Understanding and Constructing AKE via Double-key Key Encapsulation Mechanism

Haiyang Xue^{1,2,3}, Xianhui Lu^{1,2,3}, Bao Li^{1,2,3}, Bei Liang⁴, and Jingnan He^{1,2,3}

¹ State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, China.

 2 Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, China.

³ School of Cyber Security, University of Chinese Academy of Sciences, China.

⁴ Chalmers University of Technology, Gothenburg, Sweden

{hyxue12,xhlu}@is.ac.cn

Abstract. Motivated by abstracting the common idea behind several implicitly authenticated key exchange (AKE) protocols, we introduce a primitive that we call double-key key encapsulation mechanism (2-key KEM). It is a special type of KEM involving two pairs of secret-public keys and satisfying some function and security property. Such 2-key KEM serves as the core building block and provides alternative approaches to simplify the constructions of AKE. To see the usefulness of 2-key KEM, we show how several existing constructions of AKE can be captured as 2-key KEM and understood in a unified framework, including widely used HMQV, NAXOS, Okamoto-AKE, and FSXY12-13 schemes. Then, we show 1) how to construct 2-key KEM from concrete assumptions, 2) how to adapt the classical Fujisaki-Okamoto transformation and KEM combiner to achieve the security requirement of 2-key KEM, 3) an elegant Kyber-AKE over lattice using the improved Fujisaki-Okamoto technique.

Keywords: Authenticated Key Exchange, CK Model, Key Encapsulation Mechanism

1 Introduction

Key exchange (KE), which enables two parties to securely establish a common session key while communicating over an insecure channel, is one of the most important and fundamental primitives in cryptography. After the introduction of Diffie-Hellman key exchange in [12], cryptographers have devised a wide selection of the KE with various use-cases. One important direction is authenticated key exchange (AKE). The main problems that the following works focus on are specified as security models [5,7,25, 6,15], efficient and provably-secure realizations [26, 27, 7, 23, 25, 28, 1, 15, 16, 35, 30, 2, 36, 3].

In an AKE protocol, each party has a pair of secret-public keys, a *static/long-term public key* and the corresponding *static/long-term secret key*. The static public key is interrelated with a party's identity, which enables the other parties to verify the authentic binding between them. A party who wants to share information with another party generates ephemeral one-time randomness which is known as *ephemeral secret keys*, computes *session state* (which is originally not explicitly defined [7], but nowadays it is generally agreed [25, 15] that the session state should at least contain ephemeral secret keys from ephemeral and static secret keys and incoming message, then outputs corresponding *ephemeral public outgoing message*. Then each party uses their static secret keys and the ephemeral secret keys along with the transcripts of the session to compute a shared *session key*.

Many studies have investigated the security notion of AKE including BR model and Canetti-Krawczyk (CK) model [7]. Fujioka *et al.* [15] re-formulated the *desirable* security notion of AKE in [24], including resistance to KCI (key compromise impersonation attack), wPFS (weak perfect forward attack) and MEX (maximal exposure attack), as well as provable security in the CK model, and called it the CK⁺ security model. LaMacchia *et al.* [25] also proposed a very strong security model, called the eCK model. The CK model and the eCK model are incomparable [6], and the eCK model is not stronger than the CK model while the CK⁺ model is [15]. However, each of these two models, eCK and CK⁺ can be theoretically seen as a strong version of the AKE security model.

To achieve a secure AKE in one of the above security models (CK, CK⁺, eCK), the solutions are divided into two classes: explicit AKE and implicit AKE. The solution of explicit AKE is to explicitly authenticate the exchanged messages between the involved parties by generally using additional primitives *i.e.*, signature or MAC to combine with the underlying KE, such as IKE [8], SIGMA [23], TLS [22, 2] etc.; while the solution of implicit AKE initiated by [26], is to implicitly authenticate each party by its unique ability so as to compute the resulted session key. These kinds of implicit AKE schemes include (H)MQV [27, 24], Okamoto [28, 29], NAXOS [25], OAKE [35], FSXY variants [1, 15, 16, 34], and AKE from lattice assumptions [36, 3].

Motivation. In this paper, we focus on the second class, *i.e.*, constructions of *implicit AKE*. Based on different techniques and assumptions, many implicit AKE protocols have been proposed in recent years [24, 25, 15, 16, 35, 28, 29].

However, the constructing techniques and methods of the existing implicit AKE protocols are somewhat separate and the study on the highly accurate analysis of AKE's requirement for the building block is critically in a shortage, especially for the exact underlying primitives that serve as fundamental building blocks and capture the common idea and technique behind the constructions and security proofs of AKE. On the contrary, with respect to explicit AKE Canetti and Krawcayk [23, 8] gave the frame of "SIGin-and-MAc" (later extended by [30]) which provides a good guideline for designing explicit AKE.

In fact, Boyd *et al.* [1] and Fujioka *et al.* [15, 16] initiated the research on studying frameworks of implicit AKE. Boyd *et al.* firstly noticed the connection between AKE and key encapsulation mechanism (KEM), then Fujioka *et al.* provided CK^+ secure AKE protocols from chosen ciphertext (CCA) secure KEM in the random oracle and standard models. Although the paradigm of connecting the AKE with KEM is of great significance, it can not be applied to explain many widely-used and well-known constructions of AKE such as HMQV and its variant [24, 35] which are built on the challenge-respond signature; AKE protocol in [28] which results from universal hash proof [10]; as well as NAXOS [25].

Hence, one of the important problems on AKE is to give an even more general framework for constructing AKE that is able to not only unify and encompass the existing structures of AKE protocol as much as possible, but also to systemize and simplify the construction and analysis methods of AKE protocol. It will be useful and helpful for understanding the existing works and future studying on formalization of the AKE construction structure under a unified framework, not only with some wellstudied cryptographic primitive as building block but also with simple formal functionality and security requirements rather than heuristic ideas and techniques.

Main Observation. In order to find out what kind of the fundamental/essential building block is exactly needed for CK^+ secure AKE, let's go back to the original KE, and show insight on how to augment the requirements or capability of adversary so as to achieve CK^+ secure AKE from KE step by step.

In fact, KEM is a KE naturally. The initiator U_A sends ephemeral public key pk to responder U_B . U_B computes encapsulated key and ciphertext under pk and returns ciphertext to U_A . By decapsulating ciphertext using sk, U_A obtains the agreed key encapsulated by U_B .

Step 1. AUTHENTICATION. To make a KE be authenticated, we take unilaterally authenticating U_A for example. It is required that U_A has static secret-public keys (ssk_A, spk_A) , ephemeral secret key esk_A and ephemeral public outgoing message epm_A . In light of using KEM with one pair of secret-public key to realize KE naturally, one simple and natural approach to authenticate U_A with one pair of static key as well as one pair of ephemeral secret key and ephemeral public message is to extend the KEM with one pair of key to a KEM with two pairs of secret-public key. More specifically, for example, to authenticate U_A , U_A sends ephemeral public key epk_A to U_B , and U_B computes encapsulated key and ciphertext under two public keys spk_A and epk_A . Only with both secret keys ssk_A and esk_A , can U_A extract encapsulated key. Equipped with the 2-key KEM, the authentication property of AKE comes down to some proper security notions of such 2-key KEM. We analyze its security notion in step 2.

Step 2. SECURITY. One security consideration in AKE is to maintain the secrecy of shared session key even if the adversary is allowed to *query session state and key* of non-target session and *send message* by controlling the communications. The capability imparted to adversary with permission of *querying session state and key* of non-target session directly corresponds to the adversary's capability of having access to strong¹ CCA decryption queries of 2-key KEM. The adversary's capability of *sending message* corresponds to the power of adversary to adaptively choose the ephemeral public keys epk_A (under which the challenge ciphertext is computed). Another security consideration in AKE is the *forward security*, in which case the adversary has the static secret key ssk_A . This forward security comes down to the (chosen plaintext attack) CPA security of such 2-key KEM if ssk_A is leaked to adversary.

1.1 Our Contributions

- Based on the above motivations and observations, we introduce double-key key encapsulation mechanism (2-key KEM) and its secure notions, *i.e.*, [IND/OW-CCA,IND/OW-CPA] security. We also show its distinction with previous similar notions.
- Based on the [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM, we present unified frames of CK⁺ secure AKE, which in turn conceptually capture the common pattern for the existing constructions and security proof of AKE, including well-known HMQV[24], NAXOS [25], Okamoto-AKE[28, 29], and FSXY12[15], FSXY13[16].
- We investigate the constructions of 2-key KEM based on concrete assumptions. We also show the failure of implying [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM from KEM combiner and the classical Fujisaki-Okamoto (FO) transformation. Hence, with a slight but vital modification by taking public key as input to the hash step we provide improved KEM combiner and improved FO to adapt them in our 2-key KEM setting.
- Equipped with 2-key KEM and our frame above, we propose a post-quantum AKE based on Module-LWE assumption, which consumes less communications than Kyber [3] using frame of FSXY13 [16].

2-key Key Encapsulation Mechanism. Generally, the 2-key KEM scheme is a public key encapsulation with two pairs of public and secret keys, but the main distinctions are the functionality and security.

The encapsulation and decapsulation algorithms: instead of taking as input single public key to generate a random key K and a ciphertext C and single secret key to decapsulate ciphertext C, each algorithm takes two public keys (pk_1, pk_0) to generate (C, K) and only with both two secret keys (sk_1, sk_0) the decapsulation algorithm can decapsulate C.

We define the security notion of 2-key KEM/PKE in the attacking model [IND/OW-CCA, IND/OW-CPA] which captures the idea that the 2-key KEM is secure under one secret-public key pair even if another pair of secret-public key is generated by the adversary. Informally, the [IND/OW-CCA, \cdot] denotes the security model where adversary \mathcal{A} aims to attack the ciphertext under pk_1 and pk_0^* (with its control over the generation of pk_0^*), and it is allowed to query a strong decapsulation oracle that will decapsulate the ciphertext under pk_1 and arbitrary pk'_0 (generated by challenger); while [\cdot , IND/OW-CPA] denotes the security model where adversary \mathcal{B} aims to attack the ciphertext under pk_0 and pk_1^* (with its control over the generation of pk_1^*). We say a 2-key KEM is [IND/OW-CCA, IND/OW-CPA] secure if it is both [IND/OW-CCA, \cdot] and [\cdot , IND/OW-CPA] secure.

Compared with classical definition of CCA security, the $[\mathsf{CCA}, \cdot]$ adversary of 2-key KEM has two main enhancements: 1) one of the challenge public keys pk_0^* , under which the challenge ciphertext is computed, is generated by the adversary; 2) the adversary is allowed to query a strong decryption oracle, and get decapsulation of the ciphertext under arbitrary public keys (pk_1^*, pk_0') where pk_0' is generated by the challenger.

AKE from 2-key KEM. Equipped with [IND/OW-CCA, IND/OW-CPA] 2-key KEM, by taking pk_1 as static public key and pk_0 as ephemeral public key, we give several general frames of CK⁺ secure AKE, AKE, AKE_{ro-pkic-Ir} and AKE_{std}, depending on different tricks. The CK⁺ security of our AKE is decomposed to the [IND/OW-CCA, ·] security (corresponding to KCI and MEX security) and [·, IND/OW-CPA] security (corresponding to wPFS) of 2-key KEM. Furthermore, to resist the leakage of partial randomness,

¹ Compare with classical decryption queries of CCA security, "strong" means adversary could query decryption oracle with ciphertext under several other public keys.

a function $f(ssk_B, esk_B)$ is required so that if one of ssk_B and esk_B is leaked $f(ssk_B, esk_B)$ is still computationally indistinguishable with a random string.

In Fig. 1 we summarize which one of our general frames is used to explain which one of the existing AKE protocols by employing the specific tricks and assumptions. Our general protocols capture the common idea of constructing CK⁺ secure AKE. And depending on 2-key KEM and different tricks, it facilitates a number of instantiations, including HMQV [24], NAXOS [25], Okamoto [28], FSXY12[15], and FSXY13[16].

Frameworks	Models	Concrete AKEs	Assumptions	Tricks
AKE	RO	FSXY13 [16],Kyber[3]	OW-CCA	Modified KEM Comb.
ANL	RO	AKE-2Kyber(Sec.7)	M-LWE	Modified FO
	RO	HMQV [24] OAKE [35]	GDH, KEA1	Remark 1, 2
AKE _{ro-pkic-Ir}	RO	NAXOS [25]	GDH	Remark 1, 2
AKE _{std}	Std	FSXY12 [15]	IND-CCA	Modified KEM Comb.
	Std	Okamoto [29]	DDH, πPRF	Twisted PRF

Table 1. The unification of AKEs. Comb. is the abbreviation for combiner. GDH is the Gap-DH assumption. RO denotes the notion of random oracle. Std is the shortened form of standard model. π PRF means the pairwise-independent random source PRF [29].

By considering an AKE protocol in such a framework based on 2-key KEM, the complicated security proofs of existing AKE is decomposed into several smaller cases each of which is easier to work with. Moreover, this general scheme not only explains previous constructions, but also yields efficient AKE from lattice problems. After giving [IND-CPA, IND-CPA] twin-kyber under Module-LWE assumption, we obtain a *post-quantum AKE* with less communications.

Constructions of 2-key KEM. In addition to show that existing AKEs imply [CCA, CPA] secure 2-key KEM, we investigate the general constructions.

Putting Public Key in the Hashing or PRF step. The Fujisaki-Okamoto (FO) [14, 18] transformation and KEM combiner are general techniques of classical CCA security for one-key KEM. We show the failure of implying [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM from KEM combiner and the classical FO transformation by giving particular attacks on concrete schemes. Hence, we show that with a slight but vital modification, when extracting encapsulated key, by taking public key as input to the hash or PRF step, the modified KEM combiner and FO transformation work for 2-key KEM.

1.2 Strong Point of the AKE via 2-key KEM

The main advantage of our contributions is that we use a non-interactive primitive to handle the complex requirement of interactive protocols. The functionality and security requirements of [CCA, CPA] secure 2-key KEM are relatively easier to work with and understand. As it is known, in AKE we have to consider complex and diverse adversaries. However, when considering the AKE under our unified framework based on 2-key KEM, all the attacking strategies in CK^+ model can be simplified to the singular security of 2-key KEM.

The non-interactive 2-key KEM helps us to highly simplify the constructions for AKE as well as to understand the essential working mechanism. In fact, KEM is relatively well-studied and intensively analyzed. Following the first practical CCA secure PKE [9], there have been a number of CCA secure PKE/KEM schemes based on both concrete assumptions [9, 20, 33, 31, 3] and general cryptographic primitives [11, 19, 31]. Therefore, it is possible for us to employ the established and nature technique of classical KEM to construct 2-key KEM, and further AKE.

2 Preliminary

For a variable x, if x is a bit string, denote $[x]_i$ as the *i*-th bit of x; if x is a polynomial, denote $[x]_i$ as the *i*-th coefficient of x; if x is a sets of vectors (with string or number) denote $[x]_i$ as the sets of all *i*-th element of vectors in x;

2.1 CK⁺ Security Model

We recall the CK^+ model introduced by [24] and later refined by [15, 16], which is a CK [7] model integrated with the weak PFS, resistance to KCI and MEX properties. Since we focus on **two-pass protocols** in this paper, for simplicity, we show the model specified to two pass protocols.

In AKE protocol, U_i denotes a party indexed by i, who is modeled as probabilistic polynomial time (PPT) interactive Turing machines. We assume that each party U_i owns a static pair of secret-public keys (ssk_i, spk_i) , where the static public key is linked to U_i 's identity, using some systems i.e. PKI, such that the other parties can verify the authentic binding between them. We do not require the well-formness of static public key, in particular, a corrupted party can adaptively register any static public key of its choice.

Session. Each party can be activated to run an instance called a session. A party can be activated to initiate the session by an incoming message of the forms $(\Pi, \mathcal{I}, U_A, U_B)$ or respond to an incoming message of the forms $(\Pi, \mathcal{R}, U_B, U_A, X_A)$, where Π is a protocol identifier, \mathcal{I} and \mathcal{R} are role identifiers corresponding to *initiator* and *responder*. Activated with $(\Pi, \mathcal{I}, U_A, U_B), U_A$ is called the session *initiator*. Activated with $(\Pi, \mathcal{R}, U_B, U_A, X_A), U_B$ is called the session *responder*.

According to the specification of AKE, the party creates randomness which is generally called *ephemeral secret key*, computes and maintains a *session state*, generates outgoing messages, and completes the session by outputting a session key and erasing the session state. Note that Canetti-Krawczyk [7] defines session state as session-specific secret information but leaves it up to a protocol to specify which information is included in session state; LaMacchia et al. [25] explicitly set all random coins used by a party in a session as session-specific secret information and call it *ephemeral secret key*. Here we require that the session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initiator U_A creates a session state and outputs X_A , then may receive an incoming message of the forms $(\Pi, \mathcal{I}, U_A, U_B, X_A, X_B)$ from the responder U_B , then may computes the session key SK. On the contrary, the responder U_B outputs X_B , and may compute the session key SK. We say that a session is *completed* if its owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If U_A is the initiator, the session identifier is sid = $(\Pi, \mathcal{I}, U_A, U_B, X_A)$ or sid = $(\Pi, \mathcal{I}, U_A, U_B, X_A, X_B)$, which denotes U_A as an owner and U_B as a peer. If U_B is the responder, the session is identified by sid = $(\Pi, \mathcal{R}, U_B, U_A, X_A, X_B)$, which denotes U_B as an owner and U_A as a peer. The matching session of $(\Pi, \mathcal{I}, U_A, U_B, X_A, X_B)$ is $(\Pi, \mathcal{R}, U_B, U_A, X_A, X_B)$ and vice versa.

Adversary. The adversary \mathcal{A} is modeled in the following to capture real attacks in open networks, including the control of communication and the access to some of the secret information.

- Send(message): \mathcal{A} could send message in one of the forms: $(\Pi, \mathcal{I}, U_A, U_B)$, $(\Pi, \mathcal{R}, U_B, U_A, X_A)$, or $(\Pi, \mathcal{I}, U_A, U_B, X_A, X_B)$, and obtains the response.
- SessionKeyReveal(sid): if the session sid is completed, \mathcal{A} obtains the session key SK for sid.
- SessionStateReveal(sid): The adversary \mathcal{A} obtains the session state of the owner of sid if the session is not completed. The session state includes all ephemeral secret keys and intermediate computation results except for immediately erased information but does not include the static secret key.
- Corrupt (U_i) : By this query, \mathcal{A} learns all information of U_A (including the static secret, session states and session keys stored at U_A); in addition, from the moment U_A is corrupted all its actions may be controlled by \mathcal{A} .

Freshness. Let $\operatorname{sid}^* = (\Pi, \mathcal{I}, U_A, U_B, X_A, X_B)$ or $(\Pi, \mathcal{I}, U_A, U_B, X_A, X_B)$ be a completed session between honest users U_A and U_B . If the matching session of sid^* exists, denote it by sid^* . We say session sid^* is fresh if \mathcal{A} does not queries: 1) SessionStateReveal(sid^*), SessionKeyReveal(sid^*), and SessionStateReveal(sid^*), SessionKeyReveal(sid^*) if sid^* exists; 2) SessionStateReveal(sid^*) and SessionKeyReveal(sid^*) if sid^* does not exist.

Security Experiment. The adversary \mathcal{A} could make a sequence of the queries described above. During the experiment, \mathcal{A} makes the query of $\mathsf{Test}(\mathsf{sid}^*)$, where sid^* must be a fresh session. $\mathsf{Test}(\mathsf{sid}^*)$ select random bit $b \in_U \{0, 1\}$, and return the session key held by sid^* if b = 0; and return a random key if b = 1.

The experiment continues until \mathcal{A} returns b' as a guess of b. The adversary \mathcal{A} wins the game if the test session sid^{*} is still fresh and b' = b. The advantage of the adversary \mathcal{A} is defined as $\mathsf{Adv}_{\Pi}^{ck+}(\mathcal{A}) = \Pr[\mathcal{A} \text{ wins}] - \frac{1}{2}$.

Definition 1. We say that a AKE protocol Π is secure in the CK^+ model if the following conditions hold:

(Correctness:) if two honest parties complete matching sessions, then they both compute the same session key except with negligible probability.

(Soundness:) for any PPT adversary \mathcal{A} , $\mathsf{Adv}_{\Pi}^{ck+}(\mathcal{A})$ is negligible for the test session sid^* ,

- 1. the static secret key of the owner of sid^* is given to \mathcal{A} , if $\overline{sid^*}$ does not exist.
- 2. the ephemeral secret key of the owner of sid^* is given to \mathcal{A} , if sid^* does not exist.
- 3. the static secret key of the owner of sid^* and the ephemeral secret key of sid^* are given to \mathcal{A} , if sid^* exists.
- 4. the ephemeral secret key of sid^{*} and the ephemeral secret key of $\overline{sid^*}$ are given to \mathcal{A} , if $\overline{sid^*}$ exists.
- 5. the static secret key of the owner of sid^* and the static secret key of the peer of sid^* are given to \mathcal{A} , if sid^* exists.
- 6. the ephemeral secret key of sid^* and the static secret key of the peer of sid^* are given to \mathcal{A} , if $\overline{sid^*}$ exists.

As indicated in Table 2, the CK⁺ model captures all non-trivial patterns of exposure of static and ephemeral secret keys listed in Definition 1, and these ten cases cover wPFS, resistance to KCI, and MEX as follows: E_1 , E_4 , E_{7-1} , E_{7-2} , E_{8-1} and E_{8-2} capture KCI, since the adversary obtains either only the static secret key of one party or both the static secret key of one party and the ephemeral secret key of the other party of the test session. E_5 captures wPFS. E_2 , E_3 and E_6 capture MEX, since the adversary obtains the ephemeral secret key of one party of the test session at least.

Event	Case	sid*	sid*	ssk_A	esk_A	esk_B	ssk_B	Security
E_1	1	A	No	\checkmark	×	-	×	KCI
E_2	2	A	No	×		-	X	MEX
E_3	2	В	No	×	-		×	MEX
E_4	1	В	No	×	-	×		KCI
E_5	5	A or B	Yes	\checkmark	×	×		wPFS
E_6	4	A or B	Yes	×			×	MEX
E ₇₋₁	3	A	Yes	\checkmark	×		×	KCI
E ₇₋₂	3	В	Yes	×		×		KCI
E ₈₋₁	6	A	Yes	×		×		KCI
E ₈₋₂	6	В	Yes	\checkmark	×		×	KCI

Table 2. The behavior of AKE adversary in CK⁺ model. $\overline{\mathsf{sid}^*}$ is the matching session of sid^* , if it exists. "Yes" means that there exists $\overline{\mathsf{sid}^*}$, "No" means do not. $ssk_A(ssk_B)$ means the static secret key of A(B). $esk_A(esk_B)$ is the ephemeral secret key of A(B) in sid^* or $\overline{\mathsf{sid}^*}$ if there exists. " $\sqrt{}$ " means the secret key may be revealed to adversary, " \times " means the secret key is not revealed. "-" means the secret key does not exist.

3 2-key Key Encapsulation Mechanism

In this section, we introduce the notions of double-key encapsulation and define the security of KEM in double-key setting. We also give some analysis and show differences with previous similar definitions.

3.1 2-key Key Encapsulation Mechanism

Generally, a double-key (2-key) KEM is a public key encapsulation with two pairs of public and secret keys. Formally, a 2-key KEM 2KEM = (KeyGen1, KeyGen0, Encaps, Decaps) is a quadruple of PPT algorithms together with a key space \mathcal{K} .

- KeyGen1 (λ, pp) : on inputs security parameter λ , and public parameters pp, output a pair of publicsecret keys (pk_1, sk_1) . In order to show the randomness that is used, we denote key generation algorithm as KeyGen1 $(\lambda, pp; r)$. For simplicity, sometimes we omit the input security parameter λ and public parameter pp and denote it as KeyGen1(r) directly.
- KeyGen0(λ): on inputs security parameter λ output a pair of public and secret keys (pk_0, sk_0).
- $\text{Encaps}(pk_1, pk_0; \mathsf{aux}_e)$: on input public keys pk_1, pk_0 and auxiliary input aux_e (if there is), output ciphertext c and encapsulated key k in key space \mathcal{K} . Sometimes, we explicitly add the randomness r and denote it as $\text{Encaps}(pk_1, pk_0, r; \mathsf{aux}_e)$.
- $\mathsf{Decaps}(sk_1, sk_0, c; \mathsf{aux}_d)$: on input secret keys sk_0, sk_1 , auxiliary input aux_d (if there is) and c, output key k.

CORRECTNESS. For $(pk_1, sk_1) \leftarrow \text{KeyGen1}(\lambda, pp), (pk_0, sk_0) \leftarrow \text{KeyGen0}(\lambda, pp) \text{ and } (c, k) \leftarrow \text{Encaps}(pk_1, pk_0),$ we require that $\text{Decaps}(sk_1, sk_0, c) = k$ holds with all but negligible probability.

SECURITY. We consider two kinds of security *i.e.*, indistinguishability and one-wayness in the attacking model [ATK₁, ATK₀]. More precisely, in our [ATK₁, ATK₀] security model for 2KEM, we consider two adversaries, *i.e.*, $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ attacking pk_1 (controlling the generation of pk_0^*) and $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ attacking pk_0 (controlling the generation of pk_1^*). In Figure 1 below we show the security games of one-wayness and indistinguishable security corresponding to [IND/OW-ATK₁, ·] and [·, IND/OW-ATK₀] respectively.

To be clear, the auxiliary inputs aux_e and aux_d may contain public part, called public auxiliary input, and secret part, called secret auxiliary input. In the security games, both the challenger and adversary have public auxiliary input, while only the challenger has the secret auxiliary input. For simplicity, we do not explicitly show aux_e and aux_d in the security games.

On the *i*-th query of $\mathcal{O}_{\mathsf{leak}_0}$, the challenger generates $(pk_0^i, sk_0^i) \leftarrow \mathsf{KeyGen0}(r_0^i)$, sets $L_0 = L_0 \cup \{(pk_0^i, sk_0^i, r_0^i)\}$ and returns (pk_0^i, sk_0^i, r_0^i) to adversary \mathcal{A} . On the *i*-th query of $\mathcal{O}_{\mathsf{leak}_1}$, the challenger generates $(pk_1^i, sk_1^i) \leftarrow \mathsf{KeyGen1}(r_1^i)$, sets $L_1 = L_1 \cup \{(pk_1^i, sk_1^i, r_1^i)\}$ and returns (pk_1^i, sk_1^i, r_1^i) to adversary \mathcal{B} .

Depending on the definition of oracle \mathcal{O}_{ATK_1} the adversary \mathcal{A} accesses, and \mathcal{O}_{ATK_0} that the adversary \mathcal{B} accesses, we get CPA and CCA notions respectively.

- if $\mathcal{O}_{\mathsf{ATK}_1(pk'_0,c')} = -$, it implies CPA notion;
- if $\mathcal{O}_{\mathsf{ATK}_1(pk'_0,c')} \neq -$, it works as following: If $pk'_0 \in [L_0]_1 \land (c' \neq c^* \lor pk'_0 \neq pk^*_0)$, compute $k' \leftarrow \mathsf{Decaps}(sk_1, sk'_0, c')$, and return the corresponding k', otherwise return \bot . This case implies CCA notion.
- if $\mathcal{O}_{\mathsf{ATK}_0(pk'_1,c')} = -$, it implies CPA notion;
- if $\mathcal{O}_{\mathsf{ATK}_0(pk'_1,c')} \neq -$, it works as following: If $pk'_1 \in [L_1]_1 \land (c' \neq c^* \lor pk'_1 \neq pk^*_1)$, compute $k' \leftarrow \mathsf{Decaps}(sk'_1, sk_0, c')$, and return the corresponding k', otherwise return \bot . This case implies CCA notion.

