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Abstract. We discuss how to recover a secret bitstring given partial information
obtained during a computation over that string, assuming the computation is a
deterministic algorithm processing the secret bits sequentially. That abstract situ-
ation models certain types of side-channel attacks against discrete logarithm and
RSA-based cryptosystems, where the adversary obtains information not on the
secret exponent directly, but instead on the group or ring element that varies at
each step of the exponentiation algorithm.

Our main result shows that for a leakage of a single bit per iteration, under suitable
statistical independence assumptions, one can recover the whole secret bitstring
in polynomial time. We also discuss how to cope with imperfect leakage, extend
the model to k-bit leaks, and show how our algorithm yields attacks on popular
cryptosystems such as (EC)DSA.
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1 Introduction

Many cryptographic algorithms iterate over a secret sequence of bits. This is the case for
example in typical implementations of the exponentiation algorithms used in discrete
logarithm and RSA-based cryptosystems. In such cases, one may hope to learn about
the secret bits by observing side-channel leakage during computation. This is the basis
of many side-channel attacks based on simple power analysis (SPA), including Kocher’s
seminal work [Koc96, KJJR11] and many followups.

However, there are cases in which the relationship between computation and leak-
age is nontrivial. For instance, if we consider a double-and-add scalar multiplication on
an elliptic curve, the leakage of one bit of the x-coordinate of each intermediate point
in the computation should be enough in an information-theoretic sense to recover the
secret scalar, but it seems hard to write down an expression of the scalar in terms of that
leakage. We also note that such a leakage can in fact occur in concrete attack settings:
we discuss one such setting in Appendix A, where an attacker does obtain this type of
leakage using a so-called “hardware trojan horse”.

Although the relationship between the leakage and the secret can be quite involved,
the structure of the algorithm, which iterates over secret bits sequentially, ensures that
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the leakage at the i-th iteration depends only on the first i bits of the secret. If the
algorithm is deterministic and the leakage is perfect, the leakage at the i-th iteration can
therefore be viewed as a deterministic function of the i-bit prefix of the secret bitstring.
This leads us to define the following general problem: recover a bitstring s ∈ {0, 1}n
given the leakage vector:

f(s) =
(
f1(s[1:1]), f2(s[1:2]), . . . , fn(s[1:n])

)
∈ {0, 1}n

where s[1:i] ∈ {0, 1}i is the i-bit prefix of s, and the functions fi are regarded as known,
independent random functions with values in {0, 1}.

We show that this problem can be solved in expected polynomial time, in the sense
that there is an algorithm with expected polynomial running time which outputs the list
of all possible solutions to the problem (which is, in particular, of expected polynomial
length). We also initiate the study of what happens when the leak is imperfect (e.g., due
to noise considerations), and when more than a single bit of leakage is known to the
attacker.

From a side-channel perspective, the algorithm we consider is a “single-trace” at-
tack, in the sense that it recovers the secret from the leakage of a single execution of the
target algorithm. In particular there is no notion of adaptive queries from the adversary
in that context, which sets us apart from such questions as hardcore bits, and allows
our attack to work in the presence of a large class of classical side-channel counter-
measures, often designed to protect against multi-trace attacks like differential power
analysis.

2 The secret prefix random leakage problem

Let s be an n-bit secret. Let f1, . . . , fn be functions fj : {0, 1}j → {0, 1}k, which are
modeled as independent random oracles. Let s[1:i] denote the i-bit prefix of s for every
i = 1, . . . , n. This paper considers the following problem.

Definition 1 (k-leak recovery problem). Given the functions fj and the vector

f(s) =
(
f1(s[1:1]), f2(s[1:2]), . . . , fn(s[1:n])

)
∈ {0, 1}k·n,

recover the value of s.

We will also discuss harder variants of this problem where the adversary is not given
the vector f(s) exactly, but only gets partial information about it.

