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Abstract. Recently Castryck, Lange, Martindale, Panny, and Renes
published CSIDH, a new key exchange scheme using supersingular el-
liptic curve isogenies. Due to its small key sizes, and the possibility of a
non-interactive and a static-static key exchange, CSIDH seems very in-
teresting for practical applications. However, the performance is rather
slow. Therefore, we employ some techniques to speed up the algorithms,
mainly by restructuring the elliptic curve point multiplications and by
using twisted Edwards curves in the isogeny image curve computations,
yielding a speed-up factor of 1.33 in comparison to the implementation
of Castryck et al. Furthermore, we suggest techniques for constant-time
implementations.

1 Introduction

Isogeny-based cryptography. Isogeny-based cryptography is one of the cur-
rent proposals for post-quantum cryptography. Already proposed (but not pub-
lished) by Couveignes in 1997 [11], and independently rediscovered by Rostovtsev
and Stolbunov in 2004 [22], a Diffie-Hellman-style key exchange based on isoge-
nies between ordinary elliptic curves was designed (called CRS in the following).
In 2010, Childs, Jao and Soukharev [8] showed, that this scheme can be attacked
by solving an abelian hidden shift problem, for which subexponential quantum
algorithms are known to exist.

Due to this, Jao and De Feo [16] considered the use of supersingular elliptic
curves, and designed a new key exchange scheme, called SIDH (supersingular
isogeny Diffie-Hellman), based on random walks in isogeny graphs for supersin-
gular elliptic curves defined over fields Fp2 . The performance of their scheme
was improved by Costello, Longa, and Naehrig [10], yielding an important step
towards practical deployment of SIDH, and also causing an increase of atten-
tion and research for isogeny-based cryptography. This led to the development
of SIKE [15], an isogeny-based key encapsulation scheme, as entry for the NIST
post-quantum cryptography competition [23], that aims for the standardization
of post-quantum schemes in order to start the transition to the practical use
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of quantum-resistant primitives. The main advantage of SIKE comes from its
key sizes. Among all the submitted key encapsulation schemes, it provides the
smallest public keys. However, the price for this is a rather bad performance. In
comparison to the other entries, the running time of SIKE is slow.

Recently, De Feo, Kieffer, and Smith [14] published some new ideas for the opti-
mization of the CRS scheme. Due to its commutative and non-interactive struc-
ture, it is still an interesting alternative to SIDH and SIKE. The performance,
however, is far from being practical. Therefore, Castryck, Lange, Martindale,
Panny, and Renes [7] found that the optimizations, that De Feo, Kieffer, and
Smith wanted to employ, work even better when adapting CRS to supersingular
elliptic curves, i.e. working with supersingular elliptic curves over Fp rather than
Fp2 like in SIDH. They obtain a non-interactive key exchange scheme with even
smaller key sizes than in SIDH, called CSIDH (commutative SIDH, pronounced
like ”seaside”), that also allows static keys, since public keys can be validated,
to detect active attacks. The performance is rather slow in comparison to SIDH,
which explains why it is an interesting and important task to optimize the run-
ning time of the scheme. However, we note that the security of the scheme, and
hence also the choice of parameters, is still an open problem, which we will only
briefly address in the next section.

Organization. In the following section, we give an introduction to CSIDH,
mainly focusing on the implementer’s point of view, and recall some aspects
about Montgomery and twisted Edwards curves. We then introduce a way to re-
structure elliptic curve point multiplications in CSIDH, that allows a reduction
of the computational effort. Thereafter, we review some methods to compute iso-
genies, i.e. point evaluations and computations of the image curves. In the first
case, we employ an observation of Costello and Hisil [9] for a speed-up to the
implementation of [7], whereas in the latter case, we exploit the well-known cor-
respondence between Montgomery and twisted Edwards curves, to compute the
image curves more efficiently. We give some implementation results according to
our contributions, and give some remarks about constant-time implementations
and bounds for their running time.

