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Abstract. Length doublers are cryptographic functions that transform
an n-bit cryptographic primitive into an efficient and secure cipher that
length-preservingly encrypts strings of length in [n, 2n−1]. All currently
known constructions are only proven secure up to the birthday bound,
and for all but one construction this bound is known to be tight. We
consider the remaining candidate, LDT by Chen et al. (ToSC 2017(3)),
and prove that it achieves beyond the birthday bound security for the
domain [n, 3n/2). We generalize the construction to multiple rounds and
demonstrate that by adding one more encryption layer to LDT, beyond
the birthday bound security can be achieved for all strings of length
in [n, 2n − 1]: security up to around 22n/3 for the encryption of strings
close to n and security up to around 2n for strings of length close to 2n.
The security analysis of both schemes is performed in a modular manner
through the introduction and analysis of a new concept called “harmonic
permutation primitives.”

Keywords: length doublers, LDT, beyond birthday bound, harmonic
primitives, chi-squared

1 Introduction

Block ciphers are keyed deterministic functions that encrypt bit strings of a fixed
size n bits to ciphertext blocks of the same size. They play a predominant role
in cryptography, and yet, most cryptographic applications deal with arbitrary-
length messages. To achieve this, the applications evaluate a block cipher in a
certain mode of operation.

A simple example of this is counter mode encryption. Given block cipher EK
on n bits, counter mode encrypts a message M of arbitrary length as follows.
First, the message is partitioned into blocks M1, . . . ,M`, where the first `−1 are
of size n bits, and the last one may be smaller. Second, the message is encrypted
as

Ci = Ek(ctr + i)⊕Mi for i = 1, . . . , ` ,



where the `-th ciphertext block is truncated to have the same size as M`, and
where ctr is a carefully specified counter.

Counter mode is unique in the sense that it allows for easy length-preservation
due to its “streaming” property. Whereas this property is fine in some use cases,
in many others it is lacking. For example, stream cipher encryption is inapplica-
ble to disk sector encryption for security reasons. Alternative encryption modes
like CBC [47], OCB [26,38,39], XTS [15], and TC3 [41], however, feed the mes-
sage to the block cipher and there is no easy way of keeping length preservation.
One often pads input to size a multiple of n-blocks and takes ciphertext expan-
sion for granted [1,2,26,28]. Ciphertext expansion is, in many cases, not desirable:
it creates overhead, making it unsuitable for disk encryption and low-bandwidth
network protocols.

A generic method for length-preserving variable-length encryption is cipher-
text stealing [13, 40]. Informally, it encrypts the first ` − 1 blocks as is, but to
encrypt the non-integral `-th block, it is first expanded to n bits by scraping
sufficiently many ciphertext bits from the (` − 1)-th block and gluing these to
M`. The approach is appealing, but it only works on modes of use for which
ciphertext blocks can be decrypted independently of each other: otherwise one
cannot recover the ciphertext bits scraped off of C`−1.

Besides these two generic solutions, many dedicated designs that support
variable-length encryption have appeared, e.g., EME [20], TET [21], HEH [43],
HCTR [46], HCH [10], and XCB [27], but a golden method for generically trans-
forming an existing block cipher mode of operation for integral data to one for
arbitrary-length data was long due.

1.1 Length Doublers

In 2007, Ristenpart and Rogaway [37] introduced length doublers as an ele-
gant way of achieving variable-length encryption. A length doubler is a length-
preserving encryption mode on the set of bit strings of size between n and 2n−1
bits, where n is the state size of the underlying primitive.

By allowing flexibility of the size of the second block, length doublers suit
well as modular building blocks for variable-length encryption and authenticated
encryption. For example, whereas the possibility to apply ciphertext stealing
depends on the mode in consideration, length doubling can be used generically
for black-box authenticated encryption schemes as demonstrated by Chen et
al. [11]. We discuss further applications of length doublers in Section 1.4.

Alongside the formalization, Ristenpart and Rogaway introduced the XLS
length doubler, based on three block cipher calls and two evaluations of a so-
called ε-good mixing function. It found application in first-round CAESAR sub-
mission AES-COPA [2, 3]. Only 7 years after its introduction, Nandi found an
attack on XLS [32], an attack that also rendered the solution in the COPA mode
insecure [34]. Nandi further proved that a secure length doubler must make at
least four block cipher calls [33]. Other length doublers introduced after XLS
are DE by Nandi [31] and HEM by Zhang [48], both of which make four block
cipher calls and match the lower bound of [33].
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Chen et al. considered the design of length doublers from tweakable block
ciphers and introduced LDT [11]. It makes two calls to a tweakable block cipher
and uses a pure mixing function, noting that an ε-good mixing function is pure
but not necessarily vice versa. The transition to using tweakable block ciphers
is a natural one: 18 initial submissions to the CAESAR competition were based
on tweakable block ciphers, various novel cryptographic authentication and/or
encryption modes use a tweakable block cipher as black box [23, 35, 41, 45], and
dedicated tweakable block ciphers like TWEAKEY [24] and SKINNY [5] are
gaining traction. The recently announced ARMv8.3 [36] uses an implementation
of the lightweight tweakable blockcipher QARMA [4]. The approach allows for
more modular (and thus simpler) security proofs.

1.2 Towards Beyond Birthday Bound Security

All of the length doublers mentioned so far, barring XLS, are proven secure up
to 2n/2. For DE and HEM this bound is tight as there is an attack matching
this complexity. For LDT, Chen et al. [11] derived an attack in approximately
2n−s/2 queries, as long as all queries are of size at least n+s. The bound suggests
tightness for s = n− 1, but it leaves the possibility of proving beyond birthday
bound security for s� n− 1 open.

Although all length doublers known to date have only birthday bound proven
security, beyond birthday bound secure length doublers are relevant for various
scenarios. First, consider the case of a cryptographic mode that uses a length
doubler in a black-box manner and achieves beyond birthday bound security. If
it is instantiated with any off-the-shelf solution (DE, HEM, LDT) the provable
security guarantee degrades to birthday bound security. Second, considering the
case of format-preserving encryption and electronic product code tag encryption
(see Section 1.4), using a birthday bound secure length doubler with a lightweight
64-bit block cipher yields 32-bit security at best. A beyond birthday bound secure
length doubler would guarantee security up to well beyond 32 bits.

1.3 Our Contribution

We challenge the problem of proving beyond birthday bound security of length
doublers. The starting point of our work is Chen et al.’s LDT: it is simple,
modular, and so far the only existing candidate that may offer beyond birthday
bound security.

As first contribution, we prove in Section 5 that the original LDT achieves
beyond the birthday security for queries of size in [n, 3n/2): if only evaluations
of size around n are permitted, 2n/3-bit security is achieved, but if evaluations
of size around 3n/2 are permitted, the proven security bound degrades to n/2.
The bound is not tight, but we recall that Chen et al. [11] already demonstrated
a birthday bound attack if s = n − 1, testifying of the fact that the security
decreases with s. As second and main contribution, we generalize the mode
to r-round LDT, recalling that the original construction consists of 2 rounds,
and prove in Section 6 that 3-round LDT achieves beyond the birthday bound
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Fig. 1: Security bound of 2-LDT and 3-LDT for various choices of input size,
where ◦ stands for 2-LDT and ? stands for 3-LDT.
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security for the entire domain [n, 2n − 1]. As proven so far, the security of 3-
round LDT increases with s: for evaluations of size around n we achieve 2n/3-
bit security, and for evaluations of size around 2n we get optimal n-bit security.
Figure 1 plots the simplified security results of 2-LDT and 3-LDT for bit strings
of length in {n, 5n/4, 3n/2, 7n/4, 2n−1} (these data are taken from the discussion
in Sections 5 and 6). In aforementioned example of an 80-bit cipher using a 64-bit
primitive, 3-LDT achieves 23n/4 = 248 security.

Central to our proofs is the introduction and usage of a new concept: “har-
monic permutation primitives.” These can be seen as lazily-sampled permuta-
tions where one part of the state is always sampled uniformly at random and
the other part in such a way that permutation consistency is maintained. We de-
scribe two harmonic primitives: a harmonic tweakable permutation in Section 4.1
and a harmonic variable-length pseudorandom permutation in Section 4.2.

These harmonic permutation primitives allow for compact, neat, and modu-
lar security proofs of both 2-round and 3-round LDT. Both proofs use the two
harmonic permutation primitives of Section 4 in a different setting, but using the
chi-squared method by Dai et al. [14] and properties of the hypergeometric dis-
tribution, security of both LDT modes is reduced to the security of the harmonic
permutation primitives. What then remains is an analysis of these primitives in
Sections 7 and 8.

