
Understanding and Constructing AKE via Double-key Key
Encapsulation Mechanism

Haiyang Xue1,2,3, Xianhui Lu1,2,3, Bao Li1,2,3, Bei Liang4, and Jingnan He1,2,3

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences, Beijing, China.

haiyangxc@gmail.com,xhlu@is.ac.cn
2 Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing, China.

3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China.
4 Chalmers University of Technology, Gothenburg, Sweden

Abstract. Motivated by abstracting the common idea behind several implicitly authenticated key
exchange (AKE) protocols, we introduce a primitive that we call double-key key encapsulation
mechanism (2-key KEM). It is a special type of KEM involving two pairs of secret-public keys and
satisfying some function and security property. Such 2-key KEM serves as the core building block
and provides alternative approaches to simplify the constructions of AKE. To see the usefulness of
2-key KEM, we show how several existing constructions of AKE can be captured as 2-key KEM and
understood in a unified framework, including widely used HMQV, NAXOS, Okamoto-AKE, and
FSXY12-13 schemes. Then, we show 1) how to construct 2-key KEM from concrete assumptions,
2) how to adapt the classical Fujisaki-Okamoto transformation and KEM combiner to achieve the
security requirement of 2-key KEM, 3) an elegant Kyber-AKE over lattice using the improved
Fujisaki-Okamoto technique.

Keywords: Authenticated Key Exchange, CK Model, Key Encapsulation Mechanism

1 Introduction

Key exchange (KE), which enables two parties to securely establish a common session key while com-
municating over an insecure channel, is one of the most important and fundamental primitives in cryp-
tography. After the introduction of Diffie-Hellman key exchange in [12], cryptographers have devised a
wide selection of the KE with various use-cases. One important direction is authenticated key exchange
(AKE). The main problems that the following works focus on are specified as security models [5, 7, 25,
6, 15], efficient and provably-secure realizations [26, 27, 7, 23, 25, 28, 1, 15, 16, 35, 30, 2, 37, 3].

In an AKE protocol, each party has a pair of secret-public keys, a static/long-term public key and the
corresponding static/long-term secret key. The static public key is interrelated with a party’s identity,
which enables the other parties to verify the authentic binding between them. A party who wants
to share information with another party generates ephemeral one-time randomness which is known as
ephemeral secret keys, computes session state (which is originally not explicitly defined [7], but nowadays
it is generally agreed [25, 15] that the session state should at least contain ephemeral secret keys) from
ephemeral and static secret keys and incoming message, then outputs corresponding ephemeral public
outgoing message. Then each party uses their static secret keys and the ephemeral secret keys along with
the transcripts of the session to compute a shared session key.

Many studies have investigated the security notion of AKE including BR model and Canetti-Krawczyk
(CK) model [7]. Fujioka et al. [15] re-formulated the desirable security notion of AKE in [24], including
resistance to KCI (key compromise impersonation attack), wPFS (weak perfect forward attack) and
MEX (maximal exposure attack), as well as provable security in the CK model, and called it the CK+

security model. LaMacchia et al. [25] also proposed a very strong security model, called the eCK model.
The CK model and the eCK model are incomparable [6], and the eCK model is not stronger than the
CK model while the CK+ model is [15]. However, each of these two models, eCK and CK+ can be
theoretically seen as a strong version of the AKE security model.

To achieve a secure AKE in one of the above security models (CK, CK+, eCK), the solutions are
divided into two classes: explicit AKE and implicit AKE. The solution of explicit AKE is to explicitly
authenticate the exchanged messages between the involved parties by generally using additional prim-
itives i.e., signature or MAC to combine with the underlying KE, such as IKE [8], SIGMA [23], TLS
[22, 2] etc.; while the solution of implicit AKE initiated by [26], is to implicitly authenticate each party
by its unique ability so as to compute the resulted session key. These kinds of implicit AKE schemes
include (H)MQV [27, 24], Okamoto [28, 29], NAXOS [25], OAKE [35], FSXY variants [1, 15, 16, 34], and
AKE from lattice assumptions [37, 3].

Motivation. In this paper, we focus on the second class, i.e., constructions of implicit AKE. Based on
different techniques and assumptions, many implicit AKE protocols have been proposed in recent years
[24, 25, 15, 16, 35, 28, 29].

However, the constructing techniques and methods of the existing implicit AKE protocols are some-
what separate and the study on the highly accurate analysis of AKE’s requirement for the building
block is critically in a shortage, especially for the exact underlying primitives that serve as fundamental
building blocks and capture the common idea and technique behind the constructions and security proofs
of AKE. On the contrary, with respect to explicit AKE Canetti and Krawcayk [23, 8] gave the frame of
“SIGin-and-MAc” (later extended by [30]) which provides a good guideline for designing explicit AKE.

In fact, Boyd et al. [1] and Fujioka et al. [15, 16] initiated the research on studying frameworks of
implicit AKE. Boyd et al. firstly noticed the connection between AKE and key encapsulation mecha-
nism (KEM), then Fujioka et al. provided CK+ secure AKE protocols from chosen ciphertext (CCA)
secure KEM in the random oracle and standard models. Although the paradigm of connecting the AKE
with KEM is of great significance, it can not be applied to explain many widely-used and well-known
constructions of AKE such as HMQV and its variant [24, 35] which are built on the challenge-respond
signature; AKE protocol in [28] which results from universal hash proof [10]; as well as NAXOS [25].

Hence, one of the important problems on AKE is to give an even more general framework for con-
structing AKE that is able to not only unify and encompass the existing structures of AKE protocol
as much as possible, but also to systemize and simplify the construction and analysis methods of AKE
protocol. It will be useful and helpful for understanding the existing works and future studying on
formalization of the AKE construction structure under a unified framework, not only with some well-
studied cryptographic primitive as building block but also with simple formal functionality and security
requirements rather than heuristic ideas and techniques.

Main Observation. In order to find out what kind of the fundamental/essential building block is exactly
needed for CK+ secure AKE, let’s go back to the original KE, and show insight on how to augment the
requirements or capability of adversary so as to achieve CK+ secure AKE from KE step by step.

In fact, KEM is a KE naturally. The initiator UA sends ephemeral public key pk to responder UB .
UB computes encapsulated key and ciphertext under pk and returns ciphertext to UA. By decapsulating
ciphertext using sk, UA obtains the agreed key encapsulated by UB .

Step 1. Authentication. To make a KE be authenticated, we take unilaterally authenticating UA
for example. It is required that UA has static secret-public keys (sskA, spkA), ephemeral secret key eskA
and ephemeral public outgoing message epmA. In light of using KEM with one pair of secret-public key
to realize KE naturally, one simple and natural approach to authenticate UA with one pair of static
key as well as one pair of ephemeral secret key and ephemeral public message is to extend the KEM
with one pair of key to a KEM with two pairs of secret-public key. More specifically, for example, to
authenticate UA, UA sends ephemeral public key epkA to UB , and UB computes encapsulated key and
ciphertext under two public keys spkA and epkA. Only with both secret keys sskA and eskA, can UA
extract encapsulated key. Equipped with the 2-key KEM, the authentication property of AKE comes
down to some proper security notions of such 2-key KEM. We analyze its security notion in step 2.

Step 2. Security. One security consideration in AKE is to maintain the secrecy of shared session key
even if the adversary is allowed to query session state and key of non-target session and send message
by controlling the communications. The capability imparted to adversary with permission of querying
session state and key of non-target session directly corresponds to the adversary’s capability of having

2

access to strong1 CCA decryption queries of 2-key KEM. The adversary’s capability of sending message
corresponds to the power of adversary to adaptively choose the ephemeral public keys epkA (under which
the challenge ciphertext is computed). Another security consideration in AKE is the forward security,
in which case the adversary has the static secret key sskA. This forward security comes down to the
(chosen plaintext attack) CPA security of such 2-key KEM if sskA is leaked to adversary.

1.1 Our Contributions

– Based on the above motivations and observations, we introduce double-key key encapsulation mecha-
nism (2-key KEM) and its secure notions, i.e., [IND/OW-CCA,IND/OW-CPA] security. We also show
its distinction with previous similar notions.

– Based on the [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM, we present unified frames of CK+

secure AKE, which in turn conceptually capture the common pattern for the existing constructions
and security proof of AKE, including well-known HMQV[24], NAXOS [25], Okamoto-AKE[28, 29],
and FSXY12[15], FSXY13[16].

– We investigate the constructions of 2-key KEM based on concrete assumptions. We also show the
failure of implying [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM from KEM combiner and the
classical Fujisaki-Okamoto (FO) transformation. Hence, with a slight but vital modification by taking
public key as input to the hash step we provide improved KEM combiner and improved FO to adapt
them in our 2-key KEM setting.

– Equipped with 2-key KEM and our frame above, we propose a post-quantum AKE based on Module-
LWE assumption, which consumes less communications than Kyber [3] using frame of FSXY13 [16].

2-key Key Encapsulation Mechanism. Generally, the 2-key KEM scheme is a public key encap-
sulation with two pairs of public and secret keys, but the main distinctions are the functionality and
security.

The encapsulation and decapsulation algorithms: instead of taking as input single public key to
generate a random key K and a ciphertext C and single secret key to decapsulate ciphertext C, each
algorithm takes two public keys (pk1, pk0) to generate (C,K) and only with both two secret keys (sk1, sk0)
the decapsulation algorithm can decapsulate C.

We define the security notion of 2-key KEM/PKE in the attacking model [IND/OW-CCA, IND/OW-CPA]
which captures the idea that the 2-key KEM is secure under one secret-public key pair even if another
pair of secret-public key is generated by the adversary. Informally, the [IND/OW-CCA, ·] denotes the
security model where adversary A aims to attack the ciphertext under pk1 and pk∗0 (with its control over
the generation of pk∗0), and it is allowed to query a strong decapsulation oracle that will decapsulate
the ciphertext under pk1 and arbitrary pk′0 (generated by challenger); while [·, IND/OW-CPA] denotes
the security model where adversary B aims to attack the ciphertext under pk0 and pk∗1 (with its control
over the generation of pk∗1). We say a 2-key KEM is [IND/OW-CCA, IND/OW-CPA] secure if it is both
[IND/OW-CCA, ·] and [·, IND/OW-CPA] secure.

Compared with classical definition of CCA security, the [CCA, ·] adversary of 2-key KEM has two
main enhancements: 1) one of the challenge public keys pk∗0 , under which the challenge ciphertext is
computed, is generated by the adversary; 2) the adversary is allowed to query a strong decryption oracle,
and get decapsulation of the ciphertext under arbitrary public keys (pk∗1 , pk

′
0) where pk′0 is generated by

the challenger.
AKE from 2-key KEM. Equipped with [IND/OW-CCA, IND/OW-CPA] 2-key KEM, by taking pk1 as
static public key and pk0 as ephemeral public key, we give several general frames of CK+ secure AKE,
AKE, AKEro-pkic-lr and AKEstd, depending on different tricks. The CK+ security of our AKE is decomposed
to the [IND/OW-CCA, ·] security (corresponding to KCI and MEX security) and [·, IND/OW-CPA] secu-
rity (corresponding to wPFS) of 2-key KEM. Furthermore, to resist the leakage of partial randomness,

1 Compare with classical decryption queries of CCA security, “strong” means adversary could query decryption
oracle with ciphertext under several other public keys.

3

a function f(sskB , eskB) is required so that if one of sskB and eskB is leaked f(sskB , eskB) is still
computationally indistinguishable with a random string.

In Fig. 1 we summarize which one of our general frames is used to explain which one of the existing
AKE protocols by employing the specific tricks and assumptions. Our general protocols capture the
common idea of constructing CK+ secure AKE. And depending on 2-key KEM and different tricks, it
facilitates a number of instantiations, including HMQV [24], NAXOS [25], Okamoto [28], FSXY12[15],
and FSXY13[16].

Frameworks Models Concrete AKEs Assumptions Tricks

AKE
RO FSXY13 [16],Kyber[3] OW-CCA Modified KEM Comb.
RO AKE-2Kyber(Sec.7) M-LWE Modified FO

AKEro-pkic-lr
RO HMQV [24] OAKE [35] GDH, KEA1 Remark 1-3
RO NAXOS [25] GDH Remark 1, 2

AKEstd
Std FSXY12 [15] IND-CCA Modified KEM Comb.
Std Okamoto [29] DDH, πPRF Twisted PRF

Table 1. The unification of AKEs. Comb. is the abbreviation for combiner. GDH is the Gap-DH assumption.
RO denotes the notion of random oracle. Std is the shortened form of standard model. πPRF means the pairwise-
independent random source PRF [29].

By considering an AKE protocol in such a framework based on 2-key KEM, the complicated security
proofs of existing AKE is decomposed into several smaller cases each of which is easier to work with.
Moreover, this general scheme not only explains previous constructions, but also yields efficient AKE
from lattice problems. After giving [IND-CPA, IND-CPA] twin-kyber under Module-LWE assumption, we
obtain a post-quantum AKE with less communications.

Constructions of 2-Key KEM. In addition to show that existing AKEs imply [CCA, CPA] secure
2-key KEM, we investigate the general constructions.
Putting Public Key in the Hashing or PRF step. The Fujisaki-Okamoto (FO) [14, 18] transformation and
KEM combiner are general techniques of classical CCA security for one-key KEM. We show the failure
of implying [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM from KEM combiner and the classical FO
transformation by giving particular attacks on concrete schemes. Hence, we show that with a slight but
vital modification, when extracting encapsulated key, by taking public key as input to the hash or PRF
step, the modified KEM combiner and FO transformation work for 2-key KEM.

1.2 Strong Point of the AKE via 2-Key KEM

The main advantage of our contributions is that we use a non-interactive primitive to handle the complex
requirement of interactive protocols. The functionality and security requirements of [CCA, CPA] secure
2-key KEM are relatively easier to work with and understand. As it is known, in AKE we have to consider
complex and diverse adversaries. However, when considering the AKE under our unified framework based
on 2-key KEM, all the attacking strategies in CK+ model can be simplified to the singular security of
2-key KEM.

The non-interactive 2-key KEM helps us to highly simplify the constructions for AKE as well as
to understand the essential working mechanism. In fact, KEM is relatively well-studied and intensively
analyzed. Following the first practical CCA secure PKE [9], there have been a number of CCA se-
cure PKE/KEM schemes based on both concrete assumptions [9, 20, 33, 31, 3] and general cryptographic
primitives [11, 19, 31]. Therefore, it is possible for us to employ the established and nature technique of
classical KEM to construct 2-key KEM, and further AKE.

4

2 Preliminary

For a variable x, if x is a bit string, denote [x]i as the i-th bit of x; if x is a polynomial, denote [x]i as
the i-th coefficient of x; if x is a sets of vectors (with string or number) denote [x]i as the sets of all i-th
element of vectors in x;

2.1 CK+ Security Model

We recall the CK+ model introduced by [24] and later refined by [15, 16], which is a CK [7] model
integrated with the weak PFS, resistance to KCI and MEX properties. Since we focus on two-pass
protocols in this paper, for simplicity, we show the model specified to two pass protocols.

In AKE protocol, Ui denotes a party indexed by i, who is modeled as probabilistic polynomial time
(PPT) interactive Turing machines. We assume that each party Ui owns a static pair of secret-public keys
(sski, spki), where the static public key is linked to Ui’s identity, using some systems i.e. PKI, such that
the other parties can verify the authentic binding between them. We do not require the well-formness
of static public key, in particular, a corrupted party can adaptively register any static public key of its
choice.

Session. Each party can be activated to run an instance called a session. A party can be activated
to initiate the session by an incoming message of the forms (Π, I, UA, UB) or respond to an incoming
message of the forms (Π,R, UB , UA, XA), where Π is a protocol identifier, I and R are role identifiers
corresponding to initiator and responder. Activated with (Π, I, UA, UB), UA is called the session initiator.
Activated with (Π,R, UB , UA, XA), UB is called the session responder.

According to the specification of AKE, the party creates randomness which is generally called
ephemeral secret key, computes and maintains a session state, generates outgoing messages, and com-
pletes the session by outputting a session key and erasing the session state. Note that Canetti-Krawczyk
[7] defines session state as session-specific secret information but leaves it up to a protocol to specify
which information is included in session state; LaMacchia et al. [25] explicitly set all random coins used
by a party in a session as session-specific secret information and call it ephemeral secret key. Here we
require that the session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initiator UA creates a session
state and outputs XA, then may receive an incoming message of the forms (Π, I, UA, UB , XA, XB) from
the responder UB , then may computes the session key SK. On the contrary, the responder UB outputs
XB , and may compute the session key SK. We say that a session is completed if its owner computes the
session key.

A session is associated with its owner, a peer, and a session identifier. If UA is the initiator, the session
identifier is sid = (Π, I, UA, UB , XA) or sid = (Π, I, UA, UB , XA, XB), which denotes UA as an owner
and UB as a peer. If UB is the responder, the session is identified by sid = (Π,R, UB , UA, XA, XB),
which denotes UB as an owner and UA as a peer. The matching session of (Π, I, UA, UB , XA, XB) is
(Π,R, UB , UA, XA, XB) and vice versa.

Adversary. The adversary A is modeled in the following to capture real attacks in open networks,
including the control of communication and the access to some of the secret information.

– Send(message): A could send message in one of the forms: (Π, I, UA, UB), (Π,R, UB , UA, XA), or
(Π, I, UA, UB , XA, XB), and obtains the response.

– SessionKeyReveal(sid): if the session sid is completed, A obtains the session key SK for sid.

– SessionStateReveal(sid): The adversary A obtains the session state of the owner of sid if the session
is not completed. The session state includes all ephemeral secret keys and intermediate computation
results except for immediately erased information but does not include the static secret key.

– Corrupt(Ui): By this query, A learns all information of UA (including the static secret, session states
and session keys stored at UA); in addition, from the moment UA is corrupted all its actions may be
controlled by A.

5

Freshness. Let sid∗ = (Π, I, UA, UB , XA, XB) or (Π, I, UA, UB , XA, XB) be a completed session between

honest users UA and UB . If the matching session of sid∗ exists, denote it by sid∗. We say session sid∗ is fresh
if A does not queries: 1) SessionStateReveal(sid∗), SessionKeyReveal(sid∗), and SessionStateReveal(sid∗),

SessionKeyReveal(sid∗) if sid∗ exists; 2) SessionStateReveal(sid∗) and SessionKeyReveal(sid∗) if sid∗ does
not exist.
Security Experiment. The adversary A could make a sequence of the queries described above. During
the experiment, A makes the query of Test(sid∗), where sid∗ must be a fresh session. Test(sid∗) select
random bit b ∈U {0, 1}, and return the session key held by sid∗ if b = 0; and return a random key if
b = 1.

The experiment continues until A returns b′ as a guess of b. The adversary A wins the game if the
test session sid∗ is still fresh and b′ = b. The advantage of the adversary A is defined as Advck+

Π (A) =
Pr [A wins]− 1

2 .

Definition 1. We say that a AKE protocol Π is secure in the CK+ model if the following conditions
hold:
(Correctness:) if two honest parties complete matching sessions, then they both compute the same session
key except with negligible probability.
(Soundness:) for any PPT adversary A, Advck+

Π (A) is negligible for the test session sid∗,

1. the static secret key of the owner of sid∗ is given to A, if sid∗ does not exist.
2. the ephemeral secret key of the owner of sid∗ is given to A, if sid∗ does not exist.
3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are given to A, if sid∗

exists.
4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid∗ are given to A, if sid∗ exists.
5. the static secret key of the owner of sid∗ and the static secret key of the peer of sid∗ are given to A,

if sid∗ exists.
6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗ are given to A, if sid∗

exists.

As indicated in Table 2, the CK+ model captures all non-trivial patterns of exposure of static and
ephemeral secret keys listed in Definition 1, and these ten cases cover wPFS, resistance to KCI, and
MEX as follows: E1, E4, E7-1, E7-2, E8-1 and E8-2 capture KCI, since the adversary obtains either only
the static secret key of one party or both the static secret key of one party and the ephemeral secret
key of the other party of the test session. E5 captures wPFS. E2, E3 and E6 capture MEX, since the
adversary obtains the ephemeral secret key of one party of the test session at least.

Event Case sid∗ sid∗ sskA eskA eskB sskB Security

E1 1 A No
√

× - × KCI

E2 2 A No ×
√

- × MEX

E3 2 B No × -
√

× MEX

E4 1 B No × - ×
√

KCI

E5 5 A or B Yes
√

× ×
√

wPFS

E6 4 A or B Yes ×
√ √

× MEX

E7-1 3 A Yes
√

×
√

× KCI

E7-2 3 B Yes ×
√

×
√

KCI

E8-1 6 A Yes ×
√

×
√

KCI

E8-2 6 B Yes
√

×
√

× KCI

Table 2. The behavior of AKE adversary in CK+ model. sid∗ is the matching session of sid∗, if it exists. “Yes”
means that there exists sid∗, “No” means do not. sskA(sskB) means the static secret key of A(B). eskA(eskB)
is the ephemeral secret key of A(B) in sid∗ or sid∗ if there exists. “

√
” means the secret key may be revealed to

adversary, “×” means the secret key is not revealed. “-” means the secret key does not exist.

6

3 2-Key Key Encapsulation Mechanism

In this section, we introduce the notions of double-key encapsulation and define the security of KEM in
double-key setting. We also give some analysis and show differences with previous similar definitions.

3.1 2-Key Key Encapsulation Mechanism

Generally, a double-key (2-key) KEM is a public key encapsulation with two pairs of public and se-
cret keys. Formally, a 2-key KEM 2KEM=(KeyGen1, KeyGen0, Encaps, Decaps) is a quadruple of PPT
algorithms together with a key space K.

– KeyGen1(λ, pp) : on inputs security parameter λ, and public parameters pp, output a pair of public-
secret keys (pk1, sk1). In order to show the randomness that is used, we denote key generation
algorithm as KeyGen1(λ, pp; r). For simplicity, sometimes we omit the input security parameter λ
and public parameter pp and denote it as KeyGen1(r) directly.

– KeyGen0(λ) : on inputs security parameter λ output a pair of public and secret keys (pk0, sk0).
– Encaps(pk1, pk0; auxe) : on input public keys pk1, pk0 and auxiliary input auxe (if there is), output

ciphertext c and encapsulated key k in key space K. Sometimes, we explicitly add the randomness r
and denote it as Encaps(pk1, pk0, r; auxe).