Let $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ be an adversary against pk_1 of 2KEM. We define the advantage of \mathcal{A} winning in the game IND-ATK1 and OW-ATK1 respectively as: $\operatorname{Adv}_{2\text{KEM}}^{[\text{IND-ATK1},\cdot]}(\mathcal{A}) = \left| \operatorname{Pr}[\text{IND-ATK1}^{\mathcal{A}} \Rightarrow 1] - \frac{1}{2} \right|$, and $\operatorname{Adv}_{2\text{KEM}}^{[\text{OW-ATK1},\cdot]}(\mathcal{A}) = \operatorname{Pr}[\text{OW-ATK1}^{\mathcal{A}} \Rightarrow 1]$, where game [IND-ATK1, \cdot] and [OW-ATK1, \cdot] are described in Figure 1.

Ga	me [IND-ATK1, \cdot] on pk_1	Ga	me [\cdot , IND-ATK0] on pk_0
01	$(pk_1, sk_1) \leftarrow KeyGen1(pp);$	14	$(pk_0, sk_0) \leftarrow KeyGen0(pp)$
	$L_0 = \{(-, -, -)\}$		$L_1 = \{(-, -, -)\}$
03	$(state, pk_0^*) \leftarrow \mathcal{A}_1^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_0}}(pk_1)$		$(state, pk_1^*) \leftarrow \mathcal{B}_1^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_1}}(pk_0);$
04	$b \leftarrow \{0, 1\};$	17	$b \leftarrow \{0, 1\};$
05	$(c^*, k_0^*) \leftarrow Encaps(pk_1, pk_0^*), k_1^* \leftarrow \mathcal{K};$	18	$(c^*, k_0^*) \leftarrow Encaps(pk_1^*, pk_0), k_1^* \leftarrow \mathcal{K};$
06	$b' \leftarrow \mathcal{A}_2^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_0}}(state, c^*, k_b^*);$	19	$b' \leftarrow \mathcal{B}_2^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_1}}(state, c^*, k_b^*);$
07	return $b' \stackrel{?}{=} b$	20	return $b' \stackrel{?}{=} b$
Ga	me [OW-ATK1, \cdot] on pk_1	Ga	me [·, OW-ATK0] on pk_0
08	$(pk_1, sk_1) \leftarrow KeyGen1(pp);$	21	$(pk_0, sk_0) \leftarrow KeyGen0(pp)$
	$L_0 = \{(-, -, -)\}$		$L_1 = \{(-, -, -)\}$
10	$(state, pk_0^*) \leftarrow \mathcal{A}_1^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_0}}(pk_1)$	23	$(state, pk_1^*) \leftarrow \mathcal{B}_1^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_1}}(pk_0);$
	$(c^*, k^*) \leftarrow Encaps(pk_1, pk_0^*);$		$(c^*, k^*) \leftarrow Encaps(pk_1^*, pk_0);$
	$k' \leftarrow \mathcal{A}_2^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_0}}(state, c^*);$		$k' \leftarrow \mathcal{B}_2^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_1}}(state, c^*);$
13	return $k' \stackrel{?}{=} k^*$	26	return $k' \stackrel{?}{=} k^*$

Fig. 1. The $[ATK1, \cdot]$, and $[\cdot, ATK0]$ games of 2KEM for adversaries \mathcal{A} and \mathcal{B} . The oracles $\mathcal{O}_{\mathsf{leak}_0}$, \mathcal{O}_{ATK_1} , $\mathcal{O}_{\mathsf{leak}_1}$, and \mathcal{O}_{ATK_0} are defined in the following.

We say that 2KEM is [IND-ATK1, \cdot] secure, if $\operatorname{Adv}_{2KEM}^{[IND-ATK1, \cdot]}(\mathcal{A})$ is negligible; that 2KEM is [OW-ATK1, \cdot] secure, if $\operatorname{Adv}_{2KEM}^{[OW-ATK1, \cdot]}(\mathcal{A})$ is negligible, for any PPT adversary \mathcal{A} . The [\cdot , IND-ATK0] and [\cdot , OW-ATK0] security can be defined in the same way. Here to avoid repetition we omit their description.

[ATK1, ATK0] security. The scheme 2KEM is called [ATK1, ATK0] secure if it is both [ATK1, \cdot] and [\cdot , ATK0] secure for any PPT algorithms \mathcal{A} and \mathcal{B} . By the combination of adversaries \mathcal{A} and \mathcal{B} attacking different security (*i.e.*, indistinguishability and one-wayness), we could get 16 different definitions of security for 2-key KEM.

What we concern in this paper is the [CCA, CPA] security in both indistinguishability and onewayness setting. For simplicity in the following parts we abbreviate the security model as [IND/OW-CCA, IND/OW-CPA].

3.2 Differences between $[CCA, \cdot]$ Security and Previous Definitions

In order to avoid confusion, we re-clarify the definition of $[IND/OW-CCA, \cdot]$ security and analyze its difference with previous similar notions, including classical CCA security, KEM combiner [17], and completely non-malleable scheme[13].

Compared with classical CCA adversary, the [CCA, \cdot] adversary of 2-key KEM 1) has the capability of choosing one of the challenge public key pk_0^* ; 2) could query a strong decryption oracle, which decapsulates the ciphertext under several public keys (pk_1^*, pk_0') where pk_0' is generated by the challenger. While in the classical definition of decapsulation oracle the adversary could only query decapsulation oracle with ciphertext under the challenge public keys (pk_1^*, pk_0') .

Very recently, Giacon *et. al* [17] study combiners for KEMs. That is, given a set of KEMs, an unknown subset of which might be arbitrarily insecure, Giacon *et. al* investigate how they can be combined to form a single KEM that is secure if at least one ingredient KEM is. The KEM combiners treated by Giacon *et. al* have a parallel structure: If the number of KEMs to be combined is n, a public key of the resulting KEM consists of a vector of n public keys; likewise for secret keys. The encapsulation procedure performs n independent encapsulations, one for each combined KEM. The ciphertext of the resulting KEM is simply the concatenation of all generated ciphertexts. The session key is obtained as a function of keys and ciphertexts. Although from the literature our 2-key KEM looks like the two KEM combiner, the security requirement and concrete constructions between them are completely different. Since the two KEM combiner considers the problem that if one of two KEMs is insecure and the other one is

CCA secure, how to combine them to obtain a CCA secure single KEM. In fact, the adversary of KEM combiner security model is the classical CCA adversary (it can only query the decryption oracle under certain public keys). Actually, in Section 6.1, we show there exists $[CCA, \cdot]$ adversary to attack a CCA secure two KEM combiner.

Aiming to construct non-malleable commitments, Fischlin [13] considered completely non-malleable (NM) schemes. The complete NM scheme is later extended to indistinguishability setting by Barbosa and Farshim [4] with a strong decryption oracle, which allows the adversary to queries with ciphertext under *arbitrary public key of its choice*. Note that our [CCA, \cdot] is also modeled to allow the adversary to query a strong (but weaker than complete NM) decapsulation oracle with ciphertext under several public keys that are chosen by challenger instead of by adversary. On the other hand, the complete NM adversary is not allowed to choose part of challenge public key, while [CCA, \cdot] is.

Based on the above observations, we give comparison among these different definitions by considering two public keys in Table 3. For convenience, we consider classical CCA and complete NM schemes in which public keys are expressed as two public keys (pk_1, pk_0) and let KEM combiner be two combiner of KEM. The differences among security requirements are the capability of adversary, namely, whether the adversary is allowed to choose part of the challenge public keys, or under which public keys the ciphertexts that adversary is allowed to query decryption oracle with are computed.

Definitions	Cha. PK (pk_1^*, pk_0^*)	Cha. ciphertext c^*	$\mathcal{O}_{Dec}((pk_1,pk_0),c')$
Classical CCA	$(pk_1^*, pk_0^*) \leftarrow \mathcal{C}$	c^* under (pk_1^*, pk_0^*)	$(pk_1, pk_0) = (pk_1^*, pk_0^*)$
KEM Combiner [17]	$(pk_1^*, pk_0^*) \leftarrow \mathcal{C}, \mathcal{A}(sk_0^*)$	$c_1^* c_0^*, c_i^*$ under pk_i^*	$(pk_1, pk_0) = (pk_1^*, pk_0^*)$
Complete NM [13]	$(pk_1^*, pk_0^*) \leftarrow \mathcal{C}$	c^* under (pk_1^*, pk_0^*)	$(pk_1, pk_0) \leftarrow \mathcal{A}$
$[CCA, \cdot]$	$pk_1^* \leftarrow \mathcal{C}, pk_0^* \leftarrow \mathcal{A}$	c^* under (pk_1^*, pk_0^*)	$pk_1 = pk_1^*, \ pk_0 \leftarrow \mathcal{C}$

Table 3. The differences of related definitions. "Cha." is the abbreviation of "challenge". C denote the challenger and A denote the adversary. We use $A(sk_0^*)$ to denote that A breaks the KEM under pk_0^* . In both Classical CCA and KEM combiner the decapsulation oracle only returns when $(pk_1, pk_0) = (pk_1^*, pk_0^*)$, while in Complete NM (pk_1, pk_0) could be arbitrary public keys chosen by adversary, and in [CCA, ·], pk_0 could be arbitrary public key chosen by challenger.

3.3 Basic Definitions and Results related to 2-key KEM

 $[\mathsf{CCA}, \cdot]$ security with non-adaptive adversary We can define a weak $[\mathsf{CCA}, \cdot]$ adversary, who is not able to adaptively choose the challenge public key. In this case, taking the adversary \mathcal{A} attacking pk_1 as an example, the challenge public key pk_0^* is generated by challenger instead of \mathcal{A} , which means $pk_0^* \in [L_0]_1$.

Public Key Independent Ciphertext. The concept of public-key-independent-ciphertext (PKIC) was first proposed in [34]. We extend it to 2-key KEM setting. The PKIC 2-key KEM allows a ciphertext to be generated independently from one of two public keys, while the encapsulated key underlay in such ciphertext to be generated with the randomness and both two public keys. More precisely, algorithm $(c, k) \leftarrow \mathsf{Encaps}(pk_1, pk_0, r)$ can be realized in two steps: in step 1, ciphertex c is generated from pk_1 and randomness r. We precisely denote it as $c \leftarrow \mathsf{Encaps}(pk_1, -, r)$; in step 2, the encapsulated key k in c is generated from r, pk_1 , and pk_0 . We precisely denote it as $k \leftarrow \mathsf{Encaps}(pk_1, pk_0, r)$.

Classical one-key KEM and 2-key KEM. Note that given a concrete 2-key KEM, usually it is not obvious and natural to regress to one-key KEM by setting $pk_0 = -$. However given any classical one-key KEM, it can be seen as a 2-key KEM with KeyGen0 not in use and $pk_0 = -$. At that time, the [OW/IND-CCA, ·] security of this 2-key KEM return to the classical OW/IND-CCA security of the underlying KEM.

Min-Entropy. In case of 2-key KEM with PPT adversary \mathcal{A} , for $(pk_1, sk_1) \leftarrow \text{KeyGen1}$ and $pk_0 \leftarrow \mathcal{A}$ or $(pk_0, sk_0) \leftarrow \text{KeyGen0}$ and $pk_1 \leftarrow \mathcal{A}$, we define the *min-entropy* of $\text{Encaps}(pk_1, pk_0)$ by $\gamma(pk_1, pk_0, \mathcal{A}) =$

 $-\log \max_{c \in \mathcal{C}} \Pr[c = \mathsf{Encaps}(pk_1, pk_0)]$. We say that KEM is γ -spread if for every $(pk_1, sk_1) \leftarrow \mathsf{KeyGen1}$ and $pk_0 \leftarrow \mathcal{A}$ or $(pk_0, sk_0) \leftarrow \mathsf{KeyGen0}$ and $pk_1 \leftarrow \mathcal{A}$, $\gamma(pk_1, pk_0, \mathcal{A}) \geq \gamma$, which means for every ciphertext $c \in \mathcal{C}$, it has $\Pr[c = \mathsf{Encaps}(pk_1, pk_0)] \leq 2^{-\gamma}$.

4 Authenticated Key Exchange from 2-key KEM

In this section, we propose CK⁺ secure AKEs from [CCA, CPA] secure 2-key KEM in both random oracle and standard models. Before showing our AKEs, we need a primitive of random function with half of leakage, that is used by several existing AKEs.

Definition 2 (Random Function with half of leakage (hl-RF)). Let $f : D_{sk} \times D_b \to R$ be a function from domain $D_{sk} \times D_b$ to R. Denote KeyGen $\to D_{sk} \times D_{pk}$ as key generation algorithm for some KEM. Let $\mathcal{D}_b, \mathcal{R}$ be the uniformly distributions over D_b, R . It is called $(\varepsilon_1, \varepsilon_2)$ hl-RF with respect to KeyGen, if for $(pk, sk) \leftarrow$ KeyGen, the following distributions are computational indistinguishable with advantage $\varepsilon_1, \varepsilon_2$.

$$\{ (pk, sk, f(sk, b)) | b \leftarrow \mathcal{D}_b \} =_{\varepsilon_1} \{ (pk, sk, U) | U \leftarrow \mathcal{R} \}; \\ \{ (pk, b, f(sk, b)) | b \leftarrow \mathcal{D}_b \} =_{\varepsilon_2} \{ (pk, b, U) | b \leftarrow \mathcal{D}_b, U \leftarrow \mathcal{R} \}$$

The hk-RF can be achieved in both random oracle model and standard model.

- In the random oracle model, if f is a hash function, without the knowledge of b, the output of f is totally random; if KEM with respect to KeyGen is secure, without the knowledge of sk the output of f is computational indistinguishable with a random string (otherwise the adversary must query random oracle with sk which against the security of KEM) given pk. Then equation 2 holds. This structure is known as NAXOS trick [25].
- Let $F': D_b \times \{0,1\}^{\lambda} \to R$ and $F'': D_{sk} \times D_b \to R$ be two pseudo random functions (PRFs). If assume KeyGen outputs an additional string $s \leftarrow \{0,1\}^{\lambda}$, after obtaining (pk, sk), set sk = (sk||s). If $f(sk,b) = F'_b(1^{\lambda}) \oplus F''_s(b)$, then even given pk, without the knowledge of s or b, f(sk,b) is computational indistinguishable with random distribution over R. This is known as twisted PRF trick [15][28].

4.1 AKE from 2-key KEM in Random Oracle Model

Roadmap: We first give a basic AKE from two [OW-CCA, OW-CPA] secure 2-key KEMs. Utilizing extra properties of 2-key KEM, like PKIC or resistance of leakage of partial randomness, we then present two elegant AKEs based on 2-key KEM with different property.

Let $2\mathsf{KEM} = (\mathsf{KeyGen1}, \mathsf{KeyGen0}, \mathsf{Encaps}, \mathsf{Decaps})$ be a [OW-CCA, OW-CPA] secure 2-key KEM with secret key space $D_{sk_1} \times D_{sk_0}$, random space R. Let $H : \{0,1\}^* \to \{0,1\}^{\lambda}$ be hash function, $f_A : D_{sk_1} \times \{0,1\}^* \to R$ and $f_B : D_{sk_1} \times \{0,1\}^* \to R$ be hl-RFs. The CK⁺ secure AKE is presented in Figure 2.

Stage 0: static secret-public key pair and public parameters. Each user's static secret-public key pair is generated using KeyGen1. Sample one pair of key $(cpk_0, csk_0) \leftarrow \text{KeyGen0}$ (which need not to be randomly generated). Set cpk_0 as the predetermined ephemeral public key which will be used by initiator afterwards and csk_0 as the predetermined ephemeral secret key that will be used by responder. Let (cpk_0, csk_0) be parts of public parameters.

Stage 1: Initiator U_A generates two randomness r_A, r_{A0} ; it computes (C_B, K_B) under public key pk_B and predetermined cpk_0 with randomness $f_A(sk_A, r_A)$, and generates ephemeral secret-public key $(pk_{A0}, sk_{A0}) \leftarrow \text{KeyGenO}(r_{A0})$. Then it sends C_B, pk_{A0} to U_B .

Stage 2: Responder U_B generates randomness r_B ; it computes (C_A, K_A) under public keys pk_A and pk_{A0} with randomness $f_B(sk_B, r_B)$; U_B sends C_A to U_A and de-encapsulates C_B using sk_B and predetermined csk_0 to obtain K'_B ; it then computes $SK = H(U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A, K_A, K'_B)$, and erases K'_B .

Stage 3: U_A de-encapsulates C_A using sk_A and sk_{A0} to obtain K'_A and computes $SK = H(U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A, K'_A, K_B)$.

The session state of sid owned by U_A consists of ephemeral secret key r_{A0}, r_A , decapsulated key K'_A and encapsulated key K_B ; The session state of sid owned by U_B consists of ephemeral secrete key r_B and encapsulated key K_A .

U_A	U_B
$(pk_A, sk_A) \leftarrow KeyGen1$	$(pk_B, sk_B) \leftarrow KeyGen1$
$r_A \leftarrow \{0,1\}^*, r_{A0} \leftarrow \{0,1\}^*$	$r_B \leftarrow \{0,1\}^*$
$R_A := f_A(sk_A, r_A)$	
$(C_B, K_B) \leftarrow Encaps(pk_B, cpk_0, R_A)$	$R_B := f_B(sk_B, r_B)$
$(pk_{A0}, sk_{A0}) \leftarrow KeyGen0(r_{A0})_C_B, pk_{A0}$	$(C_A, K_A) \leftarrow Encaps(pk_A, pk_{A0}, R_B)$
$K'_A \leftarrow Decaps(sk_A, sk_{A0}, C_A)$ C_A	$K'_B \leftarrow Decaps(sk_B, csk_0, C_B)$
$SK = H(si, K'_A, K_B)$	$SK = H(si, K_A, K'_B)$

Fig. 2. AKE from [OW-CCA, OW-CPA] secure 2KEM in random oracle model. cpk_0, csk_0 are predetermined and default ephemeral keys and they are part of the public parameters. si here is $(U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A)$.

Theorem 1. If the underlying 2KEM is [OW-CCA, OW-CPA] secure and γ -spread, f_A , f_B are $(\varepsilon_1, \varepsilon_2)$ hl-RFs, and there are N users in the AKE protocol and the upbound of sessions between two users is l, for any PPT adversary \mathcal{A} against AKE with totally q times of CK⁺ queries, there exists \mathcal{S} s.t.,

$$Adv_{\mathsf{AKE}}^{ck+}(\mathcal{A}) \leq \frac{1}{2} + \min \left\{ \begin{array}{l} N^2 l \cdot Adv_{2\mathsf{KEM}}^{[\mathsf{OW-CCA},\cdot]}(\mathcal{S}) + N^2 lq \cdot (\varepsilon_1 + \varepsilon_2 + 2^{-\gamma}), \\ N^2 l \cdot Adv_{2\mathsf{KEM}}^{[\cdot,\mathsf{OW-CPA}]}(\mathcal{S}) + N^2 lq \cdot \varepsilon_2 \end{array} \right\}.$$

Proof of Theorem 1. Let Succ be the event that the guess of \mathcal{A} against freshed test session is correct. Let AskH be the event that \mathcal{A} poses $(U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A, K_A, K_B)$ to H, where C_B, pk_{A0}, C_A are the views of the test session and K_A, K_B are the keys encapsulated in the test session. Let $\overline{\mathsf{AskH}}$ be the complement of AskH . Then,

$$\Pr[\mathsf{Succ}] = \Pr[\mathsf{Succ} \land \mathsf{AskH}] + \Pr[\mathsf{Succ} \land \mathsf{AskH}] \le \Pr[\mathsf{Succ} \land \mathsf{AskH}] + \Pr[\mathsf{AskH}]$$

where the probability is taken over the randomness used in CK⁺ experiment.

We then show that $\Pr[Succ \land \overline{AskH}] \le 1/2$ (as in Lemma 1) and $\Pr[AskH]$ is negligible (as in Lemma 2) in all the events (listed in Table 2) of CK⁺ model. Followed by Lemma 1 and Lemma 2, we achieve the security of AKE in CK⁺ model. Thus, we only need to prove Lemma 1 and Lemma 2.

Lemma 1. If H is modeled as a random oracle, we have $Pr[Succ \land \overline{AskH}] \leq 1/2$.

Proof of Lemma 1: If $\Pr[\overline{AskH}] = 0$ then the claim is straightforward, otherwise we have $\Pr[\operatorname{Succ} \overline{AskH}] = \Pr[\operatorname{Succ} \overline{AskH}] \leq \Pr[\operatorname{Succ} \overline{AskH}]$. Let sid be any completed session owned by an honest party such that sid \neq sid^{*} and sid is not matching sid^{*}. The inputs to sid are different from those to sid^{*} and sid^{*} (if there exists the matching session of sid^{*}). If \mathcal{A} does not explicitly query the view and keys to oracle, then $H(U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A, K_A, K_B)$ is completely random from \mathcal{A} 's point of view. Therefore, the probability that \mathcal{A} wins when AskH does not occur is exactly 1/2.

Lemma 2. If the underlying 2KEM is [OW-CCA, OW-CPA] secure, the probability of event AskH defined above is negligible. Precisely,

$$\Pr[\mathsf{AskH}] \le \min \left\{ \begin{array}{l} N^2 l \cdot Adv_{\mathsf{2KEM}}^{[\mathsf{OW-CCA},\cdot]}(\mathcal{S}) + N^2 lq \cdot (\varepsilon_1 + \varepsilon_2 + 2^{-\gamma}), \\ N^2 l \cdot Adv_{\mathsf{2KEM}}^{[\cdot,\mathsf{OW-CPA}]}(\mathcal{S}) + N^2 lq \cdot \varepsilon_2 \end{array} \right\}$$

Events	sid^*	sid^*	ssk_A	esk_A	esk_B	ssk_B	Bounds
$AskH \wedge E_1$	A	No	\checkmark	×	-	×	$\operatorname{Adv}_{2\text{KEM}}^{[\text{OW-CCA},\cdot]}, pk_1 = pk_B, pk_0^* = cpk_0$
$AskH \wedge E_2$	A	No	×	\checkmark	-	×	$\left \operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_B, pk_0^* = cpk_0 \right $
$AskH \wedge E_3$	B	No	×	-		×	$\left \operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_A, pk_0^* \leftarrow \mathcal{A}\right $
$AskH \wedge E_4$	B	No	×	-	×		$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_A, pk_0^* \leftarrow \mathcal{A}$
$AskH \wedge E_5$	A/B	Yes	\checkmark	×	×		Adv ^[·,OW-CPA] _{2KEM} , $pk_0 = pk_0(sid^*) \ pk_1^* \in [L_1]_1$
$AskH \wedge E_6$	A/B	Yes	×			×	$\left[\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_A, pk_0^* \in [L_0]_1\right]$
$AskH \wedge E_{7-1}$	A	Yes	\checkmark	×		×	$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_B pk_0^* = cpk_0$
$AskH \wedge E_{7-2}$	B	Yes	×		×		$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_A, pk_0^* \in [L_0]_1$
$AskH \wedge E_{8-1}$	A	Yes	×		×		$\left[\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_A, pk_0^* \in [L_0]_1\right]$
$AskH \land E_{8-2}$	В	Yes	\checkmark	×	\checkmark	×	$\operatorname{Adv}_{2KEM}^{[OW-CCA,\cdot]}, pk_1 = pk_B, pk_0^* = cpk_0$

Table 4. The bounds of $AskH \land \overline{Askh}$ in the proof of Lemma 2. Refer Table 2 for the meanings of notions.

Please refer Appendix A for the formal proof. we give a sketch of proof here. In the following, to bound $\Pr[\mathsf{AskH}]$, we work with the events listed in Table 4.

Due to the [OW-CCA, ·] security of 2KEM with $pk_1 = pk_A$ and pk_0^* generated by \mathcal{A} , the probability of events AskH $\wedge E_3$ and AskH $\wedge E_4$ is negligible; Due to the [OW-CCA, ·] security of KEM with $pk_1 = pk_B$ and $pk_0^* = cpk_0$, the probability of events AskH $\wedge E_1$, AskH $\wedge E_2$, AskH $\wedge E_{7-1}$ and AskH $\wedge E_{8-2}$ is negligible; Due to the [OW-CCA, ·] security of 2KEM with $pk_1 = pk_A$ and $pk_0^* \in [L_0]_1$, the probability of events AskH $\wedge E_{6}$, AskH $\wedge E_{7-2}$ and AskH $\wedge E_{8-1}$ is negligible. Due to the [·, OW-CPA] security with $pk_1^* \in [L_1]_1$, the probability of event AskH $\wedge E_5$ is negligible.

Here, we only take $\mathsf{AskH} \wedge E_3$ as an example to explain in detail. For the other cases we can deal with them in a similar way. In the event E_3 , the test session sid^* has no matching session, and the ephemeral secret keys r_B of U_B is given to \mathcal{A} . In case of $\mathsf{AskH} \wedge E_3$, the [OW-CCA, \cdot] adversary \mathcal{S} performs as follows. It simulates the CK⁺ games, and transfers the probability that the event AskH performed by \mathcal{A} occurs to the advantage of attacking [OW-CCA, \cdot] security.

In order to simulate the random oracles, S maintains two lists for H oracle and SessionKeyReveal respectively. H-oracle and SessionKeyReveal are related, which means the adversary may ask SessionKeyReveal without the encapsulated keys at first, and then may ask H-oracle with the encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to H and SessionKeyReveal. The decryption oracle for [OW-CCA, \cdot] game would help to maintain the consistency of H-oracle and SessionKeyReveal.

On receiving the public key pk_1 from the $[\mathsf{OW-CCA}, \cdot]$ challenger, to simulate the CK⁺ game, S randomly chooses two parties U_A, U_B and the *i*-th session as a guess of the test session with success probability $1/N^2l$. S, picks one preset $(cpk_0, csk_0) \leftarrow \mathsf{KeyGen0}$ as public parameters, runs $\mathsf{KeyGen1}$ to set all the static secret and public key pairs (pk_P, sk_P) for all N users U_P except for U_A . Specially, S sets the static secret and public key pairs (pk_B, sk_B) for U_B , and sets $pk_A = pk_1$.

Without knowing the secret key of U_A , S chooses totally random r_A as part of ephemeral secret key and totally random R_A for Encaps. Since f_A is $(\varepsilon_1, \varepsilon_2)$ hl-RF, the difference between simulation with modification of r_A and real game is bounded by ε_1 . When a ephemeral public key pk_{P0} is needed, Squeries $(pk_0^i, sk_0^i, r_0^i) \leftarrow \mathcal{O}_{\mathsf{leak}_0}$ and sets $pk_{P0} = pk_0^i$. When a session state revealed to a session owned by U_A , is queried, S returns r_A and r_0^i of this session as part of ephemeral secret key.

On receiving the *i*-th session (C'_B, pk_0^*) from U_A (that is sent by \mathcal{A} in the CK⁺ games), \mathcal{S} returns pk_0^* to the [OW-CCA, \cdot] challenger and receives the challenge ciphertext C^* under public key pk_1 and pk_0^* . Then \mathcal{S} returns C^* to U_A as the response of *i*-th session from U_B . \mathcal{S} chooses a totally independent randomness r_B as the ephemeral secret key of U_B for C^* and leaks it to adversary \mathcal{A} . Since f_B is $(\varepsilon_1, \varepsilon_2)$ hl-RF, the difference between simulation with modification of r_B and real game is bounded by ε_2 .

S simulates the oracle queries of A and maintains the hash lists. Specially, when AskH happens, which means A poses $(U_A, U_B, pk_A, pk_B, C'_B, pk_0^*, C^*, K_A, K_B)$ to H, where C'_B, pk_0^*, C^* are the views of the

test session and K_B is the key encapsulated in C'_B , \mathcal{S} returns K_A as the guess of K^* encapsulated in C^* , which contradicts with the [OW-CCA, \cdot] security for $pk_1 = pk_A$, $pk_0^* \leftarrow \mathcal{A}$.