Inspired by the proof approach in this work, one may likewise use the two
harmonic permutation primitives to prove security of r-round LDT for r ≥ 4.
However, it would only render marginal improvement of the bound, with a large
efficiency penalty. It nevertheless appears that the idea of harmonic permutation
primitives and our proof technique may be broadly applicable beyond LDT, for
example in the direction of sponge functions [7].
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1.4 Application

An example use case of length doublers is format-preserving encryption, a field
that got significant attention recently in light of the standardization [16] of
FF1 [6] and FF3 [8]. Format-preserving encryption considers the problem of en-
crypting data from a small domain that does not fit the parameters of standard-
ized block ciphers. For example, there is no practical way to length-preservingly
encrypt 80-bit strings using AES-128 (other than streaming-based). Whereas the
standardized FF1 and FF3 are made to facilitate arbitrary types of domains, for
certain cases this can equally well be resolved using a length doubler. Above
example of 80-bit strings can be resolved with a birthday bound secure length
doubler on top of a lightweight 64-bit tweakable block cipher, but that would
only give 32-bit security. As shown in Figure 1, for this scenario 2-LDT would
achieve around 37-bit security and 3-LDT even 48-bit security.

A more concrete example is that of electronic product code tag encryption,
which is considered as a replacement for bar codes using low-cost passive RFID-
tags. The standard EPC Class 1 Gen 2 RFID tag [18] proposes to use a unique
96-bit identifier for any physical item [19]. As for above generic case, a birthday
bound secure length doubler on top of a 64-bit block cipher would give 32-
bit security at best. Our bound of 2-LDT does not improve for this regime (see
Figure 1), but 3-LDT does achieve beyond birthday bound security: instantiated
with a 64-bit tweakable block cipher, it reaches around 53-bit security.

It is straightforward to transform r-LDT into a tweakable length doubler,
where the tweak is fed as additional tweak input to the underlying tweakable
block ciphers (this requires extending the tweak space of the underlying prim-
itive). This observation has two implications. First, one can obtain multi-user
security of r-LDT by considering user IDs as tweak inputs and feeding those
to the underlying tweakable block cipher. Second, r-LDT is an interesting and
non-obvious generalization of the tweakable block cipher based domain exten-
der of Coron et al. [12]. Stated simply, Coron et al. considered the problem of
transforming a tweakable block cipher with 2n-bit tweaks and n-bit blocks into a
domain extender with n-bit tweaks and 2n-bit blocks. They presented a 2-round
scheme (achieving birthday bound security) and a 3-round scheme (achieving
optimal n-bit security). Our tweakable length doublers, instead, transform that
tweakable block cipher into a length doubler with n-bit tweaks and [n, 2n − 1]-
bit blocks, therewith enabling support for variable length input. For the specific
case of s ≈ n, our schemes achieve the same level of security as those of [12].

Finally, we remark that if one considers 2-LDT for fixed s, and sandwiches
it by two universal hash functions in a specific way, the resulting construction is
identical to the Small-Block Cipher (SBC) construction proposed by Minematsu
and Iwata [30] (an extension of ENR [29]). As SBC is designed to achieve beyond
birthday bound security quite efficiently, it makes sense to compare it with 3-
LDT. It turns out that 3-LDT compares favorably in various aspects. First,
Minematsu and Iwata showed that SBC achieves (n+ s)/2-bit security, whereas
3-LDT achieves (2n+ s)/3-bit security for any fixed s (see also the last column
of Table 1 in Section 6). Second, SBC uses two tweakable block ciphers and two
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universal hash functions, whereas 3-LDT uses three tweakable block ciphers. The
latter could be beneficial for implementation on constrained devices. Finally,
SBC is ultimately still a fixed input length cipher, whereas 3-LDT allows for
inputs of size [n, 2n− 1].

2 Preliminaries

For n ∈ N, we denote the set of all bit strings of length n as {0, 1}n, and the
set of all bit strings of arbitrary length as {0, 1}∗. For m ∈ N and m ≤ n
we define {0, 1}[m,n] =

⋃
m≤i≤n{0, 1}i. Given two bit strings X,Y ∈ {0, 1}∗,

we use both X‖Y and XY interchangeably to denote their concatenation. The
length of X is denoted |X|, and if X and Y satisfy |X| = |Y |, we denote their
bitwise addition as X ⊕ Y . For X ∈ {0, 1}n, we denote leftm(X) the m leftmost
bits of X and rightm(X) the m rightmost bits of X, in such a way that X =
leftn−m(X)‖rightm(X).

For n ∈ N and X ∈ {0, 1}[0,n−1], we define a padding function pad(X) =
X‖10n−|X|−1. We denote its inverse unpad that on input of a string of length
n removes the rightmost string 10∗ and returns the resulting string. Note that
unpad is an injective mapping.

The expression S ← T denotes the assignment of the value T to variable S,

L ∪←− S the addition of S to list L, and S
$←− S for finite set S the uniformly

random sampling of S from S. For an algorithm D and a function/oracle O,

DO represents the evaluation of D with oracle interaction to O, and ∆D

(
O ;P

)
represents the advantage of D in distinguishing O from an oracle P.

2.1 (Tweakable) Block Ciphers

For arbitrary finite key space K and n ∈ N, a block cipher is a function E :
K × {0, 1}n → {0, 1}n such that for every fixed key K ∈ K, EK(·) = E(K, ·)
is a permutation on {0, 1}n. We denote its inverse for fixed key K by E−1K (·) =
E−1(K, ·). Denote by Perm(n) the set of all permutations on {0, 1}n. Tweakable
block ciphers generalize over ordinary block ciphers by input of a t-bit tweak,
for t ∈ N. More detailed, a tweakable block cipher is a function Ẽ : K×{0, 1}t×
{0, 1}n → {0, 1}n such that for every fixed key K ∈ K and tweak T ∈ {0, 1}t,
ẼK(T, ·) = Ẽ(K,T, ·) is a permutation on {0, 1}n. Its inverse for fixed key K

and tweak T is denoted by Ẽ−1K (T, ·) = Ẽ−1(K,T, ·). Denote by P̃erm(t, n) the
set of all families of permutations π̃ : {0, 1}t × {0, 1}n → {0, 1}n indexed by
tweak T ∈ {0, 1}t.

The security of a tweakable block cipher Ẽ is measured by considering a
distinguisher D that has two-sided query access to either ẼK for a randomly

drawn key K
$←− K, or a random tweakable permutation π̃

$←− P̃erm(t, n), and its
goal is try to distinguish the real construction from the ideal one:

Advs̃prp

Ẽ
(D) =

∣∣∣Pr
[
K

$←− K : DẼ
±
K = 1

]
− Pr

[
π̃

$←− P̃erm(t, n) : Dπ̃
±

= 1
]∣∣∣ .
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For the left probability, the key space K is a fair representation of the random-
ness of Ẽ±K . Often, it is the set of k-bit strings, where k is the key size. In proofs,
specifically in hybrid arguments within proofs, one regularly considers tweakable
block ciphers with idealized primitives. For example, one may consider the con-
struction of a tweakable block cipher Ẽ from a secret permutation (that could, in
turn, be instantiated using a block cipher with secret key). In this case, the key
space of Ẽ is K = Perm(n). More involved examples appear if the construction
internally consists of lazy sampling, as will for instance be the case with our
harmonic tweakable SPRP in Section 4.1.

2.2 Chi-Squared Method

Our proof will rely on the chi-squared method by Dai et al. [14].

Consider two stateless systems O0,O1 and any computationally unbounded
deterministic distinguisher D that has query access to either of these systems.
The distinguisher’s goal is to distinguish both systems. If we denote the maxi-
mum amount of queries by q, we can define a transcript τ = (τ (1), . . . , τ (q)) and
let τ (i) = (τ (1), . . . , τ (i)) for every i ≤ q. Distinguisher D can make its queries
adaptively, but as it makes them in a deterministic manner, the (i+ 1)-th query
input is determined by the first i query-responses τ (i).

