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Abstract. We provide a new approach to the elliptic curve discrete
logarithm problem (ECDLP). First, we construct Elliptic Codes (EC
codes) from the ECDLP. Then we propose an algorithm of finding the
minimum weight codewords for algebraic geometry codes, especially for
the elliptic code, via list decoding. Finally, with the minimum weight
codewords, we show how to solve ECDLP. This work may provide a
potential approach to speeding up the computation of ECDLP.
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1 Introduction

ECC and ECDLP. In the 1980s, Koblitz [18] and Miller [21] opened the door of
elliptic-curve cryptography (ECC). Since the introduction of ECC, the elliptic-
curve analogues of cryptographic primitives, like public-key encryption, digital
signature, key agreement, etc., were set up and deployed widely in information
systems, due to the smaller key sizes and more efficient implementations than
their traditional siblings with the same security level. In the last decades, ECC
primitives have permeated in cryptographic protocols and deployed in a variety
of applications.

The security kernel of ECC is the hardness of the elliptic curve discrete
logarithm problem (ECDLP). Let E be an elliptic curve defined over a finite field
Fq and E(Fq) be the additive group over E . Let P ∈ E(Fq) be a point of prime
order p, and let 〈P 〉 be the subgroup generated by P . If Q ∈ 〈P 〉, then Q = sP for
some integer s (0 ≤ s < p), and s := logP Q is defined as the discrete logarithm
of Q to the base P . The problem of finding s, given P,Q and the parameters of
E , is called ECDLP. Up to date, Pollard ρ method [25] with complexity O(

√
p)

and its refinements are known as the most efficient solutions to ECDLP, except
for some special elliptic curves [37, 38, 39, 40, 41, 42]. A good survey of recent
works on ECDLP can be found in [9].
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ECDLP and Minimum Distance of Elliptic Code. Algebraic geometry
codes (AG codes) were introduced in 1977 by V.D. Goppa [11] as a class of
linear codes. Elliptic Codes belong to AG codes, and they are constructed from
elliptic curve, i.e., algebraic curves of genus g = 1. For any [n, k] elliptic code C
constructed from E over Fq, the minimum distance of C is either d = n − k or
d = n−k+1 [29]. Meanwhile, the minimum distance of C is closely related to the
solution of the ECDLP over E . This connection was first noticed by Driencourt
and Michon [6], and rediscovered by Cheng [4]. This brought us a new hope
of solving ECDLP: it is possible for us to solve ECDLP over E if we found a
codeword of minimum distance for the elliptic code over E . However, computing
the minimum distance of a linear code is one of the fundamental problems in
algorithmic coding theory. Vardy [34] showed that it is an NP-hard problem
for general linear codes, while Cheng [4] proved that it is still NP-hard (under
RP-reduction) for elliptic codes. Obviously, the problem of finding Minimum
Weight Codewords for a linear code is NP hard as well, since a codeword of
minimum weight uniquely determine the minimum distance of this linear code.
As a result, it is unlikely for us to design an algorithm of finding codewords of
minimum weight in polynomial time, perhaps even not in subexponential time.
However, for some NP-hard problems, some algorithms of exponential time do
beat the trivial exhaustive search solution.

List Decoding. List decoding is a powerful decoding algorithm for linear
error-correction codes. It has a longer history than elliptic-curve cryptography
and dates back to the works of Elias [8] and Wozencraft [36] in the 1950s. The
breakthroughs of list decoding were due to Goldreich and Levin [10] for the
Hadamard code, and to Sudan [26] for the Reed-Solomon(RS) codes. For any
[n, k, d] linear code, a well-known fact is that if the number of errors t satisfies t ≤
d(d−1)/2e, then there must exist a unique codeword within distance d(d−1)/2e
from the received vector. If t > (d − 1)/2, however, unique decoding is usually
impossible. In 1997, Sudan [26] proposed “List Decoding algorithm” and applied
it to Reed-Solomon codes to break the barrier of t > (d − 1)/2 by allowing the
algorithm outputting a list of codewords. Later, Shokrollahi and Wasserman [30]
extended Sudan’s list decoding algorithm to algebraic-geometry codes. In 1999,
Guruswami and Sudan [12] improved the bound of t to n−

√
nk for both RS and

AG codes. Up to now, the list decoding algorithm is one of the most powerful
decoding methods for RS and AG codes.

Beyond its application in the field of coding theory, it also led to new de-
velopments in complexity theory and cryptography. For instance, it results in
new constructions of hardcore predicates from one-way permutations, amplify-
ing hardness of boolean functions, construction of extractors [27], computation
of the discrete logarithm over finite fields [5], and constructions of cryptographic
schemes [17], etc.

Our contribution. In this paper, we consider a new approach to the solution
of ECDLP, and provide the first try of using list decoding to solve ECDLP. We
believe that our work merely scratches the surface of the potential power of list
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decoding techniques in solving ECDLP, and expect more results on this topic in
the near future. Our contributions are listed as follows:

1. We present a general algorithm of finding Minimum Weight Codewords for
any linear code that is list decodable. Meanwhile, we show a specific algorith-
m of finding minimum weight codewords for AG codes using list decoding.

2. We show how to list decode elliptic codes and designed an algorithm of
finding minimum distance codewords for elliptic codes.

3. Our work provides the first method of solving ECDLP via list decoding,
which is of theoretical significance.

Organization. The rest of our paper is organized as follows. In Section 2, we
review some preliminaries that will be used in our construction. In Section 3, we
show how to use List Decoding to find Minimum Weight Codewords of algebraic
codes, especially of elliptic codes. In Section 4, we present an algorithm of solving
ECDLP problems via List Decoding and give the corresponding analysis. Finally,
Section 5 concludes this paper,

2 Preliminaries

If n is a positive integer, define [n] := {1, 2, . . . , n}. Let S be a set, then s ← S
denotes choose an element s from S uniformly at random. If Alg. is an algo-
rithm, then (b1, b2, . . . , bi)← Alg.(a1, a2, . . . , aj) means that the algorithm takes
a1, a2, . . . , aj as input and outputs b1, b2, . . . , bi.

2.1 Elliptic Curve and Elliptic Curve Discrete Logarithm Problems

Let Fq be a finite field of q elements. An elliptic curve E over Fq is a cubic curve
defined by Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (ai ∈ Fq).

The set of Fq-rational points of E is defined as

E(Fq) := {(x, y) ∈ Fq × Fq : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O},

where O is the point of infinity,
Equipped with the so-called “chord-and-tangent” rule, E(Fq) becomes an

abelian group [[32], III.2]. Note that if the characteristic of the finite field is
larger than 3, the Weierstrass equation of an elliptic curve E can be transformed
into a short but isomorphic one

E : y2 = x3 + ax+ b,

where a, b ∈ Fq, 4a3 + 27b2 6= 0 ∈ Fq. For detailed information about elliptic
curves, we refer the reader to Silverman’s book [32].
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Let p be a prime integer which is coprime to q. Let GenG be an elliptic curve
group genaration algorithm. Taking as input a security parameter 1κ, GenG
outputs q which defines a finite field Fq, an Elliptic Curve E over Fq, and a point
P ∈ E(Fq) of order p. Denote by 〈P 〉 the group of order p generated by P . If
Q ∈ 〈P 〉, it must holds that Q = sP for some integer s, 0 ≤ s < p, which is
called the logarithm of Q to the base P and denoted by logPQ. The problem of
finding s, given P,Q and the parameters of E , is known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP).

The ECDLP problem is a well-known hard problem. It is an essential base
for elliptic curve cryptography and pairing-based cryptography, and has been a
major research area in computational number theory and cryptography for the
last several decades.