4.1.1 If 2-key KEM is PKIC. As we notice in AKE, the session state of sid owned by U_B does not contain decapsulated key K'_B . If the underlying 2-key KEM is PKIC (which is defined in Sec. 3.3), and U_B also sends ephemeral public key pk_{B0} out in every session, K'_B is encapsulated under two public keys pk_B and pk_{B0} , then K'_B could be included in session state, and the predetermined ephemeral public key cpk_0 can be omitted. Let $2\text{KEM}_{pkic} = (\text{KeyGen1}, \text{KeyGen0}, \text{Encaps0}, \text{Encaps1}, \text{Decaps})$ be PKIC and [OW-CCA, OW-CPA] secure 2-key KEM. The AKE can be modified to include K'_B as session state by 1)replacing 2KEM with 2KEM_{pkic} ; 2) requiring U_B to generate a fresh $(pk_{B0}, sk_{B0}) \leftarrow \text{KeyGen0}$ and send out ephemeral public key pk_{B0} ; 2) encapsulating and separating $(C_B, K_B) \leftarrow \text{Encaps}(pk_B, pk_{B0}, R_A)$ in two steps and computing $C_B \leftarrow \text{Encaps0}(pk_B, -, R_A)$ and $K_B \leftarrow \text{Encaps1}(pk_B, pk_{B0}, R_A)$. The modified protocol $AKE_{ro-pkic}$ is shown in Figure 3.

Note that the encapsulation algorithm of PKIC 2-key KEM can be split into two steps. Since the generation of ciphertext C_B does not require pk_{B0} , we denote it as $C_B \leftarrow \mathsf{Encaps0}(pk_B, -, R_A)$. The computation of encapsulated key K_B requires pk_{B0} , and we denote it as $K_B \leftarrow \mathsf{Encaps1}(pk_B, pk_{B0}, R_A)$.

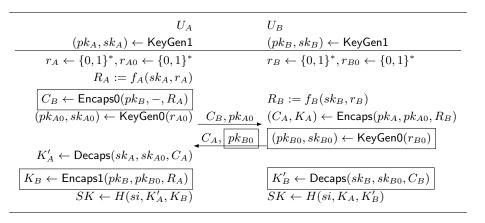


Fig. 3. AKE_{ro-pkic} from PKIC [OW-CCA, OW-CPA] secure 2KEM. Here $si = (U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A, pk_{B0})$. The boxed argument is the difference with AKE

Since the proof mainly follows that of Theorem 1, we only show the difference here. The main difference is the analysis of $\Pr[AskH]$ in Lemma 2. Now, the probability of events $AskH \wedge E_1$, $AskH \wedge E_2$, $AskH \wedge E_{7-1}$, $AskH \wedge E_{8-2}$ is bounded by the [OW-CCA, ·] security of $2KEM_{pkic}$ with pk_0^* chosen by \mathcal{A} rather than the predetermined cpk_0 . Precisely, in those events, when the adversary queries the session state of U_B whose secret key is unknown to simulator \mathcal{S} , in AKE, \mathcal{S} queries the decryption oracle of 2KEM with cpk_0 and C_B (when adversary queries $Send(\Pi, R, U_B, U_P, C_B, pk_{A0})$), while in AKE_{pkic} , \mathcal{S} queries the decryption oracle of $2KEM_{pkic}$ with (pk_{B0}, C_B) chosen by \mathcal{A} . This modification does not affect the proof of security.

4.1.2 If PKIC 2-key KEM is even Secure with Leakage of Partial Randomness We can further refine the framework $AKE_{ro-pkic}$ based on two observations: 1) From the proof of Theorem 1 (especially Lemma 2), we can see that the only purpose of f_A and f_B is to preserve the [OW-CCA, \cdot] security with $pk_1 = pk_A$ and the [\cdot , OW-CPA] security with $pk_0 = pk_{A0}$ even if part of randomness, r_B or sk_B is leaked to the adversary. If the underlying 2-key KEM itself is strong enough to preserve the [OW-CCA, OW-CPA] security with respect to *some* function $f_A(sk_A, r_A)$ (resp. $f_B(sk_B, r_A)$), and leakage of sk_A or r_A for fixed pk_A (resp. sk_B or r_B for fixed pk_B), the functions f_A and f_B don't have to be

hl-RFs. 2) if the 2-key KEM is strong enough to preserve security even when the randomness r_{B0} used to generate pk_{B0} is generated from $f_{B0}(sk_B, r_B)$ for some function f_{B0} , then we could regard $f_{B0}(sk_B, r_B)$ as a random string using to compute pk_{B0} . The same holds when $(pk_{A0}, sk_{A0}) \leftarrow \text{KeyGenO}(r_{A0})$ where $r_{A0} = f_{A0}(sk_A, r_A)$ for some function f_{A0} .

Therefore, the problem comes down to study the security of 2-key KEM when C_A (under public keys pk_A and pk_{A0}) shares the randomness of pk_B and pk_{B0} .

Definition 3. We say 2-key KEM is leakage resistant of partial randomness with respect to f_B and f_{B0} (they need not to be hl-RFs), if the following property holds. Under public key pk_A and pk_{A0} , the [OW-CCA, OW-CPA] security still holds where the ciphertext is computed as $Encaps(pk_A, pk_{A0}, f_B(sk_B, r_B))$ for some fixed pk_B (where $(pk_B, sk_B) \leftarrow KeyGen1$), when either r_B and pk_{B0} or sk_B and pk_{B0} are given to adversary, where $(pk_{B0}, sk_{B0}) \leftarrow KeyGen0(f_{B0}(sk_B, r_B))$.

Equipped with PKIC 2-key KEM that resists to the leakage of partial randomness with respect to f_B and f_{B0} , we set $f_{A0}(sk_A, r_A)$ and $f_{B0}(sk_B, r_B)$ as the randomness for KeyGen0, and denote the result AKE as AKE_{ro-pkic-Ir} in Figure 4. The session state of sid owned by U_A consists of r_A , K'_A and K_B , the session state of sid owned by U_B consists of r_B , K_A and K'_B .

U_A	U_B
$(pk_A, sk_A) \leftarrow KeyGen1$	$(pk_B, sk_B) \leftarrow KeyGen1$
$r_A \leftarrow \{0,1\}^*, \boxed{r_{A0} = f_{A0}(sk_A, r_A)}{R_A := f_A(sk_A, r_A)}$	$r_B \leftarrow \{0,1\}^*, r_{B0} = f_{B0}(sk_B, r_B)$
$C_B \leftarrow Encaps0(pk_B, -, R_A)$	$R_B := f_B(sk_B, r_B)$
$(pk_{A0}, sk_{A0}) \leftarrow KeyGen0(r_{A0})$	$(C_B), pk_{A0} (C_A, K_A) \leftarrow Encaps(pk_A, pk_{A0}, R_B)$
	$(C_A), pk_{B0}$ $(pk_{B0}, sk_{B0}) \leftarrow KeyGen0(r_{B0})$
$K'_A \leftarrow Decaps(sk_A, sk_{A0}, C_A)$	•
$K_B \leftarrow Encaps1(pk_B, pk_{B0}, R_A)$	$K'_B \leftarrow Decaps(sk_B, sk_{B0}, C_B)$
$SK \leftarrow H(si, K'_A, K_B)$	$SK \leftarrow H(si, K_A, K'_B)$

Fig. 4. $\mathsf{AKE}_{\mathsf{ro-pkic-lr}}$. Here $si = (U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A, pk_{B0})$. The boxed argument is the main difference with $\mathsf{AKE}_{\mathsf{ro-pkic}}$

Remark 1: As in the definition of 2-key KEM, both Encaps and Decaps allow to have auxiliary input aux_e or aux_d. In AKE_{ro-pkic-Ir} (AKE and AKE_{ro-pkic}), the static public keys are generated by KeyGen1 during the registration phase (i.e., Stage 0) and publicly available. Thus, in the protocol, it makes sense that Encaps and Decaps algorithms take the static public keys as public auxiliary input. And for user U_A (resp. U_B), it is also reasonable that Encaps executed by U_A (resp. U_B) takes his static secret key sk_A (resp. sk_B) as auxiliary input. In this sense, one couple of 2KEM is really "coupled" with each other. **Remark 2:** Since C_A share the randomness of pk_{B0} and secret key of pk_B , if the 2-key KEM and function f_B/f_{B0} further satisfy that C_A is publicly computable from pk_B and pk_{B0} , we can omit C_A in the communications. The same holds for C_B , if it is publicly computable from pk_A and pk_{A0} , we can

omit C_B . **Remark 3:** Note that the computation of f_B is part of $\mathsf{Encaps}(pk_A, pk_{A0}, R_B)$ algorithm. f_B may take pk_A as input. At that time, to be clear, we denote $f_B(sk_B, r_B)$ as $f_B(sk_B, r_B, pk_A)$. It is similar in the case of f_A .

With these modifications, we should handle the proof more carefully. The main challenge is that the ciphertext C_A , static public key pk_B , ephemeral public key pk_{B0} are correlated (the same holds for C_B , pk_A , and pk_{A0}). We should handle the problem that, since C_A shares the randomness with pk_{B0} and secret key of pk_B , when applying the [OW-CCA, ·] security of 2-key KEM with $pk_1 = pk_A$ in event $\mathsf{AskH} \wedge E_3$, $\mathsf{AskH} \wedge E_6$, not only sk_A but also sk_B is unknown to simulator \mathcal{S} . (The same situation occurs when applying [OW-CCA, \cdot] security of 2-key KEM with $pk_1 = pk_B$ in event $\mathsf{AskH} \wedge E_2$).

The way to solving this problem is to bring in another $[OW-CCA, \cdot]$ challenge. As an example, we sketch the proof of event AskH $\wedge E_3$ to show how this resolves the above problem. The main modification is for the proof of Lemma 2. In case of AskH $\wedge E_3$, the $[OW-CCA, \cdot]$ adversary S performs as follows. On receiving the public key pk_1 from the $[OW-CCA, \cdot]$ challenger, to simulate the CK⁺ game, S randomly chooses two parties U_A, U_B and the *i*-th session as a guess of the test session. S runs KeyGen1 to generate all static public keys except U_A and U_B . S queries the first $[OW-CCA, \cdot]$ challenger to get pk_1 , and sets $pk_A = pk_1$. S queries the second $[OW-CCA, \cdot]$ challenger again to get another pk'_1 and sets $pk_B = pk'_1$.

Note that now S does not know the secret key of both pk_A and pk_B . Here S generates (pk_{B0}^*, sk_{B0}^*) by itself. S sends pk_{B0}^* to the second challenge to get challenge ciphertext C_B^* and keeps both pk_{B0}^* and C_B^* secret to CK⁺ adversary A. On receiving the *i*-th session (C'_B, pk_{A0}^*) from U_A (that is sent by A in the CK⁺ games), S queries the first [OW-CCA, \cdot] challenger with pk_{A0}^* and obtains C_A^* , pk_{B0} and its randomness r_{B0} . S returns C_A^* and pk_{B0} to U_A as the response of *i*-th session from U_B , and sets pk_{A0}^* as the public key under which C_A^* is encrypted. S also leaks r_{B0} to adversary as the ephemeral secret key.

With the first [OW-CCA, \cdot] challenge, S could partially maintain the hash list and SessionStateReveal and SessionKeyReveal with strong decapsulation oracle when U_B is not involved. When U_B is involved, the second [OW-CCA, \cdot] challenge is needed. Note that since 2-key KEM is γ -spread, the probability that \mathcal{A} queries a message with $C_B = C_B^*$ is bounded by $q \times 2^{-\gamma}$. The simulation is perfect and the other part of proof proceeds the same with Lemma 2.

4.2 AKE from 2-key KEM in Standard Model

The protocol $AKE/AKE_{ro-pkic}$ in random oracle model can be easily extended to one that is secure in the standard model, denoted by $AKE_{std}/AKE_{std-pkic}$, via the following steps:

- 1. replacing the [OW-CCA, OW-CPA] secure 2-key KEM in random oracle model with the [IND-CCA, IND-CPA] secure 2-key KEM in standard model;
- 2. instantiating the hl-RF functions f_A, f_B in standard model instead of the random oracle model. As noted after the definition, the instantiation of hl-RF in standard model require PRF and extra randomness. Thus every user holds extra random secret $s_P \leftarrow \{0,1\}^{\lambda}$ as part of the static secret key and $R_A = f_A(sk_A||s_A, r_A), R_B = f_B(sk_B||s_B, r_B).$
- 3. replacing the random oracle $H(si, K_A, K_B)$ with $F_{K_A}(si) \oplus \hat{F}_{K_B}(si)$, to extract session key, where F and \hat{F} are PRFs.

Actually, converting a scheme in the random oracle model into that in the standard model is generally not trivial, and there are many negative results. However, without taking advantage of strong property of random oracle, our step 2 and 3 just use the property that if the input is unknown then the output is totally random. The difficult part is step 1. Once the 2-key KEM in random oracle model is replaced by [IND-CCA, IND-CPA] secure 2-key KEM in standard model, the proof of security for AKE in standard model is straightforward.

5 Unification of Prior Works

In this section, we show that existing AKEs, including HMQV[24], NAXOS [25], Okamoto [28], and FSXY framework [15, 16], can be explained in our unified frameworks.

5.1 HMQV-AKE.

In HMQV[24], the 2-key KEM is initiated by $2\text{KEM}_{\text{HMQV}}$ in Figure 5. Let h and \hat{H} be hash functions. Let G be a group of prime order p with g as a generator. Both Encaps and Decaps algorithms have auxiliary input $aux_e = (B, b)$ where $B = g^b$ and $aux_d = B$. By applying $AKE_{ro-pkic-lr}$, Remark 1 and Remark 2, we present how the HMQV scheme is integrated in our unified framework of AKE and how it is built from the view of 2-key KEM in Figure 6.

KeyGen1(λ) KeyGen0(λ) Encaps($pk_1, pk_0; aux_e(B, b)$) Decaps($sk_1, sk_0, c; aux_d(B)$)

$a \leftarrow \mathbb{Z}_p;$	$x \leftarrow \mathbb{Z}_p$	$y \leftarrow \mathbb{Z}_p, Y = g^y,$	$YB^e \leftarrow c;$
$A = g^a$	$X = g^x$	e = h(Y, A), d = h(X, B)	e = h(Y, A), d = h(X, B)
$pk_1 = A$	$pk_0 = X;$	$k = \hat{H}((XA^d)^{y+eb})$	$k' = \hat{H}((YB^e)^{x+da})$
$sk_1 = a$	$sk_0 = x.$	Return $k, c = YB^e$.	Return k'

Fig. 5. The [OW-CCA, OW-CCA] secure 2KEM_{HMQV} implied by HMQV.

Theorem 2. Under the Gap-DH and KEA1 assumptions², 2KEM_{HMQV} in Figure 5 is [OW-CCA, OW-CCA] secure with the resistance to the leakage of partial randomness with respect to $f_B(b,y) = y + b \cdot h(g^y, A)$ and $f_{B0}(b, y) = y$ in the random oracle model.

Please refer Appendix B for the formal proof of Theorem 2.

By theorem 2, $2\mathsf{KEM}_{\mathsf{HMQV}}$ is $[\mathsf{OW-CCA}, \mathsf{OW-CCA}]$ secure even if partial randomness (b or y) is leaked with respect to $f_B(b, y) = y + b \cdot h(g^y, A)$ and $f_{B0}(b, y) = y$. By changing the role of A and B, X and Y, we also get a dual scheme of $2\mathsf{KEM}_{\mathsf{HMQV}}$, with respect to $f_A(a, x) = x + a \cdot h(g^x, B)$ and $f_{A0}(a, x) = x$. Obviously, $2\mathsf{KEM}_{\mathsf{HMQV}}$ is PKIC, which means that the ciphertext is independent of the public key pk_0 . Thus the Encaps algorithm can be split into two steps Encaps0 and Encaps1. However, when integrating $2\mathsf{KEM}_{\mathsf{HMQV}}$ into $\mathsf{AKE}_{\mathsf{ro-pkic-Ir}}$ to reproduce HMQV, one may doubt that whether $\mathsf{aux}_e = (B, b)$ or (A, a)required by Encaps and $\mathsf{aux}_d = B$ or A required by Decaps influence the reconstruction. As explained in Remark 2, since B and A are the static public keys and generated during the registration phase, they can be used as the auxiliary input by any user during the execution phase. As a static secret key b can be used by U_B as auxiliary input during the execution phase. Based on the above analysis, applying $\mathsf{AKE}_{\mathsf{ro-pkic-Ir}}$ and Remark 1 to $\mathsf{2KEM}_{\mathsf{HMQV}}$, HMQV is reconstructed in Fig. 6.

Moreover, A, B are static public keys, and d, e are publicly computable, C_A , C_B can be publicly computed from $pk_{B0} = Y$ and $pk_{A0} = X$. Thus, we can apply Remark 1 to omit $C_B = XA^d$ and $C_A = YB^d$ in the communications.

$U_A: A = g^a, a$	$U_B: B = g^b, b$
$x \leftarrow \mathbb{Z}_p, X = g^x$	$y \leftarrow \mathbb{Z}_p, Y = g^y$
$d = h(X, B), C_B = XA^d \ (C$	$C_B = XA^d, pk_{A0} = X e = h(Y, A), C_A = YB^e$
	$C_A = YB^e, pk_{B0} = Y d = h(X, B)$
$K_B = K'_A = \hat{H}\left((YB^e)^{x+ad}\right)$	$K_A = K'_B = \hat{H}\left((XA^d)^{y+be}\right)$
$SK \leftarrow H(si, K_B)$	$SK \leftarrow H(si, K_A)$

Fig. 6. Understanding HMQV with 2KEM_{HMQV} in the frame AKE_{ro-pkic-lr} where $si = (U_A, U_B, A, B, C_B, X, C_A, Y)$.

5.2 NAXOS-AKE.

In [25], the 2-key KEM is initiated by 2KEM_{NAXOS} in Figure 7. Let G be a group of prime order p with g as a generator. Let $h : \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$ and $\hat{H} : \mathbb{Z}_p \times \mathbb{Z}_p \to \{0,1\}^{\lambda}$ be hash functions. By applying $AKE_{\text{ro-pkic-lr}}$ and Remark 1-2, in Figure 8, we present how the NAXOS scheme is integrated in our unified framework of AKE and how it is built from the view of 2-key KEM.

Theorem 3. Under the Gap-DH assumption, 2KEM_{NAXOS} is [OW-CCA, OW-CCA] secure even with the leakage of one of y_0 and b where $f_B(b, y_0) = h(b, y_0)$ and $f_{B0}(b, y_0) = h(b, y_0)$ in the random oracle model.

² For formal definitions of Gap-DH and KEA1 assumptions, please refer HMQV.

KeyGen1(λ) KeyGen0(λ) Encaps($pk_1, pk_0; aux_e(B, b)$); Decaps(sk_1, sk_0, c)

$a \leftarrow \mathbb{Z}_p;$	$x \leftarrow \mathbb{Z}_p$	$y_0 \leftarrow \mathbb{Z}_p, y = h(y_0, b)$	$Y \leftarrow c;$
$A = g^a$	$X = g^x$		$x = h(x_0, a)$
$pk_1 = A$	$pk_0 = X;$	$k = \hat{H}(A^y, X^y)$	$k' = \hat{H}(Y^a, Y^x)$
$sk_1 = a$	$sk_0 = x.$	Return $k, c = Y$.	Return k'

Fig. 7. The [OW-CCA, OW-CCA] secure 2KEM_{NAXOS} implied by NAXOS.

By theorem 3, 2KEM_{NAXOS} is [OW-CCA, OW-CCA] secure even if partial randomness $(b \text{ or } y_0)$ is leaked with respect to $f_B(b, y_0) = h(b, y_0)$ and $f_{B0}(b, y_0) = h(b, y_0)$. Obviously, 2KEM_{NAXOS} is PKIC. We split Encaps algorithm into two steps Encaps0 and Encaps1. As explained in Remark 2, since b is static secret key and generated by U_B , in the execution phase U_B takes it as secret auxiliary input. Based on the above analysis, applying $AKE_{ro-pkic-lr}$ and Remark 1 to 2KEM_{NAXOS} , NAXOS is reconstructed in Fig. 8.

Moreover, C_A is equal to $pk_{B0} = Y$ and C_B is equal to $pk_{A0} = X$. Thus we can apply Remark 2 to omit $C_B = X$ and $C_A = Y$ in the communications.

$U_A: A = g^a, a$	$U_B: B = g^b, b$
$x_0 \leftarrow \mathbb{Z}_p, x = h(x_0, a)$	$y_0 \leftarrow \mathbb{Z}_p, y = h(y_0, b)$
$C_B = pk_{A0} = X = g^x (C_B = X), pk_{A0} = X$	$C_A = pk_{B0} = Y = g^y$
$K_B = \hat{H}(B^x, Y^x) (C_A = Y), pk_{B0} = Y$	$K_A = \hat{H}(A^y, X^y)$
$K'_A = \hat{H}(Y^a, Y^x)$	$K'_B = \hat{H}(Y^b, X^y)$
$SK \leftarrow H(si, K'_A, K_B)$	$SK \leftarrow H(si, K_A, K'_B)$

Fig. 8. Understanding NAXOS with 2KEM_{naxos} in the frame $A \text{KE}_{ro-pkic-lr}$ where $si = (U_A, U_B, A, B, X, Y)$.

5.3 Okamoto-AKE.

In Okamoto-AKE [28], the 2-key KEM is initiated by 2KEM_{Oka} in Figure 9. In 2KEM_{Oka} , the computation is proceeded over group G of prime order p with generator g, h_{tcr} is a target-collision resistant (TCR) hash function and \overline{F} is a pairwise-independent random source PRF. (Please refer [28] for the formal definition of pairwise-independent random source PRFs.)

$2KEM_{Oka}.KeyGen1(\lambda)$	$2KEM_{Oka}.KeyGen0(\lambda)$
$a_1, a_2, a_3, a_4 \leftarrow \mathbb{Z}_p^4, A_1 = g_1^{a_1} g_2^{a_2}, A_2 = g_1^{a_3} g_2^{a_4}$	$x_3 \leftarrow \mathbb{Z}_p, X_3 = g_1^{x_3}$
$pk_1 = (A_1, A_2), sk_1 = (a_1, a_2, a_3, a_4)$	$pk_0 = X_3, sk_0 = x_3$
$2KEM_{Oka}.Encaps(pk_0, pk_1);$	$2KEM_{Oka}.Decaps(sk_0, sk_1, C)$
$y, y_3 \leftarrow \mathbb{Z}_p^2, Y_1 = g_1^y, Y_2 = g_2^y, Y_3 = g_1^{y_3}$	$C \in G^3, (Y_1, Y_2, Y_3) \leftarrow C;$
$C = (Y_1, Y_2, Y_3), c = h_{tcr}(A_1, A_2, C)$	$c = h_{tcr}(A_1, A_2, C)$
$\sigma = X_3^{y_3} (A_1 A_2^c)^y$	$\sigma' = Y_3^{x_3} Y_1^{a_1 + ca_3} Y_2^{a_2 + ca_4}$
$K = \bar{F}_{\sigma}(pk_0, C)$	$K' = \bar{F}_{\sigma'}(pk_0, C)$

Fig. 9. The [IND-CCA, IND-CPA] secure 2KEM_{Oka} implied by Okamato-AKE.

Let G be a group of order p with the generator g. Let $1_G = g^p$ be the identity element. The DDH assumption states that $\{(G, g^a, g^b, g^{ab})\}_{\lambda}$ is computationally indistinguishable from $\{(G, g^a, g^b, g^c)\}_{\lambda}$, where a, b, c are randomly and independently chosen in \mathbb{Z}_p . If c = ab, (g, g^a, g^b, g^c) is called a DDH tuple,

otherwise it's called a non-DDH tuple. Denote the advantage of any PPT algorithm \mathcal{B} solving DDH problem as $\operatorname{Adv}_{\mathcal{B}}^{\mathsf{ddh}} = |\operatorname{Pr}[\mathcal{B}(g^a, g^b, g^{ab}) = 1] - \operatorname{Pr}[\mathcal{B}(g^a, g^b, g^c) = 1]|.$

Theorem 4. Under the DDH assumption, if h_{tcr} is a TCR hash function and \overline{F} is a pairwise-independent random source PRF, then 2KEM_{Oka} in Figure 9 is [IND-CCA, IND-CPA] secure in the standard model.

Please refer Appendix D for the formal proof of Theorem 4.

By applying $\mathsf{AKE}_{\mathsf{std}}$, in Figure 10, we present how the Okamato scheme is integrated in our unified framework of AKE and how it is built from the view of 2-key KEM. Let $F': \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \mathbb{Z}_p$ and $F'': \mathbb{Z}_p \times \{0,1\}^{\lambda} \to \mathbb{Z}_p$ be PRFs. In the frame of $\mathsf{AKE}_{\mathsf{std}}$, by setting $s_A = a_0, s_B = b_0, r_A = x_1' || x_2', r_{A0} = x_3, r_B = y_1' || y_2'$, choosing $cpk_0 = 1_G, csk_0 = p$, initiating f_A and f_B as $F'_{x_1'}(1^k) \oplus F''_{\sum_0^4 a_i}(x_2')$ and $F''_{y_1'}(1^k) \oplus F''_{\sum_0^4 b_i}(y_2')$, and applying $\mathsf{2KEM}_{\mathsf{Oka}}$ as 2-key KEM, we will get Okamoto AKE in Fig. 10.

$U_A: A_1, A_2, a_1, a_2, a_3, a_4, a_0 \leftarrow \mathbb{Z}_p$	$U_B: B_1, B_2, b_1, b_2, b_3, b_4, b_0 \leftarrow \mathbb{Z}_p$
$x_1', x_2' \leftarrow \{0, 1\}^{\lambda}$	$y_1', y_2' \leftarrow \{0,1\}^{\lambda}$
$(x, x_3) = F'_{x'_1}(1^k) + F''_{\sum_{i=0}^4 a_i}(x'_2)$	$(y, y_3) = F'_{y'_1}(1^k) + F''_{\sum_{i=0}^{d} b_i}(y'_2)$
$X_1 = g_1^x, X_2 = g_2^x, X_3^\circ = g_1^{x_3}$	$Y_1 = g_1^y, Y_2 = g_2^y, Y_3 = g_1^{y_3}$
$C_B = (X_1, X_2, 1_G), pk_{A0} = X_3 \ C_B, X_3$	$C_A = (Y_1, Y_2, Y_3)$
$d = h_{tcr}(U_B, X_1, X_2) _ C_A$	$c = h_{tcr}(U_A, Y_1, Y_2, Y_3)$
$\sigma_B = (B_1 B_2^d)^x, K_B = \bar{F}_{\sigma_B}(1_G, C_B)$	$\sigma_A = X_3^{y_3} (A_1 A_2^c)^y, K_A = \bar{F}_{\sigma_A} (X_3, C_A)$
$c = h_{tcr}(U_A, C_A)$	$d = h_{tcr}(U_B, C_B)$
$\sigma'_A = X_3^{y_3} Y_1^{a_1 + ca_3} Y_2^{a_2 + ca_4}$	$\sigma'_B = X_1^{b_1 + db_3} X_2^{b_2 + db_4}$
$K'_A = \bar{F}_{\sigma'_A}(X_3, C_A)$	$K'_A = \bar{F}_{\sigma'_B}(1_G, C_B)$
$SK \leftarrow F_{K_B}(si) \oplus \hat{F}_{K'_A}(si)$	$SK \leftarrow F_{K'_B}(si) \oplus \hat{F}_{K_A}(si)$

Fig. 10. Understanding Okamoto-AKE from $2KEM_{Oka}$ where $si = (U_A, U_B, C_B, X_3, C_A)$ in frame AKE_{std} . Some notions are borrowed from $2KEM_{Oka}$

5.4 FSXY12-AKE and FSXY13-AKE.

Fujioka *et al.* in PKC 12 (called FSXY12 [15]) proposed a construction of AKE from IND-CCA secure KEM and IND-CPA secure KEM in the standard model. In FSXY12 [15], U_B sends a ciphertext of IND-CCA secure KEM and a ciphertext of IND-CPA secure KEM, and the session key is computed from these two encapsulated keys, public key of IND-CPA secure KEM, and ciphertext in the PRF functions. As we point out in section 6.1, the FSXY12 scheme implies a trivial [IND-CCA, IND-CPA] secure 2-key KEM from the improved KEM combiner in the standard model. More precisely, in AKE_{std}, cpk_0 and csk_0 is set to be empty; C_B is just c_{B1} ||-, where c_{B1} is the ciphertext of IND-CCA secure one-key KEM under pk_B ; C_A is replaced by the concatenation of $c_{A1}||c_{A0}$, where c_{A1} is the ciphertext of IND-CCA secure one-key KEM under pk_{A0} with encapsulated key k_{A0} ; and K_A is replaced by $F_{kA1}(pk_{A0}, c_{A1}||c_{A0}) \oplus F_{kA0}(pk_{A0}, c_{A1}||c_{A0})$. To make it clearer, in section 6.1 we explain why we should put public key in PRFs when combining two KEMs. Note that FSXY12 implicitly did it in the same way by putting sid in PRF. Thus, due to this observation, our frame of AKE_{std} with improved KEM combiner can be used to explain the FSXY12 scheme.