For system O ∈ {O0,O1} and fixed tuple τ (i), we denote by pO,D(τ (i)) the
probability that distinguisher D interacting with O obtains transcript τ (i) for
its first i queries. If pO,D(τ (i)) > 0, then we denote by pO,D(Y (i+1) | τ (i)) the
conditional probability that D receives response Y (i+1) upon its (i+1)-th query,
given transcript τ (i) of the first i queries (that deterministically fixes the input
to the (i + 1)-th query). Define for any i ∈ {1, . . . , q} and any query-response
tuple τ (i):

χ2(τ (i−1)) =
∑
Y (i)

(
pO1,D(Y (i) | τ (i−1))− pO0,D(Y (i) | τ (i−1))

)2
pO0,D(Y (i) | τ (i−1))

, (1)

where the sum is taken over all Y (i) in the support of the distribution pO0,D(· |
τ (i−1)). The chi-squared method states the following:

Lemma 1 (Chi-squared method [14]). Consider a fixed deterministic dis-
tinguisher D and two systems O0,O1. Suppose that for any i ∈ {1, . . . , q} and
any query-response tuple τ (i), pO0,D(τ (i)) > 0 whenever pO1,D(τ (i)) > 0. Then:

∆D

(
O0 ;O1

)
= ‖pO0,D(·)− pO1,D(·)‖ ≤

(
1

2

q∑
i=1

Exp[χ2(τ (i−1))]

)1/2

, (2)

where the expectation is taken over τ (i−1) of the i − 1 first answers sampled
according to interaction with O1.
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2.3 Hypergeometric Distribution

The hypergeometric distribution HG(N,K, n) considers the case of n draws with-
out replacement from a set of size N elements, denote by K the total number of
successes out of N and h the number of successes present in a sample of size n.
It is well-known that for h ∼ HG(N,K, n),

Exp[h] = n · K
N
,

Var[h] = n · K
N
· (N −K)

N
· N − n
N − 1

.

3 Length Doublers and LDT

Following Chen et al. [11], we recall the formalization of length doublers in
Section 3.1, and present generalized LDT in Section 3.2.

3.1 Length Doublers

For arbitrary finite key space K and n ∈ N, a length doubler is a function
E : K × {0, 1}[n,2n−1] → {0, 1}[n,2n−1] such that for every fixed key K ∈ K,
EK(·) = E(K, ·) is a length preserving invertible function on {0, 1}[n,2n−1]. We
denote its inverse for fixed key K by E−1K (·) = E−1(K, ·). Note that E should
behave like a random permutation for every length input in [n, 2n− 1]. Denote
by VPerm([n, 2n − 1]) the set of all length-preserving and invertible functions
on {0, 1}[n,2n−1]. The security of E is measured by considering a distinguisher D
that has two-sided query access to either EK for a randomly drawn key K

$←− K,

or a random length-preserving permutation ρ
$←− VPerm([n, 2n−1]), and its goal

is to try to distinguish the real construction from the ideal one:

Advvsprp
E (D) =

∣∣∣Pr
[
K

$←− K : DE
±
K = 1

]
−

Pr
[
ρ

$←− VPerm([n, 2n− 1]) : Dρ
±

= 1
]∣∣∣ .

As in Section 2.1, the key space K corresponds to the source of randomness of
the construction E±K . It may take various shapes, but it will always be clear from
the context.

3.2 Generalized LDT

Chen et al. [11] introduced length doubler LDT that internally makes two calls
to an underlying tweakable block cipher, separated by an evaluation of a “pure
mixing function” (a weaker variant of a multipermutation [44]) on part of the
state. In this work, we will consider a generalization of LDT to multiple rounds,
but we simplify it by discarding the pure mixing function and replacing it by the
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simplest possible option: mix(A,B) = (B,A), i.e., a function that swaps the two
halves of its input. This simplification is without loss of generality: all results
in this work generalize to arbitrary pure mixing functions with some notational
overhead. For completeness, we describe pure mixing functions as defined by
Chen et al. [11] in Appendix A.

Algorithm 1 Round function F [ẼK ]

Input: K ∈ K, M ∈ {0, 1}[n,2n−1]

Output: C ∈ {0, 1}|M|
1: s← |M | − n
2: M1 ← leftn(M), M2 ← rights(M)
3: Y ← ẼK(pad(M2),M1)
4: C ← leftn−s(Y )‖M2‖rights(Y )
5: return C

Algorithm 2 Round function F−1[ẼK ]

Input: K ∈ K, C ∈ {0, 1}[n,2n−1]

Output: M ∈ {0, 1}|C|
1: s← |C| − n
2: C1 ← leftn(C), C2 ← rights(C)
3: Y ← leftn−s(C1)‖C2

4: M ← Ẽ−1
K (pad(rights(C1)), Y )‖rights(C1)

5: return M

Consider finite key space K and let n ∈ N. Let Ẽ : K × {0, 1}n × {0, 1}n →
{0, 1}n be a tweakable block cipher. Consider the round function F (and its
inverse) that uses ẼK for secret key K ∈ K, and length-preservingly transforms
a plaintext M ∈ {0, 1}[n,2n−1] (resp. a ciphertext C ∈ {0, 1}[n,2n−1]) into a
ciphertext C (resp. a plaintext M) as in Algorithm 1 (resp. Algorithm 2). For
r ≥ 2, the r-round length doubler r-LDT is defined as

r-LDTK(M) = FKr ◦ · · · ◦ FK1(M) , (3)

where K = (K1, . . . ,Kr) ∈ Kr and M ∈ {0, 1}[n,2n−1]. In this evaluation, the
mixing of the last round function evaluation is irrelevant for the scheme’s security
and therefore ignored. For r = 2 and r = 3, the doubler r-LDT is depicted in
Figure 2.

Chen et al. proved that two rounds of LDT (with arbitrary pure mixing) is
secure against any adversary making around 2n/2 queries.

Proposition 1 (Chen et al. [11]). Let Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n
be a tweakable block cipher. Consider two-round 2-LDT. For any distinguisher
D making at most q queries, there exist distinguishers D′1 and D′2 with the same
query complexity such that

Advvsprp
2-LDT(D) ≤ Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) +

q(q − 1)

2n
. (4)

Chen et al. also presented a distinguisher against 2-LDT that succeeds in ap-
proximately 2n−s/2 queries, where the distinguisher makes queries of size n+ s
bits. The analysis of this attack supports on earlier proofs and attacks by Hall et
al. [22] and Gilboa and Gueron [17] on the truncated permutation construction.
The attack only works if the distinguisher takes large enough s� 0 [11]. In ad-
dition, it shows that the birthday bound security analysis is tight for s ≈ n− 1,
and that we may only be able to prove beyond birthday bound security for
s � n − 1. Based on these observations, in future analyses we will explicitly
limit s to a certain range by using lower and upper bounds smin and smax.
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M1 M2

ẼK1
‖ 10∗

ẼK2
‖ 10∗

C1 C2

. n . s

T1

.n–s

leftn−s(Y ) rights(Y )

T2

. n . s

(a) 2-Round LDT.

M1 M2

ẼK1
‖ 10∗

ẼK2
‖ 10∗

ẼK3
‖ 10∗

C1 C2

. n . s

T1

.n–s

leftn−s(Y1) rights(Y1)

. s
T2

.n–s

leftn−s(Y2) rights(Y2)

T3

. n . s

(b) 3-Round LDT.

Fig. 2: Depiction of 2-round and 3-round LDT. Here, s = |M | − n.

4 Harmonic Permutation Primitives

In this section we introduce two harmonic permutation primitives: a tweakable
SPRP in Section 4.1 and a variable SPRP in Section 4.2.

4.1 Harmonic Tweakable SPRP Ga,b

We introduce a tweakable pseudorandom permutation Ga,b parameterized by
a, b ∈ {0, 1}. The primitive will be used as intermediate in the analysis of 2-
LDT (for (a, b) = (1, 0) and (a, b) = (0, 1)) and in the analysis of 3-LDT (for
(a, b) = (1, 1)).

Ga,b is a tweakable permutation with n-bit tweaks and data blocks (so Ga,b ∈
P̃erm(n, n)). It maintains an initially empty list L to store all query-response
tuples (T,X, Y ). For T ∈ {0, 1}n, write dom(LT ) = {X | (T,X, ·) ∈ L} and
rng(LT ) = {Y | (T, ·, Y ) ∈ L}. The tweakable pseudorandom permutation Ga,b
on input of a new query is described in Algorithm 3 (forward) and Algorithm 4
(inverse).
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Algorithm 3 Harmonic G−1a,b

Input: T ∈ {0, 1}n\{0n}, X ∈ {0, 1}n
Output: Y ∈ {0, 1}n
1: s← |unpad(T )|
2: if a = 0 then
3: Y

$←− {0, 1}n\rng(LT )

4: if a = 1 then
5: Z

$←− {0, 1}s

6: Y
$←− {{0, 1}n−s‖Z}\rng(LT )

7: L ∪←− (T,X, Y )
8: return Y

Algorithm 4 Harmonic G−1a,b

Input: T ∈ {0, 1}n\{0n}, Y ∈ {0, 1}n
Output: X ∈ {0, 1}n
1: s← |unpad(T )|
2: if b = 0 then
3: X

$←− {0, 1}n\dom(LT )

4: if b = 1 then
5: Z

$←− {0, 1}s

6: X
$←− {{0, 1}n−s‖Z}\dom(LT )

7: L ∪←− (T,X, Y )
8: return X

In our work, Ga,b will never be called for tweak T = 0n, hence the assign-
ment s ← |unpad(T )| is sound. If a = b = 0, G0,0 describes a randomly drawn

tweakable permutation from P̃erm(n, n) (lazily sampled). We will use Ga,b for
the case where a or b is 1.