These are abstractions of a situation arising in certain real-world side-channel attack
settings, such as the one discussed in Appendix A.

The main concrete example of this problem that we consider throughout the paper
is the case when the secret s is the secret exponent used in a discrete logarithm-based
cryptosystem, which computes gs using a (possibly side-channel protected) square-and-
multiply algorithm, for some known group generator g. The function fj is then some
k-bit leakage function on the variable that contains the intermediate group element at
iteration j of the square-and-multiply; for example, if the group is an elliptic curve, fj
could be the k lowest order bit of the x-coordinate of the intermediate curve point at
iteration j.
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3 A polynomial time algorithm for 1-bit leaks

We first consider the special case of the problem described in Definition 1 when k = 1.
In this case already, we expect the problem to be tractable in an information-theoretic
sense, since we get n independent bits of information on the n-bit secret s. However,
recovery is not a priori trivial.

A simple approach to solve the problem is to simply reconstruct the entire list of
all possible i-bit prefixes of s compatible with the provided leakage f(s), successively
for i = 1, 2, . . . , n. This amounts to building a binary tree of possible prefixes as in
Figure 1, starting from the empty string ε at the root, and with i-bit prefixes at level i.
Going down one level, we double the set of candidate prefixes of the secret exponent by
extending them either by 0 or 1, and then remove all the candidates that are incompatible
with the new bit of information. Our key observation is that, under the right conditions,
this pruning compensates the tree’s growth, so that the algorithm terminates in expected
polynomial time.

Concretely, upon extending a candidate with a bit, the probability that the new can-
didate is correct is expected to be 1/2, independently for all candidates. In particular,
a node in the tree of possible candidates should have 0, 1 or 2 children according as
whether none, either, or both of its extensions by 0 and 1 are compatible with ob-
servations; this happens with probability 1/4, 1/2 and 1/4 respectively for all nodes,
independently. Thus, our recovery algorithm is a search in a Galton–Watson tree with
p1 = 1/2, p0 = p2 = 1/4 and pk = 0 for all k > 2 in the sense of the following
definition.

Definition 2 (Galton–Watson process). A Galton–Watson process {Zn}n≥0 with off-
spring distribution F = {pk}k≥0 is a discrete-time Markov chain taking values in the
set Z+ of non negative integers, and whose transition probabilities are as follows:

Pr [Zn+1 = k | Zn = m] = p∗mk ,

where {p∗mk } denotes the m-th convolution power of the distribution {pk}, i.e. the con-
ditional distribution of Zn+1 given that Zn = m is the distribution of the sum ofm i.i.d.
random variables each with distribution {pk}. A Galton–Watson tree is a random tree
with offspring distribution {pk} is a random tree in which each node independently has
k offspring with probability pk for all k ≥ 0; it satisfies that the number Zn of nodes at
level n is given by a Galton–Watson process.

In our case, each node in the tree has on average µ =
∑∞

k=0 kpk = 1 child: in other
words, we have a critical Galton–Watson process, so that E[Zn] = µnE[Z0] = 1. In

ε
0
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Fig. 1. Illustration of the algorithm as it runs: starting from the empty prefix ε (in the
center), candidate prefixes are generated and appended as children. Prefixes that are
incompatible with observations f(x) are pruned.
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Table 1. Simulation of the discrete logarithm computation in the 1-leak model, in the
discrete log groups specified in RFC 5114. The leakage bit is recovered with probability
p (see Section 4 for the case p < 100%). Simulation in Sage run on a single core of
Xeon E5-2697v3 workstation. Average over 100 trials for each parameter set.

p = 100% p = 99% p = 97% p = 95%

Space CPU time Space CPU time Space CPU time Space CPU time

160-bit group 6.6 · 103 50 ms 1.4 · 104 113 ms 4.8 · 104 430 ms 5.2 · 105 5.8 s

224-bit group 1.3 · 104 140 ms 2.6 · 104 300 ms 2.9 · 105 4.3 s 4.3 · 106 73 s

256-bit group 1.8 · 104 220 ms 4.7 · 104 600 ms 1.4 · 106 25 s — —

particular, the size of the full search space, which is given by Z1 + · · · + Zn, does not
undergo a combinatorial explosion. There are several ways to implement the Galton–
Watson simulation; one possibility is to keep a pool of candidates from which new
candidates are generated and pruned. This gives the algorithm of Figure 2.

