note that the
constant σ∗ is unknown to B.

3. Signing Query: Upon receiving signing query ⟨m⟩ ̸= ⟨m∗⟩, B responds with σ ← F (km∗ ,m)
using km∗ .

4. Leakage Query: Note that the signing key sk ← iO(Sign∗km∗ ,m∗,σ∗ ; r) could be viewed as the
value of some function ψ(·) at point σ∗, where ψ(·) on input σ outputs iO(Sign∗km∗ ,m∗,σ; r).
Since iO is efficiently computable, so is ψ(·). Based on this observation, B can transform
any leakage queries on sk to leakage queries on σ∗. Upon receiving leakage query ⟨f⟩, B
makes leakage query ⟨f ◦ ψ⟩ to its own challenger and forwards the reply to A.

5. Forge: A outputs a forgery σ′ and wins if Verify(vk,m∗, σ′) = 1.

Finally, B forwards σ′ to its challenger. It is straightforward to verify that B’s simulation
for Game 4 is perfect. If A succeeds, according to the definition of algorithm Verify in Game 4,
σ′ is indeed a preimage of y∗ under g, thus B also succeeds. This proves the claim.

Putting all the above together, the theorem immediately follows.

5.2 Construction with Improved Leakage Rate

The basic construction presented in Section 5.1 inherits the same leakage amount from the
underlying LR-OWF. However, the leakage rate is low. Next, we show how to modify it to
achieve optimal leakage rate. We need two extra primitives: (1) an IND-CPA secure SKE
with message space {0, 1}n and ciphertext space {0, 1}v; (2) a family of (v, τ)-lossy functions.
Besides, we require the underlying one-way function g to be leakage-resilient in the entropy
leakage model (cf. definition in Section 2.2). The construction is as below.

• Gen(λ): run (pp, k)← F.Gen(λ), h← LF.GenInj(λ), ke ← SKE.Gen(λ), generate a dummy
ciphertext ct ← SKE.Enc(ke, 0

n), compute η∗ ← h(ct), create Csign ← iO(Sign) and
Cvefy ← iO(Verify). The programs Sign and Verify are defined in Figure 12 and Figure 14
respectively. Finally, output vk = (Cvefy, Csign) and sk = ct.

• Sign(sk,m): output σ ← Csign(ct,m).

• Verify(vk,m, σ): output Cvefy(m,σ).

Sign

Constants: sPPRF key k and η∗

Input: ct, message m

1. If h(ct) ̸= η∗, output ⊥.
2. Else, compute σ ← F (k,m).

Figure 12: Program Sign. This program is appropriately padded to the maximum of the size of
itself and the program Sign∗ defined in Figure 13.

Theorem 5.3. If F is a secure sPPRF, iO is indistinguishably secure, SKE is IND-CPA
secure, LF is a family of (v, τ)-lossy functions, g is ℓ-entropy-leakage-resilient one-way, the
above construction is ℓ′-leakage-resilient EUF-CMA in the selective sense as long as ℓ′ ≤ ℓ− τ .

27

Sign∗

Constants: sPPRF punctured key km∗ , ke, m
∗ and η∗.

Input: ct, message m

1. If h(ct) ̸= η∗, output ⊥.
2. If m = m∗, output σ∗ ← SKE.Dec(ke, ct).

3. Else, output σ ← F (km∗ ,m).

Figure 13: Program Sign∗

Verify

Constants: sPPRF key k

Input: message m and signature σ

1. Test if g(σ) = g(F (k,m)), output 1 if true and 0 if false.

Figure 14: Program Verify. This program is appropriately padded to the maximum of the size
of itself and the program Verify∗ defined in Figure 15.

Verify∗

Constants: sPPRF punctured key km∗ , m∗ and y∗

Input: message m and signature σ

1. If m = m∗, test whether g(σ) = y∗. Output 1 if true and 0 if false.

2. Else, test if g(σ) = g(F (km∗ ,m)). Output 1 if true and 0 if false.

Figure 15: Program Verify∗

Proof. By appropriate parameter choice (e.g. setting v = n+ o(n), ℓ = n− o(n), τ = o(v)), we
have |sk| = v = n+ o(n) and ℓ′ = n− o(n) and thus the leakage rate is optimal.

We then prove the security via a sequence of games. Let Si be the probability that A wins
in Game i.

Game 0. This is the standard leakage-resilient selective EUF-CMA game for signature. CH
interacts with A as follows:

1. Commit: A submits the target message m∗ to CH.
2. Setup: CH runs (pp, k) ← F.Gen(λ), h ← LF.GenInj(λ), samples a fresh key ke ←

SKE.Gen(λ), computes ct ← SKE.Enc(ke, 0
n) and η∗ ← h(ct), creates Csign ← iO(Sign)

and Cvefy ← iO(Verify). CH sets sk = ct and sends vk = (Csign, Cvefy) to A.
3. Signing Query: Upon receiving signing query ⟨m⟩ ̸= ⟨m∗⟩, CH responds with σ ← Csign(m).

4. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(sk).

5. Forge: A outputs a forgery σ′ and wins if Cvefy(m
∗, σ′) = 1.

According to the definition of A, we have:

AdvA(λ) = Pr[S0]

28

Game 1. Same as Game 0 except that CH computes σ∗ ← F (k,m∗), y∗ ← g(σ∗), km∗ ←
F.Puncture(k,m∗), then creates vk ← iO(Verify∗) in the Setup stage. Here, the program Verify∗

(defined in Figure 15) is built from constants km∗ , m∗ and y∗.
It is easy to check that the two programs Verify and Verify∗ agree on all inputs. By the

security of iO, we have:
|Pr[S1]− Pr[S0]| ≤ AdviOA

Game 2. Same as Game 1 except that CH uses km∗ to handle signing queries, i.e., returning
σ ← F (km∗ ,m) for m ̸= m∗. By the correctness of sPPRFs, Game 1 and Game 2 are identical
in A’s view. Thus, we have:

Pr[S2] = Pr[S1]

After switching Cvefy from iO(Verify) to iO(Verify∗), we are going to switch Csign from
iO(Sign) to iO(Sign∗). To ensure that such change is undetectable using iO, we have to switch
the secret key ct from a dummy encryption of 0n to an encryption of σ∗.

Game 3. Same as Game 2 except that in the Setup stage CH generates ct← SKE.Enc(ke, σ
∗)

rather than ct← SKE.Enc(ke, 0
n). Thus, we have:

|Pr[S3]− Pr[S2]| ≤ AdvSKE
A

Game 4. Same as Game 3 except that in the Setup stage CH creates Csign ← iO(Sign∗), where
the program Sign∗ is defined in Figure 13.

By the correctness of sPPRF, SKE, and the injectivity of h, the two programs Sign and
Sign∗ agree on all inputs. By the security of iO, we have:

|Pr[S4]− Pr[S3]| ≤ AdviOA

Game 5. Same as Game 4 except that in Setup stage CH picks σ∗
R←− {0, 1}n rather than

setting σ∗ ← F (k,m∗).
By the selective pseudorandomness of sPPRF, we have:

|Pr[S5]− Pr[S4]| ≤ AdvsPPRF
A (2)

Game 6. Same as Game 5 except that in the Setup stage CH samples a lossy function via
h← LF.GenLossy(λ) rather than an injective function. By a direct reduction to the security of
LF, we conclude that:

|Pr[S6]− Pr[S5]| ≤ AdvLFA (3)

It remains to analyze Pr[S6]. We have the following claim.

Claim 5.4. If g is an ℓ-entropy-leakage-resilient OWF, then the advantage of any PPT adver-
sary in Game 6 is negligible in λ.

Proof. Let A be a PPT adversary that wins Game 6 with advantage AdvA(λ). We construct
an adversary B breaking the assumed entropy-leakage-resilient one-wayness of g with the same
advantage, implying that Pr[S6] must be negligible.

Given (g, y∗) where y∗ ← g(σ∗) for some σ∗
R←− {0, 1}n, B interacts with A in Game 6 with

the aim to output σ′ such that g(σ′) = y∗.

1. Commit: A submits the target message m∗ to B.

29

2. Setup: B runs (pp, k) ← F.Gen(λ), then computes km∗ ← F.Puncture(k,m∗), picks ke ←
SKE.Gen(λ), h← LF.GenLossy(λ); creates Cvefy ← iO(Verify∗) and Csign ← iO(Sign∗).
We remark that there is a subtlety when building the program Sign∗. Note that the
program Sign∗ has constants km∗ , ke, m

∗ and η∗ hardwired. According to the definition,
η∗ = h(ct), where ct is an encryption of σ∗ under ke. However, σ∗ is unknown to B.
Observe that η∗ reveals at most τ bits information about ct and thus σ∗, because h is a
(v, τ)-lossy function. Again, note that both h and SKE.Enc are efficiently computable,
thus η∗ can be expressed as the value of some entropy-bounded function at point σ∗.
More precisely, B picks a fresh randomness r for encryption, defines function ψ(·) :=
SKE.Enc(ke, ·; r). In this way, B can obtain η∗ by making a leakage query ⟨h ◦ ψ⟩ about
σ∗ to its own challenger.