Lemma 2. Let a, b ∈ {0, 1}, and consider Ga,b. Let smin, smax ∈ [0, n− 1] such
that smin ≤ smax. Let 1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any
distinguisher D making at most q ≤ 2n−1 queries, all with tweaks satisfying
|unpad(T )| ∈ [smin, smax], and restricted to making at most θ inverse queries per
tweak (if a = 1) and at most θ forward queries per tweak (if b = 1), we have

Advs̃prp
Ga,b

(D) ≤



0 if (a, b) = (0, 0) ,(
2q3

22n−smax

)1/2

+

(
q

θ

)
1

2(θ−1)smin
, if (a, b) ∈ {(1, 0), (0, 1)} ,(

4
(
θ + θ2

)
q

22n−smax

)1/2

, if (a, b) = (1, 1) .

Note that no limitation is put on the number of times a single tweak is queried
in forward direction in case a = 0 or in inverse direction in case b = 0. The proof
will be given in Section 7.

4.2 Harmonic VSPRP Permutation H

We introduce a variable pseudorandom permutationH, that operates similarly as
G1,1, but on domain {0, 1}[n,2n−1] and without tweak input.H likewise maintains
an initially empty list L to store all query-response tuples (X,Y ). For s ∈ [0, n−
1], write dom(Ls) = {X ∈ {0, 1}n+s | (X, ·) ∈ L} and rng(Ls) = {Y ∈ {0, 1}n+s |
(·, Y ) ∈ L}. The variable pseudorandom permutation H on input of a new query
is described in Algorithm 5 (forward) and Algorithm 6 (inverse).

11



Algorithm 5 Harmonic H−1

Input: X ∈ {0, 1}[n,2n−1]

Output: Y ∈ {0, 1}|X|
1: s← |X| − n

2: Z
$←− {0, 1}s

3: Y
$←− {{0, 1}n‖Z}\rng(Ls)

4: L ∪←− (X,Y )
5: return Y

Algorithm 6 Harmonic H−1

Input: Y ∈ {0, 1}[n,2n−1]

Output: X ∈ {0, 1}|Y |
1: s← |Y | − n

2: Z
$←− {0, 1}s

3: X
$←− {{0, 1}n‖Z}\dom(Ls)

4: L ∪←− (X,Y )
5: return X

Lemma 3. Consider H. Let smin ∈ [0, n− 1]. For any distinguisher D making
at most q ≤ 2n−1 queries, all of length in [n+ smin, 2n− 1] bits, we have

Advvsprp
H (D) ≤

(
2q3

22n+smin

)1/2

.

The proof will be given in Section 8.

5 2-Round LDT

As main result on 2-LDT, we derive the following reduction to harmonic primi-
tives Ga,b and H.

Theorem 1. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider two-round 2-LDT. Let smin, smax ∈ [0, n−1] such that smin ≤ smax. Let
1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making at
most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′1, . . . ,D′5 with the same query complexity such that

Advvsprp
2-LDT(D) ≤ Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) + Advvsprp

H (D′3) (5a)

+ Advs̃prp
G1,0

(D′4) + Advs̃prp
G0,1

(D′5) +

(
q

θ

)
1

2(θ−1)smin
, (5b)

where D′4 may make at most θ inverse queries per tweak and D′5 at most θ
forward queries per tweak.

We will prove Theorem 1 in Section 5.1. Plugging the bounds of Lemmas 2 and 3
into the equation yields the following corollary.

Corollary 1. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider two-round 2-LDT. Let smin, smax ∈ [0, n−1] such that smin ≤ smax. Let
1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making at
most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′1,D′2 with the same query complexity such that

Advvsprp
2-LDT(D) ≤ Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2)

+

(
2q3

22n+smin

)1/2

+ 2

(
2q3

22n−smax

)1/2

+ 3

(
q

θ

)
1

2(θ−1)smin
.

12



The first two advantages represent the security of the underlying tweakable block
cipher Ẽ. By Stirling’s approximation, if smin ≤ θ, the last term satisfies

3

(
q

θ

)
1

2(θ−1)smin
≤ 3 · 2smin ·

( qe

θ2smin

)θ
≤ 3

(
2qe

θ2smin

)θ
.

As the term decreases with θ but θ is limited by side condition θ ≤ 2n−smax−2,
it makes sense to choose θ = 2n−smax−2, and this term equals

3

(
8qe

2n+smin−smax

)θ
.

We obtain security up to approximately min
{

2n+smin

3 , 2n−smax

3 , n+ smin − smax

}
bits, provided that smin ≤ 2n−smax−2. For smax ≥ n/2, the middle term domi-
nates and we achieve n/2-bit security at most. In this case, the bound of Chen
et al. [11] is better. For smax < n/2, our bound guarantees up to at most
2n/3 bits of security, depending of the choice of smax, where smin is adapted
to smin ≤ 2n−smax−2.

5.1 Proof of Theorem 1

Consider any distinguisher D making at most q queries, all of length in [n +

smin, n+ smax] bits. It has access to either 2-LDTK for K = (K1,K2)
$←− K2 or

a random length-preserving invertible permutation ρ
$←− VPerm([n . . . 2n − 1]).

For ease of discussion, write

2-LDTK = E [ẼK1
, ẼK2

] .

Let π̃1, π̃2
$←− P̃erm(n, n). We have

Advvsprp
2-LDT(D) = ∆D

(
E [ẼK1 , ẼK2 ]± ; ρ±

)
≤ ∆D′1

(
Ẽ±K1

; π̃±1

)
+∆D′2

(
Ẽ±K2

; π̃±2

)
+∆D

(
E [π̃1, π̃2]± ; ρ±

)
= Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) +∆D

(
E [π̃1, π̃2]± ; ρ±

)
, (6)

for some distinguishers D′1 and D′2 with the same query complexity as D.
We will focus on the remaining distance in (6). Without loss of generality,

we will consider computationally unbounded and deterministic distinguishers.
Consider three harmonic primitives, G1,0 and G0,1 of Section 4.1 and H of Sec-
tion 4.2. We obtain via the triangle inequality:

∆D

(
E [π̃1, π̃2]± ; ρ±

)
≤ ∆D

(
E [π̃1, π̃2]± ; E [G1,0, G0,1]±

)
+∆D

(
E [G1,0, G0,1]± ; H±

)
+∆D

(
H± ; ρ±

)
= ∆D

(
E [π̃1, π̃2]± ; E [G1,0, G0,1]±

)
+∆D

(
E [G1,0, G0,1]± ; H±

)
+ Advvsprp

H (D′3) , (7)
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for some distinguisherD′3 with the same query complexity asD (in fact,D′3 = D).

Below two claims bound the remaining distances in (7) and complete the
proof.

Claim. We have ∆D

(
E [G1,0, G0,1]± ; H±

)
= 0.

Proof (of claim). For any query to H of length n + s bits (either forward or
inverse), the last s bits of the response are drawn uniformly at random from
{0, 1}s and the first n bits are drawn uniformly at random in such a way that
the permutativity of H is retained (see Algorithms 5 and 6). Consider any query
to E [G1,0, G0,1], without loss of generality a forward query of length n+ s bits.
The s rightmost bits of the output equal the s rightmost bits of G1,0, and are
generated uniformly at random (see Algorithm 3). Denote this s-bit block by C2.
The remaining n bits of the response, say C1, come from the evaluation of G0,1

for tweak C2, on input of a data block that never appeared for this tweak before.
As can be deduced from Algorithm 3, G0,1 behaves like a tweakable permutation:
for every tweak input, it behaves like a permutation. Therefore, C1 is generated
uniformly at random in such a way that C1‖C2 has never appeared before.
Concluding, E [G1,0, G0,1]± and H± follow identical distributions. ut

Claim. We have

∆D

(
E [π̃1, π̃2]± ; E [G1,0, G0,1]±

)
≤ Advs̃prp

G1,0
(D′4) + Advs̃prp

G0,1
(D′5) +

(
q

θ

)
1

2(θ−1)smin
,

for some distinguishers D′4 and D′5 with the same query complexity as D, where
D′4 may make at most θ inverse queries per tweak and D′5 at most θ forward
queries per tweak.

Proof (of claim). Consider a computationally unbounded and deterministic dis-
tinguisher D making at most q queries. It has access to either E [π̃1, π̃2]± or
E [G1,0, G0,1]±. Summarize the queries in a transcript τ = (τ (1), . . . , τ (q)), where
the i-th tuple τ (i) = (`(i), X(i), Y (i)) is comprised of a bit `(i) ∈ {−1, 1} denoting
the direction of the query, X(i) is the query input and Y (i) the query output, in

such a way Y (i) = O`(i)(X(i)). Write s(i) = |X(i)| − n. We assume that the dis-
tinguisher D does not repeat any query, which means that τ (i) does not contain
duplicate elements.

