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Abstract. Strong Pseudo-random Permutations (SPRPs) are impor-
tant for various applications. In general, it is desirable to base an SPRP
on a single-keyed primitive for minimizing the implementation costs.
For constructions built on classical block ciphers, Nandi showed at ASI-
ACRYPT’15 that at least two calls to the primitive per processed mes-
sage block are required for SPRP security, assuming that all further
operations are linear. The ongoing trend of using tweakable block ci-
phers as primitive has already led to MACs or encryption modes with
high security and efficiency properties. Thus, three interesting research
questions are hovering in the domain of SPRPs: (1) if and to which ex-
tent the bound of two calls per block can be reduced with a tweakable
block cipher, (2) how concrete constructions could be realized, and (3)
whether full n-bit security is achievable from primitives with n-bit state
size.
The present work addresses all three questions. Inspired by Iwata et al.’s
ZHash proposal at CRYPTO’17, we propose the ZCZ (ZHash-Counter-
ZHash) construction, a single-key variable-input-length SPRP based on
a single tweakable block cipher whose tweak length is at least its state
size. ZCZ possesses close to optimal properties with regards to both
performance and security: not only does it require only asymptotically
3ℓ/2 calls to the primitive for ℓ-block messages, but we also show that
this figure is close to the minimum by an PRP distinguishing attack on
any construction with tweak size of τ = n bits and fewer than (3ℓ− 1)/2
calls to the same primitive. Moreover, it provides optimal n-bit security
for a primitive with n-bit state and tweak size.

Keywords: Symmetric-key cryptography · provable security · variable-input-
length SPRP · tweakable block cipher · encryption

1 Introduction
SPRPs. Strong Pseudo-Random Permutations (SPRPs) (or wide-block ciphers),
are important symmetric-key cryptographic schemes for protecting the privacy
⋆ Mridul Nandi has been supported in his research by the Wisekey project at the R. C.
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of variable-length messages. Their tweakable variants (STPRPs) are useful to
build strong authenticated encryption [25, 53] or onion AE [49]. During the previ-
ous two decades, the symmetric-key community proposed a considerable corpus
of SPRPs. From a high-level point of view, the existing constructions could be
categorized into (1) Generalized Feistel networks, (2) Encrypt-Mix-Encrypt, (3)
Hash-ECB-Hash, (4) Hash-Counter-Hash, and (5) miscellaneous designs. A brief
review of existing works can be found in Appendix A.

Optimization Goals. The primary goals for optimizations in cryptographic
schemes are, in general, low implementation costs, high provable security guar-
antees, and high performance. For the first criterion, it is desirable to construct
higher-level schemes from a single well-analyzed primitive without large internal
state and with a single key.

High security is essential in many domains that have to process large data
stores without the ability of frequent re-keying. In most constructions, however,
it only comes at the cost of decreased performance. Unsurprisingly, the chal-
lenges of combining high security guarantees with high performance have been
identified as among the hot topics of symmetric-key cryptography at the ESC
2017 workshop [7].

Often, high security is associcated with security beyond the birthday bound. In
the areas of authentication (e.g., [32, 55, 56]), encryption as well as authenticated
encryption (e.g., [26, 27, 47]), beyond-birthday security has undergone a long line
of research. In the area of SPRPs, however, the security of the vast majority of
existing constructions is still limited to the birthday bound of n/2 bits, where n
is the state size of the underlying primitive. So, the privacy guarantees are lost
if q ≃ 2n/2 message blocks have been encrypted under the same key. Assuming
the AES as primitive, this would imply that significantly fewer than 264 blocks
could safely be encrypted under a single key.

Security of SPRPs: State of the Art. Among the earlier proposals, the
LargeBlock1 and LargeBlock2 constructions by Minematsu and Iwata [38]
as well as TCT2 by Shrimpton and Terashima [53] are exceptional for their
security guarantees. The LargeBlock designs can achieve optimal n-bit secu-
rity, whereas TCT2 is limited by 2n/3 bits. Both share similarities to the Ψ2

and Ψ3 constructions from Coron et al. [16], which use two and three calls to
a tweakable block cipher. Both LargeBlock2 and TCT2 possess a sandwich
structure, where an encryption layer is wrapped by two layers of hashing. In the
former, the encryption layer is an application of Ψ2 in ECB-mode; the hashing
layers employs two calls to a polynomial hash of 2(ℓ − 1)multiplications each.
TCT2 can be seen as an unbalanced version of Ψ3, where also 2(ℓ−1) of ℓ input
blocks are hashed in each hashing layer. Both constructions are remarkable for
their time. To be comparably efficient, however, they required two primitives, a
block cipher and a universal hash function.

A different direction is followed by more recent encryption schemes: Mr.
Monster Burrito [5] and HHFHFH [4] are both four-round unbalanced Feis-
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tel networks built on large-state primitives, which were coined as heavyweight
ciphers. Instead of providing beyond-birthday security, they possess large secu-
rity margins due to a larger birthday bound of their internal primitives. However,
it is exactly the large state size that limits their efficiency.

The only approach we are aware of that almost combines both security and
performance desiderata is Simpira (v2) [19], a family of Feistel-like construc-
tions built upon the AES round function. Its authors claim 128-bit security and
high performance on current processors with support for AES native instruc-
tions. However, Simpira’s security claim stems purely from heuristics, which
will demand years of further intensive cryptanalysis to build trust into it.

Tweakable Block Ciphers. One established approach for achieving higher
security without sacrificing performance significantly is to use a tweakable block
cipher (TBC) [31] as underlying primitive. At the core, tweakable block ci-
phers employ an additional public input called tweak, which allows to effi-
ciently separate the domains of different calls to the primitive. This fact can
reduce the impact of internal collisions on the security of the scheme built
around them. For message authentication codes (MACs), a series of recent
works pushed the security bounds further [15, 28, 40], but a similar trend is
also observable in the domain of encryption modes and authenticated encryp-
tion schemes [27, 30, 36, 47, 48]. This approach has also been used earlier for
SPRPs [16, 35, 37, 38, 53] – those proposals, however, originate from at least
half a decade ago where TBCs still used to be constructed in cumbersome fash-
ion from classical block ciphers, which resulted in quite inefficient designs. Nowa-
days, we have the option of using efficient dedicated TBCs, such as Deoxys-BC,
Joltik-BC [29], or Skinny [2].

The application of TBCs can also boost the efficiency of constructions, as
has been demonstrated recently for MACs. At CRYPTO’17, Iwata et al. [28]
introduced ZMAC, a TBC-based parallelizable, single-key single-primitive MAC
whose internal hash function ZHash processed the message in both the tweak
and plaintext simultaneously. The additional message bits per primitive call
render ZMAC more efficient than previous MACs and invite adoption of the
approach to other domains.

Open Research Questions. When abstracting away the details of the used
primitive – as is usual when proving the security of a scheme – the number of
calls to it per input block becomes the main efficiency metric. From Encrypt-
Mix-Encrypt-based constructions, it is well-known that the bound is at most
two calls per block (plus some minor overhead), assuming all further operations
are linear. Thus, it is an interesting question if SPRPs can be built from fewer
calls to a single-keyed primitive. Moreover, a strongly related question is that for
the minimal number of calls necessary for SPRP security. From the theoretical
perspective, Nandi [43] showed that 2ℓ calls for messages of ℓ blocks are neces-
sary for SPRP security for constructions with a classical block cipher. Though,
it seems as though this bound is reducible by using a TBC instead as the under-
lying primitive. For Hash-Counter-Hash-based constructions, the most efficient
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Table 1: Asymptotic # of primitive calls for previous SPRP paradigms. We
assume, their hash functions and encryption layers use a single-keyed (tweakable)
block cipher with n-bit state and τ -bit tweak size to encrypt an ℓ-block message
of σ bits in total. We assume the hashing layers use ZHash (as the most efficient
blockcipher-based hash function we are aware of).

#Block-cipher calls

Paradigm Top Middle Bottom Total (asympt.)

LargeBlock2 2⌈(ℓ− 1)/2⌉ ℓ 2⌈(ℓ− 1)/2⌉ 4⌈(ℓ− 1)/2⌉+ ℓ
TCT2 2⌈(ℓ− 1)/2⌉ 2(ℓ− 1) 2⌈(ℓ− 1)/2⌉ 4⌈(ℓ− 1)/2⌉+ 2ℓ
Encrypt-Mix-Encrypt ℓ ⌈ℓ/n⌉ ℓ 2ℓ+ ⌈ℓ/n⌉
Hash-ECB-Hash ℓ ℓ ℓ 3ℓ
Hash-Counter-Hash ⌈σ/(n+ τ)⌉ ℓ ⌈σ/(n+ τ)⌉ ℓ+ 2⌈σ/(n+ τ)⌉

ZCZ ℓ/2 ℓ/2 + ⌈ℓ/2n⌉ ℓ/2 3ℓ/2 + ⌈ℓ/2n⌉

(T)BC-based hash function we are aware of is ZHash. For a TBC with n-bit state
and τ -bit tweak length, it would yield a construction of about ℓ+ 2 ⌈σ/(n+ τ)⌉
calls for messages of σ bits. For dedicated TBCs, such as Deoxys-BC-128-384
or Skinny-128-384, this figure still implies that approximately 5ℓ/3 calls are nec-
essary. Regarding the other design principles, it is unclear if similar results are
applicable to constructions based on the Encrypt-Mix-Encrypt or Hash-ECB-
Hash paradigms. The latter demands an invertible hash function, for which we
are unaware of how ZHash could be used. Therefore, we estimate that Hash-
ECB-Hash constructions would need about ℓ primitive calls in each hashing
layer, plus ℓ calls in the encryption layer.

If one would instantiate LargeBlock2 with ZHash in place of polynomial
multiplications, one would have 2⌈(ℓ − 1)/2⌉ calls in each hashing layer, plus ℓ
calls in the middle. So, this would yield 3ℓ calls again. TCT2 could use a ZHash
layer each for both top and bottom hashing layer. While further modifications
could make it more efficient, its proposal employed 2ℓ − 2 calls in the middle.
We compare the approaches in Table 1. Altogether, there remain three inter-
esting research questions: (1) to which extent can the number of primitive calls
be reduced when employing a tweakable block cipher, (2) how can a concrete
construction be realized, and (3) can it be built with high provable security
guarantees.

Contribution. This work tries to answer all three questions above: for the
theoretical interest, (1) we show that a number of 1.5ℓ primitive calls per mes-
sage block is close to minimal by a generic distinguisher on any construction
that employs fewer than (3ℓ− 1)/2 calls to a single-keyed primitive per message
block, where all further operations are linear. To fulfill the practitioner’s inter-
est, we propose (2) ZCZ (ZHash-Counter-ZHash), an almost fully parallelizable
variable-input-length SPRP based on a single-keyed TBC with n-bit state size
and n-bit tweak size. ZCZ matches approximately the optimal number of 1.5ℓ
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calls to the primitive for an ℓ-block message, plus a small overhead. Finally, we
show (3) that it achieves optimal n-bit security, i.e., the SPRP advantage of any
adversary that asks at most q queries of σ blocks in total is in O(σ2/22n).

For a fair comparison, we note that instantiations of Hash-Counter-Hash with
ZHash and a TBC with very large tweak size of τ = 3n, the number of calls
to the primitive could become equal to that of ZCZ. However, such primitives
would introduce a significant slowdown, be it due to the requirements of more
rounds in a TWEAKEY-like cipher, or due to the need of calling an additional
universal hash function for compressing the tweak. Concerning practical tweak
sizes τ < 3n, the number of calls is significantly lower for our construction.

Figure 1 provides a high-level overview on ZCZ. A given message M is split
an input message into (ML,MR), where MR consists of one 2n-bit di-block, and
ML of the remaining di-blocks; the major part ML is then processed by a variant
of ZHash, that is denoted ZHash∗ here. It differs from ZHash in two aspects:
ZHash∗ omits the XOR of the TBC output to the tweak input blocks. More
prominently, ZHash∗ does not compress the input to two hash values, but is a
permutation over (n + τ)∗. So, the top layer returns the TBC outputs and the
tweaks. Ṽ1 and Ṽ2 represent tweakable permutations. Internally, they can use
the same primitive as also for ZHash∗, and the tweakable variant of Counter
mode, CTR∗. H symbolizes an error-correcting code that sums up the inputs
to 2n bits.

This high-level view allows to give a rationale for a dedicated analysis. A
straight-forward use of a rate-1 counter mode would allow to apply a standard
generic proof as for HCTR. At the same time, such an approach would yield 2ℓ
calls to the primitive alone in the counter mode. In combination with ZHash∗,
this approach would need 4ℓ calls to the primitive for messages of 2ℓ blocks.
ZCZ considers a special variant of counter mode that uses only ℓ blocks of
entropy to mask 2ℓ blocks, similar as has been used in AEZ from version 2 [25].
However, this counter mode disallows to simply adopt the analysis from HCTR-
like constructions when the goal is showing n-bit security. Therefore, a dedicated
analysis is needed, which is a major contribution of the present work.

Yet Another Encryption Scheme? In spite of the motivations above, it
may appear that our proposal is after all yet another encryption scheme, and
with hundreds of encryption schemes already being present in the canon, it is
difficult get excited about another one; notwithstanding small improvements in
performance and security. We beg to differ on this point – primarily for two
reasons: (1) very few of the existing encryption schemes provide security of n
bits when using a primitive with an n-bit output—most in fact are only secure up
to the birthday bound; as such, this is no small improvement in terms of security,
but rather a leap; since there is a lot of current interest in the (still) small group
of constructions that achieve this security bound, we believe our encryption
scheme is an exciting addition to this group; (2) even more significant is the way
we use the randomness generated by a tweakable blockcipher—most previous
approaches were based on generic replacements of two or more blockcipher calls
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Fig. 1: High-level view on our proposal of ZCZ. Note that the ZHash∗ module
used in this schematic representation is a slightly modified variation of the orig-
inal ZHash—for instance, in the upper layer, it computes ZHash, passes the
hash output to the right, and also passes some internal value downwards, to be
masked in the counter mode. The explicit construction diagrams can be found
in Figure 3 and Figure 4.

by a single call to a tweakable block cipher; the approach we use is new and not
a corollary of any previous work; given its efficiency, we believe it can lead to
exciting new directions in research on tweakable-blockcipher modes.

