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Abstract. In this paper we study cryptanalysis with non-linear polyno-
mials cf. Eurocrypt’95 (adapted to Feistel ciphers at Crypto 2004). Pre-
viously researchers had serious difficulties in making such attacks work.
Even though this is less general than a general space partitioning attack
(FSE’97), a polynomial algebraic approach has enormous advantages.
Properties are more intelligible and algebraic computational methods
can be applied in order to discover or construct the suitable properties.
In this paper we show how round invariants can be found for more or
less any block cipher, by solving a certain surprisingly simple single alge-
braic equation (or two). Then if our equation has solutions, which is far
from being obvious, it will guarantee that some polynomial invariant will
work for an arbitrarily large number of encryption rounds. This paper
is a proof of concept showing that it IS possible, for at least one specific
quite complex real-life cipher to construct in a systematic way, a
non-linear component and a variety of non-linear polynomial invariants
holding with probability 1 for any number of rounds and any key/IV.
Thus we are able to weaken a block cipher in a permanent and perva-
sive way. An example of a layered attack with two stages is also shown.
Moreover we show that sometimes our equation reduces to zero, and this
leads to yet stronger invariants, which work for any Boolean function
including the original historical one used in 1970-1990.
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1 Introduction

The concept of cryptanalysis with non-linear polynomials sometimes called Gen-
eralized Linear Cryptanalysis (GLC) was introduced by Harpes, Kramer, and
Massey at Eurocrypt’95, cf [29]. It can also be described in terms of I/O sums or
I/O relations (algebraic equations relating Inputs and Output variables), cf. [17].
Constructing such properties is in general a difficult combinatorial problem, and
many researchers have in the past failed to find any such properties, cf. for exam-
ple Knudsen and Robshaw at Eurocrypt’96 cf. [34] and there are extremely very
few positive results on this topic except very recently [44]. A later paper Crypto



2004 provides a precious insight into this problem: the idea is that non-linear
polynomial I/O sums (or I/O relations) can be eventually be constructed if we
consider that the choice of polynomials in such relations will depend strongly
on the internal wiring (connections) of the cipher. Concepts of Bi-Linear and
Multi-Linear cryptanalysis were subsequently introduced [14, 15, 17] in order to
work with Feistel ciphers with two and several branches specifically. In this pa-
per we revisit the question of non-linear cryptanalysis and give it a fresh start.
Can we construct a more substantial variety of round invariant properties, with
diverse polynomials of degree 2,3,4 etc.., and working in a more natural real-life
block cipher setting? This rather than building some very peculiar new ciphers
[15, 16, 13, 3]?

1.1 Combinatorial or Algebraic

A major problem in cryptanalysis is discovery of invariant of semi-invariant prop-
erties of complex type. Some heuristics assumptions or some simplifications are
needed as the space of solutions is very large and systematic exploration is not
quite possible. There are two major approaches to our problem: combinatorial
and algebraic. A combinatorial approach would be to try to modify the connec-
tions of the cipher so that to obtain a desired property, where the S-boxes or the
Boolean functions would be given (for example modify the internal permutation
inside DES). This leads to combinatorial problems which could be studied with
formal coding and SAT solvers. An algebraic approach would be to consider the
structure of the cipher fixed, even if very complex, and try to determine the solu-
tions by solving a system of algebraic equations. Also a well known very general
combinatorial approach considers arbitrary subsets of linear vectors spaces, and
it is called partitioning cryptanalysis, cf. [3, 30, 31]. A more algebraic approach
is to consider only specific forms of partitions, mainly those defined by the value
(0 or 1) of a single Boolean polynomial. This is of course less general, BUT it
leads to a more effective approach to the problem, effective in the sense that
we expect that properties are described, discovered and studied with the tools
of algebra, in particular many new very interesting questions can be asked, and
we expect properties to be computed or derived rather than to happen by some
incredible coincidence. In other terms we expect the algebraic approach to be
more illuminating about what actually happens and also easier to study. More
importantly in this paper we put forward an algebraic approach of a new
sort. We show how the problem can be coded with a surprisingly simple single
equation of a limited degree which we will call FE. Solving such equation(s)
guarantees that we obtain a Boolean function and the polynomial invariant P
which makes a block cipher weak. Moreover when the equation FE is simpler
(fewer terms), the invariant is likely become stronger in the sense of holding
for a larger space of Boolean functions, cf. Appendix A. Solving FE also avoids
exploring the vast double-exponential space of possible Boolean functions (this
again would be a combinatorial approach). Specific examples will be constructed
based on a historical Cold War block cipher which has a highly complex irregular
internal structure. With this cipher we will demonstrate that the set of solutions
is sometimes not empty, and therefore our attack actually works.



1.2 Related Work

Our approach continues the research on non-linear cryptanalysis of block ci-
phers [29, 34, 14, 15] with a specific twist: we allow the attacker to manipulate
the Boolean function. There have been numerous works on non-linear cryptanal-
ysis and Generalized Linear Cryptanalysis (GLC) [29, 34, 14, 15, 33, 44] and then
Bi-Linear and Multi-Linear cryptanalysis [14, 15, 17] for Feistel ciphers. There
have also been many constructions of weak ciphers in cryptographic literature,
cf. for example work related to the AES S-box [15, 16], very recent work by Filiol
et al. [3, 8], work on choice of constants in modern hash functions [1, 36]. Almost
all research in this area revolves around the fundamental notion of partitioning1

cryptanalysis cf. [3, 30, 31] and Harpes will explain that partitioning cryptanal-
ysis (PC) generalizes both LC and GLC [28, 30–32]. All these works are closely
related and also to the study of the groups generated by various cipher transfor-
mations and the question of primitive/imprimitive groups [40, 41, 38, 42, 2, 15].
A serious theory is nowadays being developed around what is possible or not
to achieve in partitioning attacks, with new important notions such as strongly
proper transformations, anti-invariant properties, hidden sums etc, cf. [13, 8, 4].
In this paper we point out that the partitioning approach is simultaneously too
general and too obscure. It is good for establishing numerous impossibility
results cf. [8, 4], but potentially it will obscure any possibility results. We can
discover some invariant, properties but do we understand their nature? Can we
manipulate the properties efficiently and compress them (represent them in a
compact way)? Can we discover properties with some effective computational
methods and see how various constraints will imply their existence or not? Can
we show that some ciphers are going to be secure against such attacks? Can
we add and remove some complex invariants in block ciphers in a modular on-
demand approach (keeping only more complex ones)? Can we construct weak
keys secure w.r.t. simpler invariants and all previously known attacks? Yes we
can, and our polynomial algebraic approach is what makes all these possible.

1.3 Low Degree Polynomials and the Cipher Structure

The idea to privilege a low degree multi-linear approach and more importantly
that one needs to adapt to the high-level structure (wiring) of the block cipher
was explicitly suggested in [14]. However none of the previous work has focused
on explicitly constructing weak non-linear components in order to obtain invari-
ants holding with probability 1. Also none of the previous works we are aware of,
constructs invariant properties by solving a system of algebraic equations. Also
in no cipher weakening research we are aware of, we can obtain a whole range
of non-trivial solutions with increasing complexity, apparently without a limit.

1 In fact what we do in this paper is ALSO partitioning cryptanalysis, except that our
partitions are characterized by a [single] multivariate polynomial.



1.4 On Mathematical Theory of Invariants.

There exists an extensive theory of multivariate polynomial algebraic invari-
ants w.r.t linear transformations going back to 1845 [9–11]. This classical 19-th
century invariant theory however deals with invariants in the situations where
(simultaneously):

1) invariants are polynomials of small degree,
2) they have only 2 sometimes up to 5 variables,
3) polynomials are over large fields and rings.
4) invariants should not change when we operate a LINEAR input variable

transformation L, a very important limitation,
3+4 makes that there is a scaling scalar or factor σ in most invariants known in

classical mathematics: a determinant of the linear transformation L,
5) these invariants are in general multivariate polynomials.

In modern invariant theory, however, there are of course more possibilities
[11], and here is what the first author of this book has put in a preface of his
another (unrelated) book, cf. slide 28 in [24]:

[...] Everybody in mathematics knows that going from one to several
variables is an important jump that is accompanied by great difficulties
and calls for completely new methods [...]

In general however we are quite far from the traditional preoccupations of
mathematicians. The common points are:

1) we study polynomial invariants P of limited degree and
5) our invariants are multivariate polynomials over some fields,

However there are very substantial differences:

2’) we work with many more variables for P, typically between 8 and 36 at a
time.

3’) we work on GF (2) mainly,
4’) and finally we are looking for invariants which remain the same after apply-

ing an extremely complex NON-LINEAR transformation called φ, or any
power of it φk, which are no longer linear cf. point 4) above, very complex
yet made to be somewhat implemented in hardware, and not of the sort the
mathematicians would consider worth studying,

3+4 Here the scaling factor δ could only be equal to 1 and should be omitted.

1.5 Round Invariants for Block Ciphers

A major risk in mathematics is that mathematical theories operate mainly at a
syntaxic level and they could be dealing essentially with an empty set. This unless
the objective is to prove the security by proving that the set is empty, see [8, 4]
and later Section 5.6 Current research in application of polynomial invariants in
symmetric cryptography has lacked substance or material to work in the form
of real-life positive examples we can work on. Main results are about cipher



components rather than full ciphers. For example for the AES-like S-box, it is
possible to us the so called cross-ratio, which is already an invariant in the more
general non-linear φ case which is more rarely studied in mathematics. However
this type of invariant is however still quite simple or we work with only one
variable. In our research we study a substantially wider variety of multivariate
invariants with increasing size and complexity.

In cryptographic invariants the main object to study are round invariants.
They can be defined as polynomials P the value of which does not change after
we apply a transformation called “a round” we call φ. This round function φ
is typically a bijection and is like one round of encryption. In addition, typi-
cally it is NOT one fixed permutation but it has a parameter, a secret key and
potentially additional parameters. The more parameters, the harder it becomes
to find invariants. For example the T-310 cipher can be viewed as each round
is applying one of the 8 possible permutations φ0 : {0, 1}36 → {0, 1}36 up to
φ7 : {0, 1}36 → {0, 1}36 and the choice which φ is actually used depends on 2
bits of the secret key and 1 bit of the IV (which is public and known to the
attacker), all using the original notations of [40]. Technically speaking, finding
such invariants is easy and they exist in vast numbers and many are in some
sense trivial or degenerated, cf. Appendix A.2. A key problem and basically the
main problem in this paper is to find simultaneous invariants to hold for
φ0 . . . φ7 simultaneously, cf. later Sections 5.5 and 7.

1.6 Groups Theory vs. Invariants for Block Ciphers

We recall that for the AES-like S-box, and NOT for the actual AES S-box,
cf. [15], it is possible to use the so called cross-ratio. Again this is already an
invariant in our more general non-linear φ case. We refer to Section 4 in [15]
for more details and further references. This cross ratio invariant is NOT always
correctly applied. In fact there are singularities in polynomial invariants, and the
cross-ratio invariant is simply not always true, sometimes it “breaks”, or there
is a discontinuity cf. [15], this correspond to invariants being correct probability
of type 1− ε.