For the threshold θ of the theorem statement, define the following bad event:

BAD : max
`∈{−1,1}

max
s∈[smin,smax]

max
Z∈{0,1}s

∣∣∣{i | `(i) = ` ∧ s(i) = s ∧ rights(Y
(i)) = Z}

∣∣∣ > θ .
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Clearly, writing Oπ̃ = E [π̃1, π̃2]± and OG = E [G1,0, G0,1]± for brevity,

∆D

(
Oπ̃ ; OG

)
=
∣∣Pr
[
DOπ̃ = 1

]
− Pr

[
DOG = 1

]∣∣
≤
∣∣Pr
[
DOπ̃ = 1 ∧ ¬BAD

]
− Pr

[
DOG = 1 ∧ ¬BAD

]∣∣
+
∣∣Pr
[
DOπ̃ = 1 ∧ BAD

]
− Pr

[
DOG = 1 ∧ BAD

]∣∣
≤
∣∣Pr
[
DOπ̃ = 1 ∧ ¬BAD

]
− Pr

[
DOG = 1 ∧ ¬BAD

]∣∣
+ max

{
Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]

}
. (8)

Denoting the distance in (8) by ∆¬BADD

(
Oπ̃ ; OG

)
for brevity, a straightforward

triangle argument shows that

∆¬BADD

(
Oπ̃ ; OG

)
≤ Advs̃prp

G1,0
(D′4) + Advs̃prp

G0,1
(D′5) , (9)

for some distinguishers D′4 and D′5 with the same query complexity as D, where
D′4 may make at most θ inverse queries per tweak and D′5 at most θ forward
queries per tweak. These two restrictions follow from the way E evaluates its
primitives (π̃1, π̃2 in the left oracle and G1,0, G0,1 in the right oracle) and from
the conditioning of the bad event.

Consider the max-term in (8). Consider any ` ∈ {−1, 1} and s ∈ [smin, smax],
and denote the number of queries with `(i) = ` and s(i) = s by q`,s. For OG, in
forward queries the rights(Y

(i))-values come from the evaluation of G1,0 and are
always uniformly randomly drawn (see Algorithm 3), whereas in inverse queries
they come from evaluations of G−10,1 and are also uniformly randomly drawn (see
Algorithm 4). Therefore,

Pr [OG sets BAD for (`, s)] ≤
(
q`,s
θ

)
1

2(θ−1)s
.

On the other hand, for Oπ̃, the rights(Y
(i))-values come from a truncated per-

mutation evaluation, and we find

Pr [Oπ̃ sets BAD for (`, s)] =

(
q`,s
θ

)
· 2s ·

θ−1∏
i=0

2n−s − i
2n − i

≤
(
q`,s
θ

)
1

2(θ−1)s
.

We thus obtain

max
{

Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]
}
≤
(
q

θ

)
1

2(θ−1)smin
, (10)

using that
(
qa
θ

)
+
(
qb
θ

)
≤
(
qa+qb
θ

)
and the distinguisher maximizes its probability

for s = smin. The proof is concluded by combining (8), (9), and (10). ut

6 3-Round LDT

We derive the following reduction from the security of 3-LDT to harmonic prim-
itives Ga,b and H.
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Theorem 2. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider three-round 3-LDT. Let smin, smax ∈ [0, n− 1] such that smin ≤ smax.
Let 1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making
at most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′1, . . . ,D′5 with the same query complexity such that

Advvsprp
3-LDT(D) ≤ Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) + Advs̃prp

Ẽ
(D′3) (11a)

+ Advvsprp
H (D′4) + Advs̃prp

G1,1
(D′5) +

(
q

θ

)
1

2(θ−1)smin
, (11b)

where D′5 may make at most θ forward and θ inverse queries per tweak.

We will prove Theorem 2 in Section 6.1.
The improvement of the bound of 3-LDT over that of 2-LDT of Theorem 1

is readily visible: Advs̃prp
G1,0

+ Advs̃prp
G0,1

has been replaced with Advs̃prp
G1,1

, which
by Lemma 2 achieves a better bound. Plugging the bounds of Lemmas 2 and 3
into the equation yields the following corollary.

Corollary 2. Let Ẽ : K×{0, 1}n×{0, 1}n → {0, 1}n be a tweakable block cipher.
Consider three-round 3-LDT. Let smin, smax ∈ [0, n− 1] such that smin ≤ smax.
Let 1 ≤ θ ≤ 2n−smax−2 be an integral threshold. For any distinguisher D making
at most q queries, all of length in [n+smin, n+smax] bits, there exist distinguishers
D′1,D′2,D′3 with the same query complexity such that

Advvsprp
3-LDT(D) ≤ Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) + Advs̃prp

Ẽ
(D′3)

+

(
2q3

22n+smin

)1/2

+

(
4
(
θ + θ2

)
q

22n−smax

)1/2

+

(
q

θ

)
1

2(θ−1)smin
.

The first three advantages represent the security of the underlying tweakable
block cipher Ẽ. Two of the terms in the remaining portion of the bound depend
on θ: the first one increases with θ whereas the latter decreases with θ. Recalling
from Section 5 that, for smin ≤ θ,(

q

θ

)
1

2(θ−1)smin
≤
(

2qe

θ2smin

)θ
,

equating the two θ-dependent fractions in the corollary gives θ ≈ 2(2n−smax−smin)/3.
This threshold value still has to obey to the condition smin ≤ θ ≤ 2n−smax−2, or
stated differently,

smax ≤ min
{

(n− 6 + smin)/2 , 2n− smin − 3 log2(smin)
}
. (12)

The minimum is achieved for its left element as long as smin ≤ n− 2 log2(n). In
Table 1, we list the simplified security bound of Corollary 2 (omitting constants)
for smin ∈ {const , n/4, n/2, 3n/4, n − 2 log2(n)} and three possible choices of
smax: arbitrary, smax ≈ (n + smin)/2 of (12), and smax ≈ smin. For smin ap-
proaching n, n-bit security is achieved.
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Table 1: Interpretation of the bound of Corollary 2 for various choices of smin,
where const is a constant to make the bound meaningful. Small constants are
omitted in the security upper bound.

security up to

smin arbitrary smax smax ≈ n+smin
2

of (12) smax ≈ smin

const min

{
8n

12
,

4n

6
− smax

3

}
n

2

2n

3
n

4
min

{
9n

12
,

5n

6
− smax

3

}
5n

8

3n

4
n

2
min

{
10n

12
,

6n

6
− smax

3

}
3n

4

5n

6
3n

4
min

{
11n

12
,

7n

6
− smax

3

}
7n

8

11n

12

n− 2 log2(n) min

{
12n

12
,

8n

6
− smax

3

}
n n

Note that these two choices of smax set its two extremes: for given smin,
we require that smin ≤ smax ≤ (n + smin)/2. The security bounds for the two
extremes are plotted in Figure 3: the level of security given by Corollary 2 is in
the shaded area of Figure 3 and depends on smin and smax. For example, fixing
smin = n/2, the security bound of Corollary 2 lies between 3n/4 (for smax ≈
(n+smin)/2) and 5n/6 (for smax ≈ smin), using that smin ≤ smax ≤ (n+smin)/2
by condition.

6.1 Proof of Theorem 2

The first steps of the proof resemble those of Section 5.1. Consider any dis-
tinguisher D making at most q queries. It has access to either 3-LDTK for

K = (K1,K2,K3)
$←− K3 or a random length-preserving invertible permutation

ρ
$←− VPerm([n . . . 2n− 1]). For ease of discussion, write

3-LDTK = E [ẼK1 , ẼK2 , ẼK3 ] .