2 Preliminaries

2.1 CSIDH

Since our aim is to focus on implementations of CSIDH, we only give a very brief
description of the mathematical background. We recommend the lecture of [7]
for a more detailed overview. We refer to [12] for additional information about
isogenies and their cryptographic applications.
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Mathematical background. First consider a quadratic number field k and
an order O ⊂ k. The ideal class group of O is defined as

cl(O) = I(O)/P (O),

where I(O) denotes the set of invertible fractional ideals, that forms an abelian
group under ideal multiplication and contains the set of principal fractional ideals
P (O) as a normal subgroup. Recall that fractional ideals of O are O-submodules
of k of the form αa, where α ∈ k∗ and α is an O-ideal. A fractional ideal a of O is
invertible, if there exists a fractional ideal b such that ab = O, and all principal
fractional ideals αO with α ∈ k∗ are invertible. Further note that there is an
integral representation for every ideal class [a] ∈ cl(O).

Now let O be an imaginary quadratic field. Then the ideal class group cl(O)
acts on E`̀ p(O) via isogenies, where E`̀ p(O) is defined as the set of elliptic curves
E defined over Fp with Endp(E) ∼= O. By Endp(E) we denote the subring of
the endomorphism ring End(E), that consists of endomorphisms defined over Fp.

By fixing a prime p = 4 · `1 · ... · `n − 1, where the `i are small distinct odd
primes, and the elliptic curve E0 : y2 = x3 + x over Fp, which is supersingular
because p ≡ 3 (mod 4), we end up in a favorable position:

The ideals `iO split as `iO = lili, where li = (`i, π − 1) and li = (`i, π + 1)
with the Frobenius endomorphism π. The kernel of the isogeny ϕli then is the
intersection of the kernels of the point multiplication [`i] and the endomorphism
π − 1, i.e. a subgroup generated by a point P of order `i defined over Fp. Simi-
larly, the kernel of the isogeny ϕli

is a subgroup generated by an order-`i point
P defined over Fp2\Fp. We can further represent an ideal class

∏
leii by a vector

(e1, ..., en). Hence, we can compute the action of such an ideal class by computing
the action of the li resp. li by finding order-`i points defined over Fp resp. Fp2\Fp
and applying Vélu-type isogeny formulae [24]. The existence of such points of
the respective orders is guaranteed, since we use supersingular curves.

Key exchange. As already observed by Couveignes in [11], the commutativity
of the class group action allows for a Diffie-Hellman-style key exchange in the
following way:

Alice chooses a secret ideal class [a], represented by a vector (e1, ..., en), com-
putes EA = [a] ·E0 via isogenies, and sends the result to Bob as her public key in
terms of a curve parameter. Bob proceeds in the same way, chooses a secret [b]
and computes his public key EB = [b] ·E0. Then, because of the commutativity,
both parties can compute the shared secret [a] · [b] · E0 = [a] · EB = [b] · EA.

Security of the scheme. As for the CRS scheme, it is clear that the subexpo-
nential quantum attack from [8] also applies to CSIDH. However, Castryck et al.
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give some estimations for parameter sets for different security levels [7]. However,
shortly after CSIDH was published, more analysis of this attack has been done
[3,4]. Since we are only focusing on efficient implementations throughout this
work, we will not discuss these attacks here, and we only note that the appropri-
ate choice of parameters is still an open problem, that requires further analysis.
However, our improvements don’t rely on a special choice of parameters, and are
thus independent of the selected parameters.

2.2 Implementation

We follow the implementation accompanying [7] here3.

Algorithm 1: Evaluating the class group action.

Input : A ∈ Fp and a list of integers (e1, ..., en).
Output: A′ such that [le11 · · · lenn ]EA = EA′ .

1 while some ei 6= 0 do
2 Sample a random x ∈ Fp.
3 Set s← +1 if x3 + Ax2 + x is a square in Fp, else s← −1.
4 Let S = {i | sign(ei) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x : 1), k ←
∏

i∈S `i, P ← [(p + 1)/k]P .
8 foreach i ∈ S do
9 K ← [k/`i]P .

10 if K 6=∞ then
11 Compute a degree-`i isogeny ϕ : EA → EA′ with ker(ϕ) = 〈K〉.
12 A← A′, P ← ϕ(P ), k ← k/`i, ei ← ei − s.