This fact plays an important role inside the so called “Whitening Paradox”
[15, 16] which is about security (and insecurity) of block ciphers and it is highly
relevant here. The essence of why we have a paradox here can be briefly summa-
rized as follows. The “Whitening Paradox” paradox is a proof of concept that a
group-theoretic claims in cryptography [40–42, 2] can be highly misleading and
can lead to a ciphers where the group of transformations generated by the ci-
pher is proven mathematically to be extremely large, and which are nevertheless
insecure and can simultaneously broken for an exponentially large number of
rounds. This even though it is clear that when the number of rounds grow fur-
ther, they are ultimately secure, cf. [15, 16]. In other we get a cipher which is
simultaneously provably secure and practically insecure.

There exists numerous modern works on the group of transformations gen-
erated by a block cipher [41, 38, 42, 2, 15] and primitive groups, [41, 38, 2, 13].
This research topic was very clearly was invented during the Cold War and was
already studied very carefully in the 1970s with very specific security claims



which are contained in [40], however these claims are not formulated as precise
mathematical theorems in [40] and are subject to interpretation.

2 Notation and Methodology

In this paper we are going to work with one specific block cipher, in order to show
what is possible or not. We are not however going to provide a full description of
an encryption system and how it is initialized and used. We just concentrate on
how one block cipher round operates and how it translates into relatively simple
Boolean polynomials and eventually such a cipher could be strong or weak w.r.t.
our attack. We will construct non-linear invariant properties which very sub-
stantially reduce the space of permutations which can be obtained by iterating
our cipher. We will limit the number of variables used here to for example 20
out of 36. Our work is therefore very closely related to the so called partitioning
attacks [3, 30, 8]. However we obtain and show the existence of specific polyno-
mial invariants, rather than some obscure partition of a subspace the nature of
which could be hard to apprehend.

Quite importantly, we are going to consider, which is very rarely done in
symmetric cryptanalysis research, that the Boolean function is an unknown, yet
to be determined. We will denote this function by a special variable Z. We will
then postulate that Z may satisfy a certain algebraic equation [with additional
variables] and then this equation will be solved for Z.

In order to have notations, which are as compact as possible, in this paper
the sign + will denote addition modulo 2, frequently we will omit the sign * in
products and will frequently use short or single letter variable names. In general
in this paper we will use small letters a− z, and x1, x36 or e1 for various binary
variables ∈ {0, 1}. Capital letters such as S1, S2, L, F, Z will be used to represent
some very “special” sorts of variables which are placeholders for something more
complex. In particular the capital letter Z is a placeholder for substitution of
the following kind

Z(e1, e2, e3, e4, e5, e6)

where e1 . . . e6 will be some 6 of the other variables. In practice, the ei will
represent a specific subset of variables of type a-z, or other such as L, therefore
at the end, our substitution will actually look like:

Z ← Z00 + Z01 ∗ L+ Z02 ∗ j + Z03 ∗ Lj + . . .+ Z62 ∗ jhfpd+ Z63 ∗ Ljhfpd

Other capital letters will be used to signify some bits which are also unknown
which will be bits of the secret key used in a given round and such bits are in our
work called by letters S1, S2, where S2 will be sometimes renamed L. We also
use capital letters to represent some bits which depend on the IV, or a round-
dependent variable constant. This sort of variable which is typically known to
the attacker will be denoted by the letter F in this paper. In general we are
going the omit to specify in which round of encryption these bits are taken, as
most of our work is about constructing one round invariants (which however do
extend to an arbitrarily large numbers of rounds). We consider in general that



each round of encryption will be identical except that they can differ only in
some “public” bits called F (and known to the attacker) and some “secret” bits
called S1 or L and unknown to the attacker. This framework covers most block
ciphers ever made and ever studied in human history.

2.1 Our Specific Cipher

Too many block ciphers which appear in cryptographic literature are never used
in any real-life situation. In this paper we are going however to work primarily
on a particularly complex Feistel cipher on 4 branches known as T-310, which
is how our proof of concept is going to be constructed. This choice implies that
in our proof of concept, we are going to search for Boolean functions on 6 bits
which lead to specific invariant attacks. There are 22

6

= 264 Boolean functions
on 6 bits. The block size will be 36 bits. There are potentially approximately 22

36

possible non-linear polynomial invariants for 1 round of our cipher with 36-bit
blocks.

2.2 The Challenge

One of the biggest open problems in symmetric cryptography, is to find new
classes of invariant properties which hold for specific types of block ciphers. For
example, could that be possible that for a complex block cipher with no weakness
w.r.t. simpler attacks such as Linear Cryptanalysis, we have that the following
irreducible polynomial with 144 products the value of which is preserved after
an arbitrary number of encryption rounds?
abehij+abcehij+abdehij+abcdehij+abefhij+abcefhij+abdefhij+abcdefhij+abeghij+abceghij+abdeghij+abcdeghij+bcefjk+abcefjk+bcdefjk+

abcdefjk+bcefgjk+abcefgjk+bcdefgjk+abcdefgjk+bcefhjk+abcefhjk+bcdefhjk+abcdefhjk+bcefijk+abcefijk+bcdefijk+abcdefijk+bcefgijk+

abcefgijk+bcdefgijk+abcdefgijk+abehijk+abcehijk+abdehijk+abcdehijk+abefhijk+bcefhijk+abdefhijk+bcdefhijk+abeghijk+abceghijk+

abdeghijk+abcdeghijk+adghil+abdghil+acdghil+abcdghil+adeghil+abdeghil+acdeghil+abcdeghil+adfghil+abdfghil+acdfghil+abcdfghil+

abehijl+abcehijl+abdehijl+abcdehijl+abefhijl+abcefhijl+abdefhijl+abcdefhijl+adghijl+abdghijl+acdghijl+abcdghijl+abeghijl+abceghijl+

adeghijl+acdeghijl+adfghijl+abdfghijl+acdfghijl+abcdfghijl+cdefgkl+acdefgkl+bcdefgkl+abcdefgkl+cdfghkl+acdfghkl+bcdfghkl+abcdfghkl+

cdefgikl+acdefgikl+bcdefgikl+abcdefgikl+adghikl+abdghikl+acdghikl+abcdghikl+adeghikl+abdeghikl+acdeghikl+abcdeghikl+adfghikl+

abdfghikl+cdfghikl+bcdfghikl+bcefjkl+abcefjkl+bcdefjkl+abcdefjkl+bcefgjkl+abcefgjkl+cdefgjkl+acdefgjkl+bcefhjkl+abcefhjkl+bcdefhjkl+abc

In this paper we make this happen, on demand, given an arbitrary specification
of the internal wiring of the cipher. Our method is constructive-algebraic and
works potentially for all known block ciphers and for Boolean functions and
S-boxes of arbitrary size.

2.3 Polynomial Invariants

In general our methodology applies to any block cipher and we are looking for
arbitrary polynomial invariants coded as formal polynomials. In particular how-
ever, the structure of the polynomial is provided or guessed by the attacker
depending on “hints” or “heuristics” which are based on the high-level structure
of the cipher. This is what is suggested from known examples of polynomial
cryptanalysis [14, 15]. In particular for Feistel ciphers we will see a lot specific
types of symmetric polynomials on subsets of variables. Therefore our polyno-
mials will look like:

P(a, b, . . .) = P00 + P51 ∗ (e+ f + g + h) + P42 ∗ (abc+ abd+ acd+ bcd) + . . .



this rather than completely general polynomials which would be too costly to
consider and process efficiently. The goal is of course to avoid excessive generality
and reduce the number of variables such as P51 which are determined at a later
“algebraic solving” stage of the attack. It is however important to see that some
of our polynomials will be very far from being symmetric, for example in Section
5.1 we have P such that P − fg is a symmetric homogenous polynomial, and
in Section 8.3 there we see no symmetries whatsoever and non-linear part is
eg + fh+ fl and in Sections 8.4 and 8.6 we have only 1 or 2 terms of degree 2
which is hardly a symmetric situation.

3 General Approach vs. One Specific Cipher

Most cryptanalytic attacks work, well, only in some cases. In this paper we try to
strike a balance between a completely general constructive approach applicable
to any block cipher, such as 3DES, AES, GOST, etc, and constructing simple
examples dictated by the high-level structure of one specific Feistel cipher.

3.1 Polynomial Invariants vs. General Partitioning Attacks

In theory, our approach is totally general as every function could be written as a
polynomial over a finite field, therefore in a very broad (and naive) sense Parti-
tioning Cryptanalysis (PC) and Generalized Linear Cryptanalysis are equivalent.
However our approach would not be practical if needed to study completely gen-
eral polynomials with 36 variables In reality however, we will be working with
sets characterized by one polynomial at a time, our ability to solve the equations
is limited, and our approach will principally work when P is not too complex
or when it is sparse and/or of reduced degree, and with specific very strong
symmetries, cf. Section 2.3.

3.2 Constructive Approach Given the Cipher Wiring

We decided to execute our task on a cipher which offers great flexibility in the
choice of the internal wiring, so that we can possibly make such adjustments
if we do not find a property we are looking for. In theory most ciphers such
as DES or AES do offer this level of flexibility (choice of P-boxes, arbitrary
invertible matrices inside the S-box and inside the mixing layers, etc). Here we
work the T-310 cipher from 1980s where such changes are officially allowed and
are officially specified by the designers of the cipher. Here if we find a weak setup,
it can be directly implemented with original historical hardware. Our work is
at the antipodes compared to [15, 16] where the ciphers are really very special
and have very strong hidden high-level structure (and then non-linear invariants
propagating for 1 million rounds can be constructed). Our approach is really the
opposite: we start from any given cipher spec in forms of ANFs for one round
(possibly with some “chose permutation of wires” flexibility for connecting non-
linear components) and we generate invariant properties on demand.

In general the attacker is allowed to manipulate the Boolean function, which
variable has a large entropy (64 bits typically) and to a lesser extent also to



somewhat but less2 manipulate the cipher wiring, and also he is able to freely
select an invariant polynomial P which choice however is restricted in several
ways3. The approach we present is applicable to more or less4 arbitrary block
ciphers which contain non-linear components. It is also applicable to hash func-
tions and stream ciphers based on a core block cipher (a large permutation with
few round-dependent bits which can be key bits, IV bits or message bits).

3.3 Representing One Encryption Round

Let us imagine that we are presented with an arbitrary complex block cipher
designed by some very paranoid designers with large complexity and a sophis-
ticated internal structure. For example the picture below shows the internal
structure of T-310, one of the most important block ciphers of the Cold War,
which was used at a massive scale in Eastern Europe to encrypt all sorts of state
communications, cf. [43]. The cipher operates on 36-bit blocks and the state bits
are numbered 1-36. Here is a glimpse of the internal structure:

Fig. 1. T-310: a peculiar sort of a Compressing Unbalanced Feistel scheme cf. [37, 19].