3. Signing Query: Upon receiving signing query ⟨m⟩ ̸= ⟨m∗⟩, B responds with σ ← F (km∗ ,m)
using km∗ .

4. Leakage Query: Note that for any leakage query on sk = ct, B can transform it to leakage
queries on σ∗. Upon receiving leakage query ⟨f⟩, B makes leakage query ⟨f ◦ψ⟩ about σ∗
to its own challenger and forwards the reply to A.

5. Forge: A outputs a forgery σ′ and wins if Verify(vk,m∗, σ′) = 1.

Finally, B forwards σ′ to its challenger. By the parameter choice of ℓ′+τ ≤ ℓ, B’s simulation
for Game 6 is perfect. If A succeeds, according to the definition of algorithm Verify in Game 6,
σ′ is indeed a preimage of y∗ under g, thus B also succeeds. This proves the claim.

Putting all the above together, the theorem immediately follows.

Remark 5.1. Note that the length of η∗ in the verification key is potentially larger than n
and thus ℓ due to the ciphertext expansion of SKE and the fact that LF is a family of lossy
functions. Therefore, standard length-bounded LR-OWF is not sufficient to make the simulation
go through. Luckily, in Game 6 the value η∗ is an output of lossy function, which reveals at
most τ bits entropy about σ∗. This explains why we have to require that the underlying OWF
is entropy leakage-resilient (cf. definition and construction in Section 2.3.2).

Acknowledgment

We thank the anonymous reviewers of Asiacrypt 2018 for their helpful comments. The first
author is supported by the National Natural Science Foundation of China (Grant No. 61772522),
Youth Innovation Promotion Association CAS, Key Research Program of Frontier Sciences, CAS
(Grant No. QYZDB-SSW-SYS035).

References

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs.
Public-key encryption in the bounded-retrieval model. In EUROCRYPT, pages 113–134,
2010.

[ADW09a] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography
in the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

[ADW09b] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience and the bounded
retrieval model. In ICITS, pages 1–18, 2009.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In TCC, pages 474–495, 2009.

30

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols. In
TCC, pages 266–284, 2012.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults. In EUROCRYPT, pages 37–51, 1997.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO,
pages 1–20, 2010.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6,
2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In PKC, pages 501–519, 2014.

[BK12] Zvika Brakerski and Yael Tauman Kalai. A parallel repetition theorem for leakage resilience.
In TCC, pages 248–265, 2012.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Over-
coming the hole in the bucket: Public-key cryptography resilient to continual memory
leakage. In FOCS, pages 501–510, 2010.

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authenticated en-
cryption in the face of protocol and side channel leakage. In ASIACRYPT, pages 693–723,
2017.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
CRYPTO, pages 513–525, 1997.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In EURO-
CRYPT, pages 89–108, 2011.

[BSW16] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-inputs
obfuscation. In EUROCRYPT, pages 792–821, 2016.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In ASIACRYPT, pages 280–300, 2013.

[CDRW10] Sherman S. M. Chow, Yevgeniy Dodis, Yannis Rouselakis, and Brent Waters. Practical
leakage-resilient identity-based encryption from simple assumptions. In ACM CCS, pages
152–161, 2010.

[CQX18] Yu Chen, Baodong Qin, and Haiyang Xue. Regularly lossy functions and their applications.
In CT-RSA, 2018.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[CZ14] Yu Chen and Zongyang Zhang. Publicly evaluable pseudorandom functions and their
applications. In SCN, pages 115–134, 2014.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM J.
Comput., 30(2):391–437, 2000.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Public-key encryption schemes with auxiliary inputs. In TCC, pages 361–381,
2010.

[DGL+16] Dana Dachman-Soled, S. Dov Gordon, Feng-Hao Liu, Adam O’Neill, and Hong-Sheng Zhou.
Leakage-resilient public-key encryption from obfuscation. In PKC, pages 101–128, 2016.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptog-
raphy against continuous memory attacks. In FOCS, pages 511–520, 2010.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient
public-key cryptography in the presence of key leakage. In ASIACRYPT, pages 613–631,
2010.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In STOC, pages 621–630, 2009.

31

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In TCC, pages 1–22, 2013.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
FOCS, pages 40–49, 2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input. In
CRYPTO, pages 518–535, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In
CRYPTO, pages 297–315, 2011.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robust-
ness of the learning with errors assumption. In ICS, pages 230–240, 2010.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
STOC, pages 25–32, 1989.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[HL11] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In TCC, pages
107–124, 2011.

[HLWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient
cryptography from minimal assumptions. In EUROCRYPT, pages 160–176, 2013.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In USENIX Security Symposium,
pages 45–60, 2008.

[HW09] Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA as-
sumption. In CRYPTO, pages 654–670, 2009.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and
its applications. In TCC, pages 668–697, 2015.

[JLL16] Wenpan Jing, Xianhui Lu, and Bao Li. Leakage-resilient IND-CCA KEM from the ex-
tractable hash proofs with indistinguishability obfuscation. In Inscrypt, pages 291–308,
2016.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO,
pages 388–397, 1999.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and chosen-
ciphertext security. In EUROCRYPT, pages 673–692, 2010.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In CRYPTO, pages 104–113, 1996.

[Kom16] Ilan Komargodski. Leakage resilient one-way functions: The auxiliary-input setting. In
TCC, pages 139–158, 2016.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Del-
egatable pseudorandom functions and applications. In ACM CCS, pages 669–684, 2013.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage re-
silience. In ASIACRYPT, pages 703–720, 2009.

[LLW11] Allison B. Lewko, Mark Lewko, and Brent Waters. How to leak on key updates. In STOC,
pages 725–734, 2011.

[LRW11] Allison B. Lewko, Yannis Rouselakis, and Brent Waters. Achieving leakage resilience
through dual system encryption. In TCC, pages 70–88, 2011.

32

[LWZ13] Shengli Liu, Jian Weng, and Yunlei Zhao. Efficient public key cryptosystem resilient to key
leakage chosen ciphertext attacks. In CT-RSA, pages 84–100, 2013.

[MH15] Takahiro Matsuda and Goichiro Hanaoka. Constructing and understanding chosen cipher-
text security via puncturable key encapsulation mechanisms. In TCC, pages 561–590, 2015.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract).
In TCC, pages 278–296, 2004.

[MTVY11] Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung. Signatures resilient to
continual leakage on memory and computation. In TCC, pages 89–106, 2011.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,
pages 18–35, 2009.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Advances in Cryptology -
EUROCRYPT 2009, pages 462–482, 2009.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-resilient authenti-
cation and encryption from symmetric cryptographic primitives. In ACM SIGSAC, pages
96–108, 2015.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC,
pages 187–196, 2008.

[QL13] Baodong Qin and Shengli Liu. Leakage-resilient chosen-ciphertext secure public-key encryp-
tion from hash proof system and one-time lossy filter. In ASIACRYPT, pages 381–400,
2013.

[QL14] Baodong Qin and Shengli Liu. Leakage-flexible cca-secure public-key encryption: Simple
construction and free of pairing. In PKC, pages 19–36, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84–93, 2005.

[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In TCC,
pages 419–436, 2009.

[RW14] Kim Ramchen and Brent Waters. Fully secure and fast signing from obfuscation. In ACM
CCS, pages 659–673, 2014.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In STOC, pages 475–484, 2014.

[Wee10] Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In CRYPTO,
pages 314–332, 2010.

[Wic13] Daniel Wichs. Barriers in cryptography with weak, correlated and leaky sources. In Inno-
vations in Theoretical Computer Science, ITCS, pages 111–126, 2013.

[WMHT16] Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Signatures re-
silient to uninvertible leakage. In SCN, pages 372–390, 2016.

[YCZY12] Tsz Hon Yuen, Sherman S. M. Chow, Ye Zhang, and Siu-Ming Yiu. Identity-based encryp-
tion resilient to continual auxiliary leakage. In EUROCRYPT, pages 117–134, 2012.

[YXZ+15] Rupeng Yang, Qiuliang Xu, Yongbin Zhou, Rui Zhang, Chengyu Hu, and Zuoxia Yu.
Updatable hash proof system and its applications. In ESORICS, pages 266–285, 2015.

[Zha16] Mark Zhandry. The Magic of ELFs. In CRYPTO, pages 479–508, 2016.

33

A Puncturable TDFs

Standard trapdoor functions (TDFs) do not support puncturable property, in that the func-
tionality of its trapdoor is of all-or-nothing flavor.

In this section, we introduce a new notion named puncturable TDFs (PTDFs) and show how
to construct them from correlated-product TDFs [RS09]. Briefly, PTDF allows one to derive
a punctured trapdoor from the master trapdoor w.r.t. a particular element in the range, and
such punctured trapdoor can invert all the elements but the punctured element. The security
of PTDFs requires that one-wayness remains even in the presence of a punctured key.

Definition A.1 (PTDFs). A PTDF G : EK × X → Y consists of the following polynomial
time algorithms:

• Gen(λ): on input λ, output an evaluation key ek and a master trapdoor td. Each ek
defines a deterministic function Gek : X → Y .

• Eval(ek, x): on input ek and x, output y ← Gek(x).