First, we define a prime number p = 4 · `1 · ... · `n − 1, where `1, ..., `n are small
distinct odd primes. Then we choose a supersingular curve E0 over Fp. There-
fore we have #E0 = p + 1, which means that there are points of order `i for
i = 1, ..., n on E0. Note that the factor 4 is needed to ensure that we can use
Montgomery curves.

The private key contains n integers sampled from an interval [−m,m], i.e. has
the form (e1, ..., en). For each i the absolute value |ei| determines how many
isogenies of degree `i are to be computed, while the sign of ei states if we have
to use points defined over Fp or Fp2\Fp to generate their kernels.

For the computation of isogenies, we choose a random point P by sampling

3 We refer to the version from 27.04.2018 throughout this work.
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a random x ∈ Fp, and check in which of the cases above this leads us by check-
ing the minimal field of definition of the corresponding y-coordinate by a square
root check. We then eliminate the possible unwanted factors in the order of P
by multiplying it by 4 ·

∏
j /∈S `j , where S is defined as in algorithm 1.

After that, we iterate over the `i for i ∈ S, removing all remaining possible
factors of the order except for `i of our point by multiplications, and check
whether the resulting point K can be used as kernel generator for computing an
`i-isogeny, i.e. if K 6= ∞. If so, we compute the isogeny and push P through.
Then we go to the next prime and proceed in the same way. However, we don’t
have to consider the previous `i in the multiplication, since the isogeny evalua-
tions of P already eliminate the respective factors from its order, or, in the other
case, the order of P did not contain the previous `i as factors in the first place.

We proceed in the same way, and sample new random points, until all of the
required isogenies are computed. The resulting curve then forms the public key,
or the shared secret, respectively. Note that the computational effort in algo-
rithm 1 highly depends on the private key. Therefore, for the practical usage of
CSIDH, it is important to transform this into a constant-time scheme without
adding too much computational overhead.

Public keys can also be validated by checking for supersingularity: We can sim-
ply sample a random point P on the curve corresponding to the received public
key. For each `i we compute Qi = [(p + 1)/`i]P . For all i with Qi 6= ∞, we
compute [`i]Qi and d =

∏
`i. If any of these [`i]Qi 6= ∞, the curve cannot

be supersingular, since #E(Fp) - p + 1. If this is not the case, and d > 4
√
p,

the curve must be supersingular, as can be seen from the Hasse interval and
Lagrange’s theorem (see [7]). Otherwise, the procedure can be repeated with a
different point P . Following this approach, it is not possible to wrongly classify
an ordinary curve as supersingular. Therefore, we can check if a public key has
been honestly generated, and thus can prevent certain kinds of active attacks.

Choice of parameters. The following discussions and implementation results
refer to the parameter set proposed in [7] for NIST’s post-quantum security
category I. They choose p = 4 · `1 · ... · `74− 1, where `1, ...`73 are the 73 smallest
distinct odd primes and `74 = 587. The elements of the private keys (e1, ..., e74)
are chosen from the interval [−5, 5]. This parameter set leads to public key
lengths of 64 bytes. As mentioned before, the appropriate choice of parameters is
still an open problem, so the analysis of the actual security level of this parameter
set is left for future work.

2.3 Montgomery curves

Montgomery curves are given by an equation over a field k with char(k) > 2 of
the form

Ea,b : by2 = x3 + ax2 + x,
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where a ∈ k\{−2, 2} and b ∈ k\{0}. To avoid inversions during point additions
and doublings, projective coordinates can be used. Furthermore, the efficient
arithmetic given by Montgomery in [19] allows for dropping the Y -coordinate,
and still performing XZ-only point doublings and differential additions, that
require the knowledge of P , Q, and P −Q in order to compute P +Q.

In [10], Costello et al. propose to projectivize not only the point coordinates,
but also the curve parameters. Instead of a Montgomery curve of the form given
above, we work with an equation of the form

E(A:B:C) : By2 = Cx3 +Ax2 + Cx,

where (A : B : C) ∈ P2(k), such that a = A/C and b = B/C for the cor-
responding curve Ea,b. However, in isogeny-based schemes it suffices to work
with (A : C) ∈ P1(k) in the projective model, since neither the Montgomery
curve arithmetic, nor the isogeny computations require the coefficients b or B,
respectively. In general a doubling then costs 4M+ 2S+ 8a, while a differential
addition costs 4M + 2S + 6a. As usual, we denote field multiplications by M,
field squarings by S, and field additions or subtractions by a.