Outline. The remainder is structured as follows: first, Section 2 briefly sum-
marizes the necessary preliminaries. Given a primitive with an effective tweak
size3 τ equals the state size, τ = n Section 3 will illustrate that every PRP
with fewer than 3ℓ − 1 primitive calls for 2ℓ-block messages is insecure, which
was the core motivation for our search for constructions with about 1.5ℓ calls.
Subsequently, Section 4 defines our basic construction, which is first described
for messages whose length is a positive multiple of 2n bits. Thereupon, Section 5
extends our definition to messages of more general lengths. Section 6 provides
the core details of our security analysis.

While the space limitations prevented them from being included in the main
matter of this work, we provide in Appendix D further insights on the starting
point of our research. Therein, we also discuss attacks on insecure preliminary
variants that motivated our studies towards the final design of ZCZ. Since we can
imagine that both designers and cryptanalysts may benefit from those insights,
we plan to publish them in a full version alongside this work.
3 By effective tweak size, we mean the usable tweak domain without bits that are used

for other purposes such as domain separation.
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2 Preliminaries

General Notation. We use lowercase letters x for indices and integers, up-
percase letters X,Y for binary strings and functions, and calligraphic uppercase
letters X ,Y for sets. We denote the concatenation of binary strings X and Y
by X ∥Y and the result of their bitwise XOR by X ⊕ Y . For tuples of bit
strings (X1, . . . , Xx), (Y1, . . . , Yx) of equal domain, we denote by (X1, . . . , Xx)⊕
(Y1, . . . , Yx) the element-wise XOR, i.e., (X1⊕Y1, . . . , Xx⊕Yx). We mostly treat
bit strings as representations of elements in the finite field F2n with a fixed prim-
itive polynomial p(x), where addition is equivalent to bitwise XOR ⊕. So, we
write addition of bit strings to mean addition in the field. We indicate the length
of X in bits by |X|, and write Xi for the i-th block. Moreover, we denote by
X � X that X is chosen independently uniformly at random from the set X .
We define three sets of particular interest: Func(X ,Y) be the set of all functions
F : X → Y, Perm(X ) the set of all permutations over X , and P̃erm(T ,X ) for
the set of tweaked permutations over X with associated tweak space T .

(X1, . . . , Xx)
n←− X denotes that X is split into the minimal number of n-bit

blocks possible i.e., X1 ∥ . . . ∥Xx = X, and |Xi| = n for 1 ≤ i ≤ x− 1, and
|Xx| ≤ n. So, when |X| > 0, then |Xx| > 0. If |X| = 0, Y

x←− X sets Y to
the empty string. We denote by ⟨X⟩n an encoding of an integer X ∈ Zn as
an n-bit string. For two sets X and Y, a uniform random function ρ : X → Y
maps inputs X ∈ X independently from other inputs and uniformly at random
to outputs Y ∈ Y. For an event E, we denote by Pr[E] the probability of E; ε
is the empty string. For a given set X and integer x, we define X≤x =

∪x
i=1 X i

and X+ =
∪∞

j=1 X j . For two integers n, k with n ≥ k ≥ 1, we denote the falling
factorial as (n)k =

∏k−1
i=0 (n− i).

Adversaries. An adversary A is an efficient Turing machine that interacts
with a given set of oracles that appear as black boxes to A. We denote by AO

the output of A after interacting with some oracle O. We write ∆A(O1;O2) :=

|Pr[AO1 ⇒ 1] − Pr[AO2 ⇒ 1]| for the advantage of A to distinguish between
oracles O1 and O2. All probabilities are defined over the random coins of the
oracles and those of A, if any. W.l.o.g., we assume that A never asks queries to
which it already knows the answer.

A block cipher E with associated key space K and message space M is a
mapping E : K×M→M such that for every key K ∈ K, it holds that E(K, ·)
is a permutation overM. A tweakable block cipher Ẽ with associated key space
K, tweak space T , and message space M is a mapping Ẽ : K × T ×M → M
such that for every key K ∈ K and tweak T ∈ T , it holds that Ẽ(K,T, ·) is a
permutation overM. We also write ẼT

K(·) as short form. In this work, we assume
that strong pseudo-random permutations allow inputs of variable length, and to
be length-preserving. This means, there is no single fixed length, but the length
of the ciphertext always equals that of the plaintext and vice versa; moreover,
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over all inputs of equal length, the construction is a permutation. The advantage
is defined as follows.
Definition 1 (SPRP Advantage). Let K be a non-empty set and M ⊂
{0, 1}∗. Let Π : K ×M → M be a length-preserving permutation. Let π �
Perm(M) be sampled from the set of all length-preserving permutations of M,
and K � K. Then, the SPRP advantage of A with respect to Π is defined as
AdvΠ

SPRP(A)
def
= ∆A(ΠK ,Π−1

K ;π, π−1).
Definition 2 (STPRP Advantage). Let K and T be non-empty sets and
let Ẽ : K × T × {0, 1}n → {0, 1}n denote a tweakable block cipher. Let π̃ �
P̃erm(T , {0, 1}n) and K � K. Then, the STPRP advantage of A w.r.t. Ẽ is
defined as AdvSTPRP

Ẽ
(A)

def
= ∆A(ẼK , Ẽ−1

K ; π̃, π̃−1).
Definition 3 (Almost-XOR-Universal Hash Function). Let K, X , and
Y ⊆ {0, 1}∗ be non-empty sets. Let H : K×X → Y be a function, keyed by K ∈
K. We call H ϵ-almost-XOR-universal (ϵ-AXU) if, for all distinct X,X ′ ∈ X and
any ∆ ∈ Y, it holds that PrK�K [HK(X)−HK(X ′) = ∆] ≤ ϵ, where addition
and subtraction are in F2n .

The H-Coefficient Technique. The H-coefficient technique is a proof ap-
proach due to Patarin [46]. It assumes that the results of the interaction of
an adversary A with its oracles are collected in a transcript τ of the attack:
τ = ⟨(M1, C1, d1), . . . , (Mq, Cq, dq)⟩, where (Mi, Ci) denotes the input and out-
put of the i-th query of A and a Boolean variable di denotes the direction of the
query; di = 1 indicates that Ci was result of an encryption query, and di = 0
that Mi was the result of a decryption query.

The task of A is to distinguish the real worldOreal from the ideal worldOideal.
A transcript τ is called attainable if the probability to obtain τ in the ideal world
is non-zero. We denote by Θreal and Θideal the distribution of transcripts in the
real and the ideal world, respectively. Then, the fundamental Lemma of the
H-coefficients technique, whose proof is given in [13, 46], states:
Lemma 1 (Fundamental Lemma of the H-coefficient Technique [46]).
Assume that the set of attainable transcripts is partitioned into two disjoint sets
GoodT and BadT. Further assume that there exist ϵ1, ϵ2 ≥ 0 such that for any
transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1− ϵ1, and Pr [Θideal ∈ BadT] ≤ ϵ2.

Then, for all adversaries A, it holds that ∆A(Oreal;Oideal) ≤ ϵ1 + ϵ2.

3 On the Minimal Number of Required Primitive Calls
This section shows that any PRP with fewer than 3ℓ−1 calls for messages of 2ℓ
blocks to a primitive with n-bit tweak size and n-bit state size is insecure. We
follow the approach by [43], who proved that an SPRP based on a single-keyed
classical block cipher needs at least 2ℓ calls to the primitive for ℓ-block messages.
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Fig. 2: Generic model of a PRP that consists of at most r ≤ 3ℓ − 2 calls to
tweakable block ciphers π̃i for messages of 2ℓ blocks.

3.1 Generic Construction

Define positive integers n, τ , and ℓ, and let M ⊆ {0, 1}∗ denote a space for
which ({0, 1}n)2ℓ ⊆M. Let r ≤ 3ℓ− 2 and let

π̃i : {0, 1}τ × {0, 1}n → {0, 1}n, for all 1 ≤ i ≤ r,

denote tweakable permutations with tweak space {0, 1}τ and state size n. Let
Π[π̃1, . . . , π̃r] :M→M be a length-preserving cipher that employs as its only
non-linear functions in total r calls to the permutations π̃1, . . . , π̃r. For simplicity,
we also write Π as short form, hereafter. All further components of Π are linear
over F2n . For any such construction, we can formulate this as follows. Let Xi

denote the input to πi, Ti the tweak to πi, and let Yi ← πi(Xi) denote its output.
The linear operations in Π must be describable as non-zero linear functions
Li : M× ({0, 1}n)i−1 → {0, 1}n × {0, 1}τ , for 1 ≤ i ≤ r, and an additional
non-zero linear function Lr+1 :M× ({0, 1}n)r → M that, for all given inputs
(M,Y1, . . . , Yr) ∈M× ({0, 1}n)r, outputs C s.t. it holds that |C| = |M |. Then,
we can describe the encryption with Π(M) as

(Xi, Ti)← Li (M,Y1, . . . , Yi−1) , for all 1 ≤ i ≤ r,

Yi ← π̃Ti(Xi), for all 1 ≤ i ≤ r, and
C ← Lr+1(M,Y1, . . . , Yr).

Π must be correct for all inputs, i.e., for all M,C ∈ M, it must hold that
Π−1(Π(M)) = M and Π(Π−1(C)) = C. Figure 2 gives an illustration.

Remark 1. It may not be instantaneously clear why the generic construction
above covers all considered schemes. Note that it computes the values Xi and Ti

by a non-zero linear function of M , Y1, Y2, . . . , Yi−1. So, the previous values Yi
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can also be used to generate Xi. Indeed, it is generic enough to include all such
constructions where the only non-linear components are the permutation calls.

For simplicity, we consider independent permutations with tweak domain Fτ
2

in this section. For efficiency, our proposal later in this work will employ only a
single tweakable primitive with a composite tweak domain TD = D× Fτ

2 , where
D is a non-empty set of domains. So, this approach achieves the same goal of
having independent permutations. We consider that τ is the effectively usable
size of the tweaks without domains.

3.2 A PRP Attack on Constructions with At Most 3ℓ − 2 Calls
Case τ = n. Let A be an adversary with the goal to distinguish the outputs of
a variable-input-length PRP Π under a secret key as above from an ideal PRP.
First, A chooses two messages M and M ′ of 2ℓ blocks each, i.e., M = (M1, . . .,
M2ℓ) and M ′ = (M ′

1, . . ., M ′
2ℓ). We define the differences ∆M = M −M ′, and

analogously the differences ∆Xi, ∆Yi, and ∆C in the obvious manner. Choose
M and M ′ such that it holds that ∆Xi = 0 and ∆Ti = 0, for 1 ≤ i ≤ ℓ − 1.
Note that such a choice of M and M ′ must be possible since these variables
correspond to 2ℓ−2 equations (ℓ−1 equations for adjusting the values ∆Xi and
ℓ−1 equations for adjusting the values ∆Ti) and there exist 2ℓ blocks ∆Mi. For
instance, the adversary can efficiently derive an element N from the null space
of L1, . . . , L2(ℓ−1). It chooses M arbitrarily and derives M ′ = M +N .

From ∆Xi = 0n and ∆Ti = 0τ for 1 ≤ i ≤ ℓ − 1, it follows that ∆Yi =
π̃Ti(Xi)⊕ π̃T ′

i (X ′
i) = 0n, for all 1 ≤ i ≤ ℓ−1. The non-linear layer of calls to the

tweakable block cipher maps (∆X1, . . . , ∆Xr) to (∆Y1, . . . , ∆Yr). So, we obtain
the equation

Lr+1(∆M,∆Y1, . . . , ∆Yℓ−1︸ ︷︷ ︸
=(0, ..., 0)

,∆Yℓ, . . . , ∆Yr) = ∆C.

Since A fixed ∆M and chose M and M ′ so that ∆X1 = . . . = ∆Xℓ−1 = 0n

and ∆T1 = . . . = ∆Tℓ−1 = 0τ , we obtain ∆Y1, . . . , ∆Yℓ−1 = 0n. So, there are
at most 2ℓ− 1 free variables ∆Yℓ, . . .∆Yr, and 2ℓ equations for ∆C1, . . . , ∆C2ℓ,
which implies that 2ℓ blocks of ∆C are a linear combination of 2ℓ − 1 values
∆Yℓ, . . . , ∆Yr. So, in the real construction, Lr+1 defines a map from 2ℓ − 1 to
2ℓ n-bit variables, and A can efficiently derive a solution ∆Yℓ, . . . , ∆Yr from the
null space of the equation system. This becomes a distinguishing event since it
happens with probability one in the real construction and with probability 1/2n

in the ideal world for this example. The distinguishing advantage is hence 1 −
1/2n. Hence, A can simply query it with two messages as above and output real
if such a non-zero linear function L exists and random otherwise, as summarized
in Algorithm 1.

For general values of τ . A similar attack is applicable for general values
of τ . Though, we have to consider linearity over F2 then. Define

s =

⌊
2ℓn

n+ τ

⌋
− 1.