We implemented this algorithm in the setting of square-and-multiply leaks in group
exponentiations discussed in Section 2; implementation results are provided in (the first
column of) Table 1. We can see in the table that the size of the search space increases
quadratically rather than linearly with the bit length n of the exponent (despite the
fact that E[Z1 + · · · + Zn] = n). This is because we are looking at a Galton–Watson
tree conditioned on having at least one node at depth n, and we can show that E[Z1 +
· · · + Zn | Zn 6= 0] = Ω(n2): see the discussion below. Nevertheless, our attack is
polynomial and very practical for cryptographic sized problems, as exemplified by the
simulations in Table 1.

Our algorithm is reminiscent of the cold boot attack of Heninger and Shacham
against factorization [HS09] and its numerous follow-ups, such as [HMM10, PPS12,

Secret recovery from 1-bit leakage information:
Input: f(s) = (y1, . . . , yn).
Output: set Xn of all s∗ ∈ {0, 1}n such that f(s∗) = f(s).

1. X0 ← {ε}
2. for i = 1, . . . , n
3. Xi ← ∅
4. for each π ∈ Xi−1

5. if fi(π ‖ 0) = yi then Xi ← Xi ∪ {π ‖ 0}
6. if fi(π ‖ 1) = yi then Xi ← Xi ∪ {π ‖ 1}
7. return Xn

Fig. 2. Recovery of a secret in the 1-bit leak model
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KSI13, KH14]. This is interesting, as these cold boot attacks do not really have a nat-
ural polynomial-time counterpart in the discrete logarithm setting (even the attack of
Poettering and Sibborn [PS15] is basically exponential). Applied to a leaky exponenti-
ation algorithm, our algorithm of side-channel provides such a counterpart. Moreover,
like in the extensions of the original attack of Heninger and Shacham, one can consider
variants of our attack model in which the leak is altered (bit flips, or analog noise, rather
than erasures). We discuss some generalizations of that nature in the next section.

Galton–Watson conditioning and search space growth. We now explain why the search
space for the critical Galton–Watson search described above is found to increase quadrat-
ically (see Table 1). This is due to the fact that our Galton–Watson tree is guaranteed to
have a node at depth n. In other words, the average search space size that we want to
estimate is E[Z1 + · · ·+Zn | Zn 6= 0], where Zi is the number of nodes at depth i. Our
analysis relies on the following result.

Proposition 1. Consider a Galton–Watson process {Zn}n≥0 with Z0 = 1, with off-
spring distribution {pk}k≥0, which is critical, i.e. µ =

∑
k≥0 kpk = 1, and non trivial,

in the sense that p1 6= 1. Denote by f the generating function of the offspring distribu-
tion:

f(x) =

+∞∑
k=0

pkx
k.

and assume that f ′′(1) < +∞. Then the following asymptotic estimate holds:

Pr[Zn 6= 0] ∼
n→+∞

2

f ′′(1)
· 1

n
.

Proof. Note first that under the assumptions of the theorem, we have f(1) = 1 (because
{pk} is a probability distribution) and f ′(1) = 1 (because of criticality). As a result, we
claim that f ′′(x) > 0 for x > 0. Indeed, f ′′(x) =

∑
k≥2 k(k − 1)pkx

k−2 is certainly
non negative, and can only vanish if pk = 0 for all k ≥ 2. But if that were the case, we
would get p1 = f ′(1) = 1, contradicting non triviality.

