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Abstract. Functional encryption is a modern public-key cryptographic
primitive allowing an encryptor to finely control the information revealed
to recipients from a given ciphertext. Abdalla, Bourse, De Caro, and
Pointcheval (PKC 2015) were the first to consider functional encryption
restricted to the class of linear functions, i.e. inner products. Though
their schemes are only secure in the selective model, Agrawal, Libert, and
Stehlé (CRYPTO 16) soon provided adaptively secure schemes for the
same functionality. These constructions, which rely on standard assump-
tions such as the Decision Diffie-Hellman (DDH), the Learning-with-
Errors (LWE), and Paillier’s Decision Composite Residuosity (DCR)
problems, do however suffer of various practical drawbacks. Namely, the
DCR based scheme only computes inner products modulo an RSA integer
which is oversized for many practical applications, while the computa-
tion of inner products modulo a prime p either requires, for their (DDH)
based scheme, that the inner product be contained in a sufficiently small
interval for decryption to be efficient, or, as in the LWE based scheme,
suffers of poor efficiency due to impractical parameters.
In this paper, we provide adaptively secure functional encryption schemes
for the inner product functionality which are both efficient and allow for
the evaluation of unbounded inner products modulo a prime p. Our con-
structions rely on new natural cryptographic assumptions in a cyclic
group containing a subgroup where the discrete logarithm (DL) problem
is easy which extend Castagnos and Laguillaumie’s assumption (RSA
2015) of a DDH group with an easy DL subgroup. Instantiating our
generic construction using class groups of imaginary quadratic fields gives
rise to the most efficient functional encryption for inner products modulo
an arbitrary large prime p. One of our schemes outperforms the DCR
variant of Agrawal et al.’s protocols in terms of size of keys and cipher-
texts by factors varying between 2 and 20 for a 112-bit security.

Keywords : Inner Product Functional Encryption, Adaptive Security,
Diffie-Hellman Assumptions.

1 Introduction

Traditional public key encryption (PKE) provides an all-or-nothing approach
to data access. This somewhat restricting property implies that a receiver can



either recover the entire message with the appropriate secret key, or learns noth-
ing about the encrypted message. In many real life applications however, the
encryptor may wish for a more subtle encryption primitive, allowing him to
disclose distinct and restricted information on the encrypted data according to
the receivers privileges. For instance, consider a cloud-based email service where
users may want the cloud to perform spam filtering on their encrypted emails
but learn nothing more about the contents of these emails. Here the user only
wants the cloud to learn one bit indicating whether or not the message is spam,
but nothing more.

Functional encryption (FE) [BSW11,O’N10] emerged from a series of refine-
ments of PKE, starting with identity based encryption [Sha84], which was later
extended to fuzzy identity-based encryption by Sahai and Waters [SW05]. This
work also introduced attribute-based encryption, where a message is encrypted
for all users that have a certain set of attributes. FE encompasses all three of
these primitives, and goes further still, as it allows not only to devise policies
regulating which users can decrypt, but also provides control over which piece or
function of the data each user can recover. Specifically, FE allows for a receiver
to recover a function f(y) of the encrypted message y, without learning any-
thing else about y. The primitive requires a trusted authority, which possesses a
master secret key msk, to deliver secret keys skfi – associated to specific func-
tionalities fi – to the appropriate recipients. The encryptor computes a single
ciphertext associated to the plaintext c = Encrypt(y), from which any user, given
a decryption key skfi , can recover fi(y) = Decrypt(ski, c).

There exist two main security definitions for FE, indistinguishability-based
and a stronger simulation-based security. The former – which is the model we
adopt throughout this paper – requires that no efficient adversary, having chosen
plaintext messages y0 and y1, can guess, given the encryption of one of these,
which is the underlying message with probability significantly greater than 1/2.
The adversary can query a key derivation oracle for functionalities f , with the re-
striction that f(y0) = f(y1), otherwise one could trivially tell apart both cipher-
texts. Though constructions for general FE have been put forth, these schemes
are far from practical, and only allow for the adversary to request an a priori
bounded number of secret keys [GKP+13b,SS10], or rely on non-standard and ill-
understood cryptographic assumptions such as indistinguishability obfuscation
or multilinear maps [ABSV15,BGJS16,GKP+13a,GVW12,Wat15,GGHZ16].

The problem thus arose of building efficient FE schemes for restricted classes
of functions; such constructions could be of great use for many practical appli-
cations, while developing our understanding of FE.

Inner Product Functional Encryption (IPFE). The restriction of FE to linear
functions, or equivalently to the inner product functionality yields many interest-
ing applications. Among other uses, linear functions allow for the computation of
weighted averages and sums which are of use for statistical analysis on encrypted
data, where the statistical analysis itself has sensitive information. As mentioned
by Katz, Sahai and Waters in [KSW08], another application is the evaluation of
polynomials over encrypted data. Agrawal, Libert and Stehlé [ALS16, Section 6]
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motivate FE for the computation of linear functions modulo a prime p by demon-
strating that such a scheme can be turned into a bounded collusion FE scheme
for all circuits3. And as a final example, Agrawal, Bhattacherjee, Phan, Stehlé
and Yamada provide a generic transformation from FE for linear functions to
trace-and-revoke systems in [ABP+17]. Naturally as they are performing linear
algebra, their transformation requires the modulus to be prime and preferably
quite large (of the order of 128 or 256 bits).

The primitive can succinctly be defined as follows: plaintexts are vectors y ∈
R`, where R is a given ring. Function specific secret keys skx are derived from
vectors x ∈ R` and allow to recover 〈y,x〉 ∈ R but reveal no further information
about y. It is worth noting that due to the linearity of inner products, if the
adversary requests decryption keys derived from independent vectors xi for i ∈
{1, . . . , `}, it can recover y by resolving a simple system of linear equations
resulting from 〈y,xi〉 for i ∈ {1, . . . , `}.

This specific line of research was initiated by Abdalla, Bourse, De Caro and
Pointcheval in 2015 [ABDP15]. They provided the first IPFE schemes which
rely on standard assumptions such as learning with errors (LWE) and decision
Diffie Hellman (DDH). However their schemes are only secure in the selective set-
ting, i.e. the adversary must commit to challenge messages before having access
to the schemes’ public parameters. Though of great theoretical interest, such
schemes are not sufficiently secure for practical applications, indeed selective se-
curity is often considered a first step towards proving full adaptive security. The
first fully secure schemes were put forth by Agrawal, Libert and Stehlé [ALS16]
under the LWE, DDH and Paillier’s Decision Composite Residuosity (DCR, cf.
[Pai99]) assumptions. Abdalla et al. in [ABCP16] also put forth a generic con-
struction achieving adaptive security and provide instantiations from the DDH,
DCR and LWE assumptions. However, their instantiation from Elgamal gives
the same construction as the DDH based scheme of [ALS16], and their obtained
schemes from LWE are restricted to the computation of inner products over the
integers Z, and are less efficient than those of [ALS16]. Finally Benhamouda
et al. [BBL17,Bou17] provided generic constructions from hash proof systems to
both chosen plaintext and chosen ciphertext secure IPFE schemes. The resulting
schemes are again restricted to the computation of inner products over the inte-
gers Z and the sizes of secret keys are larger than those of [ALS16] (see details
at the end of the introduction).

These brilliant developments do however still suffer of practical drawbacks.
Namely the computation of inner products modulo a prime p are restricted, in
that they require that the inner product 〈y,x〉 be small for decryption to be
efficient (as is the case for the schemes of [ABDP15], [ABCP16], and the DDH
based scheme of [ALS16]). To our knowledge, the only scheme that allows for
decryption of inner products of any size modulo a prime p is the LWE based
scheme of [ALS16], which suffers of poor efficiency since the modulus should

3 We note however that this application of linear FE modulo a prime p can not be
instantiated with our schemes, as we require p to be at least a 112-bit prime, whereas
this application typically calls for small values of p (e.g. p = 2).
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be exponentially large in the dimension of encrypted vectors while the size of
ciphertexts is cubic in this dimension.

Our Contributions. In this paper we put forth IPFE schemes which resolve the
aforementioned issue. Our constructions allow for inner products over the inte-
gers and modulo a prime integer p, and rely on novel cryptographic assumptions
defined in Subsection 3.1. These are variants of the [CL15] assumption, which
supposes the existence of a DDH group with an easy DL subgroup: a cyclic group
G = 〈g〉 where the DDH assumption holds together with a subgroup F = 〈f〉
of G where the discrete logarithm problem is easy. For ease of notation we will
hereafter simply refer to this assumption as the DDH assumption.

The first assumption we introduce relies on a hard subgroup membership
(HSM) problem (according to Gjøsteen’s terminology [Gjø05]), in order to some-
what generalise Paillier’s DCR assumption, which follows on a long line of as-
sumptions of distinguishing powers in Z/NZ. Known attacks for these require
computing the groups’ order which reduces to factoring N . In the [CL15] frame-
work, the group G is cyclic of order ps where s is unknown and gcd(p, s) = 1.
We denote Gp = 〈gp〉 the subgroup of p−th powers in G. In this setting one has
G = F ×Gp. The assumption is that it is hard to distinguish the elements of Gp

in G.

We then define the DDH-f assumption, which is weaker than both the DDH
assumption of [CL15], and the aforementioned HSM assumption. Denoting D a
distribution statistically close to the uniform distribution modulo ps, this as-
sumption states that it is hard to distinguish distributions {(gx, gy, gxy), x, y ←↩
D} (i.e. Diffie-Hellman triplets in G) and {(gx, gy, gxyfu), x, y ←↩ D, u←↩ Z/pZ}.

We prove that this assumption is actually equivalent to the semantic security
of the generic CL homomorphic encryption scheme of [CL15], an Elgamal variant
in G where the messages are encoded in the exponent in the subgroup F . In fact,
the DDH-f assumption is better suited to mask an element of F , thus providing
clearer proofs.

These new assumptions allow us to construct generic, linearly homomorphic
encryption schemes over Z/pZ which are semantically secure under chosen plain-
text attacks (ind-cpa), which we call HSM-CL and Modified CL (cf. Section 3.2).
The reductions between their semantic security and the underlying assumptions
are given in Fig. 1, where A→ B indicates that assumption B holds if assump-
tion A holds, i.e. A is a stronger assumption than B.

DDH DDH-f HSM

Modified CL ind-cpaCL ind-cpa HSM-CL ind-cpa

Fig. 1: Reductions between assumptions and ind-cpa security of CL variants
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We then use the homomorphic properties of the above schemes to construct
generic IPFE schemes over the integers and over Z/pZ, both from the weaker
DDH-f assumption in Section 4, and from the HSM assumption in Section 5,
somewhat generalising the scheme based on DCR of [ALS16]. Since the inner
product is encoded in the exponent in the subgroup F , it can efficiently be
recovered, whatever its size. We thereby present the first IPFE schemes which
are both efficient and recover 〈y,x〉 mod p whatever its size.

Our security proofs for the HSM based schemes follow a similar logic to those
of [ALS16], analysing the entropy loss that occurs via queried keys, and demon-
strating that there is enough residual entropy left for the challenge ciphertext
to appear uniform to the adversary. However, significant difficulties occur for
the schemes arising from the weaker DDH-f assumption. As in the DDH based
scheme of [ALS16], we use a variant of Elgamal à la Cramer-Shoup. But unlike
previous uses of this approach, the order of our group is unknown and may have
small factors, so with constant probability an element may not be a generator.
This calls for various subtleties: any element of the group can not be masked,
however, if p is large enough, elements of the subgroup F of order p can be.

Moreover, in order to handle private key queries, instead of computing the
global distribution of the keys given this information, we carefully simplify the
description of the adversary’s view, since merely restricting the adversary’s view
modulo p could potentially result in a loss of information.

We note that for our schemes over Z/pZ, vectors xi from which keys are de-
rived are in Z/pZ, whereas decryption keys are computed in Z, so a lift of the xi
in Z must be done. Since lifting does not preserve linear dependencies, it is essen-
tial (as in [ALS16]) the key generation algorithm be stateful to lift vectors while
maintaining linear dependencies. Without this restriction an adversary could
learn a combination of the master key components which is singular modulo p
but invertible over Z, thus revealing the whole master key.

To instantiate our generic constructions we use class groups of imaginary
quadratic fields. Although the devastating attack from [CL09] eliminates a whole
family of protocols built from such groups, this attack applies to schemes whose
security is based on factoring a discriminant while here this factorisation is pub-
lic. Moreover [CL15] showed that designing with care discrete logarithm based
cryptosystems within such groups is still possible and allows for efficient and
versatile protocols (Encryption switching protocols for instance, cf. [CIL17]).
The problem of computing a discrete logarithm in class groups of imaginary
quadratic fields has been extensively studied since the 80’s, and the complexity
of best known subexponential algorithms is4 O(L1/2) (cf. [BJS10]) as opposed
to O(L1/3) (cf. [Adl94]) for the discrete logarithm problem in finite field or
factoring. In particular this implies that our keys can be chosen shorter and
corroborates the above claim that the assumptions on which we rely are indeed
weak.

4 Lα is a shortcut to denote Lα,c(x) = exp(c log(x)α log(log(x))1−α)
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In terms of efficiency, we show in Section 6 that for a security parameter
of λ = 112 we outperform Paillier’s variant of [ALS16] on all possible sizes by
factors varying between 2 and 20.

Relation to Hash Proof Systems. Hash proof systems (HPS) were introduced in
[CS02] as a generalisation of the techniques used in [CS98]. Consider a set of
words X , an NP language L ⊂ X such that L = {x ∈ X | w : (x,w) ∈ R} where
R is the relation defining the language, L is the language of true statements in
X , and for (x,w) ∈ R, w is a witness for x ∈ L. A HPS defines a key generation
algorithm KeyGen which outputs a secret hashing key hk and a public projection
key hp such that hk defines a hash function Hhk : X 7→ Π, and hp allows for the
(public) evaluation of the hash function on words x ∈ L, i.e. Hhp(x,w) = Hhk(x)
for (x,w) ∈ R. The smoothness property requires that for any x /∈ L, the value
Hhk(x) be uniformly distributed knowing hp.

The DDH and DCR assumptions can be used to instantiate smooth HPS’s
where the languages L ⊂ X define hard subset membership problems. Such
HPS’s, endowed with homomorphic properties over the key space, underly the
IPFE schemes of [ALS16]. In fact Benhamouda, Bourse, and Lipmaa in [BBL17],
and Bourse, in his thesis [Bou17], present a generic construction from a key
homomorphic HPS (with a few other required properties) to an IPFE scheme in
Z which is secure under chosen plaintext attacks. They instantiate it from DDH
and from DCR but leave out LWE due to the complexity of the resulting scheme,
as simpler constructions can be attained without using HPSs.

