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Abstract

In recent years, privacy enhancing technologies have gained tremendous momentum and they are
expected to keep a sustained importance. Quantifying the degree of privacy offered by any mechanism
working on potentially sensitive data is a complex and well-researched topic; ε-differential privacy
(DP) and its slightly weaker and more versatile variant (ε, δ)-approximate differential privacy (ADP)
have become the de-facto standard for privacy measures in the literature. Recently, novel variants
of (A)DP focused on giving tighter privacy bounds under continual observation. In this paper,
we unify many of these previous works in a common core theory, focused on the privacy loss of a
mechanism. We show that in sequential composition of the mechanism, the privacy loss (represented
as a distribution) undergoes a convolution, which in turn enables us to show the central limit theorem
for differential privacy: the privacy loss of any mechanism will converge to a Gauss distribution.
This observation leads us to several practically relevant insights: 1) we show that several of the novel
DP-variants are equally expressive as ADP, 2) we improve existing bounds, such as the moments
accountant bound, 3) we derive exact ADP guarantees for the Gauss mechanism, i.e., an analytical
and simple formula to directly calculate ADP (not an over-approximating bound), 4) we derive exact
ADP guarantees for the Randomized Response, and, 5) we characterize the privacy guarantees of
a mechanism by the Gauss distribution to which it converges, its privacy class, and using normal
approximation theorems derive novel upper and lower ADP bounds for arbitrary mechanisms.
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1 Introduction

Privacy-preservation of personal data is an increasingly important design goal of data processing sys-
tems, in particular with recently enacted strong privacy regulations [23]. Modern systems, however, are
increasingly reliant on personal data to provide the expected utility. Hence, privacy and utility are often
diametrical, rendering perfect solutions impossible but leaving space for solutions that provide privacy
under limited usage.

For such scenarios recent work [8] proposes to prove that the algorithms that process sensitive data
(called mechanism) satisfy a quantitative strong privacy notion, called (ε, δ)-approximate differential
privacy (ADP), for a single usage. The literature provides many successful examples that prove ADP
guarantees [2, 27, 25, 11]. The privacy guarantees naturally deteriorate against attackers that can
repeatedly observe the mechanism, i.e., (ε, δ) increase, to a point where using the mechanism is considered
insecure. Determining exactly how ADP’s (ε, δ) parameters increase under repeated observation turns
out to be a challenging task about which there is a rich body of work [15, 2, 6, 10, 20, 19]. Many of these
bounds have been shown to be loose [19], which can lead to underestimating the number of observations
under which a mechanism provides strong privacy guarantees. While recent work [19] proposed a method
for finding tight upper and lower bounds under repeated observation, that work relies on an iterative
numerical approach, which can fall prey to numerical errors, memory limitations and discretization
problems.

1.1 Contribution

This work examines how fast privacy deteriorates under independent repetitive invocations of these
mechanisms. We take a viewpoint that has been proposed by a seminal work by Dinur and Nissim [7],
the privacy loss of a mechanism, and construct a probability distribution out of it, the privacy loss
distribution. This privacy loss distribution enables us to precisely argue about sequential composition
and to prove the following results.

(a) The privacy loss distribution is sufficient for deriving many differential privacy metrics, including
novel bounds such as concentrated differential privacy (CDP), Rényi differential privacy (RDP), as
well as the classical notions of pure differential privacy (DP), approximate differential privacy (ADP)
and probabilistic differential privacy (PDP) and the Kullback-Leibler divergence. We additionally
show that there is a close connection between ADP, the privacy loss distribution, and RDP.

(b) For non-adaptive mechanisms, we prove that this privacy loss distribution evolves under sequential
composition, as a convolution of privacy loss distributions. Using the central limit theorem, the
privacy loss distribution of any non-adaptive mechanism converges to a Gauss distribution under
sufficiently many compositions. This Gauss distribution can be predicted from the privacy loss
distribution before composition (i.e., convolution). We characterize mechanisms by the Gauss distri-
bution (i.e., the mean and variance) to which their privacy loss distribution converges, which we call
their privacy loss class. As an example we derive the privacy loss class of the randomized response
mechanism, the Gauss mechanism, and the Laplace mechanism.

(c) We prove that the privacy loss distribution of the Gauss mechanism is again a Gauss distribution, and
the privacy loss distribution of the randomized response mechanism is a binomial distribution. As
these distributions remain Gauss / binomial distributions under self-convolution, we derive analytical
formulas for ADP and PDP for the Gauss mechanism and the randomized response mechanism.
For these mechanism, we hence do not only provide ADP- and PDP-parameters under sequential
composition that can be efficiently calculated but that are, in particular, tight.

(d) We prove ADP and PDP upper and lower bounds for any mechanism (for which we know the privacy
loss distribution before composition) after n-fold sequential composition. Using the Berry-Esseen and
Nagaev normal approximation theorems, we can approximate the privacy loss distribution after n
convolutions (i.e., for n-fold sequential composition).

(e) We prove that any ADP bounds on a differentially private mechanism can be translated to bound
a variation of this mechanism that includes distinguishing events. As an example, we generalize the
RDP bounds [2, 20] for the Gauss mechanism to RDP bounds for the truncated Gauss mechanism.