• Puncture(td, y∗): on input a master trapdoor td and an element y∗ ∈ Img(Gek), output a
punctured trapdoor tdy∗ .

• Inv(td, y): on input a trapdoor td and an element y ∈ Y , output x← G−1ek (y).
12

• PuncInv(tdy∗ , y): on input a punctured trapdoor tdy∗ and an element y ∈ Y , output
x← G−1ek (y) if y ̸= y∗ and ⊥ otherwise.

One-wayness. Let A be a PPT adversary against PTDFs and define its advantage in the
following experiment:

AdvA(λ) = Pr

Gek(x) = y∗ :

(ek, td)← Gen(λ);

x∗
R←− X, y∗ ← Gek(x

∗);
tdy∗ ← Puncture(td, y∗);
x← A(ek, tdy∗ , y∗)

A PTDF is one-way if no PPT adversary has non-negligible advantage in the above experi-

ment.

Remark A.1. Kiltz et al. [KMO10] introduced the notion of adaptive TDFs, which stipulates
that TDFs remain one-way even when the adversary is given access to an inversion oracle. It
is easy to see that PTDFs imply ATDFs. In fact, PTDF are best viewed as a special kind of
ATDF whose inversion oracle can be instantiated succinctly.

A.1 Construction from Correlate-Product TDFs

Rosen and Segev [RS09] introduced the notion of correlated-product TDFs (CP-TDFs). Briefly,
CP-TDFs remain one-way even when the adversary sees many independent instances of the TDF
evaluated on correlated inputs. Inspired by the Dolev-Dwork-Naor construction [DDN00] of
CCA-secure PKE from CPA-secure PKE, Kiltz et al. [KMO10] showed a black-box construction
of ATDFs from CP-TDFs. Our insight is that their construction enjoys puncturable property
and thus naturally yields PTDFs.

Let G : EK × X → Y be a CP-TDF. Assume that each element in X can be uniquely
encoded as a binary string in {0, 1}n, we build a PTDF Ĝ : EK2n+1 ×X → Y n+1 as below.

• Gen(λ): run G.Gen(λ) independently 2n+1 times to generate (ek0, td0) and (eki,b, tdi,b) for
b ∈ {0, 1} and i ∈ [n], output the evaluation key ek = (ek0, (ek1,0, ek1,1), . . . , (ekn,0, ekn,1))
and the corresponding master trapdoor td = (td0, (td1,0, td1,1), . . . , (tdn,0, tdn,1)).

12If y is not in the image of Gek, G
−1
ek (y) returns ⊥.

34

• Eval(ek, x): on input ek = (ek0, (ek1,0, ek1,1), . . . , (ekn,0, ekn,1)) and an element x ∈
X, output y ← (G(ek0, x), G(ek1,b1 , x), . . . , G(ekn,bn , x)) where bi denotes the ith bit of

G(ek0, x). This algorithm defines Ĝek : X → Y n+1.

• Inv(td, y): on input td = (td0, (td1,0, td1,1, . . . , (tdn,0, tdn,1)) and y = (y0, y1, . . . , yn), com-
pute x← G−1ek0

(td0, y0), output x if yi = G(eki,bi , x) for all i ∈ [n] (here bi denotes the ith
bit of y0), and return ⊥ otherwise.

• Puncture(td, y∗): on input td = (td0, (td1,0, td1,1), . . . , (tdn,0, tdn,1)) and an image y∗ =
(y∗0, y

∗
1, . . . , y

∗
n) ∈ Img(Gek), output punctured trapdoor tdy∗ = (y∗, td1,1−b∗1 , . . . , tdn,1−b∗n),

where b∗i denotes the ith bit of y∗0.

• PuncInv(tdy∗ , y): on input tdy∗ and y = (y0, y1, . . . , yn) ̸= y∗, choose an index j such that
bj ̸= b∗j (bj and b∗j denotes the jth bit of y0 and y∗0 respectively, such j must exist as we

argue below), output x ← G−1ekj,bj
(tdj,bj , yj) if y0 = G(ek0, x) and yi = G(eki,bi , x) for all

i ∈ [n]\j.

Remark A.2. For a well-formed image y = (y0, y1, . . . , yn) ∈ Img(Gek), the injectivity ofG(ek0, ·)
and G(eki,b, ·) for all b ∈ {0, 1} and i ∈ [n] guarantees the value of y0 uniquely determines the
rest parts, which means if y ̸= y∗ we must have y0 ̸= y∗0. This guarantees the existence of such
j ∈ [n].

Theorem A.1. If G is a (n+ 1)-CP-TDF, then the above construction Ĝ is a PTDF.

Proof. Let A be an adversary against PTDFs with advantage AdvA(λ), we build an adversary
B against CP-TDFs with the same advantage.

Given ek0, ek1, . . . , ekn and y∗ = (G(ek0, x
∗), G(ek1, x

∗), . . . , G(ekn, x
∗)) for some unknown

x∗
R←− X, B sets eki,b∗i = eki for all i ∈ [n] (here b∗i is the ith bit of y∗0 = G(ek0, x

∗)), generates
(eki,1−b∗i , tdi,1−b∗i) ← G.Gen(λ) for all i ∈ [n], sets ek = (ek0, (ek1,0, ek1,1), . . . , (ekn,0, ekn,1)),
the punctured trapdoor tdy∗ = (y∗, td1,1−b∗1 , . . . , tdn,1−b∗n). B sends (ek, tdy∗ , y

∗) to A as the
challenge. When A outputs its solution, B forwards it as the solution to its own challenger.
Clearly, B’s simulation is perfect. If A succeeds, so does B. This proves the theorem.

B Puncturable Extractable Hash Proof System

Wee [Wee10] introduced the notion of extractable hash proof system (EHPS), which unifies
most existing constructions of CCA-secure PKE based on search problems. In this section, we
first consider an extension of EHPS which we call derivable EHPS (DEHPS), then introduce
the notion called puncturable EHPS (PEHPS). In what follows, we first recall the notion of
binary relation.

Binary Relations. Let Rpp : X ×W be a collection of binary relations indexed by public
parameter pp, where X is an NP language and W is the corresponding set of witnesses. To
be applicable, Rpp is efficiently verifiable (possibly given some trapdoor for pp) and samplable.
We denote the sampling algorithm by SampRel, which on input pp and random coins r outputs
a random tuple (x,w) ∈ Rpp. For notation convenience of this work, we further decompose
SampRel to SampLan and SampWit, where SampLan (resp. SampWit) outputs the first (resp.
second) output of SampRel.

Rpp is hard if given a random x ∈ X, it is computationally impossible to find w such
(x,w) ∈ Rpp. More formally, we say that Rpp is one-way if:

35

• there is an efficiently computable function hc such that hc(w) is pseudorandom against a
PPT adversary that gets pp and x, where pp is randomly chosen and (x,w)← SampRel(pp).
In other words, we say hc extracts hardcore bits from w.

For any one-way relation, Goldreich-Levin hardcore predicate GL(·) [GL89] constitutes such
hardcore function with one-bit output. For concrete relations, we may obtain hc with linear
number of hardcore bits by either iterating a one-way permutation or relying on decisional
assumptions.

Now, we are ready to define derivable EHPS.

Definition B.1 (Derivable EHPS). A DEHPS for Rpp : X×W is central around a hash function
H : PK ×X → Π with the following polynomial time algorithms:

• Setup(λ): on input λ, output public parameter pp and secret parameter sp. We require
that pp uniquely determines sp.

• Pub(pk, r): on input a public key pk and random coins r, output π ← Hpk(x) where
(x,w)← SampRel(pp; r).

• GenExt(pp): on input pp, output a public key pk and a secret key sk. We require that pp
and pk uniquely determines sk.

• Ext(sk, x, π): on input sk, x and π, output w ∈ W such that (x,w) ∈ Rpp if π = Hpk(x)
and ⊥ otherwise.

• Derive(sp, sk): on input sp and sk, output sk′. We refer to sk′ as the secret hashing key
of sk. This algorithm is deterministic, which ensures that sk′ is well-defined w.r.t. sp and
sk.

• Priv(sk′, x): on input sk′ and x, output π ← Hpk(x).

• GenHash(pp): on input pp, output pk and the secret hashing key sk′ determined by Derive.

In DEHPS, Setup generates global parameters, while Pub admits public evaluation of Hpk(x)
with the randomness used to sample x. GenExt generates a public key pk and a secret key sk,
while Ext can extract witness w from x together with its hash proof π using sk. In addition,
Derive allows one to derive a secret hashing key sk′ from sk (possibly with the help of sp), while
Priv admits private evaluation of Hpk(x) with sk

′. GenHash generates a public key pk together
with its secret hashing key sk′. For the relation between the two modes of key generation, we
require the following property:

Indistinguishability. For all (pp, sp)← Setup(λ), the first outputs (namely pk) of GenExt(pp)
and GenHash(pp) are statistically indistinguishable.

Relation to EHPS. In EHPS, one can only sample a secret hashing key sk′ along with a
public key via GenHash. In DEHPS, we require pp (resp. pk) uniquely determines sp (resp. sk),
and define the secret hashing key w.r.t. sp and sk via algorithm Derive. This requirement is
mild since it is met by all the known instantiations of EHPS, and the reason of such settlement
will be clear soon.