We note that though our constructions resemble the above – one can deduce
new subset membership problems from the assumptions in Subsection 3.1 and
associated HPS’s – our proof techniques are very different to those of [Bou17]: so
as to achieve adaptive security, their game challenger must guess the difference
between challenge ciphertexts prior to generating the public/private key pair.
If the hash key is not sampled uniformly at random from the key space (as in
our constructions), then in order to maintain a level of security equivalent to
that of the HPS the size of the secret keys increases substantially. Indeed, to
encrypt vectors of dimension ` whose coordinates are bounded by Y , their proof
techniques cause an additional ` log(Y )-bit term to appear in each coordinate
of the secret key, whereas in our constructions over Z, the bit length of the
coordinates is independent of `. As a consequence, this approach leads to less
efficient schemes.

Our goal has been to build practical IPFE schemes, therefore we avoid this
genericity and the key blow up it entails, carefully evaluating the information
leaked to the adversary by the public key, the secret key queries and by the
challenge ciphertext, thus demonstrating that the challenge bit β remains sta-
tistically hidden. This style of proof is closer to those of [ALS16], it allows us to
obtain constructions for IPFE over Z that are substantially more efficient than
those of [BBL17,Bou17], and constructions for IPFE modulo a prime p that do
not restrict the size of the inputs or of the resulting inner product, which are
the most efficient such schemes to date.
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2 Background

Notations. We denote sets by uppercase letters, vectors by bold lowercase letters,
and the inner product of vectors x and y is denoted 〈x,y〉. For a distribution D,
we write d ←↩ D to refer to d being sampled from D. We overload the notation
as b ←↩ B to say that b is sampled uniformally at random in the set B. For an
integer x, we denote its size by |x|, and by [x] the set of integers {1, . . . , x}. For
any c ∈ R`, real σ > 0, and `-dimensional lattice Λ, DΛ,σ,c will denote the usual
discrete Gaussian distribution over Λ.

Definition of Inner Product Functional Encryption. This is a special case of func-
tional encryption, as first formalised by Boneh, Sahai and Waters in [BSW11].
To start with, we provide the definition of a functionality.

Definition 1 (Functionality). A functionality F defined over (K,Y) is a func-
tion F : K×Y → Σ ∪{⊥}, where K is a key space, Y is a message space and Σ
is an output space, which does not contain the special symbol ⊥.

In this article, we consider the inner product functionality, which means that
decrypting the encryption of a vector y with a key associated to a vector x
will reveal only 〈x,y〉. More precisely, we consider the function F : (Z/pZ)` ×
(Z/pZ)` → Z/pZ ∪ {⊥} such that F (x,y) = 〈x,y〉. The syntax of a functional
encryption scheme is described below.

Definition 2 (Functional encryption scheme). Let λ be a positive integer.
A functional encryption scheme for a functionality F over (K,Y) is a tuple
(Setup,KeyDer,Encrypt,Decrypt) of algorithms with the following specifications:

– Setup on input a security parameter 1λ, outputs a master key pair (mpk,msk);
– KeyDer on input the master secret key msk and a key K ∈ K, outputs a key
skK ;

– Encrypt on input the master public key mpk and a message Y ∈ Y, outputs a
ciphertext C;

– Decrypt takes as input the master public key mpk, a key skK and a ciphertext
C and outputs v ∈ Σ ∪ {⊥}.

For correctness, we require that for all (mpk,msk)← Setup(1λ), all keys K ∈ K
and all messages Y ∈ Y, if skK ← KeyDer(msk,K) and C ← Encrypt(mpk, Y ),
with overwhelming probability it holds that, if v ← Decrypt(mpk, skK , C) then
v = F (K,Y ) whenever F (K,Y ) 6=⊥.

Security. We define below the security notion for functional encryption, which
states that given the ciphertext of a message Y , the only information obtained
from the secret key skK is the evaluation of the function f(K,Y ). More pre-
cisely, no adversary can distinguish an encryption of Y0 from an encryption of
Y1 even with the knowledge of secret keys skK chosen adaptatively but satis-
fying F (K,Y0) = F (K,Y1). The following definition is that of adaptive secu-
rity, meaning that the adversary has access to the systems’ public parameters,
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and can perform a series of secret key requests before choosing Y0 and Y1. We
consider an indistinguishability-based definition instead of the simulation-based
security definition of Boneh, Sahai and Waters from [BSW11]. This adaptive in-
distinguishability notion is easier to handle, and it is also the strongest adaptive
notion of security that can be achieved for numerous interesting functionalities.
In particular, it has been demonstrated in [BSW11,AGVW13,BO13] that the
strong simulation-based definition cannot be met in the standard model, while
O’Neill showed in [O’N10] that indistinguishability-based security is equivalent
to non-adaptive simulation-based security for a class of functions that includes
the inner product. Moreover, De Caro et al. [DIJ+13] describe a method to trans-
form an FE achieving an indistinguishability-based security notion into an FE
attaining a certain simulation-based security.

Definition 3 (Indistinguishability-based security). A functional encryp-
tion scheme FE = (Setup,KeyDer,Encrypt,Decrypt) provides semantic security
under chosen-plaintext attacks (ind-fe-cpa) if no PPT adversary A has non-
negligible advantage AdvA(λ) as defined below, under the constraints that A’s
secret-key queries before and after its choice of challenge messages Y0 and Y1
satisfy F (K,Y0) = F (K,Y1) for all K in the set of key queries. The advantage
is defined as follows:

AdvA(λ) =
∣∣∣Pr
[
β = β′ : mpk,msk ← Setup(1λ), Y0, Y1 ← AKeyDer(msk,·)(mpk),

β
$←− {0, 1}, C? ← Encrypt(mpk, Yβ), β′ ← AKeyDer(msk,·)(C?)

]
− 1

2

∣∣∣.
Backgound on Lattices. We here recall some definitions and basic results about
Gaussian distributions. These are useful for our security proofs, in which we need
to evaluate the distribution of an inner product when one of the two vectors
follow a Gaussian distribution. We also recall an important result from [GPV08]
which explains the conditions for a Gaussian distribution over a lattice which is
reduced modulo a sublattice to be close to a uniform distribution, which is also
a crucial point of our proofs.

Definition 4 (Gaussian Function). For any σ > 0 define the Gaussian func-
tion on R` centred at c with parameter σ:

∀x ∈ R`, ρσ,c(x) = exp(−π||x− c||2/σ2).

If σ = 1 (resp. c = 0), then the subscript σ (resp. c) is omitted.

Definition 5 (Discrete Gaussians). For any c ∈ R`, real σ > 0, and `-
dimensional lattice Λ, define the discrete Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ),

where ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x).
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Lemma 1. Let x ∈ R` \ {0}, c ∈ R`, σ ∈ R with σ > 0 and σ′ = σ/||x||2,

c′ = 〈c,x〉
〈x,x〉 . A random variable K is distributed according to DZ,σ′,c′ if and only

if V := Kx is distributed according to DxZ,σ,c.

In dimension 1, Lemma 1 implies that if x ∈ R, then V = Kx is distributed
according to DxZ,σ,c if and only if K is distributed according to DZ,σ/|x|,c/x.
The following lemma allows to evaluate the distribution of the inner product
resulting from a constant vector x, and a vector with coordinates sampled from
a Gaussian distribution over the lattice x · Z.

Lemma 2. Let x ∈ R` with x 6= 0, c ∈ R`, σ ∈ R with σ > 0. Let V be a
random variable distributed according to Dx·Z,σ,c. Then the random variable S
defined as S = 〈x, V 〉 is distributed according to D||x||22·Z,σ·||x||2,〈c,x〉.

Proofs of Lemmas 1 and 2 are provided in Aux. Material I.

Lemma 3 ([GPV08]). Let Λ′0 ⊂ Λ0 ⊂ R` be two lattices with the same dimen-
sion. Let ε ∈ (0, 1/2). Then for any c ∈ R` and any σ ≥ ηε(Λ′0), the distribution
DΛ0,σ,c mod Λ′0 is within statistical distance 2ε from the uniform distribution
over Λ0/Λ

′
0. The value ηε(Λ

′
0) is the smoothing parameter of the lattice Λ′0, as

defined in [MR04].

3 Variants of CL: assumptions and ind-cpa schemes

In [CL15], Castagnos and Laguillaumie introduced the framework of a DDH
group with an easy DL subgroup: a cyclic group G where the DDH assumption
holds together with a subgroup F of G where the discrete logarithm problem is
easy. Within this framework, they designed a linearly homomorphic variant of
Elgamal, described in Aux. Material II, and denoted CL throughout the rest of
this paper. Moreover, they gave an instantiation using class groups of quadratic
fields which allows the computation of linear operations modulo a prime p.

Their protocol is similar to the one of Bresson et. al. [BCP03] whose ind-cpa
security relies on the DDH assumption in (Z/N2Z)×, where N = pq, using
the arithmetic ideas of Paillier’s encryption [Pai99]. Another encryption scheme
based on Elgamal over (Z/N2Z)× was proposed by Camenisch and Shoup in
[CS03]. Its ind-cpa security relies on the Decision Composite Residuosity assump-
tion (DCR), which consists in distinguishing the N−th powers in (Z/N2Z)×.

In the following subsection, we recall the framework of [CL15] and then gen-
eralise the DCR assumption to fit this framework of a DDH group with an easy
DL subgroup with a hard subgroup membership problem (following [Gjø05]’s ter-
minology). We also introduce a new DDH-like assumption which is weaker than
DDH in G. Then, in Subsection 3.2, we give generic encryption schemes whose
ind-cpa security are based on these assumptions. In particular we give a general-
isation of the scheme of [CS03] in a DDH group with an easy DL subgroup, and
a modification of CL à la Cramer-Shoup. Finally, in Subsection 3.3, we discuss
the relations between these assumptions.
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3.1 Algorithmic assumptions

To start with, we explicitly define the generator GenGroup used in the framework
of a DDH group with an easy DL subgroup introduced in [CL15], with a few
modifications as discussed below.

Definition 6 (Generator for a DDH group with an easy DL subgroup).
Let GenGroup be a pair of algorithms (Gen,Solve). The Gen algorithm is a group
generator which takes as inputs two parameters λ and µ and outputs a tuple
(p, s̃, g, f, gp, G, F,G

p). The set (G, ·) is a cyclic group of order ps where s is an
integer, p is a µ-bit prime, and gcd(p, s) = 1. The algorithm Gen only outputs
an upper bound s̃ of s. The set Gp = {xp, x ∈ G} is the subgroup of order s of
G, and F is the subgroup of order p of G, so that G = F × Gp. The algorithm
Gen outputs f, gp and g = f · gp which are respective generators of F , Gp and
G. Moreover, the DL problem is easy in F , which means that the Solve algorithm
is a deterministic polynomial time algorithm that solves the discrete logarithm
problem in F :

Pr
[
x = x? : (p, s̃, g, f, gp, G, F,G

p)← Gen(1λ, 1µ), x←↩ Zp, X = fx,

x? ← Solve(p, s̃, g, f, gp, G, F,G
p, X)

]
= 1.

Remark 1. In practice the size of s is chosen so that computing discrete loga-
rithms in Gp takes time O(2λ).

We note that this definition differs slightly from the original definition of
[CL15]. First, we impose F to be of prime order p as our agenda is to use the
instantiation with class groups of quadratic fields in order to have Z/pZ as the
message space. This means that the generic constructions do not encompass the
schemes built from Paillier where the message space is Z/NZ, with N = pq. If it
is possible to use N = pq as the order of F , the proofs have to rely on factoring
assumptions to take care of the non-zero non-invertible elements of Z/NZ. As
a consequence, this restriction simplifies the proofs, since an element of Z/pZ is
invertible if and only if it is non-zero.

Another modification is outputing the element gp that generates Gp to define
the HSM assumption below, and to set g = f · gp. In practice, the instantiation
of [CL15] with class groups of quadratic fields already computes such an element
gp and thus defines the generator g of G. Note that this explicit definition of g is
only needed for the proof of Theorem 4 for the relation between the HSM and the
DDH assumptions (cf. Def. 7, 8 and 9 of Aux. Material II respectively). A last
modification is that Gen only outputs an upper bound s̃ of s and not n. This is
more accurate than the original definition as n is not used in the applications and
actually, the instantiation does not compute n as it is a class number that requires
sub-exponential time (with complexity O(L1/2)) to be computed. This implies
that in the following assumptions, exponents are sampled from distributions
statistically close to uniform distributions. We discuss this in Remark 2.

Now, following Gjøsteen’s terminology ([Gjø05]) we define a hard subgroup
membership (HSM) problem, in order to somehow generalise Paillier’s DCR as-
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sumption: in Def. 6, one has G = F ×Gp. The assumption is that it is hard to
distinguish the elements of Gp in G.

Definition 7 (HSM assumption). Let GenGroup = (Gen,Solve) be a generator
for DDH groups with an easy DL subgroup. Using the notations introduced in
Def 6, the HSM assumption requires that the HSM problem is hard in G even
with access to the Solve algorithm. Let D (resp. Dp) be a distribution over the
integers such that the distribution {gx, x ←↩ D} (resp. {gxp , x ←↩ Dp}) is at

distance less than 2−λ from the uniform distribution in G (resp. in Gp). Let A
be an adversary for the HSM problem, its advantage is defined as:

AdvHSMA (λ, µ) =

∣∣∣∣2 · Pr
[
b = b? : (p, s̃, g, f, gp, G, F,G

p)← Gen(1λ, 1µ),

x←↩ D, x′ ←↩ Dp, b←↩ {0, 1}, Z0 = gx, Z1 = gx
′

p ,

b? ← A(p, s̃, g, f, gp, G, F,G
p, Zb,Solve(.))

]
− 1

∣∣∣∣
The HSM problem is said to be hard in G if for all probabilistic polynomial time
attacker A, AdvHSMA (λ, µ) is negligible.

Remark 2. In contrast to the traditional formulation of DDH or DCR, we can
not sample uniformly elements in Gp or G either by a direct construction or
using the generators and sampling uniformly exponents modulo the group order
as the order s (resp. ps) of Gp (resp. of G) is unknown. As a result we use the
upper bound s̃ of s in order to instantiate the distributions Dp and D of the
above definitions. Choosing distributions D and Dp with induced distributions
statistically close to the uniform distributions in G and Gp allows for more
flexibility in our upcoming proofs, which is of interest, since, as proved in Aux.
Material III, the DDH and HSM assumptions do not depend on the choice of the
distribution.

In practice, we will instantiate Dp and D thanks to the following lemma, whose
proof is in Aux. Material III. We use folded gaussians as they provide better
efficiency than folded uniforms, and allow us to apply Lemma 3 in our security
proofs.