2.2 Linear Error Correction Codes

An [n, k] linear error correction code C over finite field Fq is a set of codewords,
where each codeword contains n elements of Fq and all codewords constitute a
linear space of dimension k over Fq. Therefore, each codeword can be expressed
as a vector of length n over Fq. Given a codeword c = (c1, c2, . . . , cn) ∈ Fnq ,
its Hamming weight, denoted by wt(c), is defined to be the number of non-zero
coordinates, i.e.,

wt(c) = |{i | ci 6= 0, 1 ≤ i ≤ n}|.

The distance of two codewords c1, c2, denoted by dis(c1, c2), counts the number
of coordinates in which they differ. The minimum distance d(C) of C is the
minimal value of the distances between any two different codewords. In formula,

d(C) := min
c1,c2∈C,c1 6=c2

dis(c1, c2).

By the linearity of C, we know that d(C) is determined by the minimum Hamming
weight among all non-zero codewords in C, i.e.,

d(C) = min
c∈C\{0}

wt(c).

If a linear [n, k] code C has d as the minimum distance, then C is called a [n, k, d]
linear code.

For any linear [n, k] code C over finite field Fq. Suppose that 0 = (0, ..., 0) is
the transmitted (causal) codeword, and e is a received vector. Define f(e, t) :=
|{c ∈ C\{0} : |e−c| ≤ t}| as the number of noncausal codewords within distance
t centered around e. If f(e, t) = m, then e is m-tuply falsely decodable. Define
D(u, t) :=

∑
|e|=u f(e, t) as the total number of falsely decodable words of weight

u, counting on all possible received vectors of weight u. By the linearity of C, for
any causal codeword c and any error pattern e, f(e, t) also denotes the number
of noncausal codewords within distance t centered around the received vector
r = c + e. According to [2, 20], we have the following results.
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Theorem 1 ([2, 20]). If |e| = u, then the average number of noncausal code-
words in a decoding sphere of radius t over all error patterns of weight u is given
by

L̄(u, t) =
D(u, t)(
n
u

)
(q − 1)u

.

For an [n, k, d] RS code, Berlekamp and Ramsey proved thatD(u, t) =

(
d
t

)(
n
d

)
(q−

1) if u+ t = d, hence

L̄(u, t) =
1

(q − 1)u−1

(
n− u
t

)
if u+ t = n− k + 1.

2.3 Algebraic-Geometry Codes and elliptic codes

Algebraic-Geometry (AG) Codes are linear error correction codes defined on
algebraic curves. The first AG code was due to Goppa [11] who proposed the
so-called “Goppa Code”. Algebraic-Geometry Codes can be viewed as gener-
alizations of Reed-Solomon codes. Over the years, AG codes attracted much
attention since some AG codes results in linear codes with parameters beating
the Gilbert-Varshamov bound [11, 31, 33].

Let Fq be a finite field with q elements and X be an absolutely irreducible
curve over Fq of genus g. Let Fq(X ) denote the function field defined over X .

A divisor D on a curve X is a formal sum of points D =
∑
P nPP on the

curve X , where nP ∈ Z \ {0} for a finite number of points on X . Here nP
denotes the multiplicity of the point P on the curve. The degree of a divisor
D =

∑
P nPP is defined as the sum of nP , i.e., deg(D) :=

∑
P nP . The support

of a divisor supp(D) is the set of points with nonzero coefficients. A divisor is
called effective if all coefficients are non-negative.

For each point P ∈ X and any f ∈ Fq(X ) \ {0}, we can abstract the notion
of evaluation of f at P (denoted by vP (f)) by local parameter and discrete
valuation function vP : Fq(X ) → Z ∪ {∞}. A point P is said to be a zero of
multiplicity m if vP (f) = m > 0, a pole of multiplicity −m if vP (f) = m < 0,

Any function f ∈ Fq(X ) \ {0} can be associated with a so-called principal
divisor. The principle divisor of f ∈ Fq(X ) is defined as div(f) :=

∑
P vP (f)P .

According to [31](Theorem I.4.11), the degree of a principal divisor is always 0,
i.e., deg(div(f)) = 0.

Let G =
∑
P nPP be any divisor of degree k on X . Denote by L(G) all

rational functions f ∈ Fq(X ) such that the divisor div(f)+G is effective, together
with the zero function, i.e.,

L(G) := {f | div(f) +G is effective} ∪ {0}. (1)

By the Riemann-Roch theorem, L(G) is a vector space over Fq of finite dimension
and its dimension is given by dim(L(G)) := k − g + 1, where g is the genus of
X .
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Given an irreducible curve X and the function field Fq(X ) defined over X ,
let P1, P2, ..., Pn be distinct rational points on X . The n points determine a
divisor D := P1 + P2 + . . . + Pn. Let G be an arbitrary divisor on X such that
{P1, P2, ..., Pn} ∩ supp(G) = ∅. An AG code C(D,G) is defined by the following
injective mapping ev : L(G)→ Fnq with

ev(f) := (f(P1), f(P2), . . . , f(Pn))

Hence C(D,G) = image(ev). If G =
∑
P nPP is a divisor of degree k, then

C(D,G) is an [n, k − g + 1, d] code over Fq and d ≥ n − k + 1 − g. The basic
properties of AG codes can be found in [33, 31, 23].

Elliptic Codes. Elliptic curves can be regarded as a special class of algebraic
curves of genus g = 1, hence Elliptic Codes are just AG codes constructed from
elliptic curve. Let E be an elliptic curve over Fq and Fq(E) be the elliptic function
field. Recall that there exists an additive abelian group E(Fq) with the group
operation defined by the “chord-and-tangent” rule on E . As a result, principal
divisors on elliptic curve E satisfy the following property as shown in the following
theorem.

Theorem 2. [28][32] Let E be an elliptic curve over over Fq. Let D =
∑
P∈E(Fq)

nPP

be a divisor of E. Then D is a principal divisor if and only if
∑
P∈E(Fq)

nP = 0

and
∑
P∈E(Fq)

nP ·P = O, where nP ·P denotes the scalar multiplication over the

Elliptic Curve group E(Fq) and the summation in
∑
P∈E(Fq)

nP ·P is implemented

with the addition defined over group E(Fq).

Given an elliptic curve E defined over Fq, and let Fq(E) be the elliptic function
field. Let P1, P2, . . . , Pn ∈ E(Fq). Define D := P1 + P2 + . . . + Pn be divisors
on E . Let G be another divisor on E such that 0 < deg(G) = k < n and
supp(D) ∩ supp(G) = ∅. The elliptic code C(D,G) is defined by G and D with

C(D,G) := {(f(P1), . . . , f(Pn)) | f ∈ L(G)} ⊆ Fnq ,

where L(G) is defined in (1).
The minimum distance of an [n, k] EC code is either d = n−k or d = n−k+1,

as shown in [29] [6]. If d = n−k, the EC code is a Maximum Distance Separable
(MDS) code, otherwise it is an Almost MDS(AMDS) code.

An [n, k] EC code C(D,G) is an AMDS code iff there exists k elements
Pi1 , . . . , Pik ∈ Supp(D) such that divisor

Pi1 + . . .+ Pik −G

is a principle divisor according to [29] .

2.4 List Decoding of Algebraic-Geometry Codes

In 1999, Guruswami and Sudan [12] proposed a list decoding algorithm for both
RS and AG codes. The algorithm is able to efficiently output a list of codewords
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which lie in the sphere of radius up to t = n −
√
nk centered around the per-

turbed (noisy) codeword (i.e., received vector). More precisely, the list decoding
algorithm ListDecode(C, r, t) takes as input a linear [n, k] code C, a received vec-
tor r and a parameter t ≤ n −

√
nk, and it outputs a list of codewords whose

Hamming distances to r are at most t.
Now we recall the Guruswami-Sudan list coding algorithm ListDecode(C, r, t)

for an [n, k, d] AG-code CL(D,G) [13], where D = P1 + P2 + . . . + Pn and G is
a one-point divisor of a curve X of genus g, i.e., G = αQ and Q /∈ supp(D).
Assume α > 2g − 2, then dim(L(αQ)) = k = α − g + 1 by the Riemann-Roch
theorem.