We then extend the notion of DEHPS to PEHPS, which is analogous to the extension from
EHPS to ABO-EHPS in [Wee10].

Definition B.2 (PEHPS). A PEHPS for Rpp is central around a hash function H : PK×X → Π
with the following polynomial time algorithms.

• Setup(λ): on input λ, output public parameter pp and secret parameter sp. Same as
DEHPS, pp uniquely determines sp.

36

• Pub(pk, r): on input a public key pk and random coins r, output π ← Hpk(x) where
(x,w)← SampRel(pp; r).

• GenExt(pp): on input pp, output a public key pk and a secret key sk. Same as DEHPS,
pk uniquely determines sk.

• Ext(sk, x, π): on input sk, x and π, output w ∈ W such that (x,w) ∈ Rpp if x = Hpk(x)
and ⊥ otherwise.

• Puncture(sp, sk, x∗): on input sp, sk and x∗ ∈ X, output skx∗ . We refer to skx∗ as the
punctured secret key w.r.t. x∗. This algorithm is deterministic, which ensures that skx∗

is well-defined w.r.t. sp, sk and x∗.

• PuncPriv(skx∗ , x∗): on input skx∗ and x∗, output π ← Hpk(x
∗).

• PuncExt(skx∗ , x, π): on input skx∗ , x ̸= x∗ and π, output w ∈ W such that (x,w) ∈ Rpp

if π = Hpk(x) and ⊥ otherwise.

• GenPunc(pp, x∗): on input pp and x∗, output pk and the punctured secret key skx∗ deter-
mined by Puncture.

In a PEHPS, the algorithms Setup, GenExt, Pub and Ext are the same as that of DEHPS.
Additionally, the algorithm Puncture allows one to derive a punctured secret key skx∗ from sk
(possibly with sp). Such punctured secret key simultaneously allows for one-out-all hash eval-
uation and all-but-one witness extraction. The algorithm GenPunc admits efficient generation
of a punctured secret key skx∗ with a public key pk. For the relation between the two modes
of key generation, we require the following property.

Indistinguishability. For all (pp, sp) ← Setup(λ) and all x∗ ∈ X, the first outputs (namely
pk) of GenExt(pp) and GenPunc(pp, x∗) are statistically indistinguishable.

Relation to ABO-EHPS. Our notion of PEHPS is reminiscent to the notion of ABO-
EHPS [Wee10], but has three important differences: (1) Towards efficient and flexible instan-
tiations, ABO-EHPS is tag-based, in which Hpk also takes a tag as an auxiliary input. In
contrast, PEHPS is tag-free, which is conceptually simple and clean. (2) In PEHPS, pp (resp.
pk) uniquely determines sp (resp, sk), and the punctured secret key is defined w.r.t. sp and sk
by algorithm Puncture. This settlement guarantees that the punctured secret key is also well-
defined w.r.t. pp and pk. (3) The algorithm GenPunc works in line of the punctured secret key
determined by Puncture.13 As shown in Section C.2, this is crucial for constructing PPEPRFs
from PEHPS via iO, since we have to ensure the hybrid game simulated by operating PEHPS
in the extraction mode and the hybrid game simulated by operating PEHPS in the punctured
mode are still statistically close even in the presence of a punctured secret key.

Remark B.1. In a concurrent work of [DGL+16], Jing et al. [JLL16] showed how to construct
leakage-resilient CCA-secure PKE from iO and ABO-EHPS with secret key deduce algorithm.
Their construction fails to be CCA-secure since the ciphertext is easily malleable due to the
appearance of seed. Besides, their security proof breaks down when arguing adversary’s advan-
tage in hybrid 1 and hybrid 2 are negligibly close based on the statistical indistinguishability of
public keys between extraction and ABO modes. This is because A’s view also includes skx∗ ,
which may differ in two modes.

13Similar treatments are informally sketched in [MH15] when discussing how to capture puncturable KEM via
ABO-EHPS.

37

B.1 Construction from DEHPS

Starting from a DEHPS for binary relation Rpp : X ×W 14 central around H : PK ×X → Π,

we can construct a PEHPS for the same relation central around Ĥ : PK2n × X → Πn via a
DDN-like approach [DDN00, Wee10].

• Setup(λ): same as DEHPS.Setup(λ).

• GenExt(pp): run DEHPS.GenExt(pp) to obtain (pki,b, ski,b) for 1 ≤ i ≤ n and 0 ≤ b ≤ 1,
output pk = (pki,0, pki,1)i∈[n] and sk = (ski,0, ski,1)i∈[n].

• Pub(pk, r): on input pk = (pki,0, pki,1)i∈[n] ∈ PK2n and random coins r, run (x,w) ←
SampRel(r), compute πi ← DEHPS.Pub(pki,xi , r) for 1 ≤ i ≤ n , output π = (π1, . . . , πn).

• Ext(sk, x, π): on input sk = (ski,0, ski,1)i∈[n] ∈ SK2n, x and π = (π1, . . . , πn) ∈ Πn,
compute wi ← DEHPS.Ext(ski,xi , x, πi), output the common value if all n values agree,
and ⊥ otherwise.

• Puncture(sp, sk, x∗): on input sp, sk = (ski,0, ski,1)i∈[n] and x∗ ∈ X, compute secret
hashing keys sk′i,x∗

i
← DEHPS.Derive(sp, ski,x∗

i
) for each i ∈ [n], where x∗i represents the

ith bit of x∗, output the punctured secret key skx∗ = (ski,1−x∗
i
, sk′i,x∗

i
)i∈[n].

• PuncPriv(skx∗ , x∗): on input skx∗ = (ski,1−x∗
i
, sk′i,x∗

i
)i∈[ℓ] and x∗ ∈ X, compute πi ←

DEHPS.Priv(sk′i,x∗
i
, x∗) for i ∈ [n], output π = (π1, . . . , πn).

• PuncExt(skx∗ , x, π): on input skx∗ = (ski,1−x∗
i
, sk′i,x∗

i
)i∈[n], x ̸= x∗ and π = (π1, . . . , πn) ∈

Πn, first check that if πi = DEHPS.Priv(sk′i,x∗
i
, x∗) for all i such that xi = x∗i . If not,

output ⊥. Else, for all i such that xi ̸= x∗i compute wi ← DEHPS.Ext(ski,1−x∗
i
, x∗, πi),

output the common value if all these values agree and ⊥ otherwise.

• GenPunc(pp, x∗): on input pp and x∗, run DEHPS.GenExt(pp) independently n times to
obtain (pki,1−x∗

i
, ski,1−x∗

i
)i∈[n], run DEHPS.GenHash(pp) independently n times to obtain

(pki,x∗
i
, sk′i,x∗

i
)i∈[n]; output pk = (pki,0, pki,1)i∈[n] and sk

′ = (ski,1−x∗
i
, sk′i,x∗

i
)i∈[n].

Correctness and indistinguishability of the above construction follows immediately from the
starting DEHPS.

In addition to the above generic construction, PEHPS can also be directly built from con-
crete assumptions. Particularly, several existing realizations of ABO-EHPS already satisfy the
definition of PEHPS, such as the one from the bilinear Diffie-Hellman assumption [Wee10,
Section 5.1].

C Constructions of PPEPRFs

In this section, we demonstrate the existence of PPEPRFs by realizing them from a variety of
puncturable primitives.

C.1 Construction from PTDFs

For the purpose of constructing PPEPRFs, we introduce a new primitive called puncturable
trapdoor functions (PTDFs). To avoid departing from the main theme, we defer the definition
and construction of PTDFs to Section A.

Let G : EK ×X → Y be an injective PTDF, hc(·) be its hardcore function from X to Z.15

We build a PPEPRF F : SK × Y → Z ∪ ⊥ as below.

14For simplicity, we assume that each element in X can be uniquely encoded as binary string of length n.
15For simplicity, we require hc outputs ⊥ if and only if its input is ⊥.

38

• Gen(λ): run (ek, td) ← G.Gen(λ), output pk = ek and sk = td. For each pk, Lpk = {y :
∃x ∈ X s.t. y = Gpk(x)}, where x serves as the witness for y ∈ Lpk.

• PrivEval(sk, y): on input sk and y, compute x ← G−1pk (y) via G.Inv(sk, y), output z ←
hc(x). This algorithm defines Fsk(y) := hc(G.Inv(sk, y)).

• PubEval(pk, y, x): on input pk, y ∈ Lpk and a witness x, output z ← hc(x).

• Puncture(sk, y∗): on input sk and y∗ ∈ Lpk, output sky∗ ← G.Puncture(sk, y∗).

• PuncEval(sky∗ , y): on input sky∗ and y, if y ̸= y∗ compute x← G−1pk (y) viaG.PuncInv(sky∗ , y)
and output z ← hc(x), else output ⊥.

The correctness of the above construction follows from that of PTDF.

Theorem C.1. F is a weakly pseudorandom PPEPRF if G is a one-way PTDF.

Proof. We proceed via a sequence of games. Let Si be the event that A succeeds in Game i.

Game 0. This is the standard weak pseudorandomness game for PPEPRFs. CH interacts with
A as below.