10



Algorithm 1 PRP attack on generic constructions Π with at most 3ℓ − 2
primitive calls, here for τ = n.
1: function AΠ

2: Choose Mi for 1 ≤ i ≤ 2ℓ arbitrarily
3: Choose M ′

i for ℓ ≤ i ≤ 2ℓ s. t. it holds that
4: Li(∆Mi) = (∆Xi,∆Ti) = (0n, 0τ ), for 1 ≤ i ≤ 2(ℓ− 1)
5: Ask for the encryption of C = Π(M) and C′ = Π(M ′)
6: Derive ∆C = C′ − C
7: if there exists (∆Yℓ, . . . ,∆Yr), s. t. Lr+1(∆M,∆Y ) = ∆C then
8: return “Real”
9: return “Random”

The adversary chooses M ∈ (Fn
2 )

2ℓ arbitrarily, and M ′ ∈ (Fn
2 )

2ℓ with M ̸= M ′

s. t. ∆X1 = . . .∆Xs = 0n and ∆T1 = . . . = ∆Ts = 0τ . Note that we consider
the inputs Xi ∈ Fn

2 and the tweaks Ti ∈ Fτ
2 as blocks. Again, such a choice of M ′

exists for the same reason as above and can be found efficiently from the null
space of the linear functions L1, L2, . . . that are involved in the computation of
∆X1, . . . , ∆Xs and ∆T1, . . . , ∆Ts. Again, we obtain ∆Yi = 0n, for 1 ≤ i ≤ s for
the real construction. We obtain the equation

Lr+1(∆M,∆Y1, . . . , ∆Ys︸ ︷︷ ︸
=(0, ..., 0)

,∆Ys+1, . . . , ∆Yr) = ∆C.

The blocks ∆Ys+1, . . . , ∆Yr contain (r−s)n bits, that are mapped through Lr+1

to ∆C2ℓn bits. For all schemes Π that use r calls to the primitive with

(r − s) · n < 2ℓn, which leads to r < 2ℓ

(
1 +

n

n+ τ

)
− 1,

we obtain a compressing mapping. Then, there exist are more equations than
variables, and the distinguisher as before applies. However, the advantage may
be smaller and depends on the values of r, n, and τ .

4 Definition of The Basic ZCZ Construction

This section defines the basic ZCZ SPRP scheme. First, we consider messages
that consist of at most 2n blocks, and will extend it thereupon to all messages
whose length is a multiple of 2n bits. The subsequent section will then further
define it for messages whose length is not necessarily a multiple of 2n bits.

Let n, τ, k, d ≥ 1 be integers with d ≪ n; in the remainder, we restrict our
interest to n = τ , and define N

def
= 2n as an alias. Let B = {0, 1}2n define a

di-block (or dual block, double block), i.e., 2n bits. Moreover, we define non-
empty sets of tweaks T = {0, 1}τ and keys K = {0, 1}k, as well as two sets for
domains and indices D = {t, s, c, b, t$, s$, c$, b$, xl, xr, yl, yr, p, kd} ⊆ {0, 1}d, and
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Algorithm 2 Definition of the encryption algorithm of ZCZ[Ẽ] given a tweak-
able block cipher Ẽ. The code in the boxes is only part of ZCZ∗[Ẽ] in Algo-
rithm 3.

10: function ZCZ[ẼK ](M)
11: r ← |M | mod 2n
12: ℓ← (|M | − r)/2n
13: z ← ⌈(ℓ− 1)/n⌉
14: L′

∗ ← ε; R′
∗ ← ε

15: Parse(M, ℓ)

16: TopEnc[ẼK ]()
17: if r > 0 then
18: PartialTopEnc[ẼK ]()

19: LastTopEnc[ẼK ](XL, XR)

20: MidLayer[ẼK ](S, T )

21: BotEnc[ẼK ]()

22: LastBotEnc[ẼK ](YL, YR)
23: if r > 0 then
24: PartialBotEnc[ẼK ]()

25: C ← (L′
1∥R′

1∥ · · · ∥L′
ℓ∥R′

ℓ∥L′
∗∥R′

∗)
26: return C

30: procedure TopEnc[ẼK ]
31: X∗

L ← X∗
R ← 0n

32: for i← 1 . . . ℓ− 1 do
33: Xi ← Ẽt,i,Ri

K (Li)
34: X∗

L ← X∗
L + αℓ−1−iXi

35: X∗
R ← X∗

R +(α2)ℓ−1−i(Xi +Ri)

36: XL ← Ẽ
xl,ℓ,X∗

R
K (X∗

L)

37: XR ← Ẽ
xr,ℓ,X∗

L
K (X∗

R)

40: procedure MidLayer[ẼK ](S, T )
41: S0 ← S
42: for i← 1 . . . z do
43: Si ← Ẽs,0,i

K (Si−1)

44: for i← 1 . . . z do
45: for j ← 1 . . . n do
46: Zi,j ← Ẽ

c,(i−1)n+j,T
K (Si)

50: procedure LastTopEnc[ẼK ](XL, XR)
51: S ← Ẽ

t$,ℓ,Rℓ+XR
K (Lℓ +XL)

52: T ← Ẽs$,ℓ,S
K (Rℓ +XR)

60: procedure BotEnc[ẼK ]
61: Y ∗

L ← 0n

62: Y ∗
R ← 0n

63: for i← 1 . . . z − 1 do
64: for j ← 1 . . . n do
65: k ← (i− 1)n+ j
66: L′

k ← Xk + Zi,j

67: Yk ← Rk + Zi,j + Si

68: R′
k ← Ẽ

b,k,L′
k

K (Yk)
69: Y ∗

L ← Y ∗
L+(α2)ℓ−1−k(Yk+L′

k)
70: Y ∗

R ← Y ∗
R + (α)ℓ−1−kYk

71: for j ← 1 . . . ℓ− 1− (z − 1)n do
72: k ← (z − 1)n+ j
73: L′

k ← Xk + Zz,j

74: Yk ← Rk + Zz,j + Sz

75: R′
k ← Ẽ

b,k,L′
k

K (Yk)
76: Y ∗

L ← Y ∗
L + (α2)ℓ−1−k(Yk + L′

k)
77: Y ∗

R ← Y ∗
R + αℓ−1−kYk

78: YL ← Ẽ
yl,ℓ,Y ∗

R
K (Y ∗

L )

79: YR ← Ẽ
yr,ℓ,Y ∗

L
K (Y ∗

R)

80: procedure LastBotEnc[ẼK ](YL, YR)
81: L′

ℓ ← Ẽc$,ℓ,T
K (S) + YL

82: R′
ℓ ← Ẽb$,ℓ,T

K (L′
ℓ + YL) + YR

90: procedure Parse(M, ℓ)
91: i← ℓ · 2n
92: (L1,R1,· · · ,Lℓ,Rℓ)

n←−M [0..i− 1]
93: if r > 0 then
94: (L∗, R∗)

n←−M [i..|M |]

I ⊆ {1, . . . , 2n − 1}, s.t. the elements of D denote pairwise distinct integers.
The purpose of domains and indices is to define an extended tweak set TD,I =

D × I × T for a tweakable block cipher Ẽ : K × TD,I × {0, 1}n → {0, 1}n.

We interpret n-bit inputs also as elements in the finite field F2n , which is
the Galois Field GF(2n) with a fixed irreducible polynomial p(x), where we
interpret a bit string (xn−1 . . . x1x0) as polynomial

∑n−1
i=0 ai · xi in F2n , where

bit xi represents the coefficient ai ∈ {0, 1}, for 0 ≤ i ≤ n − 1, and the most
significant bit is the leftmost, and the least significant bit is the rightmost bit.
We consider all multiplications, and all additions of n-bit values to be in F2n ;
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(a) Encryption of the first ℓ− 1 di-blocks.

(b) Encryption of the final
di-block.

(c) Deriving the chaining values Si and Zi,j ; n′ ←
(ℓ− 1) mod n.

Fig. 3: Encryption of a message with ℓ complete di-blocks with construction
ZCZ[ẼK ].

though, all additions in sub- and superscripts (that denote indices) represent
normal integer additions. For n = 128, we suggest the irreducible polynomial to
be that of OCB and GCM, i.e., p(x) = x128+x7+x2+x+1. We define a generator
element α ∈ F2n , where we suggest α = x for the case n = 128 for the sake
of concreteness. Moreover, note that we also will use the field F2n+τ , where we
suggest for n = τ = 128 the irreducible polynomial p(x) = x256+x10+x5+x2+1.

First, we consider the basic construction ZCZ[ẼK ], which takes as input a
secret key K ∈ K and a plaintext M ∈ B≤n consisting of ℓ ∈ [1..n] di-blocks.
We stress that a message must consist of at least a single complete di-block.
M is split into a sequence of di-blocks (Li, Ri), for 1 ≤ i ≤ ℓ. The first ℓ − 1

13



complete di-blocks are processed similarly as in the ZHASH construction by
Iwata et al. [28]: for each di-block (Li, Ri), the left n-bit branch is used as state
input, and the right n-bit branch is used as tweak input to Ẽt,i

K . The calls are
domain-separated by the indices i. The TBC outputs Xi are multiplied by a
power of the generating element αℓ−1−i and accumulated to a value X∗

L using
the Horner rule: X∗

L ←
∑ℓ−1

i=1 α
ℓ−1−i · Xi. Similarly, we derive a second value

X∗
R ←

∑ℓ−1
i=1(α

2)ℓ−1−i·(Xi+Ri) that takes also the tweak inputs Ri into account.
Next, both values are encrypted using one of them as input and the other one
as tweak under distinct tweak domains, similar to the finalization in [40]:

XL ← Ẽ
xl,ℓ,X∗

R

K (X∗
L) and XR ← Ẽ

xr,ℓ,X∗
L

K (X∗
R)

The outputs XL and XR are used to mask the branches of the final di-block, Lℓ

and Rℓ. The different α and α2 prevent that a collision in XL would automati-
cally lead to a collision also in XR and vice versa. The encryption prevents that
differences in the masks cancel with differences in the final di-block.

So, the final di-block depends on all other message bits. The final di-block
is processed by a four-round Feistel-like network of TBC calls, where each TBC
call employs a distinct domain independent from all others. The processing of
the final di-block finally is a four-round Feistel-like network in the spirit of the
Ψ̃3 construction by Coron et al. [16]. Here, it generates two intermediate values
S and T after the first and second call to Ẽ, respectively.

From S, we derive a chaining value S1 ← Ẽs,0,1
K (S). Moreover, we derive

from S and T ℓ − 1 further chaining values Z1,j ← Ẽc,j,T (S1) by a TBC call
each, again under distinct domains. The chaining values are employed in the
middle layer of our construction and ensure that each di-block depends on all
others. For the j-th di-block, the chaining value Z1,j is added to both branches
of the j-th block. Moreover, S1 is also added to the right branch of each di-block:
Yj ← Rj +Z1,j +Sj . This step is required to prevent adversaries from observing
the differences ∆Z1,j . We elaborate on attacks on preliminary versions of ZCZ
in Appendix D.

After the middle layer, the values of the right branches of all di-blocks,
Yj , are also multiplied by αℓ−1−i, using the Horner rule, and accumulated to
Y ∗
L ←

∑ℓ−1
i=1(α

2)ℓ−1−i(Yi + L′
i) and Y ∗

R ←
∑ℓ−1

i=1 α
ℓ−1−iYi. Again, both values

are encrypted to YL and YR using the same manner as for XL and XR, but dis-
tinct tweak domains. For all complete ℓ − 1 di-blocks, both branches are again
processed by another ZHASH layer at the bottom to compute the ciphertexts:
L′
j ← Xj and R′

j ← Ẽ
b,i,L′

j

K (Yj). After the final, ℓ-th, complete di-block has
undergone two further Feistel rounds, YL added to the left branch, and YR is
added to the right branch of the ℓ-th di-block.

Extension to Longer Messages. Messages that consist of more than n di-
blocks are partitioned into chunks. The i-th (complete) chunk denotes the series
of the n consecutive di-blocks (L(i−1)n+1, R(i−1)n+1, . . . Li·n, Ri·n), and employs
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the chaining values Si and Zi,j . We derive all chaining values under distinct
domains as before; from S, we derive furthermore ℓ−1 chaining values Zi,j by a
TBC call each as before. For the i-th chunk, Si is computed as Si ← Ẽs,0,i

K (S).
Then, for j ∈ [1..n], Zi,j for the j-th block of the i-th chunk is generated as
Zi,j ← Ẽ

c,0,n(i−1)+j
K (Si). Yn(i−1)+j is then computed as

Yn(i−1)+j ← Rn(i−1)+j + Si + Zn(i−1)+j .

The rest of the computations remain unchanged. Letting j take any value in
[1..ℓ], we can rewrite this as

Yj ← Rj + S⌈j/n⌉ + Zj . (2’)

The encryption of ZCZ[ẼK ] is defined in Algorithm 2, and illustrated in parts in
Figure 3, already for more than n complete di-blocks. The figure employs bold
bars in the blocks of Ẽ to indicate the parts of the tweaks that stem from T . A
precise description of the decryption is omitted for the sake of space limitation
since it can be defined in the obvious way.

Instantiating The TBC and Extending The Tweak Space. A TBC Ẽ
with native domain TD,I would most probably be not very efficient or does not
even exist out-of-the-box. In practice, however, one could employ instead a TBC
Ẽ : K × T × {0, 1}n → {0, 1}n with tweak domain T ⊆ {0, 1}n and augment its
tweak domain.