The Guruswami-Sudan list decoding consists of three steps: initialization,
interpolation and root finding. We will give a brief (and basic) description
of the algorithm. We refer the reader to [12] and [13] for details.

The Guruswami-Sudan List Decoding Algorithm: ListDecode(C, r, t).
Input: An AG-code CL(D,G) determined by Curve X over Fq and divisors
G = αQ and D, a received vector r = (r1, . . . , rn) and an error bound t, which
determines the maximal number of coordinates in which a codeword disagrees
with vector r in order for the codeword to be included on the output list.
Output: a list Ωr of codewords such that dis(r, c) ≤ t.

Initialization.
0.1 Ωr := ∅.
0.2 Compute list decoding parameters l from n, t and g, where l ≥ α.
0.3 Fix a pole basis {φj1 : 1 ≤ j1 ≤ l − g + 1} of L(lQ) such that φj1 has

at most j1 + g − 1 poles at Q.
0.4 For each Pi, 1 ≤ i ≤ n, find a zero basis {ψj3,Pi

: 1 ≤ j3 ≤ l − g + 1}
of L(lQ) such that Pi is a zero of ψj3,Pi

with multiplicity (or at least)
j3 − 1.

0.5 Compute the set {aPi,j1,j3 ∈ Fq : 1 ≤ i ≤ n, 1 ≤ j1, j3 ≤ l − g + 1} such
that for every i and every j1, we have φj1 =

∑
j3
aPi,j1,j3ψj3,Pi .

Interpolation. Set s = l−g
α . Find a nonzero polynomial H ∈ L(lQ)[T ] of the

form

H[T ] =

s∑
j2=0

l−g+1−αj2∑
j1=1

hj1,j2φj1T
j2 .

Root Finding. Find all roots h ∈ L(αQ)) ⊆ L(lQ)) of H[T ]. For each h, check
if h(Pi) = ri for at least n− t values of i ∈ {1, 2, . . . , n}, and if so, put h in
Ωr.

Return Ωr.

3 Finding Minimum Weight Codewords Using List
Decoding

By means of List Decoding with proper parameters, it is possible for us to
find a minimum weight codeword. Beforehand, we introduce two lemmas. The



8 Fangguo Zhang and Shengli Liu

first lemma tells us the property of list decoding when d = u + t, where d is
the minimum distance of a [n, k] linear code, u is the number of errors in the
received vector (i.e., the Hamming distance between the received vector and
causal codeword is u) and t is the error bound of list decoding. The second
lemma analyzes the average number of falsely decodable (noncausal) codewords
when d = u+ t and u ≤ t.

Lemma 1. For any linear [n, k, d] code C, let c′ = c+e be a received vector with
causal codeword c ∈ C and error vector e with wt(e) = u. Denote the output of
the list decoding algorithm ListDecode(C, c′, t) by set Ωc′ .

1. If |Ωc′ \ {c}| ≥ 1, then for any codewords c1 ∈ Ωc′ \ {c}, it holds that
dis(c1, c) ≤ u+ t.

2. If u+ t = d and u ≤ t, then either Ωc′ = {c} or |Ωc′ | ≥ 2. If the latter case
happens, then for all c1 ∈ Ωc′ \ {c}, we have ĉ = c − c1 is the minimum
weight codeword.

Proof. 1. List decoding algorithm ListDec(C, c′, t) will output codewords in the
sphere of radius t centered around c′. If |Ωc′ \ {c}| ≥ 1, we have that
dis(c1, c

′) ≤ t. Together with the fact dis(c, c′) = wt(e) = u, we have
dis(c, c1) ≤ u+ t by the triangle inequality.

2. If u ≤ t, then dis(c, c′) = u ≤ t. As a result, c ∈ Ωc′ always holds. The
linearity of code C ensures that ĉ := c − c1 ∈ C. Hence wt(ĉ) ≥ d. If
u + t = d, then d ≤ wt(ĉ) = dis(c, c1) ≤ u + t = d, which means wt(ĉ) = d
and ĉ = c− c1 is the minimum weight codeword.

Recall that L̄(u, t) denotes the average number of noncausal codewords in a
decoding sphere of radius t over all error patterns of weight u. In [2], Berlekamp
and Ramsey presents how to compute L̄(u, t) for RS codes when u+ t = d and
u ≤ t (see Theorem 1). Now we can generalize this result to any [n, k, d] linear
code. Specifically, we obtain L̄(u, t) for elliptic codes when u+ t = d and u ≤ t.

Lemma 2. For any [n, k, d] linear code in which the number of minimum weight
codewords is µ, the average number of noncausal codewords in a decoding sphere
of radius t over all error patterns of weight u satisfies

L̄(u, t) =

µ ·
(
d
t

)
(
n
u

)
(q − 1)u

if u+ t = d and u ≤ t. (2)

Specifically, for an [n, k] Elliptic Code C(G,D) where G is a divisor of degree k
and D = P1 + P2 + . . .+ Pn. If u+ t = d and u ≤ t, then

L̄(u, t) =



1
(q−1)u−1

(
n− u
t

)
if d = n− k + 1;

λ·

u+ t
t


n
u

(q−1)u−1

if d = n− k,
(3)
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where λ denotes the number of subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such
that G−

∑
j∈J Pj is a principal divisor.

Proof. Recall that if 0 = (0, ..., 0) is the transmitted (causal) codeword, and
e is a received vector, then f(e, t) := |{c ∈ C \ {0} : |e − c| ≤ t}| counts the
number of noncausal codewords within distance t centered around e. Meanwhile,

L̄(u, t) =
∑
|e|=u f(e,t)n
u

(q−1)u
according to [20].

By Lemma 1, if u+ t = d and u ≤ t, then either Ωe = {0} or |Ωe| ≥ 2.
If |Ωe| ≥ 2, then we have the following facts.

– For each c1 ∈ Ωe\{c}, the codeword c1 is a noncausal codeword and it must
be a codeword of minimum weight d.

– For each c1 ∈ Ωe\{c}, define e′ = c1−e, then e′ is of weight t. Meanwhile the
indices of ones in e and e′ must be disjoint, i.e., {i | ei = 1, i ∈ [n]}∩{i | e′i =
1, i ∈ [n]} = ∅.

There might be many error patterns e resulting in the same codeword of
minimum weight. For each codeword of minimum weight, there are exactly(
d
t

)
(=

(
d
u

)
) choices of e of weight u. If there are totally µ codewords of

minimum weight, then there are totally µ ·
(
d
t

)
vector e of weight u, each of

which exactly results in a noncausal codeword in its sphere.

Eq (2) holds since there are totally

(
n
u

)
(q − 1)u vectors of weight u.

For an [n, k] Elliptic Code, the minimal distance d is either n−k+1 or n−k.
If d = n− k+ 1, then the Elliptic code is MDS code, the number of the minimal

weight codewords is

(
n
d

)
·(q−1). Hence L̄(u, t) =

d
t

·
n
d

·(q−1)n
u

(q−1)u
=

n− u
t


(q−1)u−1 ,

which is consistent to the result for RS codes in [2].
Now we consider the case of d = n− k. Given a subset J = {i1, i2, . . . , ik} ⊆

{1, 2, . . . , n}, define a divisor as D′ =
∑
j∈J Pj −G. If D′ is a principal divisor,

then there exists a function f ∈ L(G) such that D′ = div(f) due to the fact that
D′+G is effective. For such an f ∈ L(G), we have f(Pij ) = 0 with j ∈ [k]. Con-
sequently, the Hamming weight of the codeword c = (f(Pi1), f(Pi2), . . . , f(Pin))
is n−k, which suggests that α·c is a codeword of minimum weight for all α ∈ F∗q .
If there are λ subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such that

∑
j∈J Pj −G

is a principal divisor, then there are (q − 1)λ codewords of minimum weight.