As a consequence, we must have f(x) > x for all x ∈ [0, 1). Indeed, the function
g(x) = f(x) − x satisfies g′′ = f ′′, and is thus strictly convex over [0, 1]. Hence
g′ = f ′ − 1 is monotonically increasing, and it vanishes as 1, hence g′ < 0 over [0, 1).
By the same argument, this implies f(x) > x for all x ∈ [0, 1) as required.

Now, let un = Pr[Zn = 0] and vn = 1 − un = Pr[Zn 6= 0]. By definition of the
Galton–Watson process, the sequence (un) satisfies the recurrence relation u0 = 1 and
un+1 = f(un). By the argument above, the sequence (un) is strictly increasing, and
since it is bounded by 1, it must converge to the only fixed point of f in [0, 1], which is
1. In particular, vn tends to 0, and using the Taylor expansion of f at 1, we get:

vn+1 = 1− un+1 = 1− f(1− vn) = 1−
(
f(1)− f ′(1)vn +

f ′′(1)

2
v2n + o(v2n)

)
= vn ·

(
1− f ′′(1)

2
vn + o(vn)

)
.
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Raising this relation to the power −1 yields:

v−1n+1 = v−1n ·
(

1− f ′′(1)

2
vn + o(vn)

)−1
= v−1n ·

(
1 +

f ′′(1)

2
vn + o(vn)

)
= v−1n +

f ′′(1)

2
+ o(1).

This shows that v−1n+1 − v−1n converges to f ′′(1)
2 as n → +∞, and hence, by Cesàro’s

lemma:

lim
n→+∞

v−1n

n
=
f ′′(1)

2

which is exactly what we needed to prove.

From Proposition 1, we can easily obtain the asymptotic behavior of the conditional
expectation E[Zn | Zn 6= 0]. Indeed, we have:

1 = E[Zn] = E[Zn | Zn = 0] · Pr[Zn = 0] + E[Zn | Zn 6= 0] · Pr[Zn 6= 0]

= 0 + E[Zn | Zn 6= 0] · Pr[Zn 6= 0].

As a result:

E[Zn | Zn 6= 0] =
1

Pr[Zn 6= 0]
∼

n→+∞

f ′′(1)

2
· n.

In our case of interest, p0 = p2 = 1/4, p1 = 1/2 and pk = 0 for k ≥ 2, so that
f ′′(1) = 1/2. Thus E[Zn | Zn 6= 0] ∼ n/4.

What we want to estimate is E[Z1 + · · ·+ Zn | Zn 6= 0] =
∑n

j=1 E[Zj | Zn 6= 0].
To do so, we can observe that

E[Zj | Zj 6= 0] ≤ E[Zj | Zn 6= 0] ≤ E[Zn | Zn 6= 0].

Hence the series
∑n

j=1 E[Zj | Zn 6= 0] is asymptotically bounded below by
∑n

j=1 j/4 ∼
n2/8 and above by n · n/4 ∼ n2/4. As a result, we obtain

E[Z1 + · · ·+ Zn | Zn 6= 0] = Ω(n2)

as required, with the implied constant between 1/8 and 1/4. This reflects the results of
Table 1.

Dealing with imperfect information. A central argument in the polynomial-time exe-
cution of the algorithm in the noiseless case is that every additional bit of information
allowed to (safely) prune on average half of the candidates, compensating exactly the
tree’s growth. This argument no longer holds under imperfect information, as prun-
ing may eliminate correct candidates (or conversely keep in the pool incorrect ones),
resulting in a blowup and/or incorrect results.

