
Reconstructing an S-box from its
Difference Distribution Table

Orr Dunkelman and Senyang Huang(�)

Department of Computer Science, University of Haifa, Israel.
shuang@campus.haifa.ac.il

Abstract.
In this paper we study the problem of recovering a secret S-box from its difference
distribution table (DDT). While being an interesting theoretical problem on its own,
the ability to recover the S-box from the DDT of a secret S-box can be used in
cryptanalytic attacks where the adversary can obtain the DDT (e.g., in Bar-On et
al.’s attack on GOST), in supporting theoretical analysis of the properties of difference
distribution tables (e.g., in Boura et al.’s work), or as a tool for developing an S-box
with a unique differential trapdoor.
We show that using the well established relation between the DDT and the linear
approximation table (LAT), one can devise an algorithm different from the guess-
and-determine algorithm proposed by Boura et al. Moreover, we show how to exploit
this relation, and embed the knowledge obtained from it in the guess-and-determine
algorithm, and we discuss when our new method gives better results than the simple
guess and determine attack.
Keywords: S-box, DDT, LAT, the sign determination problem

1 Introduction
Differential cryptanalysis, introduced by Biham and Shamir [7], has transformed the field
of cryptanalysis and offered attacks against multiple symmetric-key primitives (and a few
public-key ones). An essential component in estimating the probability of a differential
characteristic is the Difference Distribution Table of an S-box. This table is easy to
compute when the S-box is given (in time O(22n) for n-bit S-box). However, the inverse
problem of deducing the S-box from a given DDT, was mostly left unstudied.

At first, this problem looks like a theoretical problem of very limited practical interest.
However, efficient reconstruction of the S-box from the DDT is a useful tool in several cases.
First, several cryptanalytic attacks on secret S-boxes constructions (such as GOST [16]
and Blowfish [22]) may have access to the difference distribution table rather than the
S-box itself. For example, in Bar-On et al.’s slide attack on GOST [6], the adversary can
learn the DDT, and needs to deduce the secret S-box from it.

Another line of research that will enjoy such efficient reconstruction algorithms is the
study of the theoretical properties of DDTs. A recent work by Boura et al. [11] studied a
theoretical question — can two different S-boxes, that do not satisfy some trivial relation,
share the same DDT. As part of this work, a guess-and-determine algorithm for the
reconstruction of the S-box was introduced and used. While being practical for small
S-boxes, this algorithm’s running time was not analyzed for the general case, and it seems
that for large S-boxes it may be impractical.

A different application of such a reconstruction algorithm is in the study of embedding
backdoors in S-boxes. Consider a malicious designer who wishes to construct a large secret

mailto: shuang@campus.haifa.ac.il

2 iacrtans class documentation

S-box which has a differential-based backdoor known to him only. Such a designer may
decide to first pick a DDT with many low entries, besides one (or a few) entries of relatively
high value. Then, the adversary could use the reconstruction algorithm to find the actual
S-box. This line of research thus supports the reverse engineering of “suspicious” S-boxes,
e.g., the work by Biryukov and Perrin in [8].

In this paper we study the reconstruction problem in a different prospective from that
of [11]. Instead of performing a guess-and-determine of the possible S-boxes, we rely on
the well established relation between the DDT of an S-box and the Sbox’s LAT [9, 10, 13].
We show that using this relation, it is possible to transform the DDT into multiple linear
approximation tables,1 each of which is offering an S-box (that can be easily computed
relying on the Walsh-Hadamard transform).

After analyzing the basic idea, we show how to use the knowledge obtained using this
approach in the guess-and-determine algorithm. The combination offers superior results to
the previous ones, resulting in an algorithm which is (to the best of our knowledge) the
best in solving the construction problem.

Finally, we test different types of S-box recovery cases, checking the time complexities
of the actual inversion. These tests were performed on different sizes of S-boxes. We
compare our method with the simple guess-and-determine algorithm and discuss in which
cases our new method provides better performance than the simple guess and determine
attack.

This paper is organized as follows. In Section 2, we discuss the preliminary of the
reconstruction problem, including the DDT and LAT, the previous works on the relation
between an Sbox, its DDT and its LAT. The notations used in this paper are also introduced.
In Section 3, a new problem is introduced and we propose an algorithm to solve it. With
the knowledge obtained by solving the new problem, the guess-and-determine algorithm in
[11] is improved in Section 4. Then, our approach is implemented on the different S-boxes
and some special Boolean functions. In Section 5 we compare the performances of our
method with the guess-and-determine algorithm in [11]. In Section 6, we conclude this
paper.

2 Background and Notations
Throughout the paper we discuss S-boxes with n-bit inputs and m-bit outputs, i.e., n×m
S-box. When m = n, we refer to the S-box as an n-bit S-box. We treat the S-box as a
vectorial Boolean function, i.e., S(x) = (Sm−1(x), . . . , S0(x)).

After recalling the definitions of the difference distribution table and the linear approx-
imation table, the previous work on the relation between the two tables is revisited. Then
the notations which are used in this paper are described.

2.1 Difference Distribution Table and Linear Approximation Table
The difference distribution table (DDT) of an S-box counts the number of cases when
the input difference of a pair is a and the output difference is b (see [7]).2 For an input
difference a ∈ Fn

2 and an output difference b ∈ Fm
2 , the entry δ(a, b) of the Sbox’s DDT is:

δ(a, b) =
∣∣{z ∈ Fn

2
∣∣S(z ⊕ a)⊕ S(z) = b}

∣∣ .
We follow the work of Boura et al. in [11] and call two S-boxes S0(x) and S1(x) DDT-
equivalent if they have the same DDT. In [11], a DDT-equivalence class is called trivial
when its size matches the lower-bound given in Property 1:

1As we later discuss in Section 2.2, this relation allows for recovering the absolute values of the entries
of the LAT, and the signs of the different entries are to be determined.

2We note that [7] also discusses DDTs that store these pairs. However, for the sake of this work we use
the common DDT that stores only the number of pairs.

Orr Dunkelman and Senyang Huang(�) 3

Property 1. Let S be a function from Fn
2 into Fm

2 and let ` denote the dimension
of its linear space, i.e., of the space formed by all linear structures of S. Then, the
DDT-equivalence class of S contains the 2m+n−` distinct functions of the form

x→ S(x⊕ c)⊕ d, c ∈ Fn
2 , d ∈ Fm

2 .

The differential uniformity is an important characteristic for analysing the resistance to
differential cryptanalysis (see [21]). The differential uniformity of an S-box S(x) is defined
as

max
a∈Fn

2 \{0n},b∈Fm
2

δ(a, b).

The lowest possible value for the differential uniformity of a function from Fn
2 into itself is

two and the functions with differential uniformity two are called almost perfect nonlinear
(APN). As we discuss in Section 5, it is harder to reconstruct an APN function from its
DDT.

The linear approximation table (LAT) of an S-box is used to derive approximate linear
relations between input bits and output bits of the S-box (see [19]). For any input mask
a ∈ Fn

2 and any output mask b ∈ Fm
2 , the LAT entry is defined as

λ(a, b) =
∣∣{x ∈ Fn

2
∣∣a · x⊕ b · S(x) = 0}

∣∣− 2n−1 = 1
2
∑

x∈Fn
2

(−1)a·x⊕b·S(x) (1)

where a·X and b·S(X) are the inner product over F2. It could also be seen from Equation 1
that given the S-box’s LAT, the adversary can reconstruct the underlying S-box by solving
a system of linear equations (see Lemma 2 in [13]).

The nonlinearity of a Boolean function f from Fn
2 to F2 is the minimum Hamming

distance between f and the set of affine functions. In our case, for each b ∈ Fm
2 , the

nonlinearity of b · S(x) is

nf(b · S(x)) = 2n−1 − max
a∈Fn

2 \{0n}
|λ(a, b)|.

When for all a, |λ(a, b)| in the b-th column is equal to 2n/2−1, b · S(x) is called a bent
function (see [12]).