Let π̃1, π̃2, π̃3
$←− P̃erm(n, n). We have

Advvsprp
3-LDT(D) = ∆D

(
E [ẼK1 , ẼK2 , ẼK3 ]± ; ρ±

)
≤ ∆D′1

(
Ẽ±K1

; π̃±1

)
+∆D′2

(
Ẽ±K2

; π̃±2

)
+∆D′3

(
Ẽ±K3

; π̃±3

)
+∆D

(
E [π̃1, π̃2, π̃3]± ; ρ±

)
= Advs̃prp

Ẽ
(D′1) + Advs̃prp

Ẽ
(D′2) + Advs̃prp

Ẽ
(D′3)

+∆D

(
E [π̃1, π̃2, π̃3]± ; ρ±

)
, (13)
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Fig. 3: Simplified security bound of 3-LDT for various choices of smin. Lower
line is for smax ≈ (n + smin)/2, upper line for smax ≈ smin. Security of 3-
LDT is indicated by the shaded area and depends on smin and smax, where
smin ≤ smax ≤ (n+ smin)/2.

smin

security

const n/4 n/2 3n/4 n− 2 log2(n)

n/2

5n/8

2n/3

3n/4

5n/6

7n/8

11n/12

n

smax
≈ smin

smax
≈ (n

+
smin

)/2

for some distinguishers D′1, D′2, and D′2 with the same query complexity as D.
We will focus on the remaining distance in (13). Without loss of generality,

we will consider computationally unbounded and deterministic distinguishers.
Consider two harmonic primitives, G1,1 of Section 4.1 and H of Section 4.2. We
obtain via the triangle inequality:

∆D

(
E [π̃1, π̃2, π̃3]± ; ρ±

)
≤ ∆D

(
E [π̃1, π̃2, π̃3]± ; E [π̃1, G1,1, π̃3]±

)
+∆D

(
E [π̃1, G1,1, π̃3]± ; H±

)
+∆D

(
H± ; ρ±

)
= ∆D

(
E [π̃1, π̃2, π̃3]± ; E [π̃1, G1,1, π̃3]±

)
+∆D

(
E [π̃1, G1,1, π̃3]± ; H±

)
+ Advvsprp

H (D′4) ,

(14)

for some distinguisherD′4 with the same query complexity asD (in fact,D′4 = D).
Below two claims bound the remaining distances in (14) and complete the

proof.

Claim. We have ∆D

(
E [π̃1, G1,1, π̃3]± ; H±

)
= 0.

Proof (of claim). For any query to H of length n + s bits (either forward or
inverse), the last s bits of the response are drawn uniformly at random from
{0, 1}s and the first n bits are drawn uniformly at random in such a way that
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the permutativity of H is retained (see Algorithms 5 and 6). Consider any query
to E [π̃1, G1,1, π̃3], without loss of generality a forward query of length n + s
bits. The s rightmost bits of the output equal the s rightmost bits of G1,1, and
are generated uniformly at random (see Algorithm 3; here, we make explicit
use of the fact that G1,1 never receives the same input twice). Denote this s-
bit block by C2. The remaining n bits of the response, say C1, come from the
evaluation of π̃3 for tweak C2 on input of a data block that never appeared for
this tweak before. For every tweak input, the tweakable permutation π̃3 behaves
like a permutation. Therefore, C1 is generated uniformly at random in such a
way that C1‖C2 has never appeared before. Concluding, E [π̃1, G1,1, π̃3]± and H±

follow identical distributions. ut

Claim. We have

∆D

(
E [π̃1, π̃2, π̃3]± ; E [π̃1, G1,1, π̃3]±

)
≤ Advs̃prp

G1,1
(D′5) +

(
q

θ

)
1

2(θ−1)smin
,

for some distinguisher D′5 with the same query complexity as D, but that may
make at most θ forward and θ inverse queries per tweak.

Proof (of claim). The first part of the proof resembles that of the corresponding
claim in Section 5.1.

Consider a computationally unbounded and deterministic distinguisher D
making at most q queries. It has access to either E [π̃1, π̃2, π̃3]± or E [π̃1, G1,1, π̃3]±.
Summarize the queries in a transcript τ = (τ (1), . . . , τ (q)), where the i-th tuple
τ (i) = (`(i), X(i), Y (i)) is comprised of a bit `(i) ∈ {−1, 1} denoting the direction
of the query, X(i) is the query input and Y (i) the query output, in such a way

Y (i) = O`(i)(X(i)). Write s(i) = |X(i)| − n. We further denote by Z(i) the last
s bits of the output of π̃1 (which is also the last s bits of the input of π̃3) in
forward queries, and the last s bits of the output of π̃−13 (which is also the last
s bits of the input of π̃−11 ) in inverse queries. We assume that the distinguisher
D does not repeat any query, which means that τ (i) does not contain duplicate
elements.

For the threshold θ of the theorem statement, define the following bad event:

BAD : max
`∈{−1,1}

max
s∈[smin,smax]

max
Z∈{0,1}s

∣∣∣{i | `(i) = ` ∧ s(i) = s ∧ Z(i) = Z}
∣∣∣ > θ .

As before, writing Oπ̃ = E [π̃1, π̃2, π̃3]± and OG = E [π̃1, G1,1, π̃3]±,

∆D

(
Oπ̃ ; OG

)
≤
∣∣Pr
[
DOπ̃ = 1 ∧ ¬BAD

]
− Pr

[
DOG = 1 ∧ ¬BAD

]∣∣
+ max

{
Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]

}
. (15)

Denoting the distance in (15) by ∆¬BADD

(
Oπ̃ ; OG

)
for brevity, a straightforward

triangle argument shows that

∆¬BADD

(
Oπ̃ ; OG

)
≤ Advs̃prp

G1,1
(D′5) , (16)
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for some distinguisher D′5 with the same query complexity as D, but that may
make at most θ forward and θ inverse queries per tweak. These two restrictions
follow from the way E evaluates its primitives (π̃2 in the left oracle and G1,1 in
the right oracle) and from the conditioning of the bad event.

Consider the max-term in (15). Consider any ` ∈ {−1, 1} and s ∈ [smin, smax],
and denote the number of queries with `(i) = ` and s(i) = s by q`,s. For both Oπ̃
and OG, the Z(i)-values come from a truncated permutation evaluation, and we
find for O ∈ {Oπ̃,OG}:

Pr [O sets BAD for (`, s)] =

(
q`,s
θ

)
· 2s ·

θ−1∏
i=0

2n−s − i
2n − i

≤
(
q`,s
θ

)
1

2(θ−1)s
.

We thus obtain

max
{

Pr [Oπ̃ sets BAD] , Pr [OG sets BAD]
}
≤
(
q

θ

)
1

2(θ−1)smin
, (17)

as before. The proof is concluded by combining (15), (16), and (17). ut

7 Proof of Lemma 2 on Ga,b

For a = b = 0, the lemma is trivial. Let a, b ∈ {0, 1} such that a + b ≥ 1, and
consider any distinguisher D making at most q queries, all with tweaks satisfying
|unpad(T )| ∈ [smin, smax], and it makes at most θ inverse queries per tweak (if
a = 1) and at most θ forward queries per tweak (if b = 1). The distinguisher

has access to either random system Ga,b or π̃
$←− P̃erm(n, n), and without loss of

generality, D is computationally unbounded and deterministic.

We will use the chi-squared method of Section 2.2, with O2 = Ga,b being the
real system and O0 = π̃ the ideal system. Define an intermediate world O1 that
implements O2, unless some event “BAD” (defined below) happens, from which
point it implements O0. Summarize the communication of D with its oracle in
a transcript τ = (τ (1), . . . , τ (q)), where τ (i) = (`(i), T (i), X(i), Y (i)) consists of a
bit `(i) ∈ {−1, 1} indicating the direction of the query (1 means forward, and
−1 means inverse), a tweak value T (i), an input value X(i), and a response Y (i),

in such a way that O`
(i)

(T (i), X(i)) = Y (i) for O ∈ {O0,O2}.
By a triangle inequality,

Advs̃prp
Ga,b

(D) = ‖pO0,D(·)− pO2,D(·)‖

≤ ‖pO0,D(·)− pO1,D(·)‖+ ‖pO1,D(·)− pO2,D(·)‖ . (18)

Let T denote the set of all possible transcripts, and Tbad the set of all transcripts
that satisfy BAD. We have that pO1,D(τ ) = pO2,D(τ ) for any τ ∈ T \Tbad, and
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hence,

‖pO1,D(·)− pO2,D(·)‖ =
∑
τ∈T

max{0, pO1,D(τ )− pO2,D(τ )}

=
∑

τ∈Tbad

max{0, pO1,D(τ )− pO2,D(τ )}

≤
∑

τ∈Tbad

pO1,D(τ ) = Pr [O1 sets BAD] .

We obtain from (18):

Advs̃prp
Ga,b

(D) ≤ ‖pO0,D(·)− pO1,D(·)‖+ Pr [O1 sets BAD] . (19)

We will formalize and analyze BAD in Section 7.1 and analyze the remaining
distance using the chi-squared technique in Section 7.2. These will immediately
conclude the proof by (19).

7.1 Bad Transcripts

For the threshold θ of the theorem statement, define the following bad events:

BAD1 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣∣∣{i | a = 1 ∧ `(i) = 1 ∧ unpad(T (i)) = Z ∧ rights(Y
(i)) = Z ′}

∣∣∣ > θ ,

BAD2 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣∣∣{i | a = 1 ∧ `(i) = −1 ∧ unpad(T (i)) = Z ∧ rights(X
(i)) = Z ′}

∣∣∣ > θ ,

BAD3 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣∣∣{i | b = 1 ∧ `(i) = 1 ∧ unpad(T (i)) = Z ∧ rights(X
(i)) = Z ′}

∣∣∣ > θ ,

BAD4 : max
s∈[smin,smax]

max
Z,Z′∈{0,1}s

∣∣∣{i | b = 1 ∧ `(i) = −1 ∧ unpad(T (i)) = Z ∧ rights(Y
(i)) = Z ′}

∣∣∣ > θ .