– Decaps(sk1, sk0, c; auxd) : on input secret keys sk0, sk1, auxiliary input auxd (if there is) and c, output
key k.

Correctness. For (pk1, sk1)← KeyGen1(λ, pp), (pk0, sk0)← KeyGen0(λ, pp) and (c, k)← Encaps(pk1, pk0),
we require that Decaps(sk1, sk0, c) = k holds with all but negligible probability.
Security. We consider two kinds of security i.e., indistinguishability and one-wayness in the attacking
model [ATK1,ATK0]. More precisely, in our [ATK1,ATK0] security model for 2KEM, we consider two
adversaries, i.e., A = (A1,A2) attacking pk1 (controlling the generation of pk∗0) and B = (B1,B2)
attacking pk0 (controlling the generation of pk∗1). In Figure 1 below we show the security games of
one-wayness and indistinguishable security corresponding to [IND/OW-ATK1, ·] and [·, IND/OW-ATK0]
respectively.

To be clear, the auxiliary inputs auxe and auxd may contain public part, called public auxiliary input,
and secret part, called secret auxiliary input. In the security games, both the challenger and adversary
have public auxiliary input, while only the challenger has the secret auxiliary input. For simplicity, we
do not explicitly show auxe and auxd in the security games.

On the i-th query of Oleak0 , the challenger generates (pki0, sk
i
0) ← KeyGen0(ri0), sets L0 = L0 ∪

{(pki0, ski0, ri0)} and returns (pki0, sk
i
0, r

i
0) to adversary A. On the i-th query of Oleak1 , the challenger

generates (pki1, sk
i
1)← KeyGen1(ri1), sets L1 = L1∪{(pki1, ski1, ri1)} and returns (pki1, sk

i
1, r

i
1) to adversary

B.
Depending on the definition of oracle OATK1 the adversary A accesses, and OATK0 that the adversary

B accesses, we get CPA and CCA notions respectively.

– if OATK1(pk′0,c
′) = −, it implies CPA notion;

– if OATK1(pk′0,c
′) 6= −, it works as following: If pk′0 ∈ [L0]1 ∧ (c′ 6= c∗ ∨ pk′0 6= pk∗0), compute k′ ←

Decaps(sk1, sk
′
0, c
′), and return the corresponding k′, otherwise return ⊥. This case implies CCA

notion.
– if OATK0(pk′1,c

′) = −, it implies CPA notion;
– if OATK0(pk′1,c

′) 6= −, it works as following: If pk′1 ∈ [L1]1 ∧ (c′ 6= c∗ ∨ pk′1 6= pk∗1), compute k′ ←
Decaps(sk′1, sk0, c

′), and return the corresponding k′, otherwise return ⊥. This case implies CCA
notion.

Let A = (A1,A2) be an adversary against pk1 of 2KEM. We define the advantage of A winning in

the game IND-ATK1 and OW-ATK1 respectively as: Adv
[IND-ATK1,·]
2KEM (A) =

∣∣∣Pr[IND-ATK1A ⇒ 1]− 1
2

∣∣∣, and

Adv
[OW-ATK1,·]
2KEM (A) = Pr[OW-ATK1A ⇒ 1], where game [IND-ATK1, ·] and [OW-ATK1, ·] are described in

Figure 1.

7

Game [IND-ATK1, ·] on pk1 Game [·, IND-ATK0] on pk0
01 (pk1, sk1)← KeyGen1(pp); 14 (pk0, sk0)← KeyGen0(pp)
02 L0 = {(−,−,−)} 15 L1 = {(−,−,−)}
03 (state, pk∗0)← AOATK1

,Oleak0
1 (pk1) 16 (state, pk∗1)← BOATK0

,Oleak1
1 (pk0);

04 b← {0, 1}; 17 b← {0, 1};
05 (c∗, k∗0)← Encaps(pk1, pk

∗
0), k∗1 ← K; 18 (c∗, k∗0)← Encaps(pk∗1 , pk0), k∗1 ← K;

06 b′ ← A
OATK1,Oleak0
2 (state, c∗, k∗b); 19 b′ ← BOATK0

,Oleak1
2 (state, c∗, k∗b);

07 return b′
?
= b 20 return b′

?
= b

Game [OW-ATK1, ·] on pk1 Game [·, OW-ATK0] on pk0
08 (pk1, sk1)← KeyGen1(pp); 21 (pk0, sk0)← KeyGen0(pp)
09 L0 = {(−,−,−)} 22 L1 = {(−,−,−)}
10 (state, pk∗0)← AOATK1

,Oleak0
1 (pk1) 23 (state, pk∗1)← BOATK0

,Oleak1
1 (pk0);

11 (c∗, k∗)← Encaps(pk1, pk
∗
0); 24 (c∗, k∗)← Encaps(pk∗1 , pk0);

12 k′ ← AOATK1
,Oleak0

2 (state, c∗); 25 k′ ← BOATK0
,Oleak1

2 (state, c∗);

13 return k′
?
= k∗ 26 return k′

?
= k∗

Fig. 1. The [ATK1, ·], and [·,ATK0] games of 2KEM for adversaries A and B. The oracles Oleak0 , OATK1 , Oleak1 ,
and OATK0 are defined in the following.

We say that 2KEM is [IND-ATK1, ·] secure, if Adv
[IND-ATK1,·]
2KEM (A) is negligible; that 2KEM is [OW-ATK1, ·]

secure, if Adv
[OW-ATK1,·]
2KEM (A) is negligible, for any PPT adversary A. The [·, IND-ATK0] and [·,OW-ATK0]

security can be defined in the same way. Here to avoid repetition we omit their description.

[ATK1,ATK0] security. The scheme 2KEM is called [ATK1,ATK0] secure if it is both [ATK1, ·] and
[·,ATK0] secure for any PPT algorithms A and B. By the combination of adversaries A and B attacking
different security (i.e., indistinguishability and one-wayness), we could get 16 different definitions of
security for 2-key KEM.

What we concern in this paper is the [CCA, CPA] security in both indistinguishability and one-
wayness setting. For simplicity in the following parts we abbreviate the security model as [IND/OW-CCA,
IND/OW-CPA].

3.2 Differences between [CCA, ·] Security and Previous Definitions

In order to avoid confusion, we re-clarify the definition of [IND/OW-CCA, ·] security and analyze its differ-
ence with previous similar notions, including classical CCA security, KEM combiner [17], and completely
non-malleable scheme[13].

Compared with classical CCA adversary, the [CCA, ·] adversary of 2-key KEM 1) has the capability of
choosing one of the challenge public key pk∗0 ; 2) could query a strong decryption oracle, which decapsulates
the ciphertext under several public keys (pk∗1 , pk

′
0) where pk′0 is generated by the challenger. While in

the classical definition of decapsulation oracle the adversary could only query decapsulation oracle with
ciphertext under the challenge public keys (pk∗1 , pk

∗
0).

Very recently, Giacon et. al [17] study combiners for KEMs. That is, given a set of KEMs, an unknown
subset of which might be arbitrarily insecure, Giacon et. al investigate how they can be combined to
form a single KEM that is secure if at least one ingredient KEM is. The KEM combiners treated by
Giacon et. al have a parallel structure: If the number of KEMs to be combined is n, a public key of the
resulting KEM consists of a vector of n public keys; likewise for secret keys. The encapsulation procedure
performs n independent encapsulations, one for each combined KEM. The ciphertext of the resulting
KEM is simply the concatenation of all generated ciphertexts. The session key is obtained as a function
of keys and ciphertexts. Although from the literature our 2-key KEM looks like the two KEM combiner,
the security requirement and concrete constructions between them are completely different. Since the
two KEM combiner considers the problem that if one of two KEMs is insecure and the other one is

8

CCA secure, how to combine them to obtain a CCA secure single KEM. In fact, the adversary of KEM
combiner security model is the classical CCA adversary (it can only query the decryption oracle under
certain public keys). Actually, in Section 6.1, we show there exists [CCA, ·] adversary to attack a CCA
secure two KEM combiner.

Aiming to construct non-malleable commitments, Fischlin [13] considered completely non-malleable
(NM) schemes. The complete NM scheme is later extended to indistinguishability setting by Barbosa
and Farshim [4] with a strong decryption oracle, which allows the adversary to queries with ciphertext
under arbitrary public key of its choice. Note that our [CCA, ·] is also modeled to allow the adversary
to query a strong (but weaker than complete NM) decapsulation oracle with ciphertext under several
public keys that are chosen by challenger instead of by adversary. On the other hand, the complete NM
adversary is not allowed to choose part of challenge public key, while [CCA, ·] is.

Based on the above observations, we give comparison among these different definitions by considering
two public keys in Table 3. For convenience, we consider classical CCA and complete NM schemes in
which public keys are expressed as two public keys (pk1, pk0) and let KEM combiner be two combiner
of KEM. The differences among security requirements are the capability of adversary, namely, whether
the adversary is allowed to choose part of the challenge public keys, or under which public keys the
ciphertexts that adversary is allowed to query decryption oracle with are computed.

Definitions Cha. PK (pk∗1 , pk
∗
0) Cha. ciphertext c∗ ODec((pk1, pk0), c′)

Classical CCA (pk∗1 , pk
∗
0)← C c∗ under (pk∗1 , pk

∗
0) (pk1, pk0) = (pk∗1 , pk

∗
0)

KEM Combiner [17] (pk∗1 , pk
∗
0)← C, A(sk∗0) c∗1||c∗0, c∗i under pk∗i (pk1, pk0) = (pk∗1 , pk

∗
0)

Complete NM [13] (pk∗1 , pk
∗
0)← C c∗ under (pk∗1 , pk

∗
0) (pk1, pk0)← A

[CCA, ·] pk∗1 ← C, pk∗0 ← A c∗ under (pk∗1 , pk
∗
0) pk1 = pk∗1 , pk0 ← C

Table 3. The differences of related definitions. “Cha.” is the abbreviation of “challenge”. C denote the challenger
and A denote the adversary. We use A(sk∗0) to denote that A breaks the KEM under pk∗0 . In both Classical CCA
and KEM combiner the decapsulation oracle only returns when (pk1, pk0) = (pk∗1 , pk

∗
0), while in Complete NM

(pk1, pk0) could be arbitrary public keys chosen by adversary, and in [CCA, ·], pk0 could be arbitrary public key
chosen by challenger.

3.3 Basic Definitions and Results related to 2-Key KEM

[CCA, ·] security with non-adaptive adversary We can define a weak [CCA, ·] adversary, who is
not able to adaptively choose the challenge public key. In this case, taking the adversary A attacking
pk1 as an example, the challenge public key pk∗0 is generated by challenger instead of A, which means
pk∗0 ∈ [L0]1.
Public Key Independent Ciphertext. The concept of public-key-independent-ciphertext (PKIC)
was first proposed in [34]. We extend it to 2-key KEM setting. The PKIC 2-key KEM allows a ciphertext
to be generated independently from one of two public keys, while the encapsulated key underlay in such
ciphertext to be generated with the randomness and both two public keys. More precisely, algorithm
(c, k)← Encaps(pk1, pk0, r) can be realized in two steps: in step 1, ciphertex c is generated from pk1 and
randomness r. We precisely denote it as c← Encaps0(pk1, -, r); in step 2, the encapsulated key k in c is
generated from r, pk1, and pk0. We precisely denote it as k ← Encaps1(pk1, pk0, r).
Classical one-key KEM and 2-key KEM. Note that given a concrete 2-key KEM, usually it is
not obvious and natural to regress to one-key KEM by setting pk0 = -. However given any classical
one-key KEM, it can be seen as a 2-key KEM with KeyGen0 not in use and pk0 = -. At that time,
the [OW/IND-CCA, ·] security of this 2-key KEM return to the classical OW/IND-CCA security of the
underlying KEM.
Min-Entropy. In case of 2-key KEM with PPT adversary A, for (pk1, sk1)← KeyGen1 and pk0 ← A or
(pk0, sk0) ← KeyGen0 and pk1 ← A, we define the min-entropy of Encaps(pk1, pk0) by γ(pk1, pk0,A) =

9

− log maxc∈C Pr[c = Encaps(pk1, pk0)]. We say that KEM is γ-spread if for every (pk1, sk1) ← KeyGen1
and pk0 ← A or (pk0, sk0) ← KeyGen0 and pk1 ← A, γ(pk1, pk0,A) ≥ γ, which means for every
ciphertext c ∈ C, it has Pr[c = Encaps(pk1, pk0)] ≤ 2−γ .

4 Authenticated Key Exchange from 2-Key KEM

In this section, we propose CK+ secure AKEs from [CCA,CPA] secure 2-key KEM in both random oracle
and standard models. Before showing our AKEs, we need a primitive of random function with half of
leakage, that is used by several existing AKEs.

Definition 2 (Random Function with half of leakage (hl-RF)). Let f : Dsk × Db → R be a
function from domain Dsk × Db to R. Denote KeyGen → Dsk × Dpk as key generation algorithm for
some KEM. Let Db,R be the uniformly distributions over Db, R. It is called (ε1, ε2) hl-RF with respect
to KeyGen, if for (pk, sk)← KeyGen, the following distributions are computational indistinguishable with
advantage ε1, ε2.

{(pk, sk, f(sk, b))|b← Db} =ε1 {(pk, sk, U)|U ← R};
{(pk, b, f(sk, b))|b← Db} =ε2 {(pk, b, U)|b← Db, U ← R}.

The hk-RF can be achieved in both random oracle model and standard model.

– In the random oracle model, if f is a hash function, without the knowledge of b, the output of f is
totally random; if KEM with respect to KeyGen is secure, without the knowledge of sk the output
of f is computational indistinguishable with a random string (otherwise the adversary must query
random oracle with sk which against the security of KEM) given pk. Then equation 2 holds. This
structure is known as NAXOS trick [25].

– Let F ′ : Db × {0, 1}λ → R and F ′′ : Dsk × Db → R be two pseudo random functions (PRFs). If
assume KeyGen outputs an additional string s ← {0, 1}λ, after obtaining (pk, sk), set sk = (sk||s).
If f(sk, b) = F ′b(1

λ) ⊕ F ′′s (b), then even given pk, without the knowledge of s or b, f(sk, b) is com-
putational indistinguishable with random distribution over R. This is known as twisted PRF trick
[15][28].

4.1 AKE from 2-key KEM in Random Oracle Model

Roadmap: We first give a basic AKE from two [OW-CCA, OW-CPA] secure 2-key KEMs. Utilizing extra
properties of 2-key KEM, like PKIC or resistance of leakage of partial randomness, we then present two
elegant AKEs based on 2-key KEM with different property.

Let 2KEM = (KeyGen1,KeyGen0,Encaps,Decaps) be a [OW-CCA, OW-CPA] secure 2-key KEM with
secret key space Dsk1 × Dsk0 , random space R. Let H : {0, 1}∗ → {0, 1}λ be hash function, fA :
Dsk1 ×{0, 1}∗ → R and fB : Dsk1 ×{0, 1}∗ → R be hl-RFs. The CK+ secure AKE is presented in Figure
2.
Stage 0: static secret-public key pair and public parameters. Each user’s static secret-public
key pair is generated using KeyGen1. Sample one pair of key (cpk0, csk0) ← KeyGen0 (which need not
to be randomly generated). Set cpk0 as the predetermined ephemeral public key which will be used by
initiator afterwards and csk0 as the predetermined ephemeral secret key that will be used by responder.
Let (cpk0, csk0) be parts of public parameters.
Stage 1: Initiator UA generates two randomness rA, rA0; it computes (CB ,KB) under public key
pkB and predetermined cpk0 with randomness fA(skA, rA), and generates ephemeral secret-public key
(pkA0, skA0)← KeyGen0(rA0). Then it sends CB , pkA0 to UB .
Stage 2: Responder UB generates randomness rB ; it computes (CA,KA) under public keys pkA and pkA0

with randomness fB(skB , rB); UB sends CA to UA and de-encapsulates CB using skB and predetermined
csk0 to obtain K ′B ; it then computes SK = H(UA, UB , pkA, pkB , CB , pkA0, CA,KA,K

′
B), and erases K ′B .

10

Stage 3: UA de-encapsulates CA using skA and skA0 to obtain K ′A and computes SK = H(UA, UB , pkA,
pkB , CB , pkA0, CA,K

′
A,KB).

The session state of sid owned by UA consists of ephemeral secret key rA0, rA, decapsulated key K ′A
and encapsulated key KB ; The session state of sid owned by UB consists of ephemeral secrete key rB
and encapsulated key KA.

UA UB

(pkA, skA)← KeyGen1 (pkB , skB)← KeyGen1

rA ← {0, 1}∗, rA0 ← {0, 1}∗ rB ← {0, 1}∗

RA := fA(skA, rA)

(CB ,KB)← Encaps(pkB , cpk0, RA) RB := fB(skB , rB)

(pkA0, skA0)← KeyGen0(rA0) CB , pkA0 (CA,KA)← Encaps(pkA, pkA0, RB)

K′A ← Decaps(skA, skA0, CA) CA K′B ← Decaps(skB , csk0, CB)

SK = H(si,K′A,KB) SK = H(si,KA,K
′
B)

Fig. 2. AKE from [OW-CCA, OW-CPA] secure 2KEM in random oracle model. cpk0, csk0 are predetermined and
default ephemeral keys and they are part of the public parameters. si here is (UA, UB , pkA, pkB , CB , pkA0, CA).

Theorem 1. If the underlying 2KEM is [OW-CCA,OW-CPA] secure and γ-spread, fA, fB are (ε1, ε2)
hl-RFs, and there are N users in the AKE protocol and the upbound of sessions between two users is l,
for any PPT adversary A against AKE with totally q times of CK+ queries, there exists S s.t.,

Advck+
AKE(A) ≤ 1

2
+ min

{
N2l ·Adv

[OW-CCA,·]
2KEM (S) +N2lq · (ε1 + ε2 + 2−γ),

N2l ·Adv
[·,OW-CPA]
2KEM (S) +N2lq · ε2

}
.

Proof of Theorem 1. Let Succ be the event that the guess of A against freshed test session is correct.
Let AskH be the event that A poses (UA, UB , pkA, pkB , CB , pkA0, CA,KA,KB) to H, where CB , pkA0, CA
are the views of the test session and KA,KB are the keys encapsulated in the test session. Let AskH be
the complement of AskH. Then,

Pr[Succ] = Pr[Succ ∧ AskH] + Pr[Succ ∧ AskH] ≤ Pr[Succ ∧ AskH] + Pr[AskH],

where the probability is taken over the randomness used in CK+ experiment.
We then show that Pr[Succ ∧ AskH] ≤ 1/2 (as in Lemma 1) and Pr[AskH] is negligible (as in Lemma

2) in all the events (listed in Table 2) of CK+ model. Followed by Lemma 1 and Lemma 2, we acheive
the security of AKE in CK+ model. Thus, we only need to prove Lemma 1 and Lemma 2.

Lemma 1. If H is modeled as a random oracle, we have Pr[Succ ∧ AskH] ≤ 1/2.

Proof of Lemma 1: If Pr[AskH] = 0 then the claim is straightforward, otherwise we have Pr[Succ∧AskH] =
Pr[Succ|AskH]Pr[AskH] ≤ Pr[Succ|AskH]. Let sid be any completed session owned by an honest party such

that sid 6= sid∗ and sid is not matching sid∗. The inputs to sid are different from those to sid∗ and sid∗ (if
there exists the matching session of sid∗). If A does not explicitly query the view and keys to oracle, then
H(UA, UB , pkA, pkB , CB , pkA0, CA,KA,KB) is completely random from A’s point of view. Therefore, the
probability that A wins when AskH does not occur is exactly 1/2.

Lemma 2. If the underlying 2KEM is [OW-CCA,OW-CPA] secure, the probability of event AskH defined
above is negligible. Precisely,

Pr[AskH] ≤ min

{
N2l ·Adv

[OW-CCA,·]
2KEM (S) +N2lq · (ε1 + ε2 + 2−γ),

N2l ·Adv
[·,OW-CPA]
2KEM (S) +N2lq · ε2

}
.

11

Events sid∗ sid∗ sskA eskA eskB sskB Bounds

AskH ∧ E1 A No
√

× - × Adv
[OW-CCA,·]
2KEM , pk1 = pkB , pk∗0 = cpk0

AskH ∧ E2 A No ×
√

- × Adv
[OW-CCA,·]
2KEM , pk1 = pkB , pk∗0 = cpk0

AskH ∧ E3 B No × -
√

× Adv
[OW-CCA,·]
2KEM , pk1 = pkA, pk∗0 ← A

AskH ∧ E4 B No × - ×
√

Adv
[OW-CCA,·]
2KEM , pk1 = pkA, pk∗0 ← A

AskH ∧ E5 A/B Yes
√

× ×
√

Adv
[·,OW-CPA]
2KEM , pk0 = pk0(sid∗) pk∗1 ∈ [L1]1

AskH ∧ E6 A/B Yes ×
√ √

× Adv
[OW-CCA,·]
2KEM , pk1 = pkA, pk

∗
0 ∈ [L0]1

AskH ∧ E7-1 A Yes
√

×
√

× Adv
[OW-CCA,·]
2KEM , pk1 = pkB pk∗0 = cpk0

AskH ∧ E7-2 B Yes ×
√

×
√

Adv
[OW-CCA,·]
2KEM , pk1 = pkA, pk∗0 ∈ [L0]1

AskH ∧ E8-1 A Yes ×
√

×
√

Adv
[OW-CCA,·]
2KEM , pk1 = pkA, pk∗0 ∈ [L0]1

AskH ∧ E8-2 B Yes
√

×
√

× Adv
[OW-CCA,·]
2KEM , pk1 = pkB , pk∗0 = cpk0

Table 4. The bounds of AskH ∧ Askh in the proof of Lemma 2. Refer Table 2 for the meanings of notions.

Please refer Appendix A for the formal proof. we give a sketch of proof here. In the following, to bound
Pr[AskH], we work with the events listed in Table 4.

Due to the [OW-CCA, ·] security of 2KEM with pk1 = pkA and pk∗0 generated by A, the probability of
events AskH ∧ E3 and AskH ∧ E4 is negligible; Due to the [OW-CCA, ·] security of KEM with pk1 = pkB
and pk∗0 = cpk0, the probability of events AskH∧E1, AskH∧E2, AskH∧E7-1 and AskH∧E8-2 is negligible;
Due to the [OW-CCA, ·] security of 2KEM with pk1 = pkA and pk∗0 ∈ [L0]1, the probability of events
AskH∧E6, AskH∧E7-2 and AskH∧E8-1 is negligible. Due to the [·,OW-CPA] security with pk∗1 ∈ [L1]1,
the probability of event AskH ∧ E5 is negligible.