2 Only in the sense of 1 out of 1000: study of weaker and stronger cipher wirings.
3 It will be restricted by 1) which kind of polynomial invariants maybe exit for this

cipher, for example Feistel ciphers tend towards combinations of symmetric polyno-
mials with subsets of variables, and 2) the computing power of the attacker and his
ability to find invariants by solving increasingly complex systems of equations.

4 This is if there is a sufficient amount of entropy inside these non-linear components,
possibly not to Simon or TEA where S-boxes are too small or rather inexistent for
us to manipulate.



T-310 happens to be one of the most “paranoid” cipher designs we have
ever seen. The per-encrypted-bit hardware complexity of T-310 is absolutely
staggering. It is hundreds of times more costly, even with modern software and
hardware, than AES or triple DES, cf. [22, 23]. Also typically and almost always
the bits actually used in encryption come from the right end, see [26, 19], which
is more complex than the other end. However one round is intelligible and
by no means secure. Therefore the designers have mandated that incredibly
large number of 1651 such rounds must be executed in order encrypt just one
character on 5 bits. Does it make this cipher very secure as intended for a serious
government security cipher in the middle of the Cold War? Not quite, if we are
able to show that algebraic invariants can be constructed which work no matter
how many rounds we apply, and not quite if such invariants exist which work
without using all the state bits, and without using all the key bits either.

3.4 Internals of One Round

A lot remains unspecified on our picture: which bits and in which order are
connected to D1-D9 and v1-v27. In T-310 this specification is called an LZS
or Langzeitschlüssel which means a long-term key. It could be compared to the
knowledge of rotors in Enigma or S-boxes in GOST.

We simply need to specify two functions D : {1 . . . 9} → {0 . . . 36}, P :
{1 . . . 27} → {1 . . . 36}. We will assume both functions to be injective in order to
avoid numerous degenerate cases. For example D(5) = 36 will mean that input
bit 36 is connected to the wire D5 on our picture, and P (1) = 25 will mean that
input 25 is connected as v1 or the 1st input of Z1.

Fig. 2. Internal wiring of one round of T-310.

It remains to specify that each round, bits 1, 5, 9 . . . 33 are those freshly cre-
ated by this round, while ALL the input bits the numbers of which are NOT
multiples of 4 are shifted by 1 position, i.e. bit 1 becomes 2 in the next round,
and bit 35 becomes 36. This completes the specification of the internal connec-



tions of one round5. We will also note that F is a public bit derived from an IV
transmitted in the cleartext, and S1 and S2 are bits of the secret key which has
240 bits. Finally the internal wiring LZS has a special convention where the bit
S1 is used as one of Di by specifying 6 that D(i) = 0. Most of the time being7

we are going to assume that all the four Boolean functions Z1-Z4 are identical.

3.5 ANF Coding of One Full Round

Overall the cipher can be described as 36 Boolean polynomials out of which only
9 are non-trivial. Let x1, . . . , x36 be the inputs and let y1, . . . , y36 be the outputs.

y33 = F + xD(9)

Z1
def
= Z(S2, xP (1),. . . ,xP (5)))

y29 = F + Z1 + xD(8)

y25 = F + Z1 + xP (6) + xD(7)

Z2
def
= Z(xP (7), . . . , xP (12))

y21 = F + Z1 + xP (6) + Z2+ xD(6)

y17 = F + Z1 + xP (6) + Z2+ xP (13) + xD(5)

Z3
def
= Z(xP (14), . . . , xP (19))

y13 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xD(4)

y9 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20) + xD(3)

Z4
def
= Z(xP (21), . . . , xP (26))

y5 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xD(2)

y1 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xP (27)+xD(1)

x0
def
= S1

yi+1 = xi for all other i 6= 4k ( with 1 ≤ i ≤ 36)

We observe that T-310 has a remarkable “triangular” structure with increasing
complexity and we aim to benefit from this with invariants using a subset of all
cipher state bits only.

For better readability we reproduce our two figures on one page:

5 In fact, it is possible to rewrite this cipher to make it look as a non-orthodox variant
of an “Unbalanced Compressing Feistel” cipher with 4 branches, cf. [37, 19].

6 Needless to say D and P are injective and have been specified and studied with
serious amount of maths and analysis since the early 1970s [40]. Historical docu-
ments [40] show advanced combinatorial results about strength of the cipher after a
few rounds, and contain explicit group-theoretic claims about the size of the group
generated by the permutations of this cipher. A recent paper analyses the historical
classes KT1 and KT2 of long-term keys from [40] and shows that they can be proven
to be secure against a certain class of ciphertext-only attacks, see [20].

7 This condition will probably be relaxed in our future work and offers yet much larger
freedom for the attacker, with 256 bit of entropy to manipulate.



Fig. 3. One round of T-310 in a typical case. We have a round function φ which takes
36 bits xi, i = 1, . . . , 36 as an input, which go to one of the four branches depending
on i mod 4, produces an output on 36 bits yi and also has 3 extra bits as a parameter
which are called F, S1, S2. The selection of 27 out of 36 bits which are used inside the
round function box T () in each round is specified by two functions P (1) . . . P (27) which
defines the connection of v1 to v27 to block cipher state wires 1−36 and D(1) . . . D(9)
which typically in the standard KT1 type of wiring uses only 8 bits from the wires
1 − 36 and if in one case we have D(i) = 0 this special value indicates that we will
XOR with a key-dependent constant S1 equal to sm,1 in round m = 1, 2, . . ..



3.6 Variable Renaming

We recall that input of one round are denoted by x1, . . . , x36. Now we are going
to migrate towards more convenient and shorter notations. We will emphasise
the fact that the variables xi and yi are treated “alike” and we will call them by
lowercase letters a-z backwards starting from x36 till x11 and y36 till y11. Thus
for example a = x36 and t = x17. This will allow our higher degree polynomial
expressions to be take less space. Unhappily by doing this we deprive ourselves
from the possibility of using variables x10 till x1, however, quite interestingly, in
our work we simply want to avoid 8 using such variables. Basically due to the
peculiar triangular structure of this cipher, variable x1 has the most complex
dependency on the highest possible number of input bits and is more likely to
use key bits. We are going to avoid generating examples which would be too
complex. Yet we have a scalable approach able to produce numerous non-trivial
solutions with increasing complexity.

The reader may be surprised to hear that in our cryptanalysis efforts we will
be able to map xi to yi (they are denoted by the same letter) and this for ALL
the 36 variables, and this after exactly 1 round. This even though for almost all
variables xi = yi−1 after one round. This is not impossible, not even in Linear

Cryptanalysis (LC). For example if a
def
= x36 in input expressions, and also used

to denote y36 for output expressions b
def
= y35 and also used to denote y35, it is

unthinkable that say a is an invariant property because actually b becomes a in
the next round. However in fact a polynomial such as a+b+c+d absolutely CAN
be an invariant expression for one round (!). This is, only IF our cipher had ANY
invariant linear property for 1 round true with probability w.r.t the usual Linear
Cryptanalysis (LC). This is possible but not so common. It does happen for this
cipher, and a recent paper shows that linear invariants will occur for about 3%
of so called LC-weak long term keys inside the so called KT1 specification of
officially approved or “well-formed” long-term keys, cf. [22].

In our paper we will be of course looking at what happens for the remaining
stronger 97 % of LZS keys and at more general non-linear polynomial expres-
sions such as say h+ g + f + e+ hgf + hge+ hfe+ gfe. All examples we give
in this paper are real-life examples which actually have been encountered in our
research on cryptanalysis of this cipher. The polynomials we obtain are however
not random, but rather they combinations of specific symmetric polynomials on
subsets of variables, with additional terms which are not symmetric, and they do
depend very strongly on the wiring of the cipher. For example this polynomial
invariant with 74 monomials has been seen to work:
acdeghjk+abcdeghjk+acdefghjk+abcdefghjk+abdehijk+abcdehijk+abdefhijk+abcdefhijk+abdeghijk+acdeghijk+abdefghijk+acdefghijk+

acdgijl+abcdgijl+acdegijl+abcdegijl+bcfgijl+abcfgijl+acdfgijl+bcdfgijl+bcefgijl+abcefgijl+acdefgijl+bcdefgijl+acdghijl+

abcdghijl+acdeghijl+abcdeghijl+bcfghijl+abcfghijl+acdfghijl+bcdfghijl+bcefghijl+abcefghijl+acdefghijl+bcdefghijl+bcdfhikl+

abcdfhikl+abdefhikl+bcdefhikl+bcdfghikl+abcdfghikl+abdefghikl+bcdefghikl+abcdegjkl+abcdefgjkl+acdeghjkl+acdefghjkl+abcfijkl+

abcdfijkl+abcefijkl+abcdefijkl+acdgijkl+abcdgijkl+acdegijkl+bcfgijkl+acdfgijkl+bcdfgijkl+abcdfgijkl+bcefgijkl+acdefgijkl+

bcdefgijkl+abdehijkl+abcdehijkl+abcfhijkl+bcdfhijkl+abcefhijkl+bcdefhijkl+acdghijkl+abcdghijkl+abdeghijkl+bcfghijkl+acdfghijkl+bcefghijkl

8 If we really need variables x1 − x10 we would use letters M -V with x1 = V and
x10 = M , this allows to avoid other capital letters e.g. F,L,X,Z used elsewhere.



3.7 The Result After Renaming

Overall, depending on the exact values of D(i) and P (j), we can rewrite the
beginning of our equation system as follows, skipping the last few equations
(our invariants will NOT use them!). The variables on the left hand side will
be output variables after 1 round, and on the right hand side, we have ANF or
polynomials in the input variables.

a← b

b← c

c← d

d← F + i

e← f

f ← g

g ← h

h← F + Z1 + e

Z1← Z(L, j, h, f, p, d))

i← j

j ← k

k ← l

l← F + Z1 + r + g

m← n

n← o

o← p

p← F + Z1 + r + Z2 + c

Z2← Z(k, l, o, e, n, t)

q ← r

r ← s

s← t

t← F + Z1 + r + Z2 +m+ s

u← v

v ← w

w ← x

x← F + Z1 + r + Z2 +m+ L+ Z3 + b

Z3← Z(u, s, ?, ?, ?, b)

y ← z

. . . [few lines missing]

These expressions should be viewed as a sequence of substitutions where a vari-
able is replaced by a polynomial algebraic expression.