Consequently L̄(u, t) =

d
t

·λ·(q−1)n
u

(q−1)u
according to Eq (2).
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Lemma 1 suggests us a way of finding a codeword of minimum weight code-
word. If the minimum distance d of C is known, we can obtain such a codeword
of minimum weight, as long as u+ t = d, u < t and the list decoding algorithm
outputs a list of size at least two. According to this idea, we design an algorith-
m of finding minimum weight codewords for a code C with unknown minimum
distance d, as shown in the next subsection. Lemma 2 helps us the analyze the
success probability of the algorithm.

3.1 How to Find Codewords of Minimum Weight

When the minimum distance d is unknown, the intuition is to try a guess d′ of
the minimum distance. Now we design an algorithm named FindCodeword which
takes as input a guess d′ of the minimum distance, an error weight u and a bound
tm of the decoding radius of List Decoding for code C. Firstly, randomly choose
a codeword c from C and an random error of weight u. Compute the perturbed
vector c′ := c + e. Then invoke the List Decoding algorithm to decode the
perturbed vector c′ to output a list Ωc′ of codewords . By linearity, for every
ci ∈ Ωc′ , ci−c is a codeword of C. We hope that one of ci−c is a minimum weight
codeword. Below we describe the algorithm and then analyze the probability that
the algorithm outputs such a minimum weight codeword.

Algorithm FindCodeword(C, u, d′, tm):

Input: A [n, k] linear code C which is list-decodable up to tm errors; two pa-
rameters u, d′ ∈ Z+ with u < tm < d′.

Output: Abort symbol ⊥ or a codeword ĉ ∈ C.
Procedure: 1. If d′ − u > tm, return ⊥.

2. Randomly choose a codeword c ∈ C.
3. Randomly choose an error pattern e such that wt(e) = u. Compute

c′ := c + e. Set Ωc′ := ∅.
4. Invoke Ωc′ ← ListDecode(C, c′, d′ − u).
5. If Ωc′ \ {c} = ∅, Return(⊥). Otherwise for each codeword ci ∈ Ωc′ \ {c}

and compute ĉi := ci − c, where i = 1, 2, . . . , |Ωc′ | − 1.
6. Choose ĉ of minimal weight from {ĉ1, . . . , ĉ|Ωc′ |−1}.
7. Return(ĉ).

According to [12], the Guruswami-Sudan list decoding algorithm is applica-
ble when tm = n −

√
nk, and the complexity of ListDecode is O(λ6n3) for any

AG codes (here λ is the designed list size). The computational complexity of Al-
gorithm FindCodeword(C, u, d′) is dominated by ListDecode, hence is of O(λ6n3)
as well. There are many works aiming to improve the computational complexi-
ty of Guruswami-Sudan list decoding algorithm. For example, Beelen et al. [1]
defined a general class of one-point algebraic-geometry codes and proposed a
more efficient algorithm for the interpolation step in the Guruswami-Sudan list
decoder and the complexity was improved to O(λ5n2 log2(λn) log log(λn)).

Suppose that the minimum distance of the [n, k] code C is d. In the case of u ≤
d/2, d−u ≤ tm, we analyze the probability that Algorithm FindCodeword(C, u, d)
successfully outputs a codeword of minimum weight.
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Theorem 3. For a [n, k, d] linear code C, let µ be the number of minimum
weight codewords. If u ≤ d/2 and d− u ≤ tm, then

Pr [ĉ← FindCodeword(C, u, d, tm) : wt(ĉ) = d] ≈
µ ·
(
d
u

)
(
n
u

)
(q − 1)u

, (4)

where µ is the number of minimum weight codewords in C.

Proof. It directly follows from Lemma 2.

3.2 The Final Algorithm of Finding Minimal Weight Codewords

With a correct guess of d, Algorithm FindCodeword(C, u, d) might be able to
output a codeword of minimum weight with some probability (determined by
(4)) according to Theorem 3. So we will try to guess the distance with d′ =
3, 4, . . . , n − k + 1. Given a specific guess d′ of the distance, we will invoke
FindCodeword(C, u, d′) multiple times. This leads to our final algorithm of finding
minimal weight codewords as shown below.

Algorithm MinWeiCodeword(C, Γ, tm, Tm):

Input: a [n, k] linear code C which is list-decodable with an unknown minimum
distance d; A set Γ which is a subset of {3, 4, . . . , n − k + 1}. We assume
that the elements in Γ is in ascending order. tm is the bound determined
by the list decoding algorithm and Tm is the maximal number of invoking
FindCodeword(C, u, d′).

Output: abort symbol ⊥ or a codeword ĉ ∈ C.
ĉ := ⊥; wt(ĉ) := n
For each d′ ∈ Γ (taking d′ in ascending order)

For u = d′ − tm to bd′/2c
For i = 1 to Tm

ĉ′ ← FindCodeword(C, u, d′, tm);
If wt(ĉ′) < wt(ĉ) then ĉ := ĉ′.

Return(ĉ)

For an [n, k, d] code C, as long as d ∈ Γ , the guess of d′ takes the val-
ue of d sooner or later. In case of d′ = d, the probability that Algorithm
FindCodeword(C, u, d) outputs a minimum weight codeword is given by (4) ac-
cording to Theorem 3. In MinWeiCodeword(C, Γ, Tm), there are Tm times of invo-
cations of FindCodeword(C, u, d) and u can take values from d− tm up to bd/2c.
Therefore, MinWeiCodeword successfully outputs a minimum distance codeword
with probability at least

Pr [ĉ← MinWeiCodeword(C, {d}, tm, Tm) : wt(ĉ) = d]

≥ 1−
bd/2c∏

u=d−tm

1−
µ ·
(
d
u

)
(
n
u

)
(q − 1)u


Tm

. (5)
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If the minimum distance d of C is known, then we can set Γ = {d}, then
MinWeiCodeword successfully outputs a minimum distance codeword with prob-
ability at least

Pr [ĉ← MinWeiCodeword(C, {d}, tm, Tm) : wt(ĉ) = d] ≈ 1−

1−
µ ·
(
d
u

)
(
n
u

)
(q − 1)u


Tm

.

(6)
This approach applies to all list decodable codes. For some linear [n, k, d]

codes over Fq, when the choices of n, k, d, q, tm make (5) noticeable, then it is
possible for us to find a codeword of minimum weight in polynomial time with
the help of Algorithm MinWeiCodeword(C, Γ, tm, Tm).

For any list decodable [n, k, d] code, if we already know d or have a correct
guess of d, Algorithm FindCodeword(C, u, d) might be able to output a codeword
of minimum weight with some probability (determined by (4)). Due to the fact
that d = u + t, given d we can always choose u as small as possible to make
the probability in (4) bigger, as long as t = d− u is allowable in the list decod-
ing algorithm. For AG code, The Guruswami-Sudan list decoding algorithm can
make t up to be tm = dn−

√
nke(This bound is called by GS bound or Johnson

bound). If new development on list decoding makes tm exceed the current bound
of dn −

√
nke, then Algorithm FindCodeword(C, u, d) will become more efficient

by setting smaller values for u. For example, if we have an efficient list decod-
ing algorithm to correct the maximum fraction of errors, i.e., tm = n − k (this
is called by the Singleton bound) for some codes, then the codeword of mini-
mum weight of these such codes can be efficiently computed using Algorithm
FindCodeword(C, u, d).