Recall that D ⊆ {0, 1}d for d ≪ n. Let kd ∈ D be a distinct domain that
is not used otherwise, and define m = n + τ and m′ = ⌈m/n⌉. Assume that
m′ < n− d. Then, we can generate an m-bit key from

Ki ← Ẽ
kd ∥ ⟨i⟩n−d

K (0), for 1 ≤ i ≤ m′

K ′ ← msbm(K1 ∥ . . . ∥Km′)

We can define a masking function δ similar as in XEX [48], using the same
polynomials, e.g., (x) and (x + 1) (i.e., the polynomials that are represented
as integers 2 and 3, respectively). Note that the polynomials here are in F2n+τ .
Given a tuple of domain D ∈ D, counter I ∈ I, and key K ′, the masking function
computes

(U ∥V )← δ(D, I,K ′)
def
= (x)I · (x+ 1)D ·K ′.

The resulting (n+ τ)-bit mask (U ∥V ) is split into an n-bit part U and a τ -bit
part V and added to input, output, and tweak part of the TBC inputs. So, we
define the TBC Ẽ for an input-tweak tuple (X,T ) ∈ {0, 1}n × T as

ẼD,I,T
K,K′ (X)

def
= Ẽ

T+V

K (X + U) + U with,
(U ∥V )← δ(D, I,K ′)
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Algorithm 3 Functions of the encryption algorithm of ZCZ∗[Ẽ] for messages
whose length is not necessarily a multiple of 2n bit (but at least 2n bit). Recall
that r = |M | mod 2n.

10: procedure PartialTopEnc[ẼK ]
11: Mℓ ← Lℓ ∥Rℓ

12: M∗ ← pad2n(L∗ ∥R∗)
13: (L∗, R∗)

n←−M∗

14: (Uℓ, Vℓ)← H[ẼK , 0](L∗, R∗)
15: Lℓ ← Lℓ + Uℓ

16: Rℓ ← Rℓ + Vℓ

20: function msbx(X)
21: return X[0..x− 1]

30: function padx(X)
31: return X ∥ 1 ∥ 0x−|X|−1

40: procedure PartialBotEnc[ẼK ]

41: (P,Q)← H[ẼK , 2](Lℓ + L′
ℓ, Rℓ +R′

ℓ)
42: W ← msbr(P ∥Q) ∥ 02n−r

43: (P∗, Q∗)
n←−W

44: L′
∗ ← L∗ + P∗

45: R′
∗ ← R∗ +Q∗

46: (L
′
∗, R

′
∗)

n←− pad2n(L
′
∗ ∥R′

∗)

47: (U ′
ℓ, V

′
ℓ )← H[ẼK , 4](L

′
∗, R

′
∗)

48: L′
ℓ ← L′

ℓ + U ′
ℓ

49: R′
ℓ ← R′

ℓ + V ′
ℓ

50: function H[ẼK , i](U, V )
51: U ′ ← Ẽp,i,V

K (U)

52: V ′ ← Ẽp,i+1,V
K (U)

53: return (U ′, V ′)

U ← msbn(U ∥V )

V ← lsbτ (U ∥V ).

Since K ′ is uniquely derived from ẼK , we omit writing it hereafter. We stress
that such an instantiation would imply a restriction of the number of employed
indices and domains. For example, for m = 128, Rogaway [48] showed that the
powers of those polynomials will not collide for indices up to (I,D) ∈ [−2108 . . .+
2108] × [−27 . . . + 27]. For selected larger values of m, e.g., m ∈ {256, 512} one
can find further bounds in [18].

5 The Construction ZCZ∗ for Messages with Partial
Final Di-block

Next, we extend the definition of ZCZ for messages whose length is not a multiple
of 2n bits, where we denote the last r ← |M | mod 2n bits as partial di-block. Our
approach is inspired by the generic designs by Minematsu [39] and Nandi [42].
First, we briefly review the latter before we show our adapted version of ZCZ∗.

The DE Domain Extender. In 2009 [42], Nandi proposed the domain exten-
der DE[Π,F,H] : {0, 1}≥n → {0, 1}≥n that takes a blockwise-operating length-
preserving permutation Π : ({0, 1}n)+ → ({0, 1}n)+, a PRF F : {0, 1}n →
{0, 1}n, and an XOR-universal hash function H : {0, 1}n × {0, 1}2n → {0, 1}n,
and produces a length-preserving permutation over bit strings of any length
≥ n bits. A message M ∈ {0, 1}≥n is split into blocks (M1, . . . ,Mℓ−1,Mℓ)

n←−M ,
and DE[Π,F,H] computes the corresponding ciphertext C = (C1, . . . , Cℓ) as

M∗
ℓ−1 ← H(Mℓ−1,Mℓ)
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(C1, . . . , Cℓ−2, C
∗
ℓ−1)← Π(M1, . . . ,Mℓ−2,M

∗
ℓ−1)

Cℓ ← F (M∗
ℓ−1 + C∗

ℓ−1) +|Mℓ| Mℓ

Cℓ−1 ← H(C∗
ℓ−1, Cℓ),

where x+n y
def
= msbn(x)+ y for any x, y ∈ {0, 1}∗ and integer n. To obtain that

DE is a permutation, the hash function H must satisfy H(H(Mℓ−1,Mℓ),Mℓ) =
Mℓ−1 for any allowed input Mℓ−1, Mℓ (see [42, Remark 2]).

Extending our Construction to Support Partial Di-Blocks. We re-
quire that the message has at least one full di-block. Let M∗ = (L∗, R∗) be the
partial message di-block that follows after ℓ complete di- blocks. Further assume
that the partial di-block consists of ≥ n bits that are split into |L∗| = n and
|R∗| < n. The right part is padded to n bits by a single 1 and as many zero
bits as necessary to extend it to n bits: R∗ ← padn(R∗). The values are given as
inputs to a hash function H[ẼK , i], with i = 0, that is illustrated on the right
side of Figure 4. {H} uses one of the two n-bit values as state and the other one
as tweak input for two calls to ẼK under distinct tweaks:

U ′ ← Ẽp,i,V
K (U) and V ′ ← Ẽp,i+1,V

K (U).

The 2n-bit output (U ′, V ′) is added to the final complete di-block. The resulting
final di-block (Lℓ, Rℓ) is then processed by ZCZ[ẼK ]. The sum of (Lℓ, Rℓ) +

(L′
ℓ, R

′
ℓ) is then given again into H[ẼK , i], with i = 2 to produce a 2n-bit value

(P ′
ℓ , Q

′
ℓ). The most significant r bits of it are added to the final partial di-block

to obtain the partial ciphertext di-block M ′
∗. M ′

∗ is again padded to 2n bits and
given as input to a third call to H[ẼK , i], with i = 4. The hash output is added
to the final ciphertext di-block to produce M ′

ℓ. If the partial di-block consists of
less than n bits, it is also padded to 2n bits and processed analogously.

So, the hash function H from the original definition of DE[Π,F,H] is given
by

H(Mℓ,M∗)
def
= Mℓ +H[ẼK , i](pad2n(M∗))

The requirement that

H(H(Mℓ,M∗),M∗) = Mℓ +H[ẼK , i](pad2n(M∗)) +H[ẼK , i](pad2n(M∗)) = Mℓ

holds for arbitrary Mℓ and M∗.

Remark 2. Note that due to the structure of the used domain extension, the ex-
tended construction ZCZ∗ still requires messages and ciphertexts to consist of at
least one complete di-block, i.e., of at least 2n bit. A further minor improvement
in future work could be the integration of smaller messages. For instance, the use
of the very recent length-doubling construction LDT by Chen et al. [14] could
reduce the minimal message length to n+1 bits. Though, this step would require
an appropriate integration. Moreover, although we separated the definitions for
clarity, ZCZ∗ is a variable-input-length SPRP for lengths ≥ 2n bit.
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Fig. 4: Encryption of a partial message M1, . . . ,Mℓ,M
∗ whose length is not a

multiple of 2n bit with ZCZ∗[ẼK ]. All preceeding di-blocks M1, . . . ,Mℓ are pro-
cessed with ZCZ[ẼK ] as before.

6 Security Analysis of ZCZ and ZCZ∗

This section studies the SPRP security of ZCZ and ZCZ∗. First, we consider
the security of the basic construction. Thereupon, we consider the extensions for
inputs whose length is not necessarily a multiple of 2n bits, but at least 2n bits.
Finally, we take a look at the security of ZCZ∗.

6.1 Security of The Basic Construction

Theorem 1. Let π̃ � P̃erm(TD,I , {0, 1}n). Let A be an SPRP adversary on
ZCZ[π̃], s.t. A asks at most q queries of domain B≤n, that sum up to at most σ
di-blocks in total. Then

AdvSPRP
ZCZ[π̃](A) ≤ 3σ2 + 9q2

2N2
.

Proof. The queries 1 through q by A are collected in a transcript τ where we
define two disjoint sets of indices E and D s.t. [1..q] = E ⊔D, and it holds that
E consists of exactly those indices i s.t. the i-th query of A is an encryption
query; similarly, D consists of exactly those indices i s.t. the i-th query of A is
an decryption query. We define ℓi to be the number of di-blocks in the i-query,
where ℓi ≤ n.

In both worlds, the adversary’s queries are answered immediately with the
corresponding outputs; certain internal parts of the transcript will be revealed to
the adversary after it made all its queries, but before it outputs its decision bit
that represents its guess of which world it interacted with. The internal parts
consist of Si, T i, Si

1, X
i
L, X

i
R, Y

i
L, Y

i
R for i ∈ [1..q] and Zi

1,j for i ∈ [1..q], j ∈
[1..ℓi − 1]; for ease of notation, we write Zi

j to refer to Zi
1,j .
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Equations. First, we write the internal variables Xi
j , Y

i
j for i ∈ [1..q], j ∈ [1..ℓi]

and U i
L, U

i
R, V

i
L, V

i
R for i ∈ [1..q] in terms of Si, T i, Si

1, X
i
L, X

i
R, Y

i
L, Y

i
R, Z

i
j :

Xi
j = L′i

j + Zi
j , (1)

Y i
j = Ri

j + Zi
j + Si

1, . (2)

Moreover, we define four auxiliary variables to easier refer to them throughout
the proof:

U i
L = Li

ℓ +Xi
L, (3)

U i
R = Ri

ℓ +Xi
R, (4)

V i
L = L′i

ℓ + Y i
L, (5)

V i
R = R′i

ℓ + Y i
R. (6)

Identifying A Basis. A basis is the set of variables (internal to the construc-
tions) which can be sampled uniformly and independently in the ideal oracles
after fixing the inputs and outputs that are known to adversary. By looking at
the construction and eliminating the relationships between the internal variables,
plaintexts, and ciphertexts, some internal variables can be chosen almost freely,
and still the real construction will behave indistinguishable from the ideal world
for the adversary even after observing the plain- and ciphertexts. We call those
variables a basis. For i ∈ [1..q], j ∈ [1..ℓi], we define (i, j) to be fresh if either of
the following is true:

– i ∈ E, and for any i′ ∈ [1..i− 1]: (Li′

j , R
i′

j ) ̸= (Li
j , R

i
j);

– i ∈ D, and for any i′ ∈ [1..i− 1]: (L′i′
j , R′i′

j ) ̸= (L′i
j , R

′i
j ).

For i ∈ [2..q], i′ ∈ [1..i− 1], we say i is akin to i′ if either of the following holds:

– ℓi = ℓi
′ , i ∈ E, and for any j ∈ [1..ℓi − 1]: (Li′

j , R
i′

j ) = (Li
j , R

i
j);

– ℓi = ℓi
′ , i ∈ D, and for any j ∈ [1..ℓi − 1]: (L′i′

j , R′i′
j ) = (L′i

j , R
′i
j );

We say i is new if it is not akin to any i′ ∈ [1..i− 1]. Now we define the basis as
follows: for i ∈ [1..q],

– For j ∈ [1..ℓi − 1], Zi
j is in the basis if (i, j) is fresh;

– Xi
L and Xi

R are in the basis if i ∈ D, or if i ∈ E and i is new;
– Y i

L and Y i
R are in the basis if i ∈ E, or if i ∈ D and i is new;

– Si, T i, and Si
1 are in the basis.

Let σF be the total number of fresh pairs in the set
{
(i, j) | i ∈ [q], j ∈ [ℓi − 1]

}
,

and let qν be the total number of new queries in [1..q]. Then the size of the basis
is σF + 2qν + 5q.
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Extension from Basis. Now we show how all the internal variables Xi
j , Y

i
j

for i ∈ [1..q], j ∈ [1..ℓi] and U i
L, U

i
R, V

i
L, V

i
R for i ∈ [1..q] can be written in terms

of basis variables. Since we have already seen how to write them in terms of
Si, T i, Si

1, X
i
L, X

i
R, Y

i
L, Y

i
R for i ∈ [1..q] and Zi

j for i ∈ [1..q], j ∈ [1..ℓi − 1], and
Si, T i, Si

1 for i ∈ [1..q] are already in the basis, it suffices to show that Zi
j for

i ∈ [1..q], j ∈ [1..ℓi− 1] and Xi
L, X

i
R, Y

i
L, Y

i
R for i ∈ [1..q] can be written in terms

of basis variables. An expression of an internal variable in terms of basis variables
and the oracle inputs and outputs will be called the extension expression of the
basis variable. Thus, whenever we sample all the basis elements, we can extend
this through these equations to assign values to all the internal variables.

For i ∈ E, j ∈ [1..ℓi], let i′ be such that (i′, j) is fresh, and

(Li′

j , R
i′

j ) = (Li
j , R

i
j).