2.4 Twisted Edwards curves

Introduced by Bernstein et al. in [1], twisted Edwards curves over k with char(k) >
2 are given by equations of the form

EE,a,d : aX2 + Y 2 = 1 + dX2Y 2,

with a, d 6= 0, d 6= 1, and a 6= d. For a = 1, the twisted Edwards curve
EE,1,d = EE,d is called Edwards curve, originally proposed by Edwards in [13].
As in the Montgomery case, projective coordinates can be used in order to avoid
inversions during additions and doublings. Note that in the Edwards case there
are different models for doing this, as described in [2].

Similar to the XZ-only Montgomery curve arithmetic, Castryck, Galbraith, and
Farashahi introduced a Y Z-only doubling formula for twisted Edwards curves
in [6] with a cost of 4M + 5S. A formula for Y Z-only differential addition of
twisted Edwards curve points of odd order is derived in [17], using 6M + 3S in
the projective case. Due to the fact that these operations are in general more ex-
pensive than the respective operations on the Montgomery curve, isogeny-based
schemes usually use Montgomery curves (see [5,18] for a comparison to twisted
Edwards curve point arithmetic in SIDH). However, in the following twisted
Edwards curves will be advantageous for the computation of isogenies.

3 Elliptic curve point multiplications

Define α = p+1
4 = `1 · `2 · ... · `n. For the sake of simplicity, we consider a private

key (e1, ..., en), where all ei > 0, or all ei < 0. We will return to the general
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case later on. The algorithm used by Castryck et al. then samples a random
point P on the current curve E0, checks if its y-coordinate is defined over the
corresponding field Fp or Fp2\Fp, and, if so, sets P0 = [4]P in order to remove
the possible factor 4 from its order. Then they compute K0 = [ α`1 ]P0. If K0 =∞,
the order of P does not contain the factor `1. We cannot use it to compute an
isogeny of degree `1 and set P1 = P0 and E1 = E0. If, however, K0 6= ∞, then
K0 must have order `1 and can be used as generator of the kernel of an isogeny
of degree `1, mapping to a curve E1. In this case, we pull P0 through the isogeny
and obtain a point P1 ∈ E1. Note that this implies, that the order of P1 does
not contain the factor `1. Therefore, for checking if we can use P1 to compute
an isogeny of degree `2, it suffices to compute K1 = [ α

`1·`2 ]P1 and proceed as
before. Following this approach, the required factor for the scalar multiplication
of Pj reduces at each step, until only the factor `n remains at the last step of
the loop.

Castryck et al. go through the primes in ascending order in their implemen-
tation, starting with small degree isogenies. However, we found it advantageous
to change the direction of the loop, i.e. go through the primes in descending
order. By doing this, we can eliminate the larger factors of p+ 1 first, and there-
fore end up with multiplications by significantly smaller factors as we proceed
through the loop. Note that as soon as one isogeny degree is done, i.e. |ei| iso-
genies of degree `i were already computed, we include this factor in the first
multiplication to compute P0, making sure that the order of P0 is not divided
by `i. We can then ignore the factor `i in the loop, which slightly reduces the
advantage of our approach every time this occurs. However, we note that our
approach is still faster, as long as at least two factors are left in the loop.

Fig. 1. Bitlengths of factors during the first loop, when all ei have the same sign. The
red line follows the algorithm of [7], the blue line follows our described approach.
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Figure 1 shows the effect of our approach, compared to the implementation of
[7]. Note that per bit of the factor of an elliptic curve point multiplication, one
step in the Montgomery ladder is carried out, i.e. one combined doubling and
addition. Therefore, in the first loop, at each multiplication the computational
effort is reduced by δi times the cost of a ladder step, where δi is the difference
between the two plots for a given i < n, and hence δi · (8M + 4S + 8a). As
discussed before, the number of saved operations reduces in the following loops.