2.2 Links between an S-box, its Difference Distribution Table and its
Linear Approximation Table

We now revisit the relation between DDTs and LATs observed in [9, 10, 13]. To do so,
we start with the Walsh-Hadamard transform. Let f : Fn

2 × Fm
2 → R be a function, f̂ is

denoted as the Walsh-Hadamard transform:

∀(a, b) ∈ Fn
2 × Fm

2 , f̂(a, b) =
∑
x,y

f(x, y)(−1)a·x⊕b·y,

where the sum is evaluated over the reals and a · x and b · y are the inner product over the
domain Fn

2 and Fm
2 , respectively. Theorem 1 obtained in [10, 13] shows that the entries of

DDT and LAT are linked to each other through the Walsh-Hadamard transform.

Theorem 1. ([10, 13]) For all (a, b) ∈ Fn
2 × Fm

2 ,

1. δ̂(a, b) = 4λ2(a, b),
2. 4λ̂2(a, b) = 2m+nδ(a, b),

where λ̂2(a, b) is the Walsh transform of λ2(a, b).

4 iacrtans class documentation

The first conclusion in the theorem above implies that a squared entry in the LAT can
be deduced from the given DDT. Hence, in order to recover the S-box from the DDT, we
need to determine the signs of the entries in the LAT as we discuss in Section 3.

2.3 Notations

In the LAT, we denote the b-th column of the LAT by ~λb, where 0 ≤ b < 2m. In addition,
we use λ†(a, b) to denote the absolute value of the element λ(a, b) of the LAT. We extend
the † notion to vectors as follows:

~v † = (|v0|, . . . , |v`−1|),

where ~v = (v0, . . . , v`−1) and | · | is the absolute value of a number. We define the
absolute LAT of the vectorial Boolean function S as (~λ†0, · · · , ~λ

†
2m−1). We also define ~sb as

((−1)b·S(0), . . . , (−1)b·S(2m−1)).
Let ~u = (u0, . . . , u`−1) and ~v = (v0, . . . , v`−1) be two vectors. Then, the Hadamard

product of these vectors is denoted by ~u� ~v = (u0 · v0, . . . , u`−1 · v`−1).
Finally, we define for a vector ~v = (v0, . . . , v`−1), a partial vector ~v [x,y] = (vx, . . . , vy),

0 ≤ x < y < `.

3 The Sign Determination Problem
As suggested in Section 2.2, given the DDT, we can easily compute λ†(a, b). To recover the
S-box we just need to determine the signs of the entries. We define the sign determination
problem as follows:

Definition 1. Given ~λ†b, the sign determination problem of the b-th column in an
LAT is the problem of recovering ~λb from ~λ†b, for 1 ≤ b < 2m.

We introduce a new method for solving the sign determination problem. To achieve
this purpose, the linear relation between ~λb and ~sb is studied in Section 3.1. Based on
this property, an algorithm for solving the sign determination problem is discussed in
Section 3.2.

3.1 The Linear Relation between ~λb and ~sb
Property 2. For any b-th column in a linear approximation table, 0 ≤ b < 2m, the
following formula holds

Hn~sb = 2~λb,

where Hn is the Hadamard matrix of order 2n.

Proof. From the definition of LAT, the following equality is obtained straightforwardly.∑
a∈Fn

2

2(−1)a·pλ(a, b) =
∑

a∈Fn
2

∑
x∈Fn

2

(−1)a·p · (−1)a·x⊕b·S(x)

=
∑

x∈Fn
2

∑
a∈Fn

2

(−1)b·S(x)(−1)a·x⊕a·p.

Orr Dunkelman and Senyang Huang(�) 5

From Proposition 7 in [12], if x = p,
∑

a∈Fn
2

(−1)a·x⊕a·p = 2n; otherwise the sum is zero.

∑
a∈Fn

2

2(−1)a·pλ(a, b) = (−1)b·S(p)2n, 0 ≤ p < 2n. (2)

⇒
∑

a∈Fn
2

(−1)p·aλ(a, b) = (−1)b·S(p) · 2n−1, 0 ≤ p < 2n. (3)

⇒ Hn
~λb = 2n−1~sb (4)

As Hn ·Hn = 2nI2n , where I2n is the identity matrix of order 2n, this formula can also
be written as Hn~sb = 2~λb. Remark that when p = 0 in Equation 3, it follows that∑
a∈Fn

2

λ(a, b) = ±2n−1.

Note that the assignments of the b-th column are related to the linear combination of
the components of S(x). Let b = b2m−1 . . . b0 be the binary representation of b. It implies

that b · S(x) =
2m−1⊕

i=0
biS

i(x).

We call the c0-th,. . . , the cj-th columns in the LAT independent columns if c0, . . . , cj

are linearly independent over Fm
2 , 0 ≤ j < m. If the adversary solves the sign determination

problems over m independent columns, the S-box can be reconstructed by solving linear
equations with negligible complexity O(2nm3). It is obvious that the adversary can solve
the sign determination problem by using a brute force attack but the complexity is very
high, O(2m·2n) as there are m columns of 2n elements each. We propose a significantly
more efficient method for for solving this problem of the b-th column in Section 3.2 .

3.2 An Algorithm for Solving the Sign Determination Problem
3.2.1 Block representation of the Hadamard matrix

Before presenting our algorithm, we discuss a basic property of Hadamard matrices.

Property 3. The Hadamard matrix Hi can be represented as

Hi =
(
Hi−1 Hi−1
Hi−1 −Hi−1

)
, i ≥ 1.

With the block representation of the Hadamard matrix in Property 3, we can solve the
system of linear equations Hn~sb = 2~λb recursively, given ~λb. It is clear that by elementary
transformation,

(Hn, 2~λb) =
(
Hn−1 Hn−1 2~λ[0,2n−1−1]

b

Hn−1 −Hn−1 2~λ[2n−1,2n−1]
b

)

⇒

(
Hn−1 0 ~λ

[0,2n−1−1]
b + ~λ

[2n−1,2n−1]
b

0 Hn−1 ~λ
[0,2n−1−1]
b − ~λ[2n−1,2n−1]

b

)
.

It is easy to see that the original problem is divided into two subproblems as follows:

Hn−1~s
[0,2n−1−1]

b = ~λ
[0,2n−1−1]
b + ~λ

[2n−1,2n−1]
b

Hn−1~s
[2n−1,2n−1]

b = ~λ
[0,2n−1−1]
b − ~λ[2n−1,2n−1]

b .

6 iacrtans class documentation

The process above is the first step in solving Hn~sb = 2~λb. We then recursively apply the
above process to the problems in the `-th step. At the beginning of the `-th step, there
are 2`−1 problems with 2n−`+1 constraints, denoted as:

Hn−`+1~s
[0,2n−`+1−1]

b = ~β0,

...

Hn−`+1~s
[2n−2n−`+1,2n−1]

b = ~β2`−1−1,

(5)

where ~β0, . . . , ~β2`−1−1 are the vectors obtained from the last step and 1 ≤ ` ≤ n. Each
problem in Equation 5 is divided into two subproblems as follows:

Hn−`~s
[0,2n−`−1]

b = ~γ0, Hn−`~s
[2n−`,2n−`+1−1]

b = ~γ1,

...

Hn−`~s
[2n−2n−`+1,2n−2n−`−1]

b = ~γ2`−2, Hn−`~s
[2n−2n−`,2n−1]

b = ~γ2`−1.

(6)

where,

~γ0 =
(
~β

[0,2n−`−1]
0 + ~β

[2n−`,2n−`+1−1]
0

)
/2 , ~γ1 =

(
~β

[0,2n−`−1]
0 − ~β

[2n−`,2n−`+1−1]
0

)
/2

...
~γ2`−2 =

(
~β

[0,2n−`−1]
2`−1−1 + ~β

[2n−`,2n−`+1−1]
2`−1−1

)
/2 , ~γ2`−1 =

(
~β

[0,2n−`−1]
2`−1−1 − ~β

[2n−`,2n−`+1−1]
2`−1−1

)
/2

The total number of subproblems after the `-th step is 2` and the number of constraints in
each subproblem is 2n−`. At the n-th step, the coefficient matrix in the subproblems is
H0 = 1. Thus, the entries of ~sb are obtained.