1. Setup: CH runs G.Gen(λ) to generate pk and sk.

2. Challenge: CH picks x∗
R←− X, computes y∗ ← Gpk(x

∗), derives sky∗ ← G.Puncture(sk, y∗),

sets z∗0 ← hc(x∗), picks z∗1
R←− Z, β R←− {0, 1}, sends (pk, sky∗ , y∗, z∗β) to A.

3. Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition of A, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that in the Challenge stage CH picks z∗0
R←− Z rather than

computing z∗0 ← hc(x∗).

Lemma C.2. If G is a one-way PTDF, then the advantages of any PPT adversary in Game 0
and Game 1 are negligibly close.

Proof. We prove this lemma by giving a reduction to the one-wayness of the underlying PTDFs.
Let B be an adversary against PTDFs. Given (ek, tdy∗ , y

∗, z∗), B interacts with A as below

with the aim to determine if z∗ = hc(x∗) or z∗
R←− Z. B sets pk = ek, sky∗ = tdy∗ , z

∗
0 = z∗,

picks z∗1
R←− Z, β

R←− {0, 1}, sends (pk, sky∗ , y
∗, z∗β) to A. Finally, A outputs its guess β′ for β

and wins if β′ = β. If A wins, B outputs 1.
By the definitions of Game 0 and Game 1, if B receives z∗ = hc(x∗), then the probability

that B outputs 1 is exactly the probability of A winning in Game 0. If B receives z∗
R←− Z,

then the probability that B outputs 1 is the probability of A winning in Game 1. The lemma
follows.

Lemma C.3. For any (even unbounded) adversary, its advantage in Game 1 is 0.

Proof. In Game 1, both z∗0 and z∗1 are picked uniformly at random from Z. Therefore, β is
perfectly hidden. The lemma follows.

Putting all the above together, the theorem immediately follows.

39

C.2 Construction from PEHPS

For the purpose of constructing PPEPRFs, we introduce a new notion called puncturable ex-
tractable hash proof systems (PEHPS). To avoid departing from the main theme, we defer the
definition and construction of PEHPS to Section B.

Let Γ be a PEHPS for one-way relation Rpp : X × W central around a hash function
H : PK × L→ Π, R be the randomness space used by SampLan and SampWit, SP and SK be
the secret parameter space and secret key space respectively, hc(·) be its hardcore function from
W to Y .16 We build a PPEPRF F : ˆSK × X̂ → Y ∪ ⊥ from PEHPS, where ˆSK = SP × SK
and X̂ = X ×Π.

• Gen(λ): run (pp, sp) ← Γ.Setup(λ), (pk, sk) ← Γ.GenExt(pp); output p̂k = (pp, pk) and
ŝk = (sp, sk). For each p̂k = (pp, pk), the language Lp̂k = {x̂ = (x, π) : ∃r ∈ R s.t. x =

SampLan(r) ∧ π = Γ.Pub(pk, r)}, where r serves as the witness for x̂ ∈ Lp̂k.

• PrivEval(ŝk, x̂): on input ŝk = (sp, sk) and x̂ = (x, π) ∈ X×Π, compute w ← Γ.Ext(sk, x, π),
output y ← hc(w). This algorithm implicitly defines Fsk(x̂ = (x, π)) = hc(Γ.Ext(sk, x, π)).

• PubEval(p̂k, x̂, r): on input p̂k = (pp, pk), x̂ = (x, π) ∈ Lp̂k and an associate witness r,

compute w ← SampWit(r), output y ← hc(w).

• Puncture(ŝk, x̂∗): on input ŝk = (sp, sk) and x̂∗ = (x∗, π∗) ∈ Lp̂k, compute skx∗ ←
Γ.Puncture(sp, sk, x∗), output ŝkx̂∗ = skx∗ .

• PuncEval(ŝkx̂∗ , x̂): on input ŝkx̂∗ = skx∗ and x̂ = (x, π) ̸= (x∗, π∗) = x̂∗, if x = x∗ output
⊥, else compute w ← Γ.PuncExt(skx∗ , x, π) and output y ← hc(w).

The correctness of the above construction follows from that of PEHPS. In particular, the
correctness of PuncEval is ensured by the functionality of Γ.PuncExt and the fact that each
element x has a unique hash proof.

Theorem C.4. F is a weakly pseudorandom PPEPRF if Rpp is one-way.

Proof. We proceed via a sequence of games. Let Si be the event that A succeeds in Game i.

Game 0. This is the standard weak pseudorandomness game for PPEPRFs. CH interacts with
A by generating the key pair in the extraction mode.

1. Setup: CH runs (pp, sp) ← Γ.Setup(λ), (pk, sk) ← Γ.GenExt(pp), sets p̂k = (pp, pk) and

ŝk = (sp, sk).

2. Challenge: CH samples (x∗, w∗) ← SampRel(pp; r∗), then computes π∗ ← Hpk(x
∗) via

Γ.Pub(pk, x∗, r∗), sets x̂∗ = (x∗, π∗) and generates the punctured secret key ŝkx̂∗ = skx∗ ←
Γ.Puncture(sp, sk, x∗), computes y∗0 ← hc(w∗), picks y∗1

R←− Y , β
R←− {0, 1}. Finally, CH

sends (p̂k, ŝkx̂∗ , x̂∗, y∗β) to A.
3. Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition of A, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH generates (x∗, w∗)← SampRel(pp; r∗) in the Setup
stage. This is merely a conceptual change and thereby:

Pr[S0] = Pr[S1]

16We require hc(·) outputs ⊥ when its input is ⊥.

40

Game 2. Same as Game 1 except that CH interacts with A by generating the key pair in the
punctured mode.

1. Setup: CH runs (pp, sp) ← Γ.Setup(λ), samples (x∗, w∗) ← SampRel(pp; r∗), then runs

(pk, skx∗)← Γ.GenPunc(pp, x∗), sets p̂k = (pp, pk).

2. Challenge: CH computes π∗ ← Hpk(x
∗) via Γ.PuncPriv(skx∗ , x∗), then sets x̂∗ = (x∗, π∗)

and ŝkx̂∗ = skx∗ , computes y∗0 ← hc(w∗), picks y∗1
R←− Y , β

R←− {0, 1}. Finally, CH sends

(p̂k, ŝkx̂∗ , x̂∗, y∗β) to A.
3. Guess: A outputs its guess β′ for β and wins if β′ = β.

Indistinguishability between the extraction mode and the punctured mode and the correctness
of GenPunc and PuncPriv imply that the view (p̂k, ŝkx̂∗ , x̂∗, y∗β) in Game 1 and 2 are statistically
indistinguishable. Thereby, we have:

|Pr[S2]− Pr[S1]| ≤ negl(λ)

We then show that no PPT adversary has non-negligible advantage in Game 2. Let A be a
PPT adversary that has advantage AdvA(λ) in Game 2, we build a reduction algorithm B that
breaks the one-wayness of the underlying binary relation Rpp with same advantage. B interacts
with A in Game 2 as below.

1. Setup and Challenge: B proceeds the same way as CH does in Game 2 except that it
receives (x∗, y∗β) from its own challenge.

2. Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Obviously, B’s simulation is perfect. Therefore, we have:

AdvB(λ) = AdvA(λ) = |Pr[S2]− 1/2|

which is negligible in λ assuming the one-wayness of Rpp.
Putting all the above together, the theorem immediately follows.

C.3 Construction from wPPRFs and iO

Sahai and Waters [SW14] showed an ingenious CCA-secure KEM construction from wPPRFs
and pseudorandom generator (PRG). We observe that their construction essentially provides a
method of compiling wPPRFs to PEPRFs, and the resulting PEPRFs inherit the puncturable
property from the underlying wPPRFs.

Next, we show how to adapt Sahai-Waters KEM to a generic construction of PPEPRFs
from wPPRFs. Let iO be a secure indistinguishability obfuscation, G :W → X be a PRG and
F : SK ×X → Y be a wPPRF. Here, we assume W = {0, 1}λ and X = {0, 1}2λ for simplicity.
We build a PPEPRF F̂ : SK ×X → Y for language L. In our construction, L is independent
of p̂k, i.e., L = {x : ∃w ∈W s.t. x = G(w)}.

• Gen(λ): run (pk, sk)← F.Gen(λ), create p̂k ← iO(PubEval), where the program PubEval
is defined in Figure 16; output (p̂k, sk).

• PrivEval(sk, x): on input sk and x ∈ X, output y ← Fsk(x). This algorithm defines
F̂sk(x) = Fsk(x). In other words, F̂ is exactly the same as F .

• PubEval(p̂k, x, w): on input p̂k, x ∈ L and an associate witness w such that G(w) = x,
output y ← p̂k(x,w).

• Puncture(sk, x∗): output skx∗ ← F.Puncture(sk, x∗).

41

PubEval

Constants: wPPRF key sk

Input: x ∈ X, w ∈W
1. If x ̸= G(w), output ⊥.
2. Else, output Fsk(x).

Figure 16: Program PubEval. This program is appropriately padded to the maximum of the
size of itself and the program PubEval∗ defined in Figure 17.