Lemma 4. The distributions Dp and D can be implemented from the output of
Gen as follows:

1. One can choose D to be the uniform distribution on {0, . . . , 2λ−2 · s̃ · p}.
2. Alternatively, choosing D = DZ,σ with σ = s̃ ·p ·

√
λ allows for more efficient

constructions as the sampled elements will tend to be smaller.
3. Likewise, one can choose Dp = DZ,σ′ with σ′ = s̃ ·

√
λ

4. One can also, less efficiently, define Dp = D.
5. Conversely, one can also define D from Dp and the uniform distribution

modulo p: the distribution {gxp · fa, x←↩ Dp, a←↩ Zp} is statistically close to
the uniform distribution in G.

11



Finally, we introduce a new assumption called DDH-f that we prove to be
weaker than DDH. The security of our first IPFE relies on this assumption.
Roughly speaking, it means that it is hard to distinguish the distributions

{(gx, gy, gxy), x, y ←↩ D} and {(gx, gy, gxyfu), x, y ←↩ D, u←↩ Z/pZ}.

In other words, as g = f · gp, we have on the left, a Diffie-Hellman triplet in
G, and on the right, a triplet whose components in Gp form a Diffie-Hellman
triplet, and whose components in F form a random triplet: (fx, fy, fxy+u) (as
noted in the previous remark, D induces distributions statistically close to the
uniform in Gp and F ).

We will see in the next subsection that the security of the CL encryption
scheme is actually equivalent to this assumption and that this assumption is
weaker than the DDH assumption and the HSM assumption (see Theorem 4).
As a side effect, using this assumption will simplify the forthcoming proofs as it
is tightly related to the ind-cpa security of the underlying encryption scheme.

We note that DDH-f can be seen as an instance of the Extended-DDH
(EDDH) problem as defined by Hemenway and Ostrovsky in [HO12]. They
demonstrate that QR and DCR imply two different instantiations of EDDH, our
implication from HSM to DDH-f somewhat generalises their proof since DDH-f
is a more generic assumption than either of the hardness assumptions obtained
from their reductions.

Definition 8 (DDH-f assumption). Let GenGroup = (Gen,Solve) be a gener-
ator for DDH groups with an easy DL subgroup. Using the notations of Def 6,
the DDH-f assumption requires that the DDH-f problem is hard in G even with
access to the Solve algorithm. Let D be a distribution over the integers such that
the distribution {gx, x←↩ D} is at distance less than 2−λ from the uniform dis-
tribution in G. Let A be an adversary for the DDH-f problem, its advantage is
defined as:

AdvDDH-f
A (λ, µ) =

∣∣∣∣2 · Pr
[
b = b? : (p, s̃, g, f, gp, G, F,G

p)← Gen(1λ, 1µ),

x, y ←↩ D, u←↩ Z/pZ, X = gx, Y = gy, b←↩ {0, 1}, Z0 = gxy, Z1 = gxyfu,

b? ← A(p, s̃, g, f, gp, G, F,G
p, X, Y, Zb,Solve(.))

]
− 1

∣∣∣∣.
The DDH-f problem is said to be hard in G if for all probabilistic polynomial
time attacker A, AdvDDH-f

A (λ, µ) is negligible.

3.2 Some variants of the CL generic encryption scheme

The original Castagnos-Laguillaumie encryption scheme. Castagnos and
Laguillaumie put forth in [CL15] a generic construction for a linearly homomor-
phic encryption scheme over Z/pZ based on a cyclic group with a subgroup of
order p where the DL problem is easy, as given by the GenGroup generator of
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Def. 6. Its description is provided in Fig. 1 of Aux. Material II. They prove that
this scheme is ind-cpa under the DDH assumption as defined in Def. 9 of Aux.
Material II. We demonstrate below that we can be more precise and prove that
the security of this scheme is equivalent to the DDH-f assumption of Def. 8: the
key idea is to perform a one-time pad in F , instead of in the whole group G.

Theorem 1. The CL encryption scheme is semantically secure under chosen
plaintext attacks (ind-cpa) if and only if the DDH-f assumption holds.

Proof (sketch). Suppose that the DDH-f assumption holds. Let us consider the
ind-cpa game, with a public key, h = gx, x ←↩ D, and a challenge ciphertext
(c1, c2) = (gr, fmβhr) with r ←↩ D and β ←↩ {0, 1}, m0,m1 ∈ Z/pZ. We can
replace (h, c1, h

r) = (gx, gr, gxr) by (gx, gr, gxrfu) = (gx, gr, hrfu) with u ←↩
Z/pZ. As a result c2 = hrfu+mβ . For the adversary, the value of r modulo n
is fixed by c1 = gr as g is a generator, so the value of hr is fixed. As a result
from c2 an unbounded adversary can infer u+mβ ∈ Z/pZ but as u is uniformly
distributed in Z/pZ, he will have no information on β.

Conversely, we construct an ind-cpa adversary from a distinguisher for the
DDH-f problem. Choose m0 ∈ Zp and m1 := m0 + u with u←↩ Z/pZ. From the
public key and the challenge ciphertext, construct the triplet

(h, c1, c2/f
m0) = (gx, gr, gxrfmβ−m0).

This gives a DH triplet if and only β = 0 and the exponent of f is uniformly
distributed in Z/pZ if and only β = 1. As a result, one can use the output of a
distinguisher for the DDH-f problem to win the ind-cpa game. ut

A linearly homomorphic encryption scheme from HSM. As noted in
the introduction of this section, the CL scheme was inspired by the scheme of
[BCP03]. We here present a slight modification to this scheme so that it relies
on the HSM assumption of Def. 7 in order to somewhat generalise the approach
of the Camenisch and Shoup scheme of [CS03]. This ind-cpa scheme will be the
basis of the functional encryption scheme for inner product of Section 5.

Setting the parameters. We use the output (p, s̃, g, f, gp, G, F,G
p) of the Gen-

Group generator of Def. 6. We ignore the generator g (which is useless here).
Following Lemma 4, Item 3, we require σ′ > s̃

√
λ to ensure that {grp, r ←↩ DZ,σ′}

is at distance less than 2−λ from the uniform distribution in Gp. The plaintext
space is Z/pZ, where p is a µ bit prime, with µ ≥ λ. The scheme is depicted
in Fig. 2a and the standard proof of the following theorem is provided in Aux.
Material IV for completeness.

Theorem 2. The scheme described in Fig. 2a is semantically secure under cho-
sen plaintext attacks (ind-cpa) under the HSM assumption.
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Algorithm KeyGen(1λ, 1µ)

1. (p, s̃, f, gp, G, F,G
p)← Gen(1λ, 1µ)

2. Pick x←↩ DZ,σ′ and h = gxp
3. Set pk = (s̃, gp, f, p, h)
4. Set sk = x
5. Return (pk, sk)

Algorithm Encrypt(pk,m)

1. Pick r ←↩ DZ,σ′

2. Return (grp, f
mhr)

Algorithm Decrypt(sk, (c1, c2))

1. Compute M = c2/c
x
1

2. Return Solve(M)

(a) HSM-CL

Algorithm KeyGen(1λ, 1µ)

1. (p, s̃, g, f,G, F )← Gen(1λ, 1µ)
2. Pick x, y, α←↩ DZ,σ

3. Compute h = gα

4. Compute η = gxhy

5. Set pk = (g, h, η)
6. Set sk = (x, y)
7. Return (pk, sk)

Algorithm Encrypt(pk,m)

1. Pick r ←↩ DZ,σ

2. Return (gr, hr, ηrfm)

Algorithm Decrypt(sk, (c1, c2, c3))

1. Compute M = c3/(c
x
1c
y
2)

2. Return Solve(M)

(b) Modified CL

Fig. 2: Description of our variants of the CL encryption

Enhanced variant of the CL encryption scheme. We here put forth an
enhanced version of the CL homomorphic encryption scheme. We modify the
original CL scheme by adding a key à la Cramer-Shoup (cf. [CS98]). The security
of this scheme also relies on the DDH-f assumption. This ind-cpa scheme will be
the basis of the functional encryption scheme for inner product of Section 4.

This modification to the CL encryption scheme incurs some challenges: let us
consider the vanilla Elgamal scheme defined over a cyclic group of prime order
q, generated by an element g. The modification leading to the Cramer-Shoup
encryption scheme uses a second generator h and creates a key η = gxhy where
x, y ←↩ Z/qZ. Then ηr, with r ←↩ Z/qZ is used to mask the plaintext message.
In the proof under the DDH assumption, one replaces the DH triplet (h, gr, hr)
built from the public key and the ciphertext by a random triplet and proves
that the mask ηr is then uniformly distributed and acts as a one-time pad for
the plaintext, even with the knowledge of η. However, the triplet (h, gr, hr) is
indeed a DH triplet, because if h is a generator, h = gα with α ∈ (Z/qZ)∗. As
a result, α is almost uniformly distributed in Z/qZ (an element α ←↩ Z/qZ is
such that α 6= 0 with overwhelming probability if q is large). The same happens
when considering a composite group order N ′ where N ′ is an RSA integer as in
[Luc02], for instance, under the factoring assumption.

In our case, we use the GenGroup generator of Def. 6, i.e. a cyclic group G
of composite order n = ps generated by g, where s is unknown and may have
some small factors. As a result, a random element h = gα, with α ←↩ DZ,σ
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may not be a generator with constant probability. Consequently, the padding
ηr where r ←↩ DZ,σ and η = gxhy, with x, y ←↩ DZ,σ may not be uniformly
distributed in G knowing η. However, we can still adapt the proof: we only need
ηr to act as a one-time pad in the subgroup F = 〈f〉 of G of order p, since our
plaintext message m ∈ Z/pZ is encoded as fm ∈ F . Supposing that p is a µ-bit
prime, with µ ≥ λ is sufficient to prove this. As the exponents are taken close to
uniform modulo n and n = p · s with gcd(p, s) = 1, they behave independently
and close to uniform modulo p and modulo s. As we are interested only in what
happens modulo p, we can ignore the behavior modulo s and get ind-cpa security
under the DDH-f assumption. Note that the use of this assumption instead of
the stronger DDH assumption greatly simplifies the proof.

Setting the parameters. We use the output (p, s̃, g, f, gp, G, F,G
p) of the gener-

ator GenGroup of Def. 6. As in the original CL scheme (cf. Aux. Material II),
we ignore the group Gp and its generator (which are useless here). Following
Lemma 4, Item 2, we require σ > ps̃

√
λ to ensure that {gr, r ←↩ DZ,σ} is at

distance less than 2−λ from the uniform distribution in G. The plaintext space
is Z/pZ, where p is a µ bit prime, with µ ≥ λ. The scheme is depicted in Fig. 2b.

Theorem 3. The scheme described in Fig. 2b is semantically secure under cho-
sen plaintext attacks (ind-cpa) under the DDH-f assumption.

The proof is provided in Aux. Material V for completeness.

3.3 Relations between the assumptions

One can establish direct reductions from the underlying problems of the DDH,
DDH-f and HSM assumptions. However it is somewhat easier to use intermediate
results on the ind-cpa security of the schemes defined in the previous subsection
to demonstrate these reductions.

We proved in Theorem 1 that the original CL cryptosystem is ind-cpa if
and only if the DDH-f assumption holds. In [CL15], it was proven that this
scheme is ind-cpa under the DDH assumption. As a result, DDH-f is a weaker
assumption than DDH. Furthermore, it is easy to see that if the HSM scheme
of Fig. 2a is ind-cpa then the original CL cryptosystem is ind-cpa: from a public
key h = gxp , x ←↩ DZ,σ′ and a ciphertext c = (c1, c2) = (grp, f

m · hr), r ←↩ DZ,σ′

for the HSM scheme, one can chose a, b ←↩ Z/pZ and construct h′ = h · fa,
and the ciphertext c′ = (c′1, c

′
2) = (c1 · f b, c2 · fab). According to Lemma 4,

Item 5, h′ and c′1 are statistically indistinguishable from the uniform distribution
in G. Furthermore, h′ = gxpf

a = gα where α is defined modulo n from the
Chinese remainder theorem, such that α ≡ x (mod s) and α ≡ a (mod p).
Likewise, c′1 = grpf

b = gβ for some β defined equivalently. Finally, one has

c′2/f
m = gxrp f

ab = gαβ mod s
p fαβ mod p = gαβ . As a result, (h′, c′1, c

′
2/f

m) is a
DH triplet in G, so h′, c′ are a public key and a ciphertext for m for the CL
cryptosystem. As a result, an ind-cpa attacker against the cryptosystem based
on HSM can be built from an ind-cpa attacker against CL. Now, if the HSM
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assumption holds, from Theorem 2, the HSM scheme is ind-cpa, so the CL scheme
is also ind-cpa and the DDH-f assumption holds.

We can sum up these results with the following theorem (see also Fig. 1).

Theorem 4. The DDH assumption implies the DDH-f assumption. Further-
more, the HSM assumption implies the DDH-f assumption.

4 Inner product FE relying on the DDH-f assumption

In this section, we build an IPFE scheme from the DDH-f assumption (cf. Def. 8).
As proven in Theorem 4, this assumption is weaker than both the DDH and
the HSM assumptions and yields simple proofs as it is suited to deal with the
encoding of the message into a subgroup of prime order p. We use the formalism
of a cyclic group with an easy DL subgroup. Our approach is based on the
enhanced variant of the CL scheme, described in Fig. 2b. The resulting scheme
over Z/pZ can be viewed as an adaptation of the DDH scheme of [ALS16] to
this setting, thereby removing the restriction on the size of the inner product.

The proof technique somewhat differs from the general approach of [ALS16].
We start from the ind-cpa proof of the enhanced variant of CL and then deal
with the information provided by the key queries. Instead of computing the
global distribution of the keys given this information, in order to make the proof
go through, we have to carefully simplify the description of the adversary’s view.
A technical point is that even if we are only interested in what happens modulo
p, as the plaintexts are defined in (Z/pZ)`, we cannot restrict the adversary’s
view modulo p: this could potentially result in a loss of information, as the key
queries are defined in Z.

We first present an FE scheme for inner products over Z (Section 4.1) and
then consider a scheme for inner products over Z/pZ (Section 4.2).

4.1 DDH-f-based FE for inner product over Z

Setting the parameters. As in the ind-cpa scheme of Fig. 2b, we use the output
(p, s̃, g, f, gp, G, F,G

p) of the GenGroup generator of Def. 6. We ignore the group
Gp and its generator gp (which are useless here). We require that p is a µ-bit
prime, with µ ≥ λ.