3.2.2 Main idea

We propose to solve the sign determination problem using a recursive procedure. In each
layer, the algorithm works on the systems of linear equations with the size reduced by half
compared to the ones in the previous layer. Finally, when it reaches the n-th layer, the
algorithm returns the solutions to the sign determination problem.

More precisely, the result of the above recursive approach is an immediate recursive
algorithm. This algorithm can be represented by a tree structure. For ease of explanation
we denote the `-th layer of the recursion tree by T`.

The algorithm is initialized by guessing the signs of λ(i, b) if λ(i, b) 6= 0. Thus, the
leaf node T0[i] is assigned with {2λ†(i, b),−2λ†(i, b)}, 0 ≤ i < 2n. At the beginning of
the `-th layer, the subproblems in Equation 5 are recorded in T`−1. The i-th constraint
in Equation 5 is stored in a vector as ~v T = (~β0[i], . . . , ~β2`−1−1[i]), 0 ≤ i < 2n−`+1. We
call the set which contains all the possible i-th constraints a full set, denoted by F`−1[i],
0 ≤ i < 2n−`+1, 1 ≤ ` ≤ (n+ 1). The naive strategy is to record the full set F`−1[i] in the
internal node T`−1[i].

In the `-th layer, the i-th possible constraints of the new subproblems in Equation 6
are deduced from Equation 5 to construct F`[i], 0 ≤ i ≤ 2n−`. To do so, for each vector in
~p ∈ F`−1[i] and ~q ∈ F`−1[i+ 2n−`], a new vector which is defined as E`−1(~p, ~q) is computed
as described below:

E`−1(~p, ~q)T =((p0 + q0)/2, (p0 − q0)/2, . . . ,
(p2`−1−1 + q2`−1−1)/2, (p2`−1−1 − q2`−1−1)/2),

Orr Dunkelman and Senyang Huang(�) 7

2
[0] 1,1,1, 1 , 1, 1, 1,1 , 1,1, 1,1 , 1, 1,1, 1 ,

1, 1,1,1 , 1,1, 1, 1 , 1,1,1,1 , 1, 1, 1, 1

T

 1
[1] 2,0 , 0,2 , 2,0 , 0, 2T

 0
[0] 2T 0

[1] 2T 0
[2] 2T 0

[3] 2T

 1
[0] 2,0 , 0,2 , 2,0 , 0, 2T

Figure 1: The Tree Structure for n = 2

where pj and qj are the j-th entries with respect to ~p and ~q, 0 ≤ j < 2`−1.
It can be seen from Equation 6 that each entry of the vector in F`[i] is an even number

in the range from −2n−` to 2n−` when 1 ≤ ` < n. As the components of ~sb are 1 or
−1, then in the `-th layer the entries of the vectors in F`[0] take the values from the set
{1,−1}. If the constraints over the elements of the vectors in F`[i] are satisfied for the
vector E`−1(~p, ~q), the new vector is a possible i-th constraint; otherwise, it should be
discarded. When it reaches the n-th layer, the solutions of the sign determination problem
are the vectors in the root node Tn[0].

To illustrate our idea more intuitively, we refer to the recursive tree for n = 2 in
Figure 1 and show an example when ~λ†b = (1, 1, 1, 1) and the corresponding LAT column
~λb is (1, 1, 1,−1) and ~sb = (1, 1, 1,−1). The nodes in T0 are initialized by T0[0] = T0[1] =
T0[2] = T0[3] = {±2}. As shown in Figure 1, T1[0] is constructed from T0[0] and T0[2]
and T1[1] is from T0[1] and T0[3]. T1[0] = T1[1] = {(2, 0), (0, 2), (−2, 0), (0,−2)}. Similarly,
T2[0] is built from T1[0] and T1[1]. For each ~p ∈ T1[0] and ~q ∈ T1[1], we compute E1(~p, ~q).
For example, when ~p = ~q = (2, 0), E1(~p, ~q) = (2, 0, 0, 0) /∈ T2[0]. Therefore, there are
eight vectors in T2[0], which are (1, 1, 1,−1), (−1,−1,−1, 1), (1, 1,−1, 1), (−1,−1, 1,−1),
(1,−1, 1, 1), (−1, 1,−1,−1), (−1, 1, 1, 1) and (1,−1,−1,−1). It can be seen that ~sb ∈ T2[0].

3.2.3 Core set and full set

When we examine the full set F`[i], we notice that its vectors are related, 1 ≤ ` ≤ n and
0 ≤ i < 2n−`. Using this relation, the intermediate results in the technique above can be
stored in a more efficient manner without losing any solutions, which reduces both time
and memory complexities of the search algorithm.

In the following, we define a core set C`[i] to be a compact representation of the full
set F`[i]. The compact set C`[i] allows rebuilding F`[i] efficiently and thus it is stored in
the internal node T`[i] of the tree structure to optimize the recursive procedure above.
After that we discuss how to construct the core set C`+1[i] from C`[i] and C`[i+ 2n−`−1],
0 ≤ i < 2n−`−1.

Before presenting the structure of F`[i], we define a set of symmetric permutations.
Let ~vT be (v0, . . . , v2`−1) and Π` be a set of symmetric permutations π`

0, . . . , π
`
`−1. We

define π`
j as follows:

π`
j(~v) = (v2j , . . . , v2j+1−1, v0, . . . , v2j−1, . . . ,

v2`−2j , . . . , v2`−1, v2`−2j+1 , . . . , v2`−2j−1)T ,

where 0 ≤ j < `. ~v is divided into 2`−j blocks each of size 2j . Note that the permutation
π`

j swaps every two consecutive blocks of size 2j in ~v pairwisely. It can be easily verified
that each permutation in Π` is of order two and π`

0, . . . , π
`
`−1 are commutative. Now, we

8 iacrtans class documentation

define a j-symmetric relation between two vectors with respect to the permutations in Π`

that helps in capturing the structure of the full set F`[i].

Definition 2. The vector ~u is j-symmetric to the vector ~v if there exist p permutations
in Π` such that

~u =

π`

jp−1
◦ . . . ◦ π`

j0
(~v) , 0 ≤ j0 < · · · < jp−1 = j, p ≥ 1,

or

− π`
jp−1

◦ . . . ◦ π`
j0

(~v) , 0 ≤ j0 < · · · < jp−1 = j, p ≥ 1,
(7)

where 0 ≤ j < `. For the first scenario in Equation 7, ~u is positive j-symmetric to
~v; otherwise, ~u is negative j-symmetric to ~v. For the special case when j = `, the
`-symmetric vectors to ~u are defined as ~u and −~u.

We say that ~u is symmetric-equivalent to ~v if there exists j such that ~u is j-symmetric
to ~v. It can be easily verified that the symmetric-equivalent relation is an equivalence
relation. Thus, for each vector ~u ∈ F`[i], the symmetric-equivalence class of ~u is [~u] =⋃`

j=0{~v|~v is j-symmetric to ~u}. In Theorem 2, we present the symmetric structure of F`[i]
that for each ~u ∈ F`[i], [~u] ⊂ F`[i].

Theorem 2. For any vector ~u ∈ F`[i], if a vector ~v is j-symmetric to ~u for 0 ≤ j ≤ `,
then ~v ∈ F`[i], 0 ≤ i < 2n−`.

We define the core set C`[i] with respect to F`[i], which is a set of representatives of
the symmetric-equivalence classes. More precisely, the relation between the full set F`[i]
and its core set C`[i] is described as follows:

F`[i] =
⋃

~u∈C`[i]

[~u]. (8)

For each vector ~u ∈ C`[i], ~v ∈ [~u] can be constructed using Definition 2. The full set F`[i]
can thus be obtained by applying Equation 8 to all ~u ∈ C`[i]. Thus, the original process is
optimized by storing the core set C`[i] instead of the full set F`[i] in the intermediate node
T`[i], which avoids the repeated computation and reduces the memory consumption.

Before we discuss our technique for constructing the core sets in the (`+ 1)-th layer,
we define the symmetric characteristics of a vector and a set, respectively.

Definition 3. ~u ∈ F`[i] is a j-symmetric vector for 0 ≤ i < 2n−`, 0 ≤ j < ` if ~u is
j-symmetric to itself. F`[i] is a j-symmetric set for 0 ≤ i < 2n−`, 0 ≤ j < ` if ~u if all the
vectors in F`[i] are j-symmetric.