3.8 Further Remarks and Observations

We will use the sign ? each time we run out of convenient 1-letter variable names.
We will then aim at not using at all these variables in our invariants. Moreover
in order to have shorter expressions to manipulate later on, we have replaced S2
by a single letter L. The other key bits S1 currently do not appear at all (the
place where they would appear depends on D(i)). In general in our attacks we
would represent key bits S1 by short9 notation K. In practice will avoid using
S1, as in real-life encryption it is almost always used at place D1, cf. [26, 19] and
would appear in the very last equation y1 = F + . . .+xD(1) in Section 3.5 which
we have omitted now. We also sometimes replace a single letter which comes
from P (6) by a variable G. The lower side is the side we will be simply avoiding
(for the time being) in our invariant attacks. This not only due to the shortage
of lowercase letters, but also because equations tend to be more complex than at
the upper end(!). Using only a subset of variables and avoiding K, or eliminating
K is what we need, and it is a great idea form the cryptanalysis point of view.
In this way we will in fact obtain I/O properties with fewer monomials and such
that half of the secret key of type S1 (up to 120 bits) are eliminated from the
start(!).

3.9 On ANF Degree

One important point is that the algebraic degree of all our ANF expressions is
constant. The ANF expressions have degree at most 6 and it does not increase
for the lower parts (parts with K and bits 1 to 11 we may want to avoid). In
contrast the number of monomials actually used increases (linearly).

3.10 Search for Invariants

Now the only thing which remains to be done is to find a polynomial expression
P say

P(a, b, c, d, e, f, g, h, . . .) = abcdijkl + efg + efh+ egh+ fgh

using any number between 1 and 36 variables such that if we substitute in
P all the variables by the substitutions defined above in Section 3.7, we would
get exactly the same polynomial expression P .

For simplicity and in practice in our proof of concept examples in this paper
we will be using only 20 variables a-t. and we will avoid Z3 and Z4, constructing
only invariants using Z1 and Z2 with round-dependent constants L and F only,
cf. Section 4.12. More generally what we do, applies also to Z3 and Z4 and to
any block cipher, however there will be more than 2 round-dependent parameters
[key bits or round-dependent constants] and the success rate will be lower.

9 This is used when we are looking at 1-round invariant properties and there is no
ambiguity about in which round this variable K is used.



4 The Fundamental Equation

We want to find a polynomial expression P using any number between 1 and
36 variables such that it is an invariant after the substitutions of Section 3.7.
In this paper the idea is that P could potentially be any non-linear polynomial
of a certain degree with a specific well-chosen set of say 17 variables (specifi-
cally avoiding using too many variables from the lower parts of the cipher) and
with specific internal symmetries due to the structure of the cipher. One simple
method is to select a specific short symmetric polynomial which have already
been seen to work for this cipher. More generally the polynomial is not always
symmetric (cf. Section 5.1 or Section 8.3 and will also have variables which are
not yet known. However not every polynomial works and combinations of sym-
metric polynomials are also frequently seen cf. Section 2.3.

Once the polynomial P is fixed, the attacker will write ONE SINGLE al-
gebraic equation which he is going to solve to determine the unknown Boolean
function Z, if it exists.

Definition 4.1 (Compact Uni/Quadri-variate FE). Our “Fundamental Equa-
tion (FE)” to solve is simply a substitution like:

P(Inputs) = P(Outputs)

or more precisely

P(a, b, c, d, e, f, g, h, . . .) = P(b, c, d, F + i, f, g, h, F + Z1 + e, . . .)

At this stage expressions of type Z1 or Z3 are placeholders for degree 6 polyno-
mials yet to be specified fully.

The main unknown in FE is a Boolean function Z and in simple cases the
FE can be of type fZ = g where f and g are two polynomials10. More generally
Z is represented by an Algebraic Normal Form (ANF) and 64 binary variables
which are the coefficients of the ANF of Z, and there will be several equations,
and several instances Z1-Z4 of the same Z:

Definition 4.2 (A Multivariate FE). Furthermore we will rewrite FE as
follows. We will replace Z1 by:

Z1← Z00 + Z01 ∗ L+ Z02 ∗ j + Z03 ∗ Lj + . . .+ Z62 ∗ jhfpd+ Z63 ∗ Ljhfpd

Likewise we will also replace:

Z2← Z00 + Z01 ∗ k + Z02 ∗ l + Z03 ∗ kl + . . .+ Z62 ∗ loent+ Z63 ∗ kloent

and the coefficients Z00 . . . Z63 will be the same inside Z2, Z3 and Z4,
however the sets of 6 variables chosen out of 36 will be different in Z1-Z4.

Note. Our compact notations omit the stars for products of small variables.

10 Such equations have numerous non-trivial solutions, cf. [18].



4.3 On Choice of P in our FE

Initially, we can select P as an arbitrary fixed polynomial, with degree say be-
tween 2 and 20. For example one we have chosen ourselves(!) or one previously
seen to work for that cipher, or one based on well-known symmetric polynomials
with some unknowns, cf. Section 2.3. Then if we cannot find a solution, we will
enlarge the space of solutions but making more or all coefficients of P variable.
In all cases also, all we need to do is to solve the equation above for Z (plus a
variable amount of extra variables). This formal algebraic approach, if it has a
solution Z, will guarantee that our invariant P holds for 1 round.

4.4 Solving the Fundamental Equation

We recall our “Fundamental Equation (FE)”.

P(Inputs) = P(Outputs)
or

P(a, b, c, d, e, f, g, h, . . .) = P(b, c, d, F + i, f, g, h, F + Z1 + e, . . .)

The process is as we can see EXTREMELY SIMPLE: we assume that a cer-
tain equation holds for Z and we solve it for Z which is 64 binary unknowns for
the ANF coefficients. The solution is found easily11 either by standard Gröbner
bases techniques, or by conversion to SAT problem as described in [12]. Our ex-
perience seems to show that this problem will rarely be actually computationally
really hard. This depends on many factors such as size, degree and shape of P
etc.

4.5 Case when P is fixed
In fact our problem is in many interesting cases trivial to solve. For example it is
easy to see that if P fixed, and if L,F are not used, (or if they are fixed, or for a
reduced set of equations after elimination of all monomials containing L,F ) the
problem boils down to solving a system of LINEAR of equations with 64 binary
variables which are the coefficients Zii which define the ANF of Z.

4.6 Simultaneous Solving
In a major variant of our problem, the polynomial P is no longer fixed, instead
some or all of its coefficients are variables. Moreover it is in general advisable to
already assume that P has specific symmetries which decreases the number of
coefficients to be determined, cf. example in Section 2.3. Then, ignoring special
bits L,K,F etc, the equations are no longer linear, but rather bi-linear, with
products of coefficients of P and of Z. More generally, the problem is multi-
linear. Again, in practice this problem is solved by a SAT solver typically or by
Gröbner basis algorithms.
11 All we have to do is to, consider that equality above must hold for each coefficient

of each possible monomial. Thus we can rewrite the equation above as a system of
simultaneous non-linear equations which will be small degree sparse polynomials in
the 64 unknown coefficients Zii which form the ANF of Z, ii = 0, . . . , 63.



4.7 The Solvability Problem
A major problem is rather, the existence of solutions. Does this equation FE
have a solution? Or, does it have solutions which would satisfy some additional
requirements required to design any sort of meaningful cryptanalytic attack?
This is going to be a major question to study.

There are, as the reader may guess, countless cases where this problem has no
solution whatsoever. Our experience shows that in many cases contradictions
in our equations are found very easily12 without even examining all the parts of
the equations. This means that the fact that the space for Z is very large does
not necessarily help to make our system of equations solvable. Frequently we
stop earlier.

There are also numerous cases where the equation becomes unusually simple
and has low degree, or it disappears totally (it reduces to zero once P is fixed, see
Appendix A). In such cases the space for the solutions Z is typically quite large,
which increases the applicability of the attack to real-life cases, for example when
the attacker is not quite able to choose the Boolean function, but he might be
able to manipulate the cipher wiring and increase the degree of P.

4.8 More General 5-Linear Fundamental Equation
In general we write our Fundamental Equation (FE):

P(a, b, c, d, e, f, g, h, . . .) = P(b, c, d, F + i, f, g, h, F + Z1 + e, . . .)

as sum of products where we can distinguish 5 distinct types of variables or
terms:

1. Terms of type S1, S2 or L which are key bits unknown to the attacker.
2. Terms of type F which are IV or round-dependent constant bits known to

the attacker.
3. Terms of type Zii which are coefficients inside Z.
4. Terms of type Pjj which are coefficients of P if it is not fixed.
5. Terms of type abcdklm which are monomials in internal I/O variables of the

cipher.

Again the equation is expected to hold for all values for the small 1-letter
variables abcdef and all the variables which start with capital letters are place-
holders for things which play a particular role in our solving process. In general,
depending on circumstances, we fix some of these terms and we determine the
other by solving the Fundamental Equation. For example if P is known and
fixed, the equation becomes 4-Linear in the sense above. Or if Z is known and
fixed, the equation is again 4-Linear and can be used to determine P. Again
in special cases this equation will be linear and in most other cases, it will be
nevertheless possible to solve in practice.
12 For example if our Fundamental Equation after our substitutions has the property

that if Z divides one monomial, Za also divides this monomial, and if there is a
single non-zero monomial without a, then the system of equations has no solution.
Thus the fact that space for Z is quite large does NOT guarantee that the set of
solutions we are looking for is not empty.



4.9 Extended 5-Linear Fundamental Equation

More generally we can extend our Fundamental Equation (FE) to:

P(a, b, c, d, e, f, . . .) = P(b, . . . , F + Z1 + r + Z2 +m+ s, . . .) +Q(F,L)

where Q is an another polynomial which depends on key and IV bits. In short
notation we call this type of 5-Linear Extended Fundamental Equation by the
name 5EFE.

4.10 Even More General Iterative 6-Linear Fundamental Equation

In general, the approach can be iterative. The attacker may, for example due to
a previous iteration and solving FE once, already know some specific polynomial
invariant for both the input and the output of each round. We call I this quantity
and I is a complex polynomial in all small-letter variables abcd.. however the
value of I is known, the other values aren’t.

Our Extended 6-Linear Fundamental Equation (FE) will be:

P(a, b, c, d, e, f, . . .) = P(b, . . . , F + Z1 + r + g, . . .) +Q(F,L, I)

where we have added one extra term Q() and additional inputs I:

6. Terms of type I are bits of the internal state known to the attacker.

We have seen countless examples when this happens, and there are also many
keys with linear invariants which can be used here as I in the same way. A nice
real-life example is given in Section 7.2.

4.11 Iterative Solving

This section should be treated as optional and is not central in this paper. The
approach presented above can be iterated in order to generate further invariants.
Potentially in some cases the number of equations generated will grow by iterat-
ing this approach, until the cipher is completely broken, in the same way as the
so called ElimLin algorithm, cf. [7, 39]. We believe that the 6-Linear approach
above can be considered as a stand-alone cryptanalysis method. We believe it
will break some very simple ciphers on its own, through iteration, without the
necessity to do anything else other than iteration of linear algebra steps on well-
chosen sets of non-linear polynomials which will yield a monotone sequence of
invariant polynomial spaces of increasing size. In addition, in ElimLin equations
penetrate slowly inside the cipher. Here all equations penetrate inside the cipher
and we can generate new polynomial relations on variables at any round inside
the cipher. However, as in ElimLin, we expect that in most cases the number of
equations will stabilize early on, and no new invariants will be generated.