Here, we only take AskH∧E3 as an example to explain in detail. For the other cases we can deal with
them in a similar way. In the event E3, the test session sid∗ has no matching session, and the ephemeral
secret keys rB of UB is given to A. In case of AskH∧E3, the [OW-CCA, ·] adversary S performs as follows.
It simulates the CK+ games, and transfers the probability that the event AskH performed by A occurs
to the advantage of attacking [OW-CCA, ·] security.

In order to simulate the random oracles, S maintains two lists for H oracle and SessionKeyReveal
respectively. H-oracle and SessionKeyReveal are related, which means the adversary may ask Session-
KeyReveal without the encapsulated keys at first, and then may ask H-oracle with the encapsulated keys.
Thus, the reduction must ensure consistency with the random oracle queries to H and SessionKeyReveal.
The decryption oracle for [OW-CCA, ·] game would help to maintain the consistency of H-oracle and
SessionKeyReveal.

On receiving the public key pk1 from the [OW-CCA, ·] challenger, to simulate the CK+ game, S
randomly chooses two parties UA, UB and the i-th session as a guess of the test session with success
probability 1/N2l. S, picks one preset (cpk0, csk0) ← KeyGen0 as public parameters, runs KeyGen1 to
set all the static secret and public key pairs (pkP , skP) for all N users UP except for UA. Specially, S
sets the static secret and public key pairs (pkB , skB) for UB , and sets pkA = pk1.

Without knowing the secret key of UA, S chooses totally random rA as part of ephemeral secret key
and totally random RA for Encaps. Since fA is (ε1, ε2) hl-RF, the difference between simulation with
modification of rA and real game is bounded by ε1. When a ephemeral public key pkP0 is needed, S
queries (pki0, sk

i
0, r

i
0)← Oleak0 and sets pkP0 = pki0. When a session state revealed to a session owned by

UA, is queried, S returns rA and ri0 of this session as part of ephemeral secret key.

On receiving the i-th session (C ′B , pk
∗
0) from UA (that is sent by A in the CK+ games), S returns

pk∗0 to the [OW-CCA, ·] challenger and receives the challenge ciphertext C∗ under public key pk1 and
pk∗0 . Then S returns C∗ to UA as the response of i-th session from UB . S chooses a totally independent
randomness rB as the ephemeral secret key of UB for C∗ and leaks it to adversary A. Since fB is (ε1, ε2)
hl-RF, the difference between simulation with modification of rB and real game is bounded by ε2.

S simulates the oracle queries of A and maintains the hash lists. Specially, when AskH happens, which
means A poses (UA, UB , pkA, pkB , C

′
B , pk

∗
0 , C

∗,KA,KB) to H, where C ′B , pk
∗
0 , C

∗ are the views of the

12

test session and KB is the key encapsulated in C ′B , S returns KA as the guess of K∗ encapsulated in
C∗, which contradicts with the [OW-CCA, ·] security for pk1 = pkA, pk∗0 ← A. ut

4.1.1 If 2-key KEM is PKIC. As we notice in AKE, the session state of sid owned by UB does
not contain decapsulated key K ′B . If the underlying 2-key KEM is PKIC (which is defined in Sec. 3.3),
and UB also sends ephemeral public key pkB0 out in every session, K ′B is encapsulated under two public
keys pkB and pkB0, then K ′B could be included in session state, and the predetermined ephemeral public
key cpk0 can be omitted. Let 2KEMpkic = (KeyGen1,KeyGen0,Encaps0,Encaps1,Decaps) be PKIC and
[OW-CCA,OW-CPA] secure 2-key KEM. The AKE can be modified to include K ′B as session state by
1)replacing 2KEM with 2KEMpkic; 2) requiring UB to generate a fresh (pkB0, skB0)← KeyGen0 and send
out ephemeral public key pkB0; 2) encapsulating and separating (CB ,KB) ← Encaps(pkB , pkB0, RA) in
two steps and computing CB ← Encaps0(pkB , -, RA) and KB ← Encaps1(pkB , pkB0, RA). The modified
protocol AKEro-pkic is shown in Figure 3.

Note that the encapsulation algorithm of PKIC 2-key KEM can be split into two steps. Since the
generation of ciphertext CB does not require pkB0, we denote it as CB ← Encaps0(pkB , -, RA). The
computation of encapsulated key KB requires pkB0, and we denote it as KB ← Encaps1(pkB , pkB0, RA).

UA UB

(pkA, skA)← KeyGen1 (pkB , skB)← KeyGen1

rA ← {0, 1}∗, rA0 ← {0, 1}∗ rB ← {0, 1}∗, rB0 ← {0, 1}∗

RA := fA(skA, rA)

CB ← Encaps0(pkB ,−, RA) RB := fB(skB , rB)

(pkA0, skA0)← KeyGen0(rA0) CB , pkA0 (CA,KA)← Encaps(pkA, pkA0, RB)

CA, pkB0 (pkB0, skB0)← KeyGen0(rB0)

K′A ← Decaps(skA, skA0, CA)

KB ← Encaps1(pkB , pkB0, RA) K′B ← Decaps(skB , skB0, CB)

SK ← H(si,K′A,KB) SK ← H(si,KA,K
′
B)

Fig. 3. AKEro-pkic from PKIC [OW-CCA, OW-CPA] secure 2KEM. Here si = (UA, UB , pkA, pkB , CB , pkA0,
CA, pkB0). The boxed argument is the difference with AKE

Since the proof mainly follows that of Theorem 1, we only show the difference here. The main difference
is the analysis of Pr[AskH] in Lemma 2. Now, the probability of events AskH∧E1, AskH∧E2, AskH∧E7-1,
AskH ∧ E8-2 is bounded by the [OW-CCA, ·] security of 2KEMpkic with pk∗0 chosen by A rather than the
predetermined cpk0. Precisely, in those events, when the adversary queries the session state of UB whose
secret key is unknown to simulator S, in AKE, S queries the decryption oracle of 2KEM with cpk0 and
CB (when adversary queries Send(Π,R,UB , UP , CB , pkA0)), while in AKEpkic, S queries the decryption
oracle of 2KEMpkic with (pkB0, CB) chosen by A. This modification does not affect the proof of security.

4.1.2 If PKIC 2-key KEM is even Secure with Leakage of Partial Randomness We can
further refine the framework AKEro-pkic based on two observations: 1) From the proof of Theorem 1
(especially Lemma 2), we can see that the only purpose of fA and fB is to preserve the [OW-CCA, ·]
security with pk1 = pkA and the [·,OW-CPA] security with pk0 = pkA0 even if part of randomness, rB
or skB is leaked to the adversary. If the underlying 2-key KEM itself is strong enough to preserve the
[OW-CCA,OW-CPA] security with respect to some function fA(skA, rA) (resp. fB(skB , rA)), and leakage
of skA or rA for fixed pkA (resp. skB or rB for fixed pkB), the functions fA and fB don’t have to be

13

hl-RFs. 2) if the 2-key KEM is strong enough to preserve security even when the randomness rB0 used to
generate pkB0 is generated from fB0(skB , rB) for some function fB0, then we could regard fB0(skB , rB)
as a random string using to compute pkB0. The same holds when (pkA0, skA0) ← KeyGen0(rA0) where
rA0 = fA0(skA, rA) for some function fA0.

Therefore, the problem comes down to study the security of 2-key KEM when CA (under public keys
pkA and pkA0) shares the randomness of pkB and pkB0.

Definition 3. We say 2-key KEM is leakage resistant of partial randomness with respect to fB and
fB0 (they need not to be hl-RFs), if the following property holds. Under public key pkA and pkA0, the
[OW-CCA,OW-CPA] security still holds where the ciphertext is computed as Encaps(pkA, pkA0, fB(skB , rB))
for some fixed pkB (where (pkB , skB)← KeyGen1), when either rB and pkB0 or skB and pkB0 are given
to adversary, where (pkB0, skB0)← KeyGen0(fB0(skB , rB)).

Equipped with PKIC 2-key KEM that resists to the leakage of partial randomness with respect to fB
and fB0, we set fA0(skA, rA) and fB0(skB , rB) as the randomness for KeyGen0, and denote the result
AKE as AKEro-pkic-lr in Figure 4. The session state of sid owned by UA consists of rA, K ′A and KB , the
session state of sid owned by UB consists of rB , KA and K ′B .

UA UB

(pkA, skA)← KeyGen1 (pkB , skB)← KeyGen1

rA ← {0, 1}∗, rA0 = fA0(skA, rA) rB ← {0, 1}∗, rB0 = fB0(skB , rB)

RA := fA(skA, rA)

CB ← Encaps0(pkB ,−, RA) RB := fB(skB , rB)

(pkA0, skA0)← KeyGen0(rA0) (CB), pkA0 (CA,KA)← Encaps(pkA, pkA0, RB)

(CA), pkB0 (pkB0, skB0)← KeyGen0(rB0)

K′A ← Decaps(skA, skA0, CA)

KB ← Encaps1(pkB , pkB0, RA) K′B ← Decaps(skB , skB0, CB)

SK ← H(si,K′A,KB) SK ← H(si,KA,K
′
B)

Fig. 4. AKEro-pkic-lr. Here si = (UA, UB , pkA, pkB , CB , pkA0, CA, pkB0). The boxed argument is the main difference
with AKEro-pkic

Remark 1: As in the definition of 2-key KEM, both Encaps and Decaps allow to have auxiliary input
auxe or auxd. In AKEro-pkic-lr (AKE and AKEro-pkic), the static public keys are generated by KeyGen1 during
the registration phase (i.e., Stage 0) and publicly available. Thus, in the protocol, it makes sense that
Encaps and Decaps algorithms take the static public keys as public auxiliary input. And for user UA
(resp. UB), it is also reasonable that Encaps executed by UA (resp. UB) takes his static secret key skA
(resp. skB) as auxiliary input. In this sense, one couple of 2KEM is really “coupled” with each other.

Remark 2: Since CA share the randomness of pkB0 and secret key of pkB , if the 2-key KEM and
function fB/fB0 further satisfy that CA is publicly computable from pkB and pkB0, we can omit CA in
the communications. The same holds for CB , if it is publicly computable from pkA and pkA0, we can
omit CB .

Remark 3: Note that the computation of fB is part of Encaps(pkA, pkA0, RB) algorithm. fB may take
pkA as input. At that time, to be clear, we denote fB(skB , rB) as fB(skB , rB , pkA). It is similar in the
case of fA.

With these modifications, we should handle the proof more carefully. The main challenge is that
the ciphertext CA, static public key pkB , ephemeral public key pkB0 are correlated (the same holds for
CB , pkA, and pkA0). We should handle the problem that, since CA shares the randomness with pkB0

and secret key of pkB , when applying the [OW-CCA, ·] security of 2-key KEM with pk1 = pkA in event

14

AskH∧E3, AskH∧E6, not only skA but also skB is unknown to simulator S. (The same situation occurs
when applying [OW-CCA, ·] security of 2-key KEM with pk1 = pkB in event AskH ∧ E2).

The way to solving this problem is to bring in another [OW-CCA, ·] challenge. As an example, we
sketch the proof of event AskH∧E3 to show how this resolves the above problem. The main modification
is for the proof of Lemma 2. In case of AskH ∧E3, the [OW-CCA, ·] adversary S performs as follows. On
receiving the public key pk1 from the [OW-CCA, ·] challenger, to simulate the CK+ game, S randomly
chooses two parties UA, UB and the i-th session as a guess of the test session. S runs KeyGen1 to generate
all static public keys except UA and UB . S queries the first [OW-CCA, ·] challenger to get pk1, and sets
pkA = pk1. S queries the second [OW-CCA, ·] challenger again to get another pk′1 and sets pkB = pk′1.

Note that now S does not know the secret key of both pkA and pkB . Here S generates (pk∗B0, sk
∗
B0)

by itself. S sends pk∗B0 to the second challenge to get challenge ciphertext C∗B and keeps both pk∗B0 and
C∗B secret to CK+ adversary A. On receiving the i-th session (C ′B , pk

∗
A0) from UA (that is sent by A

in the CK+ games), S queries the first [OW-CCA, ·] challenger with pk∗A0 and obtains C∗A, pkB0 and its
randomness rB0. S returns C∗A and pkB0 to UA as the response of i-th session from UB , and sets pk∗A0 as
the public key under which C∗A is encrypted. S also leaks rB0 to adversary as the ephemeral secret key.

With the first [OW-CCA, ·] challenge, S could partially maintain the hash list and SessionStateReveal
and SessionKeyReveal with strong decapsulation oracle when UB is not involved. When UB is involved,
the second [OW-CCA, ·] challenge is needed. Note that since 2-key KEM is γ-spread, the probability that
A queries a message with CB = C∗B is bounded by q× 2−γ . The simulation is perfect and the other part
of proof proceeds the same with Lemma 2.

4.2 AKE from 2-key KEM in Standard Model

The protocol AKE/AKEro-pkic in random oracle model can be easily extended to one that is secure in the
standard model, denoted by AKEstd/AKEstd-pkic, via the following steps:

1. replacing the [OW-CCA,OW-CPA] secure 2-key KEM in random oracle model with the [IND-CCA, IND-CPA]
secure 2-key KEM in standard model;

2. instantiating the hl-RF functions fA, fB in standard model instead of the random oracle model.
As noted after the definition, the instantiation of hl-RF in standard model require PRF and extra
randomness. Thus every user holds extra random secret sP ← {0, 1}λ as part of the static secret key
and RA = fA(skA||sA, rA), RB = fB(skB ||sB , rB).

3. replacing the random oracle H(si,KA,KB) with FKA
(si) ⊕ F̂KB

(si), to extract session key, where
F and F̂ are PRFs.

Actually, converting a scheme in the random oracle model into that in the standard model is generally
not trivial, and there are many negative results. However, without taking advantage of strong property
of random oracle, our step 2 and 3 just use the property that if the input is unknown then the output
is totally random. The difficult part is step 1. Once the 2-key KEM in random oracle model is replaced
by [IND-CCA, IND-CPA] secure 2-key KEM in standard model, the proof of security for AKE in standard
model is straightforward.

5 Unification of Prior Works

In this section, we show that existing AKEs, including HMQV[24], NAXOS [25], Okamoto [28], and
FSXY framework [15, 16], can be explained in our unified frameworks.

5.1 HMQV-AKE.

In HMQV[24], the 2-key KEM is initiated by 2KEMHMQV in Figure 5. Let h and Ĥ be hash functions. Let
G be a group of prime order p with g as a generator. Both Encaps and Decaps algorithms have auxiliary
input auxe = (B, b) where B = gb and auxd = B. Note that, here, B is the public auxiliary input and b
is the secret auxiliary input. By applying AKEro-pkic-lr, Remark 1-3, we present how the HMQV scheme is
integrated in our unified framework of AKE and how it is built from the view of 2-key KEM in Figure 6.

15

KeyGen1(λ) KeyGen0(λ) Encaps(pk1, pk0; auxe(B, b)) Decaps(sk1, sk0, c; auxd(B))

a← Zp; x← Zp y ← Zp, Y = gy, Y Be ← c;
A = ga X = gx e = h(Y,A), d = h(X,B) e = h(Y,A), d = h(X,B)

pk1 = A pk0 = X; k = Ĥ((XAd)y+eb) k′ = Ĥ((Y Be)x+da)
sk1 = a sk0 = x. Return k, c = Y Be. Return k′

Fig. 5. The [OW-CCA, OW-CCA] secure 2KEMHMQV implied by HMQV.

Theorem 2. Under the Gap-DH and KEA1 assumptions2, 2KEMHMQV in Figure 5 is [OW-CCA, OW-
CCA] secure with the resistance to the leakage of partial randomness with respect to fB(b, y, A) = y + b ·
h(gy, A) and fB0(b, y) = y in the random oracle model.

Please refer Appendix B for the proof of Theorem 2.
As said in Remark 3, fB takes A as input and fB(b, y, A) = y+b ·h(gy, A). By theorem 2, 2KEMHMQV

is [OW-CCA, OW-CCA] secure even if partial randomness (b or y) is leaked with respect to fB(b, y, A) =
y+ b · h(gy, A) and fB0(b, y) = y. By changing the role of A and B, X and Y , we also get a dual scheme
of 2KEMHMQV, with respect to fA(a, x,B) = x+ a ·h(gx, B) and fA0(a, x) = x. Obviously, 2KEMHMQV is
PKIC, which means that the ciphertext is independent of the public key pk0. Thus the Encaps algorithm
can be split into two steps Encaps0 and Encaps1. However, when integrating 2KEMHMQV into AKEro-pkic-lr

to reproduce HMQV, one may doubt that whether auxe = (B, b) or (A, a) required by Encaps and
auxd = B or A required by Decaps influence the reconstruction. As explained in Remark 2, since B and
A are the static public keys and generated during the registration phase, they can be used as the public
auxiliary input by any user during the execution phase. As a static secret key, b can be used by UB as
secret auxiliary input during the execution phase. Based on the above analysis, applying AKEro-pkic-lr and
Remark 1-3 to 2KEMHMQV, HMQV is reconstructed in Fig. 6.

Moreover, A, B are static public keys, and d, e are publicly computable, CA, CB can be publicly
computed from pkB0 = Y and pkA0 = X. Thus, we can apply Remark 1 to omit CB = XAd and
CA = Y Bd in the communications.

UA : A = ga, a UB : B = gb, b

x← Zp, X = gx y ← Zp, Y = gy

d = h(X,B), CB = XAd (CB = XAd,)pkA0 = X e = h(Y,A), CA = Y Be

e = h(Y,A) (CA = Y Be,)pkB0 = Y d = h(X,B)

KB = K′A = Ĥ
(
(Y Be)x+ad

)
KA = K′B = Ĥ

(
(XAd)y+be

)
SK ← H(si,KB) SK ← H(si,KA)

Fig. 6. Understanding HMQV with 2KEMHMQV in the frame AKEro-pkic-lr where si = (UA, UB , A,B,CB , X,CA, Y).

5.2 NAXOS-AKE.

In [25], the 2-key KEM is initiated by 2KEMNAXOS in Figure 7. Let G be a group of prime order p with
g as a generator. Let h : Zp × Zp → Zp and Ĥ : Zp × Zp → {0, 1}λ be hash functions. By applying
AKEro-pkic-lr and Remark 1-2, in Figure 8, we present how the NAXOS scheme is integrated in our unified
framework of AKE and how it is built from the view of 2-key KEM.

Theorem 3. Under the Gap-DH assumption, 2KEMNAXOS is [OW-CCA,OW-CCA] secure even with the
leakage of one of y0 and b where fB(b, y0) = h(b, y0) and fB0(b, y0) = h(b, y0) in the random oracle
model.
2 For formal definitions of Gap-DH and KEA1 assumptions, please refer HMQV.

16

KeyGen1(λ) KeyGen0(λ) Encaps(pk1, pk0; auxe(B, b)); Decaps(sk1, sk0, c)

a← Zp; x← Zp y0 ← Zp, y = h(y0, b) Y ← c;
A = ga X = gx Y = gy x = h(x0, a)

pk1 = A pk0 = X; k = Ĥ(Ay, Xy) k′ = Ĥ(Y a, Y x)
sk1 = a sk0 = x. Return k, c = Y . Return k′

Fig. 7. The [OW-CCA, OW-CCA] secure 2KEMNAXOS implied by NAXOS.

Please refer Appendix C for the formal proof of Theorem 3.
By theorem 3, 2KEMNAXOS is [OW-CCA, OW-CCA] secure even if partial randomness (b or y0) is

leaked with respect to fB(b, y0) = h(b, y0) and fB0(b, y0) = h(b, y0). Obviously, 2KEMNAXOS is PKIC. We
split Encaps algorithm into two steps Encaps0 and Encaps1. As explained in Remark 2, since b is static
secret key and generated by UB , in the execution phase UB takes it as secret auxiliary input. Based on
the above analysis, applying AKEro-pkic-lr and Remark 1-2 to 2KEMNAXOS, NAXOS is reconstructed in
Fig. 8.

Moreover, CA is equal to pkB0 = Y and CB is equal to pkA0 = X. Thus we can apply Remark 2 to
omit CB = X and CA = Y in the communications.

UA : A = ga, a UB : B = gb, b

x0 ← Zp, x = h(x0, a) y0 ← Zp, y = h(y0, b)

CB = pkA0 = X = gx (CB = X), pkA0 = X CA = pkB0 = Y = gy

KB = Ĥ(Bx, Y x) (CA = Y), pkB0 = Y KA = Ĥ(Ay, Xy)

K′A = Ĥ(Y a, Y x) K′B = Ĥ(Xb, Xy)

SK ← H(si,K′A,KB) SK ← H(si,KA,K
′
B)

Fig. 8. Understanding NAXOS with 2KEMnaxos in the frame AKEro-pkic-lr where si = (UA, UB , A,B,X, Y).

5.3 Okamoto-AKE.

In Okamoto-AKE [28], the 2-key KEM is initiated by 2KEMOka in Figure 9. In 2KEMOka, the computation
is proceeded over group G of prime order p with generator g, htcr is a target-collision resistant (TCR)
hash function and F̄ is a pairwise-independent random source PRF. (Please refer [28] for the formal
definition of pairwise-independent random source PRFs.)

2KEMOka.KeyGen1(λ) 2KEMOka.KeyGen0(λ)

a1, a2, a3, a4 ← Z4
p, A1 = ga11 ga22 , A2 = ga31 ga42 x3 ← Zp, X3 = gx31

pk1 = (A1, A2), sk1 = (a1, a2, a3, a4) pk0 = X3, sk0 = x3
2KEMOka.Encaps(pk0, pk1); 2KEMOka.Decaps(sk0, sk1, C)

y, y3 ← Z2
p, Y1 = gy1 , Y2 = gy2 , Y3 = gy31 C ∈ G3, (Y1, Y2, Y3)← C;

C = (Y1, Y2, Y3), c = htcr(A1, A2, C) c = htcr(A1, A2, C)

σ = Xy3
3 (A1A

c
2)y σ′ = Y x33 Y a1+ca31 Y a2+ca42

K = F̄σ(pk0, C) K′ = F̄σ′(pk0, C)

Fig. 9. The [IND-CCA, IND-CPA] secure 2KEMOka implied by Okamato-AKE.