In the general case, our assumption that all elements of the private key share
the same sign obviously does not hold. However, the described effect will trans-
late at a lower scale to both of the somewhat distinct computations for the sets
S+ = {`i | ei > 0} and S− = {`i | ei < 0} corresponding to the private key
(e1, ..., en). Indeed, when plotting the bitlengths of the factors in the respective
first loops in such cases, this leads to a similar result as in Figure 1, only at a
lower scale.

4 Isogeny Computations

The algorithm of [7] uses isogeny formulae for Montgomery curves by Costello
and Hisil [9] and Renes [21]. We will treat point evaluations and computations of
coefficients of image curves separately. First, we will state the isogeny formulae
of [9], which can be used for the computation of isogenies in CSIDH.

Let K be a point of order ` = 2d+ 1 on a Montgomery curve y2 = x3 + ax2 +x.
Then we can compute the coordinate map of the unique (up to compositions by
isomorphisms) `-isogeny ϕ : E → E′ with ker(ϕ) = 〈K〉 by

ϕ : (x, y) 7→ (f(x), y · f ′(x)),

where

f(x) = x ·
d∏
i=1

(
x · x[i]K − 1

x− x[i]K

)2

,

and f ′(x) is its derivative. The curve parameters a′ and b′ of E′ can be com-

puted by a′ = (6σ− 6σ̃+ a) ·π2 and b′ = b ·π2, where we define σ =
∑d
i=1 x[i]K ,

σ̃ =
∑d
i=1 1/x[i]K , and π =

∏d
i=1 x[i]K .

Note that the representation of f(x) makes use of the fact that x[i]K = x[`−i]K
for all k ∈ {1, ..., (`− 1)/2}.

4.1 Point evaluations

Since we work with XZ-only projective Montgomery coordinates, we have to
represent f(x) projectively. This is done in [9] by writing (Xi : Zi) = (x[i]K : 1)
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for i = 1, ..., d, (X : Z) = (xP : 1) for the point P , at which the isogeny should
be evaluated, and (X ′ : Z ′) for the result. Then

X ′ = X ·
( d∏
i=1

(X ·Xi − Zi · Z)

)2

, and

Z ′ = Z ·
( d∏
i=1

(X · Zi −Xi · Z)

)2

.

In the implementation of [7], this is used directly by going through the (Xi : Zi)
for i = 1, ..., d and computing the pairs (X ·Xi−Zi ·Z) and (X ·Zi−Xi ·Z) at a
cost of 4M + 2a per step. However, we can also use the observation by Costello
and Hisil in [9] to reduce the cost to 2M + 4a per step by

X ′ = X ·
( d∏
i=1

[
(X − Z)(Xi + Zi) + (X + Z)(Xi − Zi)

])2

, and

Z ′ = Z ·
( d∏
i=1

[
(X − Z)(Xi + Zi)− (X + Z)(Xi − Zi)

])2

,

assuming that X +Z and X−Z are precomputed, and hence save d · (2M− 2a)
per isogeny evaluation.

4.2 Computing the image curve

An efficient computation of the image curve parameters is not as straightforward
as for the point evaluations. This is due to the fact that the required parame-
ters σ and σ̃ consist of sums of fractions. Therefore, Costello and Hisil give two
different approaches to compute the isogenous curve [9].

The first approach uses the fact that the projective parameters (a′ : 1) = (A′ :
C ′) of the isogenous curve E′ can be recovered from the knowledge of the three
2-torsion points of E′. Therefore, it is possible to recover the required curve pa-
rameters of E′ by computing the 2-torsion points of E and pushing one of these
points through the odd-degree isogeny, which preserves its order on the image
curve. However, in contrast to SIDH, we only work over the field Fp instead of
Fp2 , while the required points of order 2 may not all be defined over Fp. Indeed,
this is already the case for the starting curve E0 : y2 = x3 + x.

Their second approach uses the fact that the curve parameters can be recov-
ered from the knowledge of the x-coordinates of two points on the curve, and
their difference. While these points are typically available in SIDH during the
key generation phase, this is not the case for CSIDH, where we only want to
compute the isogenous curve and evaluate one point.
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In [7], Castryck et al. compute the image curve by defining cj ∈ Fp such that

`−1∏
i=1

(Ziw +Xi) =

`−1∑
j=0

cjw
j

as polynomials in w. Then they observe that

(A′ : C ′) = (π̂(a− 3σ̂) : 1) = (ac0c`−1 − 3(c0c`−2 − c1c`−1) : c2`−1),

following the formulae and notation from Renes [21], where

π̂ =

`−1∏
i=0

x[i]K , and σ̂ =

`−1∑
i=0

(
x[i]K −

1

x[i]K

)
.