Considering efficiency, Fujioka *et al.* in AsiaCCS 13 (called FSXY13 [16]) proposed AKE from OW-CCA secure KEM and OW-CPA secure KEM in the random oracle model. In FSXY13 [16], U_B sends a ciphertext of OW-CCA secure KEM and a ciphertext of OW-CPA secure KEM. The session key is computed from these two encapsulated keys, public key of CPA secure KEM, and ciphertext in the

hashing step. As we point out in section 6.1, the FSXY13 scheme implies a trivial [OW-CCA, OW-CPA] secure 2-key KEM from the improved KEM combiner in the random oracle model. Precisely, in AKE, cpk_0 and csk_0 is set to be empty; C_B is just c_{B1} ||-, where c_{B1} is the ciphertext of OW-CCA secure one-key KEM under pk_B ; C_A is replaced by the concatenation of c_{A1} || c_{A0} , where c_{A1} is the ciphertext of OW-CCA secure one-key KEM under pk_A with encapsulated key k_{A1} and c_{A0} is the ciphertext of OW-CPA secure one-key KEM under pk_{A0} with encapsulated key k_{A0} ; and K_A is replaced by $\hat{H}(pk_{A0}, k_1 || k_{A0}, c_{A1} || c_{A0})$. In section 6.1 we explain why we should put public key in hashing step when combining two KEMs. Note that FSXY13 implicitly did it in the same way by putting sid in hashing step. Thus, our frame of AKE with improved KEM combiner works for explaining the FSXY13 scheme.

6 More General Constructions for 2-key KEM

As shown in Section 5, many widely-used AKEs are able to imply 2-key KEM. And over cyclic group, HMQV and NAXOS consume the least amount of communication. However, their techniques are not compatible with lattice assumptions. Although Zhang *et al.* [36] extend HMQV-type AKE to that based on Ring LWE, the resulted AKE only achieves BR security and costs more communications. In this section we investigate how to improve the KEM combiner [17] and Fujisaki-Okamoto transformation [14, 18] so as to yield more general constructions of 2-key KEM, which are much more well-suited for lattice assumptions.

6.1 Improved Combiner of Two KEMs

Giacon *et. al* [17] propose two KEM combiner and yield a new single KEM that is classical CCA secure as long as one of the ingredient KEMs is. We show that the simple KEM combiner does not work for our 2-key KEM. Furthermore, we show that with a slight but vital modification the combiner could work.

6.1.1 The failure to imply $[OW-CCA, \cdot]$ secure 2key KEM from KEM combiner We give a scheme that is a CCA secure two KEM combiner but is not $[OW-CCA, \cdot]$ secure.

Let h and H be hash functions. Let $G = \langle g \rangle$ be a group with prime order p. Let $pk_1 = (g_1, g_2 = g_1^a)$, $sk_1 = a$, the ciphertext be $c_1 = (g_1^r, g_2^r \cdot m)$ where r = h(m) and the encapsulated key be $k_1 = H(m)$. By the FO transformation [14] and DDH assumption, the first KEM is one-way-CCA secure. Let $pk_0 = (h_1, h_2 = h_1^b)$, $sk_0 = b$, the ciphertext be $c_0 = h_1^x$ and the encapsulated key be $k_0 = H(h_2^x)$; and obviously the second KEM is IND-CPA secure.

Let the combined ciphertext be $(c_1||c_0)$ and combined encapsulated key be $K = \hat{H}(k_1||k_0, c_1||c_0)$, by the KEM combiner [17] (Lemma 6 and example 3 in [17]), the combined KEM is CCA secure. However, such combined KEM is not [OW-CCA, ·] secure which means there exists an adversary \mathcal{A} that can break [OW-CCA, ·] game.

Note that $c_0 = h_1^x$ encapsulates the key $k_0^* = H(h_2^x)$ under public key $pk_0 = (h_1, h_2)$ while it encapsulates the same key $k_0^* = H(h_2^x)$ under public key $pk_0 = (h_1^c, h_2^c)$ for some $c \in \mathbb{Z}_p$. The [OW-CCA, ·] adversary \mathcal{A} first queries the $\mathcal{O}_{\mathsf{leak}}$ oracle and gets $pk_0 = (h_1, h_2)$. Then it randomly chooses $c \in \mathbb{Z}_p$ and sets $pk_0^* = (h_1^c, h_2^c)$. After receiving $c_1^* || c_0^*$ under public keys pk_1 and pk_0^* , \mathcal{A} queries the decryption oracle with $(pk_1, pk_0, c_1^* || c_0^*)$, and would receive exactly $K^* = \hat{H}(k_1^* || k_0^*, c_1^* || c_0^*)$.

6.1.2 Improvement on KEM combiner to achieve [CCA, CPA] secure 2-key KEM Inspired by the attacks above, we propose a improved combiner of CCA secure and CPA secure KEMs to achieve [CCA, CPA] secure 2-key KEM. Let $\mathsf{KEM}_{\mathsf{cca}} = (\mathsf{KeyGen}_{\mathsf{cca}}, \mathsf{Encaps}_{\mathsf{cpa}}, \mathsf{Decaps}_{\mathsf{cca}})$ be IND-CCA secure KEM, $\mathsf{KEM}_{\mathsf{cpa}} = (\mathsf{KeyGen}_{\mathsf{cpa}}, \mathsf{Encaps}_{\mathsf{cpa}}, \mathsf{Decaps}_{\mathsf{cpa}})$ be IND-CPA secure KEM. Let \hat{H} be a hash function and F be a PRF. The improved combiner is shown in Figure 11, where function $f(pk_0, k_1 || k_0, c)$ can be initiated by $\hat{H}(pk_0, k_1 || k_0, c)$ or $F_{k_1}(pk_0, c) \oplus F_{k_0}(pk_0, c)$. Our main modification is to take public key as input to the hash function or PRF when generating encapsulated key.

$KeyGen1(\lambda)$	$KeyGen0(\lambda)$	$Enc(pk_1, pk_0);$	$Dec(sk_1, sk_0, c_1 c_0)$
$(pk_1, sk_1) \leftarrow$	$(pk_0, sk_0) \leftarrow$	$(c_1, k_1) \leftarrow Encaps_{cca}(pk_1)$	$k_1 \leftarrow Decaps_{cca}(sk_1, c_1)$
$KeyGen_{cca}$	KeyGen _{cpa}	$(c_0, k_0) \leftarrow Encaps_{cpa}(pk_0)$	$k_0 \leftarrow Decaps_{cpa}(sk_0, c_0)$
		$c = c_1 c_0, k = f(pk_0, k_1 k_0, c)$	$k = f(pk_0, k_1 k_0, c)$

Fig. 11. The [CCA, CPA] secure 2KEM_f in random oracle or standard model depending on the instantiation of $f(pk_0, k_1 || k_0, c)$.

Theorem 5. Let the underlying two KEMs be IND-CCA and IND-CPA secure. If $f(pk_0, k_1||k_0, c) = \hat{H}(pk_0, k_1||k_0, c)$ for a hash function \hat{H} , 2KEM_f in Figure 11 is [OW-CCA, OW-CCA] secure in random oracle model; if $f(pk_0, k_1||k_0, c) = F_{k_1}(pk_0, c) \oplus F_{k_0}(pk_0, c)$ for PRF F, 2KEM_f in Figure 11 is [IND-CCA, IND-CPA] secure in standard model.

Please refer Appendix E for the full proof.

6.2 Modified FO Transformation

In this section, we investigate the constructions of passively 2-key PKE and give a modified FO transformation which can be used to transform a passively secure 2-key PKE to an adaptively secure 2-key KEM.

6.2.1 Passively Secure 2-key PKE As the preparation for realizing adaptively secure 2-key KEM and the modified FO transformation, similar to the notion of 2-key KEM, we can also provide the notion of 2-key (public key encryption) PKE.

Informally, a 2-key PKE 2PKE=(KeyGen0, KeyGen1, Enc, Dec) is a quadruple of PPT algorithms together with a plaintext space \mathcal{M} and a ciphertext space \mathcal{C} , where KeyGen1 outputs a pair of public and secret keys (pk_1, sk_1) , KeyGen0 outputs a pair of keys (pk_0, sk_0) , Enc (pk_1, pk_0, m) outputs the ciphertext $C \in \mathcal{C}$, and Dec (sk_1, sk_0, C) outputs a plaintext m. Sometimes, we explicitly add the randomness r to Enc and denote it as Enc (pk_1, pk_0, m, r) . Here we only describe the [IND-CPA, IND-CPA] security game. For more concrete and full definition of 2-key PKE please refer Appendix F.

Game IND-CPA on pk_1	Game IND-CPA on pk_0
$01 (pk_1, sk_1) \leftarrow KeyGen1(pp)$	$15 \ (pk_0, sk_0) \leftarrow KeyGen0(pp)$
02 $L_0 = \{(-, -, -)\}$	16 $L_1 = \{(-, -, -)\}$
$03 (state, pk_0^*, m_1, m_1) \leftarrow \mathcal{A}_1^{\mathcal{O}_{leak_0}}(pk_1)$	
04 $b \leftarrow \{0, 1\};$	18 $b \leftarrow \{0, 1\}$
05 $c^* \leftarrow Enc(pk_1, pk_0^*, m_b);$	19 $c^* \leftarrow Enc(pk_1^*, pk_0, m_b);$
$06 b' \leftarrow \mathcal{A}_2^{\mathcal{O}_{leak_0}}(state, c^*)$	20 $b' \leftarrow \mathcal{B}_2^{\mathcal{O}_{leak_1}}(state, c^*)$
07 return $b' \stackrel{?}{=} b$	21 return $b' \stackrel{?}{=} b$

Fig. 12. The [IND-CPA, \cdot], and [\cdot , IND-CPA] games of 2PKE for adversaries \mathcal{A} and \mathcal{B} .

Passively Secure twin-ElGamal from DDH assumption. Our construction is actually a conjoined ElGamal encryption. Let's call it twin-ElGamal. The [IND-CPA, IND-CPA] secure twin-ElGamal $2PKE_{cpaddh} = (KeyGen1, KeyGen0, Enc, Dec)$ is presented in detail in Figure 13.

Theorem 6. Under the DDH assumption, the twin-ElGamal 2PKE_{cpaddh} scheme shown in Figure 13 is [IND-CPA, IND-CPA] secure.

Please refer Appendix G for the formal proof.

$KeyGen1(\lambda)$	$KeyGen0(\lambda)$	Enc $(pk_1, pk_0, m);$	$Dec(sk_0, sk_1, C)$
$a_1 \leftarrow \mathbb{Z}_p, \ h_1 = g^{a_1};$	$a_0 \leftarrow \mathbb{Z}_p, h_0 = g^{a_0};$	$r_1, r_0 \leftarrow \mathbb{Z}_p$	$(c_1, c_2, c_3) \leftarrow C$
$pk_1 = (g, h_1), \ sk_1 = a_1$	$pk_0 = (g, h_0), sk_0 = a_0$	$c = g^{r_1}, g^{r_0}, h_1^{r_1} h_0^{r_0} \cdot m$	$m' = c_3 / c_1^{a_1} c_2^{a_0}$

Fig. 13. The [IND-CPA, IND-CPA] secure 2PKE_{cpaddh} under DDH assumption.

6.2.2 Modified FO Transformation from Passive to Adaptive Security In the random oracle model, the FO [14, 18] technique is able to transform a passively secure one-key encryption scheme to an adaptively secure scheme. We show that the classical FO transformation does not work for our 2-key encryption scheme. Then we show that with a slight but vital modification the FO transformation could work.

The failure of Classical FO Transform on 2-key KEM We give a novel twin-ElGamal scheme by injecting redundant public keys, and show that such twin-ElGamal scheme after FO transformation is still OW-CCA secure, but not $[OW-CCA, \cdot]$ secure.

The KeyGen0 algorithm of 2PKE_{cpaddh} chooses a random $z \leftarrow \mathbb{Z}_p$, and sets $pk_0 = (g, h_0, g_0 = g^z)$, $sk_0 = (a_0, z)$. The algorithm KeyGen1, Enc, Dec are the same as in 2PKE_{cpaddh}. Obviously this novel twin-ElGamal scheme is IND-CPA secure under DDH assumption. Let 2PKE^{fo}_{cpaddh} be the scheme by applying classical FO transform on the novel twin-Elgamal. It is OW-CCA secure. Note that the encapsulated key is K = H(m, c) where H is a hash function.

However, there exists an [IND-CCA, ·] attacker \mathcal{A} of $2\mathsf{PKE}^{\mathsf{fo}}_{\mathsf{cpaddh}}$ that works as follows: \mathcal{A} first queries the $\mathcal{O}_{\mathsf{leak}_0}$ and gets $pk_0^1 = (g, h_0, g_0 = g^z), sk_0^1 = (a_0, z)$. Then \mathcal{A} chooses $g'_0 \neq g_0 \in \mathbb{G}$, and sets $pk_0^* = (g, h_0, g'_0)$ as challenge public key. On receiving challenge ciphertext c^* under $(pk_1, pk_0^*), \mathcal{A}$ queries $\mathcal{O}_{\mathsf{ow-cca}}$ with (pk_0^1, c^*) . Since $pk_0^1 \neq pk_0^*, \mathcal{O}_{\mathsf{ow-cca}}$ would return K'. \mathcal{A} just outputs K'. Since c^* encapsulated the same key $K^* = H(m, c^*)$ under both public keys (pk_1, pk_0^1) and (pk_1, pk_0^*) . \mathcal{A} will succeed with probability 1.

Modification on FO Transform to achieve [IND-CCA, IND-CCA] secure 2-key KEM from 2-key PKE Motivated by the above attacks, we give a modified FO transform by a slight but vital modification from "*Hashing*" in [18] to "*Hashing with public key as input*". Actually, taking the public keys as input to hash function is also motivated by the fact that: from the perspective of proof, "Hashing with public key as input" would help to preserve the consistency of strong decryption oracle and hashing list.

Since we take the decryption failure into account, let's firstly recall and adapt the definition of correctness for decryption in [18] to our 2-key setting. When $2\mathsf{PKE} = 2\mathsf{PKE}^G$ is defined with respect to a random oracle G, it is said to be δ_{q_G} -correct if for adversary \mathcal{A} making at most q_G queries to random oracle G, it holds that $\Pr[\mathsf{COR-RO}^{\mathcal{A}_{2\mathsf{PKE}}} \Rightarrow 1] \leq \delta_{q_G}$, where the correctness game COR-RO is defined as following: $(pk_1, sk_1) \leftarrow \mathsf{KeyGen1}(pp), (pk_0, sk_0) \leftarrow \mathsf{KeyGen0}(pp), m \leftarrow \mathcal{A}^{G(\cdot)}(pk_1, sk_1, pk_0, sk_0), c \leftarrow \mathsf{Enc}(pk_1, pk_0, m)$. Return $\mathsf{Dec}(sk_1, sk_0, c) \stackrel{?}{=} m$.

Let $2\mathsf{PKE} = (\mathsf{KeyGen1'}, \mathsf{KeyGen0'}, \mathsf{Enc}, \mathsf{Dec})$ be a [IND-CPA, IND-CPA] secure 2-key PKE with message space \mathcal{M} . The [IND-CCA, IND-CCA] secure $2\mathsf{KEM} = (\mathsf{KeyGen1}, \mathsf{KeyGen0}, \mathsf{Encaps}, \mathsf{Decaps})$ are described as in Figure 14.

Theorem 7. For any [IND-CCA, \cdot] adversary C, or [\cdot , IND-CCA] adversary D against 2KEM with at most q_D queries to decapsulation oracle DECAPS, q_H (resp. q_G) queries to random oracle H (resp. G), there are [IND-CPA, \cdot] adversary A, or [\cdot , IND-CPA] adversary B against 2PKE, that make at most q_H (resp. q_G) queries to random oracle H (resp. G) s.t.

$$Adv_{2\mathsf{KEM}}^{[\mathsf{IND}\text{-}\mathsf{CCA},\cdot]}(\mathcal{C}) \leq \frac{q_H}{2^l} + \frac{q_H+1}{|M|} + q_G \cdot \delta + 4Adv_{2\mathsf{PKE}}^{[\mathsf{IND}\text{-}\mathsf{CPA},\cdot]}(\mathcal{A}).$$

Please refer Appendix H for the formal proof.

$KeyGen1(\lambda)$	$KeyGen0(\lambda)$
$(pk'_1, sk'_1) \leftarrow KeyGen1', s_1 \leftarrow \{0, 1\}^l;$ $sk_1 = (sk'_1, s_1), pk_1 = pk'_1$	$(pk'_0, sk'_0) \leftarrow KeyGen0', s_0 \leftarrow \{0, 1\}^l$
$sk_1 = (sk'_1, s_1), \ pk_1 = pk'_1$	$sk_0 = (sk'_0, s_0), pk_0 = pk'_0;$
$Encaps(pk_1, pk_0);$	$Decaps(sk_1, sk_0, c)$
$m \leftarrow \mathcal{M}$	$sk_1 = (sk'_1, s_1), \ sk_0 = (sk'_0, s_0)$
$c \leftarrow Enc(pk_1, pk_0, m; G(m))$	$m' = Dec(sk_1', sk_0', c)$
$K = H(pk_1, pk_0, m, c);$	$c' = Enc(pk_1, pk_0, m'; G(m'))$
return (K, c)	$c' = Enc(pk_1, pk_0, m'; G(m'))$ if $m' = \bot$ or $c \neq c'$, let $m' = s_1 s_0 $
	return $K = H(pk_1, pk_0, m', c)$

Fig. 14. The [IND-CCA, IND-CCA] secure 2-key KEM 2KEM by modified FO.

7 Efficient Post-quantum AKE from Module-LWE

With the above analysis and tools, we give a more compact AKE from Module-LWE assumption with less communications than Kyber [3]. The roadmap is that we first give a [IND-CPA, IND-CPA] secure 2-key PKE from Module-LWE, by applying the modified FO transform in section 6.2.2 and the AKE in section 4.1 step by step, and we finally obtain a AKE scheme.

Let q be a prime and R_q denote the ring $\mathbb{Z}_q[x]/(x^n+1)$. Define the centered binomial distribution B_η for positive integer η as: sample $(a_1, \dots, a_\eta, b_1, \dots, b_\eta)$ uniformly from $\{0, 1\}$, and output $\sum_{i=1}^{\eta} (a_i - b_i)$. Denote $\mathbf{s} \leftarrow \beta_\eta$ as that each of \mathbf{s} 's coefficient is generated according to B_η . Let k, m be a positive integer parameter. For PPT adversary \mathcal{A} , the advantage $\mathbf{Adv}_{m,k,\eta}^{mlwe}(\mathcal{A})$ of solving Module-LWE problem is the advantage of distinguishing two distributions $\{(\mathbf{A} \leftarrow R_q^{m \times k}, \mathbf{As} + \mathbf{e}) | (\mathbf{s}, \mathbf{e}) \leftarrow \beta_\eta^k \times \beta_\eta^k\}$ and $\{(\mathbf{A} \leftarrow R_q^{m \times k}, \mathbf{b} \leftarrow R_q^m)\}$.

Let $d_{t_1}, d_{t_0}, d_{u_1}, d_{u_0}, d_v$ be positive numbers, depending on the special choice of the parameters settings, and n = 256. Every message in $\mathcal{M} = \{0, 1\}^n$ can be seen as a polynomial in R_q with coefficients in $\{0, 1\}$. Let **A** be a random $k \times k$ matrix in R_q . Let $\lceil x \rceil$ be the rounding of x to the closest integer. For distribution X, let $\sim X = \mathsf{Samp}(r)$ be sample algorithm with randomness r according to distribution X.

For an even (resp. odd) positive integer α , we define $r' = r \mod {\pm \alpha}$ to be the unique element r' in the range $-\frac{\alpha}{2} < r' \leq \frac{\alpha}{2}$ (resp. $-\frac{\alpha-1}{2} \leq r' \leq \frac{\alpha-1}{2}$) such that $r' = r \mod \alpha$. For any positive integer α , define $r' = r \mod {+\alpha}$ to be the unique element r' in the range $0 < r' < \alpha$ such that $r' = r \mod \alpha$. When the exact representation is not important, we simplify it as $r \mod \alpha$. For $x \in \mathbb{Q}$, $d \leq \log_2 q$, define the compress function as $\operatorname{Comp}_q(x,d) = \lceil (2^d)/q \cdot x \rfloor \mod {+2^d}$, and the decompress function as $\operatorname{Decomp}_q(x,d) = \lceil q/(2^d) \cdot x \rfloor$. And when applying the Comp and Decomp function to \mathbf{x} , the procedure is applied to coefficient.

Twin-Kyber Our construction, called twin-kyber, is an extension of kyber scheme [3] in the same conjoined way for our twin-ElGamal scheme. With the parameters above, twin-kyber $2PKE_{mlwe} = (KeyGen1, KeyGen0, Enc, Dec)$ is shown in Figure 15.

$KeyGen1(\lambda)$	KeyGen0(λ)
01 $\sigma_1 \leftarrow \{0, 1\}^{256}$	$05 \ \sigma_0 \leftarrow \{0,1\}^{256}$
02 $(\mathbf{s_1}, \mathbf{e_1}) \sim \beta_{\eta}^k \times \beta_{\eta}^k = Sam(\sigma_1)$	06 $(\mathbf{s_0}, \mathbf{e_0}) \sim \beta_{\eta}^k \times \beta_{\eta}^k = Sam(\sigma_0)$
03 $t_1 = Comp_q(\mathbf{As}_1 + \mathbf{e}_1, d_{t_1} = \lceil \log q \rceil)$	07 $t_0 = \operatorname{Comp}_q(\operatorname{As}_0 + \mathbf{e}_0, d_{t_0} = \lceil \log q \rceil)$
$04 (pk_1 = \mathbf{t_1}, \hat{s}k_1 = \mathbf{s_1})$	08 $(pk_0 = \mathbf{t_0}, \hat{s}k_0 = \mathbf{s_0})$
$Enc(pk_1 = \mathbf{t_1}, pk_0 = \mathbf{t_0}, m \in \mathcal{M})$	$Dec(sk_1 = \mathbf{s_1}, sk_0 = \mathbf{s_0}, c = (\mathbf{u_1}, \mathbf{u_0}, v)$
$09 \ r', r \leftarrow \{0, 1\}^{256}$	15 $\mathbf{u_1} = Decomp_q(\mathbf{u_1}, d_{u_1})$
10 $(\mathbf{r_1}, \mathbf{r_0}, \mathbf{e_3}, \mathbf{e_4}, e) \sim (\beta_{\eta}^k)^4 \times \beta_{\eta} = Sam(r)$	16 $\mathbf{u_0} = Decomp_q(\mathbf{u_0}, d_{u_0})$
11 $\mathbf{u_1} = Comp_q(\mathbf{A}^T\mathbf{r_1} + \mathbf{e_3}, d_{u_1})$	17 $v = Decomp_q(v, d_v)$
12 $\mathbf{u_0} = Comp_q(\mathbf{A}^T \mathbf{r_0} + \mathbf{e_4}, d_{u_0})$	18 $m' = \operatorname{Comp}_{q}(v - \mathbf{s_1}^T \mathbf{u_1} - \mathbf{s_0}^T \mathbf{u_0}, 1)$
13 $v = \operatorname{Comp}_{q}(\mathbf{t_{1}}^{T}\mathbf{r_{1}} + \mathbf{t_{0}}^{T}\mathbf{r_{0}} + e + \lceil \frac{q}{2} \rfloor m, d_{v})$	
14 $c = (\mathbf{u_1}, \mathbf{u_0}, v)$	

Fig. 15. The [IND-CPA, IND-CPA] secure 2PKE_{mlwe} under Module-LWE assumption.

Theorem 8. If there is a PPT adversary \mathcal{A} against [IND-CPA, IND-CPA] security of $2\mathsf{PKE}_{\mathsf{mlwe}}$, there exists \mathcal{B} such that, $\mathbf{Adv}_{2\mathsf{PKE}_{\mathsf{mlwe}}}^{[\mathsf{IND-CPA},\mathsf{IND-CPA}]}(\mathcal{A}) \leq 2\mathbf{Adv}_{k+1,k,\eta}^{\mathsf{mlwe}}(\mathcal{B}).$

Please refer Appendix I for the analysis of decryption failure and formal proof.

By applying the modified FO transformation to $2\mathsf{PKE}_{\mathsf{mlwe}}$, we obtain a [OW-CCA, OW-CCA] secure $2\mathsf{KEM}_{\mathsf{mlwe}}$. Then by setting $cpk_0 = (0)^k$ and $csk_0 = (0)^k$, and integrating $2\mathsf{KEM}_{\mathsf{mlwe}}$ to AKE in section 4, a novel and efficient post-quantum AKE from Module-LWE assumption is constructed.

The parameter setting and comparison are given in Table 5 and 6. Note that by setting $d_{t_1} = d_{t_0} = \lceil \log q \rceil$ we actually do not apply compress on public keys. (which fix one bug of the security proof in [3]). One may doubt that with q = 3329 we can not apply NTT technique to accelerate the multiplications of two polynomials $f(x) \times g(x)$ over R_q , since $512 \nmid 3328$. Actually, we can fix this gap. Separate $f(x) = f_B(x^2) + xf_A(x^2)$, $g(x) = g_2(x^2) + xg_1(x^2)$ into a series of odd power and a series of even power, then $f(x) \times g(x) = f_B(x^2)g_2(x^2) + (f_A(x^2)g_2(x^2) + f_B(x^2)g_1(x^2))x + f_A(x^2)g_1(x^2)x^2$. Then we can apply NTT to $f_i(y)g_j(y)$ over $Z_q[y]/(y^{128} + 1)$ by setting $y = x^2$ since 256|3328.

					$(d_{t_1}, d_{t_0}, d_{u_1}, d_{u_0}, d_v)$		Security Level
2KEM _{mlwe}	256	4	3329	1	(12, 12, 9, 9, 5)	$2^{-174.3}$	256
Table 5.	The	p	arame	ete	ers for $2KEM_{mlwe}$. δ is	the dec	ryption failure.

AKEs	Assumptions	Sec	$U_A \to U_B$ (Bytes)	$U_B \to U_A \text{ (Bytes)}$
Kyber.AKE	3,4,5	256	2912	3008
AKE from $2KEM_{mlwe}$	$\mathbf{Adv}_{5,4,5}^{mlwe}$	256	2838	2464

Table 6. The message size for Kyber in frame of FSXY13 and ours in frame of AKE.

Acknowledgment

Haiyang Xue is supported by the National Natural Science Foundation of China 61602473, 61672019, 61772522, and the National Cryptography Development Fund MMJJ20170116. Bao Li is supported by the National Natural Science Foundation of China 61772515. Xianhui Lu is supported by the National Natural Science Foundation of China 61602473. Jingnan He is supported by the National Natural Science Foundation of China 61602473. Jingnan He is supported by the STINT grant (no: 3720596).