Let G be a group of order p with the generator g. Let 1G = gp be the identity element. The DDH
assumption states that {(G, ga, gb, gab)}λ is computationally indistinguishable from {(G, ga, gb, gc)}λ,

17

where a, b, c are randomly and independently chosen in Zp. If c = ab, (g, ga, gb, gc) is called a DDH tuple,
otherwise it’s called a non-DDH tuple. Denote the advantage of any PPT algorithm B solving DDH
problem as Advddh

B = |Pr[B(ga, gb, gab) = 1]− Pr[B(ga, gb, gc) = 1]|.

Theorem 4. Under the DDH assumption, if htcr is a TCR hash function and F̄ is a pairwise-independent
random source PRF, then 2KEMOka in Figure 9 is [IND-CCA, IND-CPA] secure in the standard model.

Please refer Appendix D for the formal proof of Theorem 4.
By applying AKEstd, in Figure 10, we present how the Okamato scheme is integrated in our unified

framework of AKE and how it is built from the view of 2-key KEM. Let F ′ : {0, 1}λ × {0, 1}λ → Zp
and F ′′ : Zp × {0, 1}λ → Zp be PRFs. In the frame of AKEstd, by setting sA = a0, sB = b0, rA =
x′1||x′2, rA0 = x3, rB = y′1||y′2, choosing cpk0 = 1G, csk0 = p, initiating fA and fB as F ′x′1

(1k)⊕F ′′∑4
0 ai

(x′2)

and F ′y′1
(1k)⊕ F ′′∑4

0 bi
(y′2), and applying 2KEMOka as 2-key KEM, we will get Okamoto AKE in Fig. 10.

UA : A1, A2, a1, a2, a3, a4, a0 ← Zp UB : B1, B2, b1, b2, b3, b4, b0 ← Zp
x′1, x

′
2 ← {0, 1}λ y′1, y

′
2 ← {0, 1}λ

(x, x3) = F ′x′1
(1k) + F ′′∑4

0 ai
(x′2) (y, y3) = F ′y′1

(1k) + F ′′∑4
0 bi

(y′2)

X1 = gx1 , X2 = gx2 , X3 = gx31 Y1 = gy1 , Y2 = gy2 , Y3 = gy31
CB = (X1, X2, 1G), pkA0 = X3 CB , X3 CA = (Y1, Y2, Y3)

d = htcr(UB , X1, X2) CA c = htcr(UA, Y1, Y2, Y3)

σB = (B1B
d
2)x,KB = F̄σB (1G, CB) σA = Xy3

3 (A1A
c
2)y,KA = F̄σA(X3, CA)

c = htcr(UA, CA) d = htcr(UB , CB)

σ′A = Xy3
3 Y a1+ca31 Y a2+ca42 σ′B = Xb1+db3

1 Xb2+db4
2

K′A = F̄σ′
A

(X3, CA) K′A = F̄σ′
B

(1G, CB)

SK ← FKB (si)⊕ F̂K′
A

(si) SK ← FK′
B

(si)⊕ F̂KA(si)

Fig. 10. Understanding Okamoto-AKE from 2KEMOka where si = (UA, UB , CB , X3, CA) in frame AKEstd. Some
notions are borrowed from 2KEMOka

5.4 FSXY12-AKE and FSXY13-AKE.

Fujioka et al. in PKC 12 (called FSXY12 [15]) proposed a construction of AKE from IND-CCA secure
KEM and IND-CPA secure KEM in the standard model. In FSXY12 [15], UB sends a ciphertext of IND-
CCA secure KEM and a ciphertext of IND-CPA secure KEM, and the session key is computed from these
two encapsulated keys, public key of IND-CPA secure KEM, and ciphertext in the PRF functions. As
we point out in section 6.1, the FSXY12 scheme implies a trivial [IND-CCA, IND-CPA] secure 2-key KEM
from the improved KEM combiner in the standard model. More precisely, in AKEstd, cpk0 and csk0 is set
to be empty; CB is just cB1||-, where cB1 is the ciphertext of IND-CCA secure one-key KEM under pkB ;
CA is replaced by the concatenation of cA1||cA0, where cA1 is the ciphertext of IND-CCA secure one-key
KEM under pkA with encapsulated key kA1 and cA0 is the ciphertext of IND-CPA secure one-key KEM
under pkA0 with encapsulated key kA0; and KA is replaced by FkA1

(pkA0, cA1||cA0)⊕FkA0
(pkA0, cA1||cA0).

To make it clearer, in section 6.1 we explain why we should put public key in PRFs when combining
two KEMs. Note that FSXY12 implicitly did it in the same way by putting sid in PRF. Thus, due to
this observation, our frame of AKEstd with improved KEM combiner can be used to explain the FSXY12
scheme.

Considering efficiency, Fujioka et al. in AsiaCCS 13 (called FSXY13 [16]) proposed AKE from OW-
CCA secure KEM and OW-CPA secure KEM in the random oracle model. In FSXY13 [16], UB sends
a ciphertext of OW-CCA secure KEM and a ciphertext of OW-CPA secure KEM. The session key is

18

computed from these two encapsulated keys, public key of CPA secure KEM, and ciphertext in the
hashing step. As we point out in section 6.1, the FSXY13 scheme implies a trivial [OW-CCA,OW-CPA]
secure 2-key KEM from the improved KEM combiner in the random oracle model. Precisely, in AKE, cpk0

and csk0 is set to be empty; CB is just cB1||-, where cB1 is the ciphertext of OW-CCA secure one-key
KEM under pkB ; CA is replaced by the concatenation of cA1||cA0, where cA1 is the ciphertext of OW-CCA
secure one-key KEM under pkA with encapsulated key kA1 and cA0 is the ciphertext of OW-CPA secure
one-key KEM under pkA0 with encapsulated key kA0; and KA is replaced by Ĥ(pkA0, k1||kA0, cA1||cA0).
In section 6.1 we explain why we should put public key in hashing step when combining two KEMs. Note
that FSXY13 implicitly did it in the same way by putting sid in hashing step. Thus, our frame of AKE
with improved KEM combiner works for explaining the FSXY13 scheme.

6 More General Constructions for 2-Key KEM

As shown in Section 5, many widely-used AKEs are able to imply 2-key KEM. And over cyclic group,
HMQV and NAXOS consume the least amount of communication. However, their techniques are not
compatible with lattice assumptions. Although Zhang et al. [37] extend HMQV-type AKE to that based
on Ring LWE, the resulted AKE only achieves BR security and costs more communications. In this
section we investigate how to improve the KEM combiner [17] and Fujisaki-Okamoto transformation [14,
18] so as to yield more general constructions of 2-key KEM, which are much more well-suited for lattice
assumptions.

6.1 Improved Combiner of Two KEMs

Giacon et. al [17] propose two KEM combiner and yield a new single KEM that is classical CCA secure
as long as one of the ingredient KEMs is. We show that the simple KEM combiner does not work for our
2-key KEM. Furthermore, we show that with a slight but vital modification the combiner could work.

6.1.1 The failure to imply [OW-CCA, ·] secure 2-Key KEM from KEM combiner We give a
scheme that is a CCA secure two KEM combiner but is not [OW-CCA, ·] secure.

Let h and H be hash functions. Let G =< g > be a group with prime order p. Let pk1 = (g1, g2 =
ga1), sk1 = a, the ciphertext be c1 = (gr1, g

r
2 ·m) where r = h(m) and the encapsulated key be k1 = H(m).

By the FO transformation [14] and DDH assumption, the first KEM is one-way-CCA secure. Let pk0 =
(h1, h2 = hb1), sk0 = b, the ciphertext be c0 = hx1 and the encapsulated key be k0 = H(hx2); and obviously
the second KEM is IND-CPA secure.

Let the combined ciphertext be (c1||c0) and combined encapsulated key be K = Ĥ(k1||k0, c1||c0), by
the KEM combiner [17] (Lemma 6 and example 3 in [17]), the combined KEM is CCA secure. However,
such combined KEM is not [OW-CCA, ·] secure which means there exists an adversary A that can break
[OW-CCA, ·] game.

Note that c0 = hx1 encapsulates the key k∗0 = H(hx2) under public key pk0 = (h1, h2) while it
encapsulates the same key k∗0 = H(hx2) under public key pk0 = (hc1, h

c
2) for some c ∈ Zp. The [OW-CCA, ·]

adversary A first queries the Oleak oracle and gets pk0 = (h1, h2). Then it randomly chooses c ∈ Zp and
sets pk∗0 = (hc1, h

c
2). After receiving c∗1||c∗0 under public keys pk1 and pk∗0 , A queries the decryption oracle

with (pk1, pk0, c
∗
1||c∗0), and would receive exactly K∗ = Ĥ(k∗1 ||k∗0 , c∗1||c∗0).

6.1.2 Improvement on KEM combiner to achieve [CCA,CPA] secure 2-Key KEM Inspired
by the attacks above, we propose a improved combiner of CCA secure and CPA secure KEMs to achieve
[CCA,CPA] secure 2-key KEM. Let KEMcca = (KeyGencca,Encapscpa,Decapscca) be IND-CCA secure

KEM, KEMcpa = (KeyGencpa,Encapscpa,Decapscpa) be IND-CPA secure KEM. Let Ĥ be a hash func-
tion and F be a PRF. The improved combiner is shown in Figure 11, where function f(pk0, k1||k0, c) can
be initiated by Ĥ(pk0, k1||k0, c) or Fk1(pk0, c)⊕Fk0(pk0, c). Our main modification is to take public key
as input to the hash function or PRF when generating encapsulated key.

19

KeyGen1(λ) KeyGen0(λ) Enc(pk1, pk0); Dec(sk1, sk0, c1||c0)

(pk1, sk1)← (pk0, sk0)← (c1, k1)← Encapscca(pk1) k1 ← Decapscca(sk1, c1)
KeyGencca KeyGencpa (c0, k0)← Encapscpa(pk0) k0 ← Decapscpa(sk0, c0)

c = c1||c0, k = f(pk0, k1||k0, c) k = f(pk0, k1||k0, c)

Fig. 11. The [CCA, CPA] secure 2KEMf in random oracle or standard model depending on the instantiation of
f(pk0, k1||k0, c).

Theorem 5. Let the underlying two KEMs be IND-CCA and IND-CPA secure. If f(pk0, k1||k0, c) =
Ĥ(pk0, k1||k0, c) for a hash function Ĥ, 2KEMf in Figure 11 is [OW-CCA, OW-CCA] secure in random
oracle model; if f(pk0, k1||k0, c) = Fk1(pk0, c)⊕Fk0(pk0, c) for PRF F , 2KEMf in Figure 11 is [IND-CCA,
IND-CPA] secure in standard model.

Please refer Appendix E for the full proof.

6.2 Modified FO Transformation

In this section, we investigate the constructions of passively 2-key PKE and give a modified FO trans-
formation which can be used to transform a passively secure 2-key PKE to an adaptively secure 2-key
KEM.

6.2.1 Passively Secure 2-Key PKE As the preparation for realizing adaptively secure 2-key KEM
and the modified FO transformation, similar to the notion of 2-key KEM, we can also provide the notion
of 2-key (public key encryption) PKE.

Informally, a 2-key PKE 2PKE=(KeyGen0, KeyGen1, Enc, Dec) is a quadruple of PPT algorithms
together with a plaintext spaceM and a ciphertext space C, where KeyGen1 outputs a pair of public and
secret keys (pk1, sk1), KeyGen0 outputs a pair of keys (pk0, sk0), Enc(pk1, pk0,m) outputs the ciphertext
C ∈ C, and Dec(sk1, sk0, C) outputs a plaintext m. Sometimes, we explicitly add the randomness r to
Enc and denote it as Enc(pk1, pk0,m, r). Here we only describe the [IND-CPA, IND-CPA] security game.
For more concrete and full definition of 2-key PKE please refer Appendix F.

Game IND-CPA on pk1 Game IND-CPA on pk0
01 (pk1, sk1)← KeyGen1(pp) 15 (pk0, sk0)← KeyGen0(pp)
02 L0 = {(−,−,−)} 16 L1 = {(−,−,−)}
03 (state, pk∗0 ,m1,m1)← AOleak0

1 (pk1) 17 (state, pk∗1 ,m0,m1)← BOleak1
1 (pk0)

04 b← {0, 1}; 18 b← {0, 1}
05 c∗ ← Enc(pk1, pk

∗
0 ,mb); 19 c∗ ← Enc(pk∗1 , pk0,mb);

06 b′ ← AOleak0
2 (state, c∗) 20 b′ ← BOleak1

2 (state, c∗)

07 return b′
?
= b 21 return b′

?
= b

Fig. 12. The [IND-CPA, ·], and [·, IND-CPA] games of 2PKE for adversaries A and B.

Passively Secure twin-ElGamal from DDH assumption. Our construction is actually a con-
joined ElGamal encryption. Let’s call it twin-ElGamal. The [IND-CPA, IND-CPA] secure twin-ElGamal
2PKEcpaddh =(KeyGen1, KeyGen0, Enc, Dec) is presented in detail in Figure 13.

Theorem 6. Under the DDH assumption, the twin-ElGamal 2PKEcpaddh scheme shown in Figure 13 is
[IND-CPA, IND-CPA] secure.

Please refer Appendix G for the formal proof.

20

KeyGen1(λ) KeyGen0(λ) Enc(pk1, pk0,m); Dec(sk0, sk1, C)

a1 ← Zp, h1 = ga1 ; a0 ← Zp, h0 = ga0 ; r1, r0 ← Zp (c1, c2, c3)← C
pk1 = (g, h1), sk1 = a1 pk0 = (g, h0), sk0 = a0 c = gr1 , gr0 , hr11 h

r0
0 ·m m′ = c3/c

a1
1 ca02

Fig. 13. The [IND-CPA, IND-CPA] secure 2PKEcpaddh under DDH assumption.

6.2.2 Modified FO Transformation from Passive to Adaptive Security In the random oracle
model, the FO [14, 18] technique is able to transform a passively secure one-key encryption scheme to
an adaptively secure scheme. We show that the classical FO transformation does not work for our 2-key
encryption scheme. Then we show that with a slight but vital modification the FO transformation could
work.

The failure of Classical FO Transform on 2-key KEM We give a novel twin-ElGamal scheme by
injecting redundant public keys, and show that such twin-ElGamal scheme after FO transformation is
still OW-CCA secure, but not [OW-CCA, ·] secure.

The KeyGen0 algorithm of 2PKEcpaddh chooses a random z ← Zp, and sets pk0 = (g, h0, g0 = gz), sk0 =
(a0, z). The algorithm KeyGen1,Enc,Dec are the same as in 2PKEcpaddh. Obviously this novel twin-

ElGamal scheme is IND-CPA secure under DDH assumption. Let 2PKEfo
cpaddh be the scheme by applying

classical FO transform on the novel twin-Elgamal. It is OW-CCA secure. Note that the encapsulated key
is K = H(m, c) where H is a hash function.

However, there exists an [IND-CCA, ·] attacker A of 2PKEfo
cpaddh that works as follows: A first queries

the Oleak0 and gets pk1
0 = (g, h0, g0 = gz), sk1

0 = (a0, z). Then A chooses g′0 6= g0 ∈ G, and sets
pk∗0 = (g, h0, g

′
0) as challenge public key. On receiving challenge ciphertext c∗ under (pk1, pk

∗
0), A queries

Oow-cca with (pk1
0, c
∗). Since pk1

0 6= pk∗0 , Oow-cca would return K ′. A just outputs K ′. Since c∗ encapsulated
the same key K∗ = H(m, c∗) under both public keys (pk1, pk

1
0) and (pk1, pk

∗
0). A will succeed with

probability 1.

Modification on FO Transform to achieve [IND-CCA, IND-CCA] secure 2-key KEM from
2-key PKE Motivated by the above attacks, we give a modified FO transform by a slight but vital
modification from “Hashing” in [18] to “Hashing with public key as input”. Actually, taking the public
keys as input to hash function is also motivated by the fact that: from the perspective of proof, “Hashing
with public key as input” would help to preserve the consistency of strong decryption oracle and hashing
list.

Since we take the decryption failure into account, let’s firstly recall and adapt the definition of
correctness for decryption in [18] to our 2-key setting. When 2PKE = 2PKEG is defined with respect
to a random oracle G, it is said to be δqG -correct if for adversary A making at most qG queries to

random oracle G, it holds that Pr[COR-ROA2PKE ⇒ 1] ≤ δqG , where the correctness game COR-RO is
defined as following: (pk1, sk1)← KeyGen1(pp), (pk0, sk0)← KeyGen0(pp), m← AG(·)(pk1, sk1, pk0, sk0),

c← Enc(pk1, pk0,m). Return Dec(sk1, sk0, c)
?
= m.

Let 2PKE = (KeyGen1′,KeyGen0′,Enc,Dec) be a [IND-CPA, IND-CPA] secure 2-key PKE with message
space M. The [IND-CCA, IND-CCA] secure 2KEM = (KeyGen1,KeyGen0,Encaps,Decaps) are described
as in Figure 14.

Theorem 7. For any [IND-CCA, ·] adversary C, or [·, IND-CCA] adversary D against 2KEM with at most
qD queries to decapsulation oracle DECAPS, qH (resp. qG) queries to random oracle H (resp. G), there
are [IND-CPA, ·] adversary A, or [·, IND-CPA] adversary B against 2PKE, that make at most qH (resp.
qG) queries to random oracle H (resp. G) s.t.

Adv
[IND-CCA,·]
2KEM (C) ≤ qH

2l
+
qH + 1

|M |
+ qG · δ + 4Adv

[IND-CPA,·]
2PKE (A).

Please refer Appendix H for the formal proof.

21

KeyGen1(λ) KeyGen0(λ)

(pk′1, sk
′
1)← KeyGen1′, s1 ← {0, 1}l; (pk′0, sk

′
0)← KeyGen0′, s0 ← {0, 1}l

sk1 = (sk′1, s1), pk1 = pk′1 sk0 = (sk′0, s0), pk0 = pk′0;

Encaps(pk1, pk0); Decaps(sk1, sk0, c)

m←M sk1 = (sk′1, s1), sk0 = (sk′0, s0)
c← Enc(pk1, pk0,m;G(m)) m′ = Dec(sk′1, sk

′
0, c)

K = H(pk1, pk0,m, c); c′ = Enc(pk1, pk0,m
′;G(m′))

return (K, c) if m′ = ⊥ or c 6= c′, let m′ = s1||s0
return K = H(pk1, pk0,m

′, c)

Fig. 14. The [IND-CCA, IND-CCA] secure 2-key KEM 2KEM by modified FO.

7 Efficient Post-quantum AKE from Module-LWE

With the above analysis and tools, we give a more compact AKE from Module-LWE assumption with
less communications than Kyber [3]. The roadmap is that we first give a [IND-CPA, IND-CPA] secure
2-key PKE from Module-LWE, by applying the modified FO transform in section 6.2.2 and the AKE in
section 4.1 step by step, and we finally obtain a AKE scheme.

Let q be a prime and Rq denote the ring Zq[x]/(xn+1). Define the centered binomial distribution Bη
for positive integer η as: sample (a1, · · · , aη, b1, · · · , bη) uniformly from {0, 1}, and output

∑η
i=1(ai− bi).

Denote s ← βη as that each of s’s coefficient is generated according to Bη. Let k,m be a positive

integer parameter. For PPT adversary A, the advantage Advmlwem,k,η(A) of solving Module-LWE problem

is the advantage of distinguishing two distributions {(A ← Rm×kq ,As + e)|(s, e) ← βkη × βkη} and

{(A← Rm×kq ,b← Rmq)}.
Let dt1 , dt0 , du1

, du0
, dv be positive numbers, depending on the special choice of the parameters set-

tings, and n = 256. Every message in M = {0, 1}n can be seen as a polynomial in Rq with coefficients
in {0, 1}. Let A be a random k× k matrix in Rq. Let dxc be the rounding of x to the closest integer. For
distribution X, let ∼ X = Samp(r) be sample algorithm with randomness r according to distribution X.

For an even (resp. odd) positive integer α, we define r′ = r mod ±α to be the unique element r′ in
the range −α2 < r′ ≤ α

2 (resp. −α−1
2 ≤ r′ ≤ α−1

2) such that r′ = r mod α. For any positive integer α,
define r′ = r mod +α to be the unique element r′ in the range 0 < r′ < α such that r′ = r mod α.
When the exact representation is not important, we simplify it as r mod α. For x ∈ Q, d ≤ log2 q,
define the compress function as Compq(x, d) = d(2d)/q · xc mod +2d, and the decompress function as

Decompq(x, d) = dq/(2d) · xc. And when applying the Comp and Decomp function to x, the procedure is
applied to coefficient.
Twin-Kyber Our construction, called twin-kyber, is an extension of kyber scheme [3] in the same
conjoined way for our twin-ElGamal scheme. With the parameters above, twin-kyber 2PKEmlwe =
(KeyGen1, KeyGen0, Enc, Dec) is shown in Figure 15.

Theorem 8. If there is a PPT adversary A against [IND-CPA, IND-CPA] security of 2PKEmlwe, there

exists B such that, Adv
[IND-CPA,IND-CPA]
2PKEmlwe

(A) ≤ 2Advmlwek+1,k,η(B).

Please refer Appendix I for the analysis of decryption failure and formal proof.
By applying the modified FO transformation to 2PKEmlwe, we obtain a [OW-CCA, OW-CCA] secure

2KEMmlwe. Then by setting cpk0 = (0)k and csk0 = (0)k, and integrating 2KEMmlwe to AKE in section 4,
a novel and efficient post-quantum AKE from Module-LWE assumption is constructed.