4.12 Additional Steps and Dealing with Key Bits

We have not yet explained how to deal with key and IV bits in the cipher. This
problem was already a major problem in [14] and general non-linear cryptanal-
ysis is substantially more complex than Bi-Linear cryptanalysis. One obvious
method, is for example to assume say F = 0, L = 0 where L = S2 and find
invariants by solving the Fundamental Equation (FE). But then we have NOT
yet broken any cipher, though we can distinguish any power of a certain com-
plex iterated permutation from a random permutation, including a power (an
integer) which is not known to the attacker, which is already a strong result.
At the antipodes, we can simply try to eliminate ALL the monomials which
contain they key and IV bits. As simple as that, and this solves our problem
and allows the attacker to deduce things about the internal state of the cipher
for arbitrarily large numbers of rounds. Another method, is to use the method
above for F = 0, then for F = 1, combine the two systems FE equations, and
solve a bigger system of simultaneous [linear] equations for the coefficients of Z.
More specific non-trivial strategies are needed when dealing with S2 or L bits,
cf. Section 6.1 below, while we try to avoid as much as possible dealing with
S1 bits. But it is maybe too early to go into such fine technical cryptanalytic
details.

We need first to study, not if all this is actually feasible, but more importantly,
if the set of solutions is not empty. We are going to solve first some simplified
cases, before we attack more complex situations.



5 Concrete Examples

An example is worth more than a thousand words. We present numerous exam-
ples chosen for their elegance and simplicity. In these examples the long-term key
has been selected inside hundreds of permutations we have considered. Our ap-
proach is to construct toy ciphers fully compliant with the spec of T-310 cipher.
Initially we will give examples which work on a reduced number of cipher bits,
for example 20 out of 36 and other could be ignored. This is precisely in order
to generate examples which are simpler than in the general case and therefore
easier to study. Later we present examples where all 36 bits are used. Three quite
interesting things happen in our examples: first of all, interesting invariants do
exist frequently, and secondly, they ignore many of the 36 bits, and also many
of our reduced set of say 15 or 20 key bits, and third, in many interesting case
they do not involve any of the key bits [except when we require it to be so].

Initially in our research we found plenty of examples of very complex invari-
ants of degree say 11. Then we looked for simpler low degree invariants which
are easier to study. Moreover and importantly, we focus on examples where in-
variants would be happening NOT for pure structural/wiring reasons, but such
that the invariant holds for a larger13 permutation due to circumstances which
depend very strongly on the Boolean function Z and which allow all other 36-4
cipher state variables to be eliminated. In other terms at this moment we will
rather discard all invariants which would work for any Boolean function Z. We
consider that such attacks are rather too trivial14 or we consider that they are
maybe too strong15 and also too easy to detect in terms of more fundamental
immutable properties of the cipher wiring, in order to be actually encountered
in some real-life cryptanalysis (which is not what we do in this paper, which is
a simple proof of concept, but remains our ultimate long-term objective).

In our research we have worked by many successive approximations. First we
examined a large number (thousands) of possible permutations on up to 36 bits
fully compliant with the spec of T-310 cipher for low degree GLC invariants true
with probability 1 and found a great variety of invariants. Then we found some
remarkable invariants P, and we found that each P works in a great variety of
circumstances and also we have discarded many very complex invariants unless
we have not found a simpler invariant for the same long-term key. Then we
searched for examples which work for the same invariant P and which are quite
simple and elegant AND they work in more than one case, for example when
F = 0 and 1, AND such that they do not exhibit another substantial weakness
such as being insecure w.r.t. Linear Cryptanalysis (LC). Accordingly in our

13 It is very useful when the invariants do NOT use all the key bits and such attacks
are our core focus. Such attacks are expected to scale to larger ciphers and to larger
subsets of bits. We consider that invariants which use all the key bits will be very
cumbersome and are less likely to ever lead to practical attacks on block ciphers.

14 When for example a smaller permutation on say 4 bits, cf. Section 5.2, is embedded
inside our permutation on 20 bits which is a trivial form of a weak cipher.

15 In Appendix A we show a nice real-life example of such an invariant.



presentation most examples start by specifying P without really explaining how
this P was discovered in the first place.

5.1 A Toy Example with P of Degree 3 and 4 Variables and F = 0

We start with the following very simple non-linear round invariant property P
which is particularly simple and uses only 4 variables:

P = efg + efh+ egh+ fgh+ fg

We are quite close to using a random bijective LZS on a reduced set of bits
and P−fg is a symmetric homogenous polynomial of degree 3 in 4 variables only.
However it is important to note that overall P is NOT a symmetric polynomial.

Here is an example of a long term key where this invariant works:

317: P=27,29,31,21,33,19,26,25,22,32,23,17,24,16,18,9,5,

10,35,13,36,30,34,11,2,28,14 D=17,25,26,35,18,34,30,32,28

What is the solution Z? All we need to do is to write our Fundamental Equation
(FE) and substitute four variables using the ANF round equations in page 14.

P(a, b, c, d, e, f, g, h, . . .) = P(b, c, d, F + i, f, g, h, F + Z1 + e, . . .)

On the right hand side we replace a← b, etc, up to h← F + Z1 + e.

Our Fundamental Equation (FE) becomes:

F (fg + fh+ gh) + Z(fg + fh+ gh) + gh+ fg

We will now assume F = 0. We get:

Z(fg + fh+ gh) + fg + gh

Due to absence of variables p and t in P, this equation FE contains only Z
and not Y . More generally Z and Y are just two instances of the SAME Boolean
function on two disjoint sets of variables.

We recall our Fundamental Equation (FE) which becomes:

Z(fg + fh+ gh) = fg + gh

Then we need to substitute Z by an expression of type

Z00 + Z01 ∗ L+ Z02 ∗ j + Z03 ∗ L ∗ j + Z04 ∗ h+ Z05 ∗ L ∗ h+ . . .

with the correct 6 variables L, j, h, f, p, d in the correct order. And if needed,
we also replace Y by

Z00 + Z01 ∗ k + Z02 ∗ l + Z03 ∗ k ∗ l + . . .

where the coefficients Zii will be the same.

The FE becomes then:



(LZ33+LZ41+Z32+Z40)*dfg + (LZ37+LZ41+Z36+Z40)*dfgh +

(LZ39+LZ43+Z38+Z42)*dfghj + (LZ55+LZ59+Z54+Z58)*dfghjp +

(LZ53+LZ57+Z52+Z56)*dfghp + (LZ35+LZ43+Z34+Z42)*dfgj +

(LZ51+LZ59+Z50+Z58)*dfgjp + (LZ49+LZ57+Z48+Z56)*dfgp +

(LZ33+LZ37+LZ41+LZ45+Z32+Z36+Z40+Z44)*dfh +

...

(LZ17+LZ21+Z16+Z20)*ghp

From here we obtain a system of simultaneous almost-linear16 equations
starting with:

L*Z33+L*Z41+Z32+Z40=0

L*Z37+L*Z41+Z36+Z40=0

...

L*Z17+L*Z21+Z16+Z20=0

There are many solutions to this equation. One example solution is:

Z(a, b, c, d, e, f) = 1 + a+ c+ d

with L = 1 which gives in our case:

Z1 = Z(L, j, h, f, p, d) = h+ f

and it easy to check that our FE in Z holds:

(h+ f)(fg + fh+ gh) = (fgh+ fh+ gh) + (fg + fh+ fgh) = fg + gh

This solution is linear and no one would buy a backdoor cipher without non-
linear functions Z. Such a cipher actually have additional issues, for example
P = e + h is also an invariant. However there are also plenty of non-linear
solutions(!) which work all the same. For example:

Z(a, b, c, d, e, f) = a+ d+ ad+ cd+ f + af

which becomes

Z1 = Z(L, j, h, f, p, d) = L+ f + Lf + hf + d+ Ld

this one works only when L = 1. This completes the problem of constructing
a non-linear invariant attack in our toy example. We have two concrete examples
of Z and many other exist. However we are only able to construct an invariant in
1 case: here with F = 0 and L = 1. This invariant does not break T-310 cipher
as F and L vary in different rounds.
16 Here it is nearly linear because P is fixed, and most parts of it are linear. Except

that some variables Zii are multiplied by L.



5.2 A Very Important Observation

The example above is one of the simplest we have seen and is a bit degenerate:
there are plenty of Boolean functions which work and many are not very in-
teresting. However this example has an interesting feature: it is highly modular
and we can add or remove invariants (potentially) one by one. Here is a simple
example. It is easy to see that if in our example, we put Z = 1 + a+ c+ d which
becomes Z1 = h+ f when L = 1, we get FE of the form:

P(e, f, g, h) = P(f, g, h, F + h+ f + e)

and we have bits e, f, g, h which do not depend on what happens in other parts
of the cipher. A little toy cipher on 4 bits embedded inside a toy cipher on 15 bits.
With other Boolean functions however, this very strong weakness goes away, the
bits e, f, g, h will again depend on what happens in other parts of the cipher,
and yet we keep the SAME non-linear invariant P = efg+efh+egh+fgh+fg.

Furthermore it is easy to see that when Z = c + d our cipher has another
really bad linear invariant P = e + h when F = 0 and for any L. By setting
Z 6= c+ d, for example Z = a+ d+ ad+ cd+ f + af we have removed a linear
invariant e + h from our cipher, but we have kept many non-linear invariants.
This is an essential feature of our approach, a potential and ability to remove
some invariants while keeping other, independently, by manipulating Z.

5.3 Resistance to Linear Cryptanalysis

Moreover, here the reader will have to believe us, this is a bit harder to check,
the key 317 with Z = a + d + ad + cd + f + af has no linear invariants. This
cipher setting is not vulnerable to Linear Cryptanalysis (LC) in none of
the four cases such as L = 0 or 1 and F = 0 or 1.

5.4 Example with F = 1

It is possible to see that when F = 1, the same LZS 317 also has a non-linear
invariant for the same Z = a + d + ad + cd + f + af which is also actually of
degree 2:

P = ef + fg + eh+ gh

this is only when F = 1 and L = 1. Here the FE is (Z + 1)(f + h) = 0.
A “slight” problem is that P is not the same as when F = 0.

5.5 Can We Have the Same P when F = 0 and F = 1?

An interesting question is, whether it is possible to find invariants which work
in several cases simultaneously, for example when F = 0 and when F = 1, i.e.
we want the SAME invariant P to apply to two different permutations with
the same key. The Fundamental Equation method applies all the same. We will
just obtain two FE equations instead of 1, leading to fewer solutions for Z and
frequently leading to no solutions. Making sure that this equation is actually
solvable is one of the main problems in this research. Several examples showing
that this can eventually be achieved are provided in the following sections.