References

- Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient One-Round Key Exchange in the Standard Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 69-83. Springer, Heidelberg (2008)
- Bos, J. W., Costello, C., Naehrig, M., and Stebila, D.: Post-quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem. In 2015 IEEE Symposium on Security and Privacy, pp. 553-570.
- Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., Schwabe, P., and Stehlé D.: CRYSTALS - Kyber: a CCA-secure Module-lattice-based KEM. In 2018 IEEE Symposium on Security and Privacy, pp. 353-367. code is available in https://github.com/pq-crystals/kyber.
- Barbosa, M., Farshim, P.: Relations among Notions of Complete Non-malleability: Indistinguishability Characterisation and Efficient Construction without Random Oracles. In: R. Steinfeld and P. Hawkes (eds.) ACISP 2010, LNCS 6168, pp. 145-163. Springer, Heidelberg (2010)
- Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS 773, pp. 232-249. Springer, Heidelberg (1994)
- Cremers, C.J.F.: Session-state Reveal Is Stronger Than Ephemeral Key Reveal: Attacking the NAXOS Authenticated Key Exchange Protocol. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20-33. Springer, Heidelberg (2009)

- Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453-474. Springer, Heidelberg (2001)
- Canetti, R., and Krawczyk H.: Security analysis of IKEs signature-based key-exchange protocol. In: Yung M. (eds) CRYPTO 2002, pp. 143-161. Springer, Heidelberg (2002)
- Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13-25. Springer, Heidelberg (1998)
- Cramer R., Shoup V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Public Key Encryption. In: Knudsen L.R. (eds.) EUROCRYPT02. LNCS 2332, pp. 45-64. Springer, Heidelberg (1998)
- 11. Dolev, D., Dwork, C., and Naor, M.: Non-malleable cryptography. SIAM Journal on Computing, 30:391-437, 2000.
- 12. Diffie, W., and Hellman, M.: New directions in cryptography, IEEE Transactions on Information Theory, Vol. 22, Issue 6, pp.644-654.
- Fischlin, M.: Completely Non-Malleable Schemes, In In: Caires L., Italiano G.F., Monteiro L., Palamidessi C., Yung M. (eds) ICALP 2005, LCNS 3580, pp. 779-790. Springer, Heidelberg (2005)
- Fujisaki, E., and Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener M. (eds) CRYPTO 1999, LNCS 1666, pp. 537-554. Springer, Heidelberg (1999)
- Fujioka A., Suzuki K., Xagawa K., Yoneyama K.: Strongly Secure Authenticated Key Exchange from Factoring Codes and Lattices. In: Fischlin M., Buchmann J., Manulis M. (eds) PKC 2012, pp. 467-484. Springer, Heidelberg (2012)
- Fujioka A., Suzuki K., Xagawa K., Yoneyama K.: Practical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism. In AsiaCCS 2013, pp. 83-94.
- Giacon F., Heuer F., Poettering B.: KEM Combiners. In: Abdalla M., Dahab R. (eds) PKC 2018, LCNS 10769. pp. 190-281. Springer, Heidelberg (2018)
- Hofheinz, D., Hövelmanns, K., and Kiltz, E.: A Modular Analysis of the Fujisaki-Okamoto Transformation. In Y. Kalai and L. Reyzin (eds) TCC 2017, LNCS 10677, pp 341-371. Springer, Heidelberg (2017)
- Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi S., Rabin T. (eds) TCC 2006, LNCS 3876, pp. 581-600. Springer, Heidelberg (2006)
- Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In Okamoto, T., and Wang, X. (eds) PKC 2007, LNCS 4450, pp. 282-297. Springer, Heidelberg (2007)
- Kiltz E., Pietrzak K., Stam M., Yung M.: A New Randomness Extraction Paradigm for Hybrid Encryption, In: Joux A. (eds) EUROCRYPT 2009, LCNS 5479, pp. 590-609. Springer, Heidelberg (2009)
- Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is SSL?). In: Kilian J. (eds) CRYPTO 2001, LCNS 2139, pp. 310-331. Springer, Heidelberg (2001)
- 23. Krawczyk, H.: SIGMA: The SiGn-and-MAc Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols, In: Boneh D. (eds) CRYPTO 2003, LNCS 2729. pp. 400-425. Springer, Heidelberg (2003)
- Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V. (eds) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Heidelberg (2005)
- LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1-16. Springer, Heidelberg (2007)
- T. Matsumoto, Y. Takashima, and H. Imai: On seeking smart public-key distribution systems, Trans. IECE of Japan, 1986, E69(2), pp. 99-106.
- 27. A. Menezes, M. Qu, and S. Vanstone: Some new key agreement protocols providing mutual implicit authentication, In SAC 1995, pp. 22-32.
- 28. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation Without Random Oracles. eprint archive: report 2007/473, full version of [29].
- Okamoto, T.: Authenticated Key Exchange and Key Encapsulation in the Standard Model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474-484. Springer, Heidelberg (2007)
- Peikert, C.: Lattice Cryptography for the Internet. In Mosca, M. (eds) PQCrypto 2014, LNCS 8772, pp. 197-219. Springer, Heidelberg (2014)
- Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: STOC 2008, pp. 187-196 (2008)
- 32. M. O. Saarinen. Hila5. Technical report, available at https://csrc.nist.gov/ projects/post-quantum-cryptography/round-1-submissions.
- Wee, H.: Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In: Rabin T. (eds) CRYPTO 2010. LNCS 6223, pp. 314-332. Springer, Heidelberg (2010)

- 34. Yoneyama, K.: One-Round Authenticated Key Exchange with Strong Forward Secrecy in the Standard Model against Constrained Adversary. In: Hanaoka G., Yamauchi T. (eds) IWSEC 2012. LNCS 7631, pp. 69-86 Springer, Heidelberg (2012)
- Yao, A.C.C., Zhao, Y.: OAKE: A new family of implicitly authenticated Diffie-Hellman protocols. In CCS 2013, pp. 1113-1128.
- Zhang J., Zhang Z., Ding J., Snook M., Dagdelen O.: Authenticated key exchange from ideal lattices. In: Oswald E., Fischlin M. (eds) EUROCRYPT 2015, pp 719-751. Springer, Heidelberg (2015)

Appendix A: Proof of Lemma 2

In order to bound the probability of AskH, we investigate the events $AskH \wedge E_i$ for $1 \le i \le 8$ listed in Table 4 one by one.

Event $AskH \wedge E_1$

In the event E_1 , the test session sid^{*} has no matching session, and the static secret key of U_A is given to \mathcal{A} . In case AskH $\wedge E_1$, the [OW-CCA, \cdot] adversary \mathcal{S} with $pk_0^* = cpk_0$ performs as follows. It simulates the CK⁺ games, and transforms the happening of event AskH performed by \mathcal{A} to the advantage of attacking [OW-CCA, \cdot] security with $pk_0^* = cpk_0$.

In order to simulate the random oracles, S maintains hash list L_H and L_{sk} , corresponding to the queries and answers of the H oracle and SessionStateReveal, SessionKeyReveal. L_H and L_{sk} are related. For example the adversary may ask L_{sk} without the encapsulated keys firstly, then ask L_H with the encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to L_H and L_{sk} . The decryption oracle of [OW-CCA, \cdot] game could help to maintain the consistency as done in H-oracle and SessionKeyReveal in the following.

In the [OW-CCA, ·] game, on receiving the public key pk_1 , S returns an empty $pk_0^* = cpk_0$ to challenger. Then on receiving the challenge ciphertext C^* with public key pk_1 and pk_0^* for encapsulated key K^* , to simulate the CK⁺ game, S randomly choses two parties U_A, U_B and *i*-th session as a guess of the test session with success probability $1/N^2l$. S, picks one preset $(cpk_0, csk_0) \leftarrow \text{KeyGen0}$ as public parameter, by computing $(pk_1, sk_1) \leftarrow \text{KeyGen1}$ sets all the static secret and public key pairs (pk_P, sk_P) for all Nusers U_P except U_B . S sets $pk_B = pk_1$.

Without knowing the secret key of U_B , S choose totally random r_B and R_B as part of ephemeral secret key and randomness for Encaps. Since f_B is $(\varepsilon_1, \varepsilon_2)$ hl-RF, the difference between simulation with modification of r_B and real game is bounded by ε_2 . When a ephemeral public key pk_{P0} sent out by U_P is needed, S queries $(pk_0^i, sk_0^i, r_0^i) \leftarrow \mathcal{O}_{\mathsf{leak}_0}$ and sets $pk_{P0} = pk_0^i$. When a session state reveal to a session owned by U_B , is queried, S returns r_B and r_0^i as the ephemeral secret key part.

Specially, by computing $(pk_A, sk_A) \leftarrow \text{KeyGen1}$, $s_A \leftarrow \{0, 1\}^{\lambda}$ and querying $(pk_{A0}, sk_{A0}, r_{A0}) \leftarrow \mathcal{O}_{\mathsf{leak}_1}$, S sets the static secret and public key pairs (pk_A, sk_A) for U_A , sets the ephemeral secret and public key pairs (pk_{A0}, sk_{A0}) for the *i*-th session of U_A . S sends C^*, pk_{A0} out as the message sent out by U_A in *i*-th session. S also leaks the static secret key sk_A of U_A to adversary A.

S simulates the oracle queries of A as the following. Specially, when AskH happens, that is A poses $(U_A, U_B, pk_A, pk_B, C^*, pk_{A0}, C_A, K_A, K_B)$ to H, where C^*, pk_{A0}, C_A is the view of the test session and K_A is the key encapsulated in C_A , return K_B as the guess of K^* .

 \mathcal{S} simulates the oracle queries of \mathcal{A} and maintains the hash lists L_H, L_{sk} as follows.

- Querying *H*-oracle with $(U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, K_P, K_Q)$
 - 1: If $P = A, Q = B, C_B = C^*$, and $(\Pi, I, U_A, U_B, pk_A, pk_B, C_B, pk_{A0}, C_A)$ is the *i*-th session of U_A , then S outputs the K_B as the answer of [OW-CCA, \cdot] challenge, that is K^* , sets flag = ture.
 - 2: Else if $\exists (U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, K_P, K_Q, h) \in L_H$, returns h,
 - 3: Else if P = B and $\exists (U_B, U_Q, pk_B, pk_Q, C_Q, pk_{B0}, C_B, h) \in L_{sk}$:
 - 1. if (C_Q, pk_{B0}) is sent by $\mathcal{A}: \mathcal{S}$, with the knowledge of sk_Q , extracts $K'_Q = \mathsf{Decaps}(sk_Q, csk_0, C_Q)$; As C_B is generated by \mathcal{S} itself, \mathcal{S} has the knowledge of encapsulated key K'_B in C_B .
 - 2. if C_B is sent by \mathcal{A} : As C_Q is generated by \mathcal{S} , it has the knowledge of encapsulated key K'_Q in C_Q . \mathcal{S} queries [OW-CCA, \cdot] decryption oracle with pk_{B0} (that is the output of $\mathcal{O}_{\mathsf{leak}_1}$) and C_B to extract K'_B .

3. if both (C_Q, pk_{B0}) and C_B is sent out by $\mathcal{S}: \mathcal{S}$ has the knowledge of K'_B, K'_Q ecapsulated in C_B and C_Q .

If $(K_B, K_Q) = (K'_B, K'_Q)$, then returns h and records $(U_B, U_Q, pk_B, pk_Q, C_Q, pk_{B0}, C_B, K_B, K_Q, h)$ in the list L_H ;

- 4: Else if Q = B and $\exists (U_P, U_B, pk_P, pk_B, C_B, pk_{P0}, C_P, h) \in L_{sk}$:
 - 1. if $C_B \neq C^*$
 - (a) if (C_B, pk_{P0}) is sent by \mathcal{A} : \mathcal{S} queries the [OW-CCA, \cdot] decryption oracle with $pk' = cpk_0$ and C_B to extract encapsulated key K'_B ; As C_P is generated by \mathcal{S} , it has the knowledge of K'_P ecapsulated in C.
 - (b) if C_P is sent by $\mathcal{A}: \mathcal{S}$, with the knowledge of sk_P and sk_{P0} , extracts $K'_P = \mathsf{Decaps}(sk_P, sk_{P0}, C_P)$; As C_B is generated by \mathcal{S} itself, \mathcal{S} has the knowledge of encapsulated key K'_B in C_B .
 - (c) if both (C_B, pk_{P0}) and C_P is sent out by $\mathcal{S}: \mathcal{S}$ has the knowledge of K'_P, K'_B ecapsulated in C_P and C_B .

If $(K_P, K_B) = (K'_P, K'_B)$, then returns h and records $(U_P, U_B, pk_P, pk_B, C_B, pk_{P0}, C_P, K_P, K_B, h)$ in the list L_H ;

- 2. if $C_B = C^*$
 - (a) if (C_B, pk_{P0}) is sent by S: As $C_B = C^*$ is generated by S, it just output the corresponding encapsulated key K'_B as the answer of [OW-CCA, \cdot] game, that is K^* .
 - (b) if (C_B, pk_{P0}) is sent by \mathcal{A} : if $K_P = K'_P$ $(C_P$ and ecapsulated key K'_P is generated by \mathcal{S}), output h and record $(U_P, U_B, pk_P, pk_B, C_B, pk_{P0}, C_P, K_P, K_Q, h)$ in L_H , else \mathcal{S} returns a random value h and records $(U_P, U_Q, pk_P, pk_Q, C_B, pk_{P0}, C_P, K_P, K_B, h)$ in the list L_H .

If $(K_P, K_B) = (K'_P, K'_B)$, then returns h and records $(U_P, U_B, pk_P, pk_B, C_B, pk_{P0}, C_P, K_P, K_B, h)$ in the list L_H ;

- 5: Else if $B \neq P, Q$ and $\exists (U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, h) \in L_{sk}$:
 - 1. if (C_Q, pk_{P0}) is sent by $\mathcal{A}: \mathcal{S}$, with the knowledge of sk_Q , extracts $K'_Q = \mathsf{Decaps}(sk_Q, csk_0, C_Q)$; As C_P is generated by \mathcal{S} itself, \mathcal{S} has the knowledge of encapsulated key K'_P in C_P
 - 2. if C_P is sent by \mathcal{A} : As C_Q and pk_{P0} is generated by \mathcal{S} , it has the knowledge of encapsulated key K'_Q in C_Q and ephemeral secret key sk_{P0} ; With the knowledge of sk_P and sk_{P0} , \mathcal{S} extracts K'_P from C_P .
 - 3. if both (C_Q, pk_0) and C_P is sent by $\mathcal{S}: \mathcal{S}$ has the knowledge of K'_P, K'_Q ecapsulated in C_P and C_Q .

If $(K_P, K_Q) = (K'_P, K'_Q)$, then returns h and records $(U_P, U_Q, pk_P, pk_Q, C_2, pk_{P0}, C, K_P, K_Q, h)$ in the list L_H ;

6: otherwise, S returns a random value h and records $(U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, K_P, K_Q, h)$ in the list L_H .

- Send (Π, I, U_P, U_Q) :

- 1. If P = A and this session is the *i*-th session of U_A , S queries $\mathcal{O}_{\mathsf{leak}_1}$ to get a public and secret key pair, as in the setup, sets them as ephemeral public and secret key pair (pk_{A0}, sk_{A0}) of U_A in *i*-th session. Then S returns C_Q^*, pk_{A0} .
- 2. If P = B, S queries $\mathcal{O}_{\mathsf{leak}_1}$ to get (pk_{B0}, sk_{B0}, r) , generates two independent randomness (r_B, R_B) (to pretend that $R_B = f_B(sk_B, r_B)$. This will not detected by \mathcal{A} as \mathcal{A} since f_B is a (ϵ_1, ϵ_2) hl-RF). S generates $(C_Q, K_Q) \leftarrow \mathsf{Encaps}(pk_Q, cpk_0, h_B)$ and sends (C_Q, pk_{P0}) out.
- 3. otherwise, S generates randomness r_P and computes R_P honestly, generates $(C_Q, K_Q) \leftarrow \mathsf{Encaps}$ (pk_Q, cpk_0, h_P) . S queries $\mathcal{O}_{\mathsf{leak}_1}$ to get (pk_{P0}, sk_{P0}, r) , returns (C_Q, pk_{P0}) .
- Send $(\Pi, R, U_Q, U_P, C_Q, pk_{P0})$: S computes the message, session key and maitains the session key list L_{sk} as follows

- 1. If Q = B: S generates two independent randomness (r_B, h_B) (to pretend that $h_B = f_B(sk_B, r_B)$. This will not detected by \mathcal{A} . S computes $(C_P, K'_P) \leftarrow \mathsf{Encpas}(pk_P, pk_{P0}, h_B)$, and returns C_P . If $\exists (U_P, U_B, pk_P, pk_B, C_B, pk_{P0}, C_P, K_P, K_B, h) \in L_H$ and $K'_P = K_P$, S do the following: if $C_B = C^*$ then sets SK = h, else (as $C_B \neq C^*$) queries (cpk_0, C_B) to the decryption oracle to get K'_B , if $K'_B = K_B$, sets SK = h.
- 2. If $Q \neq B$: S generates randomness r_{Q2} and queries *h*-oracle to get h_Q , generates $(C_P, K'_P) \leftarrow \mathsf{Encaps}(pk_P, pk_{P0}, h_Q)$. With knowledge of sk_Q , extracts $K'_Q = \mathsf{Decaps}(sk_Q, csk_0, C_Q)$. If there exists $(U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, K_P, K_Q, h) \in L_H$ and $K_P = K'_P, K_Q = K'_Q$, sets SK = h.

3. otherwise, S chooses SK randomly.

S records this as the completed session and adds $(U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, SK)$ in the session key list L_{sk} .

- Send $(\Pi, I, U_P, U_Q, C_Q, pk_{P0}, C_P)$: S has the knowledge of K'_Q encapsulated in C_Q . (pk_{P0}, sk_{P0}, r) is received from $\mathcal{O}_{\mathsf{leak}_1}$.
 - 1. If P = B, S queries the decryption oracle of $[OW-CCA, \cdot]$ with (pk_0, C_B) to get K'_B . If there exists $(U_B, U_Q, pk_B, pk_Q, C_Q, pk_{B0}, C_B, K_B, K_Q, h) \in L_H$ and $K'_B = K_B, K'_Q = K_Q$, sets SK = h.
 - 2. If Q = B, with the knowledge of sk_P and sk_{P0} , S computes $K'_P = \mathsf{Decaps}(sk_P, sk_{P0}, C)$. If $\exists (U_P, U_B, pk_P, pk_B, C_B, pk_{P0}, C_P, K_P, K_B, h) \in L_H$ and $K'_P = K_P, K'_Q = K_B$, sets SK = h.
 - 3. If $P \neq B$ and $Q \neq B$, with the knowledge of sk_P and sk_{P0} , S computes $K'_P = \mathsf{Decaps}(sk_P, sk_{P0}, C)$. If there exists $(U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, K_P, K_Q, h) \in L_H$ and $K'_P = K_P, K'_Q = K_Q$, sets SK = h.
 - 4. otherwise, \mathcal{S} chooses SK randomly.

S records this as the completed session and adds $(U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, SK)$ in the session key list L_{sk} .

- Querying SessionKeyReveal(sid): The session key list L_{sk} is maintained as in the Send queries.
 - 1. If the session sid is not completed, S aborts.
 - 2. Else if sid is recorded in the list L_{sk} , $(U_P, U_Q, pk_P, pk_Q, C_Q, pk_{P0}, C_P, SK) \in L_{sk}$, then returns SK.
 - 3. otherwise, S returns a random value SK and records it in L_{sk} .
- Querying SessionStateReveal(sid): As the definition of freshness, sid is not the test session.
 - 1. If the owner of sid is B, and B is a responder. The session state is generated by himself, or received from $\mathcal{O}_{\mathsf{leak}_1}$. S just returns them.
 - 2. If the owner of sid is B, and B is a initiator. The session state is generated by himself, or received from $\mathcal{O}_{\mathsf{leak}_1}$, or extractable from the decryption oracle. S just returns them.
 - 3. otherwise, S holds the secret key of other users and could return the session state as the definition.
- Querying $\mathsf{Corrupt}(U_P)$
- \mathcal{S} returns the static secret key of U_P .
- Test(sid)

If sid is not the *i*-th session of U_A , S aborts with failure, otherwise, S responds to the query as the definition above.

– If \mathcal{A} outputs a guess b', \mathcal{S} aborts with failure.

The simulator S maintains the consistency of H-oracle, h-oracle, SessionStateReveal, and SessionKeyReveal, with the decryption oracle of 2KEM. Note that in the first case in the H-oracle, if flag = ture, then the S would succeed in the [OW-CCA, \cdot] game. Thus $\Pr[AskH \wedge E_1] \leq N^2 l \cdot Adv_{2KEM}^{[OW-CCA, \cdot]}(S) + N^2 lq \cdot \varepsilon_2$. Event $AskH \wedge E_2$

In the event E_2 , the test session sid^{*} (with owner as initiator) has no matching session, and the ephemeral secret key of U_A is given to \mathcal{A} . In case AskH $\wedge E_2$, the [OW-CCA, \cdot] adversary \mathcal{S} performs as follows. It simulates the CK⁺ games, and transforms the happening of event AskH performed by \mathcal{A} to the advantage of attacking [OW-CCA, \cdot] security with $pk_0^* = cpk_0$.

In order to simulate the random oracles, S maintains hash list L_H , and L_{sk} , corresponding to the queries and answers of the H oracle and SessionStateReveal, SessionKeyReveal. L_H and L_{sk} are related. For example the adversary may ask L_{sk} without the encapsulated keys firstly, then ask L_H with the encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to L_H and L_{sk} . The decryption oracle of [OW-CCA, \cdot] game could help to maintain the consistency as done in *H*-oracle and SessionKeyReveal in the following.

In the [OW-CCA, ·] game, on receiving the public key pk_1 , S returns an empty $pk_0^* = cpk_0$ to challenger. Then on receiving the challenge ciphertext C^* with public key pk_1 and pk_0^* for encapsulated key K^* , to simulate the CK⁺ game, S randomly choses two parties U_A, U_B and *i*-th session as a guess of the test session with success probability $1/N^2l$. S, picks one preset $(cpk_0, csk_0) \leftarrow \text{KeyGen0}$ as public parameters, by computing $(pk_1, sk_1) \leftarrow \text{KeyGen1}$ sets all the static secret and public key pairs (pk_P, sk_P) for all Nusers U_P except U_B . S sets $pk_B = pk_1$.

Without knowing the secret key of U_B , S choose totally random r_B and R_B as part of ephemeral secret key and randomness for Encaps. Since f_B is $(\varepsilon_1, \varepsilon_2)$ hl-RF, the difference between simulation with modification of r_B and real game is bounded by ε_1 . When a ephemeral public key pk_{P0} sent out by U_p is needed, S queries $(pk_0^i, sk_0^i, r_0^i) \leftarrow \mathcal{O}_{\mathsf{leak}_0}$ and sets $pk_{P0} = pk_0^i$. When a session state reveal to a session owned by U_B , is queried, S returns r_B and r_0^i of this session.

Specially, by computing $(pk_A, sk_A) \leftarrow \text{KeyGen1}$ and querying $(pk_{A0}, sk_{A0}, r_{A0}) \leftarrow \mathcal{O}_{\text{leak}_1}$, S sets the static secret and public key pairs (pk_A, sk_A) for U_A , sets the ephemeral secret and public key pairs (pk_{A0}, sk_{A0}) for the *i*-th session of U_A . S sends C^*, pk_{A0} out as the message sent out bu U_A in *i*-th session. S chooses an independent randomness r_{A2} and leaks the ephemeral secret keys r_{A0}, r_{A2} in the *i*-th session of U_A to adversary A.

S simulates the oracle queries of A as what it dose in above case and maintains the hash lists as in event AskH $\wedge E_1$. Specially, when AskH happens, that is A poses $(U_A, U_B, pk_A, pk_B, C^*, pk_{A0}, C_A, K_A, K_B)$ to H, where C^*, pk_{A0}, C_A is the view of the test session and K_A is the key encapsulated in C_A , return K_B as the guess of K^* .

As in event $\mathsf{AskH} \wedge E_1$, $\Pr[\mathsf{AskH} \wedge E_2] \leq N^2 l \cdot \operatorname{Adv}_{2\mathsf{KEM}}^{[\mathsf{OW}-\mathsf{CCA},\cdot]}(\mathcal{S}) + N^2 lq \cdot \varepsilon_2$.

Event Ask $H \wedge E_3$

In the event E_3 , the test session sid^* (with owner as responder) has no matching session, and the ephemeral secret keys of U_B is given to \mathcal{A} . In case $\mathsf{AskH} \wedge E_3$, the [OW-CCA, \cdot] adversary with $pk_0^* \leftarrow \mathcal{A}$, \mathcal{S} performs as follows. It simulate the CK⁺ games, and transform the happening of event AskH performed by \mathcal{A} to the advantage of attacking [OW-CCA, \cdot] security.

In order to simulate the random oracles, S maintains hash list L_H , L_{sk} , corresponding to the queries and answers of the H oracle and SessionStateReveal, SessionKeyReveal. L_H and L_{sk} are related. For example the adversary may ask L_{sk} without the encapsulated keys firstly, then ask L_H with the encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to L_H and L_{sk} . The decryption oracle of [OW-CCA, \cdot] game could help to maintain the consistency as done in H-oracle and SessionKeyReveal in the following.

On receiving the public key pk_1 from the $[\mathsf{OW-CCA}, \cdot]$ challenger, to simulate the CK⁺ game, S randomly choses two parties U_A, U_B and *i*-th session as a guess of the test session with success probability $1/N^2l$. S, picks one preset $(cpk_0, csk_0) \leftarrow \mathsf{KeyGen0}$ as public parameters, generates $(pk_1, sk_1) \leftarrow \mathsf{KeyGen1}$, and sets all the static secret and public key pairs (pk_P, sk_P) for all N users U_P except U_A . Specially, S sets the static secret and public key pairs (pk_B, sk_B) for U_B . S sets $pk_A = pk_1$.

Without knowing the secret key of U_A , S choose totally random r_A and R_A as part of ephemeral secret key and randomness for Encaps. Since f_A is $(\varepsilon_1, \varepsilon_2)$ hl-RF, the difference between simulation with modification of r_A and real game is bounded by ε_1 . When a ephemeral public key pk_{P0} sent out by U_P is needed, S queries $(pk_0^i, sk_0^i, r_0^i) \leftarrow \mathcal{O}_{\mathsf{leak}_0}$ and sets $pk_{P0} = pk_0^i$. When a session state reveal to a session owned by U_A , is queried, S returns r_A and r_0^i of this session.

On receiving the *i*-th session (C'_B, pk_0^*) from U_A (that is sent by \mathcal{A} in the CK⁺ games), \mathcal{S} returns pk_0^* to the [OW-CCA, \cdot] challenger and receives the challenge ciphertext C^* under public key pk_1 and pk_0^* with encapsulated key K^* . Then \mathcal{S} returns C^* to U_A as the responds of *i*-th session from U_B . \mathcal{S} choose a totally independent randomness r_B as the ephemeral secret key of U_B and leaks it to adversary \mathcal{A} .

S simulates the oracle queries of A as what it dose in above case and maintains the hash lists as in event AskH $\wedge E_2$. Specially, when AskH happens, that means A poses $(U_A, U_B, pk_A, pk_B, C'_B, pk_0^*, C^*, K_A, K_B)$

to H, where C'_B, pk_0^*, C^* is the view of the test session and K_B is the key encapsulated in C'_B , return K_A as the guess of K^* .

As in event $\mathsf{AskH} \wedge E_2$, $\Pr[\mathsf{AskH} \wedge E_3] \leq N^2 l \cdot \operatorname{Adv}_{2\mathsf{KEM}}^{[\mathsf{OW-CCA}, \cdot]}(\mathcal{S}) + N^2 lq \cdot \varepsilon_1$. **Event** Ask $H \wedge E_4$

In the event E_4 , the test session sid^{*} (with owner as responder) has no matching session, and the static secret keys of U_B is given to \mathcal{A} . In case AskH $\wedge E_4$, the [OW-CCA, \cdot] adversary with $pk_0^* \leftarrow \mathcal{A}^*$, \mathcal{S} performs as follows. It simulate the CK^+ games, and transform the happening of event AskH performed by \mathcal{A} to the advantage of attacking $[OW-CCA, \cdot]$ security.