The parameter setting and comparison are given in Table 5 and 6. Note that by setting dt1 =
dt0 = dlog qe we actually do not apply compress on public keys. (which fix one bug of the security
proof in [3]). One may doubt that with q = 3329 we can not apply NTT technique to accelerate the
multiplications of two polynomials f(x) × g(x) over Rq, since 512 - 3328. Actually, we can fix this gap.
Separate f(x) = fB(x2) + xfA(x2), g(x) = g2(x2) + xg1(x2) into a series of odd power and a series of
even power, then f(x)× g(x) = fB(x2)g2(x2) + (fA(x2)g2(x2) + fB(x2)g1(x2))x+ fA(x2)g1(x2)x2. Then

22

KeyGen1(λ) KeyGen0(λ)

01 σ1 ← {0, 1}256 05 σ0 ← {0, 1}256
02 (s1, e1) ∼ βkη × βkη = Sam(σ1) 06 (s0, e0) ∼ βkη × βkη = Sam(σ0)
03 t1 = Compq(As1 + e1, dt1 = dlog qe) 07 t0 = Compq(As0 + e0, dt0 = dlog qe)
04 (pk1 = t1, sk1 = s1) 08 (pk0 = t0, sk0 = s0)

Enc(pk1 = t1, pk0 = t0,m ∈M) Dec(sk1 = s1, sk0 = s0, c = (u1,u0, v)

09 r′, r ← {0, 1}256 15 u1 = Decompq(u1, du1)

10 (r1, r0, e3, e4, e) ∼ (βkη)4 × βη = Sam(r) 16 u0 = Decompq(u0, du0)

11 u1 = Compq(A
T r1 + e3, du1) 17 v = Decompq(v, dv)

12 u0 = Compq(A
T r0 + e4, du0) 18 m′ = Compq(v − s1

Tu1 − s0
Tu0, 1)

13 v = Compq(t1
T r1 + t0

T r0 + e+ d q
2
cm, dv)

14 c = (u1,u0, v)

Fig. 15. The [IND-CPA, IND-CPA] secure 2PKEmlwe under Module-LWE assumption.

we can apply NTT to fi(y)gj(y) over Zq[y]/(y128 + 1) by setting y = x2 since 256|3328. Please refer for
more information of the efficiency comparison.

Scheme n k q η (dt1 , dt0 , du1 , du0 , dv) δ Security Level

2KEMmlwe 256 4 3329 1 (12, 12, 9, 9, 5) 2−174.3 256
Table 5. The parameters for 2KEMmlwe where δ is the decryption failure.

AKEs Assumptions Sec UA → UB (Bytes) UB → UA (Bytes)

Kyber.AKE Advmlwe5,4,5 256 2912 3008

AKE from 2KEMmlwe Advmlwe5,4,5 256 2838 2464
Table 6. The message size for Kyber in the frame of FSXY13 and ours in the frame of AKE.

Acknowledgment

Haiyang Xue was supported by the National Natural Science Foundation of China 61602473, 61672019,
61772522, and the National Cryptography Development Fund MMJJ20170116. Xianhui Lu was support-
ed by the National Natural Science Foundation of China 61572495. Bao Li was supported by the National
Natural Science Foundation of China 61772515. Jingnan He was supported by the National Natural Sci-
ence Foundation of China 61672030. Bei Liang was partially supported by the STINT grant (no 3720596).
This work was supported by the Fundamental theory and cutting edge technology Research Program of
Institute of Information Engineering, CAS (Grant No. Y7Z0291103), the National 973 Program of China
under Grant 2014CB3406035.

References

1. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient One-Round Key Exchange in the Standard
Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 69-83. Springer, Heidelberg
(2008)

2. Bos, J. W., Costello, C., Naehrig, M., and Stebila, D.: Post-quantum Key Exchange for the TLS Protocol
from the Ring Learning with Errors Problem. In 2015 IEEE Symposium on Security and Privacy, pp. 553-570.

23

3. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., Schwabe, P., and Stehlé D.:
CRYSTALS - Kyber: a CCA-secure Module-lattice-based KEM. In 2018 IEEE Symposium on Security and
Privacy, pp. 353-367. code is available in https://github.com/pq-crystals/kyber.

4. Barbosa, M., Farshim, P.: Relations among Notions of Complete Non-malleability: Indistinguishability Char-
acterisation and Efficient Construction without Random Oracles. In: R. Steinfeld and P. Hawkes (eds.) ACISP
2010, LNCS 6168, pp. 145-163. Springer, Heidelberg (2010)

5. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS 773, pp. 232-249. Springer, Heidelberg (1994)

6. Cremers, C.J.F.: Session-state Reveal Is Stronger Than Ephemeral Key Reveal: Attacking the NAXOS Au-
thenticated Key Exchange Protocol. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 20-33. Springer, Heidelberg (2009)

7. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels.
In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

8. Canetti, R., and Krawczyk H.: Security analysis of IKEs signature-based key-exchange protocol. In: Yung M.
(eds) CRYPTO 2002, pp. 143-161. Springer, Heidelberg (2002)

9. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen
Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13-25. Springer, Heidelberg
(1998)

10. Cramer R., Shoup V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Public Key
Encryption. In: Knudsen L.R. (eds.) EUROCRYPT02. LNCS 2332, pp. 45-64. Springer, Heidelberg (1998)

11. Dolev, D., Dwork, C., and Naor, M.: Non-malleable cryptography. SIAM Journal on Computing, 30:391-437,
2000.

12. Diffie, W., and Hellman, M.: New directions in cryptography, IEEE Transactions on Information Theory,
Vol. 22, Issue 6, pp.644-654.

13. Fischlin, M.: Completely Non-Malleable Schemes, In In: Caires L., Italiano G.F., Monteiro L., Palamidessi
C., Yung M. (eds) ICALP 2005, LCNS 3580, pp. 779-790. Springer, Heidelberg (2005)

14. Fujisaki, E., and Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In:
Wiener M. (eds) CRYPTO 1999, LNCS 1666, pp. 537-554. Springer, Heidelberg (1999)

15. Fujioka A., Suzuki K., Xagawa K., Yoneyama K.: Strongly Secure Authenticated Key Exchange from Factor-
ing Codes and Lattices. In: Fischlin M., Buchmann J., Manulis M. (eds) PKC 2012, pp. 467-484. Springer,
Heidelberg (2012)

16. Fujioka A., Suzuki K., Xagawa K., Yoneyama K.: Practical and post-quantum authenticated key exchange
from one-way secure key encapsulation mechanism. In AsiaCCS 2013, pp. 83-94.

17. Giacon F., Heuer F., Poettering B.: KEM Combiners. In: Abdalla M., Dahab R. (eds) PKC 2018, LCNS
10769. pp. 190-281. Springer, Heidelberg (2018)

18. Hofheinz, D., Hövelmanns, K., and Kiltz, E.: A Modular Analysis of the Fujisaki-Okamoto Transformation.
In Y. Kalai and L. Reyzin (eds) TCC 2017, LNCS 10677, pp 341-371. Springer, Heidelberg (2017)

19. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi S., Rabin T. (eds) TCC 2006,
LNCS 3876, pp. 581-600. Springer, Heidelberg (2006)

20. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In Okamoto,
T., and Wang, X. (eds) PKC 2007, LNCS 4450, pp. 282-297. Springer, Heidelberg (2007)

21. Kiltz E., Pietrzak K., Stam M., Yung M.: A New Randomness Extraction Paradigm for Hybrid Encryption,In:
Joux A. (eds) EUROCRYPT 2009, LCNS 5479, pp. 590-609. Springer, Heidelberg (2009)

22. Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is
SSL?). In: Kilian J. (eds) CRYPTO 2001, LCNS 2139, pp. 310-331. Springer, Heidelberg (2001)

23. Krawczyk, H.: SIGMA: The SiGn-and-MAc Approach to Authenticated Diffie-Hellman and Its Use in the
IKE Protocols, In: Boneh D. (eds) CRYPTO 2003, LNCS 2729. pp. 400-425. Springer, Heidelberg (2003)

24. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V. (eds) CRYPTO
2005. LNCS, vol. 3621, pp. 546-566. Springer, Heidelberg (2005)

25. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo,
W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1-16. Springer, Heidelberg (2007)

26. T. Matsumoto, Y. Takashima, and H. Imai: On seeking smart public-key distribution systems, Trans. IECE
of Japan, 1986, E69(2), pp. 99-106.

27. A. Menezes, M. Qu, and S. Vanstone: Some new key agreement protocols providing mutual implicit authen-
tication, In SAC 1995, pp. 22-32.

28. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation Without Random Oracles. eprint archive:
report 2007/473, full version of [29].

24

29. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation in the Standard Model. In: Kurosawa,
K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474-484. Springer, Heidelberg (2007)

30. Peikert, C.: Lattice Cryptography for the Internet. In Mosca, M. (eds) PQCrypto 2014, LNCS 8772, pp.
197-219. Springer, Heidelberg (2014)

31. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: STOC 2008, pp. 187-196
(2008)

32. M. O. Saarinen. Hila5. Technical report, available at https://csrc.nist.gov/ projects/post-quantum-
cryptography/round-1-submissions.

33. Wee, H.: Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In: Rabin T. (eds) CRYPTO
2010. LNCS 6223, pp. 314-332. Springer, Heidelberg (2010)

34. Yoneyama, K.: One-Round Authenticated Key Exchange with Strong Forward Secrecy in the Standard
Model against Constrained Adversary. In: Hanaoka G., Yamauchi T. (eds) IWSEC 2012. LNCS 7631, pp.
69-86 Springer, Heidelberg (2012)

35. Yao, A.C.C., Zhao, Y.: OAKE: A new family of implicitly authenticated Diffie-Hellman protocols. In CCS
2013, pp. 1113-1128.

36. Zhou S., Xue H., Zhang D., Wang K., Lu X., Li B. and He J.: Preprocess-then-NTT Technique and Its
Applications to KYBER and NEWHOPE, eprint archive: report 2018/995.

37. Zhang J., Zhang Z., Ding J., Snook M., Dagdelen O.: Authenticated key exchange from ideal lattices. In:
Oswald E., Fischlin M. (eds) EUROCRYPT 2015, pp 719-751. Springer, Heidelberg (2015)

25

Appendix A: Proof of Lemma 2

In order to bound the probability of AskH, we investigate the events AskH ∧ Ei for 1 ≤ i ≤ 8 listed in
Table 4 one by one.
Event AskH ∧ E1

In the event E1, the test session sid∗ has no matching session, and the static secret key of UA is given to
A. In case of AskH ∧E1, the [OW-CCA, ·] adversary S with pk∗0 = cpk0 performs as follows. It simulates
the CK+ games, and transforms the probability of the occurrence of event AskH performed by A to the
advantage of attacking [OW-CCA, ·] security with pk∗0 = cpk0.

In order to simulate the random oracles, S maintains hash list LH and Lsk, corresponding to the
queries and answers of theH oracle, SessionStateReveal and SessionKeyReveal. LH and Lsk are interrelated
with each other since the adversary may ask Lsk without the encapsulated keys firstly, then ask LH with
the encapsulated keys. Thus, the reduction must ensure consistency of the random oracle queries to LH
and Lsk. The decryption oracle of [OW-CCA, ·] game could help to maintain the consistency as done in
H-oracle and SessionKeyReveal in the following.

In the [OW-CCA, ·] game, on receiving the public key pk1, S returns an empty pk∗0 = cpk0 to the
challenger. Then on receiving the challenge ciphertext C∗ with public key pk1 and pk∗0 for encapsulated
key K∗, to simulate the CK+ game, S randomly chooses two parties UA, UB and guesses a random
i-th session as a guess of the test session with probability of success 1/N2l. S samples a key pair
(cpk0, csk0)← KeyGen0 as public parameters. By computing (pk1, sk1)← KeyGen1, S sets all the static
secret and public key pairs (pkP , skP) for all N users UP except UB . S sets pkB = pk1.

Without knowing the secret key of UB , S chooses a random rB as part of ephemeral secret keys
and a random RB as the randomness for Encaps. Since fB is (ε1, ε2) hl-RF, the difference between the
simulated game with modification of rB and real game is bounded by ε2. If it is in need of an ephemeral
public key pkP0 sent out by UP , S queries (pki0, sk

i
0, r

i
0) ← Oleak0 and sets pkP0 = pki0. When a session

state revealed to a session owned by UB , is queried, S returns rB and ri0 as the ephemeral secret key
part.

Specially, by computing (pkA, skA) ← KeyGen1, randomly choosing sA ← {0, 1}λ and querying
(pkA0, skA0, rA0) ← Oleak1 , S can set the static secret and public key pairs (pkA, skA) for UA, as well
as the ephemeral secret and public key pairs (pkA0, skA0) for the i-th session of UA. S sets C∗, pkA0 as
the messages sent out by UA in i-th session. Meanwhile, S leaks the static secret key skA of UA to the
adversary A.
S simulates the oracle queries of A as the following. Specially, if AskH happens, which means that

A submits (UA, UB , pkA, pkB , C
∗, pkA0, CA,KA,KB) to H where C∗, pkA0, CA is the view of the test

session and KA is the key encapsulated in CA, then return KB as the guess of K∗.
S simulates the oracle queries of A and maintains the hash lists LH , Lsk as follows.

– Querying H-oracle with (UP , UQ, pkP , pkQ, CQ, pkP0, CP ,KP ,KQ)

1: If P = A,Q = B,CB = C∗, and (Π, I, UA, UB , pkA, pkB , CB , pkA0, CA) is the i-th session of UA,
then S outputs the KB as the answer of [OW-CCA, ·] challenge, namely K∗, and sets flag = ture.

2: Else if ∃ (UP , UQ, pkP , pkQ, CQ, pkP0, CP ,KP ,KQ, h) ∈ LH , returns h,
3: Else if P = B and ∃ (UB , UQ, pkB , pkQ, CQ, pkB0, CB , h) ∈ Lsk:

1. if (CQ, pkB0) is sent byA: with the knowledge of skQ, S extractsK ′Q = Decaps(skQ, csk0, CQ);
As CB is generated by S itself, S knows the encapsulated key K ′B in CB .

2. if CB is sent by A: As CQ is generated by S, it has the knowledge of encapsulated key K ′Q in
CQ. S queries the decryption oracle of [OW-CCA, ·] with pkB0 (which is the output of Oleak1)
and CB to extract K ′B .

3. if both (CQ, pkB0) and CB are sent out by S: S knows both K ′B and K ′Q encapsulated in CB
and CQ respectively.

If (KB ,KQ) = (K ′B ,K
′
Q), then return h and add the tuple (UB , UQ, pkB , pkQ, CQ, pkB0, CB ,KB ,KQ, h)

to the list LH ;

26

4: Else if Q = B and ∃ (UP , UB , pkP , pkB , CB , pkP0, CP , h) ∈ Lsk:

1. if CB 6= C∗

(a) if (CB , pkP0) is sent by A: S queries the decryption oracle of [OW-CCA, ·] with pk′ = cpk0

and CB to extract encapsulated key K ′B ; As CP is generated by S, it has the knowledge
of K ′P encapsulated in C.

(b) if CP is sent byA: with the knowledge of skP and skP0, S extractsK ′P = Decaps(skP , skP0, CP);
As CB is generated by S itself, S has the knowledge of encapsulated key K ′B in CB .

(c) if both (CB , pkP0) and CP are sent out by S: S has the knowledge of K ′P and K ′B
encapsulated in CP and CB respectively.

If (KP ,KB) = (K ′P ,K
′
B), then return h and add (UP , UB , pkP , pkB , CB , pkP0, CP ,KP ,KB , h)

to the list LH ;
2. if CB = C∗

(a) if (CB , pkP0) is sent by S: As CB = C∗ is generated by S, S just outputs the corresponding
encapsulated key K ′B as the answer of [OW-CCA, ·] game, namely K∗.

(b) if (CB , pkP0) is sent byA: if KP = K ′P (CP and encapsulated key K ′P are generated by S),
then S outputs h and adds (UP , UB , pkP , pkB , CB , pkP0, CP ,KP ,KQ, h) to the list LH ,
else S returns a random value h and adds (UP , UQ, pkP , pkQ, CB , pkP0, CP ,KP ,KB , h)
to the list LH .

If (KP ,KB) = (K ′P ,K
′
B), then return h and add (UP , UB , pkP , pkB , CB , pkP0, CP ,KP ,KB , h)

to the list LH ;

5: Else if B 6= P or Q and ∃ (UP , UQ, pkP , pkQ, CQ, pkP0, CP , h) ∈ Lsk:

1. if (CQ, pkP0) is sent byA: with the knowledge of skQ, S extractsK ′Q = Decaps(skQ, csk0, CQ);
As CP is generated by S itself, S has the knowledge of encapsulated key K ′P in CP .

2. if CP is sent by A: As CQ and pkP0 are generated by S, S has both the knowledge of
encapsulated key K ′Q in CQ and ephemeral secret key skP0; With the knowledge of skP and
skP0, S extracts K ′P from CP .

3. if both (CQ, pk0) and CP are sent by S: S has the knowledge of K ′P and K ′Q encapsulated
in CP and CQ respectively.

If (KP ,KQ) = (K ′P ,K
′
Q), then return h and add (UP , UQ, pkP , pkQ, C2, pkP0, C,KP ,KQ, h) to

the list LH ;
6: otherwise, S returns a random value h and adds (UP , UQ, pkP , pkQ, CQ, pkP0, CP ,KP ,KQ, h) to

the list LH .

– Send(Π, I, UP , UQ) :
1. If P = A and this session is the i-th session of UA, then S queries Oleak1 to get a pubic and secret

key pair. As in the setup, S sets them as ephemeral public and secret key pair (pkA0, skA0) of
UA in i-th session. Then S returns C∗Q, pkA0.

2. If P = B, S queries Oleak1 to get (pkB0, skB0, r) and generates two independent randomness
(rB , RB) (to pretend that RB is computed as fB(skB , rB). It will not be detected by A since fB
is a (ε1, ε2) hl-RF). S generates (CQ,KQ)← Encaps(pkQ, cpk0, hB) and sends out (CQ, pkP0).

3. otherwise, S generates randomness rP and RP honestly, and computes (CQ,KQ)← Encaps(pkQ,
cpk0, hP). S queries Oleak1 to get (pkP0, skP0, r) and returns (CQ, pkP0).

– Send(Π,R,UQ, UP , CQ, pkP0): S computes the messages and session key, and maintains the session
key list Lsk as follows.
1. If Q = B: S generates two independent randomness (rB , hB) (to pretend that hB is computed as
fB(skB , rB), which will not be detected by A). S computes (CP ,K

′
P) ← Encpas(pkP , pkP0, hB)

and returns CP . If ∃(UP , UB , pkP , pkB , CB , pkP0, CP ,KP ,KB , h) ∈ LH and K ′P = KP , S pro-
ceeds as following: if CB = C∗ then set SK = h, else (as CB 6= C∗) send the query (cpk0, CB) to
the decryption oracle to get K ′B ; if K ′B = KB , set SK = h.

27

2. If Q 6= B: S generates randomness rQ2 and queries h-oracle to get hQ. S generates (CP ,K
′
P)←

Encaps(pkP , pkP0, hQ). With the knowledge of skQ, S extracts K ′Q = Decaps(skQ, csk0, CQ). If
there exists (UP , UQ, pkP , pkQ, CQ, pkP0, CP ,KP ,KQ, h) ∈ LH and KP = K ′P ,KQ = K ′Q, set
SK = h.

3. otherwise, S chooses SK randomly.
S keeps record of it as a completed session and adds (UP , UQ, pkP , pkQ, CQ, pkP0, CP , SK) to the
session key list Lsk.

– Send(Π, I, UP , UQ, CQ, pkP0, CP): S has the knowledge of K ′Q encapsulated in CQ. (pkP0, skP0, r) is
received from Oleak1 .
1. If P = B, then S queries the decryption oracle of [OW-CCA, ·] with (pk0, CB) to get K ′B . If

there exists (UB , UQ, pkB , pkQ, CQ, pkB0, CB ,KB , KQ, h) ∈ LH and K ′B = KB ,K
′
Q = KQ, set

SK = h.
2. If Q = B, with the knowledge of skP and skP0, S computes K ′P = Decaps(skP , skP0, C). If
∃(UP , UB , pkP , pkB , CB , pkP0, CP ,KP ,KB , h) ∈ LH and K ′P = KP ,K

′
Q = KB , set SK = h.

3. If P 6= B andQ 6= B, with the knowledge of skP and skP0, S computesK ′P = Decaps(skP , skP0, C).
If there exists (UP , UQ, pkP , pkQ, CQ, pkP0, CP ,KP ,KQ, h) ∈ LH and K ′P = KP ,K

′
Q = KQ, set

SK = h.
4. otherwise, S chooses SK randomly.
S keeps record of it as a completed session and adds (UP , UQ, pkP , pkQ, CQ, pkP0, CP , SK) to the
session key list Lsk.

– Querying SessionKeyReveal(sid): The session key list Lsk is maintained as in the Send queries.
1. If the session sid is not completed, S aborts.
2. Else if sid is in the list Lsk, (UP , UQ, pkP , pkQ, CQ, pkP0, CP , SK) ∈ Lsk, then return SK.
3. otherwise, S returns a random value SK and adds it in Lsk.

– Querying SessionStateReveal(sid): As the definition of freshness, sid is not the test session.
1. If the owner of sid is B, and B is a responder. The session state is generated by himself, or

received from Oleak1 . S just returns them.
2. If the owner of sid is B, and B is a initiator. The session state is generated by himself, or received

from Oleak1 , or extractable from the decryption oracle. S just returns them.
3. otherwise, S holds the secret key of other users and could return the session state as the definition.

– Querying Corrupt(UP) :
S returns the static secret key of UP .

– Test(sid :)
If sid is not the i-th session of UA, S aborts; otherwise, S responds to the query as the definition
above.

– If A outputs a guess b′, S aborts.

The simulator S maintains all the consistencies ofH-oracle, h-oracle, SessionStateReveal, and SessionKeyReveal,
with the decryption oracle of 2KEM. Note that in the first case of the H-oracle, if flag = ture, then S
would succeed in the [OW-CCA, ·] game. Thus, Pr[AskH ∧ E1] ≤ N2l ·Adv

[OW-CCA,·]
2KEM (S) +N2lq · ε2.

Event AskH ∧ E2

In the event E2, the test session sid∗ (with owner as initiator) has no matching session, and the ephemeral
secret key of UA is given to A. In case of AskH ∧ E2, the [OW-CCA, ·] adversary S performs as follows.
It simulates the CK+ games and transforms the probability of occurrence of event AskH performed by
A to the advantage of attacking [OW-CCA, ·] security with pk∗0 = cpk0.

In order to simulate the random oracles, S maintains hash list LH and Lsk, corresponding to the
queries and answers of theH oracle, SessionStateReveal and SessionKeyReveal. LH and Lsk are interrelated
with each other since the adversary may ask Lsk without the encapsulated keys firstly, then ask LH with
the encapsulated keys. Thus, the reduction must ensure consistency of the random oracle queries to LH
and Lsk. The decryption oracle of [OW-CCA, ·] game could help to maintain the consistency as done in
H-oracle and SessionKeyReveal in the following.