From Lemma 4, Item 2, choosing σ > s̃ · p ·
√
λ suffices to ensure that the

distribution {gx, x ← DZ,σ} is at distance less than 2−λ from the uniform dis-

tribution in G, however for security we must take a larger σ > s̃ · p3/2 ·
√

2λ
(cf. proof of Theorem 5). The Encrypt algorithm operates on plaintext messages
y ∈ Z` and the key derivation algorithm derives keys from vectors x ∈ Z`. Norm
bounds X and Y are chosen such that X,Y < (p/2`)1/2 so as to ensure decryp-
tion correctness. Indeed key vectors x and message vectors y are assumed to
be of bounded norm ||x||∞ ≤ X and ||y||∞ ≤ Y , respectively. The decryption
algorithm recovers 〈x,y〉 mod p (using a centered modulus), which is exactly
〈x,y〉 over the integers, thanks to the Cauchy–Schwarz inequality and the norm
bounds, since X · Y < p/2`.
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Construction. Fig. 3 depicts the functional encryption scheme for inner products
in Z which is secure under the DDH-f assumption (cf. Def. 8).

Algorithm Setup(1λ, 1µ, 1`)

1. (p, s̃, g, f,G, F )← Gen(1λ, 1µ)
2. Pick α←↩ DZ,σ

3. Compute h = gα

4. Pick s, t←↩ DZ`,σ

5. For 1 ≤ i ≤ ` :
6. Compute hi = gsihti

7. Return msk = (s, t)
and mpk = (s̃, g, h, f, p, {hi}i∈[`])

Algorithm KeyDer(msk,x)

1. Compute in Z:
skx = (sx, tx) = (〈x, s〉, 〈x, t〉)

2. Return skx = (sx, tx)

Algorithm Encrypt(mpk,y)

1. Pick r ←↩ DZ,σ

2. Set C = gr and D = hr

3. For 1 ≤ i ≤ ` :
4. Compute Ei = fyihri
5. Return Cy = (C,D, {Ei}i∈[`])

Algorithm Decrypt(mpk,Cy, skx)

1. Compute Cx = (
∏
i∈[`]E

xi
i )/(Csx ·Dtx)

2. sol = Solve(Cx)
3. If sol ≥ p/2 :
4. Return (sol− p)
5. Else:
6. Return sol

Fig. 3: FE scheme for inner product over Z under the DDH-f assumption.

Correctness. We have∏
i∈[`]

Exii /(C
sx ·Dtx) =

∏
i∈[`]

(fyi(gsi · hti)r)xi/((gr)〈x,s〉 · (hr)〈x,t〉)

= (f
∑`
i=1 yixi)(gr

∑`
i=1 sixi)(hr

∑`
i=1 tixi)/(gr〈x,s〉 · hr〈x,t〉)

= f 〈x,y〉.

Applying the Solve algorithm to Cx yields 〈x,y〉 mod p, which, thanks to the
norm bounds, is either 〈x,y〉 or 〈x,y〉+ p. Since the absolute value of 〈x,y〉 is
lower than p/2, if sol < p/2 then 〈x,y〉 = sol in Z, otherwise 〈x,y〉 = (sol− p).

Theorem 5. Under the DDH-f assumption, the functional encryption scheme
for inner products over Z of Fig. 3 provides full security (ind-fe-cpa).

Proof. The proof proceeds as a sequence of games, starting in Game 0 with
the real ind-fe-cpa game and ending in a game where the ciphertext statistically
hides the random bit β chosen by the challenger from the adversary’s point of
view. The beginning of the proof is similar to the proof of Theorem 3 on ind-cpa
security. Then we take into account the fact that the adversary A has access to
a key derivation oracle. For each Game i, we denote Si the event β = β′.
Game 0 ⇒ Game 1: In Game 1 the challenger, who has access to the master
secret key msk, computes the ciphertext using msk instead of mpk. The resulting
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Game 1

1. mpk,msk ← Setup(1λ, 1µ, 1`)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ

5. Compute C = gr, D = hr

6. For 1 ≤ i ≤ `:
7. Compute Ei = fyβ,iCsiDti

8. Cy = (C,D, {Ei}i∈[`])
9. β′ ← AKeyDer(msk,·)(Cy)

10. Return (β = β′)

Game 2

1. mpk,msk ← Setup(1λ, 1µ, 1`)
2. y0,y1 ← AKeyDer(msk,·)(mpk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ and u←↩ Z/pZ
5. Compute C = gr, D = hrfu

6. For 1 ≤ i ≤ `:
7. Compute Ei = fyβ,iCsiDti

8. Cy = (C,D, {Ei}i∈[`])
9. β′ ← AKeyDer(msk,·)(Cy)

10. Return (β = β′)

ciphertext has exactly the same distribution therefore:

Pr[S0] = Pr[S1].

Game 1 ⇒ Game 2: In Game 1, the tuple (h = gα, C = gr, D = hr = gαr),
where α, r ←↩ DZ,σ, is a DH triplet since choosing σ > p3/2 · s̃ ·

√
2λ > p · s̃ ·

√
λ

ensures that the induced distribution is at distance less than 2−λ of the uniform
distribution in G. In Game 2, the challenger samples a random u ←↩ Z/pZ
and computes D = hrfu. Both games are indistinguishable under the DDH-f
assumption:

|Pr[S2]− Pr[S1]| = AdvDDH-f
B (λ, µ).

Now in Game 2 the challenge ciphertext is:

(C = gr, D = hrfu, {Ei = fyβ,i · Csi ·Dti = fyβ,i+utihri }i∈[`]).

Lemma 5. In Game 2 the ciphertext (C,D,E1, . . . , E`) ∈ G`+2 statistically
hides β such that |Pr[S2]− 1/2| ≤ 2−λ.

Intuition. Following the proof methodology of [ALS16], we first delimit the
information that is leaked in the challenge ciphertext by only considering the
dimension in which both potential challenge ciphertexts differ. Indeed, denoting
zβ = yβ+u·t mod p, then projecting zβ onto the subspace generated by y0−y1

encapsulates all the information revealed by the challenge ciphertext.
Next, we consider the distribution of the projection of the secret key component
t on the subspace generated by y0 − y1, conditionally on the adversary’s view
(i.e. on the information leaked by private key queries and the public key). This
amounts to a distribution over a one dimensional lattice Λ0. We then reduce
this distribution modulo a sub-lattice Λ′0 such that Λ0/Λ

′
0 ' Z/nZ, and using

Lemma 3 we demonstrate that for an appropriate choice of the standard devia-
tion σ (which defines DZ`,σ, from which t is sampled), the projection of t on the
subspace generated by y0 − y1 is statistically close to the uniform distribution
over Z/nZ. As a result, 〈y, t〉 modulo p is also close to the uniform distribution
over Z/pZ, and thus yβ (and therefore β) is statistically hidden in zβ .
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Proof (Lemma 5). The ciphertext component C = gr information theoretically
reveals r mod n. Furthermore, ∀i ∈ [`], Ei information theoretically reveals
yβ,i+uti mod p as the value of hri is fixed from C and the public key. Therefore
the challenge ciphertext information theoretically reveals zβ = yβ+u ·t mod p.

Throughout the rest of this proof we demonstrate that yβ is statistically
hidden mod p, thanks to the distribution of t conditioned on A’s view.

We denote xi A’s ith query to the key derivation oracle. It must hold that,
for all i, 〈xi,y0〉 = 〈xi,y1〉. Let d 6= 0 be the gcd of the coefficients of y1 − y0

and define
y = (y1, . . . , y`) = 1/d · (y1 − y0) ∈ Z`.

It holds that 〈xi,y〉 = 0 over Z for all i. Therefore if we consider the lattice

y⊥ = {x ∈ Z` : 〈x,y〉 = 0},

all the queries xi must belong to that lattice. W.l.o.g., we assume the n0 first
coordinates of y are zero (for some n0), and all remaining entries are non-zero.
Further, the rows of the following matrix form a basis of y⊥:

Xtop =


In0

−yn0+2 yn0+1

−yn0+3 yn0+2

. . .
. . .

−y` y`−1

 ∈ Z(`−1)×`.

We define the matrix:

X =

[
Xtop

yT

]
∈ Z`×`. (1)

We claim that X is invertible mod p. The proof – detailed in Aux. Material VI
– follows the same reasoning as [ALS16, Proof of Theorem 2].

Now since X is invertible over Z/pZ and does not depend on β ∈ {0, 1}, it
suffices to show that X ·zβ ∈ (Z/pZ)` is statistically independent of β. Moreover
by construction Xtop · y0 = Xtop · y1 (over the integers), so Xtop · zβ is clearly
independent of β and we only need to worry about the last row of X · zβ mod p,
i.e. the information about β leaked by the challenge ciphertext is contained in:

〈y, zβ〉 = 〈y,yβ〉+ u · 〈y, t〉 mod p. (2)

We hereafter prove that, from A’s perspective, 〈y, t〉 follows a distribution statis-
tically close to the uniform distribution mod p, thus proving that β is statistically
hidden: since u is sampled uniformly at random from Z/pZ, u 6= 0 mod p with
all but negligible probability as p is a µ-bit prime, with µ ≥ λ. To this end, we
analyse the information that the adversary gains on t mod n. From this, we will
prove that the distribution of 〈y, t〉 is close to uniform mod n, and thus, mod p.

As in the proof of Theorem 3, the adversary learns z = s + αt mod n from
the public key as ∀i ∈ [`], hi = gsihti . Knowing z, the joint distribution of (s, t)
mod n is:

(z − αt mod n, t mod n) where t←↩ DZ`,σ.
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As a result, knowing z does not give more information on t mod n to A.

One may assume that through its secret key queries, the information learned
by A is completely determined by Xtop ·s and Xtop ·t ∈ Z(`−1), as all the queried
vectors xi can be obtained as linear combinations of the rows of Xtop.

The value of Xtop ·s does not give A more information on t mod n than what
he obtains from Xtop ·t. Indeed the remainder of the Euclidean division of Xtop ·s
by n can be deduced from z and Xtop · t; while the quotient is independent of
t mod n and Xtop · t, as s and t are sampled independently and z only brings
a relation modulo n. It is thus sufficient to analyse the distribution of t mod n
knowing Xtop · t.

Let t0 ∈ Z` be an arbitrary vector such that Xtop · t0 = Xtop · t. Knowing
Xtop · t, the distribution of t is t0 +DΛ,σ,−t0 where Λ = {t ∈ Z` : Xtop · t = 0}.
This lattice has dimension 1 and contains y · Z. In fact, as gcd(y1, . . . , y`) = 1,
one has y · Z = Λ (there exits y′ ∈ Z` such that Λ = y′ · Z and y = αy′ so
α must divide gcd(y1, . . . , y`) = 1). Therefore, applying Lemma 2, we see that
conditioned on Xtop · t, 〈y, t〉 is distributed according to

〈y, t0〉+D||y||22Z,||y||2σ,−〈t0,y〉.

Now consider the distribution obtained by reducing D||y||22Z,||y||2σ,−〈t0,y〉 over

Λ0 = ||y||22 ·Z modulo the sublattice Λ′0 = n · ||y||22 ·Z. In order to apply Lemma 3
we need ||y||2·σ > ηε(Λ

′
0), which – applying a bound on the smoothing parameter

from [MR07] for ε = 2−λ−1 – is guaranteed by choosing

||y||2 · σ > λ1(Λ′0) ·
√
λ.

Moreover since λ1(Λ′0) = n · ||y||22, we require

||y||2 · σ > p · s̃ · ||y||22 ·
√
λ,

thus

σ > p · s̃ · ||y||2 ·
√
λ.

Now from the norm bounds on y0 and y1 it holds that ||y||2 <
√

2p, so
choosing

σ > p3/2 · s̃ ·
√

2λ

suffices to ensure that from A′s view, 〈y, t〉 modulo n is within distance 2−λ

from the uniform distribution over Λ0/Λ
′
0 ' Z/nZ. As a result, 〈y, t〉 modulo p

is also close to the uniform distribution over Z/pZ.

We have therefore demonstrated that with overwhelming probability the term
〈y,yβ〉 in eq. (2) is statistically hidden modulo p and |Pr[S2]− 1/2| ≤ 2−λ.

Combining the different transition probabilities provides a bound for A’s advan-
tage, thus concluding the proof: Advind-fe-cpaA (λ, µ) ≤ AdvDDH-f

B (λ, µ) + 2−λ. ut
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4.2 DDH-f-based FE for inner product over Z/pZ

As in the LWE and Paillier-based IPFE modulo p put forth in [ALS16], the main
problem encountered here is that private key queries are performed over the
integers. An adversary may therefore query keys for vectors that are linearly
dependant over (Z/pZ)` but independent over Z`. To solve this issue we require
as in [ALS16] that the authority distributing private keys keeps track of all
previously revealed private keys.
Setting the parameters. As in the previous construction, we use the output
(p, s̃, f, gp, G, F,G

p) of the GenGroup generator of Def. 6, with p a µ bit prime,
and with µ ≥ λ. We sample the coordinates of the secret key from DZ`,σ. Choos-

ing σ > s̃ · p` ·
√
λ · (
√
`)`−1 suffices for security to hold (cf. proof of Theorem 6),

and ensures the distribution {gx, x ← DZ,σ} is at distance less than 2−λ from
the uniform distribution in G (cf. Lemma 4, Item 2). The Encrypt algorithm
encrypts plaintexts y ∈ (Z/pZ)` and the key derivation algorithm derives keys
from vectors x ∈ (Z/pZ)`.
Construction. Algorithms Setup and Encrypt proceed exactly as in the con-
struction for inner products over Z under DDH-f (cf. Fig. 3). Algorithms KeyDer
and Decrypt, which differ from those of the previous construction, are defined in
Fig. 4. Again, correctness follows from the linearity of the inner product.

Algorithm KeyDer(msk,x, st)

Answering the jth key request skx where x ∈ (Z/pZ)`. At any time the internal state
st contains at most ` tuples (xi,xi, zxi) where (xi, zxi) are previously queried secret
keys and the xi’s are corresponding vectors.

1. If x is linearly independent of the xi’s modulo p :
2. Set x ∈ {0, . . . , p− 1}` with x = x mod p
3. zx = (sx, tx) = (〈x, s〉, 〈x, t〉) ∈ Z× Z
4. st = (st, (x,x, zx))
5. If ∃{ki}1≤i≤j−1 ∈ Zj−1 s.t. x =

∑j−1
i=1 kixi ∈ (Z/pZ)` then:

6. x =
∑j−1
i=1 kixi ∈ Z`

7. zx = (
∑j−1
i=1 kisxi ,

∑j−1
i=1 kitxi) ∈ Z× Z

8. Return skx = (x, zx)

Algorithm Decrypt(mpk,Cy, skx)

1. Parse (x = (x1, . . . , x`); zx = (sx, tx)) = skx
2. Compute Cx = (

∏
i∈[`]E

xi
i )/(Csx ·Dtx)

3. Return Solve(Cx)

Fig. 4: Stateful FE scheme for inner products over Z/pZ from DDH-f.