If we have less than one bit of information at each generation, the population grows
exponentially (i.e. µ > 1). In Table 1 we indicate the probability p of the leaked bit
being correct, and simulate the corresponding blowup when p is slightly less that 100%.
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Table 2. Computation in the k-leak model, in the 256-bit discrete log group of RFC
5114, in the all-or-nothing model (at each iteration, all k bits are recovered with prob-
ability p, and nothing is recovered otherwise). The probability pcrit = 2k−1/(2k − 1)
is the theoretical bound for a polynomial-size search tree. Average over 100 trials for
each parameter set.

p = 80% p = 70% p = 60% p = 50%

pcrit Space CPU time Space CPU time Space CPU time Space CPU time

k = 2 66% 990 14 ms 1500 16 ms 2.3 · 104 250 ms — —

k = 3 57% 280 5 ms 400 7 ms 1120 13 ms 1.1 · 104 120 ms

k = 4 53% 240 5 ms 330 6 ms 630 9 ms 2010 25 ms

Table 3. Computation in the k-leak model, in the 256-bit discrete log group of RFC
5114, in the bitwise model (at each iteration, each of the k bits is recovered with proba-
bility p). The probability pcrit = 2·(1−2−1/k) is the theoretical bound for a polynomial-
size search tree. Average over 100 trials for each parameter set.

p = 60% p = 50% p = 40% p = 30%

pcrit Space CPU time Space CPU time Space CPU time Space CPU time

k = 2 59% 3500 50 ms — — — — — —

k = 3 41% 550 10 ms 890 15 ms 5.1 · 104 870 ms — —

k = 4 32% 370 9 ms 480 11 ms 930 18 ms 1.2 · 104 190 ms

4 Recovery with imperfect k-bit leakage

We now turn our attention to a more general setting, in which the leakage at each iter-
ation consists of k-bit values, but is not always recovered exactly. More precisely, we
consider two possible models: in the simpler “all-or-nothing” model, for each step j,
the k-bit leakage at step j is recovered in its entirety with some probability p, and not at
all otherwise; in the more involved “bitwise” model, each bit of leakage independently
has probability p of being recovered.

The algorithm of Figure 2 extends directly to both settings: pruning is simply done
with all the available information at each step instead of just a single bit. The question
is then to determine under which condition on k and p the number of candidates and
the running time are expected to remain polynomial. We address this question below.

All-or-nothing model. In the all-or-nothing model, at each iteration, all k bits of leakage
are recovered exactly with some probability p, and with probability 1−p, no information
is available at all.



8

Mathematically, this yields a generation-dependent Galton–Watson process: with
probability p there will be an average of 21−k offsprings, and with probability 1 −
p there will be an average of 2 offsprings. It turns out that the expected number of
nodes at depth n is then exactly the product of the expected numbers of offsprings at
each generation [Fea72, Proposition 4]. As a result, after n iterations, of which ` were
successful extractions (we learned all k bits) and n− ` failed (we learned nothing), the
average number of offsprings is µ` = (2−k+1)` · 2n−`. Naturally, we do not know `, so
that we have to compute the weighted sum over all possible values:

µ =

n∑
`=0

(
n

`

)
p`(1− p)n−lµ` =

n∑
`=0

(
n

`

)
(2−k+1p)`(2− 2p)n−`

= (2−k+1p+ 2− 2p)n = µn
0 . (1)

Our algorithm runs in polynomial time exactly when µ0 ≤ 1, i.e., if and only if p ≥ pcrit
where pcrit = 2k−1/(2k − 1). For instance, in the 4-leak model, this requires a success
probability of 8/15 ≈ 54%. Simulation results for this scenario are given in Table 2.

Bitwise model. In the bitwise model, at each iteration, each bit of leakage (among k bits
in total) is recovered independently with probability p.