PubEval∗

Constants: wPPRF punctured key skx∗ , x∗

Input: x ∈ X, w ∈W
1. If x ̸= G(w), output ⊥.
2. Else, output Fskx∗ (x) if x ̸= x∗ and ⊥ otherwise.

Figure 17: Program PubEval∗

• PuncPriv(skx∗ , x): output y ← F.PuncPriv(skx∗ , x).

It is straightforward to verify the correctness of the above construction. For the security,
we have the following theorem.

Theorem C.5. If iO is indistinguishably secure, G is a secure PRG, and F is a secure wPPRF,
then the above construction is a weakly pseudorandom PPEPRF.

Proof. We proceed via a sequence of games. Let Si be the event that A wins in Game i.

Game 0. This is the standard weak pseudorandom game for PPEPRFs. CH interacts with A
as follows:

1. Setup: CH runs (pk, sk)← F.Gen(λ) to obtain the secret key and creates p̂k ← iO(PrivEval)
as the public key.

2. Challenge: CH first picks w∗
R←−W , then computes x∗ ← G(w∗), skx∗ ← F.Puncture(sk, x∗),

y∗0 ← Fsk(x
∗), picks y∗1

R←− Y , β
R←− {0, 1}. CH sends (p̂k, skx∗ , x∗, y∗β) to A as the challenge.

3. Guess: A outputs its guess β′ for β and wins if β′ = β.

According to the definition of Game 0, we have:

AdvA(λ) = |Pr[S0]− 1/2|

Game 1. Same as Game 0 except that CH picks w∗
R←− W and computes x∗ ← G(w∗) in the

Setup stage. This change is purely conceptual. Thus, A’s view in Game 0 and Game 1 are
identical. We have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH picks x∗
R←− X rather than setting x∗ ← G(w∗)

(where w∗
R←−W) in the Setup stage. Assuming the security of PRG, we have:

|Pr[S2]− Pr[S1]| ≤ AdvPRG
A

42

Game 3. Same as Game 2 except that CH computes skx∗ ← F.Puncture(sk, x∗), then creates
p̂k ← iO(PubEval∗) in the Setup stage. Here, the program PubEval∗ (defined in Figure 17)
is built from constants skx∗ and x∗. We first observe that Pr[x∗ /∈ Img(G)] = 1 − 1/2λ for a
randomly chosen x∗. Thus, with all but negligible probability neither PubEval nor PubEval∗

will evaluate F (k, x∗) and hence the input/output behavior of programs are identical. By a
direct reduction to the security of iO, we have:

|Pr[S3]− Pr[S2]| ≤ AdviOA

Assuming the security of wPPRF, we have:

|Pr[S3]− 1/2| ≤ AdvwPPRF
A

Putting all the above together, the theorem immediately follows.

D Leakage-Resilient Signature with Adaptive Security

Our selectively secure construction of Section 5 can be boosted with adaptive security via two
generic methods, without compromising leakage resilience. One method is recently suggested
by Zhandry [Zha16], which simply hashes the message with an extremely lossy function (ELF)
before signing. The resulting signature scheme is still deterministic. However, the only known
construction of ELF relies on the exponential hardness of the decisional Diffie-Hellman problem.
Another method is to apply the “prefix-guessing technique” of Hohenberger-Waters [HW09].
The resulting signature scheme becomes randomized but public-coin.

In this section, we show how to construct a leakage-resilient signature scheme with adaptive
security, by combining our selectively secure construction of Section 5 with the optimized “prefix-
guessing technique” developed in [RW14].

Let F1 : K1 × {0, 1}log l+1+λ → {0, 1}n and F2 : K2 × {0, 1}1≤i≤l → {0, 1}n be two sPPRFs,
g : {0, 1}n → {0, 1}λ be an ℓ-entropy-leakage-resilient injective OWF, SKE be an IND-CPA
secure SKE with message space {0, 1}n and ciphertext space {0, 1}v, LF be a family of (v, τ)-
lossy functions. Let ej be the j-bit string 0 · · · 01, m[j] be the jth bit of m, and t(j) be the first
j bits of t. We build a leakage-resilient signature scheme with message space M = {0, 1}λ as
follows.

• Gen(λ): run (pp1, k1) ← F1.Gen(λ), (pp2, k2) ← F2.Gen(λ), h ← LF.GenInj(λ), and ke ←
SKE.Gen(λ), generate a dummy ciphertext ct ← SKE.Enc(ke, 0

n), compute η∗ ← h(ct),
create Csign ← iO(Sign) and Cvefy ← iO(Verify). The programs Sign and Verify are
defined in Figure 18 and Figure 19 respectively. Finally, output vk = (Cvefy, Csign) and
sk = ct.

• Sign(sk,m): choose t
R←− {0, 1}λ, output σ ← Csign(sk,m, t).

17

• Verify(vk,m, σ): output Cvefy(m,σ).

Theorem D.1. If F1 and F2 are two secure sPPRFs, iO is indistinguishably secure, SKE is
IND-CPA secure, LF is a family of (v, τ)-lossy functions, and g is ℓ-entropy-leakage-resilient
one-way, then the above construction is ℓ′-leakage-resilient EUF-CMA as long as ℓ′ ≤ ℓ− τ .

Proof. By appropriate parameter choice (e.g. setting v = n+ o(n), ℓ = n− o(n), τ = o(v)), we
have |sk| = v = n+ o(n) and ℓ′ = n− o(n) and thus the leakage rate is optimal. We then prove
the security as follows.

17Here, we let t
R←− {0, 1}λ only for simplicity. We can make t shorter as discussed at the end of this section.

43

Sign

Constants: sPPRF keys k1 and k2, and η
∗

Input: ct, message m, and randomness t

1. If h(ct) ̸= η∗, output ⊥.
2. Else, compute s← ⊕λ

j=1F1(k1, j||m[j]||t)⊕λ
j=1 F2(k2, t(j)).

3. Output σ = (s, t).

Figure 18: Program Sign. This program is appropriately padded to the maximum of itself and
the programs Sign∗ and Sign∗∗ defined in Figure 20 and Figure 22.

Verify

Constants: sPPRF keys k1 and k2

Input: message m and signature σ = (s, t)

1. Test if g(s) = g(⊕λ
j=1F1(k1, j||m[j]||t)⊕λ

j=1F2(k2, t(j))), output 1 if true and 0 if false.

Figure 19: Program Verify. This program is appropriately padded to the maximum of itself and
the programs Verify∗ and Verify∗∗ defined in Figure 21 and Figure 23.

Let A be any PPT adversary, q be the maximum number of signing queries made by A, mi

be the ith signing query, σi = (si, ti) be the answer to the ith signing query, and (m∗, σ∗ =
(s∗, t∗)) be the forgery generated by A. To succeed in the ℓ-leakage-resilient EUF-CMA security
experiment, A has to output a forgery which is one of the following two types.

• Type I: m∗ /∈ {m1,m2, · · · ,mq} ∧ t∗ /∈ {t1, t2, · · · , tq} ∧ Cvefy(m
∗, σ∗) = 1.

• Type II: m∗ /∈ {m1,m2, · · · ,mq} ∧ t∗ ∈ {t1, t2, · · · , tq} ∧ Cvefy(m
∗, σ∗) = 1.

At first, we prove that the probability that A outputs a Type I forgery is negligible. We
proceed via a sequence of games. Let Si be the probability that A wins in Game i by outputting
a Type I forgery.

Game 0. This game is same as the standard leakage-resilient EUF-CMA game for signature
except that the winning condition is to output a Type I forgery. CH interacts with A as follows:

1. Setup: CH runs (pp1, k1) ← F1.Gen(λ), (pp2, k2) ← F2.Gen(λ), h ← LF.GenInj(λ), and
ke ← SKE.Gen(λ), generates a dummy ciphertext ct ← SKE.Enc(ke, 0

n), computes η∗ ←
h(ct), creates Csign ← iO(sign) and CVefy ← iO(Verify), and sets vk = (Cvefy, Csign) and
sk = ct. Then CH sends vk to A.

2. Signing Query: Upon receiving the ith signing query ⟨mi⟩, CH samples ti
R←− {0, 1}λ and

responds with σi ← Csign(sk,mi, ti).

3. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(sk).

4. Forge: A wins if it outputs a Type I forgery (m∗, σ∗ = (s∗, t∗)).

According to the definition of A, we have:

AdvA(λ) = Pr[S0]

44

Game 1. Same as in Game 0 except that CH also picks t1, . . . , tq
R←− {0, 1}λ in the Setup stage

and uses ti to answer the ith signing query.
This change is purely conceptual and thus A’s view in Game 0 and Game 1 are identical.

Thereby, we have:
Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that CH also picks î
R←− [q] and ĵ

R←− [λ], and A is considered
to be successful if it outputs a Type I forgery (m∗, σ∗ = (s∗, t∗)) such that t∗(ĵ) = t̂i(ĵ) ⊕ eĵ
and t∗(ĵ) ̸= ti(ĵ) for all i ∈ [q]. In other words, A fails if (m∗, σ∗) is not a Type I forgery or
t̂i(ĵ) is not the longest ti(j) such that ti(j)⊕ ej = t∗(j) for i ∈ [q] and j ∈ [λ].