In the [OW-CCA, ·] game, on receiving the public key pk1, S returns an empty pk∗0 = cpk0 to the
challenger. Then on receiving the challenge ciphertext C∗ with public key pk1 and pk∗0 for encapsulated

28

key K∗, to simulate the CK+ game, S randomly chooses two parties UA, UB and guesses a random
i-th session as a guess of the test session with probability of success 1/N2l. S samples a key pair
(cpk0, csk0)← KeyGen0 as public parameters. By computing (pk1, sk1)← KeyGen1, S sets all the static
secret and public key pairs (pkP , skP) for all N users UP except UB . S sets pkB = pk1.

Without the knowledge of the secret key of UB , S chooses totally random rB as part of ephemeral
secret keys and RB as the randomness for Encaps. Since fB is (ε1, ε2) hl-RF, the difference between the
simulated game with modification of rB and real game is bounded by ε1. If it is in need of an ephemeral
public key pkP0 sent out by Up, S queries (pki0, sk

i
0, r

i
0) ← Oleak0 and sets pkP0 = pki0. When a session

state revealed to a session owned by UB , is queried, S returns rB and ri0 of this session.
Specially, by computing (pkA, skA) ← KeyGen1 and querying (pkA0, skA0, rA0) ← Oleak1 , S sets the

static secret and public key pairs (pkA, skA) for UA, as well as the ephemeral secret and public key pairs
(pkA0, skA0) for the i-th session of UA. S sets C∗, pkA0 as the message sent out by UA in i-th session. S
chooses an independent randomness rA2 and leaks the ephemeral secret keys rA0, rA2 in the i-th session
of UA to adversary A.
S simulates the oracle queries of A as what it dose in the case above and maintains the hash lists as in

the event AskH∧E1. Specially, when AskH happens, which means that A submits (UA, UB , pkA, pkB , C
∗,

pkA0, CA,KA,KB) toH, where C∗, pkA0, CA is the view of the test session andKA is the key encapsulated
in CA, then return KB as the guess of K∗.

As in the event AskH ∧ E1, we have Pr[AskH ∧ E2] ≤ N2l ·Adv
[OW-CCA,·]
2KEM (S) +N2lq · ε2.

Event AskH ∧ E3

In the event E3, the test session sid∗ (with owner as responder) has no matching session, and the
ephemeral secret keys of UB are given to A. In the case of AskH∧E3, the [OW-CCA, ·] adversary S with
pk∗0 ← A performs as follows. It simulates the CK+ games and transforms probability of the occurrence
of event AskH performed by A to the advantage of attacking [OW-CCA, ·] security.

In order to simulate the random oracles, S maintains hash list LH and Lsk, corresponding to the
queries and answers of the H oracle SessionStateReveal and SessionKeyReveal. LH and Lsk are interrelated
with each other since the adversary may ask Lsk without the encapsulated keys firstly, then ask LH with
the encapsulated keys. Thus, the reduction must ensure consistency of the random oracle queries to LH
and Lsk. The decryption oracle of [OW-CCA, ·] game could help to maintain the consistency as done in
H-oracle and SessionKeyReveal in the following.

On receiving the public key pk1 from the [OW-CCA, ·] challenger, to simulate the CK+ game, S
randomly chooses two parties UA, UB and guesses a random i-th session as a guess of the test session
with probability of success 1/N2l. S samples a key pair (cpk0, csk0) ← KeyGen0 as public parameters.
By computing (pk1, sk1) ← KeyGen1, S sets all the static secret and public key pairs (pkP , skP) for all
N users UP except UA. Specially, S sets the static secret and public key pairs (pkB , skB) for UB . S sets
pkA = pk1.

Without knowing the secret key of UA, S chooses totally random rA as part of ephemeral secret key
and RA as the randomness for Encaps. Since fA is (ε1, ε2) hl-RF, the difference between the simulated
game with modification of rA and real game is bounded by ε1. If it is in need of an ephemeral public
key pkP0 sent out by UP , S queries (pki0, sk

i
0, r

i
0) ← Oleak0 and sets pkP0 = pki0. When a session state

revealed to a session owned by UA, is queried, S returns rA and ri0 of this session.
On receiving the i-th session (C ′B , pk

∗
0) from UA (which is sent by A in the CK+ games), S returns

pk∗0 to the [OW-CCA, ·] challenger and receives the challenge ciphertext C∗ under public key pk1 and pk∗0
with encapsulated key K∗. Then S sends C∗ to UA as the response of i-th session from UB . S chooses a
totally independent randomness rB as the ephemeral secret key of UB and leaks it to adversary A.
S simulates the oracle queries of A as what it dose in the case above and maintains the hash lists as in

the event of AskH∧E2. Specially, when AskH happens, which meansA submits (UA, UB , pkA, pkB , C
′
B , pk

∗
0 ,

C∗,KA,KB) to H, where C ′B , pk
∗
0 , C

∗ is the view of the test session and KB is the key encapsulated in
C ′B , then return KA as the guess of K∗.

As in event AskH ∧ E2, Pr[AskH ∧ E3] ≤ N2l ·Adv
[OW-CCA,·]
2KEM (S) +N2lq · ε1.

Event AskH ∧ E4

In the event E4, the test session sid∗ (with owner as responder) has no matching session, and the static

29

secret keys of UB are given to A. In the case of AskH ∧ E4, the [OW-CCA, ·] adversary S with pk∗0 ← A
performs as follows. It simulates the CK+ games and transforms the probability of the occurrence of
event AskH performed by A to the advantage of attacking [OW-CCA, ·] security.

In order to simulate the random oracles, S maintains hash list LH and Lsk, corresponding to the
queries and answers of theH oracle, SessionStateReveal and SessionKeyReveal. LH and Lsk are interrelated
with each other since the adversary may ask Lsk without the encapsulated keys firstly, then ask LH with
the encapsulated keys. Thus, the reduction must ensure consistency of the random oracle queries to LH
and Lsk. The decryption oracle of [OW-CCA, ·] game could help to maintain the consistency as done in
H-oracle and SessionKeyReveal in the following.

On receiving the public key pk1 from the [OW-CCA, ·] the challenger, to simulate the CK+ game, S
randomly chooses two parties UA, UB and guesses a random i-th session as a guess of the test session
with probability of success 1/N2l. S samples a key pair (cpk0, csk0) ← KeyGen0 as public parameters.
By computing (pk1, sk1)← KeyGen1 and sets all the static secret and public key pairs (pkP , skP) for all
N users UP except UA. Specially, S sets the static secret and public key pairs (pkB , skB) for UB . S sets
pkA = pk1. If it is in need of an ephemeral public key pkP0 sent out by UP , S queries (pki0, sk

i
0, r

i
0)← Oleak0

and sets pkP0 = pki0.

On receiving the i-th session (C ′B , pk
∗
0) from UA (which is sent by A in the CK+ games), S returns

pk∗0 to the [OW-CCA, ·] challenger and receives the challenge ciphertext C∗ under public key pk1 and pk∗0
with encapsulated key K∗. Then S returns C∗ to UA as the response of i-th session from UB . S leaks
the static secret key skB of UB to the adversary A.

S simulates the oracle queries of A as what it dose in the case above and maintains the hash lists as in
the event of AskH∧E3. Specially, when AskH happens, which meansA submits (UA, UB , pkA, pkB , C

′
B , pk

∗
0 ,

C∗,KA,KB) to H, where C ′B , pk
∗
0 , C

∗ is the view of the test session and KB is the key encapsulated in
C ′B , then return KA as the guess of K∗.

As in the event AskH ∧ E3, we have Pr[AskH ∧ E4] ≤ N2l ·Adv
[OW-CCA,·]
2KEM (S) +N2lq · ε1.

Event AskH ∧ E5

In event E5, the test session sid∗ (with owner as responder or initiator) has matching session sid∗. Both
static secret keys of initiator and responder are leaked to A. In this case, the [·,OW-CPA] adversary S
performs as follows. It simulates the CK+ games and transforms the probability of the occurrence of
event AskH performed by A to the advantage of attacking [·,OW-CPA] security.

To simulate the CK+ game, S randomly chooses two parties UA, UB and guesses a random i-th session
as a guess of the test session with probability of success 1/N2l. S queries some (pki1, sk

i
1, r

i
1)← Oleak1 , and

sets all the static secret and public key pairs (pkP , skP) = (pki1, sk
i
1) for all N users UP . S samples a key

pair (cpk0, csk0)← KeyGen0 as public parameters. When a ephemeral public key is required, S generates
(pkP0, skP0) ← KeyGen0(r0) by himself. In the [·,OW-CPA] game, S sends pkA to the challenger and
receives challenge ciphertext C∗. In the i-th session of UA, S sends C∗, pk0 to UB . S leaks skA and skB
to adversary A.

With all the static secret keys, S could perfectly simulate the CK+ games. When AskH happens,
which means A submits (UA, UB , pkA, pkB , CB , pk

∗
0 , C

∗,KA,KB) to H, where C ′B , pk
∗
0 , C

∗ is the view of
the test session and KB is the key encapsulated in CB , then return KA as the guess of K∗.

Thus, Pr[AskH ∧ E5] ≤ N2l ·Adv
[·,OW-CPA]
2KEM (S) +N2lq · ε2.

Event AskH ∧ E6

In event E6, the test session sid∗ has matching session sid∗. Both ephemeral secret keys of initiator and
responder are leaked to A. This is almost the same as Event AskH ∧ E3, in which case the ephemeral
public key is generated by A. In this case, the only difference is that the ephemeral secret key of test
session (or the matching session) is leaked to A but not generated by A, which means pk∗0 ∈ L0.

Event AskH ∧ E7-1

In event E7-1, the test session sid∗ has matching session sid∗. Both ephemeral secret keys of responder
and static secret key of initiator are leaked to A. This is almost the same with Event AskH∧E1. In this
case, the only difference is that the ephemeral secret key of UB is leaked to A, which does not affect the
proof.

30

Event AskH ∧ E7-2

In event E7-2, the test session sid∗ has matching session sid∗. Both ephemeral secret keys of initiator
and static secret key of responder are leaked to A. This is almost the same as Event AskH ∧ E6. In this
case, the only difference is that the ephemeral secret key of UA is leaked to A, which does not make any
influences to the proof.
Event AskH ∧ E8-1

In event E8-1, the test session sid∗ has matching session sid∗. Both ephemeral secret keys of initiator and
the static secret key of responder are leaked to A. This is almost the same as Event AskH∧E7-2. In this
case, the only difference is the position of initiator and responder, which does not affect the proof.
Event AskH ∧ E8-2

In event E8-2, the test session sid∗ has matching session sid∗. Both static secret keys of initiator and the
ephemeral secret key of responder are leaked to A. This is almost the same as Event AskH∧E8-2. In this
case, the only difference is the position of initiator and responder, which does not affect the proof.

Appendix B: Proofs of Theorem 2 related to HMQV

We first show the [OW-CCA, OW-CCA] security of 2KEMHMQV against the resistance to the leakage of
b by proving the security of 2KEMHMQV0 in Figure 16 (in Lemma 4), then show the resistance to the
leakage of randomness y by reducing it to the security of Dual HCR signature (in Lemma 5).

Since after replacing Y in 2KEMHMQV0 by Y Be and y in 2KEMHMQV0 by y+eb, we will get 2KEMHMQV,
and B is public parameter, the security of 2KEMHMQV0 is preserved in 2KEMHMQV. Thus, if 2KEMHMQV0

is [OW-CCA, OW-CCA] secure, then 2KEMHMQV also is [OW-CCA, OW-CCA] secure even if b is leaked.

KeyGen1(λ) KeyGen0(λ) Encaps(pk1, pk0) Decaps(sk1, sk0, c)

a← Zp; x← Zp y ← Zp, Y = gy Y ← c
A = ga X = gx d = h(X,B) d = h(X,B)

pk1 = A pk0 = X; k′ = Ĥ((XAd)y) k = Ĥ(Y x+da)
sk1 = a sk0 = x. Return k, c = Y Return k′

Fig. 16. The [OW-CCA, OW-CCA] secure 2KEMHMQV0 .

Therefore, in the following we focus on the security of 2KEMHMQV0 . Furthermore, we reduce its security
to the unforgeability of HCR signature. Before going to the lemmas, we depict the HCR signature scheme
provided in [24] and its unforgeability game.

Definition 4 (The (Dual) HCR signature, [24]). Let UA be a signer with public key A = ga, UB be a
verifier with public key B. The HCR signature of UA is defined as: Y = gy, X = gx and HSIG(m,Y,X) =
Ĥ(Y x+da); The Dual HCR signature of UA is defined as: Y = gy, X = gx and HSIG(m,Y,X) =
Ĥ((Y Be)x+da); where Y is a challenge computed by UB, X is a respond generated by UA (x is chosen
by UA), and e = h(Y,A), d = h(X,B).

The forgery game for HCR signature is described as follows. Any PPT forger F with the challenged
public key A and X0 of his choice, interactively queries a sign oracle SignO. Finally F outputs “fail”
or a forgery (X0,m0, σ). The sign oracle SignO proceeds as following: build a list L = {−,−,−,−,−}
first. On receiving a message m from F it returns X = gx for x ← Zq, and sets L = L ∪ (x,X,m, ·, ·)
where the last two elements are empty. On receiving (X ′,m′) and challenge Y ′, if (·, X ′,m′, ·, ·) ∈ L and
Y ′ 6= 0, it returns σ′ = H(Y x+h(X′,m′)a), then makes up the tuple (·, X ′,m′, ·, ·,) as (·, X ′,m′, Y ′, σ′),
else it returns ⊥. We say that F wins the game successfully if both of the following two conditions hold:
i) (·, X0,m0, ·, ·) 6∈ L, or (·, X0,m0, ·, ·) ∈ L ∧ (·, X0,m0, Y0, σ) 6∈ L; ii) σ = Ĥ(Y x0+h(X0,m0)a), where
x0 = loggX0. Note that in HMQV [24], the case of (·, X0,m0, ·, ·) ∈ L ∧ (·, X0,m0, Y0, σ) 6∈ L is not
considered as a successful forgery in the forgery game defined by the authors [24]. But the proof still
works when this type of forgery is also included in the forgery game.

31

The advantage of F is defined as Advuf
F = Pr[F wins]. HCR is said to be unforgeable if Advuf

HCR(F) is
negligible for any PPT forger F . The unforgeability of Dual HCR can be defined similarly.

Lemma 3 ([24], Lemma 27 & Remark 7.1). Under the Gap-DH, KEA1 assumptions, HCR is un-
forgeable in the random oracle model; and Dual HCR is unforgeable with the leakage of randomness y.

Lemma 4. If HCR is unforgeable in the random oracle model, 2KEMHMQV0 is [OW-CCA, OW-CCA]
secure in the random oracle model.

Proof. We reduce the [OW-CCA, ·] security to the unforgeability of HCR. It is analogous for the [·,OW-CCA]
security.

We construct a forger F that performs as follows. F simulates the [OW-CCA, ·] game for KEMHMQV0 ,
and transfers the advantage of adversary A attacking 2KEMHMQV0 to that of forging HCR. As shown in
Figure 17, F perfectly simulates Oleak0 and OOW-CCA using SignO. If A succeeds in [OW-CCA, ·] game,

it holds k′ = H(Y x0+h(X0,B)a). Thus, we have Adv
[IND-CCA,·]
2KEMHMQV0

(A) ≤ Advuf
HCR(F).

Forger FA(A, Y0):

01 send pk1 = A to A, build L0 = {−,−,−}
02 on the i-th query of Oleak0 F performs as following:
03 query SignO with m = B and get (xi, Xi)
04 set L0 = L0 ∪ (pki0 = Xi, sk

i
0 = xi, r

i
0 = xi)

05 return (ski0 = xi, pk
i
0 = Xi, r

i
0 = xi)

06 on receiving pk∗0 = X0, return C∗ = Y0 = gy0 as challenge ciphertext
07 on receiving OOW-CCA(pk′0 = X ′, C′ = Y ′);
08 if X ′ ∈ [L0]1 ∧X ′ 6= X0 or X ′ ∈ [L0]1 ∧X ′ = X0 ∧ Y ′ 6= Y0

09 query SignO with (X ′, B) and challenge Y ′

10 send what SignO returns to A
11 otherwise send ⊥ to A
12 on receiving k′ from A as the guess of k∗

13 return (X0, A, k
′) as signature on challenge Y0.

Fig. 17. Forger of HCR using [OW-CCA, ·] adversary A

Lemma 5. If Dual HCR is unforgeable with the leakage of randomness y, 2KEMHMQV is [OW-CCA,
OW-CCA] secure with the leakage of randomness y in the random oracle model.

Appendix C: Proofs of Theorem 3 related to NAXOS

Proof. We reduce the [OW-CCA, ·] security to the underlying Gap-DH assumption. t is analogous for
the [·,OW-CCA] security. For convenience, we define a twisted 2KEM′NAXOS, in which the encapsulation
algorithm Encaps chooses y ← Zp directly, rather than by computing y = h(y0, b) where y0 ← Zp.
Obviously, in the random oracle model, to prove the [OW-CCA, ·] security of 2KEMNAXOS with the leakage
of x0 or b, we only need to prove the [OW-CCA, ·] security of 2KEM′NAXOS itself.

We construct an algorithm B which utilizes the [OW-CCA, ·] adversary A as a sub-routine to solve the
Gap-DH problem. Given Gap-DH instance, B simulates the [OW-CCA, ·] games for A, and transforms
the advantage of A attacking [OW-CCA, ·] security to that of solving Gap-DH instance. To perfectly
simulate the [OW-CCA, ·] game for A, B maintains one decapsulation list Ldec and one hash list LĤ, and
guarantees the consistency of two lists by utilizing the DDH oracle.
B is given as input (X0, Y0), where X0 = gx0 and Y0 = gy0 for random x0, y0, and finally outputs

a value guess. B is also given a DDH oracle ODDH. Firstly B sets pk1 = A = X0 and sends A to A.
On receiving pk∗0 = X from A, B sets c∗ = Y0, and chooses a random k∗ ← {0, 1}λ. Then B sets a

32

default value g as a guess. We expect that A at some point makes a queries of the form (Z = Y x0
0 , D′)

to Ĥ-oracle such that ODDH(A, Y0, Z) = 1, otherwise A would have no advantage to output challenge
session key. To find out when A queries its Ĥ-oracle with Y x0

0 , we query ODDH(A, Y0, Z) whenever A
makes a query (Z,D′) to Ĥ-oracle. If ODDH(A, Y0, Z) = 1, then Z = Y x0

0 . We then update the value of
guess to Z.

– The decapsulation DECAPS(X ′, Y ′) (where pk′0 = X ′ and c′ = Y ′) is simulated as follows: If
(X ′, Y ′) = (X,Y0), it just aborts. If (X ′, Y ′) has been asked to DECAPS (which means ∃(X ′, Y ′, k′) ∈
Ldec), then just return k′. If (X ′, Y ′) has not been asked to DECAPS, then first check whether
∃(Z ′, D′, h′) ∈ LĤ (which means (Z ′, D′) has been asked to Ĥ-oracle) where ODDH(A, Y ′, Z ′) =
1 ∧ ODDH(X ′, Y ′, D′) = 1. If it is the case, set k′ = h′; else set k′ as a random value. At last, add
(X ′, Y ′, k′) to list Ldec.

– The Ĥ-oracle is simulated as follows: If (Z ′, D′) has been asked to Ĥ-oracle (which means ∃(Z ′, D′, h′) ∈
LĤ) just return h′. If (Z ′, D′) has not been asked to DECAPS, then first check whetherODDH(A, Y0, Z

′) =
1. If it is the case, update the value of guess to Z. If not, then check whether ∃(X ′, Y ′, k′) ∈ Ldec

(which means (X ′, Y ′) has been asked to DECAPS) where ODDH(A, Y ′, Z ′) = 1∧ODDH(X ′, Y ′, D′) =
1. If it is true, set h′ = k′; else set h′ as a random value. At last, add (Z ′, D′, h′) to the hash list LĤ .

Note that no matter which oracle A asked first, Ĥ with (Z ′, D′) or DECAPS with (X ′, Y ′), two lists are
consistent.

Consider the game [OW-CCA, ·] and let AskA denote the event that the Ĥ-oracle query (Y x0
0 , D′)

for some D′ is asked by A and AskA is the complement event of AskA. When (Y x0
0 , D′) for some D′ is

not asked by A to Ĥ-oracle, there is no way to output the challenge key k∗ other than guessing with
probability 1/2λ. Thus we have that

Adv
[OW-CCA,·]
2KEM′NAXOS

(A) = Pr[OW-CCAA ⇒ 1 ∧ AskA] + Pr[OW-CCAA ⇒ 1 ∧ AskA]

≤ Pr[OW-CCAA ⇒ 1 ∧ AskA] + 1/2λ

≤ Pr[1 ∧ AskA] + 1/2λ

≤ AdvGap-DH(B) + 1/2λ

ut
Put them all together, we have that 2KEMNAXOS is [OW-CCA,OW-CCA] secure even with the leakage

of one of x0 and b.

Appendix D: Proofs of Theorem 4 and optimized AKE related to Okamoto

The proof of Theorem 4. The proof of [·, IND-CPA] security proceeds by a series of games. Let A be

the adversary that is involved in the [·, IND-CPA] game. We set it as game G0, then Adv
[·,IND-CPA]
2KEMOka

(A) =
|Pr[b′ = b in G0] − 1/2|. In game G1, when computing challenge encapsulated key k∗0 corresponding

to c∗ = (Y1, Y2, Y3), X
y∗3
3 used in challenge encapsulated key is substituted with an uniformly random

value in G1. There exists an algorithm B such that Pr[b′ = b in G0] − Pr[b′ = b in G1] ≤ Advddh
B . B

performs as following: on receiving DDH challenge (g1, X3, Y3, T), it computes and returns pk0 = X3.
After receiving pk∗1 = (A1, A2) from A, B computes challenge ciphertext as c∗ = (Y1 = gy1 , Y2 = gy2 , Y3)

and σ∗ = T ·(A1A
c
2)y, then k∗0 = F̂σ∗(pk0, c

∗). Finally, on receiving b′ and the guess of b, B returns b′
?
= b.

If (g1, X1, Y1, T) is a DDH tuple, this is exactly the game G0; If (g1, X1, Y1, T) is a non-DDH tuple, this
is exactly the game G1. Note that in G1, k∗b is independent of b, therefore Pr[b = b′ in G1] = 1/2.