In their implementation, this is computed iteratively, going through the (Xi : Zi)
for i = 2, ..., d, updating the required values at a cost of 6M + 2a per step. The
final computations after that take further 8M + 3S + 6a to compute the curve
parameters (A′ : C ′).

Using twisted Edwards curves for the image curve computation. Our
idea to speed up this computation exploits the known correspondence between
Montgomery and twisted Edwards curves. Given a Montgomery curve EM,A,B :
Bv2 = u3 +Au2 +u, we can switch to a birationally equivalent twisted Edwards
curve EE,a,d : ax2 + y2 = 1 + dx2y2, where

A =
2(a+ d)

a− d
and B =

4

a− d
,

by the coordinate map

(u, v) 7→ (x, y) =

(
u

v
,
u− 1

u+ 1

)
.

and back by its inverse

(x, y) 7→ (u, v) =

(
1 + y

1− y
,

1 + y

(1− y)x

)
In [18] it is shown how to switch to and from twisted Edwards curves in the SIDH
setting, which also applies to CSIDH, where Montgomery XZ-only coordinates
and projective curve parameters (A : C) are used, ignoring the Montgomery
parameter b. Following this and [6], a Montgomery point (XM : ZM ) can be
transformed to the corresponding Edwards Y Z-coordinates (Y E : ZE) by the
map

(XM : ZM ) 7→ (Y E : ZE) = (XM − ZM : XM + ZM ),

and the Montgomery parameters (A : C) to the corresponding twisted Edwards
parameters (aE , dE) by

aE = A+ 2C and dE = A− 2C.
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As this allows us to switch efficiently between Montgomery and twisted Edwards
curves in CSIDH, at a cost of 3a for the curve parameters and 2a for point
coodinates, we may as well use isogeny formulae for twisted Edwards curves.
Therefore, we state the formulae given by Moody and Shumow in [20].

Let K be a point of order ` = 2d+1 on a twisted Edwards curve E : aEx
2+y2 =

1+dEx
2y2. Then we can compute the coordinate map of the unique (up to com-

positions by isomorphisms) `-isogeny ϕ : E → E′ with ker(ϕ) = 〈K〉 by

ϕ(P ) =

( ∏
Q∈〈K〉

xP+Q

yQ
,
∏

Q∈〈K〉

yP+Q

yQ

)
.

The curve E′ is defined by the parameters a′E = a`E and d′E = π8
yd
`
E , where

πy =
∏d
i=1 y[i]K .

Since the coordinate map is not as simple to compute as for Montgomery curves,
we are only interested in the computation of the image curve parameters. Writ-
ing (Y Ei : ZEi ) for the projective coordinates of [i]K for i = 1, ..., d, we can
transform the formulae from above to the projective case by

a′E = a`E · π8
Z , and d′E = d`E · π8

Y ,

where πY =
∏d
i=1 Y

E
i , and πZ =

∏d
i=1 Z

E
i .

We can therefore use these formulae to compute the curve parameters of the im-
age curves in CSIDH, by switching to twisted Edwards coordinates and points,
and switch back after the computations by (A′ : C ′) = (2(a′E + d′E) : a′E − d′E),
again at a cost of 3a.

Note that the parameters a′E and d′E can be computed efficiently: While go-
ing through the (Xi : Zi) on the Montgomery curve for i = 1, ..., d, we can
compute the corresponding Edwards coordinates (Y Ei : ZEi ) at a cost of 2a.
However, the required sums and differences already occur at the point evalu-
ation part, and hence do not add any computational cost at all. We can then
compute πY and πZ iteratively, by 1M each per step. Compared to the algorithm
of [7], this saves 4M+2a per step. Furthermore, we have to compute π8

Y and π8
Z

by three squarings each, and a`E and d`E , which can be done efficiently, e.g. by
a square-and-multiply approach. We further note that the latter computation
does not require any values generated during the loop through the (Xi : Zi).
This means that especially hardware architectures that allow for parallel com-
putations would benefit from this, since the computation of a`E and d`E can be
done in parallel to the loop through the (Xi : Zi).