Define BAD = BAD1 ∨ BAD2 ∨ BAD3 ∨ BAD4.
The bad events look complicated, but in fact they are not. If (a, b) = (0, 0),

none of the four bad events are satisfied, and BAD does not hold by construction.
On the other hand, if (a, b) = (1, 1), the distinguisher makes at most θ forward
queries per tweak and at most θ inverse queries per tweak, and also in this
case BAD does not hold by construction. The cases (a, b) = (1, 0), (0, 1) are
symmetric, and we treat the former only. If (a, b) = (1, 0), BAD3,BAD4 do not
hold as b = 0, and BAD2 does not hold as the distinguisher makes at most θ
inverse queries. We are left with BAD1. Consider any s ∈ [smin, smax] and any
Z ∈ {0, 1}s, and denote the number of queries with `(i) = 1 and unpad(T (i)) = Z
by qs,Z . The rights(Y

(i))-values come from the evaluation of G1,0 and are always
uniformly randomly drawn (see Algorithm 3). Therefore,

Pr [O1 sets BAD for (s, Z)] ≤
(
qs,Z
θ

)
1

2(θ−1)s
.

We thus obtain

Pr [O1 sets BAD] ≤
(
q

θ

)
1

2(θ−1)smin
, (20)
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using that
(
qa
θ

)
+
(
qb
θ

)
≤
(
qa+qb
θ

)
and the distinguisher maximizes its probability

for s = smin. Recalling that the case of (a, b) = (0, 1) is symmetric and that BAD
is not set for (a, b) = (0, 0), (1, 1), we obtain

Pr [O1 sets BAD] ≤ |a− b| ·
(
q

θ

)
1

2(θ−1)smin
.

7.2 Distance Between O0 and O1

Our aim is to bound the term of (1). Consider a given transcript τ (i−1), which
in turn determines the values `(i), T (i), and X(i). Let s = |unpad(T (i))|, and con-
sider any value Y (i). As both oracles behave independently for different tweaks,
it suffices to focus on earlier queries of the same tweak. We additionally refine
into the number of queries with the same or opposite query direction. Let

ipos =
∣∣∣{j ∈ {1, . . . , i− 1} | T (j) = T (i) ∧ `(j) = `(i)

}∣∣∣ ,
ineg =

∣∣∣{j ∈ {1, . . . , i− 1} | T (j) = T (i) ∧ `(j) = −`(i)
}∣∣∣ ,

and write i′ = ipos + ineg for brevity. Let

hpos(Y
(i)) =

∣∣∣{j ∈ {1, . . . , i− 1} | T (j) = T (i) ∧ `(j) = `(i) ∧ rights(Y
(j)) = rights(Y

(i))
}∣∣∣ ,

hneg(Y (i)) =
∣∣∣{j ∈ {1, . . . , i− 1} | T (j) = T (i) ∧ `(j) = −`(i) ∧ rights(X

(j)) = rights(Y
(i))
}∣∣∣ ,

where hpos(Y
(i)) ≤ ipos and hneg(Y (i)) ≤ ineg, and write h(Y (i)) = hpos(Y

(i)) +
hneg(Y (i)). We can distinct the following cases.

(1) `(i) = 1 (forward query) and Y (i) ∈ rng(LT ). This case is excluded as Y (i)

is not in the support of both probabilities;
(2) `(i) = 1 (forward query) and Y (i) /∈ rng(LT ).

(a) a = 0. We have pO0,D(Y (i)|τ (i−1)) = pO1,D(Y (i)|τ (i−1)) = 1
2n−i′ , as the

response is drawn uniformly at random from a set of size 2n minus the
amount of earlier queries for the same tweak;

(b) a = 1. We have pO0,D(Y (i) | τ (i−1)) = 1
2n−i′ as before, and pO1,D(Y (i) |

τ (i−1)) = 1
2s(2n−s−h(Y (i)))

as rights(Y
(i)) is generated uniformly at ran-

dom, and leftn−s(Y
(i)) from a set of size 2n−s minus h(Y (i)). For later us-

age, note that this case fixes (`(i), T (i), Y (i)), and we have hpos(Y
(i)) ≤ θ

by ¬BAD1 and hneg(Y (i)) ≤ θ by ¬BAD2. Therefore, in this case, we have
h(Y (i)) ≤ 2θ.

(3) `(i) = −1 (inverse query) and Y (i) ∈ dom(LT ). The case is symmetric to (1).
(4) `(i) = −1 (inverse query) and Y (i) /∈ dom(LT ).

(a) b = 0. The case is symmetric to (2a).
(b) b = 1. The case is symmetric to (2b), where now we rely on the fact that

by ¬(BAD3 ∨ BAD4), h(Y (i)) ≤ 2θ.
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Cases (2b) and (4b) dominate the chi-squared technique, and we obtain for
χ2(τ (i−1)) of (1):

χ2(τ (i−1)) =
∑
Y (i)

(
1

2n−i′ −
1

2s(2n−s−h(Y (i)))

)2
1

2n−i′

=
∑
Y (i)

(2n − i′) ·
(

1

2n − i′
− 1

2s(2n−s − h(Y (i)))

)2

=
∑
Y (i)

1

(2n − i′)(2n−s − h(Y (i)))2
·
(
h(Y (i))− i′

2s

)2

≤ 1

(2n − i′)(2n−s − 2θ)2
·
∑
Y (i)

(
h(Y (i))− i′

2s

)2

≤ 8

23n−2s
·
∑
Y (i)

(
h(Y (i))− i′

2s

)2

,

using that h(Y (i)) ≤ 2θ by ¬BAD (see above), and i′ ≤ 2n−1 and θ ≤ 2n−smax−2.
We find for its expectation:

Exp[χ2(τ (i−1))] ≤ 8

23n−2s
·
∑
Y (i)

Exp

[(
h(Y (i))− i′

2s

)2
]
. (21)

Recalling that i′ = ipos+ineg and h(Y (i)) = hpos(Y
(i))+hneg(Y (i)), the remaining

expectation satisfies:

Exp

[(
h(Y (i))− i′

2s

)2
]

= Exp

[(
hpos(Y

(i)) + hneg(Y (i))− ipos + ineg
2s

)2
]

= Exp

[(
hpos(Y

(i))− ipos
2s

)2
]

+ Exp

[(
hneg(Y (i))− ineg

2s

)2
]

+ 2 · Exp

[(
hpos(Y

(i))− ipos
2s

)(
hneg(Y (i))− ineg

2s

)]
= Exp

[(
hpos(Y

(i))− ipos
2s

)2
]

+

(
hneg(Y (i))− ineg

2s

)2

+ 2 ·
(

Exp
[
hpos(Y

(i))
]
− ipos

2s

)(
hneg(Y (i))− ineg

2s

)
.

(22)

As hpos(Y
(i)) ∼ HG(2n, 2n−s, ipos), by Section 2.3 it satisfies

Exp[hpos(Y
(i))] =

ipos
2s

,

Var[hpos(Y
(i))] =

ipos
2s
·
(

1− 1

2s

)
· 2n − ipos

2n − 1
,
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and we obtain that

Exp

[(
h(Y (i))− i′

2s

)2
]

=
ipos
2s
·
(

1− 1

2s

)
· 2n − ipos

2n − 1
+

(
hneg(Y (i))− ineg

2s

)2

≤ ipos
2s

+

(
hneg(Y (i))− ineg

2s

)2

. (23)

We furthermore claim the following.

Claim. We have
∑
Y (i)

(
hneg(Y (i))− ineg

2s

)2
≤ i2neg2n−s.

Proof (of claim). We have

∑
Y (i)

(
hneg(Y (i))− ineg

2s

)2

=
∑
Z(i)

∑
Y (i)=∗‖Z(i)

(
hneg(Y (i))− ineg

2s

)2

.

As hneg(Y (i)) = hneg(Y (i)′) for rights(Y
(i)) = rights(Y

(i)′), we subsequently have

∑
Y (i)

(
hneg(Y (i))− ineg

2s

)2

=
∑
Z(i)

2n−s
(
hneg(0n−s‖Z(i))− ineg

2s

)2

= 2n−s
∑
Z(i)

((
hneg(0n−s‖Z(i))

)2
−2hneg(0n−s‖Z(i))

ineg
2s

+

(
ineg
2s

)2
)

≤ 2n−s

(
i2neg −

2i2neg
2s

+
2si2neg

22s

)

= 2n−s

(
i2neg −

i2neg
2s

)
≤ i2neg2n−s . ut

Equations (21) and (23), alongside above claim, constitute to

Exp[χ2(τ (i−1))] ≤ 8

23n−2s
·
(
ipos2

n−s + i2neg2n−s
)

=
8
(
ipos + i2neg

)
22n−s

. (24)

If (a, b) ∈ {(1, 0), (0, 1)}, we have ipos, ineg ≤ (i− 1) and

(24) ≤
8
(
(i− 1) + (i− 1)2

)
22n−s

.