To prove the [IND-CCA, ·] security, we are confronted with the problem that the adversary may query
the strong decapsulation oracle with ciphertexts under other public keys, thus the inputs of PRF should
include public key and the PRF is lifted to pairwise-independent random source PRF, which is still a
PRF even if the random key is only pairwise-independent. The proof of [IND-CCA, ·] security proceeds

33

by a series of games. Let A be the adversary that is involved in the [IND-CCA, ·] game. We set it as game

G0, then Adv
[IND-CCA,·]
2KEMOka

(A) = |Pr[b′ = b in G0]− 1/2|.
In game G1, the decryption oracle will reject queries with (Y ′1 , Y

′
2 , Y

′
3) 6= (Y1, Y2, Y3), and htcr(A1, A2,

Y ′1 , Y
′
2 , Y

′
3) = htcr(A1, A2, Y1, Y2, Y3). Note that this will happen with negligible probability if htcr is a

target collision resistant hash function.
In game G2, to generate the challenge encapsulated key, σ∗ corresponding to c∗ = (Y1, Y2, Y3), is

computed by using Xy3
3 · Y

a1+ca3
1 Y a2+ca4

2 instead of Xy3
3 · (A1A

c
2)y
∗

which is the exact value computed
in game G1.

In game G3, Y1, Y2 used in c∗ are substituted with non-DDH tuple. There exists an algorithm B such
that Pr[b′ = b in G2]− Pr[b′ = b in G3] ≤ Advddh

B .
In game G4, with the trapdoor s = logg2 g1, on receiving the decryption queries with (X ′3 =

g
x′3
1 ;Y ′1 , Y

′
2 , Y

′
3), set σ′ as a totally random element, if (Y1, Y2) 6= (Y ′1 , Y

′
2) ∧ Y ′2 6= Y

′s
1 . G4 is identi-

cal with G3, except that when bad happens, namely, (Y1, Y2) 6= (Y ′1 , Y
′
2) ∧ Y ′2 6= Y

′s
1 but (A1A

c
2)y =

Y a1+ca3
1 Y a2+ca4

2 . From [9], we have that Y a1+ca3
1 Y a2+ca4

2 is the universal 2 function and bad happens
with probability less than 1/p.

In game G5, the encapsulated key k∗0 is substituted with a random string. Note that in the case
(Y ′1 , Y

′
2) = (Y1, Y2), we have (pk′0, c

′) 6= (pk∗0 , c
∗) (otherwise the decryption oracle aborts); in the case

(Y ′1 , Y
′
2) 6= (Y1, Y2), σ∗ is pairwise-independent with σi (where σi as the internal value is computed by

the i-th decryption oracle). By the definition of pairwise-independent random source PRF, the difference
between G4 and G5 is bounded by the advantage against pairwise-independent random source PRF.
Note that in G5, k∗b is independent of b, therefore Pr[b = b′ in G5] = 1/2.
Optimized Okamoto AKE.

What is more, let H4 : {0, 1}∗ → {0, 1}l be a 4-wise independent hash function [21]. We employ the
technique of optimizing classical KEM [21] to 2KEMOka and get optimized 2KEMOka-opt scheme shown in
Figure 18. Applying 2KEMOka-opt to AKEstd, we will get an optimized AKE of Okamoto-AKE.

2KEMOka-opt.KeyGen1(λ) 2KEMOka-opt.KeyGen0(λ)

a1, a2 ← Z3
p, A = ga11 ga22 ; x3 ← Zp, X3 = gx31

pk1 = A, sk1 = (a1, a2) pk0 = X3,sk0 = x3
2KEMOka-opt.Encaps(pk0, pk1); 2KEMOka-opt.Decaps(sk0, sk1, C)

y, y3 ← Zp, Y1 = gy1 , Y2 = gy2 , Y3 = gy31 C ∈ G3, (Y1, Y2, Y3)← C
σ = H4(Xy3

3 ·Ay) σ′ = H4(Y x33 · Y a11 Y a22)
C = (Y1, Y2, Y3), K = F̄σ(pk0, C) K′ = F̄σ′(pk0, C)

Fig. 18. The [IND-CCA, IND-CPA] secure optimized 2KEMOka-opt.

Theorem 9. If H4 is a 4-wise independent hash function, then 2KEMOka-opt is [IND-CCA, IND-CPA]
secure under DDH assumption.

Lemma 6 ([21],Theorem 4.3, Lemma 5.1). Let G be a group with prime order p, and generators
g1, g2. Let A = ga11 ga22 . If both (g1, g2, Y1, Y2) and (g1, g2, Y

′
1 , Y

′
2) are non-DDH tuples and (Y1, Y2) 6=

(Y ′1 , Y
′
2), then {A,H4, H4(Y a11 Y a22), H4(Y

′a1
1 Y

′a2
2)} is statistically indistinguishable with {A,H4, U2l}.

The proof of [·, IND-CPA] security proceeds by a series of games. Let A be the adversary that is involved

in the [·, IND-CPA] game. We set it as game G0, then Adv
[·,IND-CPA]
2KEMOka-opt

(A) = |Pr[b′ = b in G0] − 1/2|. In

game G1, when computing challenge encapsulated key k∗0 corresponding to c∗ = (Y1, Y2, Y3), X
y∗3
3 used in

challenge encapsulated key is substituted with an uniform random values in G. There exists an algorithm
B such that Pr[b′ = b in G0] − Pr[b′ = b in G1] ≤ Advddh

B . B performs as following: on receiving DDH
challenge (g1, X3, Y3, T), it computes and returns pk0 = X3. After receiving pk∗1 = A from A, B computes
challenge ciphertext as c∗ = (Y1 = gy1 , Y2 = gy2 , Y3) and k∗0 = F̂H4(T ·Ay)(pk0, c

∗). Finally, on receiving b′

34

and the guess of b, B returns b′
?
= b. If (g1, X1, Y1, T) is a DDH tuple, this is exactly the game G0; If

(g1, X1, Y1, T) is a non-DDH tuple, this is exactly the game G1. Note that in G1, k∗b is independent of b,
therefore Pr[b = b′ in G2] = 1/2.

The proof of [IND-CCA, ·] security proceeds by a series of games. Let A be the adversary that is

involved in the [IND-CCA, ·] game. We set it as game G0, then Adv
[IND-CCA,·]
2KEMOka-opt

(A) = |Pr[b′ = b in G0]−1/2|.
In game G1, to generate the challenge encapsulated key, σ∗ corresponding to c∗ = (Y1, Y2, Y3), is

computed by using Xy3
3 · Y

a1
1 Y a22 instead of Xy3

3 ·Ay
∗

which is the exact value computed in game G0.
In game G2, Y1, Y2 used in c∗ are substituted with non-DDH tuple. There exists an algorithm B such

that Pr[b′ = b in G1]− Pr[b′ = b in G2] ≤ Advddh
B .

In game G3, with the trapdoor s = logg2 g1, on receiving the decryption queries with (X ′3 =

g
x′3
1 ;Y ′1 , Y

′
2 , Y

′
3), set σ′ as a totally random key, if (Y1, Y2) 6= (Y ′1 , Y

′
2) ∧ Y ′2 6= Y

′s
1 . G2 is identical with

G3, except that when bad happens, namely, (Y1, Y2) 6= (Y ′1 , Y
′
2)∧ Y ′2 6= Y

′s
1 but σ′ = H4(Y

x′3
3 · Y

′a1
1 Y

′a2
2).

From Lemma 6, bad happens with probability less than 1/2l.
In game G4, the encapsulated key k∗0 is substituted with a random string. Note that in case (Y ′1 , Y

′
2) =

(Y1, Y2), we have (pk′0, c
′) 6= (pk∗0 , c

∗) (otherwise the decryption oracle aborts); in the case (Y ′1 , Y
′
2) 6=

(Y1, Y2), σ∗ is pairwise -independent with σi (where σi as the internal value is computed by the i-th
decryption oracle). By the definition of pairwise-independent random source PRF, the difference between
G4 and G3 is bounded by the advantage against pairwise-independent random source PRF. Note that
in G4, k∗b is independent of b, therefore Pr[b = b′ in G4] = 1/2.

Appendix E: Proof of Theorem 5 related to improved KEM combiner

Proof of Theorem 5 in the random oracle model, f(pk0, k1||k0, c) = Ĥ(pk0, k1||k0, c). Since [·,
OW-CPA] security is straightforward, in the rest we only prove the [OW-CCA, ·] security. The proof
proceeds with a sequence of games. Let Si denote the advantage of [OW-CCA, ·] adversary in Game i.

In Game 0, it is the original [OW-CCA, ·] game, namely, on receiving (pk′0, c
′
1||c′0) the decapsula-

tion oracle proceeds as follows: if (pk′0, c
′
1||c′0) = (pk∗0 , c

∗
1||c∗0), abort; else if pk′0 6∈ [L0]0, abort; else

compute k′1 = Decapscca(sk1, c
′
1) and k′0 = Decapscpa(sk0, c

′
0), and return k′ = Ĥ(pk′0, k

′
1||k′0, c′). The

challenger also maintains a hash list LĤ , which works as follows: on receiving (pk′0, k
′
1||k′0, c′1||c′0), if

∃(pk′0, k′1||k′0, c′1||c′0, k′) ∈ LĤ , return k′; else select k ← K, set LĤ = LĤ ∪ {pk′0, k′1||k′0, c′1||c′0, k}, and
return k.

In Game 1, we modify the decapsulation oracle and hash list. The decapsulation oracle works as
follows: on receiving (pk′0, c

′
1||c′0), if (pk′0, c

′
1||c′0) = (pk∗0 , c

∗
1||c∗0), abort; else if pk′0 6∈ [L0]0, abort; else if

∃(pk′0, c′1||c′0, k′) ∈ LD, return k′; else choose k ← K, set LD = LD ∪ {pk′0, c′1||c′0, k}, and return k.
The challenger also maintains a hash list LĤ , which works as follows: on receiving (pk′0, k

′
1||k′0, c′1||c′0),

if ∃(pk′0, k′1||k′0, c′1||c′0, k′) ∈ LĤ , return k′; else select k ← K; if pk′0 ∈ [L0]1, return k; if pk′0 6∈ [L0]1,
k′1 = Decapscca(sk1, c

′
1), k′0 = Decapscpa(sk0, c

′
0), and ∃k′ s.t. (pk′0, c

′
1||c′0, k′) ∈ LD then return k′; else,

set LD = LD ∪ {(pk′0, c′1||c′0, k)}. At last LĤ = LĤ ∪ {pk′0, k′1||k′0, c′1||c′0, k′}. Then if not abort, return k′.
To show the equivalence of Game 1 and Game 0 from the point view of A, consider the following

cases:

– Case 1: pk′0 6∈ [L0]1. The decapsulation oracle aborts in both Game 0 and Game 1.
– Case 2: pk′0 ∈ [L0]1. if k′1 = Decapscca(sk1, c

′
1) and k′0 = Decapscpa(sk0, c

′
0), the decapsulation o-

racle returns Ĥ(pk′0, k
′
1||k′0, c′1||c′0) in both Game 1 and Game 0. And if A queries decapsulation

oracle first, it adds (pk′0, k
′
1||k′0, c′1||c′0, k ← K) to LD. When A queries H on (pk′0, k

′
1||k′0, c′1||c′0)

later on, if the conditions of k′1 = Decapscca(sk1, c
′
1) and k′0 = Decapscpa(sk0, c

′
0) are satisfied, it

adds (pk′0, k
′
1||k′0, c′1||c′0, k) to LH and declares H(pk′0, k

′
1||k′0, c′1||c′0,) = k. if A queries Ĥ oracle

first, if the conditions k′1 = Decapscca(sk1, c
′
1) and k′0 = Decapscpa(sk0, c

′
0) are satisfied, it adds

(pk′0, k
′
1||k′0, c′1||c′0, k) to LH to declare Ĥ(pk′0, k

′
1||k′0, c′1||c′0,) = k and adds (pk′0, k

′
1||k′0, c′1||c′0, k) to

LD. Later, if it queries (pk′0, k
′
1||k′0, c′1||c′0) to decapsulation oracle., it returns k.

35

We now re-clarify the sub-cases of case 2 for hash list.

– Subcase 2.1: if pk′0 ∈ [L0]0 and pk′0 = pk∗0 and k′0 = Decaspcpa(sk
′
0, c
′
0)

• Subsubcase 2.1.1 c∗1 = c′1, compute k1 = Decaspcpa(sk
′
0, c
′
0) and check if k′1

?
= k1.

• Subsubcase 2.1.2 c∗1 6= c′1, compute k1 = Decaspcpa(sk
′
0, c
′
0) and check if k′1

?
= k1.

– Subcase 2.2: if pk′0 ∈ [L0]0 and pk′0 6= pk∗0 and k′0 = Decaspcpa(sk
′
0, c
′
0)

• Subsubcase 2.2.1 c∗1 = c′1, compute k1 = Decaspcpa(sk
′
0, c
′
0) and check if k′1

?
= k1.

• Subsubcase 2.2.2 c∗1 6= c′1, compute k1 = Decaspcpa(sk
′
0, c
′
0) and check if k′1

?
= k1.

In Game 2, we add flags in the hash list in two cases

– Case 1: if pk′0 6∈ [L0]0, and pk′0 = pk∗0 ∧ c′1||c′0 = c∗0||c∗1, set flag as true and abort.
– Case 2: if pk′0 ∈ [L0]0, k′0 = Decapscpa(sk0, c

′
0) and pk′0 = pk∗0 ∧ c′1||c′0 = c∗0||c∗1, set flag as true and

abort;

While now in Case 2 the subcases is

– Subcase 2.1: if pk′0 ∈ [L0]0 and pk′0 = pk∗0 and k′0 = Decaspcpa(sk
′
0, c
′
0)

• Subsubcase 2.1.1 c∗1 = c′1, set flag as true and abort;

• Subsubcase 2.1.2 c∗1 6= c′1, compute k1 = Decaspcpa(sk
′
0, c
′
0) and check if k′1

?
= k1;

– Subcase 2.2: if pk′0 ∈ [L0]0 and pk′0 6= pk∗0 and k′0 = Decaspcpa(sk
′
0, c
′
0)

• Subsubcase 2.2.1 c∗1 = c′1, set flag as true and abort;

• Subsubcase 2.2.2 c∗1 6= c′1, compute k1 = Decaspcpa(sk
′
0, c
′
0) and check if k′1

?
= k1.

In both case 1 and case 2 the event that flag=ture is bounded by the OW-CCA security of KEMcca.
By the property of random oracle, the [OW-CCA, ·] adversary only has advantage when he asks Ĥ

with (pk∗0 , k
∗
1 ||k∗0 , c∗1||c∗0), where k∗1 is the key encapsulated in c∗1. We denote this event as AskH, and prove

that the probability of the occurrence of event AskH is negligible if KEMcca is OW-CCA secure.
Given a KEMcca challenge ciphertext c∗, the CCA adversary S simulates the [OW-CCA, ·] game and

transform the probability of the occurrence of event AskH to the advantage of solving OW-CCA problem.
Given a KEMcca challenge ciphertext c∗, since S does not know the secret key sk1, the difficulties for S
to simulate the [OW-CCA, ·] game is in the subsubcase 2.1.2 and 2.2.2. But S could fix them by querying
the decapsulation oracle of KEMcca.

Now in Game 2, Ĥ(pk∗0 , k
∗
1 ||k∗0 , c∗1||c∗0) will not be given to the adversary, thus the adversary’s view is

independent of the challenge encapsulated key. Thus the adversary’s advantage in Game 2 is negligible.
To sum up, we have that the [OW-CCA, ·] security is guaranteed by the OW-CCA securtiy of KEMcca.

Proof of Theorem 5 in the standard model. f(pk0, k1||k0, c) = Fk1(pk0, c) ⊕ Fk0(pk0, c). Since [·,
IND-CPA] security is straightforward, in the rest we only prove the [IND-CCA, ·] security and reduce it
to the IND-CCA security of KEMcca and the security of PRF. The proof proceeds with a sequence of
games. Let Si denote the advantage of [IND-CCA, ·] adversary in Game i.

In Game 0, it is the original [IND-CCA, ·] game, namely, on receiving (pk′0, c
′
1||c′0) the decapsulation

oracle performs as follows: if (pk′0, c
′
1||c′0) = (pk∗0 , c

∗
1||c∗0), abort; else if pk′0 6∈ [L0]0, abort; else compute

k′1 = Decapscca(sk1, c
′
1), k′0 = Decapscpa(sk0, c

′
0) and return k′ = Fk′1(pk′0, c

′)⊕ Fk′0(pk′0, c
′).

In Game 1, we change the decryption oracle when c′1 = c∗1. That is: if (pk′0, c
′
1||c′0) = (pk∗0 , c

∗
1||c∗0),

abort; else if pk′0 6∈ [L0]0, abort; else if c′1 = c∗1, sample k′1 ← K; else if k′1 = Decapscca(sk1, c
′
1), then

compute k′0 = Decapscpa(sk0, c
′
0) and return k′ = Fk′1(pk′0, c

′) ⊕ Fk′0(pk′0, c
′). There exists a IND-CCA

adversary B against KEMcca if [IND-CCA, ·] adversary A can distinguish Game 0 and Game 1. After
receiving challenge ciphertext c∗1 and K∗b , in the [IND-CCA, ·] game, if c′1 = c∗1, then the IND-CCA
adversary B sets k′1 = k∗. Note that if K∗b is the key encapsulated in c∗1, it corresponds to Game 0. If K∗b
is a totally random key, it corresponds to Game 1.

In Game 2, the computation of (c∗1||c∗0, k∗) is changed, where the PRF F is replace by a random
function. Note that the decryption oracle only works when (pk′0, c

′) 6= (pk∗0 , c
∗
1||c∗0), and k∗1 is replaced by

a totally random string. Since F is a PRF, this replacement will not be detected by [IND-CCA, · adversary.
Note that in Game 2 the challenge cipheretext contains none information about b, thus Pr[S2] = 1/2.

To sum them up, we have that the [IND-CCA, ·] security is guaranteed by the IND-CCA securtiy of
KEMcca and pseudorandomness of PRF.

36

Appendix F: Definitions of 2-key Public Key Encryption

Similar to the notion of 2-key KEM, we can also define the notion of 2-key public key encryption (PKE).
Formally, a double-key public key encryption 2PKE=(KeyGen0, KeyGen1, Enc, Dec) is a quadruple of
probabilistic algorithms together with a plaintext space M and a ciphertext space C.
Security. To define [ATK1,ATK0] security of 2PKE, we consider two adversaries, i.e., A = (A1,A1)
attacking pk1 and B = (B1,B1) attacking pk0. In Figure 19 we show the security games of ATK1 and
ATK0 respectively.

Game IND-ATK1 on pk1 Game IND-ATK0 on pk0
01 (pk1, sk1)← KeyGen1(pp); 15 (pk0, sk0)← KeyGen0(pp)
02 L0 = {(−,−,−)} 16 L1 = {(−,−,−)}
03 (state, pk∗0 ,m0,m1)← AOATK1

,Oleak0
1 (pk1) 17 (state, pk∗1 ,m0,m1)← BOATK0

,Oleak1
1 (pk0)

04 b← {0, 1}; 18 b← {0, 1}
05 c∗ ← Enc(pk1, pk

∗
0 ,mb); 19 c∗ ← Enc(pk∗1 , pk0,mb);

06 b′ ← AOATK1
,Oleak0

2 (state, c∗) 20 b′ ← BOATK0
,Oleak1

2 (state, c∗)

07 return b′
?
= b 21 return b′

?
= b

Game OW-ATK1 on pk1 Game OW-ATK0 on pk0
08 (pk1, sk1)← KeyGen1(pp); 22 (pk0, sk0)← KeyGen0(pp)
09 L0 = {(−,−,−)} 23 L1 = {(−,−,−)}
10 (state, pk∗0)← AOATK1

,Oleak0
1 (pk1) 24 (state, pk∗1)← BOATK0

,Oleak1
1 (pk0);

11 m =←M; 25 m =←M;
12 c∗ ← Enc(pk1, pk

∗
0 ,m); 26 c∗ ← Enc(pk∗1 , pk0,m);

13 m′ ← AOATK1
,Oleak1

2 (state, c∗); 27 m′ ← BOATK0
,Oleak0

2 (state, c∗);

14 return m′
?
= m 28 return m′

?
= m

Fig. 19. The [ATK1, ·], and [·,ATK0] games of 2PKE for adversaries A and B. The oracles Oleak0 , OATK1 , Oleak1 ,
and OATK0 are defined in the following.

On the i-th query ofOleak0 andOleak1 , the challenger perform as what it does in 2-key KEM. Depending
on the definition of oracle OATKi for i = 1, 0 the adversary gets access to, one gets CPA and CCA notions
respectively:

– if OATK1(pk′0,c
′) = −, it implies CPA notion;

– ifOATK1(pk′0,c
′) 6= − it works as following: If pk′0 ∈ [L0]1∧(c′ 6= c∗∨pk′0 6= pk∗0) return the corresponding

plaintext, otherwise return ⊥. It implies CCA notion.
– if OATK0(pk′1,c

′) = −, it implies CPA notion;
– ifOATK0(pk′1,c

′) 6= − it works as following: If pk′1 ∈ [L1]1∧(c′ 6= c∗∨pk′1 6= pk∗1) return the corresponding
plaintext, otherwise return ⊥. It implies CCA notion.

Let A = (A1,A2) be an adversary against pk1 of 2PKE. We define its advantage winning in the game

IND-ATK1 and OW-ATK1 as: Adv
[IND-ATK1,·]
2PKE (A) =

∣∣∣Pr[IND-ATK1A ⇒ 1]− 1
2

∣∣∣ and Adv
[OW-ATK1,·]
2PKE (A) =

Pr[OW-ATK1A ⇒ 1], where game [IND-ATK1, ·] and [OW-ATK1, ·] are described in Figure 19.

We say that 2PKE is [IND-ATK1, ·] secure, if Adv
[IND-ATK1,·]
2PKE (A) is negligible; that 2PKE is [OW-ATK1, ·]

secure, if Adv
[OW-ATK1,·]
2PKE (A) is negligible, for any PPT adversary A. The [·, IND-ATK0] and [·,OW-ATK0]

security can be defined in the same way. Here for avoiding repetition we omit their descriptions.

[ATK1,ATK0] security. The [ATK1,ATK0] security is similar with that in 2-key KEM.