Figure 2 compares the costs of a combined image curve computation and point
evaluation for different prime degrees, where the red line arises from using the
Montgomery isogenies from [7], including the optimizations from [9], and the
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Fig. 2. Cost of different prime-degree isogeny computations. The red line uses Mont-
gomery point evaluations from [9] and image curve computations from [7], while the
blue line uses the same Montgomery point evaluations and twisted Edwards image
curve computations.

blue line from using our approach utilizing twisted Edwards curves to compute
the isogenous curve. The cost is measured in field multiplications, assuming that
S = 0.8M and 20a = M. In this case, we computationally derive a reduction of
the costs by approximately 25% for the largest primes in the current parameter
set. We note that different choices for the field operation ratios don’t make a big
difference, since the main difference between the approaches lies in the number
of multiplications. To obtain the cost of the computations of a`E and d`E , we used
a square-and-multiply approach. Since the exponents `i are small fixed numbers,
it is also possible to precompute the optimal addition chains, and therefore save
some computational effort compared to square-and-multiply. However, we found
that even for the biggest `i from the current parameter set, this saves at most
four multiplications. Hence, the benefit of this is rather small compared to the
increased length of the code and the more complicated implementation.

Note that for ` ≤ 5, our approach is slightly more expensive than the Mont-
gomery approach. Therefore, in this case, the Montgomery approach can be
used. However, the benefit of this is rather small compared to the total compu-
tational effort, so it might be better to stick with our approach for all `i in order
to keep the implementation simple.

It is further noted in [7], that for a fixed prime ` one could reduce the com-
putational effort by finding an appropriate representative of the isogeny modulo
(a factor of) the `-division polynomial ψ`, as done in [10] for 3- and 4-isogenies.
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However, every required isogeny degree would have to be implemented sepa-
rately, resulting in a much longer code.

5 Implementation results

As a proof of concept and for measuring the efficiency of our work, we took
the mentioned implementation of Castryck et al. accompanying [7] as reference,
and added our optimizations. The implementation is written in C and uses Fp-
arithmetic in assembly. The parameters in use are the ones described in section
2.2. The validation of keys is not included in the following discussion.

The first optimization is the precomputation of the curve parameters (A+ 2C :
4C) each time before entering the Montgomery ladder, as also done in SIDH [10].
This only saves a few additions per ladder step, but in total leads to a reduction
of the computational effort by approximately 2%.

The other optimizations are as described above: One comes from rearranging
the factors in the class group action evaluation algorithm, and the other one
from more efficient isogeny computations by using the point evaluation from [9]
and our twisted Edwards approach for the image curve computations.

Table 1. Performance comparison of the class group action evaluation in CSIDH with
different optimizations applied. All timings are given in 106 clock cycles and were mea-
sured on an Intel Core i7-6500 Skylake processor running Ubuntu 16.04 LTS, averaged
over 10 000 runs.

Clock Cycles ×106 Acceleration Factor

Castryck et al. [7] 138.6 -

Precomputation of (A + 2C : 4C) 135.7 1.021

Rearranging Factors 126.5 1.096

Isogeny Optimization 118.2 1.173

Combination of all Optimizations 103.9 1.334

Table 1 lists the influence of the different optimizations on the overall per-
formance. In the respective implementations, only the mentioned optimization
was used, leaving the rest as in the reference implementation from [7]. For the
last line, we combined all the described optimizations and therefore reduced
the total computational effort by 25%, yielding a speed-up factor of 1.33. The
latter implementation is available at https://zenon.cs.hs-rm.de/pqcrypto/

faster-csidh.
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6 On constant-time implementations

As mentioned in the sections before, the discussed implementations do not in-
clude any protection from side-channel attacks. In particular, the running time
depends on the private key, which corresponds to the number of isogenies, that
have to be computed. Therefore, the first step to prevent simple timing attacks
is a constant-time implementation.