Theorem 6. Under the DDH-f assumption, the functional encryption scheme
for inner products over Z/pZ of Fig. 4 provides full security (ind-fe-cpa).
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Proof. The proof proceeds similarly to that of Theorem 5, only we must define
the matrix Xtop differently, as we can no longer guarantee that it is invertible
modulo p. So we here follow the same steps as in the previous proof up until the
definition of Game 2. The only difference being that the adversary A queries the
stateful key derivation algorithm. We denote Game i′ the variant of Game i in
which the key derivation algorithm is stateful. From the proof of Theorem 5, it
holds that |Pr[S′2]− Pr[S′0]| = AdvDDH-f

B (λ, µ).

As in the original Game 2, here in Game 2′ the challenge ciphertext infor-
mation theoretically reveals zβ = yβ + u · t mod p

We define y = (y1, . . . , y`) = y1 − y0 ∈ (Z/pZ)`; and, assuming A has
performed j private key queries, for 1 ≤ i ≤ j, we denote xi ∈ (Z/pZ)` the
vectors for which keys have been derived.

We want to demonstrate that from A’s view, the bit β is statistically hidden
in Game 2′. However we cannot use the same matrix Xtop as in the proof of
Theorem 5; indeed, if we define X as in eq. (1) we cannot guarantee that X is
invertible modulo p, since det(XXT ) could be a multiple of p. Therefore, so as
to ensure that the queried vectors xi do not in some way depend on β, we prove
via induction that after the j first private key queries (where j ∈ {0, . . . , `− 1}),
A’s view remains statistically independent of β, thus proving that the challenge
ciphertext in Game 2′ statistically hides β such that |Pr[S′2]− 1/2| ≤ 2−λ. The
induction proceeds on the value of j.

Recall that Game 2 and Game 2′ are identical but for the key derivation algo-
rithm. Therefore if the adversary can make no calls to its key derivation oracle,
the indistinguishability of ciphertexts in Game 2′ follows immediately from that
in Game 2, demonstrated in the proof of Theorem 5, thus the induction hy-
pothesis holds for j = 0. Now consider j ∈ {0, . . . , ` − 1}. From the induction
hypothesis one may assume that at this point the state st = {(xi,xi, zxi)}i∈[j]
is independent of β. Indeed if A’s view after j − 1 requests is independent of β
then the jth request performed by A must be so.

W.l.o.g. one may assume that the key requests xi performed by the adversary
are linearly independent. This implies that the xi’s are linearly independent
modulo p and generate a subspace of

y⊥p = {x ∈ (Z/pZ)` : 〈x,y〉 = 0 mod p}.

The set {xi}i∈[j] can be extended to a basis {xi}1≤i≤`−1 of y⊥p. We define

Xtop ∈ Z(`−1)×` to be the matrix whose rows are the vectors xi for i ∈ [` − 1].
Let x′ ∈ (Z/pZ)` be a vector chosen deterministically, x′ /∈ y⊥p, such that the
adversary A can also easily compute x′. We define xbot to be the canonical lift
of x′ over Z, and X as:

X =

[
Xtop

xTbot

]
∈ Z`×`.

The matrix X is invertible modulo p, statistically independent of β by induction
and by construction, and computable by A, thus we need only prove that X ·zβ
is statistically independent of β. And since Xtop · (y1−y0) = 0 mod p, we need
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only consider

〈xbot, zβ〉 = 〈xbot,yβ〉+ u · 〈xbot, t〉 mod p.

We hereafter prove that, from A’s perspective, 〈xbot, t〉 follows a distribution
statistically close to the uniform distribution modulo p, thus proving that β is
statistically hidden: since u is sampled uniformly at random from Z/pZ, u 6= 0
mod p with all but negligible probability as p is a µ bit prime, with µ ≥ λ. To this
end, we analyse the information gained by A on t mod n. From this, we prove
that t mod p follows a distribution statistically close to the uniform distribution
over y ·Z/pZ, thus proving that 〈xbot, t〉 follows a distribution statistically close
to uniform modulo p.

As in the proof of Theorem 3, the adversary learns z := s + αt modulo n
from the public key as ∀i ∈ [`], hi = gsihti . Knowing z, the joint distribution of
(s, t) modulo n is (z − αt mod n, t mod n) where t←↩ DZ`,σ.

As a result, knowing z does not giveAmore information on t mod n. Then, as
in the proof of Theorem 5, private key queries give the adversary the knowledge
of Xtop · s and Xtop · t in Z`−1. The value of Xtop · s does not give the adversary
more information on t modulo n than what he obtains from Xtop · t. It is thus
sufficient to analyse the distribution of t modulo n knowing Xtop · t.

We define Λ = {x ∈ Z`|Xtop · x = 0 ∈ Z`}. This one dimensional lattice
can equivalently be defined as Λ = y′ · Z where y′ = γ · y mod p for some
γ ∈ (Z/pZ)∗. One should note that all the coefficients of y′ are co-prime (since
y′/ gcd(y′1, . . . , y

′
`) ∈ Λ).

Let t0 ∈ Z` be an arbitrary vector such that Xtop · t0 = Xtop · t. Knowing
Xtop · t, the distribution of t is t0 + DΛ,σ,−t0 . Now consider the distribution
obtained by reducing the distribution DΛ,σ,−t0 over Λ modulo the sublattice
Λ′ := n · Λ. We first bound ||y′||2 so as to bound λ1(Λ′). We can then apply
Lemma 3 by imposing a lower bound for σ.

Since Λ = y′ · Z, it holds that ||y′||2 = det(Λ). We define Λtop as the lattice
generated by the rows of Xtop, then applying results from [Mar03] and [Ngu91],
one obtains that

||y′||2 = det(Λ) ≤ det(Λtop).

We now apply Hadamard’s bound, which tells us that, since the coordinates of
each xi are smaller than p and since we assumed all requested xi’s are linearly
independent,

det(Λtop) ≤
`−1∏
i=1

||xi||2 ≤ (
√
`p)`−1.

Therefore ||y′||2 ≤ (
√
`p)`−1, this implies

λ1(Λ′) ≤ n · (
√
`p)`−1 < s̃ · p` · (

√
`)`−1.

From [MR07] we know that the smoothing parameter verifies

ηε(Λ
′) ≤

√
ln(2(1 + 1/ε))

π
· λ1(Λ′).
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Thus for ε = 2−λ−1, we have ηε(Λ
′) ≤ s̃ · p` ·

√
λ · (
√
`)`−1. Therefore setting

σ > s̃ · p` ·
√
λ · (
√
`)`−1

and applying Lemma 3 ensures that the distribution DΛ,σ,−t0 mod Λ′, and
therefore that of t mod n is within distance 2−λ from the uniform distribu-
tion over Λ/Λ′ ' y′ · Z/nZ. This entails that t mod p is within distance 2−λ

from the uniform distribution over y′ ·Z/pZ ' y ·Z/pZ since y′ = γ · y mod p
for some γ ∈ (Z/pZ)∗.

Since by construction 〈xbot,y〉 6= 0 mod p, we get that 〈xbot, t〉 modulo p is
statistically close to the uniform distribution over Z/pZ. Moreover, with over-
whelming probability u 6= 0 mod p, so u · 〈xbot, t〉 statistically hides 〈xbot,yβ〉
which implies that 〈xbot, zβ〉 does not carry significant information about β, thus
concluding the proof. ut

5 Inner product FE relying on the HSM assumption

We here build IPFE schemes from the HSM assumption and the ind-cpa scheme
described in Fig. 2a, using the formalism of a cyclic group with an easy DL
subgroup. Our approach is inspired by, and somewhat generalises, the approach
of [ALS16] with Paillier’s DCR assumption (an RSA integer N plays the role of
p in this scheme so one should invoke the factoring assumption in our proof in
order to encompass this construction). We first present an FE scheme for inner
products over Z and then consider a scheme for inner products over Z/pZ.

5.1 HSM-based FE for inner product over Z

Setting the parameters. As in the ind-cpa scheme of Fig. 2a, we use the output
(p, s̃, g, f, gp, G, F,G

p) of the GenGroup generator of Def. 6. We ignore the gener-
ator g (which is useless here). We require that p is a µ bit prime, with µ ≥ λ. The
message space and decryption key space is Z`. As in Subsection 4.1 norm bounds
X,Y < (p/2`)1/2 are chosen to ensure decryption correctness. Key vectors x and
message vectors y are assumed to have an infinite norm bounded by X and Y
respectively. The decryption algorithm uses a centered modulus to recover 〈x,y〉
over Z. To guarantee the scheme’s security we sample the coordinates of the se-
cret key s = (s1, . . . , s`)

T ←↩ DZ`,σ with discrete Gaussian entries of standard

deviation σ >
√

2λ · p3/2 · s̃. Setting σ′ > s̃
√
λ ensures that {grp, r ←↩ DZ`,σ′} is

at distance less than 2−λ from the uniform distribution in Gp.

Construction. Fig. 5 depicts our functional encryption for inner products over
Z construction which relies on the HSM assumption. The proof of correctness is
similar to that of the DDH-f construction.
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Algorithm Setup(1λ, 1µ, 1`, X, Y )

1. (p, s̃, f, gp, G, F,G
p)← Gen(1λ, 1µ)

2. s = (s1, . . . , s`)
T ←↩ DZ`,σ

3. For 1 ≤ i ≤ ` :
4. Compute hi = gsip
5. Return mpk = (s̃, gp, f, p, {hi}i∈[`]),

msk = s.

Algorithm KeyDer(msk,x)

x = (x1, . . . , x`)
T ∈ Z`,

1. Compute skx = 〈s,x〉 over Z.
2. Return skx

Algorithm Encrypt(mpk,y)

y = (y1, . . . , y`)
T ∈ Z`,

1. Pick r ←↩ DZ,σ′

2. Compute C0 = grp
3. For 1 ≤ i ≤ ` :
4. Compute Ci = fyi · hri
5. Return Cy = (C0, C1, . . . , C`)

Algorithm Decrypt(mpk,Cy, skx)

1. Compute Cx =
(∏

i∈[`] C
xi
i

)
· C−skx0

2. sol← Solve(Cx)
3. If sol ≥ p/2 :
4. Return (sol− p)
5. Else return sol

Fig. 5: FE scheme for inner product over Z from the HSM assumption.

Theorem 7. Under the HSM assumption, the functional encryption scheme for
inner products over Z depicted in Fig. 5 provides full security (ind-fe-cpa).

Proof. The proof proceeds as a sequence of games, starting with the real ind-
fe-cpa game (Game 0) and ending in a game where the ciphertext statistically
hides the random bit β chosen by the challenger from the adversary’s point of
view. The beginning of the proof is similar to the proof of Theorem 2 on ind-cpa
security. Then we take into account the fact that the adversary A has access to
a key derivation oracle. For each Game i, we denote Si the event β = β′.

Game 1

1. mpk,msk ← Setup(1λ, 1µ, 1`, X, Y )
2. Parse (s1, . . . , s`)

T = msk
3. Parse (s̃, gp, f, p, {hi}i∈[`]) = mpk

4. y0,y1 ← AKeyDer(msk,·)(mpk)
5. Pick β ←↩ {0, 1}
6. Pick r ←↩ DZ,σ′

7. Compute C0 = grp ∈ Gp
8. For 1 ≤ i ≤ ` :
9. Compute Ci = fyβ,i · Csi0

10. Cy = (C0, C1, . . . , C`)
11. β′ ← AKeyDer(msk,·)(Cy)
12. Return (β = β′)

Game 2

1. mpk,msk ← Setup(1λ, 1µ, 1`, X, Y )
2. Parse (s1, . . . , s`)

T = msk
3. Parse (s̃, gp, f, p, {hi}i∈[`]) = mpk

4. y0,y1 ← AKeyDer(msk,·)(mpk)
5. Pick β ←↩ {0, 1}
6. Pick r ←↩ DZ,σ′ and a←↩ Z/pZ
7. Compute C0 = fa · grp ∈ G
8. For 1 ≤ i ≤ ` :
9. Compute Ci = fyβ,i · Csi0

10. Cy = (C0, C1, . . . , C`)
11. β′ ← AKeyDer(msk,·)(Cy)
12. Return (β = β′)

Game 0 ⇒ Game 1: In Game 1 the challenger uses the secret key s =
(s1, . . . , s`) to compute ciphertext elements Ci = fyβ,i · (grp)si = fyβ,i ·Csi0 . This
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change does not impact the distribution of the obtained ciphertext, therefore the
adversary’s success probability in both games is identical: Pr[S0] = Pr[S1].
Game 1 ⇒ Game 2: In Game 1, the distribution of C0 is at distance less
than 2−λ of the uniform distribution in the subgroup Gp. Thus under the HSM
assumption, we can, in Game 2, substitute C0 by grp ·fa ∈ G, with r ←↩ Dp, a←↩
Z/pZ, which, as stated in Lemma 4, Item 5, is indeed at distance less than 2−λ

of the uniform distribution in G. Therefore, |Pr[S2]− Pr[S1]| ≤ AdvHSMB (λ, µ).
Now in Game 2 we have, for a←↩ Z/pZ and r ←↩ DZ,σ′ :{

C0 = fa · grp
Ci = fyβ,i+a·si · hri

. (3)

Lemma 6. In Game 2 the ciphertext Cy = (C0, C1, . . . , C`) ∈ G`+1 statistically
hides β such that |Pr[S2]− 1/2| ≤ 2−λ.

Proof. Let us begin with an overview of the proof. As in proof of Lemma 5,
we first delimit the information that is leaked in the challenge ciphertext by
considering the dimension in which both potential challenge ciphertexts differ.
Indeed, we denote zβ = yβ + as mod p, then projecting zβ onto the subspace
generated by y0 − y1 encapsulates all the information revealed by the challenge
ciphertext.
Next, we consider the distribution of the projection of the secret key s on the
subspace generated by y0 − y1, conditionally on the adversary’s view (i.e. from
the information leaked by private key queries and the public key). This amounts
to a distribution over a one dimensional lattice Λ0. We then reduce this distri-
bution modulo a sub-lattice Λ′0 such that Λ0/Λ

′
0 ' Z/pZ, and using Lemma 3

one gets that choosing σ >
√

2λ · s̃ · p3/2 suffices to ensure that the distribution
of the projection of s on the subspace generated by y0 − y1 is within distance
2−λ from the uniform distribution over Z/pZ, and thus yβ (and therefore β) is
statistically hidden in zβ .

We now provide the full proof that in Game 2 the ciphertext Cy =
(C0, C1, . . . , C`) ∈ G`+1 statistically hides β such that |Pr[S2]− 1/2| ≤ 2−λ.