Assume that we recover j1 bits at iteration 1, j2 bits at iteration 2 and so on. The
expected number of leaves in that case is then 21−j1 · · · 21−jn . Now since we learn
each bit with probability p, the probability of recovering j bits of leakage at any fixed
iteration is exactly

(
k
j

)
pj(1− p)j . As a result, the expected number of leaves in the tree

when accounting for all possibilities for j1, . . . , jn is given by

µ =
∑
j1

· · ·
∑
jn

(
k

j1

)
pj1(1− p)j1 · · ·

(
k

jn

)
pjn(1− p)jn21−j1 · · · 21−jn

= 2n
k∑

j1=0

(
k

j1

)
(p/2)j1(1− p)j1 · · ·

k∑
jn=0

(
k

jn

)
(p/2)j1(1− p)jn

= 2n
(

1− p

2

)kn
= µn

0 (2)

this time with µ0 = 2(1 − p/2)k. The smallest value of p for which our attack runs
in polynomial time is therefore pcrit = 2(1 − 2−1/k). For example, when k = 4, the
condition is p & 32%. Simulation results for this attack are given in Table 3. Note that
the critical probability is significantly lower in this case, despite the fact that we obtain
the same number of bits of leakage per iteration on average. This is due to the fact that
we obtain usable information more often, and as a result, we can prune the search tree
earlier.

5 Application to (EC)DSA

What we have described so far is a generic attack against cryptographic schemes. Partic-
ular schemes among them, however, can be vulnerable to stronger attacks. For example,
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it is possible to efficiently break (EC)DSA (or more generally Schnorr-like signatures)
in the 1-leak model, even if the presence of noise causes the corresponding leakage bit
to be recoverable with probability p < 1 (this is in stark contrast with the generic attack
above, in which a less than perfect recovery makes the search space in the 1-leak case
exponentially large).

A first possible approach is to get a one bit leak about the nonce. That bit of infor-
mation can then used to recover the secret signing key given sufficiently many signa-
tures, using the statistical attack of Bleichenbacher [Ble00, MHMP14]. The attack with
a single bit of information requires many signatures, but Aranha et al. [AFG+14] have
shown it to be practical at least against 160-bit groups. And if the leakage is recover-
able only with probability p, the same attack can be mounted by simply increasing the
number of signatures by a factor of 1/p and throwing away those for which the bit is
unrecoverable.

A more efficient approach is to combine this leak with nonce-based lattice attacks
on (EC)DSA [HS01, NS03]. In the 1-leak model, where we recover the leakage bit with
probability p < 1, although we do not recover the entire nonce we are still be able to
learn a prefix of it (i.e. the MSBs of the nonce, for a left-to-right square-and-multiply)
with good probability. And if we have sufficiently many signatures for which we know
the MSBs of the nonce, standard lattice techniques will recover the signing key.

More precisely, consider the first bit of the nonce (the MSB), which may be 0 or
1. With probability p, we learn one leakage bit, which may itself be compatible (with
equal probability) with that bit being 0, 1, or both (but not neither of them, because our
search tree is conditioned on knowing that a solution actually exists). If it is both, we
learn nothing, but otherwise we learn that MSB: this happens with probability 2p/3.
And in that case, we can make the same argument for the second bit, and then the third,
and so on. With probability at least (2p/3)k, we will learn the k most significant bits of
the nonce.4

Now how many MSBs do we need to mount the lattice attack? This depends on
the bit size n of the group, and the maximum lattice dimension dmax in which we
can reliably find the shortest vector of a random lattice (nowadays, dmax = 100 is a
reasonable rule-of-thumb using reduction algorithms like BKZ 2.0 [CN11]; academic
records on the SVP Hall of Fame go all the way to dimension 150 as of this writing).
Indeed, it is standard that we can recover the signing key by computing the SVP in a
lattice of dimension d = n/(k − c), where c = log2

√
πe/2, so the lowest usable k is

given by k = dc+n/dmaxe. And we then need d signatures with k known nonce MSBs
to carry out the attack. This can be obtained by collecting m =

(
3
2p

)k · d signatures
with the leakage above, and keeping those for which the leakage is enough to learn the
k most significant bits.