In order to simulate the random oracles, S maintains hash list L_H and L_{sk} , corresponding to the queries and answers of the H oracle and SessionStateReveal, SessionKeyReveal. L_H and L_{sk} are related. For example the adversary may ask L_{sk} without the encapsulated keys firstly, then ask L_H with the encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to L_H and L_{sk} . The decryption oracle of [OW-CCA, \cdot] game could help to maintain the consistency as done in *H*-oracle and SessionKeyReveal in the following.

On receiving the public key pk_1 from the [OW-CCA, \cdot] challenger, to simulate the CK⁺ game, Srandomly choses two parties U_A, U_B and *i*-th session as a guess of the test session with success probability $1/N^2l$. S, picks one preset $(cpk_0, csk_0) \leftarrow \text{KeyGen0}$ as public parameters, generates $(pk_1, sk_1) \leftarrow \text{KeyGen1}$ and sets all the static secret and public key pairs (pk_P, sk_P) for all N users U_P except U_A . Specially, \mathcal{S} sets the static secret and public key pairs (pk_B, sk_B) for U_B . \mathcal{S} sets $pk_A = pk_1$. When a ephemeral public key pk_{P0} sent out by U_P is needed, S queries $(pk_0^i, sk_0^i, r_0^i) \leftarrow \mathcal{O}_{\mathsf{leak}_0}$ to sets $pk_{P0} = pk_0^i$.

On receiving the *i*-th session (C'_B, pk_0^*) from U_A (that is sent by \mathcal{A} in the CK⁺ games), \mathcal{S} returns pk_0^* to the [OW-CCA, ·] challenger and receives the challenge ciphertext C^* under public key pk_1 and pk_0^* with encapsulated key K^* . Then S returns C^* to U_A as the responds of *i*-th session from U_B . S leaks the static secret key sk_B of U_B to adversary \mathcal{A} .

 $\mathcal S$ simulates the oracle queries of $\mathcal A$ as what it dose in above case and maintains the hash lists as in event AskH $\wedge E_3$. Specially, when AskH happens, that is \mathcal{A} poses $(U_A, U_B, pk_A, pk_B, C'_B, pk_0^*, C^*, K_A, K_B)$ to H, where C'_B, pk_0^*, C^* is the view of the test session and K_B is the key encapsulated in C'_B , return K_A as the guess of K^* .

As in event $\mathsf{AskH} \wedge E_3$, $\Pr[\mathsf{AskH} \wedge E_4] \leq N^2 l \cdot \operatorname{Adv}_{\mathsf{2KEM}}^{[\mathsf{OW-CCA}, \cdot]}(\mathcal{S}) + N^2 lq \cdot \varepsilon_1$. **Event** AskH $\wedge E_5$

In event E_5 , the test session sid^{*} (with owner as responder or initiator) has matching session sid^{*}. Both static secret keys of initiator and responder are leaked to \mathcal{A} . In this case, the [\cdot , OW-CPA] adversary \mathcal{S} performs as follows. It simulate the CK^+ games, and transform the happening of event AskH performed by \mathcal{A} to the advantage of attacking [\cdot , OW-CPA] security.

To simulate the CK⁺ game, S randomly choses two parties U_A, U_B and *i*-th session as a guess of the test session with success probability $1/N^2 l$. S queries some $(pk_1^i, sk_1^i, r_1^i) \leftarrow \mathcal{O}_{\mathsf{leak}_1}$, sets all the static secret and public key pairs $(pk_P, sk_P) = (pk_1^i, sk_1^i)$ for all N users U_P , and picks one preset $(cpk_0, csk_0) \leftarrow \mathsf{KeyGen0}$ as public parameters. When a ephemeral public key is needed, \mathcal{S} generates $(pk_{P0}, sk_{P0}) \leftarrow \text{KeyGenO}(r_0)$ by himself. In the $[\cdot, \text{OW-CPA}]$ game, \mathcal{S} sends pk_A to the challenger and receives challenge ciphertext C^* . In the *i*-th session of U_A , \mathcal{S} sends C^* , pk_0 to U_B . \mathcal{S} also leaks sk_A and sk_B to adversary \mathcal{A} .

With all the static secret keys, \mathcal{S} could perfectly simulate the CK⁺ games. When AskH happens, that is \mathcal{A} poses $(U_A, U_B, pk_A, pk_B, C_B, pk_0^*, C^*, K_A, K_B)$ to H, where C'_B, pk_0^*, C^* is the view of the test session and K_B is the key encapsulated in C_B , return K_A as the guess of K^* . Thus, $\Pr[\mathsf{AskH} \wedge E_5] \leq N^2 l \cdot \operatorname{Adv}_{2\mathsf{KEM}}^{[\cdot,\mathsf{OW-CPA}]}(\mathcal{S}) + N^2 lq \cdot \varepsilon_2$.

Event Ask $H \wedge E_6$

In event E_6 , the test session sid^{*} has matching session $\overline{sid^*}$. Both ephemeral secret keys of initiator and responder are leaked to \mathcal{A} . This is almost the same with Event AskH $\wedge E_3$, in which the ephemeral public key is generated by \mathcal{A} . In this case, the only difference is that the ephemeral secret key of test session (or the matching session) is leaked to \mathcal{A} , not generated by \mathcal{A} , which means $pk_0^* \in L_0$. Event AskH $\wedge E_{7-1}$

In event E_{7-1} , the test session sid^{*} has matching session $\overline{sid^*}$. Both ephemeral secret keys of responder

and static secret key of initiator are leaked to \mathcal{A} . This is almost the same with Event AskH $\wedge E_1$. In this case, the only difference is that the ephemeral secret key of U_B is leaked to \mathcal{A} , which does not affect the proof.

Event AskH $\wedge E_{7-2}$

In event E_{7-2} , the test session sid^{*} has matching session $\overline{sid^*}$. Both ephemeral secret keys of initiator and static secret key of responder are leaked to \mathcal{A} . This is almost the same with Event $AskH \wedge E_6$. In this case, the only difference is that the ephemeral secret key of U_A is leaked to \mathcal{A} , which does not affect the proof.

Event $AskH \wedge E_{8-1}$

In event E_{8-1} , the test session sid^{*} has matching session sid^{*}. Both ephemeral secret keys of initiator and the static secret key of responder are leaked to \mathcal{A} . This is almost the same with Event AskH $\wedge E_{7-2}$. In this case, the only difference is that the position of initiator and responder, which does not affect the proof.

Event AskH $\wedge E_{8-2}$

In event E_{8-2} , the test session sid^{*} has matching session $\overline{sid^*}$. Both static secret keys of initiator and and the ephemeral secret key of responder are leaked to \mathcal{A} . This is almost the same with Event AskH $\wedge E_{8-2}$. In this case, the only difference is position of initiator and responder, which does not affect the proof.

Appendix B: Proofs of Theorem 2 related to HMQV

We first show the [OW-CCA, OW-CCA] security of $2\text{KEM}_{\text{HMQV}}$ against the resistance to the leakage of *b* by proving the security of $2\text{KEM}_{\text{HMQV}^0}$ in Figure 16 (in Lemma 4), then show it resists the leakage of randomness *y* by reducing to the security of Dual HCR signature (in Lemma 5).

Since after replacing Y in $2\text{KEM}_{\text{HMQV}^0}$ by YB^e and y in $2\text{KEM}_{\text{HMQV}^0}$ by y+eb, we will get $2\text{KEM}_{\text{HMQV}}$, and B is auxiliary input, the security of $2\text{KEM}_{\text{HMQV}^0}$ is preserved in $2\text{KEM}_{\text{HMQV}}$. Thus, if $2\text{KEM}_{\text{HMQV}^0}$ is [OW-CCA, OW-CCA] secure then $2\text{KEM}_{\text{HMQV}}$ also is [OW-CCA, OW-CCA] secure even b is leaked.

$KeyGen1(\lambda)$	$KeyGen0(\lambda)$	$Encaps(pk_1, pk_0; aux_e(B))$	$Decaps(sk_1, sk_0, c; aux_e(B))$
$a \leftarrow \mathbb{Z}_p;$	$x \leftarrow \mathbb{Z}_p$	$y \leftarrow \mathbb{Z}_p, Y = g^y$	$Y \leftarrow c$
$A = g^a$	$X = g^x$		d = h(X, B)
$pk_1 = A$	$pk_0 = X;$	$k' = \hat{H}((XA^d)^y)$	$k = \hat{H}(Y^{x+da})$
$sk_1 = a$	$sk_0 = x.$	Return $k, c = Y$	Return k'

Fig. 16. The	[OW-CCA,	OW-CCA	secure	2KEM _{HMQV⁰} .
--------------	----------	--------	--------	------------------------------------

Therefore, in the following, we focus on the security of 2KEM_{HMQV^0} , and furthermore we reduce its security to the unforgeability of HCR signature. Before going to the lemmas, we depict the HCR signature scheme provided in [24] and its unforgeability game.

Definition 4 (The (Dual) HCR signature, [24]). Let U_A be a signer with public key $A = g^a$, U_B be a verifier with public key B. The HCR signature of U_A is defined as: $Y = g^y$, $X = g^x$ and $HSIG(m, Y, X) = \hat{H}(Y^{x+da})$; The Dual HCR signature of U_A is defined as: $Y = g^y$, $X = g^x$ and $HSIG(m, Y, X) = \hat{H}((YB^e)^{x+da})$; where Y is a challenge computed by U_B , X is a respond generated by U_A (x is chosen by U_A), and e = h(Y, A), d = h(X, B).

The forgery game for HCR signature is described as follows. Any PPT forger \mathcal{F} with the challenged public key A and X_0 of his choice, interactively queries a sign oracle SignO. Finally \mathcal{F} holds and outputs "fail" or a forgery (X_0, m_0, σ) . The sign oracle SignO works as following: build a list $L = \{-, -, -, -, -\}$. On receiving a message m from \mathcal{F} it returns $X = g^x$ for $x \leftarrow Z_q$, and sets $L = L \cup (x, X, m, \cdot, \cdot)$ where the last two elements are empty. On receiving (X', m') and challenge Y', if $(\cdot, X', m', \cdot, \cdot) \in L$ and $Y' \neq 0$, it returns $\sigma' = H(Y^{x+h(X',m')a})$, then makes up the tuple $(\cdot, X', m', \cdot, \cdot)$ as $(\cdot, X', m', Y', \sigma')$, else it

returns \perp . We say that \mathcal{F} wins the game successfully if both of the following two conditions are hold: *i*) $(\cdot, X_0, m_0, \cdot, \cdot) \notin L$, or $(\cdot, X_0, m_0, \cdot, \cdot) \in L \land (\cdot, X_0, m_0, Y_0, \sigma) \notin L$; *ii*) $\sigma = \hat{H}(Y^{x_0+h(X_0,m_0)a})$, where $x_0 = \log_g X_0$. Note that in HMQV [24], the case of $(\cdot, X_0, m_0, \cdot, \cdot) \in L \land (\cdot, X_0, m_0, Y_0, \sigma) \notin L$ is not considered as a successful forgery when they define the forgery game. But their proof still works when this type of forgery is also included in the forgery game.

The advantage of \mathcal{F} is defined as $\operatorname{Adv}_{\mathcal{F}}^{\operatorname{uf}} = \Pr[\mathcal{F} \text{ wins}]$. HCR is said to be unforgeable if $\operatorname{Adv}_{\operatorname{HCR}}^{\operatorname{uf}}(\mathcal{F})$ is negligible for any PPT forger \mathcal{F} . The unforgeability of Dual HCR can be defined similarly.

Lemma 3 ([24], Lemma 27 & Remark 7.1). Under the Gap-DH, KEA1 assumptions, HCR is unforgeable in the random oracle model; and Dual HCR is unforgeable with the leakage of randomness y.

Lemma 4. If HCR is unforgeable in the random oracle model, $2KEM_{HMQV^0}$ is [OW-CCA, OW-CCA] secure in the random oracle model.

Proof. We reduce the $[OW-CCA, \cdot]$ security to the unforgeability of HCR. The $[\cdot, OW-CCA]$ security is similar.

We construct a forger \mathcal{F} that performs as follows. \mathcal{F} simulates the [OW-CCA, \cdot] game for KEM_{HMQV⁰}, and transfers the advantage of adversary \mathcal{A} attacking 2KEM_{HMQV⁰} to that of forging HCR. As shown in Figure 17, \mathcal{F} perfectly simulates $\mathcal{O}_{\mathsf{leak0}}$ and $\mathcal{O}_{\mathsf{OW-CCA}}$ using SignO. If \mathcal{A} succeeds in [OW-CCA, \cdot] game, it holds $k' = H(Y^{x_0+h(X_0,B)a})$. Thus, we have $\operatorname{Adv}_{\mathsf{2KEM}_{\mathsf{HMQV}^0}}^{(\mathsf{IND-CCA},\cdot]}(\mathcal{A}) \leq \operatorname{Adv}_{\mathsf{HCR}}^{\mathsf{uf}}(\mathcal{F})$.

> Forger $\mathcal{F}^{\mathcal{A}}(A, Y_0)$: 01 send $pk_1 = A$ to A, build $L_0 = \{-, -, -\}$ 02 on the *i*-th query of $\mathcal{O}_{\mathsf{leak0}} \mathcal{F}$ performs as following: 03 query SignO with m = B and get (x_i, X_i) set $L_0 = L_0 \cup (pk_0^i = X_i, sk_0^i = x_i, r_0^i = x_i)$ 04return $(sk_0^i = x_i, pk_0^i = X_i, r_0^i = x_i)$ 0506 on receiving $pk_0^* = X_0$, return $C^* = Y_0 = g^{y_0}$ as challenge ciphertext on receiving $\mathcal{O}_{\mathsf{OW-CCA}}(pk_0' = X', C' = Y');$ 07if $X' \in [L_0]_1 \land X' \neq X_0$ or $X' \in [L_0]_1 \land X' = X_0 \land Y' \neq Y_0$ 08 09 query SignO with (X', B) and challenge Y' 10send what SignO returns to \mathcal{A} 11 otherwise send \perp to \mathcal{A} 12 on receiving k' from \mathcal{A} as the guess of k^* 13 return (X_0, A, k') as signature on challenge Y_0 .

Fig. 17. Forger of HCR using $[OW-CCA, \cdot]$ adversary \mathcal{A}

Lemma 5. If Dual HCR is unforgeable with the leakage of randomness y, $2KEM_{HMQV}$ is [OW-CCA, OW-CCA] secure with the leakage of randomness y in the random oracle model.

Appendix C: Proofs of Theorem 3 related to NAXOS

Proof. We reduce the [OW-CCA, ·] security to the underlying Gap-DH assumption. The [·, OW-CCA] security is similar. For convenience, we define a twisted $2\text{KEM}'_{NAXOS}$, in which, the encapsulation algorithm Encaps choses $y \leftarrow \mathbb{Z}_p$ directly, rather than $y_0 \leftarrow \mathbb{Z}_p$ and $y = h(y_0, b)$. Obviously, in the random oracle model, to prove the [OW-CCA, ·] security of 2KEM_{NAXOS} with the leakage of x_0 or b, we need only prove the [OW-CCA, ·] security of $2\text{KEM}'_{NAXOS}$.

We construct an algorithm \mathcal{B} which utilizes the [OW-CCA, \cdot] adversary \mathcal{A} as a sub-routine to solve the Gap-DH problem. Given Gap-DH instance, \mathcal{B} simulates the [OW-CCA, \cdot] games for \mathcal{A} , and transforms the advantage of \mathcal{A} attacking [OW-CCA, \cdot] security to that of solving Gap-DH instance. To perfectly

simulate the [OW-CCA, \cdot] game for \mathcal{A} , \mathcal{B} maintains one decapsulation list L_{dec} and one hash list $L_{\hat{H}}$, and guarantees the consistency of two lists by utilizing the DDH oracle.

 \mathcal{B} is given as input (X_0, Y_0) , where $X_0 = g^{x_0}$ and $Y_0 = g^{y_0}$ for random x_0, y_0 , and outputs a value guess. \mathcal{B} is also given a DDH oracle \mathcal{O}_{DDH} . At first \mathcal{B} sets $pk_1 = A = X_0$ and sends A to \mathcal{A} . On receiving $pk_0^* = X$ from \mathcal{A}, \mathcal{B} sets $c^* = Y_0$, and choses a random $k^* \leftarrow \{0,1\}^{\lambda}$. Then \mathcal{B} fixes a default value g for guess. Our hope is that \mathcal{A} at some point makes a queries of the form $(Z = Y_0^{x_0}, D')$ to \hat{H} -oracle such that $\mathcal{O}_{\text{DDH}}(A, Y_0, Z) = 1$, since otherwise \mathcal{A} would have no advantage to output challenge session key. To find out when \mathcal{A} queries its \hat{H} -oracle with $Y_0^{x_0}$, we query $\mathcal{O}_{\text{DDH}}(A, Y_0, Z)$ whenever \mathcal{A} makes a query (Z, D') to \hat{H} -oracle. If $\mathcal{O}_{\text{DDH}}(A, Y_0, Z) = 1$, then $Z = Y_0^{x_0}$ and we update the value of guess to Z.

- The decapsulation $\mathsf{DECAPS}(X',Y')$ (where $pk'_0 = X'$ and c' = Y') is to be simulated as follows: If $(X',Y') = (X,Y_0)$, it just abort. If (X',Y') has been asked of DECAPS (which means $\exists (X',Y',k') \in L_{\mathsf{dec}}$) just return k'. If (X',Y') has not been asked of DECAPS , then first check whether $\exists (Z',D',h') \in L_{\hat{\mathsf{H}}}$ (which means (Z',D') has been asked of \hat{H} -oracle) where $\mathcal{O}_{\mathsf{DDH}}(A,Y',Z') = 1 \land \mathcal{O}_{\mathsf{DDH}}(X',Y',D') = 1$. If so, set k' = h' else set k' as a random value. At last add (X',Y',k') to list L_{dec} .
- The \hat{H} -oracle is to be simulated as follows: If (Z', D') has been asked of \hat{H} -oracle (which means $\exists (Z', D', h') \in L_{\hat{H}}$) just return h'. If (Z', D') has not been asked of DECAPS, then first check whether $\mathcal{O}_{\mathsf{DDH}}(A, Y_0, Z') = 1$. If so, update the value of guess to Z. If not, then check whether $\exists (X', Y', k') \in L_{\mathsf{dec}}$ (which means (X', Y') has been asked of DECAPS) where $\mathcal{O}_{\mathsf{DDH}}(A, Y', Z') = 1 \wedge \mathcal{O}_{\mathsf{DDH}}(X', Y', D') = 1$. If so, set h' = k' else set h' as a random value. At last add (Z', D', h') to the hash list $L_{\hat{H}}$.

Note that no matter \mathcal{A} asks \hat{H} with (Z', D') first or asks DECAPS with (X', Y') first, two lists are consistent.

Consider the game $[\mathsf{OW}\text{-}\mathsf{CCA}, \cdot]$ and let AskA and $\overline{\mathsf{AskA}}$ denote the event in which \hat{H} -oracle query $(Y_0^{x_0}, D')$ for some D' is made by \mathcal{A} and its complement. When $(Y_0^{x_0}, D')$ for some D' is not made by \mathcal{A} to \hat{H} -oracle, there is no-way to output the challenge key k^* rather than guess with probability $1/2^{\lambda}$. Thus we have that

$$\begin{split} \operatorname{Adv}_{2\mathsf{KEM'}_{\mathsf{NAXOS}}}^{[\mathsf{OW-CCA},\cdot]}(\mathcal{A}) &= \Pr[\mathsf{OW-CCA}^{\mathcal{A}} \Rightarrow 1 \wedge \mathsf{AskA}] + \Pr[\mathsf{OW-CCA}^{\mathcal{A}} \Rightarrow 1 \wedge \overline{\mathsf{AskA}}] \\ &\leq \Pr[\mathsf{OW-CCA}^{\mathcal{A}} \Rightarrow 1 \wedge \mathsf{AskA}] + 1/2^{\lambda} \\ &\leq \Pr[1 \wedge \mathsf{AskA}] + 1/2^{\lambda} \\ &\leq \operatorname{Adv}^{\operatorname{Gap-DH}}(\mathcal{B}) + 1/2^{\lambda} \end{split}$$

Put it all together, we have that $2KEM_{NAXOS}$ is [OW-CCA, OW-CCA] secure even with the leakage of one of x_0 and b

П

Appendix D: Proofs of Theorem 4 and optimized AKE related to Okamoto

The proof of Theorem 4. The proof of $[\cdot, \mathsf{IND-CPA}]$ security proceeds by a series of games. Let \mathcal{A} be the adversary that is involved in the $[\cdot, \mathsf{IND-CPA}]$ game. We set it as game G_0 , then $\operatorname{Adv}_{2\mathsf{KEM}_{\mathsf{Oka}}}^{[\cdot,\mathsf{IND-CPA}]}(\mathcal{A}) = |\operatorname{Pr}[b' = b \text{ in } G_0] - 1/2|$. In game G_1 , when computing challenge encapsulated key k_0^* corresponding to $c^* = (Y_1, Y_2, Y_3), X_3^{y^*_3}$ used in challenge encapsulated key are substituted with uniform random values in G_1 . There exists an algorithm \mathcal{B} such that $\operatorname{Pr}[b' = b \text{ in } G_0] - \operatorname{Pr}[b' = b \text{ in } G_1] \leq \operatorname{Adv}_{\mathcal{B}}^{\mathsf{ddh}}$. \mathcal{B} works as following: on receiving DDH challenge (g_1, X_3, Y_3, T) , it computes and returns $pk_0 = X_3$. After receiving $pk_1^* = (A_1, A_2)$ from \mathcal{A} , \mathcal{B} computes challenge ciphertext as $c^* = (Y_1 = g_1^y, Y_2 = g_2^y, Y_3)$ and $\sigma^* = T \cdot (A_1 A_2^c)^y$, then $k_0^* = \hat{F}_{\sigma^*}(pk_0, c^*)$. Finally, on receiving b' and the guess of b, \mathcal{B} returns b' $\stackrel{?}{=} b$.

If (g_1, X_1, Y_1, T) is a DDH tuple, this is exactly the game G_0 ; If (g_1, X_1, Y_1, T) is a non-DDH tuple, this is exactly the game G_1 . Note that in G_1 , k_b^* is independent of b, therefore $\Pr[b = b' \text{ in } G_1] = 1/2$.

To prove the [IND-CCA, \cdot] security, we face the problem that the adversary may query the strong decapsulation oracle with ciphertext under other public keys, thus the input of PRF should include public key as input and the PRF is lifted to pairwise-independent random source PRF, which is still PRF even the random key is only pairwise-independent. The proof of [IND-CCA, \cdot] security proceeds by a series of games. Let \mathcal{A} be the adversary that is involved in the [IND-CCA, \cdot] game. We set it as game G_0 , then $\operatorname{Adv}_{2\mathsf{KEM}_{\mathsf{Nka}}}^{[\mathsf{IND-CCA}, \cdot]}(\mathcal{A}) = |\operatorname{Pr}[b' = b \text{ in } G_0] - 1/2|$. In game G_1 , the decryption oracle will reject queries with $(Y'_1, Y'_2, Y'_3) \neq (Y_1, Y_2, Y_3)$, and $h_{tcr}(A_1, A_2, Y_3)$.

In game G_1 , the decryption oracle will reject queries with $(Y'_1, Y'_2, Y'_3) \neq (Y_1, Y_2, Y_3)$, and $h_{tcr}(A_1, A_2, Y'_1, Y'_2, Y'_3) = h_{tcr}(A_1, A_2, Y_1, Y_2, Y_3)$. Note that this will happen with negligible probability if h_{tcr} is target collision resistant hash function.

In game G_2 , when generate challenge encapsulated key, σ^* corresponding to $c^* = (Y_1, Y_2, Y_3)$, is computed using $X_3^{y_3} \cdot Y_1^{a_1+ca_3}Y_2^{a_2+ca_4}$ instead of $X_3^{y_3} \cdot (A_1A_2^c)^{y^*}$ which is the exact value computed in game G_1 .

In game G_3 , Y_1, Y_2 used in c^* are substituted with non-DDH tuple. There exists an algorithm \mathcal{B} such that $\Pr[b' = b \text{ in } G_2] - \Pr[b' = b \text{ in } G_3] \leq \operatorname{Adv}_{\mathcal{B}}^{\mathsf{ddh}}$.

In game G_4 , with the trapdoor $s = \log_{g_2} g_1$, on receiving the decryption queries with $(X'_3 = g_1^{x'_3}; Y'_1, Y'_2, Y'_3)$, sets σ' as a totally random element, if $(Y_1, Y_2) \neq (Y'_1, Y'_2) \wedge Y'_2 \neq Y'_1^{s}$. G_4 is identical with G_3 , except that when bad happens, namely, $(Y_1, Y_2) \neq (Y'_1, Y'_2) \wedge Y'_2 \neq Y'_1^{s}$ but $(A_1 A_2^c)^y = Y_1^{a_1+ca_3}Y_2^{a_2+ca_4}$. By [9], $Y_1^{a_1+ca_3}Y_2^{a_2+ca_4}$ is the universal 2 function and bad happens with probability less than 1/p.

In game G_5 , the encapsulated key k_0^* is substituted with random string. Note that in case $(Y_1', Y_2') = (Y_1, Y_2)$, we have $(pk_0', c') \neq (pk_0^*, c^*)$ (otherwise the decryption oracle aborts); in case $(Y_1', Y_2') \neq (Y_1, Y_2)$, σ^* is pairwise independent with σ^i (where σ^i as the internal values computed by the *i*-th decryption oracle). By the definition of pairwise independent random source PRF, the difference between G_4 and G_5 are bounded by the advantage against pairwise independent random source PRF. Note that in G_5 , k_b^* is independent of *b*, therefore $\Pr[b = b' \text{ in } G_5] = 1/2$.

Optimized Okamoto AKE.

One more thing. Let $H_4 : \{0,1\}^* \to \{0,1\}^l$ be a 4-wise independent hash function [21]. We employ the technique of optimizing classical KEM [21] to 2KEM_{Oka} and get optimized $2\text{KEM}_{Oka-opt}$ scheme shown in Figure 18. Applying $2\text{KEM}_{Oka-opt}$ to $A\text{KE}_{std}$, we will get an optimized AKE of Okamoto-AKE.

$2KEM_{Oka-opt}.KeyGen1(\lambda)$	$2KEM_{Oka-opt}.KeyGen0(\lambda)$
$a_1, a_2 \leftarrow \mathbb{Z}_p^3, A = g_1^{a_1} g_2^{a_2};$	$x_3 \leftarrow \mathbb{Z}_p, X_3 = g_1^{x_3}$
$pk_1 = A, sk_1 = (a_1, a_2)$	$pk_0 = X_3, sk_0 = x_3$
$2KEM_{Oka-opt}.Encaps(pk_0, pk_1);$	$2KEM_{Oka-opt}.Decaps(sk_0, sk_1, C)$
$y, y_3 \leftarrow \mathbb{Z}_p, Y_1 = g_1^y, Y_2 = g_2^y, Y_3 = g_1^{y_3}$	$C \in G^3, (Y_1, Y_2, Y_3) \leftarrow C$
$\sigma = H_4(X_3^{y_3} \cdot A^y)$	$\sigma' = H_4(Y_3^{x_3} \cdot Y_1^{a_1} Y_2^{a_2})$
$C = (Y_1, Y_2, Y_3), K = \bar{F}_{\sigma}(pk_0, C)$	$K' = \bar{F}_{\sigma'}(pk_0, C)$

Fig. 18. The [IND-CCA, IND-CPA] secure optimized 2KEM_{Oka-opt}.