The proof follows the approach of [ALS16, Theorem 5]. Let us first consider
the information leaked to A via private key queries. We denote xi ∈ Z` the
vectors corresponding to secret key queries made by A. As A is a legitimate
adversary, we have 〈xi,y0〉 = 〈xi,y1〉 over Z for each secret key query xi.

Thus if we let d 6= 0 be the gcd of the coefficients of y1 − y0 and define
y = (y1, . . . , y`) = 1/d · (y1 − y0) ∈ Z`, it holds that all queried vectors xi must
belong to

y⊥ = {x ∈ Z` : 〈x,y〉 = 0}.
We construct matrices Xtop ∈ Z(`−1)×` and X ∈ Z`×` exactly as in the proof

of Theorem 5, such that the rows of Xtop form a basis of y⊥, X is invertible
modulo p, and:

X =

[
Xtop

yT

]
.
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One may assume that through its secret key queries, the information learned by
the adversary is completely determined by Xtop · s ∈ Z(`−1), as all the queried
vectors xi can be obtained as linear combinations of the rows of Xtop.

Now let us consider the information leaked from the challenge ciphertext in
Game 2. We recall that it is of the form:{

C0 = fa · grp
Ci = fyβ,i+a·si · hri

for a←↩ Z/pZ and r ←↩ DZ,σ′ .

We denote:

zβ = (yβ,1 + a · s1, . . . , yβ,` + a · s`) ∈ (Z/pZ)`

= yβ + a · s mod p.

As in proofs of Theorems 5 and 6, information theoretically, the adversary can
glean:

yT · zβ mod p = 〈y,yβ〉+ a · 〈y, s〉 mod p. (4)

From the public key and from private key queries, the information gained by the
adversary amounts at most to:

– a subset of the coordinates of Xtop · s ∈ Z`−1 (from private key queries).
– the knowledge that hi = gsip for 1 ≤ i ≤ ` which information-theoretically

reveals si modulo s (from the public key).

Let s0 denote an arbitrary vector satisfying the same equations as the secret key
s from the view of the adversary, i.e.:

Xtop · s0 = Xtop · s ∈ Z`−1 ∧ ∀i ∈ [`], hi = gsip = gs0,ip ∈ Gp.

Denoting t = (t1, . . . , t`) = s− s0 we can rewrite the above as:

Xtop · t = 0 ∈ Z`−1 ∧ ∀i ∈ [`], ti = 0 mod s.

We define Λ = {t ∈ Z`|Xtop · t = 0, t = 0 mod s} ⊂ Z`. Since the protocol
samples s←↩ DZ`,σ, from the adversary’s view s is of the form s0 + T where T
is a random variable with values in Λ. The random variable T follows the same
probability distribution as s− s0 but taken over Λ, i.e.:

∀t ∈ Λ, Pr[T = t] = DZ`,σ,−s0
(t)/DZ`,σ,−s0

(Λ)

=
ρσ,−s0(t)

ρσ,−s0
(Z`)

× ρσ,−s0(Z`)

ρσ,−s0
(Λ)

= DΛ,σ,−s0
(t).

Therefore, from the adversary’s point of view, the distribution of s ∈ Z` is:

s0 +DΛ,σ,−s0
.
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Let us consider the lattice Λ′ = {t ∈ Z` : Xtop · t = 0}. As in the proof of
Theorem 5, this lattice has dimension 1 and Λ′ = y · Z. Moreover

Λ = Λ′ ∩ (s · Z`) = (y · Z) ∩ (s · Z`) = s · y · Z,

since gcd(y1, . . . , y`) = 1 (for any α ∈ Z, for s to divide all α · yi, s must divide
α · gcd(y1, . . . , y`) = α).

We now consider the distribution of 〈s,y〉, and then reduce it modulo p,
so as to prove that, from the adversary’s view (i.e. conditionally on the public
key and queried keys), in eq. (4) the bit β is statistically hidden. Let us denote
Λ0 = s · ||y||22 · Z. It follows from Lemma 2 that the distribution of 〈s,y〉 is:

〈s0,y〉+DΛ0,||y||2·σ,−c

where c = 〈s0,y〉 in Z.
In order to prove that the above distribution is statistically close to the uni-
form distribution over Z/pZ, we consider the distribution obtained by reducing
the distribution DΛ0,||y||2·σ,−c over Λ0 modulo the sublattice Λ′0 = pΛ0. Since
Λ0/Λ

′
0 ' Z/pZ, demonstrating that 〈y, s〉 mod p is within negligible statistical

distance from the uniform distribution over Λ0/Λ
′
0 will conclude the proof.

From Lemma 3 it follows that to achieve the required smoothing parameter
ηε(Λ

′
0) one must impose a lower bound on the standard deviation, i.e. we need

||y||2 · σ > ηε(Λ
′
0). If we set ε to be 2−λ−1, from [MR07] we know that

ηε(Λ
′
0) ≤

√
ln(2(1 + 1/ε))

π
· λ1(Λ′0) <

√
λ · λ1(Λ′0).

Since λ1(Λ′0) = s · ||y||22 · p < s̃ · ||y||22 · p, we need

σ > ||y||2
√
λ · p · s̃

(i.e. ||y||2 · σ >
√
λ · λ1(Λ′0)). Finally as ||y||2 <

√
2p (since ||yi||∞ <

√
p/(2`)

for i ∈ {0, 1}) choosing

σ >
√

2λ · s̃ · p3/2

suffices to ensure that 〈y, s〉 mod p is within distance 2−λ from the uniform
distribution over Λ0/Λ

′
0 ' Z/pZ.

Finally, since in eq. (4), a←↩ Z/pZ is invertible modulo p with all but negli-
gible probability, the term 〈y,yβ〉 mod p is statistically hidden, and |Pr[S2]−
1/2| ≤ 2−λ.

ut

Over all game transitions, after adding up the different probabilities, we
find that A’s advantage in the real game can be bounded as |Pr[S0] − 1/2| ≤
AdvHSMB (λ, µ) + 2−λ which is negligible if the HSM assumption holds in G. ut

5.2 HSM-based FE for inner product over Z/pZ

As in the DDH-f based scheme for inner products over Z/pZ of Section 4.2, the
key generation algorithm is stateful to ensure the adversary cannot query keys
for vectors that are linearly dependant over (Z/pZ)` but independent over Z`.
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Setting the parameters. As in the previous construction, we use the output
(p, s̃, f, gp, G, F,G

p) of the GenGroup generator of Def. 6, with p a µ-bit prime,
and with µ ≥ λ. The message space and vector space from which decryption
keys are derived are now (Z/pZ)`. Given an encryption of y ∈ (Z/pZ)` and
a decryption key for x ∈ (Z/pZ)`, the decryption algorithm recovers 〈x,y〉 ∈
Z/pZ. To guarantee the scheme’s security we sample the coordinates of the
secret key s from DZ`,σ with discrete Gaussian entries of standard deviation

σ >
√
λ · p · s̃ · (

√
`p)`−1. We require σ′ > s̃

√
λ to ensure that {grp, r ←↩ DZ`,σ′}

is at distance less than 2−λ from the uniform distribution in Gp.

Construction. The Setup and Encrypt algorithms proceed exactly as in Fig. 5,
the only difference being that Encrypt operates on message vectors y ∈ (Z/pZ)`

instead of y ∈ Z`. In Fig. 6 we only define algorithms KeyDer and Decrypt, since
they differ from those of the previous construction.

Algorithm KeyDer(msk,x, st)

Answering the jth key request skx where x ∈ (Z/pZ)`. At any time the internal state
st contains at most ` tuples (xi,xi, zxi) where (xi, zxi) are previously queried secret
keys and the xi’s are corresponding vectors.

1. If x is linearly independent of the xi’s modulo p :
2. Set x ∈ {0, . . . , p− 1}` with x = x mod p
3. zx = 〈s,x〉 ∈ Z ; st = (st, (x,x, zx))
4. If ∃{ki}1≤i≤j−1 ∈ Zj−1 such that x =

∑j−1
i=1 kixi ∈ (Z/pZ)` then:

5. x =
∑j−1
i=1 kixi ∈ Z` ; zx =

∑j−1
i=1 kizxi ∈ Z

6. Return skx = (x, zx)

Algorithm Decrypt(mpk,Cy, skx)

1. Parse (x = (x1, . . . , x`), zx) = skx

2. Compute Cx =
(∏

i∈[`] C
xi
i

)
· (C−zx0 )

3. Return Solve(Cx)

Fig. 6: Functional encryption scheme for inner products over Z/pZ from HSM.

Theorem 8. Under the HSM assumption the above stateful functional encryp-
tion scheme for inner products over Z/pZ provides full security (ind-fe-cpa).

The proof follows the same lines as the proof of the previous theorem and is
adapted from the proofs of [ALS16].

The main issue is that we can no longer guarantee that X is invertible modulo
p. We need to compute on-the-fly a basis for {x ∈ (Z/pZ)` : 〈x,y〉 = 0 mod p}
to apply the same techniques as in Theorem 7. The analysis gives significantly
larger standard deviations as mentioned above due a bad approximation of the
determinant of a related matrix.
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Proof. We here provide the proof that under the HSM assumption the state-
ful functional encryption scheme for inner products over Z/pZ presented above
provides full security (ind-fe-cpa).

The proof proceeds similarly to that in Z (cf. Theorem 7), starting with the
real ind-fe-cpa game and ending in a game where the ciphertext statistically hides
the random bit β chosen by the challenger from the adversary’s point of view.

Games 0 to 2 basically proceed identically to those of the proof of Theorem 7.
The only difference is in the key derivation oracle that the adversary A has access
to, which now executes the stateful key derivation algorithm. Thus we have a
Game 2′ for which:

|Pr[S′2]− Pr[S0]| ≤ AdvHSMB (λ, µ).

Recall that A can query the key derivation oracle for any vector x ∈ (Z/pZ)`

satisfying 〈x,y0〉 = 〈x,y1〉 ∈ Z/pZ. For each query, A is given a secret key
(x, zx) as in the real scheme. And in Game 2′ we have:{

C0 = fa · grp
Ci = fyβ,i+a·si · hri , ∀i ∈ [`]

where a←↩ Z/pZ and r ←↩ DZ,σ′ .
Therefore, the challenge ciphertext information-theoretically reveals:

zβ = yβ + as mod p.

We define y = (y1, . . . , y`) = y1−y0 ∈ (Z/pZ)`, and, assuming A has performed
j private key queries, for 1 ≤ i ≤ j, we denote xi ∈ (Z/pZ)` the vectors for which
keys have been derived.

From here on, demonstrating that in Game 2′ the challenge ciphertext sta-
tistically hides the bit β is done as in proof of Theorem 6, we prove via induction
that after the j first private key queries, A’s view remains statistically indepen-
dent of β, thus proving that |Pr[S′2] − 1/2| ≤ 2−λ. The induction proceeds on
the value of j.

For j = 0 the adversary can make no private key queries. With this restriction
games 2 and 2′ are identical. It thus follows from the proof of Theorem 7 that
for j = 0 the induction hypothesis holds, i.e. A’s view is indeed statistically
independent of β.

Consider j ∈ {0, . . . , `− 1}. From the induction hypothesis one may assume
that at this point the state st = {(xi,xi, zxi) ∈ (Z/pZ)` × Z` × Z}i∈[j] is inde-
pendent of β. Indeed if A’s view after j − 1 requests is independent of β then
the jth request performed by A must be so. W.l.o.g. one may assume that the
key requests xi performed by the adversary are linearly independent (otherwise
A does not gain any additional information from its request). This implies that
the xi’s are linearly independent modulo p and generate a subspace of:

y⊥p = {x ∈ (Z/pZ)` : 〈x,y〉 = 0 mod p}
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Moreover the set {xi}i∈[j] (generated during private key queries) can be extended

to a basis {xi}i∈[`−1] of y⊥p. We define Xtop ∈ Z(`−1)×` to be the matrix whose
rows are the vectors xi for i ∈ [`− 1].

Xtop =


xT1
xT2
...

xT`−1


Let x′ ∈ (Z/pZ)` be a vector such that x′ /∈ y⊥p. This vector x′ is constructed
deterministically from the set {xi}i∈[j] and y. We define xbot to be the canonical
lift of x′ over Z, and X as:

X =

[
Xtop

xTbot

]
.

The matrix X is built deterministically, invertible modulo p by construction, and
independent of β by induction hypothesis and by construction. So X is known to
A in the information theoretical sense. As in the proof of Theorem 7 we need only
prove that X ·zβ is statistically independent of β. And since Xtop · (y1−y0) = 0
mod p, we need only consider:

〈xbot, zβ〉 = 〈xbot,yβ〉+ a〈xbot, s〉 mod p. (5)

As in the proof of Theorem 7, let s0 denote an arbitrary vector such that from
the adversary’s point of view, the distribution of s ∈ Z` is s0 +DΛ,σ,−s0 where

Λ = {t ∈ Z` : Xtop · t = 0, t = 0 mod s}.

We also define Λ′ = {t ∈ Z` : Xtop ·t = 0}, clearly Λ′ is a one-dimensional lattice
which can also be defined as Λ′ = y′ ·Z for some y′ ∈ Z`. One should note that
all the coefficients of y′ are co-prime (since y′/ gcd(y′1, . . . , y

′
`) ∈ Λ′). Moreover,

since Xtop is a basis of y⊥p, we have Λ′ mod p = y · Z/pZ. As a result, there
exists α ∈ (Z/pZ)∗ s.t. y′ = α · y mod p. Finally, Λ = Λ′ ∩ (sZ)` and, since the
coefficients of y′ are co-prime Λ = s · y′ · Z = s · Λ′.

Intuition. So as to prove that in eq. (5), the term a · 〈xbot, s〉 statistically hides
β, we justify that the distribution DΛ,σ,−s0

reduced modulo the sub-lattice pΛ,
(and therefore that of s reduced modulo p) is statistically close to the uniform
distribution over y · Z/pZ. This is done by applying Lemma 3 and imposing a
lower bound for σ. In order to do this we first need to bound λ1(pΛ) and therefore
||y′||2. We thereby demonstrate that 〈xbot, s〉 mod p is statistically close to the
uniform distribution over Z/pZ, and therefore, with overwhelming probability
〈xbot, zβ〉 statistically hides β, thus concluding the proof.

Details. Since Λ′ = y′ · Z, it holds that ||y′||2 = det(Λ′). If we define Λtop as
the lattice generated by the rows of Xtop, then applying results from [Mar03]
and [Ngu91, Theorem 2.8], one obtains that

||y′||2 = det(Λ′) ≤ det(Λtop).
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We now apply Hadamard’s bound, which tells us that, since the coordinates of
each xi are smaller than p (since we assumed all requested xi’s are independent),

det(Λtop) ≤
∏`−1
i=1 ||xi||2 ≤ (

√
`p)`−1. Therefore ||y′||2 ≤ (

√
`p)`−1 and s·||y′||2 <

s̃ · (
√
`p)`−1, this implies

λ1(p · Λ) ≤ ps̃ · (
√
`p)`−1.