In a 256-bit group and with dmax = 100, we have k = 4 and d ≈ 87. If the
probability of learning a bit of the leakage is p = 1/2, we thus getm ≈ 7000: collecting
7000 signatures should yield enough signatures with 4 known MSBs to mount the attack
and recover the signing key. This is much better than the Bleichenbacher approach,
which would require billions of signatures at this group size, and a fortiori better than

4 This is actually a lower bound, since the search tree can in principle grow and then collapse
back to a single node at depth k, but that lower bound is sufficient for our purposes.
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trying to apply the generic algorithm, since the expected size of the search space in that
case is at least µ = (p+ 2− 2p)n = (3/2)256 ≈ 2150 by (1).

Remark 1. Bauer and Vergnaud [BV15] have recently cryptanalyzed (EC)DSA-type
schemes in the presence of leakage on randomly-located bits of the nonces. Although
seemingly relevant, this attack does not apply to our setting, because the one bit leakage
will not reveal many randomly located bits of the nonce: to learn a bit with certainty, it
should be the only bit compatible when extending all previous candidate prefixes, and
this is exponentially unlikely to happen when the set of candidate prefixes is already
large.

6 Countermeasures and perspectives

In this section, we discuss the effectiveness of various possible side-channel counter-
measures used in implementations of discrete logarithm-based cryptosystems with re-
spect to the attack considered in this paper. We also suggest possible perspectives for
further work.

Protecting exponentiation algorithms. As we have seen, our algorithm gives rise to
efficient side-channel attacks on exponentiation algorithms in cryptographic groups
(assuming of course that the “prefix-dependent leakage” it relies on can be collected
in practice, possibly using an approach like that of Appendix A). Interestingly, the
corresponding side-channel attacks is unaffected by several large classes of common
side-channel countermeasures deployed in implementations of discrete logarithm-based
cryptosystems.

Indeed, a first important family of countermeasures used in that setting includes
modification to the exponentiation algorithm that make it regular, in the sense that the
same types of operations are carried out at each iteration, regardless of whether the bit
of the secret at that iteration is 0 or 1. This includes the square-and-multiply-always
algorithm [CFG+11], the Montgomery ladder [Mon87], and the use of elliptic curves
with complete addition laws [BL07, BL09, RCB16]. None of these approach thwart our
attack, since it does not rely on the particular control flow of the algorithm but only on
essentially arbitrary leakage information on intermediate values.

Another family of side-channel countermeasures used in exponentiation algorithm
relies on randomizing the secret exponent. This includes exponent blinding [Cor99,
Section 5.1], where a random multiple of the group order is added to the exponent,
and exponent splitting [CJRR99, CJ01], where the exponent s is written as a random
sum s0 + · · · + sd modulo the group order, and the exponentiation is computed as
gs = gs0 · · · gsd . Again, neither of these approaches thwart our attack. Indeed, it is
sufficient to recover the longer blinded exponent in full in the case of blinding, or all
of the additive shares in the case of splitting; this increases the complexity of the attack
slightly, but the recovery algorithm remains polynomial time (at least for a constant
number of additive shares in the case of splitting).

A countermeasure that does work, however, consists in randomizing the base point
of the exponentiation [JT01]. Indeed, to fix ideas, if for example gx is computed as
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gx1 · gx2 where g = g1 · g2 is a random decomposition, then it is no longer possible
for the attacker to recompute the leakage functions fj locally and therefore to build to
corresponding Galton–Watson tree. This applies similarly to other base point random-
ization techniques using, e.g., isomorphic elliptic curves or field isomorphisms, as well
as related techniques like the use of randomized projective coordinates [Cor99, Section
5.3]. In all of these cases, our approach fails because, from the adversary’s viewpoint,
the leakage functions fj are no longer deterministic: they depend probabilistically on
the randomness used to blind the base point of the exponentiation (resp. rerandomize
projective coordinates).

Open problems. There are several generalizations of the problems considered in this
paper that would be natural to consider and explore in further work.