Then i′ is called the j-predecessor of i, denoted i : j. Similarly, for i ∈ D, j ∈
[1..ℓi], if for some i′ we have (i′, j) fresh and

(L′i′
j , R′i′

j ) = (L′i
j , R

′i
j ),

we set i : j = i′. (Thus, when (i, j) is fresh, i : j is i itself.) For i ∈ E, j ∈ [1..ℓi]
we have from (1)

Xi
j = Xi:j

j = L′i:j
j + Zi:j

j ,

so
Zi
j = L′i:j

j + L′i
j + Zi:j

j ; (7)

and for i ∈ D, j ∈ [1..ℓi] we have from (2)

Y i
j = Y i:j

j = Ri:j
j + Zi:j

j + Si:j
1 ,

so
Zi
j = Ri:j

j +Ri
j + Zi:j

j + Si:j
1 + Si

1. (8)

Now if i and i : j are both in E or both in D, Zi:j
j is a basis element. (In

particular, when i : j = i, Zi
j is a basis element.) Otherwise, we can go back one

step further to (i : j) : j, the j-predecessor of i : j, denoted i : j2. We call (1)
and (2) the extension equations. They will serve useful in the later proofs. Note
that it does not hold in general that (i : j) : j = i : j. This holds only if i : j and
i are both in E or both in D, or when i : j points to a fresh input block.

For i ∈ [2..q], the smallest query index in [1..i− 1] which i is akin to is called
the origin of i, denoted i. We also define the origin of 1 to be 1 itself. Thus, for
i ∈ E,

Xi
L = Xi

L, (9)

Xi
R = Xi

R; (10)
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and for i ∈ D,

Y i
L = Y i

L, (11)

Y i
R = Y i

R. (12)

Since for i ∈ E, Xi
L and Xi

R are in the basis, and for i ∈ D, Y i
L and Y i

R are in
the basis, this completes the extensions.

Oracles and bad Events. The real oracle employs ZCZ[π̃] to answer the
queries of A. In the ideal world, the encryption oracle samples and returns L′i

j , R
′i
j

for i ∈ E, j ∈ [1..ℓi] uniformly at random; the decryption oracle samples and
returns Li

j , R
i
j for i ∈ D, j ∈ [1..ℓi] uniformly at random. Once the interaction

phase is over, the ideal world oracle samples and returns each basis element
uniformly at random from {0, 1}n, with two exceptions:

– For i ∈ E, Si is drawn uniformly from the set

{0, 1}n \
{
Si′ | i is akin to i′, Ri = Ri′

}
;

– For i ∈ D, T i is drawn uniformly from the set

{0, 1}n \
{
T i′ | i is akin to i′, L′i = L′i′

}
.

The real world releases the values of the basis variables to the adversary. (Thus,
from the extension equations, A can calculate the values of the inputs, tweaks,
and outputs of all internal TBC calls.)

The task of A is to distinguish the real world Oreal from the ideal world
Oideal, given a transcript τ of its interaction with the available oracles. We call
a transcript τ bad iff τ ∈ BadT, and call it good otherwise. We say that the
event bad has occurred if at least one of the following events occur:

– badA occurs when:
• For some i ∈ E, j ∈ [1..ℓi], there exists i′ ∈ [1..i − 1] with ℓi

′ ≥ j s.t.
(L′i′

j , R′i′
j ) = (L′i

j , R
′i
j );

• For some i ∈ D, j ∈ [1..ℓi], there exists i′ ∈ [1..i − 1] with ℓi
′ ≥ j s.t.

(Li′

j , R
i′

j ) = (Li
j , R

i
j);

– badB occurs when:
• For some i ∈ [2..q] there exists i′ ∈ [1..i− 1] with ℓi = ℓi

′ s.t. one of the
following holds:
— (U i

L, U
i
R) = (U i′

L , U
i′

R);
— (Si, U i

R) = (Si′ , U i′

R);
— (Si, T i) = (Si′ , T i′);
— (V i

L, T
i) = (V i′

L , T i′);
— (V i

L, V
i
R) = (V i′

L , V i′

R );
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– badC occurs when:
• For some i ∈ [1..q], there exists i′ ∈ [1..i− 1] s.t. (Si

1, T
i) = (Si′

1 , T
i′);

• For some i ∈ [1..q], j ∈ [1..ℓi−1], there exists i′ ∈ [1..i−1] with ℓi
′ ≥ j+1

s.t. (Zi
j , T

i) = (Zi′

j , T
i′);

– badD occurs when:
• For some i ∈ E, j ∈ [1..ℓi − 1], there exists i′ ∈ [1..i− 1] with ℓi

′ ≥ j + 1
s.t. (L′i

j , Y
i
j ) = (L′i′

j , Y i′

j );
• For some i ∈ D, j ∈ [1..ℓi − 1], there exists i′ ∈ [1..i− 1] with ℓi

′ ≥ j + 1
s.t. (Ri

j , X
i
j) = (Ri′

j , X
i′

j );
– badE occurs when:
• For some i ∈ [2..q], there exists i′ ∈ [1..i − 1] s.t. i is not akin to i′ and

yet one of the following holds:
— (X∗i

L , X∗i
R ) = (X∗i′

L , X∗i′
R );

— (Y ∗i
L , Y ∗i

R ) = (Y ∗i′
L , Y ∗i′

R );

Thus, bad def
= badA ∨ badB ∨ badC ∨ badD ∨ badE. Clearly, it holds that

Pr [bad] ≤ Pr [badA] + Pr [badB] + Pr [badC] + Pr [badD] + Pr [badE] . (13)

Then, the proof follows from Lemmas 1, 2, and 3.

Lemma 2. Pr [bad] ≤ 3σ2 + 8q2

N2
.

Proof. Below, we show that each of the collision-pairs that would result in one of
the bad events has a joint probability of≤ 1/N2. Clearly, we need the assumption
that all basis elements are uniformly sampled from {0, 1}n for this purpose.
Moreover, the values Si and T i are sampled without replacement under certain
circumstances, their bound is at most 1/N(N − 1), which can be upperbounded
by 1/N(N − 1) < 2/N2. Thus, for bounding the bad events, we simply need to
bound the number of candidate collision-pairs.

For badA, there can be:

– at most σ2
E/2 collision events of the form (L′i′

j , R′i′
j ) = (L′i

j , R
′i
j );

– at most σ2
D/2 collision events of the form (Li′

j , R
i′

j ) = (Li
j , R

i
j);

where σE is the total number of encryption query blocks and σD is the total
number of decryption query blocks, so that σ2

E + σ2
D ≤ σ2. Thus

Pr [badA] ≤ σ2

N2
. (14)

For badB, there can be:

– at most q2/2 collision events of the form (U i
L, U

i
R) = (U i′

L , U
i′

R);
– at most q2/2 collision events of the form (Si, U i

R) = (Si′ , U i′

R);
– at most q2/2 collision events of the form (Si, T i) = (Si′ , T i′);
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– at most q2/2 collision events of the form (V i
L, T

i) = (V i′

L , T i′);
– at most q2/2 collision events of the form (V i

L, V
i
R) = (V i′

L , V i′

R );

Thus
Pr [badB] ≤ 5q2

N2
. (15)

For badC, there can be:

– at most q2/2 collision events of the form (Si
1, T

i) = (Si′

1 , T
i′).

– at most σ2/2 collision events of the form (Zi
j , T

i) = (Zi′

j , T
i′);

Thus
Pr [badC] ≤ q2 + σ2

N2
. (16)

For badD, there can be:

– at most σ2
E/2 collision events of the form (L′i

j , Y
i
j ) = (L′i′

j , Y i′

j );
– at most σ2

D/2 collision events of the form (Ri
j , X

i
j) = (Ri′

j , X
i′

j ).

Thus
Pr [badD] ≤ σ2

N2
. (17)

For badE, there can be:

– at most q2/2 collision events of the form (X∗i
L , X∗i

R ) = (X∗i′
L , X∗i′

R );
– at most q2/2 collision events of the form (Y ∗i

L , Y ∗i
R ) = (Y ∗i′

L , Y ∗i′
R ).

Thus
Pr [badE] ≤ 2q2

N2
. (18)

The lemma follows from (13)–(18).
Now all that is left to do is to establish our claim that each of the collision-

pairs that would result in one of the bad events has a joint probability ≤ 1/N2.
This is to be done by examining each bad event separately. badA, badB and badC
are fairly straightforward; for the sake of completeness we include short proofs
in Appendix B. badD is more interesting; we provide below a complete analysis
of it. The trickiest case is badE; in this section we examine one of its subcases
in detail, and the complete case-by-case analysis is included in Appendix C.

Analysis of badD. We consider the two cases separately:

– (L′i
j , Y

i
j ) = (L′i′

j , Y i′

j ), i ∈ E, i′ < i: We will show that Y i
j = Y i′

j always
leads to an equation containing at least one basis variable that cannot get
canceled out. The required bound follows since the basis variable and L′i

j are
independently sampled. From (2) we have

Ri
j + Zi

j + Si
1 = Ri′

j + Zi′

j + Si′

1 . (19)

Note that Si
1 cannot occur in the expansion of Zi:j

j , since i ∈ E. Now we
have two options of i′:

23



• i′ ∈ E: From (7) and (19) we have

Ri
j + L′i:j

j + L′i
j + Zi:j

j + Si
1 = Ri′

j + L′i′:j
j + L′i′

j + Zi′:j
j + Si′

1 .

Here the basis element Si
1 cannot be canceled out, since i′ < i.

• i′ ∈ D: From (7), (8) and (19), we have

Ri
j + L′i:j

j + L′i
j + Zi:j

j + Si
1 = Ri′

j +Ri′:j
j +Ri′

j + Zi′:j
j + Si′:j

1 .

Again, the basis element Si
1 cannot be canceled out since i′ : j ≤ i′ < i.

– (Ri
j , X

i
j) = (Ri′

j , X
i′

j ), i ∈ D, i′ < i: As above, we show that Xi
j = Xi′

j always
leads to an equation containing at least one basis variable that cannot get
canceled out, and the required bound follows since the basis variable and Ri

j

are independently sampled. From (1), we have

L′i
j + Zi

j = L′i′
j + Zi′

j . (20)

Now, we have two options of i′:

• i′ ∈ E: From (8), (7) and (20), we have

L′i
j +Ri:j

j +Ri
j + Zi:j

j + Si:j
1 + Si

1 = L′i′:j
j + Zi′:j

j .

When i : j < i, the basis element Si
1 cannot be canceled out, and when

i = i : j, we have i′ : j ≤ i′ < i = i : j, so the basis element Zi:j
j = Zi

j

cannot be canceled out.

• i′ ∈ D: From (8) and (19), we have

L′i
j +Ri:j

j +Ri
j + Zi:j

j + Si:j
1 + Si

1 = L′i′
j +Ri′:j

j +Ri′

j + Zi′:j
j + Si′:j + Si′ ,

Here again, either Si
1 or the basis element Zi

j cannot be canceled out,
and the argument is identical to the above.

Analysis of badE. This is trickier than the other bad events, and requires some
careful case analysis. We examine the two most difficult sub-cases here; the rest
can be similarly handled. Let i′ < i and ℓ

def
= ℓi

′
= ℓi, and let αj(·) and α2

j (·) be
linear functions defined as

αj(x)
def
= αℓ−1−j · x and α2

j (x)
def
= (α2)ℓ−1−j · x.

First consider the case i ∈ E, i′ ∈ E. From (7), (26) and (27) we have

ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j ) =

ℓ−1∑
j=0

αj(L
′i:j
j + L′i′:j

j ), (21)

ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ). (22)
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By choice of j0, i : j0 ̸= i′ : j0. Suppose i : j0 > i′ : j0. If i : j0 ∈ D, using (8), we
replace Zi:j0

j0
by R

i:j20
j0

+Ri:j0
j0

+Z
i:j20
j0

+S
i:j20
1 +Si:j0

1 . The basis element Si:j0
1 does

not get canceled out; moreover, Ri:j0
j0

remains only in the top equation, while it
gets canceled out in the bottom equation. Since i : j = i′ : j for all j > j0, none
of the adversary-queried blocks remaining in either equation came after Ri:j0

j0
, so

it is independent of the rest of the equation; along with the basis element Si:j0
1

(which appears in both equations), this makes the two collisions independent,
thus occurring jointly with a probability 1/N2.

If i : j0 ∈ E, Zi:j0
j0

is in the basis, and does not cancel out. On the right hand
side of both equations, L′i:j0

j0
remains uncanceled as well, while all later adver-

sary queries get canceled. Thus, the two equations can become dependent with
probability at most 1/N ; then, the common collision can occur with probability
at most 1/N . Thus, in either case, the joint collision can occur with a probability
of more than 1/N2. The analysis is similar when i : j0 < i : j0; then we focus on
the latter instead.

Now consider the case i ∈ E, i′ ∈ D. From (7), (8), (26) and (27) we have
ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si′

1 + Si′:j
1 ) =

ℓ−1∑
j=0

αj(L
′i:j
j + L′i′:j

j +Ri′

j +Ri′:j
j ), (23)

ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si′

1 + Si′:j
1 ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ). (24)

By choice of j0 and j1, i : j0 ̸= i′ and i : j1 ̸= i′. Suppose i : j0 < i′. Then Si′

1

and Ri′

j0
remain uncanceled in (30), and no adversary query block queried after

Ri′

j0
remains uncanceled; in (31), Si′

1 remains uncanceled again, but there is no
Ri′

j0
and no adversary query block queried after it. Thus these two can occur

jointly with a probability at most 1/N2.
A symmetric argument can be used when i : j0 > i′ and i : j0 ∈ D: we replace

Zi:j0
j0

by R
i:j20
j0

+Ri:j0
j0

+Z
i:j20
j0

+S
i:j20
1 +Si:j0

1 using (8), and observe that Si:j0
1 remains

uncanceled in either equation, while Ri:j0
j0

remains uncanceled in (30), but gets
canceled out in (31), and no adversary query block queried after it remains in
either equation.