From [MR07] we know that the smoothing parameter verifies ηε(p · Λ) ≤√
ln(2(1+1/ε))

π ·λ1(p·Λ). Thus for ε = 2−λ−1, we have ηε(p·Λ) ≤
√
λ·p·s̃·(

√
`p)`−1.

Therefore setting
σ ≥
√
λ · p · s̃ · (

√
`p)`−1

and applying Lemma 3 ensures that the distribution DΛ,σ,−s0
mod (p · Λ) is

within distance 2−λ from the uniform distribution over Λ/(pΛ) which is iso-
morphic to y · Z/pZ because gcd(p, s) = 1 and y′ = α · y mod p for some
α ∈ (Z/pZ)∗.

We have thus proven that s modulo p is statistically close to the uniform
distribution over y ·Z/pZ from the adversary’s point of view. Since by construc-
tion 〈xbot,y〉 6= 0 mod p, we get that 〈xbot, s〉 modulo p is statistically close to
the uniform distribution over Z/pZ. Moreover, in eq. 5, gcd(a, p) = 1 with over-
whelming probability, so a · 〈xbot, s〉 statistically hides 〈xbot,yβ〉, which implies
that 〈xbot, zβ〉 does not carry significant information about β, thus concluding
the proof. ut

6 Instantiation and efficiency considerations

We put forth two generic constructions of FE for the evaluation of inner products.
Both schemes are based on variants of Elgamal in the same group and both sam-
ple their master secret keys from Gaussian distributions with the same standard
deviation. As a result their asymptotic complexities are the same. The second
scheme’s security relies on a hard subgroup membership assumption (HSM) and
this scheme appears to be the most efficient FE which evaluates inner product
modulo a prime p. At the (small) expense of a single additional element in the
keys and in the ciphertext, the first scheme’s security relies on a weaker DDH-
like assumption, which is also weaker than the DDH assumption in the group.
We compare, in Table 1, an implementation of our HSM-based IPFE mod p
of Subsection 5.2 within the class group of an imaginary quadratic field and
Paillier’s variant of [ALS16]. This is the most relevant comparison since their
DDH variant does not allow a full recovery of large inner products over Z/pZ,
and, as detailed in the following paragraph, the LWE variant is far from being
efficient, as ciphertexts are computed using arithmetic modulo q = 2` where ` is
the dimension of the plaintext vectors.

Comparison with the LWE based scheme of [ALS16]. Parameter choices for
lattice-based cryptography are complex, indeed [ALS16] do not provide a con-
crete set of parameters. This being said, using [ALS16, Theorem 3], and setting
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log p = λ as in Table 1, we give rough bit sizes for their LWE based FE scheme
for computing inner products over Z/pZ. Basic elements are integers modulo q
of size ` since q ≈ 2` for security to hold. The largest component in the master
public key mpk consists of λ2`3 elements, so mpk is of size greater than λ2`4.
The component zx in secret keys is the product of a vector from (Z/pZ)` with
a matrix, which yields a secret key vector made up of λ`2 inner products, where
each inner product is of size `λ. Thus these keys are of size λ2`3. Finally cipher-
texts consist of λ`2 elements, and are thus of size greater than λ`3. As a result,
although it may be hard to compare the complexities in λ, for a fixed security
level, the complexity in ` for all the parameters of the LWE based scheme is in
`3 or `4 whereas we are linear in ` as one can see in Table 1. For example, for
λ = 128, ` = 100, their skx is of approximately 234 bits vs. 13852 bits in our
instantiation.

Instantiation. To instantiate the protocol of Section 5.2, we first need to define
the algorithm GenGroup of Def. 6. To this end, we follow the lines of the con-
struction from [CL15]. We start from a fundamental discriminant ∆K = −p · q
with its class group Cl(∆K), where q is a prime such that p·q ≡ −1 (mod 4) and
(p/q) = −1. Then, we consider a non-maximal order of discriminant∆p = p2·∆K

and its class group Cl(∆p). The order of Cl(∆p) is

h(∆p) = p · h(∆K).

It is known (cf. [Coh00, p. 295]), that

h(∆K) <
1

π
log |∆K |

√
|∆K |

which is the bound we take for s̃ (note that a slightly better bound can be
computed from the analytic class number formula, cf. [McC89]). In [CL15, Fig. 2]
the authors show how to build a generator of a cyclic group of order ps of the class
group of discriminant ∆p and a generator for the subgroup of order p (in which
the discrete logarithm problem is easy). We need to modify their generator of a
DDH group with an easy DL subgroup, to make it output a generator gp of the
subgroup of p-th powers. The computation of such an element is actually implicit
in their generator: this is done by computing an ideal r in the maximal order with
norm a small prime r such that

(
∆K
r

)
= 1. Then the ideal r2 is lifted into a class

of Cl(∆p) which is then raised to the power p to define gp. A second modification
is to output s̃ instead of their larger bound B (since they sampled elements using
a folded uniform distribution). We refer to [CL15] for a full description of the
implementation. The manipulated objects are reduced ideals represented by two
integers smaller than

√
p3q, and the arithmetic operations in class groups are

very efficient, since the reduction and composition of quadratic forms have a
quasi linear time complexity using fast arithmetic (see for instance [Coh00]).

The sole restriction on the size of the prime p is that it must have at least
λ bits, where λ is the security parameter. The size of ∆K , and thus of q, is
chosen to thwart the best practical attack, which consists in computing discrete
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logarithms in Cl(∆K) (or equivalently the class number h(∆K)). An index-
calculus method to solve the discrete logarithm problem in a class group of
imaginary quadratic field of discriminant ∆K was proposed in [Jac00]. It is
conjectured in [BJS10] that a state of the art implementation of this algorithm
has complexity O(L|∆K |[1/2, o(1)]). They estimate that the discrete logarithm
problem with a discriminant ∆K of 1348 (resp. 1828 bits) is as hard as factoring
a 2048 (resp. 3072 bits) RSA integer. This is our reference to estimate the bit
size of the different elements in Table 1.

Table 1: Comparing our IPFE from HSM and the DCR scheme of [ALS16]

λ = 112 λ = 128

size this work DCR this work DCR

(p, s̃) (112, 684) (1024, 2046) (128, 924) (1536, 3070)
group element 1572 4096 2084 6144

secret key* (zx) 112(`+ 1) + 684 2048(`+ 2) 128(`+ 1) + 924 3072(`+ 2)
ciphertext 1572(`+ 1) 4096(`+ 1) 2084(`+ 1) 6144(`+ 1)
enc. expo. 687 2046 928 3070
dec. expo. 112(`+ 1) + 684 2048(`+ 2) 128(`+ 1) + 924 3072(`+ 2)

* ignoring an additive term (`± 1) log(
√
`)

Note that in this case, the size of our group elements (reduced ideals in the class
group of discriminant p3q), are significantly smaller than those of the Paillier
variant of [ALS16] (elements of Z/N2Z). This is also the case for ciphertexts
(which consist in both protocols of ` + 1 group elements). We have the same
situation with secret keys: to simplify the comparison we consider linearly inde-
pendent queries (thus ignoring the vectors in Z`). As a result, we have, for our
scheme, the inner product of a vector from (Z/pZ)` with a vector sampled from
a discrete Gaussian with standard deviation greater than

√
λps̃(
√
`p)`−1 over

Z` vs. the inner product of a vector of (Z/NZ)` with a vector sampled from a
discrete Gaussian with standard deviation greater than

√
λ(
√
`N)`+1 over Z`.

We note that our underlying message space Z/pZ is much smaller than their
message space Z/NZ. Using larger message spaces would be more favorable
to their Paillier based scheme. But in practice, a 128 bits message space is
large enough, if for instance, one needs to perform computations with double
or quadruple precision. Our protocols are the most suited for such intermedi-
ate computations, since Paillier’s construction from [ALS16] would add a large
overhead cost, while their DDH construction could not decrypt the result.

In terms of timings, a fair comparison is difficult since to our knowledge,
no library for the arithmetic of quadratic forms is as optimized as a standard
library for the arithmetic of modular integers. Nevertheless, we note that the ex-
ponents involved in the (multi-)exponentiations (for encryption and decryption)
are significantly smaller than those in [ALS16], and the group size is also smaller.
Indeed, the encryption of Paillier’s variant involves (` + 1) exponentiations to
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the power a (|N | − 2)-bit integer modulo N2, whereas our protocol involves one
exponentiation to the power a |σ′|-bit integer in Cl(p3q), where σ′ > s̃

√
λ and

` (multi-)exponentiations whose maximum exponent size is also |σ′|. Decryp-
tions involve respectively a multi-exponentiation whose maximum exponent size
is lower than `σN = `

√
λ(
√
`N)`+1N for [ALS16] and `pσ = `p

√
λps̃(
√
`p)`−1

for our protocol.
We performed timings with Sage 8.1 on a standard laptop with a straight-

forward implementation. Using the settings of [CL15], the exponentiation in class
groups uses a PARI/GP function (qfbnupow), which is far less optimised than
the exponentiation in Z/NZ, implying a huge bias in favour of Paillier. Despite
this bias, the efficiency improvement we expected from our protocols is reflected
in practice, as showed in Table 2. We gain firstly from the fact that we can use
smaller parameters for the same security level and secondly, because our security
reductions allow to replace N ` with p` in the derived keys. Thus the gain is not
only in the constants and our scheme becomes more and more interesting as the
security level and the dimension ` increase.

Table 2: Timings: our IPFE from HSM and vs. [ALS16]’s IPFE from DCR

λ = 112, ` = 10 λ = 128, ` = 10

this work [ALS16] this work [ALS16]

secret key bitsize 1920 24592 2340 36876
encryption time 40ms 27ms 78ms 85ms
decryption time 110ms 301ms 193ms 964ms

For all parameters our dependency in ` is linear which allows to extrapolate
timings for ` > 10.
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Damien Stehlé for fruitful discussions. This work was supported by the French
ANR ALAMBIC project (ANR-16-CE39-0006), and by ERC Starting Grant
ERC-2013-StG-335086-LATTAC.

References

ABCP16. M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval. Better security
for functional encryption for inner product evaluations. Cryptology ePrint
Archive, Report 2016/011, 2016. http://eprint.iacr.org/2016/011.

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional
encryption schemes for inner products. In PKC 2015, LNCS 9020, p. 733–
751. Springer, 2015.

35

http://eprint.iacr.org/2016/011


ABP+17. S. Agrawal, S. Bhattacherjee, D. H. Phan, D. Stehlé, and S. Yamada.
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Auxiliary Supporting Material

I Proofs for background lemmas on Gaussian
distributions

We here provide proofs for two of the lemmas on Gaussian distributions stated
in Section 2. For ease of reading we here recall the lemmas before providing each
of their respective proofs.

Lemma 1. Let x ∈ R` \ {0}, c ∈ R`, σ ∈ R with σ > 0 and σ′ = σ/||x||2,

c′ = 〈c,x〉
〈x,x〉 . A random variable K is distributed according to DZ,σ′,c′ if and only

if V := Kx is distributed according to DxZ,σ,c.

Proof. Let k ∈ Z, and v := kx ∈ xZ, then

Pr[V = v] = Pr[V = kx] = Pr[K = k] =
ρσ′,c′(k)

ρσ′,c′(Z)
·

As in the proof of [GPV08, Lemma 4.5], one can compute ρσ′,c′(k) = ρσ((k−
c′)||x||2) = ρσ((k− c′)x) = ρσ(v− c′x). It holds that u := c′x is the orthogonal
projection of c on xR. By Pythagoras’ Theorem,

||v − c||22 = ||v − u||22 + ||c− u||22.

Thus ρσ(v−c′x) = ρσ(||v−u||2) = ρσ(||v−c||2)×C where C = exp(
π||c−u||22

σ2 )
is a constant. Therefore we have demonstrated that for k ∈ Z, v = kx, ρσ′,c′(k) =
ρσ,c(v)× C. And so:

Pr[V = v] =
ρσ,c(v)× C∑

z∈Z ρσ,c(zx)× C
= DxZ,σ,c.

ut

Lemma 2. Let x ∈ R` with x 6= 0, c ∈ R`, σ ∈ R with σ > 0. Let V be a
random variable distributed according to Dx·Z,σ,c. Then the random variable S
defined as S = 〈x, V 〉 is distributed according to D||x||22·Z,σ·||x||2,〈c,x〉.

Proof. As V is distributed according to Dx·Z,σ,c, we have V = Kx where K is

sampled from DZ,σ/||x||2,c′ where c′ = 〈c,x〉
〈x,x〉 from the previous lemma. As a result,

one can write S = K〈x,x〉, and applying the previous lemma another time in
dimension 1, we get that S is distributed according to D||x||22·Z,σ·||x||2,〈c,x〉. ut



II Description of the original CL protocol

From a DDH group with an easy DL subgroup, Castagnos and Laguillaumie pro-
posed a generic framework to design a linearly homomorphic encryption scheme.
An Elgamal type scheme is used in G, with plaintext message m ∈ Z/pZ mapped
to fm ∈ F . The resulting scheme is linearly homomorphic. Thanks to the Solve
algorithm, the decryption does not need a complex DL computation. We depict
this scheme in Fig. 1. The Gen and Solve algorithms are those of Def. 6 except
that we ignore the group Gp and its generator (which are useless here). From
Lemma 4, Item 2, choosing σ > s̃p

√
λ suffices to ensure that the distribution

{gx, x ←↩ DZ,σ} is at distance less than 2−λ from the uniform distribution in
G. Note that the use of Gaussian sampling instead of uniform was suggested in
[CIL17].

Algorithm KeyGen(1λ)

1. (p, s̃, g, f,G, F )← Gen(1λ, 1µ)
2. Pick x←↩ DZ,σ and set h = gx

3. Set pk = (p, s̃, g, h, f) and sk = x.
4. Return (pk, sk)

Algorithm Decrypt(1λ, pk, sk, (c1, c2))

1. Compute M = c2/c
x
1

2. m← Solve(p, g, f,G, F,M)
3. Return m

Algorithm Encrypt(1λ, pk,m)

1. Pick r ←↩ DZ,σ

2. Compute c1 = gr

3. Compute c2 = fmhr

4. Return (c1, c2)

Fig. 1: The CL linearly homomorphic encryption scheme

We now recall the main assumption of [CL15].