Reduction [IND-CCA, ·]⇒ [OW-CCA, ·].

37

Lemma 7. For any adversary A attacks the [IND-CPA, ·] security on pk1 with message space M , there
exists an adversary B with the same running time as that of A such that

Adv
[OW-CPA,·]
PKE (A) ≤ 1/|M |+ 2 ·Adv

[IND-CPA,·]
PKE (B).

The lemma still works when attacks on pk0.

Proof. We process the proof by constructing the adversary B using A as subroutine shown in Figure 20.

IND-CPA adversaryBA:

01 m1,m0 ←M

02 (state, pk∗0)← BOleak0
1 (pk1)

03 On receiving c∗

04 m′ ← BOleak0
2 (state, c∗)

05 if m′ = m1 return 1 else 0.

Fig. 20. Reduction between [OW-CPA, ·], and [IND-CPA, ·] security for 2-key PKE.

In the construction of adversary B, since Pr[b′ = 1|b = 1] ≥ Adv
[OW-CPA,·]
PKE (A), and if b = 0 the

probability that B outputs m1 is less than 1/|M |,

Adv
[IND-CPA,·]
PKE (C) =

1

2
(Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0])

≥ 1

2
(Adv

[Partial-OW-CPA,·]
PKE (B)− 1/|M |).

Appendix G: Proof of Theorm 6 about Twin-ElGamal

As the proofs of [IND-CPA, ·] and [·, IND-CPA] security are similar, we only show the proof for [IND-CPA, ·]
security here. LetA be the adversary executing in the [IND-CPA, ·] game that is denoted as gameG0. Then

Adv
[IND-CPA,·]
2PKEcpaddh

(A) = |Pr[b′ = b in G0] − 1/2|. In game G1, gr1 and hr11 used in the challenge ciphertext

are substituted with uniform random values (g∗, h∗1). There exists an algorithm B such that Pr[b′ =
b in G0]−Pr[b′ = b in G1] ≤ Advddh

B . B works as following: on receiving DDH challenge (g, h1, g
′, h′1), set

pk1 = (g, h1). After receiving pk0 = (g, h0) from A, return challenge ciphertext (g′, gr0 , h′1h
r0
0 ·mb). Then

on receiving b′, to guess the value of b, return b
?
= b. If (g, h1, g

′, h′1) is a DDH instance, this is exactly
G0; If (g, h1, g

′, h′1) is a random instance, this is exactly G1. Note that in G1, h∗1h
r0
0 · mb is uniformly

distributed and independent of b, therefore Pr[b = b′ in G1] = 1/2.

Appendix H: Proof of Theorem 7 related to modified FO transform.

Sketch of proof: The main idea of the proof is to simulate the decapsulation oracle without part of the
secret keys. This can be achieved by replacing the decryption using secret keys with “re-encryption”. That
is to answer the decapsulation oracle the challenger chooses a random key, while to answer the random
oracle queries for encapsulated key with public keys together with the plaintext and cipheretext, the
challenger “re-encrypts” it so as to maintain the consistency. (The challenger may answer the random
oracle firstly and then the decapsulation oracle). In order to simulate the random oracle queries, pk′0
(chosen by adversary) should be included in the inputs to the random oracle. For the same reason, pk′1
also should be included in the inputs to the random oracle.
Formal Proof: The only decapsulation failure 2KEM may happen only if the decryption of 2PKE fails.
Consider the CORR-RO game of 2PKE, where the adversaries send at most qG queries to G which may

38

lead to the decryption failure (namely, Dec(sk1, sk
′
0,Enc(pk1, pk

′
0,m;G(m))) 6= m for pk′0 ∈ [L0]1 when

attacking pk1). Since 2PKE is δ-correct and G outputs independent randomness, each query of G exhibits
a correctness error with probability δ. The probability that at least 1 query of G exhibits a correctness
error is 1− (1− δ)qG ≤ qGδ. Hence δ1 = qGδ.

To show the security, we reduce the [IND-CCA, ·] security against pk1 to the [IND-CPA, ·] security of
2PKE only. The reduction of [·, IND-CCA] security against pk0 to [·, IND-CPA] security of 2PKE is almost
the same. Consider the sequence of games in Figure 21. Let Si be the probability that adversary C
outputs 1 in Game i.

Games G0-G5 H(pk1, pk
′
0,m, c) //G0-G5

01 (pk′1, sk
′
1)← KeyGen1′, pk1 = pk′1; 28 if ∃(pk1, pk′0,m, c,K) ∈ LH return K

02 s1||t1 ←M, sk1 = (sk′1, s1) 29 K ← K
03 L0 = {(−,−,−)} 30 if pk′0 ∈ [L0]1

04 (state, pk∗0)← CDECAPS,Oleak0
1 (pk1) 31 if m = s1||s0, flags = ture, abort //G1-G5

05 m∗ ←M 32 if Dec(sk1, sk
′
0, c) = m

06 c∗ ← Enc(pk1, pk0,m
∗, G(m∗)) ∧Enc(pk1, pk

′
0,m;G(m)) = c //G2

07 K∗0 = H(pk1, pk
∗
0 ,m

∗, c∗) 33 if Enc(pk1, pk
′
0,m;G(m)) = c //G3-G5

08 K∗1 ← {0, 1}n 34 if pk′0 = pk∗0 ∧ c = c∗ //G4-G5

09 b← {0, 1} 35 flagHin = ture, abort //G4-G5

10 b′ ← CDECPAS,H,G
2 (state, c∗,K∗b) 36 if ∃K′, s.t. (pk1, pk

′
0, c,K

′) ∈ LD //G2-G5

11 return b
?
= b′ 37 K = K′ //G2-G5

38 else LD = LD ∪ {(pk1, pk′0, c,K)} //G2-G5

DECAPS(pk′0, c) // G0-G5 39 if pk′0 6∈ [L0]1 ∧ (pk′0,m, c) = (pk∗0 ,m
∗, c∗) //G5

12 if pk′0 6∈ [L0]1, abort 40 flagHout = ture, abort //G5

13 if pk′0 ∈ [L0]1 ∧ (pk′0, c) = (pk∗0 , c
∗), abort 41 LH = LH ∪ {(pk1, pk′0,m, c,K)}

14 m′ = Dec(sk1, sk
′
0, c), //G0-G1 42 return K

15 c′ = Enc(pk1, pk
′
0,m

′;G(m′)) //G0-G1 G(m) //G0-G5

16 if (m′, c′) = (⊥, c) //G0 43 if ∃r, s. t.(m, r) ∈ LG
17 return K = H(pk1, pk

′
0, s1||s0, c) //G0 44 return r

18 if (m′, c′) = (⊥, c) //G1 45 r ←R
19 return K = H ′(pk1, pk

′
0, c) //G1 46 LG = LG ∪ {(m, r)}

20 if (m′, c′) = (s1||s0, c) //G1 47 return r
21 return K = H ′(pk1, pk

′
0, c) //G1 Oleak0

22 return K = H(pk1, pk
′
0,m

′, c) //G0-G1 48 ri0 ← {0, 1}∗

23 if ∃K s.t. (pk1, pk
′
0, c,K) ∈ LD //G2-G5 49 (pki

′
0 , sk

i′
0)← KeyGen0′(ri0)

24 return K //G2-G5 50 si0 ← {0, 1}∗, sk0,i = (sk′0,1, s0)

25 else K ← K //G2-G5 51 pki0 = pki
′
0

26 LD = LD ∪ {(pk1, pk′0, c,K)} //G2-G5 52 L0 = L0 ∪ {(pki0, ski0, ri0||si0)}
27 return K //G2-G5 53 Return (pki0, sk

i
0, r

i
0||si0)

Fig. 21. Game 1-Game 5 for the proof of Theorem 7.

Game 0: This is the original [IND-CCA, ·] game against pk1 with C, and

|Pr[S0]− 1/2| = Adv
[IND-CCA,·]
2KEM (C).

Game 1: In this Game, we add a flag flags and set it to be true and abort when H(pk1, pk
′
0, s1||s0, ·)

is queried (line 31). At the same time, in DECAPS, replace the condition that if m′ = ⊥, K =
H(pk1, pk

′
0,m

′, c) (line 16-17) with that if m′ = ⊥ or s1||s0, K = H ′(pk1, pk
′
0, c) (line 18-21), where

H ′ is an internal random oracle. This will only be noticed if C queries H with (pk1, pk
′
0, s1||s0, ·), as it

will be abort. Since s1 is uniformly random over {0, 1}l, we have |Pr[S1]− Pr[S0]| = qH
2l .

Game 2: In this game, the DECAPS oracle does not use the secret key to decapsulate any longer.
We maintain two hash lists LD and LH and guarantee the consistency by testing if Dec(sk1, sk

′
0, c) =

39

m ∧ Enc(pk1, pk
′
0,m;G(m)) (line 32) during the H queries. (pk1, pk

′
0,m, c,K) ∈ LH implies one of the

following two cases happens, one of which is that (pk1, pk
′
0,m, c) was queried on H and H returns

a random K, and another is that for pk′0 ∈ [L0]1, (pk1, pk
′
0, c,K) ∈ LD and Dec(sk1, sk

′
0, c) = m ∧

Enc(pk1, pk
′
0,m;G(m)).

To show the identity of Game 1 and Game 2 from the point view of C, consider the following cases
for fixed pk′0, c,m

′ that Dec(sk1, sk
′
0, c) = m ∧ Enc(pk1, pk

′
0,m;G(m)).

– Case 1: pk′0 6∈ [L0]1. The decapsulation oracle DECAPS aborts in Game 1 and 2. The oracle H outputs
a random K in both two games in this case. For pk′0 6∈ [L0]1, since the DECAPS(pk1, pk

′
0, ·) results

in abort, the queries of H(pk1, pk
′
0,m, c) will return a uniformly random key, as in Game G1.

– Case 2: pk′0 ∈ [L0]1 ∧m′ ∈ {⊥, s1||s0}∧ c′ = c. Since H(pk1, pk
′
0,⊥, c) is not allowed and H(pk1, pk

′
0,

s1||s0, c) results in abort, the random oracle H would not add (pk1, pk
′
0, c,K) to LD in this case. The

DECAPS(pk1, pk0, c) will return a totally random key as in Game 1.
– Case 3: pk′0 ∈ [L0]1 ∧m′ 6∈ {⊥, s1||s0} ∧ c′ = c. In Game 1, the DECAPS oracle and H oracle are

consistent, as the DECAPS returns the key H(pk1, pk
′
0, Dec(sk1, sk

′
0, c), c) by querying H. In Game

2, the lists LD and LH check each other firstly, and help to maintain the consistency by verifying
the conditon m = Dec(sk1, sk

′
0, c) ∧ c = Enc(pk1, pk

′
0,m;G(m)) (line 32) in two cases: C may queries

H on (pk1, pk
′
0,m, c) first, then DECAPS on (pk′0, c); or the other way around.

• If C queries H on (pk1, pk
′
0,m, c) first, in this case (by checking m = Dec(sk1, sk

′
0, c) ∧ c =

Enc(pk1, pk
′
0,m;G(m)) (line 32)), there is no entry (pk′0, c,K) in LD yet. In addition to ad-

d (pk1, pk
′
0,m, c,K ← K) to LH , H also adds (pk′0, c,K) to LD. When (pk′0, c) is queried to

DECAPS, it returns K from LD.
• If C queries DECAPS on (pk′0, c) first, it adds (pk′0, c,K ← K) to LD to declare DECPAS(pk′0, c) =
K. When C queries H on (pk1, pk

′
0,m, c) later, if the decryption and re-encrypt condition (as in

line 32) are true, H adds (pk1, pk
′
0,m, c,K) to LH to declare that H(pk1, pk

′
0,m, c) = K. Thus

H(pk1, pk
′
0,m, c) = K = DECAPS(pk′0, c).

From the analysis in sub-cases, the view of C is identical to that in Games 1 and Pr[S2] = Pr[S1].
Game 3: In this game, we replace the condition m = Dec(sk1, sk

′
0, c)∧ c = Enc(pk1, pk

′
0,m;G(m)) (line

32) with c = Enc(pk1, pk
′
0,m; G(m)) (line 33), which does not check m = Dec(sk1, sk

′
0, c) any more. The

Game 2 and Game 3 are different only when Dec(sk1, sk
′
0,Enc(pk1, pk

′
0,m;G(m))) 6= m happens. C makes

at most qG queries to G, which may introduce the correctness error, namely, Dec(sk1, sk
′
0,Enc(pk1, pk

′
0,m;

G(m))) 6= m, for (pk′0, sk
′
0) ∈ L. Since 2PKE is δ-correct and G outputs independent randomness, each

query of G exhibits a correctness error with probability δ. The probability that at least 1 query of G
exhibits a correctness error is 1− (1− δ)qG ≤ qGδ. Thus |Pr[S3]− Pr[S2]| = qGδ.
Game 4: In this game, we add a flag flagHin (line 34-35) and abort when it is true. The difference between
Game 4 and Game 3 is bounded by the events flagHin = ture, thus, |Pr[S4]− Pr[S3]| ≤ Pr[flagHin = ture].

To bound Pr[flagHin = ture], we construct an adversary Ain against the [OW-CPA, ·] security of 2PKE
when pk∗0 ∈ [L0]1, as in Figure 22. The simulation of H and ENCAPS is the same with Game 3. And it
is perfectly simulated because the decryption key sk1 and sk′0 (since pk′0 ∈ [L0]1) are not required. After
C outputs b′, the adversary A checks the list LH and LG, if ∃m such that (pk1, pk

∗
0 ,m, c

∗, ·) ∈ LH and
(m, ·) ∈ LG, outputs m; else abort.

flagHin = ture means that C queries H(pk1, pk
∗
0 ,m, c

∗) (which also means (pk1, pk
∗
0 ,m, c

∗,K ′) ∈ LH)
such that c∗ = Enc(pk1, pk

∗,m,G(m)). Denote this event as QueryH, we divide it into two cases: In case
1, m has been queried to G by C before (pk1, pk

∗
0 ,m, c

∗) is queried to H. We denote this event as GthenH.
In case 2, m has not been queried to G by C before (pk1, pk

∗
0 ,m, c

∗) is queried to H. We denote this
event as GthenH. Thus,

Pr[flagHin = ture] =Pr[QueryH|GthenH] · Pr[GthenH] + Pr[QueryH|GthenH] · Pr[GthenH]

≤ Pr[QueryH|GthenH] · Pr[GthenH] + 2−γ · Pr[GthenH]

≤ min{qH , qG} ·Adv
[OW-CPA,·]
2PKE (Ain) · Pr[GthenH] + 2−γ · Pr[GthenH]

≤ min{qH , qG} ·Adv
[OW-CPA,·]
2PKE (Ain) + 2−γ .

40

The second line is from the fact that the scheme is γ-spread. Thus before querying G, the probability
that c∗ = Enc(pk1, pk

∗,m, r) for a totally random r is less than 2−γ .
Game 5: In this game, we add a flag flagHout (line 39-40) and abort when it is true. The difference between
Game 4 and Game 5 is bounded by the events flagHout = ture, thus, |Pr[S4]− Pr[S5]| ≤ Pr[flagHout = ture].

In this game, H(pk1, pk
∗
0 ,m

∗, c∗) will not be given to C in both cases pk∗0 ∈ [L0]1 and pk∗0 6∈ [L0]1,
which means that b is independent with C’s view. Hence Pr[S5] = 1/2.

To bound Pr[flagHout = ture], we construct an adversary Aout against the [OW-CPA, ·] security of 2PKE
when pk∗0 6∈ [L0]1 as in Figure 22. If pk∗0 6∈ [L0]1, on input pk1 and c∗ ← Enc(pk1, pk

∗
0 ,m

∗), it is perfectly
simulated in Game 5. The analysis of Pr[flagHout = ture] is the same with that of Pr[flagHin = ture].

[OW-CPA, ·] adversary Ain and Aout [IND-CPA, ·] adversary A′

01 K∗ ← K; 01 m1,m0 ←M
02 s1||t1, s0||t0 ←M 02 K∗ ← K, s1, s0 ←M;

03 (state, pk∗0)← CDECAPS,Oleak0,H,G
1 (pk1) 03 (state, pk∗0)← CDECAPS,Oleak0,H,G

1 (pk1)

04 b′ ← CDECPAS,Oleak0,H,G
2 (state, c∗,K∗) 04 b′′ ← CDECPAS,Oleak0,H,G

2 (state, c∗,K∗)
05 Let LHG = {m|(pk1, pk∗0 ,m, c∗, ·) ∈ LH ∧ (m, ·) ∈ LG} 05 L′H ← LH ∩ {(pk1, pk∗0 , ·, c∗, ·)}
06 If LHG is not empty 06 if |L′H(m1)| > |L′H(m0)|, b′ = 1
07 return m′ 07 if |L′H(m1)| < |L′H(m0)|, b′ = 0
08 else return ⊥. 08 if |L′H(m1)| = |L′H(m0)|, b′ ← {0, 1}

09 return b′

Fig. 22. The [OW-CPA·] adversary Ain in Game 4 and Aout in Game 5 for the proof Theorem 21; The [IND-CPA·]
adversary A′ for the proof Theorem 21 in Game 5. L′H(m1) is the set of all (pk1, pk

∗
0 ,m1||·, c∗, ·) ∈ L′H . The

DECPAS , H and G oracle are those (in corresponding Game) in Figure 21

By Lemma 20, Adv
[OW-CPA,·]
2PKE (A) ≤ 1/|M |+ 2 ·Adv

[IND-CPA,·]
2PKE (A′). To sum up, we (non-tightly) reduce

the security of 2KEM to the [IND-CPA, ·] security of 2PKE. However there exists a tight reduction.
In Game 4 and 5, to bound Pr[flagHin = ture] and Pr[flagHout = ture], we construct an adversary A′

against the [IND-CPA, ·] security of 2PKE as in Figure 22. Consider the [IND-CPA, ·] game with challenge
bit b, denote Bad as the event that A′ queries H with (pk1, pk

∗
0 ,m1−b, c

∗). Since m1−b is uniformly
distributed over M , we have that Pr[Bad] ≤ qH/|M |. If pk∗0 6∈ [L0]1 ∧ Bad ∧ flagHout = ture, C queried on
(pk1, pk

∗
0 ,mb, c

∗) and |L′H(mb)| ≥ |L′H(m1−b)|. If pk∗0 6∈ [L0]1 ∧ Bad ∧ flagHout = false, C did not query on
(pk1, pk

∗
0 ,mb, c

∗) and Pr[b = b′] = 1/2.

Thus we have Adv
[IND-CPA,·]
2PKE (A′) + qH/|M | ≤ |Pr[b′ = b] − 1/2| = |Pr[flagHout = ture] + 1/2flagHout =

false− 1/2| = 1/2Pr[flagHout = ture].

Appendix I: Decryption Failure and proof of security for Twin-Kyber

Decryption Failure: To handle the decryption failure, for a uniformly random y ∈ Rkq with dy, de-

fine cy = y − Decompq(Compq(y, dy), dy) mod ±2d as the output of distribution Ψkdy . For dt1 , dt0 , set

distributions Ψkdt1
and Ψkdt0

. Set the above parameters as public parameters. Since under Module-LWE

assumption, Asi + ei, AT ri + e4−i(i = 0, 1) and t1
T r1 + t0

T r0 + e are indistinguishable from uniform
random values. Then, for algorithm Enc, we have t1 = As1 + e1 and t0 = As0 + e0. For algorithm Dec,
we have u1 = AT r1 + e3 + cu1 , u0 = AT r0 + e4 + cu0 . Thus from the decryption algorithm,

E =v − s1
Tu1 − s0

Tu0 = (e1 + e′1)T r1

+ (e0 + e′0)T r0 + s1
T (e3 + cu1) + s0

T (e4 + cu0) + e+ cv.

Denote every coefficient of E as [E]i, for 1 ≤ i ≤ 256. From the computation rule over Rq, all
the variables in computing [E]i are independent, but they are reused in other summations for [E]j for

41

j 6= i. Although the average-case distribution of each [E]j is the same, they are not fully independent.
However, [32] and [3]3 proposed an independence assumption, which states that for x,y and z chosen
according to βkη , βkη and Ψkd the distributions of each two coefficients of xTy and xT z are independent.
Their assumptions further implies the independence of each bit of E, here we continue to use the their
assumptions.

Let δi = 1 − Pr [[m]i = [m′]i] be the failure probability of the i-th single bits. Then δi = 1 −
Pr
[
[E]i < d q4c

]
. Under the independence assumption, the failure probability of each bit δ1bit = δi for any

1 ≤ i ≤ 255. Thus, the total failure probability is bounded by δ = nδ1bit.
Proof of Theorem 8

Proof. Without loss of generality, we only show the [IND-CPA, ·] security here, and the proof for [·, IND-CPA]
security is similar. The proof proceeds in a sequence of hybrid games. Let game G0 be the original

[IND-CPA, ·] game, then Adv
[IND-CPA,·]
2PKEmlwe

(A) = Pr[b′ = b in G0]. In Game G1, As1 + e1 is replaced by a

uniform random value in Rkq . If A is able to distinguish As1 +e1 from a unifor random value, then there
exists an algorithm B to solve the k×k Module-LWE problem. That is Pr[b′ = b in G0]−Pr[b′ = b in G1] ≤
Advmlwek,k,η (B) ≤ Advmlwek+1,k,η(B). In game G2, when generating the challenge ciphertext, AT r1 + e3 of

line 14, and t1
T r1 + e of line 17 are substituted by uniform random values in Rkq or Rq. If A is able to

distinguish the challenge ciphertext from a random value, then there exists an algorithm B to solve the
(k+1)×k Module-LWE problem. That is Pr[b′ = b in G1]−Pr[b′ = b in G2] ≤ Advmlwek+1,k,η(B). Specially,
given a (k + 1) × k instance, B parses the first k rows as (A,b) and the last rows as (t1,b1), and sets
the public key as t1 = Compq(As1 + e1, dt1). By choosing r0, e4, e, B computes the challenge ciphertext

including u1 = Compq(b, du1
),u0 = Compq(A

T r0 + e4, du0
), and v = Compq(b1 + t0

T r0 + d q2ccm, dv).
Finally, B just outputs what the adversary A returns. Note that in G2, the challenge ciphertext is inde-
pendent of b, thus Pr[b′ = b in G2] = 1/2. ut

3 the assumption is implicitly given in their code kyber/scripts/Kyber failure.py

42