There do exist some codes, such as Folded Reed-Solomon Codes or Folded AG
codes, that achieve or approach Singleton bound of tm = n−k for every code rate
k/n [14, 15, 24]. However, it seems impossible for elliptic codes to have effective
list decoding algorithm to achieve or approach the Singleton bound, otherwise
P = NP is proved (due to the fact that the minimum distance problem of elliptic
codes is NP-hard under RP-reduction[4])!

3.3 Instantiation from elliptic code C[G,D]

Now we employ MinWeiCodeword(C, Γ = {n − k}, Tm) to find minimum weight
codewords of an [n, k, d] elliptic code C[G,D] with d = n − k (recall that it
is an easy problem if d = n − k + 1). The essential step is the invocation of
Guruswami-Sudan list decoding algorithm. Now we show the implementation of
Guruswami-Sudan list decoding for one-point elliptic codes (as far as we know, no
work is available suggesting the concrete implementations of Guruswami-Sudan
list decoding for EC codes).

For an elliptic curve E defined over Fq, let G = kO be a divisor of degree k
and D = P1 +P2 + . . .+Pn where Pi’s are rational points over E . Then C(G,D)
is an elliptic code. The first and important step of the Guruswami-Sudan list
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decoding algorithm for elliptic codes is finding out two types basis of L(lO): the
pole basis and zero basis.

It is easy to obtain the pole basis of L(lO), which is {φ1, φ2, ..., φl} :=
{1, x, y, x2, xy, x3, x2y, .., xiyj | j = 0 or 1, 2i+ 3j = l)}.

For each Pi, 1 ≤ i ≤ n, we will find a zero basis {ψj3,Pi
: 1 ≤ j3 ≤ l}

of L(lO) such that Pi is a zero of ψj3,Pi with multiplicity (or at least) j3 − 1.
Consider the principle divisor

div(fm,Pi
) = mPi + (−m · Pi)− (m+ 1)O.

If m < l, then div(fm,Pi
)+ lO is effective, hence div(fm,Pi

) ∈ L(lO). Meanwhile,
Pi is a zero of div(fm,Pi

) with multiplicity m. Set

ψ1,Pi = 1, ψ2,Pi = div(f1,Pi), ..., ψl,Pi = div(fl−1,Pi),

then for point Pi, we obtain a zero basis of L(lO). To compute the rational
function fm,Pi from the divisor mPi + (−m · Pi) − (m + 1)O, we can use the
method described in [22] and Chapter 11 in [35]. Note that {φi} and {ψj3,Pi} are
all the bases of vector spaces L(lO), so it is easy to get the set {aPi,j1,j3 ∈ Fq : 1 ≤
i ≤ n, 1 ≤ j1, j3 ≤ l} such that for every i and every j1, φj1 =

∑
j3
aPi,j1,j3ψj3,Pi

holds. The Interpolation step and the Root finding step just follow the the
original algorithm shown in subsection 2.4.

We show an implementation for an elliptic code via Magma[19]. Here is an
example.

The finite field is F127, The elliptic curve (over F127) is E : y2 = x3−3x+ 72.
The order of E(F127) is 137.

Let P = (44, 65) be a random point of E . Obviously 〈P 〉 = E(F127). Let O
the infinite point. Then 131P = O.

Set divisor G := 4O, and divisor D := P1 + P2 + . . . + P20 with supp(D) =
{P1 = P, P2 = (50, 9), P3 = (49, 90), P4 = (105, 83), P5 = (74, 43), P6 =
(114, 94), P7 = (120, 125), P8 = (40, 43), P9 = (112, 60), P10 = (36, 97), P11 =
(10, 91), P12 = (126, 70), P13 = (108, 126), P14 = (2, 57), P15 = (14, 19), P16 =
(46, 49), P17 = (90, 87), P18 = (7, 93), P19 = (54, 23), P20 = (36, 30)}. We get an
[n, k] Algebraic Geometric Code C[G,D] with n = 20, k = 4.

According to [13, 12], set l := 31 in the Guruswami-Sudan list decoding
algorithm for above [n, k] = [20, 4] elliptic codes. It is easy to see that

{φ1, φ2, ..., φ31} = {1, x, y, x2, xy, x3, x2y, .., x15, x14y}

is a pole basis of L(31O).

For each point Pi, we can obtain a zero basis of L(lO) using follows Magma
code:

for j:=1 to l do

T, ZB[j+1]:=IsPrincipal(j*Divisor(P_i)+Divisor((-j)P_i)-(j+1)*Divisor(O));

end for;
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In this way, we obtain 20 zero-bases of of L(31O). For example, a zero basis
for P20 = (36, 30) is
{1,

x + 91,

y + 94x + 15,

80y + 38x2 + 85x + 29,

(41x + 27)y + 88x2 + 112x + 25,

(124x + 91)y + 7x3 + 62x2 + 86x + 45,

(x2 + 48x + 75)y + 40x3 + 74x2 + 112x + 32,

(114x2 + 26x + 99)y + 34x4 + 29x3 + 125x2 + 107x + 92,

(30x3 + 33x2 + 86x + 113)y + 33x4 + 28x3 + 59x + 61,

(30x3 + 99x2 + 82x + 24)y + 114x5 + 121x4 + 119x3 + 10x2 + 89x + 78,

(8x4 + 46x3 + 41x2 + 46x + 105)y + 66x5 + 115x4 + 122x3 + 31x2 + 15x + 11,

(35x4 + 116x3 + 55x2 + 29x + 72)y + 91x6 + 89x5 + 18x4 + 31x3 + 100x2 + 37x + 38,

(55x5 + 49x4 + 102x3 + 72x2 + 32x + 82)y + 119x6 + 69x5 + 55x4 + 87x3 + 125x2 + 3x + 95,

(80x5 + 20x4 + 51x3 + 51x2 + 39x + 48)y + 117x7 + 57x6 + 71x5 + 40x4 + 90x3 + 59x2 + 103x + 73,

(106x6 + 105x5 + 17x4 + 85x3 + 92x2 + 107x + 13)y + 59x7 + 126x6 + 34x5 + 118x4 + 5x3 + 59x2 + 9x + 83,

(83x6 + 100x5 + 56x4 + 99x3 + 7x2 + 26x + 11)y + 15x8 + 53x7 + 39x6 + 101x5 + 80x4 + 3x3 + 27x2 + 95x + 7,

(32x7+109x6+91x5+16x4+66x3+32x2+52x+54)y+63x8+126x7+26x6+87x5+40x4+42x3+109x2+112x+40,

(119x7 + 10x6 + 111x5 + 45x4 + x3 + 40x2 + 53x + 26)y + 10x9 + 56x8 + 108x7 + 80x6 + 58x5 + 56x4 + 101x3 +

123x2 + 43x + 28,

(21x8 + 61x7 + 78x6 + 58x5 + 114x4 + 28x3 + 95x2 + 54x + 45)y + 63x9 + 111x8 + 119x7 + 9x6 + 88x5 + 123x4 +

112x3 + 44x2 + 86x + 111,

(29x8 + 21x7 + 115x6 + 75x5 + 98x4 + 13x3 + 5x2 + 21x + 1)y + 46x10 + 69x9 + 80x8 + 18x7 + x6 + 81x5 + 60x4 +

100x3 + 126x2 + 29,

(64x9 + 106x8 + 38x7 + 30x6 + 20x5 + 110x4 + 87x3 + 61x2 + 16x + 84)y + 79x10 + 15x9 + 10x8 + 9x7 + 123x6 +

104x5 + 73x4 + 73x3 + 126x2 + 65x + 103,

(57x9 + 80x8 + 41x6 + 52x5 + 102x4 + 81x3 + 5x2 + 92x + 26)y + 45x11 + 86x10 + 114x9 + 103x8 + 95x7 + 11x6 +