It is not necessary to check all the vectors in the full set F`[i] to detect whether F`[i] is
j-symmetric. We show in Theorem 3 that all the vectors in the full set F`[i] have the same
symmetric characteristic. As C`[i] is a subset of F`[i], all the vectors in C`[i] are with the
same symmetric characteristic as well. The proof of Theorem 3 is given in Appendix B.

Theorem 3. For every 0 ≤ j < `, if a vector ~u ∈ F`[i] is a j-symmetric vector, F`[i] is a
j-symmetric set, 0 ≤ i < 2n−` and 1 ≤ ` ≤ n.

In order to build the core set C`+1[i], we construct the smallest set M`[i+ 2n−`−1] such
that C`+1[i] is obtained by computing E`(~p, ~q) for each ~p ∈ C`[i] and ~q ∈M`[i+ 2n−`−1],
where C`[i+ 2n−`−1] ⊆M`[i+ 2n−`−1] ⊆ F`[i+ 2n−`−1].3 The structure of M`[i+ 2n−`−1]
is related to the symmetric property of the vectors in the core set C`[i]. Now, we show the
structure of M`[i+ 2n−`−1] in Theorem 4, proved in Appendix C.

3It follows from Theorem 4 that only when C`[i] is not j-symmetric for 0 ≤ j < `, M`[i + 2n−`] =
F`[i + 2n−`]

Orr Dunkelman and Senyang Huang(�) 9

Theorem 4. For 0 ≤ i ≤ 2n−`−1 and 0 ≤ ` < n,

M`[i+ 2n−`−1] =
⋃

~v∈C`[i]

⋃
j∈J

{~u
∣∣~u is j-symmetric to ~v},

where J = {j
∣∣C`[i] is not a j-symmetric set for 0 ≤ j < `}.

For example, we assume that C1[0] = {(a, a)} and C1[2n−1] = {(c, d)} when c 6= d. It fol-
lows from Theorem 4 thatM1[2n−1] = {(c, d)} ⊂ F1[2n−1] = {(c, d), (−c,−d), (d, c), (−d,−c)}.
From C1[0] and M1[2n−1], we construct the core set C2[0] = {(a+c

2 , a−c
2 , a+d

2 , a−d
2)}. Thus,

there exist no two vectors in C2[0] which are symmetric-equivalent to each other.
Based on Theorem 3 and Theorem 4, M`[i+2n−`−1] can be constructed by Algorithm 1,

0 ≤ i < 2n−`−1 and 1 ≤ ` < n. Note that we use the notation π`
j(S) in Algorithm 1 to

denote the set {π`
j(~v)|~v ∈ S}. It can be easily verified that the set constructed from C`[i]

and M`[i+ 2n−`−1] is indeed C`+1[i].

Algorithm 1 Construct M`[i+ 2n−`−1] from C`[i] and C`[i+ 2n−`−1]

1: procedure ConstructSet(C`[i],C`[i+ 2n−`−1])
2: M`[i+ 2n−`−1] = ∅
3: Randomly pick a vector ~p from C`[i]
4: for each vector ~q ∈ C`[i+ 2n−`−1] do
5: S = {~q}
6: for all integers j ∈ [0, `− 1] do
7: if ~p is not j-symmetric then
8: S = S ∪ π`

j(S)
9: end if
10: end for
11: M`[i+ 2n−`−1] = M`[i+ 2n−`−1] ∪ S
12: end for
13: return M`[i+ 2n−`−1]
14: end procedure

In the initial phase, the leaf nodes are assigned as C0[i] = {2λ†(i, b)}, 0 ≤ i < 2n. In
the first layer, C1[i] = {(λ†(i, b) + λ†(i+ 2n−1, b), λ†(i, b)− λ†(i+ 2n−1, b))}, 0 ≤ i < 2n.
In the `-th layer, C`[i], 2 ≤ ` ≤ n and 0 ≤ i < 2n−`, is constructed from combining the
elements in C`−1[i] and M`−1[i+ 2n−`], where M`−1[i+ 2n−`] is built from C`−1[i+ 2n−`]
with Algorithm 1. After n iterations, the solutions to the sign determination problem
are the vectors in the full set Fn[0], which can be easily reconstructed from the core set
Cn[0] by Equation 8. The search process of the sign determination problem is stated in
Algorithm 2.

We fix S(0) to 0 (or any other constant) to find one representative of the DDT-
equivalence class in Property 1. Therefore, Algorithm 2 only returns the vectors with the
first element as (−1)b·S(0) = 1.

The Boolean functions corresponding to the solutions of its sign determination problem
share the same squared LAT with b · S(x). These Boolean functions are DDT-equivalent
with b · S(x). When b · S(x) is contained in a nontrivial DDT-equivalence classes, Tn[0]
contains multiple vectors.

The number of the solutions of its sign determination problem is equal to the size of
the Boolean functions which are DDT-equivalent to b · S(x), 1 ≤ b < 2m. We note that
determining the size of the DDT-equivalence classes of a Boolean function from Fn

2 to F2
is an open problem.

Given enough memory, Algorithm 2 can solve all the instances of the sign determination
problem. However, for some columns, the amount of vectors in the internal layer grows

10 iacrtans class documentation

Algorithm 2 An Algorithm for Solving the Sign Determination Problem

1: Input: ~λ†b;
2: Output: F = {~u|Hn~u = 2~λb, ~u[0] = 1}
3: for each integer i ∈ [0, 2n − 1] do
4: C0[i] = {2λ†(i, b)} .Initial phase
5: end for
6: Cn[0] = Layer(0, T0)
7: Construct the full set Fn[0] from Cn[0].
8: F = {~u|~u ∈ Fn[0], ~u[0] = 1}.
9: return F .
10:
11: procedure Layer(C`, `);
12: for each integer i ∈ [0, 2n−`−1 − 1] do
13: if there are no vectors in C`[i] or C`[i+ 2n−`−1] then
14: return There exist no S-boxes corresponding to the given DDT!
15: end if
16: C`+1[i] = ∅
17: M = ConstructSet(C`[i], C`[i+ 2n−`−1])
18: for each vector ~t0 ∈ C`[i] and each ~t1 in M do
19: compute ~u = E`(~t0,~t1)
20: if ` < n then
21: if every entry in ~u is even and ranges from −2n−`−1 to 2n−`−1 then
22: C`+1[i] = C`+1[i] ∪ {~u}
23: end if
24: else
25: if every entry in ~u is 1 or −1 then . when ` = n
26: Cn[i] = Cn[i] ∪ {~u}
27: end if
28: end if
29: end for
30: end for
31: if ` < n then
32: Layer(C`+1,`+ 1)
33: else
34: return Cn[0]
35: end if
36: end procedure

Orr Dunkelman and Senyang Huang(�) 11

sharply, which demands too much memory. In this situation, a threshold H on the number
of internal vectors can be preset heuristically. In the `-th layer, if the size of C`[i] rises above
the threshold H, the search process is interrupted, where 0 ≤ ` < n and 0 ≤ i < 2n−`.

We call ~λ†b(1 ≤ b < 2m) a good column if it can be recovered under the threshold T ;
otherwise, it is called a bad column. For example, the S-boxes in CAST-256 [3], like S0,
are 8× 32 S-boxes, which were constructed by choosing 32 distinct bent functions as the
components (see [2]). It indicates that each entry of columns ~λ†1, ~λ

†
2, . . . ,

~λ†231 is 28/2−1 = 8.
For these instances, each core set in the fourth layer contains 2048 vectors. It implies that
if the threshold is set as 2000, these columns are bad columns which cannot be solved by
Algorithm 2 with respect to the memory. However, there are still some good columns in
the absolute LAT of CAST-256’s S0, for example ~λ†6 and ~λ†7 corresponding to the 6th and
7th columns of its LAT.

4 Applying Algorithm 2 for Reconstructing the S-box
The procedure of reconstructing an n×m S-box is related to the number of good columns.
We suppose that the adversary has solved the sign determination problem for k independent
good columns, i.e., the c0-column,· · · , and the ck−1-column, 1 ≤ k ≤ m. In the sign
determination problem for the ci-th column, the possible candidates for the Boolean
function ciS(x) are recovered by Algorithm 2. We call it the matching phase for the k
good columns for 1 < k ≤ m when the combination of these candidates is searched with
respect to the squared LAT.