When i : j0 > i′ and i : j0 ∈ E, but i : j1 satisfied one of the above two
conditions, we can argue as above using i : j1 instead. If we also have i : j1 > i′

and i : j1 ∈ E, we observe that Zi:j0
j0

and Zi:j1
j1

are basis elements that do not get
canceled out in either equation. Their combined contribution to the left-hand
side of (30) is αℓ−1−j0 ·Zi:j0

j0
+αℓ−1−j1 ·Zi:j1

j1
and to the left-hand side of (31) is

(α2)ℓ−1−j0 ·Zi:j0
j0

+ (α2)ℓ−1−j1 ·Zi:j1
j1

. These two collisions are independent since
αℓ−1−j0 ·(α2)ℓ−1−j1 ̸= αℓ−1−j1 ·(α2)ℓ−1−j0 , and thus can occur with a probability
at most 1/N2. (The entire subcase-tree analysis can be found in Appendix C.)

This completes the proof of Lemma 2.
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Lemma 3. It holds that

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥ 1− q2

N2
.

Proof. Let τ be a good transcript, i. e., none of the events badA, badB, badC,
badD, or badE occurred. Then, in the ideal world, there are 2σ samplings for
generating the query responses and σF + 2qν + 5q for generating the basis ele-
ments. In the ideal world, the basis elements are sampled uniformly at random
and independently from each other. Hence, the probability for those is given by

1

NσF+2qν+5q
.

The situation differs for the outputs of the scheme. The ideal world is an ideal
SPRP; hence, the outputs are sampled without replacement. Since all queries are
from the domain B≤n =

∪n
i=1 Bi, we can group the encryption and decryption

queries into disjoint sets L1, . . . ,Ln such that their union contains all queries, and
Set Li contains exactly the queries of length i di-blocks. We define by Load

(
Li

)
the number of queries in set Li, for all 1 ≤ i ≤ n. The probability for ciphertext
outputs from encryption queries and plaintext outputs from decryption queries
is then

n∏
i=1

1

(N2i)Load(Li)

.

Since the size of all queries is at least 2n bits, we can lower bound the probability
by

n∏
i=1

1

(N2i)Load(Li)

≤ 1

(N2)2q
· 1

N2σ−2q
.

We obtain that

Pr [Θideal = τ ] ≤ 1

NσF+2qν+3q+2σ
· 1

(N2)q
. (25)

In the real world, the real construction employs a permutation π̃T(·) for each
tweak T ∈ TD×I that was used in the transcript, . We write the set of all
occurred tweaks of all di-blocks of all queries in the transcript and write it as{
T1, . . . ,Tθ

}
. We further define by Load (T) the load of a tweak T, i.e., the

number of distinct inputs that were used for it over all queries and di-blocks of
the transcript. It holds that

θ∑
i=1

Load
(
Ti

)
= σF + 2σ + 2qν + 5q

We adopt the notion of transcript-compatible permutations from [13]. We call
π̃ compatible with τ if for all queries, π̃ produced all intermediate variables as
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well as all outputs in τ . Let Comp(τ) denote the set of tweakable permutations
π̃ that are compatible with τ . Thus

Pr [Θreal = τ ] = Pr
[
π̃ � P̃erm (TD,I , {0, 1}n) : π̃ ∈ Comp(τ)

]
.

For a fixed tweak T, the fraction of compatible permutations is given by

Load(T)−1∏
i=0

1

N − i
=

1

(N)Load(T)
.

Over all tweaks Ti, for 1 ≤ i ≤ θ, the fraction of compatible permutations is
given by

θ∏
i=1

1

(N)Load(Ti)

It is hard to work with this probability directly. Instead, since we are interested
in a lower bound for the real-world probability of transcripts, we can lower bound
the probability of all σF +2qν +5q basis variables by the naive probability that
they are all computed from fresh tweaks:

1

NσF+2qν+5q
.

For the ciphertext and plaintext outputs, we can employ similar sets Li, for
1 ≤ i ≤ n, as we had for the ideal world, where Set Li again consists of all
queries of length i di-blocks. The probability of query outputs in the real world
can then be lower bounded by the

n∏
i=1

1

(N2i)Load(Li)

.

Now, we can upper bound the ratio of the probability of our transcripts by

Pr [Θreal = τ ]

Pr [Θideal = τ ]
≥

1
NσF +2qν+5q ·

∏n
i=1

1
(N2i)Load(Li)

1
NσF +2qν+5q · 1

N2σ−2q · 1
(N2)q

≥

∏n
i=1

1
(N2i)Load(Li)

1
(N2)q

· 1
N2σ−2q

≥

(
N2

)
q
·N2σ−2q

N2σ
=

(
N2

)
q

(N2)q

=
(N2)(N2 − 1) · · · · · (N2 − q + 1)

(N2)q
≥

(
N2 − q + 1

N2

)q

≥
(
N2 − q

N2

)q

=
(
1− q

N2

)q
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Bernoulli
≥ 1− q2

N2
,

where the last inequality is Bernoulli’s. So, we obtain our claim in Lemma 3.

6.2 Proof Sketch for Messages with Arbitrary Number of Complete
Di-blocks

Theorem 2. Let π̃ � P̃erm(TD,I , {0, 1}n). Let A be an SPRP adversary on
ZCZ[π̃] that asks at most q queries queries of domain B+, whose lengths sum
up to at most σ di-blocks in total, and A runs in time at most time. Then

AdvSPRP
ZCZ[π̃](A) ≤ 4σ2 + 8q2

N2
.

Proof Sketch. The proof follows a similar strategy as that of Theorem 1. So, we
only consider the equations in the analysis of bad events that differ. We add each
Si
k, i ∈ [1..q], k ∈

[
1..

⌈
ℓi/n

⌉]
to the basis. The ideal oracle samples the additional

basis elements along with the original basis elements in the second step, and the
definitions of the bad cases do not change. From the equations (1)–(6) that we
began with, only (2) is now replaced by

Y i
j = Ri

j + Zi
j + Si

⌈j/n⌉. (2’)

In the extension equations, this changes only (8), which is replaced by

Zi
j = Ri:j

j +Ri
j + Zi:j

j + Si:j
⌈j/n⌉ + Si

⌈j/n⌉. (8’)

The definitions of the bad cases remain the same except badC, which now occurs
when:

– For some i ∈ [1..q], k ∈
[
1..

⌈
ℓi/n

⌉]
, there exists i′ ∈ [1..i − 1] with ℓi

′ ≥
n(k − 1) s.t. (Si

k, T
i) = (Si′

k , T
i′);

– For some i ∈ [1..q], j ∈ [1..ℓi − 1], there exists i′ ∈ [1..i− 1] with ℓi
′ ≥ j + 1

s.t. (Zi
k,c, T

i) = (Zi′

k,c, T
i′), where k = ⌈j/n⌉ , c = j − n(k − 1).

Of these, the counting does not change for the latter; for the former, there are
now at most cmaxq

2/2 possible collision pairs now, where cmax is the maximum
number of chunks in one query; we generously bound this by σ2/2. This adds
(σ2 − q2)/2N to our earlier bound, to obtain the new bound for the extended
version. To ensure that the counting argument for badE still goes through, we
only note that for k ∈ [1.. ⌈ℓ/n⌉], Si

k can only occur in any of the collision
equations from badE with coefficients βℓ−1−j for j ∈ [n(k − 1) + 1..nk], where β
is either α or α2, and for any choice of k, a non-empty subset of these coefficients
cannot add to 0.
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6.3 Proof Sketch for the Security of ZCZ∗

Theorem 3. Let π̃ � P̃erm(TD,I , {0, 1}n). Let A be an SPRP adversary on
ZCZ∗[π̃] that asks at most q queries of domain {0, 1}≥2n, whose lengths sum up
to at most σ di-blocks in total, q′ of which contains an incomplete di-block at
the end. Then

AdvSPRP
ZCZ∗[π̃](A) ≤ 4σ2 + 8q2 + 9q′2

N2
.

Proof Sketch. The ideal oracle’s sampling mechanism for the tweakable blockci-
pher outputs for the partial di-block messages is slightly trickier. Let I denote
the indices of the queries with incomplete di-blocks. Instead of simulating an
ideal permutation, the ideal oracle simulates what [22] calls an ± ˜rnd oracle,
which always returns random bits, as long as no pointless queries are asked.
(It is easy to argue for our construction why not permitting pointless queries
does not diminish the adversary’s power, so we can confine our attention to the
no-pointless-query scenario.)

We use the notation (U, V ), (Um, Vm), (U ′, V ′) for the outputs of the block-
cipher calls in the top, middle, and bottom layers respectively. Mj denotes
(Lj , Rj), and ∗ denotes the index of the incomplete di-block.

– For the smallest i ∈ I, U i
∗, V

i
∗ , U

′i
∗ , V

i
∗ are sampled uniformly from {0, 1}n;

– For each i in I such that for no i′ in I with i′ < i we have (Li
∗, R

i
∗) ̸=

(Li′

∗ , R
i′

∗ ):
• U i

∗ is sampled uniformly from {0, 1}n \
{
U i′

∗ | i′ ∈ I, i′ < i
}

;

• V i
∗ is sampled uniformly from {0, 1}n \

{
V i′

∗ | i′ ∈ I, i′ < i
}

;
– For each i in I such that for no i′ in I with i′ < i we have (L′i

∗ , R
′i
∗ ) ̸=

(L′i′
∗ , R′i′

∗ ):
• U ′i

∗ is sampled uniformly from {0, 1}n \
{
U ′i′
∗ | i′ ∈ I, i′ < i

}
;

• V ′i
∗ is sampled uniformly from {0, 1}n \

{
V ′i′
∗ | i′ ∈ I, i′ < i

}
;

– For each i ∈ I the (2n− s)-bit suffix Ri of (U i
m∗, V

i
m∗) is sampled uniformly

from {0, 1}2n−s, and (U i
m∗, V

i
m∗) is set to (M i

∗ +M ′i
∗ )||Ri.

The new bad cases are:

– For some distinct i, i′ in I with ℓi = ℓi
′
= ℓ we have

(M i
1..ℓ−1,M

i
ℓ + (U i

∗, V
i
∗ )) = (M i′

1..ℓ−1,M
i′

ℓ + (U i′

∗ , V
i′

∗ ));

– For some distinct i, i′ in I with ℓi = ℓi
′
= ℓ we have

(M ′i
1..ℓ−1,M

′i
ℓ + (U ′i

∗ , V
′i
∗ )) = (M ′i′

1..ℓ−1,M
′i′
ℓ + (U ′i′

∗ , V ′i′
∗ ));

– For some distinct i, i′ in I with ℓi = ℓi
′
= ℓ we have

(Li
ℓ + L′i

ℓ + U i
∗ + U ′i

∗ , R
i
ℓ +R′i

ℓ + V i
∗ + V ′i

∗ )

= (Li′

ℓ + L′i′
ℓ + U i′

∗ + U ′i′
∗ , Ri′

ℓ +R′i′
ℓ + V i′

∗ + V ′i′
∗ );
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– For some distinct i, i′ in I with ℓi = ℓi
′
= ℓ we have

(Ri
ℓ +R′i

ℓ + V i
∗ + V ′i

∗ , U i
m∗) = (Ri′

ℓ +R′i′
ℓ + V i′

∗ + V ′i′
∗ , U i′

m∗);

– For some distinct i, i′ in I with ℓi = ℓi
′
= ℓ we have

(Ri
ℓ +R′i

ℓ + V i
∗ + V ′i

∗ , V i
m∗) = (Ri′

ℓ +R′i′
ℓ + V i′

∗ + V ′i′
∗ , V i′

m∗).

The probabilities of these bad cases can be bounded by q′2/2N ′2, q′2/2N ′2,
q′2/2N ′2, q′2/2NN ′, q′2/2NN ′ in that order, where N ′ = N − q′. With the
reasonable assumption that q′ ≤ N/2, we can replace N ′ with N/2 in these
bounds and have them sum to 8q′2/N2, which is our bound for the combined
probability of the new bad cases. The theorem follows from Theorem 2 and
Lemma 6 of [22].

Our results in Theorems 1 and 3 had considered the instantiation with an
ideal random tweaked permutation π̃ � P̃erm(TI,D, {0, 1}n). Corollaries 1 and 3
yield the resulting security bounds when ZCZ and ZCZ∗ are instantiated with
a given tweakable block cipher.

Corollary 1. Let ẼK : K×TI,D×{0, 1}n → {0, 1}n be a tweakable block cipher
with K � K. Let A be an SPRP adversary on ZCZ[ẼK ], s.t. A asks at most q
queries of domain B≤n, that sum up to at most σ di-blocks in total, and A runs
in time at most time. Then

AdvSPRP
ZCZ[ẼK ]

(A) ≤ 3σ2 + 10q2

2N2
+AdvSTPRP

ẼK ,Ẽ−1
K

(A′),

where A′ is an STPRP adversary against ẼK that asks at most a′ = 3σ +
⌈σ/n⌉+ 6q queries and runs in time at most time +O(a′).

Corollary 2. Let ẼK : K×TI,D×{0, 1}n → {0, 1}n be a tweakable block cipher
with K � K. Let A be an SPRP adversary on ZCZ∗[ẼK ] that asks at most
q queries of domain {0, 1}≥2n, whose lengths sum up to at most σ di-blocks in
total, q′ of which contains an incomplete di-block at the end, and A runs in time
at most time. Then

AdvSPRP
ZCZ∗[ẼK ]

(A) ≤ 4σ2 + 8q2 + 9q′2

N2
+AdvSTPRP

ẼK ,Ẽ−1
K

(A′),

where A′ is an STPRP adversary against ẼK that asks at most a′ = 3σ +
⌈σ/n⌉+ 6q + 6q′ queries and runs in time at most time +O(a′).
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A Related Work

This section briefly revisits existing SPRPs that we categorized into (1) Gen-
eralized Feistel networks, (2) Encrypt-Mix-Encrypt, (3) Hash-ECB-Hash, (4)
Hash-Counter-Hash, and (5) miscellaneous designs.