58x5 + 50x4 + 3x3 + 116x2 + 48x + 34,

(114x10 + 3x9 + 15x8 + 117x7 + 116x6 + 72x5 + 16x4 + 57x3 + 83x2 + 31x+118)y +2x11 + 33x10 + 74x9 + 20x8 +

112x7 + x6 + 83x5 + 78x4 + 55x3 + 69x2 + 47x + 67,

(108x10 +64x8 +14x7 +95x6 +67x5 +99x4 +113x3 +124x2 +35x+101)y +59x12 +5x11 +34x10 +2x9 +33x8 +

95x7 + 112x6 + 65x5 + 69x4 + 33x3 + 119x2 + 111x + 104,

(104x11 + 125x10 + 109x9 + 23x8 + x7 + 32x6 + 2x5 + 90x4 + 5x3 + 7x2 + 44x + 95)y + 7x12 + 103x11 + 74x10 +

88x9 + 81x8 + 83x7 + 124x6 + 116x5 + 39x4 + 91x3 + 120x2 + 29x + 39,

(25x11 +41x10 +58x9 +17x8 +77x7 +43x6 +90x5 +99x4 +109x3 +58x2 +30x+14)y +80x13 +97x12 +93x11 +

126x10 + x9 + 66x8 + 93x7 + 60x6 + 58x5 + 112x4 + 60x3 + 29x2 + 22x + 27,

(19x12 +101x11 +56x10 +94x9 +121x8 +60x7 +88x6 +41x5 +42x4 +71x3 +25x2 +21x+35)y +4x13 +29x12 +

101x11 + 119x10 + 81x9 + 110x8 + 122x7 + 97x6 + 46x5 + 121x4 + 51x3 + 23x2 + 15x + 75,

(45x12 + 34x11 + 30x10 + 65x9 + 111x8 + 11x7 + 96x6 + 62x5 + 123x4 + 59x3 + 39x2 + 82x + 94)y + 117x14 +

38x13 + 119x12 + 123x11 + 123x10 + 107x9 + 122x8 + 80x7 + 23x6 + 41x5 + 112x4 + 58x3 + 120x2 + 25x + 70,

(60x13 + 45x12 + 77x11 + 54x10 + 49x9 + 123x8 + 103x7 + 51x6 + 91x5 + 90x4 + 37x3 + 82x2 + 115x + 119)y +

77x14 + 62x13 + 20x12 + 58x11 + 44x10 + 24x9 + 34x8 + 59x7 + 77x6 + 75x5 + 34x4 + 99x3 + 9x2 + 25x,

(10x13 +29x12 ++43x11 +120x10 +37x9 +114x8 +57x7 +53x6 +112x5 +94x4 +60x3 +47x2 +77x+7)y+49x15 +

40x14 + 112x13 + 78x12 + 30x11 + 116x10 + 5x9 + 61x8 + 39x7 + 68x6 + 28x5 + 5x4 + 108x3 + 33x2 + 62x + 29,
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(47x14+16x13+81x12+25x11+36x10+119x9+107x8+120x7+30x6+72x5+28x4+125x3+95x2+35x+117)y+

60x15 +102x14 +x13 +85x12 +113x11 +59x10 +x9 +53x8 +108x7 +99x6 +13x5 +98x4 +60x3 +27x2 +122x+98,

(54x14 + 118x13 + 10x12 + 108x11 + 54x10 + 120x9 + 67x8 + 118x7 + 6x6 + 65x5 + 74x4 + 16x3 + 95x2 + 82x +

119)y + 10x16 + 20x15 + 76x14 + x13 + 54x12 + 88x11 + 6x10 + 102x9 + 74x8 + 96x7 + 73x6 + 110x5 + 76x4 +

62x3 + 106x2 + 119x + 15}

Now we assume that the received vector is

r = (24, 29, 87, 42, 99, 57, 25, 97, 49, 64, 58, 31, 97, 8, 120, 122, 34, 36, 64, 95).

Then we can construct a nonzero polynomialH(T ) ∈ L(lO)[T ] using the pole basis,
all the zero basis for each Pi and r, where
H(T ) = (52x14 +56x13 +44x12 +94x11 +107x10 +75x9 +96x8 +35x7 +23x6 +77x5 +118x4 +3x3 +61x2 +27x+

89)y+112x16+119x15+83x14+102x13+4x12+8x11+111x10+74x9+13x8+90x7+33x6+110x5+51x4+116x3+

111x2+18x+77+((43x12+93x11+118x10+92x9+8x8+61x7+25x6+91x5+25x4+88x3+109x2+119x+82)y+

81x14+47x13+61x12+47x10+27x9+50x8+36x7+55x6+x5+31x4+60x3+87x2+65x+90)T +((81x10+82x9+

90x8 +35x7 +114x6 +62x5 +124x4 +35x3 +29x2 +57x+10)y+22x12 +115x11 +124x10 +59x9 +104x8 +27x7 +

112x6+63x5+113x4+71x3+122x2+x+72)T2+((76x8+17x7+78x6+80x5+106x4+123x3+71x2+92x+23)y+

5x10+24x9+45x8+5x7+46x6+84x5+87x4+13x3+96x2+56x+19)T3+((125x6+59x5+79x4+80x3+113x2+

3x+55)y+35x8+74x7+100x6+49x4+x3+74x2+124x+88)T4+((37x4+35x3+37x2+74x+36)y+119x6+52x5+

125x4+73x3+119x2+67x+52)T5+((41x2+49x+80)y+61x4+5x3+55x2+44x+115)T6+(59y+21x2+119x+53)T7.

In the Root finding step, we obtain two roots of H(T ), which are 68+8x+
23y+66x2 and 81+102x+100y+37x2 respectively. Consequently, the decoding
results are

c1 := (24, 67, 87, 90, 99, 72, 25, 43, 49, 112, 78, 85, 97, 8, 91, 122, 52, 36, 64, 95)

c2 := (24, 29, 46, 42, 38, 57, 91, 97, 49, 64, 58, 31, 97, 37, 120, 81, 34, 97, 84, 95)

It is easy to verify that they are both valid codewords, and the distance of
c1 and r is 7, and distance of c2 and r is 9. Meanwhile,

c1 − c2 = (0, 38, 41, 48, 61, 15, 61, 73, 0, 48, 20, 54, 0, 98, 98, 41, 18, 66, 107, 0)

is a minimum-weight codeword.

4 New Approach to ECDLP

4.1 A Warm-Up

Let us first discuss the relation between ECDLP and minimum-weight codewords
of EC code. Let E be an elliptic curve defined over Fq, E(Fq) be the elliptic curve
group, P1, P2, . . . , Pn ∈ E(Fq), and G be a divisor of degree k. Let C(G,D) be the
EC code determined by divisors G and D = P1+P2+ . . .+Pn. We know that the
minimum distance d of C(G,D) is either n−k or n−k+1. If d = n−k+1, then
the EC code is a MDS code, otherwise the EC code is an almost MSD (AMDS)
code. Whether C(G,D) is an MDS code or an AMDS code depends on whether
there exist {Pi1 , Pi2 , . . . , Pik} ⊆ (P1, P2, . . . , Pn) such that Pi1 +Pi2 +. . .+Pik−G
is a principal divisor.
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It is easy to find a codeword of minimum weight for a MDS-EC code. As for
AMDS-EC code, we show that finding codewords of minimum weight is closely
related to solving ECDLP problems (see the following theorem).

Theorem 4. Let E be an elliptic curve over Fq. Let P be a point over group
E(Fq). Suppose the order of P is a prime p. Let n = dlog2 pe. For any point Q
from subgroup 〈P 〉, define an elliptic code C(G,D) with divisor G := Q+(k−1)O
and divisor D := P + 2P + . . .+ 2n−1P . If there exists an algorithm A who can
find a codeword of minimum weight in C(G,D) with probability ε, then another
algorithm B can be constructed to solve the ECDLP problem s := logP Q with
probability ε/(n+ 1).