Theorem 9. If H_4 is a 4-wise independent hash function, then $2KEM_{Oka-opt}$ is [IND-CCA, IND-CPA] secure under DDH assumption.

Lemma 6 ([21], Theorem 4.3, Lemma 5.1). Let G be a group with prime order p, and generators g_1, g_2 . Let $A = g_1^{a_1} g_2^{a_2}$. If both (g_1, g_2, Y_1, Y_2) and (g_1, g_2, Y'_1, Y'_2) are non-DDH tuples and $(Y_1, Y_2) \neq (Y'_1, Y'_2)$, then $\{A, H_4, H_4(Y_1^{a_1}Y_2^{a_2}), H_4(Y_1^{'a_1}Y_2^{'a_2})\}$ is statistically indistinguishable with $\{A, H_4, U_{2l}\}$.

The proof of $[\cdot, \mathsf{IND-CPA}]$ security proceeds by a series of games. Let \mathcal{A} be the adversary that is involved in the $[\cdot, \mathsf{IND-CPA}]$ game. We set it as game G_0 , then $\operatorname{Adv}_{\mathsf{2KEM}_{\mathsf{Oka-opt}}}^{[\cdot,\mathsf{IND-CPA}]}(\mathcal{A}) = |\operatorname{Pr}[b' = b \text{ in } G_0] - 1/2|$. In game G_1 , when computing challenge encapsulated key k_0^* corresponding to $c^* = (Y_1, Y_2, Y_3)$, $X_3^{y_3}$ used in challenge encapsulated key are substituted with uniform random values in G. There exists an algorithm \mathcal{B} such that $\Pr[b' = b$ in $G_0] - \Pr[b' = b$ in $G_1] \leq \operatorname{Adv}_{\mathcal{B}}^{\operatorname{ddh}}$. \mathcal{B} works as following: on receiving DDH challenge (g_1, X_3, Y_3, T) , it compute and returns $pk_0 = X_3$. After receiving $pk_1^* = A$ from \mathcal{A} , \mathcal{B} computes challenge ciphertext as $c^* = (Y_1 = g_1^y, Y_2 = g_2^y, Y_3)$ and $k_0^* = \hat{F}_{H_4(T \cdot A^y)}(pk_0, c^*)$. Finally, on receiving b'and the guess of b, \mathcal{B} returns $b' \stackrel{?}{=} b$. If (g_1, X_1, Y_1, T) is a DDH tuple, this is exactly the game G_0 ; If (g_1, X_1, Y_1, T) is a non-DDH tuple, this is exactly the game G_1 . Note that in G_1 , k_b^* is independent of b, therefore $\Pr[b = b'$ in $G_2] = 1/2$.

The proof of [IND-CCA, ·] security proceeds by a series of games. Let \mathcal{A} be the adversary that is involved in the [IND-CCA, ·] game. We set it as game G_0 , then $\operatorname{Adv}_{2\operatorname{\mathsf{KEM}}_{\operatorname{\mathsf{Ok}}\operatorname{\mathsf{-opt}}}^{\operatorname{\mathsf{IIND}}}(\mathcal{A}) = |\operatorname{Pr}[b' = b \text{ in } G_0] - 1/2|$.

In game G_1 , when generating challenge encapsulated key, σ^* corresponding to $c^* = (Y_1, Y_2, Y_3)$, is computed using $X_3^{y_3} \cdot Y_1^{a_1} Y_2^{a_2}$ instead of $X_3^{y_3} \cdot A^{y^*}$ which is the exact value computed in game G_0 .

In game G_2 , Y_1, Y_2 used in c^* are substituted with non-DDH tuple. There exists an algorithm \mathcal{B} such that $\Pr[b' = b \text{ in } G_1] - \Pr[b' = b \text{ in } G_2] \leq \operatorname{Adv}_{\mathcal{B}}^{\mathsf{ddh}}$.

In game G_3 , with the trapdoor $s = \log_{g_2} g_1$, on receiving the decryption queries with $(X'_3 = g_1^{x'_3}; Y'_1, Y'_2, Y'_3)$, sets σ' as a totally random key, if $(Y_1, Y_2) \neq (Y'_1, Y'_2) \wedge Y'_2 \neq Y'_1^{s}$. G_2 is identical with G_3 , except that when bad happens, namely, $(Y_1, Y_2) \neq (Y'_1, Y'_2) \wedge Y'_2 \neq Y'_1^{s}$ but $\sigma' = H_4(Y_3^{x'_3} \cdot Y_1^{'a_1}Y_2^{'a_2})$. From Lemma 6, bad happens with probability less than $1/2^l$.

In game G_4 , the encapsulated key k_0^* is substituted with a random string. Note that in case $(Y'_1, Y'_2) = (Y_1, Y_2)$, we have $(pk'_0, c') \neq (pk_0^*, c^*)$ (otherwise the decryption oracle aborts); in case $(Y'_1, Y'_2) \neq (Y_1, Y_2)$, σ^* is pairwise independent with σ^i (where σ^i as the internal values computed by the *i*-th decryption oracle). By the definition of pairwise independent random source PRF, the difference between G_4 and G_3 are bounded by the advantage against pairwise independent random source PRF. Note that in G_4 , k_b^* is independent of b, therefore $\Pr[b = b' \text{ in } G_4] = 1/2$.

Appendix E: Proof of Theorem 5 related to improved KEM combiner

Proof of Theorem 5 in the random oracle model, $f(pk_0, k_1||k_0, c) = \hat{H}(pk_0, k_1||k_0, c)$. Then $[\cdot, OW-CPA]$ security is straight forward, we only prove the [OW-CCA, \cdot] security. The proof proceeds with a sequence of games. Let S_i denote the advantage of [OW-CCA, \cdot] adversary in Game *i*.

In Game 0, it is the original [OW-CCA, ·] game, precisely, on receiving $(pk'_0, c'_1||c'_0)$ the decapsulation oracle works as follows: if $(pk'_0, c'_1||c'_0) = (pk^*_0, c^*_1||c^*_0)$, abort; else if $pk'_0 \notin [L_0]_0$, abort; else $k'_1 = \mathsf{Decaps}_{\mathsf{cca}}(sk_1, c'_1), k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0)$ and return $k' = \hat{H}(pk'_0, k'_1||k'_0, c')$. The challenger also maintains a hash list $L_{\hat{H}}$, which works as follows: on receiving $(pk'_0, k'_1||k'_0, c'_1)$, if $\exists (pk'_0, k'_1||k'_0, c'_1||c'_0, k') \in L_{\hat{H}}$, return k'; else $k \leftarrow \mathcal{K}, L_{\hat{H}} = L_{\hat{H}} \cup \{pk'_0, k'_1||k'_0, c'_1||c'_0, k\}$, and return k. In Game 1, we modify decapsulation oracle and hash list. decapsulation oracle works as follows: on re-

In Game 1, we modify decapsulation oracle and hash list. decapsulation oracle works as follows: on receiving $(pk'_0, c'_1||c'_0)$, if $(pk'_0, c'_1||c'_0) = (pk^*_0, c^*_1||c^*_0)$, abort; else if $pk'_0 \notin [L_0]_0$, abort; else if $\exists (pk'_0, c'_1||c'_0, k') \in L_D$, return k'; else $k \leftarrow \mathcal{K}$, $L_D = L_D \cup \{pk'_0, c'_1||c'_0, k\}$, and return k.

The challenger also maintains a hash list $L_{\hat{H}}$, which works as follows: on receiving $(pk'_0, k'_1 || k'_0, c'_1 || c'_0)$, if $\exists (pk'_0, k'_1 || k'_0, c'_1 || c'_0, k') \in L_{\hat{H}}$, return k'; else $k \leftarrow \mathcal{K}$; if $pk'_0 \in [L_0]_1$, return k; if $pk'_0 \notin [L_0]_1$, if $k'_1 = \mathsf{Decaps}_{\mathsf{cca}}(sk_1, c'_1)$ and $k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0)$, if $\exists k'$ s.t. $(pk'_0, c'_1 || c'_0, k') \in L_D$ return k' else $L_D = L_D \cup \{(pk'_0, c'_1 || c'_0, k)\}$. At last $L_{\hat{H}} = L_{\hat{H}} \cup \{pk'_0, k'_1 || k'_0, c'_1 || c'_0, k'\}$. Then if not abort, return k'.

To show the identical of Game 1 and Game 0 from the point view of \mathcal{A} , consider the following cases

- Case 1: $pk'_0 \notin [L_0]_1$. The decapsulation oracle aborts in both Game 0 and Game 1.
- Case 2: $pk'_0 \in [L_0]_1$. if $k'_1 = \mathsf{Decaps}_{\mathsf{cca}}(sk_1, c'_1)$ and $k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0)$, the decapsulation oracle returns $\hat{H}(pk'_0, k'_1||k'_0, c'_1||c'_0)$ in both Game 1 and Game 0. And if \mathcal{A} queries decapsulation oracle first, it adds $(pk'_0, k'_1||k'_0, c'_1||c'_0, k \leftarrow \mathcal{K})$ to L_D . When \mathcal{A} queries H on $(pk'_0, k'_1||k'_0, c'_1||c'_0)$ later if the judgment $k'_1 = \mathsf{Decaps}_{\mathsf{cca}}(sk_1, c'_1)$ and $k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0)$ is true, it adds $(pk'_0, k'_1||k'_0, c'_1||c'_0, k)$ to L_H to declare $H(pk'_0, k'_1||k'_0, c'_1||c'_0,) = k$. if \mathcal{A} queries \hat{H} oracle first, if the judgment $k'_1 = \mathsf{Decaps}_{\mathsf{cca}}(sk_1, c'_1)$ and $k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0)$ is true, it adds $(pk'_0, k'_1||k'_0, c'_1||c'_0, k)$ to L_H to declare $H(pk'_0, k'_1||k'_0, c'_1||c'_0, k)$ is true, it adds $(pk'_0, k'_1||k'_0, c'_1||c'_0, k)$ to L_H to declare

 $\hat{H}(pk'_0, k'_1||k'_0, c'_1||c'_0,) = k$ and adds $(pk'_0, k'_1||k'_0, c'_1||c'_0, k)$ to L_D . Later if it queries $(pk'_0, k'_1||k'_0, c'_1||c'_0)$ to decapsulation oracle., it returns k.

We now re-clear the sub-cases of case 2 for hash list.

- Subcase 2.1: if $pk'_0 \in [L_0]_0$ and $pk'_0 = pk^*_0$ and $k'_0 = \mathsf{Decasp}_{\mathsf{cpa}}(sk'_0, c'_0)$
 - Subsubcase 2.1.1 $c_1^* = c_1'$, compute $k_1 = \mathsf{Decasp}_{\mathsf{cpa}}(sk_0', c_0')$ and check if $k_1' \stackrel{?}{=} k_1$.
 - Subsubcase 2.1.2 $c_1^* \neq c_1'$, compute $k_1 = \mathsf{Decasp}_{\mathsf{cpa}}(sk_0', c_0')$ and check if $k_1' \stackrel{?}{=} k_1$
- Subcase 2.2: if $pk'_0 \in [L_0]_0$ and $pk'_0 \neq pk^*_0$ and $k'_0 = \mathsf{Decasp}_{\mathsf{cpa}}(sk'_0, c'_0)$
 - Subsubcase 2.2.1 $c_1^* = c_1'$, compute $k_1 = \mathsf{Decasp}_{\mathsf{cpa}}(sk_0', c_0')$ and check if $k_1' \stackrel{?}{=} k_1$.
 - Subsubcase 2.2.2 $c_1^* \neq c_1'$, compute $k_1 = \mathsf{Decasp}_{\mathsf{cpa}}(sk_0', c_0')$ and check if $k_1' \stackrel{?}{=} k_1$

In Game 2, we add flags in the hash list in two cases

- Case 1: if $pk'_0 \notin [L_0]_0$, and $pk'_0 = pk^*_0 \wedge c'_1 ||c'_0 = c^*_0||c^*_1$, set flag as true and abort.
- Case 2: if $pk'_0 \in [L_0]_0$, $k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0)$ and $pk'_0 = pk^*_0 \wedge c'_1 ||c'_0 = c^*_0||c^*_1$, set flag as true and abort;

Which now in Case 2 the subcases is

- Subcase 2.1: if $pk'_0 \in [L_0]_0$ and $pk'_0 = pk^*_0$ and $k'_0 = \mathsf{Decasp}_{\mathsf{cpa}}(sk'_0, c'_0)$
 - Subsubcase 2.1.1 $c_1^* = c_1'$, set flag as true and abort;
 - Subsubcase 2.1.2 $c_1^* \neq c_1'$, compute $k_1 = \mathsf{Decasp}_{\mathsf{cpa}}(sk_0', c_0')$ and check if $k_1' \stackrel{!}{=} k_1$
- Subcase 2.2: if $pk'_0 \in [L_0]_0$ and $pk'_0 \neq pk^*_0$ and $k'_0 = \mathsf{Decasp}_{\mathsf{cpa}}(sk'_0, c'_0)$ Subsubcase 2.2.1 $c^*_1 = c'_1$, set flag as true and abort;
 - - Subsubcase 2.2.2 $c_1^* \neq c_1'$, compute $k_1 = \mathsf{Decasp}_{\mathsf{cpa}}(sk_0', c_0')$ and check if $k_1' \stackrel{?}{=} k_1$

In both case 1 and case 2 the event that flag=ture is bounded by the OW-CCA security of KEM_{cca}. By the property of random oracle the [OW-CCA, \cdot] adversary only has advantage when he ask \hat{H} with $(pk_0^*, k_1^* || k_0^*, c_1^* || c_0^*)$, where k_1^* is the key encapsulated in c_1^* . We denote this event as AskH, and prove that this event is negligible if KEM_{cca} is OW-CCA secure.

Given a KEM_{cca} challenge ciphertext c^* , the CCA adversary S simulate the [OW-CCA, ·] game and transform the event AskH to the advantage of solving OW-CCA problem. Given a KEM_{cca} challenge ciphertext c^* , since S does not know the secret key sk_1 , the problem for S to simulate the [OW-CCA, \cdot] game is subsubcase 2.1.2 and 2.2.2. But \mathcal{S} could fix the problem by query the decapsulation oracle of KEM_{cca}.

Now in Game 2, $H(pk_0^*, k_1^* || k_0^*, c_1^* || c_0^*)$ will not given to adversary, thus the adversary's view is independent of the challenge encapsulated key. Thus the adversary's advantage in Game 2 is negligible.

To sum up, we have that the $[OW-CCA, \cdot]$ security is guaranteed by the OW-CCA security of KEM_{cca} . **Proof of Theorem 5 in the standard model.** $f(pk_0, k_1 || k_0, c) = F_{k_1}(pk_0, c) \oplus F_{k_0}(pk_0, c)$. Since $[\cdot, \mathsf{IND}\mathsf{-}\mathsf{CPA}]$ security is straight forward, we only prove the $[\mathsf{IND}\mathsf{-}\mathsf{CCA}, \cdot]$ security and reduce it to the IND-CCA security of KEM_{cca} and the security of PRF. The proof proceeds with a sequence of games. Let S_i denote the advantage of [IND-CCA, \cdot] adversary in Game *i*.

In Game 0, it is the original [IND-CCA, \cdot] game, precisely, on receiving $(pk'_0, c'_1 || c'_0)$ the decapsulation oracle works as follows: if $(pk'_0, c'_1 || c'_0) = (pk^*_0, c^*_1 || c^*_0)$, abort; else if $pk'_0 \notin [L_0]_0$, abort; else $k'_1 = \mathsf{Decaps}_{\mathsf{cca}}(sk_1, c'_1), k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0) \text{ and return } k' = F_{k'_1}(pk'_0, c') \oplus F_{k'_0}(pk'_0, c').$

In Game 1, we change the decryption oracle when $c'_1 = c^*_1$. That is: if $(pk'_0, c'_1 || c'_0) = (pk^*_0, c^*_1 || c^*_0)$, abort; else if $pk'_0 \notin [L_0]_0$, abort; else if $c'_1 = c^*_1 k'_1 \leftarrow \mathcal{K}$; else $k'_1 = \mathsf{Decaps}_{\mathsf{cca}}(sk_1, c'_1)$, then compute $k'_0 = \mathsf{Decaps}_{\mathsf{cpa}}(sk_0, c'_0)$ and return $k' = F_{k'_1}(pk'_0, c') \oplus F_{k'_0}(pk'_0, c')$. There exists a IND-CCA adversary \mathcal{B} against $\mathsf{KEM}_{\mathsf{cca}}$ if [IND-CCA, ·] adversary \mathcal{A} can distinguish Game 0 and Game 1. IND-CCA adversary \mathcal{B} after receiving challenge ciphertext c_1^* and K_b^* , in the [IND-CCA, \cdot] game, if $c_1' = c_1^*$ sets $k_1' = k^*$. Note that if K_b^* is the key encapsulated in c_1^* , it corresponds to Game 0, or if K_b^* is a totally random key, it corresponds to Game 1.

In Game 2, the computation of $(c_1^* || c_0^*, k^*)$ is changed, where PRF F is replace by a random function. Note that the decryption oracle only works when $(pk'_0, c') \neq (pk^*_0, c^*_1 || c^*_0)$, and k^*_1 is replaced by a totally random string. Since F is PRF, this replacement will not detected by [IND-CCA, \cdot adversary. Note that in Game 2 the challenge cipheretext contains nothing about b, thus $\Pr[S_2] = 1/2$.

Sum them up, we have that the [IND-CCA, ·] security is guaranteed by the IND-CCA security of $\mathsf{KEM}_{\mathsf{cca}}$ and pseudorandomness of PRF.

Appendix F: Definitions of 2-key Public Key Encryption

Similar to the notion of 2-key KEM, we can also define the notion of 2-key public key encryption (PKE). Formally, a double-key public key encryption 2PKE=(KeyGen0, KeyGen1, Enc, Dec) is a quadruple of probabilistic algorithms together with a plain-text space \mathcal{M} and a ciphertext space \mathcal{C} as follows.

SECURITY. To define $[ATK_1, ATK_0]$ security of 2PKE, we consider two adversaries, *i.e.*, $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_1)$ attacking pk_1 and $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_1)$ attacking pk_0 . In Figure 19 we show the security games of ATK₁ and ATK_0 respectively.

Game IND-ATK1 on pk_1	Game IND-ATK0 on pk_0
$01 (pk_1, sk_1) \leftarrow KeyGen1(pp);$	$15 (pk_0, sk_0) \leftarrow KeyGen0(pp)$
$02 \ L_0 = \{(-, -, -)\}$	16 $L_1 = \{(-, -, -)\}$
$03 (state, pk_0^*, m_0, m_1) \leftarrow \mathcal{A}_1^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_0}}(pk_1)$	17 $(state, pk_1^*, m_0, m_1) \leftarrow \mathcal{B}_1^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_1}}(pk_0)$
04 $b \leftarrow \{0, 1\};$	18 $b \leftarrow \{0, 1\}$
05 $c^* \leftarrow Enc(pk_1, pk_0^*, m_b);$	19 $c^* \leftarrow Enc(pk_1^*, pk_0, m_b);$
$06 b' \leftarrow \mathcal{A}_2^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_0}}(state, c^*)$	$20 b' \leftarrow \mathcal{B}_2^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_1}}(state, c^*)$
07 return $b' \stackrel{?}{=} b$	21 return $b' \stackrel{?}{=} b$
Game OW-ATK1 on pk_1	Game OW-ATK0 on pk_0
$08 (pk_1, sk_1) \leftarrow KeyGen1(pp);$	$22 (pk_0, sk_0) \leftarrow KeyGen0(pp)$
09 $L_0 = \{(-, -, -)\}$	23 $L_1 = \{(-, -, -)\}$
10 $(state, pk_0^*) \leftarrow \mathcal{A}_1^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_0}}(pk_1)$	24 $(state, pk_1^*) \leftarrow \mathcal{B}_1^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_1}}(pk_0);$
$11 \ m = \leftarrow \mathcal{M};$	$25 m = \leftarrow \mathcal{M};$
12 $c^* \leftarrow Enc(pk_1, pk_0^*, m);$	26 $c^* \leftarrow Enc(pk_1^*, pk_0, m);$
13 $m' \leftarrow \mathcal{A}_2^{\mathcal{O}_{ATK_1}, \mathcal{O}_{leak_1}}(state, c^*);$	27 $m' \leftarrow \mathcal{B}_2^{\mathcal{O}_{ATK_0}, \mathcal{O}_{leak_0}}(state, c^*);$
14 return $m' \stackrel{?}{=} m$	28 return $m' \stackrel{?}{=} m$

Fig. 19. The $[ATK1, \cdot]$, and $[\cdot, ATK0]$ games of 2PKE for adversaries \mathcal{A} and \mathcal{B} . The oracles $\mathcal{O}_{\mathsf{leak}_0}$, $\mathcal{O}_{\mathsf{ATK}_1}$, $\mathcal{O}_{\mathsf{leak}_1}$, and \mathcal{O}_{ATK_0} are defined in the following.

On the *i*-th query of $\mathcal{O}_{\mathsf{leak}_0}$ and $\mathcal{O}_{\mathsf{leak}_1}$, the challenger perform as what it does in 2-key KEM. Depending on the definition of oracle \mathcal{O}_{ATK_i} for i = 1,0 the adversary accesses, one gets CPA and CCA notions respectively

- if $\mathcal{O}_{\mathsf{ATK}_1(pk'_0,c')} = -$, it implies CPA notion;
- if $\mathcal{O}_{\mathsf{ATK}_1(pk'_0,c')} \neq -$ it works as following: If $pk'_0 \in [L_0]_1 \land (c' \neq c^* \lor pk'_0 \neq pk^*_0)$ return the corresponding plaintext, otherwise return \perp , it implies CCA notion.
- if $\mathcal{O}_{\mathsf{ATK}_0(pk'_1,c')} = -$, it implies CPA notion; if $\mathcal{O}_{\mathsf{ATK}_0(pk'_1,c')} \neq -$ it works as following: If $pk'_1 \in [L_1]_1 \land (c' \neq c^* \lor pk'_1 \neq pk^*_1)$ return the corresponding plaintext, otherwise return \perp , it implies CCA notion.

Let $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ be an adversary against pk_1 of 2PKE. We define its advantage winning in the game $\mathsf{IND}\mathsf{-ATK1} \text{ and } \mathsf{OW}\mathsf{-ATK1} \text{ as: } \mathrm{Adv}_{\mathsf{2PKE}}^{[\mathsf{IND}\mathsf{-ATK1},\cdot]}(\mathcal{A}) = \left| \Pr[\mathsf{IND}\mathsf{-ATK1}^{\mathcal{A}} \Rightarrow 1] - \frac{1}{2} \right| \text{ and } \mathrm{Adv}_{\mathsf{2PKE}}^{[\mathsf{OW}\mathsf{-ATK1},\cdot]}(\mathcal{A}) = \left| \Pr[\mathsf{IND}\mathsf{-ATK1}^{\mathcal{A}} \Rightarrow 1] - \frac{1}{2} \right|$ $\Pr[\mathsf{OW}\mathsf{-}\mathsf{ATK1}^{\mathcal{A}} \Rightarrow 1]$, where game $[\mathsf{IND}\mathsf{-}\mathsf{ATK1}, \cdot]$ and $[\mathsf{OW}\mathsf{-}\mathsf{ATK1}, \cdot]$ are described in Figure 19.

We say that 2PKE is [IND-ATK1, ·] secure, if $\operatorname{Adv}_{2\mathsf{PKE}}^{[\mathsf{IND-ATK1}, \cdot]}(\mathcal{A})$ is negligible; that 2PKE is [OW-ATK1, ·] secure, if $\operatorname{Adv}_{2\mathsf{PKE}}^{[\mathsf{OW-ATK1}, \cdot]}(\mathcal{A})$ is negligible, for any PPT adversary \mathcal{A} . The [·, IND-ATK0] and [·, OW-ATK0] security can be defined in the same way. Here for avoiding repetition we omit their description.

[ATK1, ATK0] security. The [ATK1, ATK0] security is similar with that in 2-key KEM. Reduction [IND-CCA, \cdot] \Rightarrow [OW-CCA, \cdot].

Lemma 7. For any adversary \mathcal{A} attacks the [IND-CPA, ·] security on pk_1 with message space M, there exists an adversary \mathcal{B} with the same running time as that of \mathcal{A} such that

$$Adv_{PKE}^{[\textit{OW-CPA},\cdot]}(\mathcal{A}) \leq 1/|M| + 2 \cdot Adv_{PKE}^{[\textit{IND-CPA},\cdot]}(\mathcal{B}).$$

The lemma still works when attacks on pk_0 .

Proof. We process the proof by constructing adversary \mathcal{B} using \mathcal{A} as subroutine shown in Figure 20.

 $\begin{array}{|c|c|c|c|c|} \hline \textbf{IND-CPA} & \textbf{adversary} \mathcal{B}^{\mathcal{A}} \\ \hline 01 & m_1, m_0 \leftarrow M \\ 02 & (state, pk_0^*) \leftarrow \mathcal{B}_1^{\mathcal{O}_{\mathsf{leak0}}}(pk_1) \\ 03 & \text{On receiving } c^* \\ 04 & m' \leftarrow \mathcal{B}_2^{\mathcal{O}_{\mathsf{leak0}}}(state, c^*) \\ 05 & \text{if } m' = m_1 \text{ return } 1 \text{ else } 0. \end{array}$

Fig. 20. Reduction between $[OW-CPA, \cdot]$, and $[IND-CPA, \cdot]$ security for 2-key PKE.

In the construction of adversary \mathcal{B} , since $\Pr[b' = 1 | b = 1] \geq \operatorname{Adv}_{PKE}^{[\mathsf{OW-CPA}, \cdot]}(\mathcal{A})$, and if b = 0 the probability that \mathcal{B} outputs m_1 is less than 1/|M|,

$$\operatorname{Adv}_{PKE}^{[\operatorname{IND-CPA},\cdot]}(\mathcal{C}) = \frac{1}{2}(\Pr[b'=1|b=1] - \Pr[b'=1|b=0]) \geq \frac{1}{2}(\operatorname{Adv}_{PKE}^{[\operatorname{Partial-OW-CPA},\cdot]}(\mathcal{B}) - 1/|M|).$$

Appendix G: Proof of Theorm 6 about Twin-ElGamal

As the proofs of [IND-CPA, ·] and [·, IND-CPA] security are similar, we only show [IND-CPA, ·] security here. Let \mathcal{A} be the adversary that is executed in the [IND-CPA, ·] game, that we call game G_0 . Then $\operatorname{Adv}_{2\mathsf{PKE}_{\mathsf{Cpaddh}}}^{[\mathsf{IND-CPA}, \cdot]}(\mathcal{A}) = |\operatorname{Pr}[b' = b \text{ in } G_0] - 1/2|$. In game G_1, g^{r_1} and $h_1^{r_1}$ used in challenge ciphertext are substituted with uniform random values (g^*, h_1^*) . There exists an algorithm \mathcal{B} such that $\operatorname{Pr}[b' = b$ in $G_0] - \operatorname{Pr}[b' = b$ in $G_1] \leq \operatorname{Adv}_{\mathcal{B}}^{\mathsf{ddh}}$. \mathcal{B} works as following: on receiving DDH challenge (g, h_1, g', h_1') , sets $pk_1 = (g, h_1)$. After receiving $pk_0 = (g, h_0)$ from \mathcal{A} , return challenge ciphertext $(g', g^{r_0}, h_1' h_0^{r_0} \cdot m_b)$. Then on receiving b', the guess of b, return $b \stackrel{?}{=} b$. If (g, h_1, g', h_1') is a DDH instance, this is exactly G_0 ; If (g, h_1, g', h_1') is a random instance, this is exactly G_1 . Note that in $G_1, h_1^* h_0^{r_0} \cdot m_b$ is uniformly distributed and independent of b, therefore $\operatorname{Pr}[b = b'$ in $G_1] = 1/2$.

Appendix H: Proof of Theorem 7 related to modified FO transform.