After the matching phase for the k good columns, the Boolean functions c0S(x), · · · ,
ck−1S(x) are obtained. As mentioned before, when k = m, the adversary can reconstruct
the S-box using linear algebra. When k < m, applying the knowledge of c0S(x), · · · ,
ck−1S(x), we propose a new technique that improves the guess-and-determine algorithm
in [11].

4.1 The Matching Phase for the k Good Columns
Let Vi be the set which contains the output vectors from Algorithm 2 with respect to the
ci-th squared LAT column, where 0 ≤ i < k. In the matching phase, the Boolean functions
c0S(x), · · · , ck−1S(x) are obtained by searching the vectors in Vi to match the squared
LAT applying a basic property of the Hadamard product.

Property 4. 1. ~sb⊕c = ~sb � ~sc.

2. For 0 ≤ j < n, πn
j (~sb⊕c) = πn

j (~sb)� πn
j (~sc).

Property 4 is obvious from the definition of ~sb and the Hadamard product. Combining
the first formula in Property 4 with Property 2, we obtain that the (b⊕ c)-th column ~λb⊕c

in the LAT can be deduced by 1/2Hn · ~sb⊕c = 1/2Hn · (~sb � ~sc). For each two vectors
~u ∈ Vi and ~v ∈ Vj , the adversary computes a new vector ~w = 1/2Hn · (~u � ~v). Then,
the adversary can easily detect whether ~u and ~v are consistent with the squared LAT by
verifying whether ~w† = ~λ†b⊕c. We call ~u and ~v a match vector pair if they are consistent
with the squared LAT.

Now we discuss the matching phase of the ci-th column and the cj-th column, 0 ≤ i <
j < k. It should be noted that it is not necessary to verify the match for each pair of vectors
from Vi and Vj . In the reconstruction problem, our purpose is to find a representative S(x)
in the equivalence class {S(x⊕ c)⊕ d|c ∈ Fn

2 , d ∈ Fm
2 }. For example, when the matching

phase begins with the c0-th and c1-th columns, let us assume that there are j distinct
symmetric-equivalence classes in the solution of the sign determination problem of the
c0-th column, i.e., V0 = {~v|~v ∈ [~uk], 0 ≤ k < j}. The set of vector pairs which needs to be

12 iacrtans class documentation

tested is {(~uk, ~v)|0 ≤ k < j,~v ∈ V1}. When the adversary finds that ~uk0 ∈ V0 and ~v0 ∈ V1
are consistent with the squared LAT, the other matching pairs can be constructed by the
second formula in Property 4. Similarly, once the adversary obtains the c0S(x) and c1S(x)
corresponding to the matching vectors, all other Boolean functions can be recovered by
the translation c0S(x⊕ c)⊕ d and c1S(x⊕ c)⊕ d following Property 1.

The number of the match vector pairs between Vi and Vj is related to the number of
the Boolean functions which are DDT-equivalent with (ciS(x), cjS(x)). More precisely,
the matching phase over Vi and Vj finds the vectorial Boolean function G(x) from Fn

2 to
F2

2, whose absolute LAT is (~λ†0, ~λ†ci
, ~λ†cj

, ~λ†ci⊕cj
). Thus, G(x) shares the same DDT with

(ciS(x), cjS(x)). Note that the problem to determine the size of DDT-equivalent class of a
Boolean function from Fn

2 to F2
2 is also an open issue.

As the size of DDT-equivalence class is unknown, we restrict the prescribed DDT to
be a family of S-boxes for which the DDT-equivalence class is trivial according to the
following conjecture proposed in [11].

Conjecture 1. Suppose that S is a permutation over Fn
2 and the rows of the DDT of S

are pairwise distinct. Then, the DDT-equivalence class of S is trivial, i.e., only contains
the permutations of the form S(x⊕ c)⊕ d, where c, d ∈ Fn

2 .

The matching phase for k good columns is shown in Algorithm 3 repeating the matching
phase of the i-th good column and the (i + 1)-th good column, 0 ≤ i ≤ k − 2. For the
S-boxes with trivial DDT-equivalence class, one combination is expected to be returned
from Algorithm 3. If Conjecture 1 does not hold when the DDT-equivalence class of S is
nontrivial, lines 9 and 17 in Algorithm 3 should be removed and the search continues with
a set of the match vector pairs.

4.2 The Improved Guess-and-Determine Algorithm
Now we suppose that the adversary has obtained k Boolean functions, i.e., c0S(x), . . . ,
ck−1S(x) implementing Algorithm 3, 1 ≤ k < m. We present an improved GD algorithm
that takes the DDT table and the k Boolean functions as its inputs and returns a
representative of the DDT-equivalence class.

The improved GD algorithm implements the tree-traversal structure of [11]. The
improved GD algorithm begins by fixing S(0) to be zero in the initial layer. In the i-th
layer, the algorithm determines the possible assignments for S(i), i = 1, . . . , 2n − 1, by
checking the constraints imposed by the DDT. We follow the notations from [11] by denoting
the set of possible values for S(i) by Ri = {y

∣∣δ(i, y) 6= 0} imposed by the given DDT. It
implies that S(i) is in the set L = {x⊕ S(0)|x ∈ Ri} ∩ · · · ∩ {x⊕ S(i− 1)|x ∈ Ri⊕(i−1)}.

In our approach, the knowledge of c0S(x), . . . , and ck−1S(x) can help us to reduce
the size of the set L. For every element x ∈ L, if any equalities c0x = c0S(i), · · · ,
ck−1x = ck−1S(i) does not hold, x is removed from L. The reconstruction process is
illustrated in a recursive way in Algorithm 4.

Next, we analyse the time complexity of Algorithm 4 for 1 ≤ k < m. The analysis of
the original GD algorithm when k = 0 is presented in Appendix D. In the first layer, after
discarding the non-consistent values of S(1) based on the DDT, there are at most 2n−1

possible values. Similarly, after checking the constraints imposed from c0S(x), · · · , and
ck−1S(x), there are 2n−1 · 1

2k = 2n−k−1 possible values for S(0). By the i-th layer, the
above process is repeated and the number of the possible assignments S(1), · · · , S(i) on
average is

Wi =
{

2 1
2 (n−m−1)i2+ 1

2 (m+n−2k−1)i ,1 ≤ i ≤ K,
1 ,K < i < 2n,

whereK = dn+m−2k−1
m−n+1 e. In the (i+1)-th layer, there are at most 2n−1 possible assignments

for S(i + 1). For each possible assignment, the adversary checks whether S(i + 1) ⊕

Orr Dunkelman and Senyang Huang(�) 13

Algorithm 3 The Matching Phase Given k Good Columns
1: Input: the index set of the good columns C = {c0, . . . , ck−1}, the corresponding

solution sets V0, . . . , Vk−1 and the squared LAT;
2: Output: c0S(x), . . . , ck−1S(x);
3: for each i ∈ [0, k − 2] do
4: if i = 0 then
5: for each ~u ∈ {~u0, . . . , ~uj} and ~v ∈ V1 do
6: ~w = 1/2Hn · (~u� ~v)
7: if ~w† = ~λ†ci⊕ci+1

then
8: ~p0 = ~u, ~p1 = ~v
9: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
10: end if
11: end for
12: else
13: for each ~v ∈ Vi+1 do
14: ~w = 1/2Hn · (~pi � ~v)
15: if ~w† = ~λ†ci⊕ci+1

then
16: ~pi+1 = ~v
17: break . this line is to be removed if the DDT-equivalence class is

nontrivial.
18: end if
19: end for
20: end if
21: end for
22: Deduce c0S(x), . . . , ck−1S(x) from ~p0, . . . , ~pk−1
23: return c0S(x), . . . , ck−1S(x).