When A outputs a Type I forgery, we have t∗ /∈ {t1, . . . , tq} according to the definition.
Thereby, the tuple (̂i, ĵ) such that t∗(ĵ) = t̂i(ĵ) ⊕ eĵ and t∗(ĵ) ̸= ti(ĵ) for all i ∈ [q] must
exist. Moreover, the view of A in Game 2 is identical to its view in Game 1 and A learns no
information on which (̂i, ĵ) is chosen. Therefore, we have:

Pr[S2] ≥ Pr[S1]/(qλ)

Game 3. Same as Game 2 except that CH uses a punctured key of F2 to handle signing queries:
(i) computes k2({a}) ← F2.Puncture(k2, a) where a = t̂i(ĵ) ⊕ eĵ in the Setup stage; (ii) on the

ith signing query mi ̸= m∗, computes si ← ⊕λ
j=1F1(k1, j||mi[j]||ti) ⊕λ

j=1 F2(k2({a}), ti(j)) and
returns σi = (si, ti). Due to the the correctness of sPPRFs and the fact that A succeeds in
Game 2 only if we have t̂i(ĵ)⊕eĵ ̸= ti(ĵ) for all i ∈ [q], in which case F2(k2, a) is never computed
when answering signing queries, Game 2 and Game 3 are identical in A’s view and thus we have:

Pr[S3] = Pr[S2]

Game 4. Same as Game 3 except that CH computes z∗ ← F2(k2, a) and generates ct ←
SKE.Enc(ke, z

∗) rather than ct← SKE.Enc(ke, 0
n) in the Setup stage. By the security of SKE,

we have:

|Pr[S4]− Pr[S3]| ≤ AdvSKE
A

Game 5. Same as Game 4 except that CH creates Csign ← iO(Sign∗) in the Setup stage. Here,
the program Sign∗ (defined in Figure 20) is built from constants ĵ, k1, k2({a}), η∗, and a.

Sign∗

Constant: ĵ, k1, k2({a}), η∗, and a
Input: ct, message m, and randomness t

1. If h(ct) ̸= η∗, output ⊥.
2. If t(ĵ) ⊕ eĵ = a, compute z∗ ← SKE.Dec(ke, ct) and s ← ⊕λ

j=1F1(k1, j||m[j]||t) ⊕j ̸=ĵ
F2(k2({a}), t(j))⊕ z∗, and then output σ = (s, t).

3. Else, compute s← ⊕λ
j=1F1(k1, j||m[j]||t)⊕λ

j=1F2(k2({a}), t(j)), and output σ = (s, t).

Figure 20: Program Sign∗

It is easy to check that the two programs Sign and Sign∗ agree on all inputs due to the
injectivity of g. By the security of iO, we have:

|Pr[S5]− Pr[S4]| ≤ AdviOA

45

Verify∗

Constant: ĵ, k1, k2({a}), g, y∗ and a
Input: message m and signature σ = (s, t)

1. If a = t(ĵ), output 1 if g(s ⊕j ̸=ĵ F2(k2({a}), t(j)) ⊕λ
j=1 F1(k1, j||m[j]||t)) = y∗ and

output 0 otherwise.

2. Else, output 1 if g(s) = g(⊕λ
j=1F1(k1, j||m[j]||t) ⊕λ

j=1 F2(k2({a}), t(j)) and output 0
otherwise.

Figure 21: Program Verify∗

Game 6. Same as Game 5 except that CH computes y∗ ← g(z∗), creates Cvefy ← iO(Verify∗)
in the Setup stage. Here, the program Verify∗ (defined in Figure 21) is built from constants ĵ,
k1, k2({a}), g, y∗ and a.

It is easy to check that the two programs Verify and Verify∗ agree on all inputs due to the
injectivity of g. By the security of iO, we have:

|Pr[S6]− Pr[S5]| ≤ AdviOA

Game 7. Same as Game 6 except that CH picks z∗
R←− {0, 1}n rather than setting z∗ ← F2(k2, a)

in the Setup stage.
By the selective pseudorandomness of sPPRFs, we have:

|Pr[S7]− Pr[S6]| ≤ AdvsPPRF
A

It remains to analyze Pr[S7]. We have the following claim.

Claim D.2. If g is injective and ℓ-entropy-leakage-resilient one-way, then the advantage of all
PPT adversary in Game 7 is negligible in λ.

Proof. Let A be a PPT adversary that wins in Game 7 with advantage AdvA(λ). We build an
adversary B that breaks the assumed entropy-leakage-resilient one-wayness of g with the same
advantage, implying that Pr[S7] must be negligible.

Given g, y∗ where y∗ ← g(z∗) for some z∗
R←− {0, 1}n, B interacts with A in Game 7 with

the aim to output z∗.

1. Setup: B picks t1, . . . , tq
R←− {0, 1}λ, î R←− [q], ĵ

R←− [λ], computes a ← t̂i(ĵ) ⊕ eĵ gener-
ates (pp1, k1) ← F1.Gen(λ), and (pp2, k2) ← F2.Gen(λ). B then computes k2({a}) ←
F2.Puncture(k2, a), and picks ke ← SKE.Gen(λ) and h ← LF.GenLossy(λ). Next B picks
a fresh randomness r for encryption, defines function ψ(·) := SKE.Enc(ke, ·; r), and makes
a leakage query ⟨h ◦ ψ⟩ about z∗ to obtain η∗. Then it creates Cvefy ← iO(Verify∗) and
Csign ← iO(Sign∗), and sends vk = (Cvefy, Csign) to A.

2. Signing Query: Upon receiving the ith signing query ⟨mi⟩, B computes responds as follows:

computes si ← ⊕λ
j=1F1(k1, j||mi[j]||ti)⊕λ

j=1F2(k2({a}), ti(j)), then returns σi = (si, ti) to
A.

3. Leakage Query: Note that for any leakage query on sk = ct, B can transform it to leakage
query on z∗. Upon receiving leakage query ⟨f⟩, B makes a leakage query ⟨f ◦ψ⟩ about z∗
to its own challenger and forwards the reply to A.

4. Forge: A outputs (m∗, σ∗ = (s∗, t∗)) and wins if it is a Type I forgery such that t∗(ĵ) =

t̂i(ĵ)⊕ eĵ and t∗(ĵ) ̸= ti(ĵ) for all i ∈ [q].

46

Finally, B forwards s∗ ⊕j ̸=ĵ F2(k2({a}), t∗(j))⊕λ
j=1 F1(k1, j||m∗[j]||t∗) to its own challenger.

Conditioned on A succeeds, we have t∗(ĵ) = t̂i(ĵ) ⊕ eĵ . According to the definition of Verify∗,

this means g(s∗ ⊕j ̸=ĵ F2(k2({a}), t∗(j))⊕λ
j=1 F1(k1, j||m∗[j]||t∗)) = y∗. Moreover, η∗ reveals at

most τ bits information about ct and thus z∗, since now h is (v, τ) lossy. Hence, the leakage
query made by B will be correctly answered by its challenger. As a result, the probability that
B wins is AdvA(λ) = Pr[S7], which is negligible in λ by the security of g. This proves the
claim.

Since q·λ is a polynomial in λ, taken all together, Pr[S7] is negligible in λ, i.e., the probability
that A outputs a Type I forgery is negligible in λ. This finishes the first part of the proof.

It remains to show that the probability that A outputs a Type II forgery is also negligible
in λ. We proceed via a sequence of games. Let Si be the probability that A wins in Game i.

Game 0. This game is the standard leakage-resilient EUF-CMA security experiment for sig-
nature except that the winning condition is to output a Type II forgery. CH interacts with A
as follows:

1. Setup: CH runs (pp1, k1) ← F1.Gen(λ), (pp2, k2) ← F2.Gen(λ), h ← LF.GenInj(λ), and
ke ← SKE.Gen(λ), generates a dummy ciphertext ct ← SKE.Enc(ke, 0

n), computes η ←
h(ct), creates Csign ← iO(Sign) and Cvefy ← iO(Verify), and sets vk = (Cvefy, Csign) and
sk = ct. Then CH sends vk to A.

2. Signing Query: Upon receiving the ith signing query ⟨mi⟩, CH samples ti
R←− {0, 1}λ and

responds with σi ← Csign(sk,mi, ti).

3. Leakage Query: Upon receiving leakage query ⟨f⟩, CH responds with f(sk).

4. Forge: A wins if it outputs a Type II forgery (m∗, σ∗ = (s∗, t∗)).

According to the definition of A, we have:

AdvA(λ) = Pr[S0]

Game 1. Same as in Game 0 except that CH also picks t1, . . . , tq
R←− {0, 1}λ in the Setup stage

and uses ti to answer the ith signing query. This change is purely conceptual and thus A’s view
in Game 0 and Game 1 are identical. Thereby, we have:

Pr[S1] = Pr[S0]

Game 2. Same as Game 1 except that in the Setup stage CH also picks î
R←− [q], ĵ

R←− [λ],

b̂
R←− {0, 1}, and A is considered to win if it outputs a Type II forgery (m∗, σ∗ = (s∗, t∗)) such

that m∗[ĵ] = b̂ ∧mî[ĵ] ̸= b̂ ∧ t̂i = t∗ and t̂i ̸= ti for all i ̸= î.