Proof. Suppose that B has an ECDLP instance (Fq, E(Fq), `, Q, P ) where P is
a generator of subgroup G of prime order p and Q ∈ G. B aims to determine
s ∈ Zp such that Q = sP .

Express s ∈ Zp with binary string s = (s1, s2, . . . sn) with n = dlog2 pe. B
constructs an EC code to solve the ECDLP as follows.

Algorithm B
Input: (Fq, E(Fq), p,Q, P )
Output: s′

(1) k ← {0, 1, . . . , n}.
(2) Define divisor G = Q+ (k − 1)O of degree k.
(3) Let Pi = 2i−1P for i = 1, 2, . . . , n;
(4) Define divisor D = P1 + P2 + . . .+ Pn;
(5) Construct an EC code C(G,D);
(6) Invoke algorithm A to find a codeword c = (c1, c2, . . . , cn) of minimum

weight for the EC code C(G,D).
(7) Suppose the nonzero components in c are ci1 , ci2 , . . ., cik . Then compute

s′ =
∑k
j=1 2ij−1.

(8) Return(s′)

Note that k is randomly chosen from {0, 1, . . . , n}. Obviously, the probability
that k = wt(s) is 1/(n+ 1).

Now we assume that the event k = wt(s) happens, or equivalently, the
event that C(G,D) constructed by B is an AMDS-EC code happens. Since
s = (s1, s2, . . . sn), we have Q =

∑n
i=1 siPi. If si1 = si2 = . . . = sik = 1

and sj = 0 for j /∈ {i1, i2, . . . , ik}, then Q =
∑k
j=1 sijPij .

Define a principal divisor div(f) := Pi1 + Pi2 + . . . + Pik − Q − (k − 1)O.
It is easy to see that div(f) ∈ L(G) since div(f) +G is effective. Consequently,
c := (f(P1), f(P2), . . . , f(Pn)) is a codeword of C(G,D), and f(Pi) = 0 iff i ∈
{i1, i2, . . . , ik}.

If A successfully outputs a codeword of minimum weight, then the codeword
c must be of weight n− k. According to Theorem 2, the principal divisor div(f)
suggests that Pi1 + Pi2 + . . .+ Pik −Q− (k − 1)O is O when ”+” and ”−” are
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implemented with the elliptic curve group operation. As a result, Q = Pi1 +

Pi2 + . . .+ Pik holds on the group of E(Fq), hence Q =
∑k
j=1 2ij−1P .

In this way, B solves the ECDLP probem by invoking algorithm A with
probability ε/(n+ 1).

Note that in Section 3, we construct algorithm MinWeightCode which outputs

codewords of minimum weight with probability 1−

1−
µ·

n− k
u


n
u

(q−1)u


Tm

. Hence

we can construct B to solve the ECDLP problem with probability

1

n+ 1
·

1−

1−
µ ·
(
n− k
u

)
(
n
u

)
(q − 1)u


Tm
 .

Take the example in subsection 3.3. Let P = P1, Q = P9. Let r1 = 1
and choose r2 = 29, r3 = 93, r4 = 49, r5 = 5, r6 = 98, r7 = 54, r8 = 10, r9 =
103, r10 = 59, r11 = 15, r12 = 108. Then P10 = 29Q,P11 = 93Q,P12 = 49Q,P13 =
5Q,P14 = 98Q,P15 = 54Q,P16 = 10Q,P17 = 103Q,P18 = 59Q,P19 = 15Q,P20 =
108Q. The output of MinWeiCodeword is the minimum-weight codeword

(0, 38, 41, 48, 61, 15, 61, 73, 0, 48, 20, 54, 0, 98, 98, 41, 18, 66, 107, 0).

Therefore, P1+P9+P13+P20 = O, which means 1+s+5s+108s ≡ 0 mod 137.
This immediately leads to a correct output of s = 6 since Q = 6P .

4.2 The Algorithm of Solving ECDLP

In the proof of the theorem in the previous subsection, algorithm B wins only
if it correctly guesses the Hamming weight of s(= logP Q). Hence the security
reduction suffers from a security loss of factor (n+ 1). In this subsection, we try
to decrease the security loss factor. We have two observations.

(1) For a random s ∈ Zp, the hamming weight of s belongs to {0, 1, . . . , dlog2 pe)}
and it takes the value of d(log2 p+ 1)/2e with the maximal probability.

(2) If we increase the number of elements in the support of D and add random
elements in the support of divisor D, it is possible for us to improve the
probability that ∃i1, i2, . . . , ik such that Pi1 +Pi2 + . . .+Pik −G is principal
divisor. Hence, the probability of C(G,D) being an AMDS-EC code will be
greatly increased.

Based on the above observations, we present a probabilistic algorithm of solv-
ing ECDLP by constructing AMDS-EC codes and finding codewords of minimum
weight with help of list decoding.
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Let P be a point of prime order p in the group E(Fq), where E is an elliptic
curve defined over Fq. Given P and Q(= sP ) ∈ 〈P 〉 and the parameter of E ,
the following algorithm SolveECDLP aims to compute s (= logP Q) by invoking
MinWeiCodeword which aims to find minimum weight codeword of elliptic codes.

Algorithm SolveECDLP(E(Fq), P,Q, p):
Input: An elliptic curve group E(Fq), a generator P of prime order p, and an
element Q ∈ 〈P 〉.
Output: s ∈ Zp (such that Q = sP ).

1. Define θ := dlog2 pe, n := 2θ, k := b(θ + 1)/2c. If wt(p) = k, then k :=
b(θ + 1)/2c+ 1.

2. Define divisor G := kO and Define Pi := 2i−1P for i = 1, 2, . . . , θ.
3. Randomly choose r2, r3, . . . , rn−θ from Zp. Set r1 := 1 and define Pθ+j :=
rjQ for j = 1, 2, . . . , n− θ.

4. Construct an Elliptic code C(G,D) where divisor D = P1 + P2 + . . .+ Pn.
5. Set tm = n−

√
nk and Tm = O(poly(n)).

6. Invoke c← MinWeiCodeword(C(G,D), {n− k}, tm, Tm);
7. If c = ⊥, goto Step 3.
8. If c 6= ⊥, then wt(c) = n − k. Parse c = (c1, c2, . . . , cn). Suppose the zero

components of c are ci1 , ci2 , . . . , cik .
9. Suppose ij−1 ≤ θ and ij > θ, then compute s′ :≡ −(rij−θ + rij+1−θ + . . . +
rik−θ)

−1(2i1−1 + 2i2−1 + . . .+ 2ij−1−1) mod p.
10. If Q = s′P then Return(s′); else Return(⊥).

In the above algorithm, it is possible for us to choose the parameters n and
k flexibly as to optimize the algorithm.

4.3 Analysis of Algorithm SolveECDLP

Now we analyze the success probability of Algorithm SolveECDLP via the proof
of the following theorem.

Theorem 5. Let E be an elliptic curve over Fq. Let P be a point over group
E(Fq). Suppose the order of P is a prime p. Let θ := dlog2 pe, n := 2θ, k :=
b(θ + 1)/2c, u ≤ (n − k)/2 and u ≥ n − k − tm. then algorithm SolveECDLP
successfully solves the ECDLP problem with probability1−

1−

(
θ

k − 1

)
2θ


n−θ ·

1−

1−
λ ·
(
n− k
u

)
(
n
u

)
(q − 1)u−1


Tm
 ·

(
1− 1

p

)
,

where λ denotes the number of subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such
that G−

∑
j∈J Pj is a principal divisor.
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Proof. Note that the Elliptic Code C(G,D) is an AMDS code iff there exists a
principal divisor div(f) := Pi1 +Pi2 + . . .+Pik −kO ∈ L(G). Equivalently, there
exist Pi1 , Pi2 , . . . , Pik such that Pi1 + Pi2 + . . .+ Pik + kO = O, i.e,

Pi1 + Pi2 + . . .+ Pik = O,

where the addition is over the elliptic group E(Fq). There are three cases all
together.