14 iacrtans class documentation

Algorithm 4 The Improved Guess-and-Determine Algorithm
1: Input: the indices of good columns c0, . . . , ck−1, the Boolean functions
c0S(x), · · · , ck−1S(x) and the DDT

2: Output: one representative in the DDT-equivalence class
3: ~s is initialized as a vector of 2m zeros.
4: ImprovedGD(~s, 1)
5: return ~s
6:
7: procedure ImprovedGD(~s,i)
8: if i < 2m then
9: L =

⋂
0≤j<i

{x⊕ ~s [j]|x ∈ Ri⊕j , c0S(i) = c0 · x, · · · , ck−1S(i) = ck−1 · x}

10: else
11: if the DDT of ~s matches the given DDT then
12: return ~s
13: end if
14: end if
15: if L 6= ∅ then
16: for each x ∈ L do
17: ~s [i] = x
18: ImprovedGD(~s,i+ 1)
19: end for
20: else
21: return
22: end if
23: end procedure

Orr Dunkelman and Senyang Huang(�) 15

Table 1: log2 Tn,m(k) for n = 8 with Different m and k

m
k 0 1 2 3 4 5 6 7 8 9 10

8 30.71 30.73 24.73 19.83 16.84 16.10 16.00 15.99 - - -
9 18.39 21.39 18.40 16.69 16.15 16.03 16.00 15.99 15.99 - -

10 16.27 18.46 16.91 16.27 16.07 16.02 16.00 15.99 15.99 15.99 -
11 16.05 17.32 16.48 16.16 16.05 16.01 16.00 15.99 15.99 15.99 15.99

Table 2: tsd for the 8-bit S-boxes in Different Block Ciphers
Block Cipher AES ARIA Camellia SEED-S0 SEED-S1

tsd (ms) 131.44 131.64 142.11 108.02 106.92
Block Cipher CAST-256-S0 CLEFIA-S1 SKIPJACK Streebog -

tsd (ms) 340.00 177.56 60.28 56.08 -

S(1), . . . , S(i + 1) ⊕ S(i) are consistent with the DDT. The complexity of this process
is 1 + 2n−m−1 + · · · + 2(n−m−1)(i−1) < 2 tests. There are 2(n−m−1)i · Wi(k) possible
assignments for S(1), · · · , S(i+ 1) at this stage. Each assignment should be tested with
respect to the constraints c0S(i + 1), · · · , and ck−1S(i + 1). The number of checks on
each assignment is also no more than 2. Thus, the time complexity of this layer is
2n ·Wi(k) + 2(n−m−1)i+1Wi(k), which is no more than (2n + 2)Wi(k).

From the K-th layer, Wi(k) = 1 and the time complexity of each layer is no more than
2n. Thus, the time complexity is

Tn,m(k) = (2n + 2)
K∑

i=1
Wi(k) + (2n −K) · 2n.

We evaluate the time complexity for the GD phase with n = 8 and 8 ≤ m ≤ 11. The
time complexity for n = 8 with different m and k are shown in Table 1. It could be
seen that for the 8-bit S-boxes, more than two independent good columns are needed to
optimize the original GD algorithm. When m increases, the improvement by the solutions
from the good columns is not significant. It should be noted that increasing the size of
output of the S-box makes the reconstruct process easier to be archived. Thus, an n×m
S-box with m� n is not a significantly secure option when designing a secret non-linear
layer for a cryptographic primitive.

5 Experiments
We verified our results by implementing our reconstruction technique on the S-boxes of
some existing block ciphers. Our algorithm is implemented in C++ using a g++ compiler
with O2 optimization on a single core QEMU Virtual CPU @ 1.995GHZ. For the 8-bit
S-boxes, we run the experiments on the DDTs of the S-boxes of several block ciphers,
including AES [15], Camellia [5], SEED [17], ARIA [18], SKIPJACK [4], CLEFIA [23],
and Streebog [24].

In our experiments for 8-bit S-boxes, Algorithm 2 is applied to solve the sign determina-
tion problems with the threshold preset to be 1000. While for many of the tested S-boxes,
we found good columns, for the S-box S0 of CLEFIA, there exists no good column in its
absolute LAT. The average time of solving the sign determination problem of one good
column, denoted as tsd, is listed in 2 for different S-boxes. It can be seen that for a good
column ~λ†b, ~λb can be recovered in no more than 350ms.

We denote tsd and t as time of the guess-and-determine phase and time of the recon-
struction procedure, respectively. The experiment results of tsd and t for the S-boxes are
shown in Figure 2 for different k. It can be observed from Figure 2a that the curves of
tsd for different S-boxes and the time complexity of the guess-and-determine phase when
m = n = 8 in Table 1 follow the same trend.

16 iacrtans class documentation

0 1 2 3 4 5 6 7
k0

20 000

40 000

60 000

80 000

tsdHmsL

(a) tsd for 8-bit S-boxes
0 2 4 6 8

k0

20 000

40 000

60 000

80 000

tHmsL
AES

ARIA

Camellia

SEED-S0

SEED-S1

Skipjack

Streebog

CLEFIA-S0

CLEFIA-S1

(b) t for 8-bit S-boxes

Figure 2: tsd and t for the 8-bit S-boxes

It can be seen from Figure 2b that the most effective way to reconstruct the S-boxes
of AES, ARIA, SEED,Camellia, and S0 of CLEFIA from their DDT is to solve the sign
determination problem of two independent columns and apply Algorithm 4 with the
knowledge of two Boolean functions related to the S-box. For example, using the original
guess-and-determine algorithm, the reconstruction procedure takes 85, 923ms to recover
the S1 in SEED from its DDT. However, when the adversary solves the sign determination
problem of two independent columns, the reconstruction costs only 2, 801ms. It should
be noted that the S-boxes of AES, ARIA, SEED, Camellia and S0 of CLEFIA are of
4-differential uniformity. The nonzero entries in the DDTs of these S-boxes are relatively
dense.

For other 8-bit S-boxes in our experiments, i.e., the Sboxes of Streebog, Skipjack and
S0 of CLEFIA, the most effective method to reconstruct the S-box from its DDT is the
original GD algorithm. It should be noted that the Sboxes of Streebog, Skipjack and S0 in
CLEFIA are 8-, 12-, and 10-differential uniform respectively. It indicates that the nonzero
entries in the DDTs of these S-boxes are relatively sparse, which reduces the number of the
possible assignments for S(i) and accelerate the original guess-and-determine algorithm.

Thus, when the DDT has a low differential uniformity, it is more efficient to reconstruct
the S-box with our approach; otherwise one should apply the original guess-and-determine
algorithm to recover the S-box.

APN functions is harder to reconstruct in our experiments. We tried our technique on
the S7 and S9 in the block ciphers KASUMI [1], MISTY1 [20], which are designed to be
the APN permutations. We found no good columns in the absolute LATs of KASUMI’s S7
and S9 and MISTY1’s S7 even when we set the threshold H = 5000. There are two good
columns in the absolute LAT of MISTY1’s S9. However, the number of good columns
is not enough to improve the original guess-and-determine phase. Then, we apply our
technique to thirty 7-bit APN functions found by Yu et al. in [26]. It is interesting to note
that there are no good columns in the LATs of these functions.

6 Conclusions
In this paper we presented a new algorithm for solving the problem of reconstructing an
S-box from its DDT. The new algorithm is more efficient than the standard guess-and-
determine algorithm presented before, and can be used in the different scenarios where the
problem arises.

Most notably, the new algorithm will allow exploring problems related to DDTs, such as
the ability to construct an S-box from a “made up” DDT (i.e., picking the DDT and then
constructing an S-box out of it). Such a capability can be used for better (e.g., designing
stronger S-boxes with 0 differences in the right place to improve resistence against various
cryptanalytic attacks) or for worse (e.g., to design S-boxes with differential backdoor
known to the designer only).

Orr Dunkelman and Senyang Huang(�) 17

Another related open problem is the problem of reconstructing an S-box from its
Boomerang Connection Table, introduced in [14]. These tables are useful for evaluating
the boomerang attack [25], and they depend on the DDT.