A first one is the extension to algorithm that iterate over secrets a few bits at a time
instead of one by one. This is typically the case for k-ary or window-based exponen-
tiation algorithms. This also includes cryptographic computations based on non-binary
secrets (such as the use of signed binary expansions like non-adjacent forms). Our ap-
proach should natural generalize to those settings, but the leakage bounds to achieve
polynomial time recovery are of course different.

It would also be interesting to consider more general noise models for the leakage.
For example, one could ask how to solve the following problem, with an arbitrary noise
distribution: with the same notation as Definition 1, recover the secret s from:

f(s)⊕ e =
(
f1(s[1:1])⊕ e1, . . . , fn(s[1:n])⊕ en

)
∈ {0, 1}k·n,

where e = (e1, . . . , en) is a vector of independent identically distributed noise values
sampled from some fixed distribution χ over {0, 1}k.

Of course, for some distributions, the problem is clearly intractable (e.g. when χ is
uniform), and in general one can only hope to recover the secret with some probability,
but the tree-based approach should generalize naturally, provided that it is combined
with a suitable algorithm for pruning branches that have a low probability of being
consistent with the leakage, instead of branches that are literally incompatible. Quanti-
fying that intuition and obtaining concrete bounds to ensure expected polynomial time
recovery with high probability are left as open problems for future work.
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A Prefix-dependent leaks from resistor-based hardware trojans

As a conceptual example (not necessarily a viable implementation) of a system from
which one bit of leakage can be measured, we may consider the setup given in Figure 3.
In this case, the attacker added a resistor between two output bits, and is monitoring
power consumption. Whenever Y1 = Y2, the resistor has no effect; however if Y1 6=
Y2, a small but measurable current flow will dissipate energy, and this loss will be
compensated for by the IC’s power supply, resulting in a small and temporary increase
in power consumption.

Since installing such a resistor would be done during manufacturing, but would in
all likelihood remain with the tampered device unbeknownst to its user, we refer to
this modification as a hardware trojan. In that respect, read amplifiers for embedded
memory (such as SRAM, EEPROM, FLASH, etc.) are attractive targets because:

– they have a strong drive—this is by design, for the memory read to be reliable;

Y1A1

Y2A2

(a) Without Trojan

Y1A1

Y2A2

(b) With Trojan

R

Fig. 3. A possible implementation of the one-bit leak oracle.
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– they are easily spotted in a design (by an attacker) by searching for them on the
boundary of memory blocks;

– they are placed in the layout side by side, which corresponds to our proof-of-
concept example; and, most importantly,

– they carry information which is easily related to high-level variables and is hence
cryptanalytically exploitable.

Building on that idea, a k-leaking system may be constructed by using the above con-
struction several times: the signals would then add up. Denoting (xi, yi) the bitlines
which the i-th resistor connects, the measurement is

∑
i ‖xi ⊕ yi‖, where ‖ · ‖ denotes

the Hamming weight. While this may be sufficient in some settings, we may wish to
distinguish between the different signals. One possibility is to give sufficiently differ-
ent values to the resistances. As a result, we measure instead

∑T
i=1 ρizi where T is

the number of trojans, zi = ‖xi ⊕ yi‖, and ρi is determined by the resistance Ri and
is known. Finding the collection (zi)

T
i=1 ∈ {0, 1}T is then simply solving a (0, 1)-

subset-sum problem. While this problem is known to be NP-complete in general, in
practice T is very small—furthermore we are at liberty to choose ρi, so we may select
a superincreasing sequence, for which the subset-sum problem is easy [MH78].

In practice, we may have to deal with noise resulting both from measurement and
from the fact that we only know the resistance approximately in the first place. We also
have to account for the limited range of resistances available. This reduces the practical
number of leaks that can be accurately used simultaneously.

For instance, if we can only realize resistances in the range 10, . . . , 100 kΩ, and
noise levels impose a minimum separation of ±5 kΩ, then we may use simultaneously
4 resistances R1 = 10, R2 = 20, R3 = 40, R4 = 80 kΩ.
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