One possibility to reach this, is to fix the number of isogenies to the maxi-
mum for each degree, and use only as many of them as specified in the private
key. However, in addition to lots of useless computational effort, this means that
after each dummy isogeny, another multiplication by its degree `i is necessary
for the point P , since the algorithm uses the fact, that by pushing P through the
`i-isogeny, the order of the resulting point will not include the factor `i. The addi-
tionally required multiplications would then allow for a new timing attack, since
many extra multiplications mean that many dummy isogenies were computed.
This could be prevented by using constant-time ladders for the preparation of
each kernel point. This, however, is undesirable, since it would further blow up
the running time.

A possible tool for the design of a more optimized constant-time implemen-
tation could be specially tailored dummy isogenies, that, instead of computing
an `i-isogeny and pushing the point P through, simply computes [`i]P and leaves
the curve parameters unchanged. This is especially easy, since the `i-isogeny al-
gorithm requires to compute all [j]K for j ∈ {2, ..., (`i − 1)/2}. Therefore, by
replacing K with P and by two further differential additions, we can compute
[`i]P , and hence don’t have to perform more multiplications to compensate for
the dummy isogenies. Furthermore, the dummy isogenies can be designed to have
the exact same number of field operations as the real isogeny computations.

Minimal running time. First, we note that this discussion refers to the case,
that an implementation that follows algorithm 1 shall be transformed to a con-
stant running-time. If the structure of algorithm 1 is changed, the results may
vary accordingly.

It is obvious, that the running time of a constant-time implementation must be
at least as high as the highest possible running time of the fastest non-constant
implementation. At first glance, this seems to be twice the average running time
of the non-constant implementation, when we fix all elements of the private key
to have the maximum absolute value. For a closer investigation, we consider the
parameter set from above, and the private keys e = (5,−5, 5,−5, ..., 5,−5) and
e′ = (5, 5, ..., 5).

When comparing the performance for the private key e to the average case,
our experiments suggest that, indeed, the running time roughly doubles. In fact,
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the computational cost for isogenies doubles, while the factor for point multipli-
cations is slightly higher. One reason for this is that if we have to compute more
isogenies, on average there will be more cases, in which our randomly chosen
points cannot be used to compute isogenies of certain degrees. Therefore, more
points have to be chosen and their order checked by multiplications.

Now we want to compare the performance for the keys e and e′. For the sake
of simplicity, assume that we can choose full order points, that allow for the
computation of isogenies of all required degrees. Consider that we first want to
compute one isogeny of each degree. For e′, the bitlengths of the factors for the
point multiplications are the ones shown in figure 1. After one loop, we have com-
puted one isogeny of each required degree. For the key e, we have to perform one
loop each for positive and negative key elements. When doing this and counting
the bitlengths of the factors for the point multiplications, after computing one
isogeny of each degree, we end up with only 0.54 times the sum of the bitlengths
for e′, already including the additional required multiplications from line 7 of
algorithm 1. Therefore, since we simply perform five such rounds for e and e′, the
total computational effort for point multiplications for e′ is 1.86 times as high
as for e. When considering also isogeny computations, our experiments suggest
that the total running time for the key e′ is 1.49 times the running time for e.
Therefore, we conclude that the running time of a constant-time implementation
must be at least 2.98 times the running time of average-case measurements of
non-constant implementations such as in section 5. In practice, our experiments
again suggest a higher factor, namely 3.19, for the same reasons as explained
above.

However, we note that more careful analysis is required for an optimized constant-
time implementation, and our proposal of dummy isogenies is merely a tool, that
could possibly be used to design such an implementation, which we leave for fu-
ture work.

7 Conclusion and future work

Although we gained a speed-up factor of 1.33 in our CSIDH implementation, it
is still considerably slower than e.g. SIDH. Therefore, further research in that
direction is necessary, to make the practical deployment of the scheme more
attractive. In particular, side-channel protection, such as constant-time imple-
mentations, is required for that aim.

As mentioned before, also the security of CSIDH still requires some more detailed
analysis on the implication of new attacks for specific parameter choices.
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24. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A. 271,
238–241 (1971)

17

http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145

	A faster way to the CSIDH