References
[1] 3rd Generation Partnership Project, Technical Specification Group Services and

System Aspects, 3G Security, Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 2: KASUMI Specification, V3.1.1 (2001)

[2] Adams, C.M.: Constructing Symmetric Ciphers Using the CAST Design Procedure.
Designs, Codes and Cryptography 12(3), 283–316 (Nov 1997)

[3] Adams, C.M.: The CAST-256 Encryption Algorithm (1999), https://tools.ietf.
org/html/rfc2612, AES Candidate

[4] Agency(NSA), N.S.: SKIPJACK and KEA Algorithm Specifications

[5] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.:
Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms — Design and
Analysis. In: Stinson, D.R., Tavares, S. (eds.) Selected Areas in Cryptography. pp.
39–56. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

[6] Bar-On, A., Biham, E., Dunkelman, O., Keller, N.: Efficient Slide Attacks. Journal of
Cryptology 31(3), 641–670 (Jul 2018)

[7] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal
of Cryptology 4(1), 3–72 (Jan 1991)

[8] Biryukov, A., Perrin, L.: On Reverse-Engineering S-Boxes with Hidden Design Criteria
or Structure. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 116–140.
Springer (2015), http://dx.doi.org/10.1007/978-3-662-47989-6

[9] Blondeau, C., Leander, G., Nyberg, K.: Differential-Linear Cryptanalysis Revisited.
Journal of Cryptology 30(3), 859–888 (Jul 2017)

[10] Blondeau, C., Nyberg, K.: New Links between Differential and Linear Cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT
2013: 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. pp. 388–
404. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[11] Boura, C., Canteaut, A., Jean, J., Suder, V.: Two Notions of Differential Equivalence
on Sboxes. Designs, Codes and Cryptography (Jun 2018)

[12] Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. http:
//www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf

[13] Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis. In:
De Santis, A. (ed.) Advances in Cryptology — EUROCRYPT’94: Workshop on the
Theory and Application of Cryptographic Techniques Perugia, Italy, May 9–12, 1994
Proceedings. pp. 356–365. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

https://tools.ietf.org/html/rfc2612
https://tools.ietf.org/html/rfc2612
http://dx.doi.org/10.1007/978-3-662-47989-6
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf

18 iacrtans class documentation

[14] Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang Connectivity Table:
A New Cryptanalysis Tool. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology
– EUROCRYPT 2018. pp. 683–714. Springer International Publishing, Cham (2018)

[15] Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer Science & Business Media (2013)

[16] GOST 28147-89: Cryptographic Protection for Data Processing Systems, Crypto-
graphic Transformation Algorithm. Government Standard of the U.S.S.R., Inv. No.
3583, UDC 681.325.6:006.354. (1998), (in Russian)

[17] Internet, K., Agency, S.: SEED 128 Algorithm Specification https:
//seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/[2]_SEED+128_
Specification_english_M.pdf

[18] Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon, E.J.,
Lee, S., Lee, J., Chee, S., Han, D., Hong, J.: New Block Cipher: ARIA. In: Lim,
J.I., Lee, D.H. (eds.) Information Security and Cryptology - ICISC 2003. pp. 432–445.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

[19] Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
Advances in Cryptology — EUROCRYPT ’93: Workshop on the Theory and Applica-
tion of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings. pp.
386–397. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

[20] Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) Fast
Software Encryption. pp. 54–68. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

[21] Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T. (ed.)
Advances in Cryptology — EUROCRYPT ’93: Workshop on the Theory and Applica-
tion of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings. pp.
55–64. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

[22] Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blow-
fish). In: Anderson, R. (ed.) Fast Software Encryption. pp. 191–204. Springer Berlin
Heidelberg, Berlin, Heidelberg (1994)

[23] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockcipher
CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) Fast Software Encryption. pp.
181–195. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

[24] on Technical Regulation, F.A., Metrology: GOST R 34.11-2012: Streebog hash
function https://www.streebog.net/

[25] Wagner, D.: The Boomerang Attack. In: Knudsen, L. (ed.) Fast Software Encryption.
pp. 156–170. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

[26] Yu, Y., Wang, M., Li, Y.: A Matrix Approach for Constructing Quadratic APN
Functions. Designs, Codes and Cryptography 73(2), 587–600 (Nov 2014), https:
//doi.org/10.1007/s10623-014-9955-3

Appendix A Proof of Theorem 2
Let ~v be a vector of length 2` and ~v = E`−1(~p, ~q). Before we prove Theorem 2, the vectors
which generate π`

j(~v) in the (`− 1)-th layer are shown in Lemma 1, 0 ≤ j < `.

https://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/[2]_SEED+128_Specification_english_M.pdf
https://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/[2]_SEED+128_Specification_english_M.pdf
https://seed.kisa.or.kr/html/egovframework/iwt/ds/ko/ref/[2]_SEED+128_Specification_english_M.pdf
https://www.streebog.net/
https://doi.org/10.1007/s10623-014-9955-3
https://doi.org/10.1007/s10623-014-9955-3

Orr Dunkelman and Senyang Huang(�) 19

Lemma 1. When 0 < j < `, π`
j(~v) = E`−1(π`−1

j−1(~p), π`−1
j−1(~q)); when j = 0, π`

0(~v) =
E`−1(~p,−~q).

Proof. By the definition of operation E`−1,

~p T = (v0 + v1, v2 + v3, . . . , v2`+1−2 + v2`+1−1)
~q T = (v0 − v1, v2 − v3, . . . , v2`+1−2 − v2`+1−1).

When 1 ≤ j < `, the vectors that generate π`
j(~v) are

~p′ = (v2j + v2j+1, . . . , v2j+1−2 + v2j+1−1, v0 + v1, . . . , v2j−2 + v2j−1, . . . ,

v2`−2j + v2`−2j+1, . . . , v2`−2 + v2`−1,

v2`−2j+1 + v2`−2j+1+1, . . . , v2`−2j−2 + v2`−2j−1)T ,

~q′ = (v2j − v2j+1, . . . , v2j+1−2 − v2j+1−1, v0 − v1, . . . , v2j−2 − v2j−1, . . . ,

v2`−2j − v2`−2j+1, . . . , v2`−2 − v2`−1,

v2`−2j+1 − v2`−2j+1+1, . . . , v2`−2j−2 − v2`−2j−1)T .

It follows from the definition of π`
j that ~p′ = π`−1

j−1(~p) and ~q′ = π`−1
j−1(~q). Thus, π`

j(~v) =
E`−1(π`−1

j−1(~p), π`−1
j−1(~q)). For the case when j = 0, it can be easily verified that π`

0(~v) =
E`−1(~p,−~q).

Proof. Let us consider the case when vector ~v is j-symmetric to ~u, 0 ≤ j < l. For the
positive case in Definition 2, we first prove inductively that for each j′ ≤ j, π`

j′(~v) ∈ F`[i].
The negative case in Definition 2 can be proved with the similar method.

The statement is true when j′ = 0. It follows from Lemma 1 that if ~v = E`−1(~p, ~q), then
π`

0(~v) = E`−1(~p,−~q). As −~q ∈ F`−1[i+ 2n−`+1], π`
0(~v) ∈ F`[i]. Assume that when j′ = k,

π`
k(~v) ∈ F`[i]. When j′ = k+ 1, it can be seen that π`

k+1(~v) ∈ F`[i]. From Lemma 1, if ~v =
E`−1(~p, ~q), π`

k+1(~v) = E`−1(π`−1
k (~p), π`−1

k (~q)). As ~p ∈ F`−1[i] and ~q ∈ F`−1[i+ 2n−`+1], it
follows from the assumption directly that π`−1

k (~p) ∈ F`−1[i] and π`−1
k (~q) ∈ F`−1[i+2n−`+1].

It can be concluded that π`
k+1(~v) is in F`[i]. Therefore, it can be observed that if ~v ∈ F`[i],

π`
jp−1

◦ . . . ◦ π`
j0

(~v) ∈ F`[i], for any 0 ≤ j0 < · · · < jp−1 = j, p ≥ 1.
For the case when j = `, the positive case is trivial as ~u = ~v. The negative case is proved

inductively. When ` = 0, the statement is true: if λ†(i, b) 6= 0, F0[i] = {λ†(i, b),−λ†(i, b)};
otherwise, F0[i] = {0}. Assume that the proposition holds when ` = k. When ` takes
k + 1, if ~v = Ek(~p, ~q), then −~v = Ek(−~p,−~q), where ~p ∈ Fk[i] and ~q ∈ Fk[i+ 2n−k]. From
the assumption, −~p is in Fk[i] and −~q is in Fk[i+ 2n−k]. Thus, −~v is in Fk+1[i].