The original Naor-Reingold construction [45] is a four-round Feistel network
with two layers of an ϵ-AXU family of hash functions that wrap two layers of en-
cryption, which could be called the starting point of wide-block ciphers. Schemes
based on the Encrypt-Mix-Encrypt paradigm (also Encrypt-Mask-Encrypt) com-
bine two wrapping layers of encryption with an intermediate layer of linear mix-
ing. There are at least six such constructions: CMC [22], EME and EME+ [23],
EME∗ [20], AEZ-Core [24, 25], and FMix [6]. Among them, EME∗ has become
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part of the P1619.2 standard for Wide-Block Encryption for Shared Storage Me-
dia [1]. The length doubler LDT by Chen et al. [14] could be also classified into
this category, and could potentially provide even security beyond the birthday
bound; however, its domain and range are limited to n up to 2n− 1 bits.

Hash-ECB-Hash constructions consist of an encryption layer sandwiched by
two hashing layers at top and bottom, a design principle that originated by Naor
and Reingold [44]. Further examples include PEP [11], TET [21], or HEH [50].

Hash-Counter-Hash constructions resemble an unbalanced three-round Feis-
tel network of two universal hash functions that wrap an encryption layer of
counter mode. The first such construction was XCBv1 by McGrew and Viega
that was later adapted, proven, and, as XCBv3, has become patented and part
of the IEEE P1619.2 standard [1, 33, 34]. The name of the approach stems from
HCTR by Wang et al. [54]. More constructions in this category include, e.g.,
HCH [12], HMC [41] (Hash Modified Counter), the LargeBlock1/2 construc-
tions [38] and HSE [39]. In an ongoing series of works, Sarkar et al. [9, 17, 51]
have been proposing various further versions, such as an improved HEH, and
similar schemes with OFB (HOH), and counter mode (HMCH), respectively. In
TES and its extensions STES and FAST [8, 10, 52], the authors later eliminated
the need for the inverse operation of the block cipher.

A recent design that does not fully fit in the former categories is e.g., the
two instantiations of Protected IV [53]. Protected IV is a modular framework
that resembles the Ψ3 construction by Coron et al. [16], i.e., a three-round un-
balanced Feistel-like network based on tweakable ciphers. Its authors propsosed
two instances of PIV, coined TCT1 and TCT2; the former with birthday-bound
and the latter with 2n/3-bit security, which stems from the use of a two-round
Even-Mansour primitive.

The recent proposals Mr. Monster Burrito [5], HHFHFH [4], and Sim-
pira (v2) [19] can be classified again as Feistel networks. Mr. Monster Bur-
rito and HHFHFH are four-round unbalanced Feistel networks that were coined
them heavyweight ciphers with high security guarantees due to the use of large-
block permutations as primitives. Simpira is a family of variable-length ciphers
based on the round function of the AES, where, family means that the Feistel
design differs for small input sizes, and becomes general for inputs of eight blocks
and above. In contrast to most designs, Simpira is based on the wide-trail heuris-
tic where the authors bounded the number of rounds necessary to guarantee at
least 25 active S-boxes and used three times this number of rounds.

B Analyses of badA, badB, badC

Analysis of badA. For i ∈ E, j ∈ [1..ℓi], L′i
j and R′i

j are sampled uniformly
and independently from {0, 1}n. Thus, any collision over them occurs with a
probability of 1/N , and any disjoint pair of such collisions, being independent,
jointly occurs with a probability 1/N2. The same reasoning holds for Li

j and Ri
j ,

i ∈ D, j ∈ [1..ℓi].
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Analysis of badB. Using (3)–(6), we can rewrite these collisions as:

– (Li
ℓ +Xi

L, R
i
ℓ +Xi

R) = (Li′

ℓ +Xi′

L , R
i′

ℓ +Xi′

R);
– (Si, Ri

ℓ +Xi
R) = (Si′ , Ri′

ℓ +Xi′

R);
– (Si, T i) = (Si′ , T i′);
– (L′i

ℓ + Y i
L, T

i) = (L′i′
ℓ + Y i′

L , T i′);
– (L′i

ℓ + Y i
L, R

′i
ℓ + Y i

R) = (L′i′
ℓ + Y i′

L , R′i′
ℓ + Y i′

R ).

The main observation here is that when when i is akin to i′, (Li
ℓ, R

i
ℓ) ̸= (Li′

ℓ , R
i′

ℓ ),
and (L′i

ℓ , R
′i
ℓ ) ̸= (L′i′

ℓ , Ri′

ℓ ); further, for i ∈ E, (Si, Ri
ℓ) ̸= (Si′ , Ri′

ℓ ) and for i ∈ D,
(T i, L′i

ℓ ) ̸= (T i′ , L′i′
ℓ ) (by construction of ideal oracle). This ensures that each

of the collision-pairs is either impossible or consists of four uniformly sampled
random variables; thus the reasoning for badA above holds for badB as well. In
fact, the same reasoning carries over to badC.

C Full Analysis of badD

Recall that i′ < i and ℓ
def
= ℓi

′
= ℓi, and αj(·) and α2

j (·) are linear functions
defined as

αj(x)
def
= αℓ−1−j · x and α2

j (x)
def
= (α2)ℓ−1−j · x.

We look at the two main cases separately, and branch into sub-cases for each:

– (X∗i
L , X∗i

R ) = (X∗i′
L , X∗i′

R ): We can write this collision as

ℓ−1∑
j=0

αj(X
i
j +Xi′

j ) = 0 and
ℓ−1∑
j=0

α2
j (X

i
j +Xi′

j ) =

ℓ−1∑
j=0

α2
j (R

i
j +Ri′

j ).

Using (1) we can rewrite these as

ℓ−1∑
j=0

αj(Z
i
j + Zi′

j ) =

ℓ−1∑
j=0

αj(L
′i
j + L′i′

j ), (26)

ℓ−1∑
j=0

α2
j (Z

i
j + Zi′

j ) =

ℓ−1∑
j=0

α2
j (L

′i
j + L′i′

j +Ri
j +Ri′

j ). (27)

We first observe that since i is not akin to i′, Xi
j + Xi′

j cannot trivially
disappear for all j ∈ [1, .., ℓ − 1]. Also, since αj(X

i
j + Xi′

j ) sum to 0, there
must be at least two indices in [1, .., ℓ− 1] where Xi

j +Xi′

j does not trivially
disappear; let j0 and j1 be the two largest such indices, with j0 > j1. Now,
we split into various sub-cases:
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• i ∈ E, i′ ∈ E: From (7), (26) and (27) we have

ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j ) =

ℓ−1∑
j=0

αj(L
′i:j
j + L′i′:j

j ), (28)

ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ). (29)

By choice of j0, i : j0 ̸= i′ : j0. Suppose i : j0 > i′ : j0. If i : j0 ∈ D,
using (8), we replace Zi:j0

j0
by R

i:j20
j0

+Ri:j0
j0

+Z
i:j20
j0

+S
i:j20
1 +Si:j0

1 . The basis
element Si:j0

1 does not get canceled out; moreover, Ri:j0
j0

remains only in
the top equation, while it gets canceled out in the bottom equation. Since
i : j = i′ : j for all j > j0, none of the adversary-queried blocks remaining
in either equation came after Ri:j0

j0
, so it is independent of the rest of

the equation; along with the basis element Si:j0
1 (which appears in both

equations), this makes the two collisions independent, thus occurring
jointly with a probability 1/N2.
If i : j0 ∈ E, Zi:j0

j0
is in the basis, and does not cancel out. On the

right hand side of both equations, L′i:j0
j0

remains uncanceled as well,
while all later adversary queries get canceled. Thus, the two equations
can become dependent with probability at most 1/N ; then, the common
collision can occur with probability at most 1/N . Thus, in either case,
the joint collision can occur with a probability of more than 1/N2. The
analysis is similar when i : j0 < i : j0; then we focus on the latter instead.

• i ∈ E, i′ ∈ D: From (7), (8), (26) and (27) we have

ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si′

1 + Si′:j
1 ) =

ℓ−1∑
j=0

αj(L
′i:j
j + L′i′:j

j +Ri′

j +Ri′:j
j ),

(30)
ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si′

1 + Si′:j
1 ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ).

(31)

By choice of j0 and j1, i : j0 ̸= i′ and i : j1 ̸= i′. Suppose i : j0 < i′. Then
Si′

1 and Ri′

j0
remain uncanceled in (30), and no adversary query block

queried after Ri′

j0
remains uncanceled; in (31), Si′

1 remains uncanceled
again, but there is no Ri′

j0
and no adversary query block queried after it.

Thus these two can occur jointly with a probability at most 1/N2.

A symmetric argument can be used when i : j0 > i′ and i : j0 ∈ D: we
replace Zi:j0

j0
by R

i:j20
j0

+Ri:j0
j0

+Z
i:j20
j0

+S
i:j20
1 +Si:j0

1 using (8), and observe
that Si:j0

1 remains uncanceled in either equation, while Ri:j0
j0

remains
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uncanceled in (30), but gets canceled out in (31), and no adversary query
block queried after it remains in either equation.

When i : j0 > i′ and i : j0 ∈ E, but i : j1 satisfied one of the above
two conditions, we can argue as above using i : j1 instead. If we also
have i : j1 > i′ and i : j1 ∈ E, we observe that Zi:j0

j0
and Zi:j1

j1
are basis

elements that do not get canceled out in either equation. Their combined
contribution to the left-hand side of (30) is αℓ−1−j0 · Zi:j0

j0
+ αℓ−1−j1 ·

Zi:j1
j1

and to the left-hand side of (31) is (α2)ℓ−1−j0 ·Zi:j0
j0

+ (α2)ℓ−1−j1 ·
Zi:j1
j1

. These two collisions are independent since αℓ−1−j0 · (α2)ℓ−1−j1 ̸=
αℓ−1−j1 ·(α2)ℓ−1−j0 , and thus can occur with a probability at most 1/N2.

• i ∈ D, i′ ∈ E: From (7), (8), (26) and (27) we have

ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si
1 + Si:j

1 ) =

ℓ−1∑
j=0

αj(L
′i:j
j + L′i′:j

j +Ri
j +Ri:j

j ),

(32)
ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si
1 + Si:j

1 ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ).

(33)

This case is straightforward: Si
1 does not get canceled out in either equa-

tion, and Ri
j remains only in (32), with no terms queried after it. Thus

the joint probability does not exceed 1/N2.
• i ∈ D, i′ ∈ D: From (8), (26) and (27) we have

ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si
1 + Si′

1 + Si:j
1 + Si′:j

1 )

=

ℓ−1∑
j=0

αj(L
′i:j
j + L′i′:j

j +Ri
j +Ri′

j +Ri:j
j +Ri′:j

j ), (34)

ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si
1 + Si′

1 + Si:j
1 + Si′:j

1 )

=

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ). (35)

The argument here is identical to that of the case above.
– (Y ∗i

L , Y ∗i
R ) = (Y ∗i′

L , Y ∗i′
R ): We can write this collision as

ℓ−1∑
j=0

α2
j (Y

i
j + Y i′

j ) =

ℓ−1∑
j=0

α2
j (L

′i
j + L′i′

j ) and
ℓ−1∑
j=0

αj(Y
i
j + Y i′

j ) = 0.
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Using (2) we can rewrite these as
ℓ−1∑
j=0

α2
j (Z

i
j + Zi′

j + Si
1 + Si′

1 ) =

ℓ−1∑
j=0

α2
j (L

′i
j + L′i′

j +Ri
j +Ri′

j ), (36)

ℓ−1∑
j=0

αj(Z
i
j + Zi′

j + Si
1 + Si′

1 ) =

ℓ−1∑
j=0

αj(R
i
j +Ri′

j ). (37)

As before, we let j0 and j1 be the two largest indices where Y i
j + Y i′

j does
not trivially vanish, with j0 > j1. Again, we split into various sub-cases:
• i ∈ E, i′ ∈ E: From (7), (36) and (37) we have

ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si
1 + Si′

1 ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ),

(38)
ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si
1 + Si′

1 )

=

ℓ−1∑
j=0

αj(L
′i
j + L′i′

j + L′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ). (39)

Another straightforward case: Si
1 does not get canceled out in either

equation, and L′i
j remains only in (39), with no terms queried after it.

Thus the joint probability does not exceed 1/N2.
• i ∈ E, i′ ∈ D: From (7), (8), (36) and (37) we have

ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si
1 + Si′:j

1 ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ),

(40)
ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si
1 + Si′:j

1 ) =

ℓ−1∑
j=0

αj(L
′i
j + L′i:j

j +Ri:j
j +Ri′:j

j ).

(41)

The argument here is identical to that of the case above.
• i ∈ D, i′ ∈ E: From (7), (8), (36) and (37) we have

ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si:j
1 + Si′

1 ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ),

(42)
ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si:j
1 + Si′

1 ) =

ℓ−1∑
j=0

αj(L
′i′
j + L′i′:j

j +Ri:j
j +Ri′:j

j ).

(43)
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By choice of j0 and j1, i : j0 ̸= i′ and i : j1 ̸= i′. Suppose i : j0 < i′. Then
Si′

1 and Ri′

j0
remain uncanceled in (43), and no adversary query block

queried after L′i′
j0

remains uncanceled; in (42), Si′

1 remains uncanceled
again, but there is no L′i′

j0
and no adversary query block queried after it.