This bound is independent of the direction of the i-th query (`(i) ∈ {−1, 1}),
but the parameter s depends on the query, as s = |unpad(T (i))|. The adver-
sary maximizes its chances by sticking to the maximal s. This, finally, gives by
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Lemma 1:

‖pO0,D(·)− pO1,D(·)‖ ≤

(
1

2

q∑
i=1

8
(
(i− 1) + (i− 1)2

)
22n−smax

)1/2

=

(
4

3

q3 − q
22n−smax

)1/2

≤
(

2q3

22n−smax

)1/2

.

On the other hand, if (a, b) = (1, 1), we have ipos, ineg ≤ θ and

(24) ≤
8
(
θ + θ2

)
22n−s

.

Again sticking to the maximal s, this gives by Lemma 1:

‖pO0,D(·)− pO1,D(·)‖ ≤

(
1

2

q∑
i=1

8
(
θ + θ2

)
22n−smax

)1/2

=

(
4
(
θ + θ2

)
q

22n−smax

)1/2

.

8 Proof of Lemma 3 on H

Consider any distinguisher D making at most q ≤ 2n−1 queries, all of length in
[n+ smin, 2n− 1] bits. The distinguisher has access to either random system H

or ρ
$←− VPerm([n, 2n− 1]), and without loss of generality, D is computationally

unbounded and deterministic.
We will use the chi-squared method of Section 2.2, with O0 = H being the

real system and O1 = ρ the ideal system. Summarize the communication of D
with its oracle in a transcript τ = (τ (1), . . . , τ (q)), where τ (i) = (`(i), X(i), Y (i))
consists of a bit `(i) ∈ {−1, 1} indicating the direction of the query (1 means
forward, and −1 means inverse), an input value (X(i)), and a response Y (i), in

such a way that O`
(i)

(X(i)) = Y (i) for O ∈ {O0,O1}.
Unlike the proof of Section 7, we will not rely on additional bad events,

and there is no need to perform a hybrid argument and to upper bound the
probability of bad events. We immediately move to bounding the term of (1),
and the proof is very similar to that in Section 7.2. Consider a given transcript
τ (i−1), which in turn determines the values `(i) and X(i). Let s = |X(i)|−n, and
consider any value Y (i). As both oracles behave independently for different input
lengths, it suffices to focus on earlier queries of the same size. We additionally
refine into the number of queries with the same or opposite query direction. Let

ipos =
∣∣∣{j ∈ {1, . . . , i− 1} | |X(j)| = |X(i)| ∧ `(j) = `(i)

}∣∣∣ ,
ineg =

∣∣∣{j ∈ {1, . . . , i− 1} | |X(j)| = |X(i)| ∧ `(j) = −`(i)
}∣∣∣ ,

and write i′ = ipos + ineg. Let

hpos(Y
(i)) =

∣∣∣{j ∈ {1, . . . , i− 1} | |X(j)| = |X(i)| ∧ `(j) = `(i) ∧ rights(Y
(j)) = rights(Y

(i))
}∣∣∣ ,

hneg(Y (i)) =
∣∣∣{j ∈ {1, . . . , i− 1} | |X(j)| = |X(i)| ∧ `(j) = −`(i) ∧ rights(X

(j)) = rights(Y
(i))
}∣∣∣ ,
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where hpos(Y
(i)) ≤ ipos and hneg(Y (i)) ≤ ineg, and write h(Y (i)) = hpos(Y

(i)) +
hneg(Y (i)). We can distinct the following cases.

(1) `(i) = 1 (forward query) and Y (i) ∈ rng(Ls). This case is excluded as Y (i) is
not in the support of both probabilities;

(2) `(i) = 1 (forward query) and Y (i) /∈ rng(Ls). We have pO0,D(Y (i) | τ (i−1)) =
1

2n+s−i′ as the response is drawn uniformly at random from a set of size 2n+s

minus the amount of earlier queries for the same tweak, and pO1,D(Y (i) |
τ (i−1)) = 1

2s(2n−h(Y (i)))
as rights(Y

(i)) is generated uniformly at random,

and leftn(Y (i)) from a set of size 2n minus h(Y (i)).

(3) `(i) = −1 (inverse query) and Y (i) ∈ dom(Ls). The case is symmetric to (1).

(4) `(i) = −1 (inverse query) and Y (i) /∈ dom(Ls). The case is symmetric to (2).

Cases (2) and (4) dominate the chi-squared technique, and we obtain for χ2(τ (i−1))
of (1):

χ2(τ (i−1)) =
∑
Y (i)

(
1

2n+s−i′ −
1

2s(2n−h(Y (i)))

)2
1

2n+s−i′

=
∑
Y (i)

(
2n+s − i′

)
·
(

1

2n+s − i′
− 1

2s(2n − h(Y (i)))

)2

=
∑
Y (i)

1

(2n+s − i′)(2n − h(Y (i)))2
·
(
h(Y (i))− i′

2s

)2

≤ 1

(2n+s − i′)(2n − i′)2
·
∑
Y (i)

(
h(Y (i))− i′

2s

)2

≤ 8

23n+s
·
∑
Y (i)

(
h(Y (i))− i′

2s

)2

,

using that h(Y (i)) ≤ i′, and i′ ≤ 2n−1. We find for its expectation:

Exp[χ2(τ (i−1))] ≤ 8

23n+s
·
∑
Y (i)

Exp

[(
h(Y (i))− i′

2s

)2
]
. (25)

Recalling that i′ = ipos+ineg and h(Y (i)) = hpos(Y
(i))+hneg(Y (i)), the remaining

expectation satisfies (identically to (22)):

Exp

[(
h(Y (i))− i′

2s

)2
]

= Exp

[(
hpos(Y

(i))− ipos
2s

)2
]

+

(
hneg(Y (i))− ineg

2s

)2

+ 2 ·
(

Exp
[
hpos(Y

(i))
]
− ipos

2s

)(
hneg(Y (i))− ineg

2s

)
.
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As hpos(Y
(i)) ∼ HG(2n+s, 2n, ipos), by Section 2.3 it satisfies

Exp[hpos(Y
(i))] =

ipos
2s

,

Var[hpos(Y
(i))] =

ipos
2s
·
(

1− 1

2s

)
· 2n+s − ipos

2n+s − 1
,

and we obtain that

Exp

[(
h(Y (i))− i′

2s

)2
]

=
ipos
2s
·
(

1− 1

2s

)
· 2n+s − ipos

2n+s − 1
+

(
hneg(Y (i))− ineg

2s

)2

≤ ipos
2s

+

(
hneg(Y (i))− ineg

2s

)2

. (26)

We furthermore claim the following.

Claim. We have
∑
Y (i)

(
hneg(Y (i))− ineg

2s

)2
≤ i2neg2n.

Proof (of claim). The proof is identical to that of the claim in Section 7.2, except
that now (n+ s)-bit values Y (i) are involved. ut

Equations (25) and (26), alongside above claim, constitute to

Exp[χ2(τ (i−1))] ≤ 8

23n+s
·
(
ipos2

n + i2neg2n
)

=
8
(
ipos + i2neg

)
22n+s

≤
8
(
(i− 1) + (i− 1)2

)
22n+s

.

This bound is independent of the direction of the i-th query (`(i) ∈ {−1, 1}), but
the parameter s depends on the query, as s = |X(i)|−n. The adversary maximizes
its chances by sticking to the minimal s. This, finally, gives by Lemma 1:

Advvsprp
H (D) = ‖pO0,D(·)− pO1,D(·)‖ ≤

(
1

2

q∑
i=1

8
(
(i− 1) + (i− 1)2

)
22n+smin

)1/2

=

(
4

3

q3 − q
22n+smin

)1/2

≤
(

2q3

22n+smin

)1/2

.

A Example Mixing Functions

Chen et al. [11] defined pure mixing functions as follows.

Definition 1. Let m,n ∈ N such that m ≤ n, and let mix : ∪ns=m({0, 1}s)2 →
∪ns=m({0, 1}s)2 be a length-preserving permutation. Define mixL as the left half
of its evaluation and mixR as its right half. The mixing function is called pure
if for all s ∈ [m,n]:
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– mixL(A, ·) is a permutation for all A ∈ {0, 1}s, and
– mixR(·, B) is a permutation for all B ∈ {0, 1}s.

Chen et al. already pointed out that the simplest possible pure mixing function,
mix(A,B) = (B,A), is sufficient for LDT.
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