5.6 Impossibility Results and Provable Security

If this cannot be done, we would like to be to be able to prove mathematically
that FE has no solution and this attack is impossible for our cipher. Thus we can
hope to obtain for certain cipher a security proof against our method of making
a block cipher deliberately weak. There exist numerous negative general results
of this type in cryptanalysis, cf. [4, 8, 13, 20] some of which will also apply here
(in particular all those which also apply to partitioning cryptanalysis cf. [28, 8].
This paper leads indeed to a new well-defined way to prove a security of a cipher
against a malicious Boolean function attack, where we will prove that FE has
no solution. Such a proof can be done mathematically, or in a more automated
way through formal algebra and known results in theory of polynomial ideals,
using some Gröbner basis computations as a tool, or in a more obscure way
with software such as a SAT solvers (which will output UNSAT, and some SAT
solvers are also able to output a undeniable proof of UNSAT). Such a proof will
exclude a very large number of attacks with a variety of Boolean functions and
polynomials P, which space can hardly be explored systematically.

Application to T-310. Interesting questions are: is the KT1 class of keys
for T-310 cipher specified in 1970s provably secure against non-linear invariants?
A recent paper shows that it is not secure already against linear invariants [22].
In a future paper we expect to be able to show it is NOT secure against non-
linear invariants either, and this for a strictly larger percentage of long-term keys
inside the class KT1. At this moment (for technical reasons due to reducing the
number of variables the size of equations we solve and the number of key bits
involved) all long-term key examples in this paper are educational toy examples
without any direct real-life cryptanalytic significance and are not of type KT1.



6 Preliminary Remarks About Multiple Invariants

Our objective is to find a property which propagates for an arbitrarily large
number of rounds in T-310, a real-life historical block cipher. This means that we
need to find a simultaneous invariant which works in four cases F = 0, L = 0
up to F = 1, L = 1. This is not a small problem and it appears to be the
most difficult task to accomplish here. All other steps are comparatively quite
easy and the method remains the same: we just need up to four copies of our
FE equations and solve these combined equations for a simultaneous solution.
Specific examples will be shown below.

6.1 Dealing with L

Only 1 key bit is used per round. We need to (and we will be able to) find
invariants early on, before the permutation becomes too complex. Moreover, as
already explained, the key bits S1 we aim to eliminate them totally by using
specific sets of variables on one side. Then it is possible to see that for the bits
S2 a.k.a. L are not always excessively hard to deal with if we are allowed to
manipulate the Boolean function. This because of the very specific way (not
very strong) in which the key bit L is used in T-310. We can observe that if we
restrict our attention to non-linear invariants which concern all the bits a − t,
and Z1 non-linear function only, then P can use up to the whole 28 bits, which
is plenty to explore for the attacker, and yet L is not used anymore17. We can
then write and solve two FE equations for each case L = 0 and L = 1, and it
is possible to see that IF both FE have solutions, we can produce a solution Z
which will work for every L as follows.

Theorem 6.1.1 (Combination Theorem). We assume that in our FE prob-
lem Z2 is not used. We assume that we can solve the FE problem for Z in-
dependently in the case L = 0, and we obtain at least one Boolean function
Z0(b, c, d, e, f), and also that we can solve the FE problem with the same P
for L = 1 and obtain another Boolean function Z1(b, c, d, e, f). Furthermore we
assume that at least one of these Boolean functions is non-zero. Then we can
COMBINE the two solutions as follows:

Z(a, b, c, d, e, f) = a · Z1(b, c, d, e, f) + (a− 1) · Z0(b, c, d, e, f)

Moreover we can multiply Z by any polynomial in a and in any variable not
used in either Z0 and Z1 (typically just a) and we still get a valid invariant.
Proof: It is sufficient to see that with the combined Boolean function P is an
invariant property for our permutation on 36 bits, for both L = 0 and L = 1.
Remark: this method is of limited interest and does not work when Z2 is used.

17 Moreover there could be further properties which eliminate L with more bits



7 Construction of Multiple Simultaneous Invariants

7.1 A Strong Invariant Example with F = 0 and F = 1

On the algebraic front, very frequently the set of solutions is an empty set. We
need therefore to examine a larger variety of LZS. For example we found the
following example:

827: P=34,32,25,30,19,28,18,35,31,33,23,36,24,22,5,1,

13,17,16,10,21,6,20,29,9,15,3 D=21,17,29,24,27,20,31,36,32

The substitutions are therefore, omitting the trivial ones of type a ← b, as
follows:

d← F + e

h← F + Z1 + a

Z1← Z(L, c, e, l, g, r))

Consider the following polynomial:

P = ae+ bf + cg + dh+ e+ f + g + h

again we do not use Z2 and the fundamental equation is a remarkably simple
set of 2 equations, for F = 0 and F = 1:

Z + Ze+ a+ e = 0

Ze = 0

One interesting solution, specifically avoiding solutions which involve first
variable a is: Z(a, b, c, d, e, f) = bde+ bcde which becomes

Z1 = Z(L, c, e, l, g, r) = (e+ 1)clg

This is an educational example chosen for its simplicity, the FE is very short
and composed of two equations which do not contradict each other.

Discussion. This setup is not excessively good yet. It is weak w.r.t Linear
Cryptanalysis (LC) in some cases. We have found numerous examples not weak
w.r.t. LC, however the FE is more complex. Moreover in general we are still
not quite happy: our quadratic invariant works only in 2 out of 4 cases, when
L is fixed. We have NOT YET broken a block cipher. We need to construct
polynomial invariants which work in 4 cases simultaneously.



7.2 A Tentative Construction of an Advanced Quadruple Invariant

On this page we show that our key 827 allows a yet stronger form of attack to
be constructed. Consider the following very simple polynomial:

P = ae+ bf + cg + dh

Let F = 0, then we write our FE which becomes extremely simple Ze = 0
and it does NOT depend on L. Therefore when F = 0 our invariant P works for
any L. It remains to see what happens for F = 1. In this case it is possible to
see that we get another invariant which is the one from the previous section:

P = ae+ bf + cg + dh+ e+ f + g + h

Interestingly the difference of the two invariants is very simple e+ f + g+h.
From this we can construct a more general invariant, 6-linear attack in the spirit
of Section 4.10 with FE being of the form:

P(a, b, c, d, e, f, . . .) = P(b, . . . , F + Z1 + r + g, . . .) +Q(F,L, I)

and

Q(F,L,M) = F · I

More precisely, combining the two results, we have the following quadruple
invariant which works for any F and any L:

P(a, b, c, d, e, f, g, h) = P(b, c, d, F + e, f, g, F + Z1 + a) + F · (e+ f + g + h)

where

P(a, b, c, d, e, f, g, h) = ae+ bf + cg + dh

7.3 A Combined Invariant Attack with 2 Stages

In the example above I = e+ f + g + h is linear and the attacker could predict
the value of P(a, b, c, d, e, f, g, h) = ae + bf + cg + dh after an arbitrarily large
number of rounds IF he can predict the values of I = e+f+g+h at every round.
Now, there are good chances that BOTH properties CAN be combined(!) in one
single vulnerable long-term key (and polynomial I does not have to be linear). It
is possible to see that both the property P(left) = P(right) +F · (e+ f + g+h)
occurs IF AN ONLY if a certain number of constraints C1 on P, D are satisfied,
and moreover if another set of constraints C2 on P, D are satisfied, the attacker
can also predict bits I at every round [possibly with a partial key guess]. The
properties C1 and C2 are not always compatible and can be studied through
machine learning, or through exact mathematical theorems18. In the case when
pre-conditions C1 and C2 are compatible, which will happen sometimes19, then
we have found a way to predict 2 bits for an arbitrary number of rounds

18 One example of how C1 may look like is given in Section 7.6. Numerous other
examples can be found in Section 21.22 page 87 in [19] and numerous examples of
exact theorems which show how pre-conditions of P, D lead to an invariant property
can be found in [19], see for example Theorem J.1.1. on page 173.

19 In Section 21.14. [19] we see one example when two such conditions are compatible.



of our cipher and long term keys which satisfies both conditions C1 and C2 can
easily be constructed20.

7.4 A Concrete Example of a Quadruple Invariant or How to
Backdoor T-310

In the previous example we have not shown if conditions C1 and C2 can be
made to be compatible. An interesting question is, can we do better, and find
a simpler example when an invariant can be constructed. Moreover, can this be
done on demand, say a key we have not chosen, for example the same key 827
as above, which will be a good indication that this sort of invariants are quite
common.

827: P=34,32,25,30,19,28,18,35,31,33,23,36,24,22,5,1,

13,17,16,10,21,6,20,29,9,15,3 D=21,17,29,24,27,20,31,36,32

The answer is yes and in order to approach this problem we add a slight
amount of arbitrary constraints to the FE equation: for example we select two
or three higher degree coefficients of the polynomial P and fix them to one.
This allow us to generate a large variety of solutions to the FE equation. In
particular there exist a number of degenerate cases where there is no need for
four FE equations, because some of them identical(!). Such cases are very nice
as a proof of concept because of their simplicity. The discovery procedure is
therefore essentially trial and error. For example we consider the following very
simple polynomial:

P = a+ b+ c+ ac+ d+ bd+ e+ ce+ f + df + g + ag + eg + h+ bh+ fh

Again we replace a← b, etc, with d← F + e and

h← F + Z1 + a

Z1← Z(L, c, e, l, g, r))

the fundamental equation is then particularly simple:

Z = Z(c+ g)

20 In general this is done using a SAT solver, the solving complexity of this problem is
very low, the coding is however very complicated.



All this can be illustrated on the following picture made by UCL student
Marios Georgiou. Each cycle can be seen as cancelling all the monomials without
F and without Z which appear inside for the purpose of writing the FE.

Fig. 4. A detailed explanation for our invariant which shows terms which cancel.

Blue pieces are those which eventually cancel out, remembering that all F
are identical and belong to the same round. The red transitions with a question
mark are those which may or not work depending on Z (ultimately they will work
if FE has a solution so additional terms could be generated here and cancelled
elsewhere). The green and black terms are those which stay and belong to our
invariant P above. This figure also explains that P is eseentially a sum of 2
symmetric polynomials with 2 cycles of length 8 (however we checked that it is
NOT true that an invariant for 8 rounds simpler/shorter than P would exist).

Now because the FE does not depend on neither F nor L we do not need
four copies of it but just one. Here is one solution:

Z = e+ be+ ce+ bce+ bf + bcf + bef + bcef

We have an invariant on 8 bits 29-36 the key feature of which is that it will
completely ignore 4 bits which come from other parts of the cipher. This is shown
on the picture below made by UCL student Marios Georgiou.

Fig. 5. A detailed explanation how our invariant will work completely ignoring 4 bits
which enter Z1.

This completes a construction of a non-linear round invariant. We have
checked that there is no linear invariant in any of the 4 cases and therefore
Linear Cryptanalysis (LC) does not work here. Our non-linear invariant P
works in all four cases and therefore it propagates for an arbitrary number
of rounds for any key and for any IV.