When A outputs a Type II forgery, we have t∗ ∈ {t1, . . . , tq}. Thus, the triple (̂i, ĵ, b̂) such

that m∗[ĵ] = b̂ ∧mî[ĵ] ̸= b̂ ∧ t̂i = t∗ must exist. Moreover, since t1, . . . , tq are randomly chosen

from {0, 1}λ, the probability that t̂i ̸= ti for all i ̸= î is smaller than q/2λ. Since the view of A
in Game 1 is identical to its view in Game 2 and A learns no information on which (̂i, ĵ, b̂) is
chosen, we have:

Pr[S2] ≥ Pr[S1]/(2qλ)− q/2λ

Game 3. Same as Game 2 except that CH uses a punctured key of F1 to handle signing
queries: (i) computes k1({a})← F1.Puncture(k1, a) where a = ĵ||b̂||t̂i in the Setup stage; (ii) on
the ith signing queries mi ̸= m∗, computes si = ⊕λ

j=1F1(k1({a}), j||mi[j]||ti) ⊕λ
j=1 F2(k2, ti(j))

and returns σi = (si, ti). Due to the the correctness of sPPRFs and the fact that A succeeds in

47

Game 2 only if we have m∗[ĵ] ̸= mî[ĵ] and t
∗ ̸= ti for all i ̸= î, in which case F1(k1, a) is never

used when answering signing queries, Game 2 and Game 3 are identical in A’s view and thus
we have:

Pr[S3] = Pr[S2]

Game 4. Same as Game 3 except that CH computes z∗ ← F2(k2, a) and generates ct ←
SKE.Enc(ke, z

∗) rather than ct← SKE.Enc(ke, 0
n) in the Setup stage. By the security of SKE,

we have:

|Pr[S4]− Pr[S3]| ≤ AdvSKE
A

Game 5. Same as Game 4 except that CH computes z∗ ← F1(k1, a) and creates Csign ←
iO(Sign∗∗) in the Setup stage. Here, the program Sign∗∗ (defined in Figure 22) is built from
constants k1({a}), k2, z∗, η∗, and a.

Sign∗∗

Constant: k1({a}), k2, z∗, η∗, and a
Input: ct, message m, and randomness t

1. If h(ct) ̸= η∗, output ⊥.
2. If ĵ||m[ĵ]||t = a, then compute z∗ ← SKE.Dec(ke, ct) and s ←
⊕j ̸=ĵF1(k1({a}), j||m[j]||t)⊕ z∗ ⊕λ

j=1 F2(k2, t(j)), and output σ = (s, t).

3. Else, compute s = ⊕λ
j=1F1(k({a}), (j||m[j]||t)⊕λ

j=1 F2(k2, t(j)), and output σ = (s, t).

Figure 22: Program Sign∗∗

It is easy to check that the two programs Sign and Sign∗∗ agree on all inputs due to the
injectivity of g. By the security of iO, we have:

|Pr[S5]− Pr[S4]| ≤ AdviOA

Game 6. Same as Game 5 except that CH computes y∗ ← g(z∗) and creates Cvefy ←
iO(Verify∗∗) in the Setup stage. Here, the program Verify∗∗ (defined in Figure 23) is built
from constants k1({a}), k2, g, y∗, and a.

Verify∗∗

Constant: k1({a}), k2, g, y∗, a
Input: message m and signature σ = (s, t)

1. If a = ĵ||m[ĵ]||t, then output “1” if g(s⊕j ̸=ĵ F1(k1({a}), j||m[j]||t)⊕λ
j=1 F2(k2, t(j)) =

y∗ and output “0” otherwise.

2. Else, output 1 if g(s) = g(⊕λ
j=1F1(k1({a}), j||m[j]||t)⊕λ

j=1 F2(k2, t(j)) and output “0”
otherwise.

Figure 23: Program Verify∗∗

It is easy to check that the two programs Verify and Verify∗∗ agree on all inputs due to the
injectivity of g. By the security of iO, we have:

|Pr[S6]− Pr[S5]| ≤ AdviOA

48

Game 7. Same as Game 6 except that in the Setup stage CH picks z∗
R←− {0, 1}n rather than

setting z∗ ← F1(k1, a).
By the selective pseudorandomness of sPPRFs, we have:

|Pr[S7]− Pr[S6]| ≤ AdvsPPRF
A

It remains to analyze Pr[S7]. We have the following claim.

Claim D.3. If g is injective and ℓ-entropy-leakage-resilient one-way, then the advantage of any
PPT adversary in Game 7 is negligible in λ.

Proof. Let A be a PPT adversary that wins Game 7 with advantage AdvA(λ). We build an
adversary B that breaks the assumed entropy-leakage-resilient one-wayness of g with the same
advantage, implying that Pr[S7] must be negligible.

Given g, y∗ where y∗ ← g(z∗) for some z∗
R←− {0, 1}n, B interacts with A in Game 7 with

the aim to output z∗.

1. Setup: B picks t1, . . . , tq
R←− {0, 1}λ, î R←− [q], ĵ

R←− [λ], b̂
R←− {0, 1}, generates (pp1, k1) ←

F1.Gen(λ), (pp2, k2)← F2.Gen(λ), sets a = ĵ||b̂||t̂i, computes k1({a})← F1.Puncture(k1, a),
and picks ke ← SKE.Gen(λ) and h← LF.GenLossy(λ). Next B picks a fresh randomness r
for encryption, defines function ψ(·) := SKE.Enc(ke, ·; r), and makes a leakage query ⟨h◦ψ⟩
about z∗ to obtain η∗. Then it creates Cvefy ← iO(Verify∗∗) and Csign ← iO(Sign∗∗), and
sends vk = (Cvefy, Csign) to A.

2. Signing Query: Upon receiving the ith signing query ⟨mi⟩, B responds as follows: computes

si ← ⊕λ
j=1F1(k1({a}), j||mi[j]||ti)⊕λ

j=1 F2(k2, ti(j)), then returns σi = (si, ti) to A.
3. Leakage Query: Note that for any leakage query on sk = ct, B can transform it to leakage

query on z∗. Upon receiving leakage query ⟨f⟩, B makes a leakage query ⟨f ◦ψ⟩ about z∗
to its own challenger and forwards the reply to A.

4. Forge: A outputs (m∗, σ∗ = (s∗, t∗)) and wins if it is a Type II forgery such that m∗[ĵ] =

b̂ ∧mî[ĵ] ̸= b̂ ∧ t̂i = t∗, and t∗ ̸= ti for all i ̸= î.

Finally, B forwards s∗ ⊕j ̸=ĵ F1(k1({a}), j||m∗[j]||t∗)⊕λ
j=1 F2(k2, t

∗(j)) to its own challenger.

Conditioned on A succeeds, we have m∗[ĵ] = b̂∧ t̂i = t∗. According to the definition of Verify∗∗,
this implies g(s∗ ⊕j ̸=ĵ F1(k1({a}), j||m∗[j]||t∗) ⊕λ

j=1 F2(k2, t
∗(j)) = y∗. Moreover, η∗ reveals at

most τ bits information about ct and thus z∗, since h is a (v, τ)-lossy function. Hence, leakage
queries made by B will be correctly answered by its challenger. As a result, the probability that
B wins is AdvA(λ) = Pr[S7], which is negligible by the security of g. This proves the claim.

Since 2qλ is a polynomial in λ and q/2λ is negligible, taken all together, Pr[S0] is also
negligible in λ, i.e., the probability of A outputs a Type II forgery is negligible in λ. This
finishes the second part of the proof.

Putting all the above together, the theorem immediately follows.

Remark D.1. An important ingredient of the above construction is entropy leakage-resilient
injective OWFs, which are implied by lossy functions. Actually, by assuming the underlying
OWF is entropy-leakage-resilient, the leakage-resilience of the above construction also hold in
the entropy leakage model, due to the signing procedures are deterministic.

In the above construction, we sample the randomness t used by the signing algorithm from
{0, 1}λ only for simplicity. The security proof still holds if we sample t from {0, 1}λc

for any
constant c < 1 instead. As a result, the length of signature is (n+ λc).

49

	Introduction
	Motivation
	Our Contributions
	Overview of Our Techniques
	Related Work

	Preliminaries
	Entropy and Randomness Extraction
	Leakage Types
	Cryptographic Primitives

	Leakage-Resilient SKE
	Leakage-Resilient Weak PRFs
	Weak Puncturable PRFs
	Leakage-Resilient wPRFs from wPPRFs and iO

	Leakage-Resilient KEM
	Leakage-Resilient PEPRFs
	Puncturable PEPRFs
	Leakage-Resilient PEPRFs from PPEPRFs and iO
	Construction with Improved Leakage Rate

	Leakage-Resilient Signature
	Selective Construction from sPPRFs, Leakage-Resilient OWFs and iO
	Construction with Improved Leakage Rate

	Puncturable TDFs
	Construction from Correlate-Product TDFs

	Puncturable Extractable Hash Proof System
	Construction from DEHPS

	Constructions of PPEPRFs
	Construction from PTDFs
	Construction from PEHPS
	Construction from wPPRFs and iO

	Leakage-Resilient Signature with Adaptive Security