Case I: i1 ≤ θ and ik > θ. In this case, suppose that ij−1 ≤ θ and ij > θ, then
(2i1−1 + 2i2−1 + . . .+ 2ij−1−1)P + (rij−θ + rij+1−θ + . . .+ rik−θ)Q = O, that
is, −(rij−θ + rij+1−θ + . . .+ rik−θ)s ≡ (2i1−1 + 2i2−1 + . . .+ 2ij−1−1) mod p.

Case II: i1 > θ. In this case, (ri1−θ + ri2−θ + . . . + rik−θ)Q = O, i.e., ri1−θ +
ri2−θ + . . .+ rik−θ ≡ 0 mod p.

Case III: ik ≤ θ. In this case, (2i1−1 + 2i2−1 + . . .+ 2ik−1)P = O, i.e., (2i1−1 +
2i2−1 + . . .+2ik−1) ≡ 0 mod p. Recall that θ := dlog2 pe, and k = bθ/2c+1.
Then (2i1−1 + 2i2−1 + . . .+ 2ik−1) < 2p.

Clearly, Case II happens with probability 1/p when r`’s are randomly chosen,
` ∈ {2, 3, . . . , n− θ}, and Case III never happens since wt(p) 6= k.

Now we consider the probability that C(G,D) is an AMDS code, when
s, r2, . . . rn−θ are randomly chosen from Zp.

Pr [C(G,D) is AMDS]

= Pr [∃i1, . . . , ik ∈ [n] s.t. divisor Pi1 + Pi2 + . . .+ Pik −G is principal]

= Pr [∃i1, . . . , ik ∈ [n] s.t. Pi1 + Pi2 + . . .+ Pik = O] (addition is over E(Fq))
= Pr [∃i1, . . . , ik ∈ [n] s.t. Case I happens] + Pr [∃i1, . . . , ik ∈ [n] s.t. Case II happens]

+ Pr [∃i1, . . . , ik ∈ [n] s.t. Case III happens]

= 1/p+ Pr [∃i1, . . . , ik ∈ [n] s.t. Case II happens] + 0 (7)

≥ Pr [∃i1, . . . , ik s.t. Case II happens]

= Pr

[
∃i1, . . . , ik ∈ [n]
∃ij−1 ≤ θ, ij > θ

: −(rij−θ + . . .+ rik−θ)s = (2i1−1 + . . .+ 2ij−1−1) mod p

]
≥ Pr

[
∃i1, . . . , ik ∈ [n]
∃ik > θ

: −rik−θs = (2i1−1 + . . .+ 2ik−1−1) mod p

]
= 1− Pr

[
@ik, ik ∈ [n], ik > θ s.t. − rik−θs = (2i1−1 + . . .+ 2ik−1−1) mod p

]
= 1−

1−

(
θ

k − 1

)
2θ


n−θ

. (8)

Given that C(G,D) is an AMDS elliptic code, then the minimum distance of
C(G,D) is d = n−k. According to (6), MinWeiCodeword(C(G,D), {n−k}, tm, Tm)
successfully outputs a codeword c = (c1, c2, . . . , cn) of minimum weight with
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probability

1−

1−
λ ·
(
n− k
u

)
(
n
u

)
(q − 1)u−1


Tm

.

Suppose that the zero components of the minimum weight codeword c are
given by ci1 , ci2 , . . . , cik . Then it must hold that Pi1 + Pi2 + . . . + Pik = O.
Similarly, there are three cases: i1 ≤ θ and ik > θ; i1 > θ; ik ≤ θ. As analyzed
before, the second case happens with probability 1/p and the third case never
happens. Therefore, the first case happens with probability 1− 1/p. Meanwhile
the first case means that ∃ij−1 ≤ θ, ij > θ, so that

(2i1−1 + 2i2−1 + . . .+ 2ij−1−1)P + (rij−θ + rij+1−θ + . . .+ rik−θ)Q = O,

i.e.,

s ≡ −(rij−θ + rij+1−θ + . . .+ rik−θ)
−1(2i1−1 + 2i2−1 + . . .+ 2ij−1−1) mod p.

In this case, Algorithm SolveECDLP successfully solves the ECDLP problem.

Consequently,

Pr [SolveECDLP succeeds] (9)

= Pr [C(G,D) is AMDS ∧MinWeiCodeword succeeds ∧ Case I happens] (10)

= Pr [C(G,D) is AMDS] (11)

·Pr [MinWeiCodeword succeeds | C(G,D) is AMDS] (12)

·Pr [Case I happens | MinWeiCodeword succeeds, C(G,D) is AMDS] (13)

=

1−

1−

(
θ

k − 1

)
2θ


n−θ ·

1−

1−
λ ·
(
n− k
u

)
(
n
u

)
(q − 1)u−1


Tm
 · (1− 1

p
),(14)

where λ denotes the number of subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such
that G−

∑
j∈J Pj is a principal divisor.

Remark. The probability of (8) only shows a lower bound of the probability
that C(G,D) is an AMDS code. Even if it is only a lower bound, (8) is already
close to 1 (as compared with the loss factor 1/(n+1) in the previous subsection).
For instance, now we choose the ECC curve ECCp-131 over a prime field of
131-bit to construct a EC code, then θ = 131, k = 66. Take n = 262, then the
probability is at least 0.99992.

Recall that in algorithm MinWeiCodeword(C(G,D), {n − k}, tm, Tm), there
are Tm times of invocations of FindCodeword(C(G,D), u, d, tm). For each invoca-
tion, FindCodeword succeeds in finding a codeword of minimum weight via the
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Guruswami-Sudan list decoding with probability

Pr [ĉ← FindCodeword(C, u, d, tm) : wt(ĉ) = d] ≈
λ ·
(
d
u

)
(
n
u

)
(q − 1)u−1

. (15)

Therefore, the times Tm of invocations of FindCodeword should be of order(
n
u

)
(q − 1)u−1

λ ·
(
d
u

) (16)

for MinWeiCodeword to succeed. Algorithm FindCodeword is dominated by the list
decoding algorithm. Recall that list decoding algorithms, either the Guruswami-
Sudan or Shokrollahi-Wasserman algorithm [30], are polynomial-time algorithms
in the codeword length. However, the probability (15) is too small to make Tm a
polynomial. Therefore, the algorithm SolveECDLP is not efficient, and it is even
not of square-root time algorithm. To decrease the computational complexity of
SolveECDLP, a possible way is to increase the error bound tm of the list decoding.
Recall that u+ t = d and t ≤ tm. A larger tm implies that we can take a small
value of u, so the probability in (15) will be improved which in turn to decrease
the computational complexity of SolveECDLP. On the other hand, for a concrete
security parameter κ such that q ≈ 2κ, a more efficient list decoding algorithm
will also help us to improve the efficiency of SolveECDLP.

5 Conclusion

We proposed a new method to solve the ECDLP problem. For any ECDLP, we
first construct an Elliptic Code, then resort to techniques of List Decoding to
find codewords of minimum weight. With such a codeword, we are able to solve
the ECDLP problem. Our method of solving ECDLP is still not efficient enough,
due to the small probability of finding minimum-weight codeword. Nevertheless,
this is a totally new approach and we believe the efficiency can be improved with
the new development of List Decoding.
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