Appendix B Proof of Theorem 3
Proof. We define the statement of Theorem 3 as D(j, `). We only prove the positive case in
Definition 2 inductively for j and `. The negative case can also be proved using the similar
method. Let ~p ∈ F`−1[i] and ~q ∈ F`−1[i+ 2n−`] be the vectors such that ~u = E`(~p, ~q).

We claim that D(0, `) is true for j = 0 and 1 ≤ ` ≤ n. If ~u ∈ F`[i] is a 0-symmetric
vector, it indicates that ~u = (u0, u0, . . . , u2`−1−1, u2`−1−1). The vector in F`−1[i+ 2n−`+1]
that generate ~u is the zero vector. Let us trace back to the initial values in the 0-th layer
which generate the zero vector in F`−1[i+ 2n−`+1]. These initial values are zero and the
zero vector is the only vector in F`−1[i + 2n−`+1]. It can be seen that for each vector
~v ∈ F`[i], ~v can be presented as E`−1(~p,~0), where ~p is in F`−1[i]. It can be verified that ~v
is a 0-symmetric vector.

Suppose that the statement D(r, k) holds for each r < k. Then, it can be proved that
for D(r + 1, k + 1) is also true. In this case ~u ∈ Fk+1[i] is an (r + 1)-symmetric vector.
There are two scenarios in this situation.

20 iacrtans class documentation

The first scenario is that there exist p permutations in Πk+1 such that πk+1
jp−1

◦ . . . ◦

πk+1
j1

◦ πk+1
j0

(~u) = ~u, where p ≥ 1 and 0 = j0 < j1 < · · · < jp−1 = r + 1. Then,
πk

r ◦ . . . ◦ π
k
j1−1(~p) = ~p and πk

r ◦ . . . ◦ π
k
j1−1(~q) = −~q, which indicates that ~p and ~q are

r-symmetric vectors. It can be concluded that each vector in Fk[i] and Fk[i+ 2n−k+1] are
r-symmetric. Thus, each vector in Fk+1[i] is (r + 1)-symmetric vector.

The second scenario is that there exist p permutations in Πk+1 such that πk+1
jp−1

◦ . . . ◦

πk+1
j1

◦ πk+1
j0

(~u) = ~u, where p ≥ 1 and 0 < j0 < j1 < · · · < jp−1 = r + 1. It can be seen
that πk

r ◦ . . . ◦ π
k
j0−1(~p) = ~p and πk

r ◦ . . . ◦ π
k
j0−1(~q) = ~q. It can also be concluded that the

vectors in Fk+1[i] are (r + 1)-symmetric vectors.
As mentioned above, the statement is true for j = 0 and each 1 ≤ ` ≤ n. For each j

and ` such that 0 ≤ j < ` ≤ n, starting from the statement D(0, ` − j), D(j, `) can be
proved by applying the inductive process above. Thus, Theorem 3 is proved.

Appendix C Proof of Theorem 4
Proof. For the first statement, we assume that −~v ∈ M`[i + 2n−`−1]. ~u is an arbitrary
vector in C`[i] and we denote ~w as E`(~u,~v). It implies from Lemma 1 that π`+1

0 (~w) =
E`(~u,−~v) ∈ C`+1[i]. This contradicts the fact that every two vectors in C`+1[i] cannot be
0-symmetric with each other. Thus, −~v /∈M`[i+ 2n−`−1].

Now we prove the second statement inductively. The statement is true when j = 0.
We assume that there are two distinct vectors ~v1 and ~v2 in M`[i+ 2n−`−1] such that ~v1
is positive 0-symmetric to ~v2, i.e., π`

0(~v1) = ~v2. We only prove the positive case and the
proof is the same when ~v1 is negative 0-symmetric to ~v2 It implies that for an arbitrary
vector ~u ∈ C`[i], ~w1 = E`(~u,~v1) ∈ C`+1[i] and ~w2 = E`(~u,~v2) = E`(π`

0(~u), π`
0(~v1)) =

π`+1
1 (E`(~u,~v1)) ∈ C`+1[i]. It is a contradiction because ~w1, ~w2 ∈ C`+1[i] and ~w1 is 1-

symmetric to ~w2.
Suppose that the second statement in Theorem 4 is true when j ≤ k. Now we prove

the claim when j = k+ 1. Similarly, we assume for the sake of contradiction that there are
two distinct vectors ~v1 and ~v2 in M`[i+ 2n−`−1] such that ~v1 is positive (k+ 1)-symmetric
to ~v2. There exist p permutations in Π` such that π`

jp−1
◦ . . . ◦ π`

j1
◦ π`

j0
(~v1) = ~v2, where

0 ≤ j0 < j1 < · · · < jp−1 = k + 1 and p ≥ 1. For an arbitrary vector ~u in C`[i], as ~u is
(k + 1)-symmetric, there are q permutations in Π` such that π`

kq−1
◦ . . . ◦ π`

k1
◦ π`

k0
(~u) = ~u,

where 0 ≤ k0 < k1 < · · · < kp−1 = k + 1 and q ≥ 1. We denote ~w1 ∈ C`+1[i] as E`(~u,~v2).
It follows from Lemma 1 that

~w1 = E`(π`
kq−1

◦ . . . ◦ π`
k1
◦ π`

k0
(~u), ~v2)

= π`+1
kq−1+1 ◦ . . . ◦ π

`+1
k1+1 ◦ π

`+1
k0+1(E`(~u,~v3)),

where ~v3 = π`
kq−1

◦ . . . ◦ π`
k1
◦ π`

k0
◦ π`

jp−1
◦ . . . ◦ π`

j1
◦ π`

j0
(~v1). It is fact that ~v3 is

k′-symmetric to ~v1, k′ ≤ k. ~v3 ∈ M`[i + 2n−`−1] because the vectors in C`[i] are not
k′-symmetric. It reaches a contradiction as both ~w1 and E`(~u,~v3) are in C`+1[i] and ~w1
is (k + 2)-symmetric to E`(~u,~v3). Thus, the second claim is true when j = k + 1. The
vectors which are j-symmetric to ~v are not in M`[i+ 2n−`−1], 0 ≤ j < `.

Appendix D the Time Complexity of the Original Guess-
and-Determine Algorithm

The original guess-and-determine algorithm in [11] also returns a representative S in the
set {S(x ⊕ c) ⊕ d

∣∣c ∈ Fn
2 , d ∈ Fm

2 }. To archive so, the adversary can fix S(0) to be zero
and fix S(1) to be any value in Ri. Thus, there is one possible case after the first layer.

Orr Dunkelman and Senyang Huang(�) 21

Similar to the analysis in Section 4.2, the number of the possible cases at the end of the
i-th layer is

Wi =

1 ,i = 1,
2 1

2 (n−m−1)i2+ 1
2 (n+m−1)i−2(n−1) ,2 ≤ i ≤ K,

1 ,K < i < 2n,

where K is the positive root of the formula (m− n+ 1)x2 + (n−m− 1)x− 2(n− 1) = 0.
In the (i+ 1)-th layer, the adversary need to check the consistency of 2n−1Wi cases with
respect to the DDT. The complexity of the (i+ 1)-th layer is no more than 2nWi. As the
algorithm starts from searching the assignment of S(2), the time complexity of the original
guess-and-determine algorithm is

Tn,m(0) = 2n
2n−2∑
i=1

Wi.

	Introduction
	Background and Notations
	Difference Distribution Table and Linear Approximation Table
	Links between an S-box, its Difference Distribution Table and its Linear Approximation Table
	Notations

	The Sign Determination Problem
	The Linear Relation between b and b
	An Algorithm for Solving the Sign Determination Problem
	Block representation of the Hadamard matrix
	Main idea
	Core set and full set

	Applying Algorithm 2 for Reconstructing the S-box
	The Matching Phase for the k Good Columns
	The Improved Guess-and-Determine Algorithm

	Experiments
	Conclusions
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	the Time Complexity of the Original Guess-and-Determine Algorithm