Sketch of proof: The main idea of the proof is to simulate the decapsulation oracle without half of the secret keys. This can be achieved by replacing the decryption using secret keys with "re-encryption". That is to answer the decapsulation oracle the challenger chooses a random key, while to answer the random oracle queries for encapsulated key with public keys, plaintext and cipheretext the challenger "re-encrypts" it so as to maintain the consistent. (The challenger may answers the random oracle firstly and then the decapsulation oracle). In order to simulate the random oracle queries, pk'_0 (chosen by

adversary) should be included in the input to the random oracle. For the same reason, pk'_1 also should be included in the input to the random oracle.

Formal Proof: The only decapsulation failure 2KEM may happened only if the decryption of 2PKE fails. Consider the CORR-RO game of 2PKE. The adversaries make at most q_G queries to G, that may introduce the decryption failure (that is $\text{Dec}(sk_1, sk'_0, \text{Enc}(pk_1, pk'_0, m; G(m))) \neq m$, for $pk'_0 \in [L_0]_1$ when attacking pk_1). Since 2PKE is δ -correct and G outputs independent randomness, each query of G exhibits a correctness error with probability δ . The probability that at least 1 query of G exhibits a correctness error is $1 - (1 - \delta)^{q_G} \leq q_G \delta$.

To show the security, We only reduce the IND-CCA security against pk_1 to the IND-CPA security. The reduction of IND-CCA security against pk_0 to IND-CPA security is almost the same. Consider the sequence of games in Figure 21. Let S_i be the probability that adversary C outputs 1 in Game *i*.

Games G_0 - G_5			H($//G_0-G_5$	
01	$(pk'_1, sk'_1) \leftarrow KeyGen1', \ pk_1 = pk'_1;$		28	if $\exists (pk_1, pk'_0, m, c, K) \in \mathcal{L}_H$ return K	
02	$s_1 t_1 \leftarrow \mathcal{M}, sk_1 = (sk_1', s_1)$		29	$K \leftarrow \mathcal{K}$	
03	$L_0 = \{(-, -, -)\}$ (state, pk_0^*) $\leftarrow C_1^{DECAPS, \mathcal{O}_{leak_0}}(pk_1)$		30	$\text{if } pk_0' \in [L_0]_1$	
04	$(state, pk_0^*) \leftarrow \mathcal{C}_1^{DECAPS, \mathcal{O}_{leak_0}}(pk_1)$		31	if $m = s_1 s_0$, flag _s = ture, abort	$//G_1-G_5$
05	$m^* \leftarrow \mathcal{M}$		32	if $Dec(sk_1, sk'_0, c) = m$	
06	$c^* \leftarrow Enc(pk_1, pk_0, m^*, G(m^*))$			$\wedge Enc(pk_1, pk'_0, m; G(m)) = c$	$//G_2$
07	$K_0^* = H(pk_1, pk_0^*, m^*, c^*)$		33	if $Enc(pk_1, pk'_0, m; G(m)) = c$	$//G_3-G_5$
08	$K_1^* \leftarrow \{0,1\}^n$		34		$//G_4-G_5$
	$b \leftarrow \{0, 1\}$		35	$flag_{in}^{H} = ture, \mathbf{abort}$	$//G_4-G_5$
10	$b' \leftarrow \mathcal{C}_2^{DECPAS, H, G}(state, c^*, K_b^*)$		36	if $\exists K'$, s.t. $(pk_1, pk'_0, c, K') \in \mathcal{L}_D$	$//G_2-G_5$
11	return $b \stackrel{?}{=} b'$		37	K = K'	$//G_2-G_5$
			38	else $\mathcal{L}_D = \mathcal{L}_D \cup \{(pk_1, pk'_0, c, K)\}$	$//G_2-G_5$
DE	$CAPS(pk_0',c)$	$// G_0-G_5$	39	if $pk'_0 \notin [L_0]_1 \land (pk'_0, m, c) = (pk^*_0, m^*, c^*)$	$//G_5$
12	if $pk'_0 \not\in [L_0]_1$, abort		40	$flag_{out}^{H} = ture, \mathbf{abort}$	$//G_5$
	if $pk'_0 \in [L_0]_1 \land (pk'_0, c) = (pk^*_0, c^*),$	\mathbf{abort}	41	$\mathcal{L}_H = \mathcal{L}_H \cup \{(pk_1, pk'_0, m, c, K)\}$	
14	$m' = Dec(sk_1, sk'_0, c),$	$//G_0-G_1$	42	return K	
15	$c' = Enc(pk_1, pk'_0, m'; G(m'))$	$//G_0-G_1$	G(m)	$//G_0-G_5$
16		$//G_0$	43	if $\exists r, s. t.(m, r) \in \mathcal{L}_G$	
17	return $K = H(pk_1, pk'_0, s_1 s_0, c)$	$//G_0$	44	return r	
18	if $(m', c') = (\bot, c)$	$//G_1$	45	$r \leftarrow \mathcal{R}$	
19	return $K = H'(pk_1, pk'_0, c)$	$//G_1$	46	$\mathcal{L}_G = \mathcal{L}_G \cup \{(m, r)\}$	
20	if $(m', c') = (s_1 s_0, c)$	$//G_1$	47	return r	
21	return $K = H'(pk_1, pk'_0, c)$	$//G_1$	\mathcal{O}_{le}	ak ₀	
22	return $K = H(pk_1, pk'_0, m', c)$	$//G_0-G_1$	48	$\overline{r_0^i} \leftarrow \{0,1\}^*$	
23	if $\exists K$ s.t. $(pk_1, pk'_0, c, K) \in \mathcal{L}_D$	$//G_2-G_5$	49	$(pk_0^{i'},sk_0^{i'}) \leftarrow KeyGen0'(r_0^i)$	
24	return K	$//G_2-G_5$	50	$s_0^i \leftarrow \{0,1\}^*, sk_{0,i} = (sk_{0,1}', s_0)$	
25	else $K \leftarrow \mathcal{K}$	$//G_2$ - G_5	51	$pk_0^i = pk_0^{i'}$	
26	$\mathcal{L}_D = \mathcal{L}_D \cup \{(pk_1, pk'_0, c, K)\}$	$//G_2$ - G_5	52	$L_0 = L_0 \cup \{(pk_0^i, sk_0^i, r_0^i s_0^i)\}$	
27	return K	$//G_2-G_5$	53	Return $(pk_0^i, sk_0^i, r_0^i s_0^i)$	

Fig. 21. Game 1-Game 5 for the proof of Theorem 7.

Game 0: This is the original [IND-CCA, \cdot] game against pk_1 with C, and

$$|\Pr[S_0] - 1/2| = \mathrm{Adv}_{\mathsf{2KEM}}^{[\mathsf{IND-CCA}, \cdot]}(\mathcal{C}).$$

Game 1: In this Game, we add a flag flag_s and set it to be true and abort when $H(pk_1, pk'_0, s_1||s_0, \cdot)$ is queried (line 31). At the same time, in DECAPS, replace if $m' = \bot$, $K = H(pk_1, pk'_0, m', c)$ (line 16-17) with if $m' = \bot$ or $s_1||s_0$, $K = H'(pk_1, pk'_0, c)$ (line 18-21) where H' is an internal random oracle. This

will only be noted if C queries H with $(pk_1, pk'_0, s_1 || s_0, \cdot)$, as it will be abort. Since s_1 is uniformly random over $\{0, 1\}^l$, $|\Pr[S_1] - \Pr[S_0]| = \frac{q_H}{2^l}$.

Game 2: In this game, the DECAPS oracle does not use the secret key to decapsulate any longer. We maintain two hash lists \mathcal{L}_D and \mathcal{L}_H and guarantee the consistent by testing if $\mathsf{Dec}(sk_1, sk'_0, c) = m \land \mathsf{Enc}(pk_1, pk'_0, m; G(m))$ (line 32) during the H queries. $(pk_1, pk'_0, m, c, K) \in \mathcal{L}_H$ means that (pk_1, pk'_0, m, c) was queried on H and H returns random K or for $pk'_0 \in [L_0]_1$, $(pk_1, pk'_0, c, K) \in \mathcal{L}_D$ and $\mathsf{Dec}(sk_1, sk'_0, c) = m \land \mathsf{Enc}(pk_1, pk'_0, m; G(m))$

To show the identical of Game 1 and Game 2 from the point view of C, consider the following cases for fixed pk'_0, c, m' that $\mathsf{Dec}(sk_1, sk'_0, c) = m \wedge \mathsf{Enc}(pk_1, pk'_0, m; G(m))$.

- Case 1: $pk'_0 \notin [L_0]_1$. The decapsulation oracle DECAPS aborts in Game 1 and 2. The oracle H outputs random K in both Games in this case. For $pk'_0 \notin [L_0]_1$, the DECAPS (pk_1, pk'_0, \cdot) results in abort, the queries of $H(pk_1, pk'_0, m, c)$ will return a uniformly random key, as in Game G_1 .
- Case 2: $pk'_0 \in [L_0]_1 \land m' \in \{\bot, s_1 || s_0\} \land c' = c$. Since $H(pk_1, pk'_0, \bot, c)$ is not allowed and $H(pk_1, pk'_0, s_1 || s_0, c)$ results in abort, the random oracle H would not add (pk_1, pk'_0, c, K) in \mathcal{L}_D in this case. The $\mathsf{DECAPS}(pk_1, pk_0, c)$ will return a totally random key as in Game 1.
- Case 3: $pk'_0 \in [L_0]_1 \land m' \notin \{\perp, s_1 || s_0\} \land c' = c$. In Game 1, the DECAPS oracle and H oracle is consistent, as the DECAPS return the key $H(pk_1, pk'_0, \text{Dec}(sk_1, sk'_0, c), c)$ by querying H. In Game 2, the lists \mathcal{L}_D and \mathcal{L}_H checks each other firstly, and help the consistent by judgment $m = \text{Dec}(sk_1, sk'_0, c) \land c = \text{Enc}(pk_1, pk'_0, m; G(m))$ (line 32) in two cases: C may queries H on (pk_1, pk'_0, m, c) first, then DECAPS on (pk'_0, c) ; or the other way.
 - If C queries H on (pk_1, pk'_0, m, c) first in this case (by checking $m = \text{Dec}(sk_1, sk'_0, c) \land c = \text{Enc}(pk_1, pk'_0, m; G(m))$ (line 32)), there is no entry (pk'_0, c, K) in \mathcal{L}_D yet. Besides adding $(pk_1, pk'_0, m, c, K \leftarrow \mathcal{K})$ to \mathcal{L}_H , H also adds (pk'_0, c, K) to \mathcal{L}_D . When (pk'_0, c) is queried to DECAPS, it returns K from \mathcal{L}_D .
 - If C queries DECAPS on (pk'_0, c) first, it adds $(pk'_0, c, K \leftarrow \mathcal{K})$ to \mathcal{L}_D to declare DECPAS $(pk'_0, c) = K$. When C queries H on (pk_1, pk'_0, m, c) later, if the decryption and re-encrypt judgment (as in line 32) is ture, H adds (pk_1, pk'_0, m, c, K) to \mathcal{L}_H to declare that $H(pk_1, pk'_0, m, c) = K$. Thus $H(pk_1, pk'_0, m, c) = K = \mathsf{DECAPS}(pk'_0, c)$.

From the analysis in sub-cases, the view of C is identical to that in Games 1 and $\Pr[S_2] = \Pr[S_1]$. **Game 3:** In this game, we replace the judgment $m = \mathsf{Dec}(sk_1, sk'_0, c) \land c = \mathsf{Enc}(pk_1, pk'_0, m; G(m))$ (line 32) with $c = \mathsf{Enc}(pk_1, pk'_0, m; G(m))$ (line 33), that do not check $m = \mathsf{Dec}(sk_1, sk'_0, c)$ any more. The Game 2 and Game 1 are different only when $\mathsf{Dec}(sk_1, sk'_0, \mathsf{Enc}(pk_1, pk'_0, m; G(m))) \neq m$ happens. C makes at most q_G queries to G, that may introduce the correctness error, which means $\mathsf{Dec}(sk_1, sk'_0, \mathsf{Enc}(pk_1, pk'_0, m; G(m))) \neq m$, for $(pk'_0, sk'_0) \in L$. Since 2PKE is δ -correct and G outputs independent randomness, each query of G exhibits a correctness error with probability δ . The probability that at least 1 query of G exhibits a correctness error is $1 - (1 - \delta)^{q_G} \leq q_G \delta$. Thus $|\Pr[S_3] - \Pr[S_2]| = q_G \delta$.

Game 4: In this game, we add a flag flag^H_{in} (line 34-35) and abort when it is true. The difference between Game 4 and Game 3 is bounded by the events flag^H_{in} = ture, thus, $|\Pr[S_4] - \Pr[S_3]| \leq \Pr[\mathsf{flag}_{\mathsf{in}}^H = \mathsf{ture}]$. To bound $\Pr[\mathsf{flag}_{\mathsf{in}}^H = \mathsf{ture}]$, we construct an adversary $\mathcal{A}_{\mathsf{in}}$ against the [OW-CPA, \cdot] security of 2PKE

To bound $\Pr[\mathsf{flag}_{\mathsf{in}}^{H} = \mathsf{ture}]$, we construct an adversary $\mathcal{A}_{\mathsf{in}}$ against the [OW-CPA, \cdot] security of 2PKE when $pk_{0}^{*} \in [L_{0}]_{1}$, as in Figure 22. The simulation of H and ENCAPS is the same with Game 3, and perfect as the decryption key sk_{1} and sk'_{0} (since $pk'_{0} \in [L_{0}]_{1}$) does not required. After \mathcal{C} outputs b', the adversary \mathcal{A} check the list \mathcal{L}_{H} , if $\exists (pk_{1}, pk_{0}^{*}, m', c, K) \in \mathcal{L}_{H}$, outputs m' else abort. $\mathsf{flag}_{\mathsf{in}}^{H} = \mathsf{ture}$ means that \mathcal{C} queries $H(pk_{1}, pk_{0}^{*}, m', c)$ and $(pk_{1}, pk_{0}^{*}, m', c, K') \in \mathcal{L}_{H}$, thus $m' = m^{*}$. Hence $\Pr[\mathsf{flag}_{\mathsf{in}}^{H} = \mathsf{ture}] = \mathrm{Adv}_{\mathsf{2PKE}}^{[\mathsf{OW-CPA}, \cdot]}(\mathcal{A}_{\mathsf{in}})$.

Game 5 In this game, we add a flag $\mathsf{flag}_{\mathsf{out}}^H$ (line 39-40) and abort when it is true. The difference between Game 4 and Game 5 is bounded by the events $\mathsf{flag}_{\mathsf{out}}^H = \mathsf{ture}$, thus, $|\Pr[S_4] - \Pr[S_5]| \leq \Pr[\mathsf{flag}_{\mathsf{out}}^H = \mathsf{ture}]$.

In this game, $H(pk_1, pk_0^*, m^*, c^*)$ will not be given to \mathcal{C} in both cases $pk_0^* \in [L_0]_1$ and $pk_0^* \notin [L_0]_1$, which meaning b is independent from \mathcal{C} view. Hence $\Pr[S_5] = 1/2$.

To bound $\Pr[\mathsf{flag}_{\mathsf{out}}^H = \mathsf{ture}]$, we construct an adversary $\mathcal{A}_{\mathsf{out}}$ against the [OW-CPA, \cdot] security of 2PKE when $pk_0^* \notin [L_0]_1$ as in Figure 22.

$[OW\text{-}CPA,\cdot] \text{ adversary } \mathcal{A}_{in} \text{ and } \mathcal{A}_{out}$				$[IND\text{-}CPA,\cdot] \text{ adversary } \mathcal{A}'$		
01	$K^* \leftarrow \mathcal{K};$	$\mathcal{A}_{in},\mathcal{A}_{out}$	01	$m_1, m_0 \leftarrow \mathcal{M}$		
	$s_1 t_1,s_0 t_0 \leftarrow \mathcal{M}$			$K^* \leftarrow \mathcal{K}, s_1, s_0 \leftarrow \mathcal{M};$		
				$(state, pk_0^*) \leftarrow \mathcal{C}_1^{DECAPS, \mathcal{O}_{leak0}, H, G}(pk_1)$		
04	$b' \leftarrow \mathcal{C}_2^{DECPAS, \mathcal{O}_{leak0}, H, G}(state, c^*, K^*)$	$\mathcal{A}_{in},\mathcal{A}_{out}$	04	$b'' \leftarrow \mathcal{C}_2^{DECPAS, \mathcal{O}_{leak0}, H, G}(state, c^*, K^*)$		
05	If $\exists (pk_1, pk_0^*, m', c, K') \in \mathcal{L}_H$	\mathcal{A}_{in}	05	$\mathcal{L}'_H \leftarrow \mathcal{L}_H \cap \{(pk_1, pk_0^*, \cdot, c^*, \cdot)\}$		
06	return m'	\mathcal{A}_{in}	06	if $ \mathcal{L}'_H(m_1) > \mathcal{L}'_H(m_0) , b' = 1$		
07	else return \perp .	\mathcal{A}_{in}	07	if $ \mathcal{L}'_H(m_1) < \mathcal{L}'_H(m_0) , b' = 0$		
08	$m' \leftarrow \mathcal{L}_H \cap \{(pk_1, pk_0^*, \cdot, c^*, \cdot)\},\$	\mathcal{A}_{out}	08	if $ \mathcal{L}'_H(m_1) = \mathcal{L}'_H(m_0) , b' \leftarrow \{0, 1\}$		
09	return m' .	\mathcal{A}_{out}	09	return b'		

Fig. 22. The [OW-CPA·] adversary A_{in} in Game 4 and A_{out} in Game 5 for the proof Theorem 21; The [IND-CPA·] adversary \mathcal{A}' for the proof Theorem 21 in Game 5. $\mathcal{L}'_H(m_1)$ is the set of all $(pk_1, pk_0^*, m_1 || \cdot, c^*, \cdot) \in \mathcal{L}'_H$. The DECPAS , H and G oracle are those (in corresponding Game) in Figure 21

If $pk_0^* \notin [L_0]_1$, on input pk_1 and $c^* \leftarrow \mathsf{Enc}(pk_1, pk_0^*, m^*)$, perfectly simulate Game 5. If $\mathsf{flag}_{\mathsf{out}}^H = \mathsf{ture}$, there exists $(pk_1, pk_0^*, m^*, c^*, \cdot) \in \mathcal{L}_H$, and \mathcal{A} returns the correct $m' = m^*$ with probability at most $1/q_H$. Hance $\Pr[\mathsf{flag}_{\mathsf{out}}^H] \leq q_H \cdot \operatorname{Adv}_{\mathsf{2PKE}}^{\mathsf{[OW-CPA, \cdot]}}(\mathcal{A})$.

To sum up, we have first claim of the theorem.

If 2PKE is [IND-CPA, IND-CPA]-secure, the reduction is tight. By Lemma 20, in Game 4 $|\Pr[S_4] - \Pr[S_3]| \leq \Pr[\mathsf{flag}_{\mathsf{in}}^H = \mathsf{ture}] \leq \operatorname{Adv}_{\mathsf{2PKE}}^{[\mathsf{OW-CPA},\cdot]}(\mathcal{A}) \leq 1/|\mathcal{M}| + 2 \cdot \operatorname{Adv}_{\mathsf{2PKE}}^{[\mathsf{IND-CPA},\cdot]}(\mathcal{A}')$. In Game 5, to bound $\Pr[\mathsf{flag}_{\mathsf{out}}^H = \mathsf{ture}]$, we construct an adversary \mathcal{A}' against the [IND-CPA, \cdot] security of 2PKE when $pk_0^* \notin [L_0]_1$ as in Figure 22. Consider the [IND-CPA, \cdot] game with challenge bit b, Denote Bad the event \mathcal{A}' queries H with $\begin{array}{l} (pk_1, pk_0^*, m_{1-b}||, c^*). \text{ Since } m_{1-b} \text{ is uniformly distributed over } M, \text{ we have that } \Pr[\mathsf{Bad}] \leq q_H/|M|. \\ \text{If } pk_0^* \notin [L_0]_1 \wedge \mathsf{Bad} \wedge \mathsf{flag}_{out}^H = \mathsf{ture}, \mathcal{C} \text{ queried on } (pk_1, pk_0^*, m_b||, c^*) \text{ and } |\mathcal{L}'_H(m_b)| \geq |\mathcal{L}'_H(m_{1-b})|. \\ \text{If } pk_0^* \notin [L_0]_1 \wedge \mathsf{Bad} \wedge \mathsf{flag}_{out}^H = \mathsf{false}, \mathcal{C} \text{ did not query on } (pk_1, pk_0^*, m_b||, c^*) \text{ and } |\mathcal{L}'_H(m_b)| \geq |\mathcal{L}'_H(m_{1-b})|. \\ \text{If } pk_0^* \notin [L_0]_1 \wedge \mathsf{Bad} \wedge \mathsf{flag}_{Out}^H = \mathsf{false}, \mathcal{C} \text{ did not query on } (pk_1, pk_0^*, m_b||, c^*) \text{ and } \Pr[b = b'] = 1/2. \\ \text{We have } \operatorname{Adv}_{2\mathsf{PKE}}^{|\mathsf{IND}-\mathsf{CPA}, \cdot|}(\mathcal{A}') + q_H/|M| \leq |\mathsf{Pr}[b' = b] - 1/2| = |\mathsf{Pr}[\mathsf{flag}_{\mathsf{out}}^H = \mathsf{ture}] + 1/2\mathsf{flag}_{\mathsf{out}}^H = \mathsf{false} - 1/2| = 1/2\mathsf{Pr}[\mathsf{flag}_{\mathsf{out}}^H = \mathsf{ture}]. \end{array}$

Appendix I: Decryption Failure and proof of security for Twin-Kyber

Decryption Failure: To handle the decryption failure, for a uniformly random $\mathbf{y} \in R_q^k$ with d_y , define $\mathbf{c}_{\boldsymbol{y}} = \mathbf{y} - \mathsf{Decomp}_q(\mathsf{Comp}_q(\mathbf{y}, d_y), d_y) \mod {\pm}2^d$ as the output of distribution $\Psi_{d_y}^k$. For d_{t_1}, d_{t_0} , set distributions $\Psi_{d_{t_1}}^k$ and $\Psi_{d_{t_2}}^k$. Set the above parameters as public parameters. Since under Module-LWE assumption, $\mathbf{A}\mathbf{s}_{i}^{\mathbf{r}_{1}} + \mathbf{e}_{i}$, $\mathbf{A}^{T}\mathbf{r}_{i}^{\mathbf{r}} + \mathbf{e}_{4-i}(i=0,1)$ and $\mathbf{t}_{1}^{T}\mathbf{r}_{1} + \mathbf{t}_{0}^{T}\mathbf{r}_{0}^{\mathbf{r}} + e$ are indistinguishable from uniform random values. Then, for algorithm Enc, we have $\mathbf{t}_{1} = \mathbf{A}\mathbf{s}_{1} + \mathbf{e}_{1}$ and $\mathbf{t}_{0} = \mathbf{A}\mathbf{s}_{0} + \mathbf{e}_{0}$. For algorithm Dec, we have $\mathbf{u_1} = \mathbf{A}^T \mathbf{r_1} + \mathbf{e_3} + \mathbf{c_{u_1}}$, $\mathbf{u_0} = \mathbf{A}^T \mathbf{r_0} + \mathbf{e_4} + \mathbf{c_{u_0}}$. Thus from the decryption algorithm,

$$E = v - \mathbf{s_1}^T \mathbf{u_1} - \mathbf{s_0}^T \mathbf{u_0} = (\mathbf{e_1} + \mathbf{e'_1})^T \mathbf{r_1} + (\mathbf{e_0} + \mathbf{e'_0})^T \mathbf{r_0} + \mathbf{s_1}^T (\mathbf{e_3} + \mathbf{c_{u_1}}) + \mathbf{s_0}^T (\mathbf{e_4} + \mathbf{c_{u_0}}) + e + \mathbf{c}_v.$$

Denote every coefficient of E as $[E]_i$, for $1 \le i \le 256$. From the computation rule over R_q , all the variables in computing $[E]_i$ is independent, but they are reused in other summations for $[E]_j$ for $j \neq i$. Although the average-case distribution of each $[E]_{i}$ is the same, they are not fully independent. However, [32] and [3]³ proposed an independence assumption, that for \mathbf{x}, \mathbf{y} and \mathbf{z} chosen according to β_n^k, β_n^k and Ψ_d^k the distributions of each two coefficients of $\mathbf{x}^T \mathbf{y}$ and $\mathbf{x}^T \mathbf{z}$ are independent. Their assumptions further implies the independence of each bit of E, here we continue to use the their assumptions.

Let $\delta_i = 1 - \Pr[[m]_i = [m']_i]$ be the failure probability of the *i*-th single bits. Then $\delta_i = 1 - \frac{1}{2}$ $\Pr\left[[E]_i < \lceil \frac{q}{4} \rfloor\right]$. Under the independence assumption, the failure probability of each bit $\delta_{1bit} = \delta_i$ for any $1 \leq i \leq 255$. Thus, the total failure probability is bounded by $\delta = n \delta_{1bit}$. **Proof of Theorem 8**

 $^{^{3}}$ the assumption is implicitly given in their code

Proof. Without loss of generality, we only show the [IND-CPA, ·] security here, and the proof for [·, IND-CPA] security is similar. The proof proceeds in a sequence of hybrid games. Let game G_0 be the original [IND-CPA, ·] game, then $\operatorname{Adv}_{2\mathsf{PKE}_{\mathsf{mive}}}^{[\mathsf{IND-CPA}, \cdot]}(\mathcal{A}) = \Pr[b' = b \text{ in } G_0]$. In Game G_1 , $\operatorname{As}_1 + \mathbf{e}_1$ is replaced by a uniform random value in R_q^k . If \mathcal{A} is able to distinguish $\operatorname{As}_1 + \mathbf{e}_1$ from a unifor random value, then there exists an algorithm \mathcal{B} to solve the $k \times k$ Module-LWE problem. That is $\Pr[b' = b \text{ in } G_0] - \Pr[b' = b \text{ in } G_1] \leq \operatorname{Adv}_{k,k,\eta}^{mlwe}(\mathcal{B}) \leq \operatorname{Adv}_{k+1,k,\eta}^{mlwe}(\mathcal{B})$. In game G_2 , when generating the challenge ciphertext, $\operatorname{A}^T \mathbf{r}_1 + \mathbf{e}_3$ of line 14, and $\mathbf{t}_1^T \mathbf{r}_1 + e$ of line 17 are substituted by uniform random values in R_q^k or R_q . If \mathcal{A} is able to distinguish it the challenge ciphertext from random values, then there exists an algorithm \mathcal{B} to solve the $(k + 1) \times k$ Module-LWE problem. That is $\Pr[b' = b \text{ in } G_1] - \Pr[b' = b \text{ in } G_2] \leq \operatorname{Adv}_{k+1,k,\eta}^{mlwe}(\mathcal{B})$. Specially, given a $(k + 1) \times k$ instance, \mathcal{B} parses the first k rows (\mathbf{A}, \mathbf{b}) and the last rows $(\mathbf{t}_1, \mathbf{b}_1)$, sets the public key as $t_1 = \operatorname{Comp}_q(\operatorname{As}_1 + \mathbf{e}_1, d_{t_1})$, generates the challenge ciphertext by chosen $\mathbf{r}_0, \mathbf{e}_4, e$, and computes challenge ciphertext including $\mathbf{u}_1 = \operatorname{Comp}_q(\mathbf{b}, d_{u_1}), \mathbf{u}_0 = \operatorname{Comp}_q(\operatorname{A}^T \mathbf{r}_0 + \mathbf{e}_4, d_{u_0})$, and $v = \operatorname{Comp}_q(\mathbf{b}_1 + \mathbf{t}_0^T \mathbf{r}_0 + \lceil \frac{q}{2} \rceil c_m, d_v)$. Finally, \mathcal{B} just outputs what the adversary \mathcal{A} returns. Note that in G_2 , the challenge ciphertext is independent of b, thus $\Pr[b' = b \text{ in } G_2] = 1/2$.