7.5 Extension for Boolean Functions Using a

In the previous solution, we do not use the L variable (a.k.a. ’a’ letter in the
Boolean function ANF). A Boolean function not using one variable in a block
cipher looks very bizarre. An interesting question is whether the same LZS can
also be made weak and work in all 4 cases with a Boolean function using ’a’. The
answer is yes and one method achieve this (observed my UCL student Marios
Georgiou) is again to solve the same equation:

Z = Z(c+ g)

and we multiply the resulting solution Z by (1 + a). The resulting Boolean
function does the job and it depends on a, and therefore it depends also on L if
we use Z1 which we do here.

Remark. This sort of extension or improvement can also be achieved using
our Thm. 6.1.1 page 26.

7.6 Pre-Conditions for Our Quadruple Invariant

It is possible to see that (as observed by UCL student Marios Georgiou) the
invariant observed in Section 7.4 can be constructed systematically [the number
of long-term keys which have the same property will be very large, of the order
of 270] and it will occur each time the following set of conditions are satisfied:

D(9) = 32

D(8) = 36

(1 + c+ g)Z(L,P [1− 5]) ≡ 0

Z 6≡ 0

In particular this implies that one of the P (1 − 5) values must be equal to
bit 34, which corresponds to letter ’c’.



8 More Complex Examples

Until now our examples exploited primarily a tiny subset of 36 bits and moreover
the LZS examples specified were not bijective and therefore not secure w.r.t.
the already known ciphertext-only attack of [20]. Below we present two more
convincing examples which are secure against the attack of [20] and where inputs
from different parts of the cipher are better mixed together.

8.1 An Example Using Z1 and Z2

We found the following nice yet non-trivial example:

799: P=25,35,21,31,26,2,28,29,33,23,12,27,20,13,5,14,

18,32,1,16,30,8,7,34,6,24,9 D=0,4,16,8,12,36,32,24,28

The round function is a bijection on 36 bits for any key and any IV . There
is no linear invariants and there is no weakness of any sort w.r.t to any
previously known attack on T-310. We then consider the following polynomial
quadratic invariant as follows:

bi+cj+dk+il+ej+fk+gl+eh+fm+gn+ho+mp+an+bo+cp+ad+bm+cn+do+

ip+ aj + bk + cl + de+ fi+ gj + hk + lm+ en+ fo+ gp+ ah

which polynomial is irreducible and has 32 monomials of degree 2. The fun-
damental equation is then (all four versions are identical):

Y d+ Y h+ Y j + Y n+ Zb+ Zf + Zl + Zp

Solving this FE leads to the following solution (not unique):

Z = 1 + b+ c+ d+ e+ be+ ce+ de+ f + bf + cf + df + ef + bcdef

This FE and this solution is not trivial in two ways: there is no obvious linear
solution Z, and also because the four inputs of Z and Y which are actually used
in Z and Y are NOT 21 at the same positions in Z and in Y . In the same way
as in Section 7.5, this Boolean function could be multiplied by any polynomial
in a. Here again we obtain a perfect quadruple invariant which works for any F ,
for any L and for any number of rounds.

21 The difference lies in the last variables ’k’ and ’j’, one of them replaces input 5 the
other input 6. Therefore Z and Y are annihilated in a (slightly) different way.



8.2 An Example of an Invariant with Z1 and Z4

We focus on 8+8 bits 29-36 and 5-12 pertaining to Z1 and Z4 only and we will

strictly be avoiding anything between g2 and g7. Let g27
def
= g2 + g7 cf. Fig. 2.

In order to generate such an invariant, we have done a detailed analysis of cycles
which involve various products of degree 2, some transitions are mandatory, some
will depend on the Di values. We ignore the boxes with blue crosses which we
hope might eventually be eliminated later inside the final FE which is not yet
found. We show here a glimpse of what we obtained in this case:

Fig. 6. A detailed analysis of transitions we aim at using in our invariant. The boxes
with crosses are terms we hope to cancel later. Transitions in red with ? depend on Z
and will eventually work only if our final FE equation has a solution.

This example was found by UCL student Marios Georgiou paper and pencil
with some help of software. Many attempts are needed and most attempts fail.
By trying to put several such cycles together we obtain the following plausible
invariant:

P = bc+cd+dy+yz+zM+MN+eN+ef+fg+gh+hO+OP+PQ+QR+aR+ab+bg+ch+

dO + yP + zQ+MR+ aN + be+ cf + dg + hy + zO +MP +NQ+ eR+ af.

Here is an example of a LZS where this P works:

714: P=11,7,30,29,33,1,20,17,2,15,14,27,36,24,18,8,19,

23,28,32,4,16,31,9,35,5,13 D=16,36,32,24,4,28,20,8,12



Our P is irreducible and the FE is:

NW + PZ +RW +Wb+Wf + Zd+ Zh+ Zz

In general, it is possible to see that the conditions which are needed for this
invariant to work are the following four:

D(2) = 4 · 9
D(3) = 4 · 8
D(8) = 4 · 2
D(9) = 4 · 3

These conditions lead to a specific configuration as follows:

Fig. 7. Some important connections inside our invariant for key 771.

Solving the FE. It remains to find a solution to NW + PZ + RW + Wb +
Wf + Zd+ Zh+ Zz ≡ 0. With LZS 714 above, one possible solution is

Z = 1 + dc+ cb+ fb+ b+ c+ de+ df + db+ e+ f + d+ eb.

We get another invariant which works for any number of rounds and any key. It
is bijective and has no linear invariants and no previously known attacks work.



8.3 An Example of An Invariant Which Involves Key Bits

Below we show another example with a permutation on 36 bits. An interesting
feature of this example is that it follows the Extended 5-Linear FE (5EFE)
framework of Section 4.9 of type

P(a, b, c, . . .) = P(b, . . . , F + Z1 + . . . , . . .) +Q(F,L)

where Q will actually depend on L = S2 key bit at a given round. It is
basically a proof of concept of an invariant where key bits are involved and
which is therefore suitable and can be directly used in key recovery attacks.

771: P=31,35,16,25,21,24,12,27,29,8,33,23,36,14,3,11,

19,32,22,4,9,28,2,20,6,1,30 D=20,0,12,16,8,36,32,24,28

The round function is a bijection on 36 bits for any key and any IV , (thus it
not vulnerable to the attack of [20]), and there is no linear invariants and there is
no other weakness w.r.t to previously known attacks. We consider the following
excessively simple polynomial:

b+ c+ d+ f + g + eg + h+ fh+ i+ j + k + fl +m+ n+ o

which polynomial is irreducible and has only three non-linear monomials, so
it one of the simplest examples. Moreover it is not a symmetric polynomial in
the slightest, s howing that a wider variety of solutions is possible(!).

The fundamental equation is then (all four versions are identical):

Z + b+ f + fl + l + p

It has a unique solution:

Z = c+ a+ f + b+ e+ be

which has only one(!) non-linear term. Again we obtain a perfect quadruple
invariant which works for any F , for any L and for any number of rounds and
we have:

Q(F,L) = L

We have obtained an invariant which allows to obtain sums combinations of
key bits S2 used in different rounds. This corresponds to an open problem left
on the last page of [21] where only attacks which work with S1 are found. Here
we can do key recovery for S2 as well. However we do it for a special Boolean
function, for the original Boolean function the problem remains not solved.



8.4 Lessons About Linear Cryptanalysis

It is widely believed that even though Differential Cryptanalysis (DC) was known
already in the 1970s, cf. [5], and Linear Cryptanalysis (LC) was not. This is
clearly not true and it appears that Linear Cryptanalysis was also already known
in 1970s, cf. [22]. There are numerous works in cryptography in which security is
proven against Linear Cryptanalysis. We are now going to show a funny example:
a non-linear invariant with only one non-linear term which nevertheless works
for any number of rounds, any key and any IV . It was found by paper and pencil
explorations by UCL student Marios Gerogiou. The invariant is:

P = v + w + x+O + P +Q+R+ uv

one LZS where this invariant works is:

120: P=33,1,36,3,2,20,26,21,28,7,4,18,5,17,29,27,6,9,

34,8,24,14,16,35,15,12,32 D=20,16,8,12,28,4,36,32,24

and the FE is W + u+ v + y + uv + vw with a unique22 solution Z = c+ e+
be + ce + f . We have checked that this cipher is a key-dependent bijection on
36 bits and is secure w.r.t. linear invariants. In other terms it is resistant to all
previously known attacks including recent ciphertext-only attacks in [20].

8.5 An Example with Two Monomials

And here is example with only two non-linear monomials. It was found by UCL
student Marios Georgiou.

We consider

P = an+ gn+ u+ v + w + x+O + P +Q+R

One long-term key which works is

993: P=17,4,8,5,24,28,21,33,18,26,14,19,34,2,1,15,11,

27,12,16,29,30,36,22,35,23,9 D=0,36,4,8,12,20,24,28,32

the FE is
W + a+ an+ bo+ gn+ ho = 0

which equation has again a unique23 solution: Z = b+ ab+ cd+ de+ af .
Again this cipher setup gives a bijection on 36 bits secure w.r.t. all previously

known attacks.

22 See Section 9.1 and last point 4. in Section 9.2 to see why this matters.
23 The idea is that if we are able to find cases where the solution is unique, it means

that maybe we could have a backdooring method which is more specific to a very
specific cipher setup.



8.6 Further Observations on Our Example with Two Monomials

This cipher setup has an interesting partitioning of products in W : half of them
an+gn are connected to inputs, and half are connected to outputs with bo+ho.
A whole lot of bits inside the cipher are never used in the invariant, yet all 24 the
6 bits of Z are used inside the invariant. In particular this invariant has a short
cycle such that the keys bits are not used inside the cycle. Finally we remark
that g3 is used twice inside this cycle.

Fig. 8. Our construction of an invariant with only two non-linear terms.

24 See Section 9.1 to see why this matters.



9 Preliminary Conclusion

This completes our proof of concept for embedding a backdoor inside the T-310
cipher by solving the Fundamental Equation for Z. We are able to produce a
variety of strong polynomial invariants which work for any number of rounds and
for a cipher setup which is secure w.r.t. to all previously known attacks. Now
the ONLY difference between our cipher and the original government cipher is
that the LZS is not standard. It is sufficient now to change25 the LZS printed
circuit board inside the cipher, in order to obtain a weak cipher with a non-linear
property valid for an arbitrarily large number of rounds. We should add that no
other cipher we heard of, uses such excessively large numbers of rounds as T-310
in the actual encryption process, leading to an excessively large hardware cost,
cf. [23]. Our attack shows that in some cases, all this does not help (!).

Very few attacks in symmetric cryptanalysis work when the number of rounds
is very large, for example slide attacks specifically, cf. for example [6] or previous
attacks with algebraic/polynomial invariants [15, 16].