Definition 9 (DDH assumption [CL15]) We say that GenGroup is the gen-
erator of a DDH group with easy DL subgroup F if it holds that the DDH problem
is hard in G even with access to the Solve algorithm. More precisely, let D be
a distribution over the integers such that the distribution over G induced by
{gx;x ←↩ D} is at distance less than 2−λ from the uniform distribution in G.
Let A be an adversary for the DDH problem, its advantage is defined as:

AdvDDH
A (λ, µ) =

∣∣∣∣2 · Pr
[
b = b? : (p, s̃, g, f, gp, G, F,G

p)← Gen(1λ, 1µ),

x, y, z ←↩ D, X = gx, Y = gy, b←↩ {0, 1}, Z0 = gz, Z1 = gxy,

b? ← A(p, s̃, g, f, gp, G, F,G
p, X, Y, Zb,Solve(.))

]
− 1

∣∣∣∣
The DDH problem is said to be hard in G if for all probabilistic polynomial time
attacker A, AdvDDH

A (λ, µ) is negligible.
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III Proof of Lemma 4: chosing distributions D and Dp

The first item is a consequence of [CL15, Appendix C, Lemma 4]: it holds that
the induced distribution on G is at distance less than (p · s)/(2λs̃p) ≤ 2−λ.

Item 2 follows from [CIL17, Appendix C, Lemma 1], Castagnos et al. demon-
strate that the choice of D = DZ,σ with σ > s̃ ·p ·

√
λ > s̃ ·p ·

√
ln(2(1 + 2λ+1))/π

induces a distribution over G at distance less than 2−λ from the uniform dis-
tribution, and therefore trades a factor 2λ−1 for a factor

√
λ compared to the

previous choice. This also proves Item 3.
Since Gp is a subgroup of G, Dp can be defined from D as in Item 4: the

distribution {gxp , x←↩ D} is statistically close to the uniform distribution in Gp.
Item 5 follows from the fact that G = F ×Gp and the following lemma.

Lemma 7. Let G = 〈g〉 be a cyclic group of order n = p · s with gcd(p, s) = 1,
Gp = 〈gp〉 the subgroup of G of order s, and F = 〈f〉 the subgroup of G of
order p. Let Dp be a distribution over the integers such that {gxp , x←↩ Dp} is at
statistical distance δp of the uniform distribution over Gp. Then the distribution

induced by {gxp · fa, x ←↩ Dp, a
$←− Z/pZ} is also at statistical distance δp from

the uniform distribution over G.

Proof. As gcd(p, s) = 1, one has G = Gp×F . Let us denote ψ = (ψ1, ψ2) the in-

duced isomorphism from G to Gp×F . The probability that {gxp ·fa, x←↩ Dp, a
$←−

Z/pZ} gives an element h of G, is Pr[gxp = ψ1(h)] ·Pr[fa = ψ2(h)] = 1/pPr[gxp =
ψ1(h)]. As a result, the statistical distance to the uniform distribution in G is

1

2

∑
h∈G

∣∣∣∣ 1n − 1

p
· Pr[gxp = ψ1(h)]

∣∣∣∣ =
1

2
· 1

p

∑
h∈G

∣∣∣∣1s − Pr[gxp = ψ1(h)]

∣∣∣∣
=

1

2
· 1

p
· p

∑
hp∈Gp

∣∣∣∣1s − Pr[gxp = hp]

∣∣∣∣ = δp.

ut

IV Proof of Theorem 2: the linearly homomorphic
encryption scheme from HSM is ind-cpa

The proof proceeds as a sequence of games, starting with the real ind-cpa game
and ending in a game where the ciphertext statistically hides the random bit β
chosen by the challenger. In Game i, we denote Si the event β = β′.
Game 0 ⇒ Game 1: In Game 1 the challenger creates the secret key x from
DZ,pσ′ instead of DZ,σ′ . From Lemma 4, Item 4, h is still at negligible distance
of the uniform in Gp. Moreover, the challenger uses the secret key x to compute
the ciphertext element c2 = fmβgxrp = fmβcx1 . These two changes do not impact
the distribution of the public key and of the ciphertext, therefore the adversary’s
success probability in both games is identical, Pr[S0] = Pr[S1].
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Game 1

1. (p, s̃, f, gp, G, F,G
p)← Gen(1λ, 1µ)

2. Pick x←↩ DZ,pσ′ and h = gxp
3. Set pk = (s̃, gp, f, p, h) and sk = x
4. m0,m1 ← A(pk)
5. Pick β ←↩ {0, 1}
6. Pick r ←↩ DZ,σ′

7. Compute c1 = grp ∈ Gp
8. Compute c2 = cx1 · fmβ
9. β′ ← A(pk, c1, c2)

10. Return (β = β′)

Game 2

1. (p, s̃, g, f, gp, G, F,G
p)← Gen(1λ, 1µ)

2. Pick x←↩ DZ,pσ′ and h = gxp
3. Set pk = (s̃, gp, f, p, h) and sk = x
4. m0,m1 ← A(pk)
5. Pick β ←↩ {0, 1}
6. Pick r ←↩ DZ,σ′ and u←↩ Z/pZ
7. Compute c1 = fu · grp ∈ G
8. Compute c2 = cx1 · fmβ
9. β′ ← A(pk, c1, c2)

10. Return (β = β′)

Game 1 ⇒ Game 2: In Game 1, the distribution of c1 is at negligible distance
of the uniform distribution in Gp. Now, in Game 2, the challenger samples a
random u ←↩ Z/pZ and computes the ciphertext element c1 = fu · grp ∈ G
where r ←↩ DZ,σ′ . This gives an element at negligible distance of the uniform
distribution in G (cf. Lemma 4, Item 5). Both games are indistinguishable under
the HSM assumption. Therefore, |Pr[S2]− Pr[S1]| ≤ AdvHSMB (λ, µ).

Now in Game 2 we have c1 = fu · grp ∈ G which information theoretically
reveals u modulo p and r modulo s by using the fact that G = F ×Gp. We also
have c2 = cx1f

mβ = grxp f
mβ+ux = hrfmβ+ux. For the adversary the value of hr is

fixed, so he can infer mβ + ux ∈ Z/pZ. Since u is sampled uniformly at random
from Z/pZ, u 6= 0 mod p with all but negligible probability as p is a µ bit prime,
with µ ≥ λ. Furthermore, as x is sampled from DZ,pσ′ with pσ′ > ps̃

√
λ, the

distribution of x modulo n is at negligible distance of the uniform modulo n (cf.
Lemma 4, Item 2). In particular, as n = ps with gcd(p, s) = 1, x modulo p is at
negligible distance of the uniform and is independent of x modulo s. So even if
an unbounded adversary can learn x modulo s from h, x modulo p remains at
negligible distance of the uniform from his point of view and mβ + ux perfectly
hides mβ ∈ Z/pZ. Therefore: |Pr[S2] − 1/2| ≤ 2−λ. Combining the probability
equations, we conclude the proof with the following inequality:

AdvΠ2a

A (λ, µ) ≤ AdvHSMB (λ, µ) + 2−λ

V Proof of Theorem 3: the linearly homomorphic
encryption scheme from DDH-f is ind-cpa

The proof proceeds as a sequence of games, starting with the real ind-cpa game
and ending in a game where the ciphertext statistically hides the random bit β
chosen by the challenger. In Game i, we denote Si the event β = β′.
Game 0 ⇒ Game 1: In Game 1 the challenger uses the secret key x, y to com-
pute the ciphertext element c3 = cx1c

y
2f

mβ = grxhryfmβ = ηrfmβ . This change
does not impact the distribution of the ciphertext, therefore the adversary’s
success probability in both games is identical, Pr[S0] = Pr[S1].
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Game 1

1. (pk, sk)← KeyGen(1λ, 1µ)
2. m0,m1 ← A(pk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ

5. Compute c1 = gr

6. Compute c2 = hr

7. Compute c3 = cx1c
y
2f

mβ

8. β′ ← A(pk, c1, c2, c3)
9. Return (β = β′)

Game 2

1. (pk, sk)← KeyGen(1λ, 1µ)
2. m0,m1 ← A(pk)
3. Pick β ←↩ {0, 1}
4. Pick r ←↩ DZ,σ and u←↩ Z/pZ
5. Compute c1 = gr

6. Compute c2 = hrfu

7. Compute c3 = cx1c
y
2f

mβ

8. β′ ← A(pk, c1, c2, c3)
9. Return (β = β′)

Game 1 ⇒ Game 2: In Game 1, (h = gα, c1 = gr, c2 = hr = gαr) with
α, r ←↩ DZ,σ is a DH triplet. Now, in Game 2, the challenger samples a random
u←↩ Z/pZ and computes c2 = hrfu. Both games are indistinguishable under the
DDH-f assumption (cf. Def. 8). Therefore, |Pr[S2]− Pr[S1]| ≤ AdvDDH-f

B (λ, µ).
Now in Game 2 we have c1 = gr which information theoretically reveals r

modulo n. Furthermore, c3 = cx1c
y
2f

mβ = ηrfmβ+uy. This information theoret-
ically reveals mβ + uy ∈ Z/pZ as the value of ηr is fixed from c1. Since u is
sampled uniformly at random from Z/pZ, u 6= 0 mod p with all but negligible
probability as p is a µ bit prime, with µ ≥ λ. As a result, we are interested in
the distribution of y modulo p from the adversary’s point of view.

The only information that A learns about y comes from c3 and η = gxhy.
This means that from η an unbounded adversary learns z := x+ αy modulo n.
Knowing z, the joint distribution of (x, y) modulo n is

(z − αy mod n, y mod n) where y ←↩ DZ,σ.

As a result, knowing z, y modulo n is statistically close to the uniform distri-
bution modulo n due to the choice of DZ,σ. Consequently for the adversary y
modulo p is also statistically close to the uniform distribution modulo p and
mβ + uy ∈ Z/pZ perfectly hides mβ ∈ Z/pZ.

Therefore: |Pr[S2] − 1/2| ≤ 2−λ. Combining the probability equations, we
conclude the proof with the following inequality:

AdvΠ2b

A (λ, µ) ≤ AdvDDH-f
B (λ, µ) + 2−λ

VI Invertibility of X in Lemmas 5 and 6

We here prove that X is invertible modulo p. To see this consider the matrix:

XX
T

=



In0

y2n0+2 + y2n0+1 −yn0+1 · yn0+3

−yn0+1 · yn0+3 y2n0+3 + y2n0+2 −yn0+2 · yn0+4

. . .
. . .

. . .

−y` · y`−2 y2`−1 + y2`
||y||22


.
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We first claim that:

det XXT =

(
`−1∏

i=n0+2

y2i

)
· ||y||42.

The proof proceeds by induction on `. Let us first introduce some notations. We

denote X̃XT ∈ Z(`−n0−1)×(`−n0−1) the matrix:

X̃XT =


y2n0+2 + y2n0+1 −yn0+1 · yn0+3

−yn0+1 · yn0+3 y2n0+3 + y2n0+2 −yn0+2 · yn0+4

. . .
. . .

. . .

−y` · y`−2 y2`−1 + y2`

 .
It holds that det XXT = det X̃XT · ||y||2. It thus suffices to prove that

det X̃XT =

(
`−1∏

i=n0+2

y2i

)
· ||y||2.

For ` = n0 + 2, X̃XT = y2n0+2 + y2n0+1 and det X̃XT = ||y||2.
For ` = n0 + 3,

X̃XT =

[
y2n0+2 + y2n0+1 −yn0+1 · yn0+3

−yn0+1 · yn0+3 y2n0+3 + y2n0+2

]
∈ Z2×2.

and

det X̃XT = (y2n0+2 + y2n0+1) · (y2n0+3 + y2n0+2)− (yn0+1 · yn0+3)2

= y2n0+2 ·
n0+3∑
i=n0+1

y2i

= y2n0+2 · y2.

Thus the property holds for ` = n0 + 2 and ` = n0 + 3. Assume the property
holds for ` = n0 + k − 1 and ` = n0 + k, for some k ≥ 3. We prove that the
property holds for ` = n0 + k + 1. We denote Ak ∈ Z(k−1)×(k−1) the matrix
considered for ` = n0 + k, i.e.:
y2n0+2 + y2n0+1 −yn0+1 · yn0+3

−yn0+1 · yn0+3 y2n0+3 + y2n0+2 −yn0+2 · yn0+4

. . .
. . .

. . .

−yn0+k−2 · yn0+k y
2
n0+k

+ y2n0+k−1


Then we have:

Ak+1 =

 Ak

−yn0+k+1 · yn0+k−1
−yn0+k+1 · yn0+k−1 y2n0+k

+ y2n0+k+1

 ∈ Zk×k.
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If we define:

Bk =

 Ak−1 0
−yn0+k · yn0+k−2

0 −yn0+k−1 · yn0+k+1

 ∈ Z(k−1)×(k−1),

it is easy to see that detBk = −yn0+k−1 · yn0+k+1 · detAk−1.
Then we have:

detAk+1 = (y2n0+k + y2n0+k+1) · detAk + (yn0+k+1 · yn0+k−1) · detBk

= (y2n0+k + y2n0+k+1) · detAk − (yn0+k−1 · yn0+k+1)2 · detAk−1

= (y2n0+k + y2n0+k+1) ·

(
n0+k−1∏
i=n0+2

y2i

)
·
n0+k∑
i=n0+1

y2i

− (yn0+k−1 · yn0+k+1)2 ·

(
n0+k−2∏
i=n0+2

y2i

)
·
n0+k−1∑
i=n0+1

y2i

=

(
n0+k∏
i=n0+2

y2i ·
n0+k∑
i=n0+1

y2i

)
+

(
y2n0+k+1 ·

n0+k−1∏
i=n0+2

y2i ·
n0+k∑
i=n0+1

y2i

)

−

(
y2n0+k+1 ·

n0+k−1∏
i=n0+2

y2i ·
n0+k−1∑
i=n0+1

y2i

)

=

(
n0+k∏
i=n0+2

y2i ·
n0+k∑
i=n0+1

y2i

)
+

(
y2n0+k+1 · y2n0+k ·

n0+k−1∏
i=n0+2

y2i

)

=

(
n0+k∏
i=n0+2

y2i ·
n0+k∑
i=n0+1

y2i

)
+

(
y2n0+k+1 ·

n0+k∏
i=n0+2

y2i

)

=

n0+k∏
i=n0+2

y2i ·
n0+k+1∑
i=n0+1

y2i

=

`−1∏
i=n0+2

y2i · ||y||2.

We reasonably assume that ` ≥ 2 and p ≥ 2. Since p is prime, and since for
n0 + 1 ≤ i ≤ `, each yi is non-zero and y2i < p due to the norm bound ||y||∞ <

2(p/2`)1/2 ≤ √p (for l ≥ 2), it holds that
∏`−1
i=n0+2 y

2
i 6= 0 mod p. Moreover

||y||2 ≤
√
`||y||∞ <

√
2p ≤ p (for p ≥ 2), so ||y||42 6= 0 mod p. This yields

det XXT 6= 0 mod p, i.e. X is invertible in Zp.
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