Thus these two can occur jointly with a probability at most 1/N2.
A symmetric argument can be used when i : j0 > i′ and i : j0 ∈ E: we
observe that Si:j0

1 remains uncanceled in either equation, while L′i:j0
j0

re-
mains uncanceled in (42), but gets canceled out in (43), and no adversary
query block queried after it remains in either equation.
When i : j0 > i′ and i : j0 ∈ D, but i : j1 satisfied one of the above
two conditions, we can argue as above using i : j1 instead. If we also
have i : j1 > i′ and i : j1 ∈ D, we observe that Zi:j0

j0
and Zi:j1

j1
are basis

elements that do not get canceled out in either equation. Their combined
contribution to the left-hand side of (30) is αℓ−1−j0 · Zi:j0

j0
+ αℓ−1−j1 ·

Zi:j1
j1

and to the left-hand side of (31) is (α2)ℓ−1−j0 ·Zi:j0
j0

+ (α2)ℓ−1−j1 ·
Zi:j1
j1

. These two collisions are independent since αℓ−1−j0 · (α2)ℓ−1−j1 ̸=
αℓ−1−j1 · (α2)ℓ−1−j0 , and thus can occur with probability at most 1/N2.

• i ∈ D, i′ ∈ D: From (8), (36) and (37) we have
ℓ−1∑
j=0

α2
j (Z

i:j
j + Zi′:j

j + Si:j
1 + Si′:j

1 ) =

ℓ−1∑
j=0

α2
j (L

′i:j
j + L′i′:j

j +Ri:j
j +Ri′:j

j ),

(44)
ℓ−1∑
j=0

αj(Z
i:j
j + Zi′:j

j + Si:j
1 + Si′:j

1 ) =

ℓ−1∑
j=0

αj(R
i:j
j +Ri′:j

j ). (45)

By choice of j0, i : j0 ̸= i′ : j0. Suppose i : j0 > i′ : j0. The basis
element Si:j0

1 does not get canceled out in either equation; moreover,
L′i:j0
j0

remains only in (44), while it gets canceled out in (45); also, none of
the adversary-queried blocks queried after it remains in either equation.
Thus the two collisions can occur jointly with a probability not exceeding
1/N2. The argument is symmetric when i : j0 < i′ : j0.

D Insecure Preliminary Variants

It took some time to arrive at the present definition of ZCZ. This section ex-
amines four variants of this design which allow attacks, and which provide an
implicit rationale of our current definition.

D.1 Basic Design

Our first attempts started with an EME- and HCTR-like structure with two
wrapping layers of ZHash. This already implies to cluster the message into 2n-
bit di-blocks (or dual blocks). A chaining was necessary to achieve PRP security,
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i.e., every ciphertext bit must depend on every plaintext bit. For SPRP security,
the opposite is also necessary, i.e., a chaining must also make every plaintext bit
depend on every ciphertext bit. EME and AEZ provide an elegant solution where
an X accumulator sums up the results Xi from the top encryption layer of the
first ℓ− 1 di-blocks (i.e., all but the final one):

Xi ← Ẽt,i,Ri

K (Li).

The accumulated value is then randomized and added it into the computation
of the final di-block.

X ←
ℓ−1−i∑
i=1

Xi, XL ← Ẽx,0
K (X), XR ← Ẽx,1

K (X).

The final di-block is processed then through the first layer of encryption and
mixing in the middle. The outputs are then used to derive two n-bit values S
and T :

S ← Ẽt$,ℓ,Rℓ+XR

K (Lℓ +XL), T ← Ẽs$,ℓ,S
K (Rℓ +XR).

From S and T , a counter-mode layer derives chaining values Zi, that are added
to all previous di-blocks 1, . . . , ℓ− 1:

Zi ← ẼKc, i, T (S) L′
i ← Xi + Zi Yi ← Ri + Zi.

The result yields then the inputs Yi, for 1 ≤ i ≤ ℓ − 1, to the bottom layer of
encryption for the first ℓ− 1 di-blocks:

R′
i ← Ẽ

b,i,L′
i

K (Yi).

The final di-block continues encryption of the bottom layer:

PL ← Ẽc$,ℓ,T
K (S) PR ← Ẽb$,ℓ,PL

K (T ).

The values Yi are again accumulated to a chaining value Y

Y ←
ℓ−1−i∑
i=1

Yi, YL ← Ẽy,0
K (Y ), YR ← Ẽy,1

K (Y ),

that is used to mask the output of the final di-block, mirroring the top:

L′
ℓ ← YL + PL, R′

ℓ ← YR + PR.

This design yielded a basis for the later structure. However, the naive usage
of ZHash in this approach opens several possible attack vectors:

– We had to compute additional values Zi to prevent that an adversary could
observe differences ∆Yi in the left branches of the ciphertext di-blocks ∆L′

i.
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– We introduced multiplications with powers of a primitive element in the
computations of XL and XR to prevent that a collision in either would also
lead to a collision in the other value (and similarly for YL and YR).

– Thereupon, we noticed that pure sums for XL and XR would be insufficient
as the differences in ∆XL and ∆XR could be canceled by smart choice of
∆Lℓ and ∆Rℓ, and a randomization of XL and XR was required.

– Moreover, while multiplications with powers of α are quite fast, it is well-
known since the days of EME [23, 25] that one can cancel differences in
certain di-blocks that yield a zero sum if the multiplications of the same
chaining value cover more than n di-blocks. Therefore, we had to introduce
new chaining values similar to EME∗ [20].

To illustrate the relevance of each design aspect on its own, we describe in
the following attacks on preliminary versions with respect to the final ZCZ
construction, where only the particular element that we added as countermeasure
would be missing.

D.2 Variant I: Omitting the Additions of Si to The Right Branches

In this construction, the values Y i
j are computed as Y i

j = Ri
j + Zi

j . Suppose
that we make q queries such that query i has at least i di-blocks, and for each
i ∈ [1..q − 1], (

Li
i, R

i
i

)
=

(
Li+1
i , Ri+1

i

)
.

This ensures that Xi
i = Xi+1

i , so we can calculate

∆Yi
def
= Y i

i + Y i+1
i = L′i

i + L′i+1
i .

When q is chosen in the order of n, with high probability, we can find a zero-sum
subset of

{
αq−1−i ·∆Yi | i ∈ [1..q − 1]

}
. Assume for some I ⊆ [1..q−1], we have∑

i∈I
αq−1−i ·∆Yi = 0.

For details on how to efficiently identify such a subset, see e.g., Bellare and
Micciancio [3]. Moreover, from Y i

i + Y i+1
i = L′i

i + L′i+1
i , it follows that Y i

i =
L′i
i = Y i+1

i + L′i+1
i for all i. Therefore, it holds that∑

i∈I
α2(q−1−i) ·

(
∆Yi +∆L′i

i

)
= 0.

For a distinguisher, we ask two decryption queries as follows: the first query
consists of q blocks, with(

L′1
1 , R

′1
1

)
,
(
L′2
2 , R

′2
2

)
, . . . ,

(
L′q−1
q−1 , R

′q−1
q−1

)
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as the first q−1 di-blocks; in the second query, for each i ∈ I, the i-th di-block is
replaced by (L′i+1

i , R′i+1
i ), and everywhere else, it is identical to the first query.

These two queries lead to a collision in both (Y ∗1
L, Y

∗1
R) = (Y ∗2

L, Y
∗2
R), and

hence will result in a collision in the right half of the final plaintext di-block
(L1

ℓ , R
1
ℓ ) = (L2

ℓ , R
2
ℓ ).

In contrast to this variant, the adversary cannot control differences in the
values Yi over different queries with a common prefix in ZCZ. There, the values
Si cannot efficiently be replicated over different queries. The unknown difference
in the values Si masks the difference in the values Yi, rendering the attack
ineffective.

D.3 Variant II: Omitting the Multiplications by Powers of α

As a consequence of the attack above, we also derived the values Si and added
them to the right branches of all di-blocks but the final one. Still, a number of
further attack vectors remained. A clear point in the basic design was that a
collision in XL would automatically lead to a collision also in XR. Subsequently,
we added multiplications by powers of a primitive element α to one of them.
Their relevance is outlined in the following attack.

In this variant, the values which means X∗
L and X∗

R are computed as

X∗
L =

ℓ∑
i=1

Xi, and X∗
R =

ℓ∑
i=1

Xi +Ri;

the values Y ∗
L and Y ∗

R are computed analogously. Clearly, one can query q = 2n/2

queries which share equal di-blocks Ri
j = Rk

j for all 1 ≤ i < k ≤ q and all j. This
variant allows then a birthday distinguisher. Given 2n/2 queries, the probability
is significant that there exist two messages for which X∗i

L = X∗k
j holds. This

event implies X∗i
R = X∗k

R naturally.

D.4 Variant III: Omitting the Encryptions from (X∗
L, X

∗
R) and

(Y ∗
L , Y ∗

R) to (XL, XR) and (YL, YR)

Having introduced the second element Zi for adding and the multiplications
with powers of α, we already had a version that would be almost secure up to
the birthday bound. However, we observed soon that an adversary could still
choose the values (∆Lℓ,∆Rℓ) well such that their differences would cancel those
in ∆XL and ∆XR after about 2n/2 queries. In the following, we sketch an attack
if we would omit the encryptions from from (X∗

L, X
∗
R) and (Y ∗

L , Y
∗
R) to (XL, XR)

and (YL, YR).
In this construction, it holds that

XL =

ℓ−1∑
j=1

αℓ−1−jXj and XR =

ℓ−1∑
j=1

(α2)ℓ−1−j(Xj +Rj),
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which means XL = X∗
L, XR = X∗

R, YL = Y ∗
L , and YR = Y ∗

R. This construction
would allow a birthday distinguisher. Assume, we choose q = 2n/2 messages that
possess equal length ℓ and that consist of at least two di-blocks plus the final di-
block each. The messages differ from each other in exactly three blocks: the final
di-block (Li

ℓ, R
i
ℓ) and some block Li

j for some fixed index j. The final di-blocks
are chosen so that it holds for every message:

Ri
ℓ = α2j−jLi

ℓ = αjLi
ℓ.

If there exist two messages M i and Mk for which ∆Xj = Xi
j + Xk

j = ∆Lℓ =

Li
ℓ + Lk

ℓ , then it holds that

∆XL = ∆Lℓ and
∆XR = αℓ−1−j∆Xj = ∆Rℓ.

For this pair of messages M i and Mk, the values Si = Sk and T i = T k will be
identical, and we obtain collisions in the ciphertexts of all di-blocks whose plain-
text di-blocks were equal between both messages. When choosing 2n/2 messages,
the probability to obtain such a pair becomes significant. However, encrypting
the sums X∗

L, X∗
R, Y ∗

L , and Y ∗
R effectively prevents such distinguishers.

D.5 Variant IV: Using S1 for More Than n Di-Blocks

Finally, there is another attack if one doubles a single chaining value S for more
than n times, as has already been observed by Halevi and Rogaway [23] on EME.
Here, we discuss its impact on the preliminary version of ZCZ that would have
only S1.

For messages that consist of more than one chunk (i.e., a sequence of n
non-final di-blocks), we have to derive a new chaining value Si for every chunk.
Otherwise, a similar attack as for Variant I would be possible also here. For this
variant, the values Y i

j would be computed as

Y i
j = Ri

j + Zi
j + Si

1,

for all 1 ≤ j ≤ ℓ − 1, and all queries i. For our distinguisher, we can apply the
same strategy as in Variant I, and ask q queries of same length ℓ, with ℓ > 2n+1
di- blocks, such that the first ℓ− 1 di-blocks are always equal over all queries:

(Li
j , R

i
j) = (Li′

j , R
i′

j ), for all 1 ≤ i ̸= i′ ≤ q, 1 ≤ j ≤ ℓ− 1.

The queries are pairwise distinct in their final di-block (Lℓ, Rℓ). As in the attack
on Variant I, the adversary can observe the differences

∆Zi,i′

j = ∆Zi
j +∆Zi′

j

from the differences in the left branches of the di-blocks

∆L′i,i′
j = ∆L′i

j +∆L′i′
j .
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Given ℓ > n+ 1, there exist subsets of indices J ⊆ {1, . . . , n+ 1} s.t. it holds:∑
j∈J

αℓ−1−j = 0.

Such sets must exist for this variant, e.g., for the case n = 128 and ℓ = 130,
and the primitive polynomial of GCM, one option would be J = {0, 1, 2, 7, 128}.
The concrete set of indices J depends on the chosen primitive polynomial. When
j is in the order of 2n, there are about 2n choices (since we can multiply any
polynomial of degree at most n to the primitive polynomial) of J . For a second
necessary condition, define ∆W i,i′

j = αℓ−1−j ·∆Zi,i′

j . Then, the second condition
is ∑

j∈J
∆W i,i′

j = 0.

Among the 2n choices for J , there exists one subset of indices that will also have
this second condition fulfilled. To efficiently find a solution for both conditions,
the adversary can define 2n-bit values(

∆W i,i′

j ∥αℓ−1−j
)

and find a subset {J}′ for which the sum yields 02n by solving linear equations,
analogously to the approach in [3]. Once the adversary has found it, it holds
that∑
j∈J ′

(
αℓ−1−j ·∆Y i,i′

j

)
=

∑
j∈J ′

(
αℓ−1−j ·∆Zi,i′

j

)
︸ ︷︷ ︸

=0

+
∑
j∈J ′

(
αℓ−1−j ·∆Si,i′

1

)
︸ ︷︷ ︸

=0

= 0.

Note that the adversary can hold the values Ri
j equal over all queries 1 ≤ i ≤ q.

Since ∑
j∈J

αℓ−1−j = 0 implies that
∑
j∈J

(α2)ℓ−1−j = 0,

the collision would affect always both X∗
L and X∗

R (or the corresponding values
Y ∗
L and Y ∗

R if the attack uses decryption queries). So, the same attack as for
Variant I would apply.

Naturally, the strategy of deriving a new chaining value for every chunk of
n di-blocks helped protecting against it, as has already been used in EME∗ [20]
and AEZ [25].
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