9.1 What is Wrong with Our Boolean Functions?

Nothing is wrong, as we will explain below. In most of our proof of concept ex-
amples the Boolean function is very special and not very strong or quite trivial,
and has generally a lower degree than expected. This is almost certainly not a
problem and is due to the fact that we impose yet very few constraints and our
examples have been chosen for elegance and simplicity and are characterised by
a short and sparse FE which is unlikely to be the case in general. An important
point is that at this moment we have artificially imposed that many inputs of
these Boolean functions must be eliminated and the function maybe does not
really depend on these inputs [or depends on them in a somewhat degenerate or
deficient way]. This inevitably leads to quite peculiar Boolean functions which
for example do not depend on some bits. Such Boolean functions are not very
convincing if our goal was to backdoor a block cipher. This problem will prob-
ably go away as soon as more complex variants using more bits as inputs are
constructed. Then we expect that the Boolean function will be more severely
constrained and will become unique and more complex and will use all the 6
variables, which is possible see example in Section 8.6. Three examples where
the solution is already unique, but not yet sufficiently complex, are given in Sec-
tions 8.4 and 8.6 and 8.3. In general, when the degree of P increases, we expect
to find many more/stronger invariants P which work for a larger proportion of
the space of all Boolean functions on 6 variables, and also many invariant which
lead to unique solutions which are very peculiar and occur for strange reasons,
thus leading to more convincing backdoors the very existence of which would
not be at all obvious.

25 Such an upgrade would typically be done once per year, cf. [19].



9.2 Open Problems

Therefore we are asking the following questions for future research to answer.

1. Can non-trivial26 non-linear invariants be constructed or found for any of the
original historical keys such as KT1 keys for example LZS 26? The Boolean
function could be extremely weak, it is first a question of a proof of concept
and if the KT2 conditions and these particular LZS do not prevent our
attacks (making them totally impossible).

2. Can an LZS with a polynomial invariant be constructed on demand for any
Boolean function not chosen by ourselves? For example such as a random
Boolean function? Or just the original Boolean function used in T-310?

3. In addition is it possible to find or construct an isolated and rare invariant
such that it will work with an extremely low probability say less than 2−25

for another LZS, and that it will with an extremely low probability say less
than 2−25 for another Boolean function with similar characteristics?

4. Is it sensible to build a new public key cryptosystem in the following
way:

(a) we specify an efficient algorithm for finding and a random triple (LZS,Z,P),
(very much like in this paper, however more work on what is the best
way of doing this is needed),

(b) however if we know only the LZS and the Boolean function Z, and we
do not know how they have been constructed, it should computationally
infeasible to find the invariant P.

We should not that the space for P is double exponential size w.r.t. block
cipher size n. For our public key cryptosystem to be secure it should be
sufficient that the discovery of P has time complexity which is not polyno-
mial. There is therefore a big gap which is in our favour, i.e. even if P has
numerous properties which makes it discovery easier, their discovery could
still be completely intractable in theory or in practice.

26 For example such that P is an irreducible polynomial and no linear invariants exist,
on both accounts not degenerate and different than what we see in Appendix A.2.



10 Conclusion

One of the major open problems in block cipher cryptanalysis is to discover
new specific types of invariant properties which can hold for a larger number
of rounds. In this paper we study non-linear Boolean polynomial invariants.
Previous researchers have had great difficulties to make this approach work and
the space of the possibilities is too large for systematic exploration. In this paper
we have turned the problem of non-linear cryptanalysis upside-down. We fix the
combinatorial structure of the cipher, look at the round ANF formulas, and
try to find a Boolean function Z and also simultaneously determine a suitable
polynomial invariant P, which allows to achieve the desired property. This is done
by solving the so called Fundamental Equation (FE) or several such equations
combined. Such invariants have the capacity to avoid more complex parts of the
cipher and also many key bits. Then, we encounter a major problem: several FE
equations need to have a common solution. This can eventually be achieved(!),
cf. Sect. 7.1 and 7.4. Iterative attacks are also possible, cf. Sect. 4.11 and 7.3.

This paper shows how a specific structure and internal wiring of a block
cipher can be translated into a relatively simple FE equation, which can be used
to study which specific non-linear invariants may exist (or not) for this cipher.
Stronger invariants can now be defined and characterized algebraically, P must
be such that most or all the coefficients of FE reduce to zero, see Appendix A.
Our main contribution is to show that the attacker does not need to randomly
search for a vulnerable non-linear component Z (and for P). Weak Boolean
functions and specific polynomial invariants P can be determined – by solving
our FE equation(s). Our approach is constructive, completely general and can be
applied to almost any block cipher: we directly write the Fundamental Equation
from the ANFs, substitute variables inside, and attempt to solve our FE(s).

Future research. We anticipate that the success rate of this approach will
be very different for different families of ciphers. If just one round function is
very complex and uses many key bits, with too many constraints to satisfy
simultaneously, our approach is likely to fail, or solving FE will become difficult.

Positive Results. In current research on backdoors in block ciphers there
are many impossibility results [4, 8] but extremely few possibility results [15, 13].
Partitioning cryptanalysis [31] properties can be quite obscure, (weak ciphers
seem to occur accidentally, and complex ciphers seem secure for no reason [42]).
Polynomial invariants are way more intelligible. We discover that weak ciphers
follow clear rules and a whole range from simple to increasingly complex invariant
properties can now be characterized, studied and computed explicitly.

On Our Specific Cipher. What is incredible is that this approach works,
at all, for at least one real-life block cipher T-310. Several factors help to make
this happen: extremely few key and IV bits are used in one round, there is some
freedom in the choice of the internal wiring with a strong triangular structure,
and the degree of the Boolean polynomials is limited to 6. In contrast the space
of possible polynomials Z and P is extremely large. In future research we expect
to show that the proportion of keys for which FE has a solution can be computed
exactly cf. [22], and that it is strictly increasing as the degree of P grows.
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A FE with Reduction to Zero and Structural Invariants

In this paper we show that a Boolean function can be chosen in order to create a
specific invariant. An interesting question is whether the Fundamental Equation
can be reduced to zero (!), i.e. given a certain fixed P it is simply equal to zero
and it holds for any Z. When this happens, we will obtain a polynomial invariant
which works for any Z and therefore it also works also for the original Boolean
function used in the T-310 cipher in 1970s-1990. Here below we give one example
when this happens. In this example a quadruple FE equation can be solved for
4 cases simultaneously, because all the 4 equations are empty. We define key 898
by:

898: P=35,17,19,25,17,25,22,19,31,30,29,26,20,36,23,5,

2,27,16,11,28,33,7,15,21,12,3 D=33,23,27,26,28,24,32,28,36

A computer simulation shows that the following polynomial with 43 terms is
an invariant in this case:

eg+fh+gi+hi+ej+hj+ij+ek+fk+jk+fl+il+jl+hm+km+lm+en+in+fo+io+jo+

mo+gp+jp+kp+np+hq+kq+lq+oq+er+ir+pr+fs+is+js+ms+qs+gt+jt+kt+nt+rt

and a quick computation shows that the FE is indeed reduced to zero. This
invariant is more complex than previously, it involves Z1, Z2 and a larger number
of variables. It works for T-310 for any key, any IV and for an arbitrary number
of rounds. In this example a linear invariant also exists: e + f + g + h + l +



m + n + o + p + q + r + s + t and both linear and non-linear invariants can
be characterized (and computed!) from the fact that our FE reduces to zero.
Both linear and non-linear invariants exist here and penetrate deeply inside the
cipher. Now because the FE reduces to zero, no Boolean function can make
this cipher setup secure against round invariant attacks (and also against
partitioning attacks in general).

A.1 Another Example

In this example, the key is a bijection on 36 bits, it uses Z1,Z2 and Z4, and we
have again an invariant with FE reduced to 0 as follows:

848: P=18,32,2,15,34,30,33,28,13,9,21,27,25,24,22,20,10,

5,26,31,11,4,35,16,7,23,36 D=4,36,32,16,20,12,8,28,24

the invariant is:

P = gh+hi+gj+ij+hk+jk+gl+il+kl+hO+jO+lO+gP+iP+kP+OP+hQ+jQ+lQ+

PQ+gR+iR+kR+OR+QR+hS+jS+lS+PS+RS+gT+iT+kT+OT+QT+ST+

hU + jU + lU + PU +RU + TU + gV + iV + kV +OV +QV + SV + UV

A.2 Example with a KT1 Key

The same type of invariant can be achieved with a KT1 key.

881: P=4,20,33,8,1,28,5,19,9,32,11,17,24,13,21,18,15,

25,12,16,35,22,23,29,36,30,34 D=0,36,4,8,12,20,24,28,32

the invariant is:

ab+bm+an+mn+bo+no+ap+mp+op+bq+nq+pq+ar+mr+or+qr+bs+ns+ps+rs+at+mt+ot+qt+st+bu+nu+pu+ru+tu+av+mv+ov+qv+sv+uv+bw+nw+pw+rw+tw+vw+ax+mx+

ox+qx+sx+ux+wx+by+ny+py+ry+ty+vy+xy+az+mz+oz+qz+sz+uz+wz+yz+bM+nM+pM+rM+tM+vM+xM+zM+aN+mN+oN+qN+sN+uN+wN+yN+MN+bO+nO+pO+rO+tO+vO+xO+

zO+NO+aP+mP+oP+qP+sP+uP+wP+yP+MP+OP+bQ+nQ+pQ+rQ+tQ+vQ+xQ+zQ+NQ+PQ+aR+mR+oR+qR+sR+uR+wR+yR+MR+OR+QR+bS+nS+pS+rS+tS+vS+xS+zS+NS+PS+RS+

aT+mT+oT+qT+sT+uT+wT+yT+MT+OT+QT+ST+bU+nU+pU+rU+tU+vU+xU+zU+NU+PU+RU+TU+aV+mV+oV+qV+sV+uV+wV+yV+MV+OV+QV+SV+UV

which has 169 = 132 terms and is equal to

(n+b+p+r+t+v+x+z+N+P+R+T+V )(a+m+o+q+s+u+w+y+M+O+Q+S+U)

In all the keys where FE reduces to zero known to us there is always also
a linear invariant. Furthermore it is possible to verify that if we call A the first
sum, and if we call B the second sum, AB is a non-linear invariant and also A+B
is a linear invariant for the same cipher setup LZS 881. We do not claim that
using this exact invariant gives anything not already found in classical Linear
Cryptanalysis. These are degenerate examples.



A.3 More Degenerate Examples

Further degenerate examples will be linear combinations of several degenerate
examples such as above. In this case the polynomial P could be irreducible
(!). A detailed study shows that up to 13 linear properties can be made to hold
simultaneously in T-310, cf. Section 21.16 in [19] and up to 10 can be obtained for
KT1 keys. This leads to plenty of non-linear invariants which can be constructed
from linear invariants (only if not using F, S1, S2 bits) which can be multiplied
or added together. Moreover, in some combinations of invariants with F, S1, S2
bits, these bits could be eliminated leading to somewhat less trivial types of
degenerate invariants.