(f) We apply our exact characterization of the Gauss mechanism to show that it clearly outperforms
the Laplace mechanism under composition in terms of a variance to privacy trade-off: A Gauss

3



0
0

event space o

P
r
[o
←

M
(x

i)
]

Laplace Noise

M(x0)
M(x1) =⇒

0
0

y

ω
(y
)

n = 1

Laplace
Gauss

0
0

y

ω
(y
)

n = 4

Laplace
Gauss

0
0

y

ω
(y
)

n = 32

Laplace
Gauss

Figure 1: Laplace in Privacy Loss Space for different number of compositions n. Recall that a compo-
sition of two independent mechanisms corresponds to a convolution of the privacy loss distribution. As
illustration of the privacy loss class and in the spirit of the central limit theorem for differential privacy,
a Gauss with identical µ and σ2 as the shown privacy loss distribution has been plotted.
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Rényi
Nagaev
Markov

Berry-Esseen
Gauss Exact

102 103 104

0.5

1

5

10

n

ε

DP-SGD, δ = 10−4

Nagaev
Markov

Gauss Exact

Figure 2: Comparing bounds for differentially private stochastic gradient descent mechanism with noise
parameter q = 0.01 and σ = 4. Left: after n = 216 compositions, right: minimal ε values over the
number of compositions n for δ ≤ 10−4. In the right graph, the Rényi-DP and Berry-Esseen bound did
not fall into the plotting range and were omitted.

mechanism with half the variance as the Laplace mechanism provides the same privacy guarantees,
for ADP, PDP and even for (almost) pure DP, except for a tiny overhead in delta, which in our
example (σ = 40) can be considered negligible even by cryptographic standards: < 2−80 after 128
compositions and < 2−150 after 256 compositions.

2 Overview

We illustrate a selection our results to highlight some key ideas. Dwork and Rothblum defined the
privacy loss of any observable outcome of a mechanism M on inputs x0 or x1 as the logarithmic ratio
between the probability to observe the outcome y if x0 is the input compared to if x1 is the input.

LM(x0)/M(x1) (y) = ln

(
Pr [M(x0) = y]

Pr [M(x1) = y]

)
.

This privacy loss spans a real-valued random variable obtained by sampling y ∼M(x0) and outputting
LM(x0)/M(x1) (y), which in turn defines the privacy loss distribution, i.e. the distribution of events o
which ratio is equal to L (o).

In this work, we quantify the differential privacy of probabilistic mechanisms M by analyzing a con-
crete pair of distributions, given privacy parameters and sensitivity of M .1 In order to derive differential
privacy bounds from the analysis of concrete pairs of distributions A,B, we consider so-called worst-case
distributions, for which the differential privacy bounds are worse than the bounds for M(x0),M(x1),
for any input pair x0, x1. As discussed in a recent work [19], for non-adaptive mechanisms there is
always such a pair of worst-case distributions [9, 2]. As an illustrative example, consider the simple
and commonly used case of a database-query-response system with real-valued queries q : X → R; to

1As an example, the privacy parameter of the Gauss mechanism is the standard deviation σ and the sensitivity is the
difference of the means, and of the Laplace mechanism is the scale parameter λ and the sensitivity is difference of the
means as well.
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preserve the privacy of users’ entries, the system outputs adds noise to the answers before releasing them:
M(x) := q(x) +N , where N is a symmetrically distributed random variable with mean zero, e.g., given
by the Laplace distribution or the Gauss distribution. If we define the sensitivity of q for a pair of inputs
x0, x1 as |q(x0) − q(x1)|, then for a given sensitivity s, the corresponding distribution for the random
variable M(0) and M(s) are worst-case distribution. The privacy loss of any output y ∈ R is given by

the logarithmic ratio between the probabilities that the output occurs: LM(0)/M(s) (y) = ln
(
M(0)=y
M(s)=y

)
and the privacy loss distribution is given by sampling y ≈ M(0) and outputting LM(0)/M(s) (y). Since
the noise N in our example is symmetrically distributed, only considering LM(0)/M(s) (y) suffices; for
non-symmetrically distributed noise we would additionally investigate LM(s)/M(0) (y).

Given a pair of distribution, we can consider the corresponding privacy loss distribution. For non-
adaptive mechanisms, this privacy loss distribution naturally evolves under sequential composition as a
convolution of privacy loss distributions (Theorem 1), as Figure 1 illustrates for the Laplace mechanism.
In other words, understanding the privacy loss distribution for one adversarial observation is sufficient to
compute the privacy loss under an arbitrary number of observations. By the central limit theorem, the
privacy loss distribution of any non-adaptive mechanism converges to a predictable Gauss distribution
under sufficiently many compositions (Theorem 4).

The privacy loss distribution of the Gauss mechanism turns out to be another Gauss distribution.
As the convolution of two Gauss distributions is again a Gauss distribution, we can give an analytical
and efficiently computable formula for any number of compositions for ADP and PDP. Note that these
are not approximate bounds, but indeed precise characterizations (Theorem 5, Figure 4).

For arbitrary mechanisms (for which a worst-case reduction exists), we can offer bounds that are in
some cases better than previous work, in particular for a very large number n of compositions (n > 222).
Our representation in the privacy loss space directly shows that the moments accountant and the RDP
bound, actually are an application of the Markov inequality to compute PDP. With our representation,
we can naturally extend that bound to ADP, which results in tighter bounds (Markov-ADP bound: The-
orem 3). At the same time, we can apply normal approximation theorems (the Berry-Esseen Theorem
and Nagaev-Bound) to achieve tight bounds for a very large number of observations and very small
epsilons, as is, e.g., needed for timing leakage analyses as in CoverUp [26], see Figure 5. The mini-
mum of these normal approximation bounds and the ADP-version of the Markov inequality, achieves
a very competitive bound, in particular for a very large number of observations. We offer an efficient
implementation for computing this minimum.

Figure 2 illustrates our results. The left graph plots for a recent mechanism for training deep neural
networks [2] for each ε the minimal δ(ε) after 216 compositions. The right graph shows the minimal ε
for which δ(ε) < 10−4 over the number of compositions n. The figure displays the performance of our
improved Markov-ADP bound and the performance of our normal approximation bounds, Berry-Esseen
and Nagaev. The figure even displays that our exact bound for the Gauss distribution that matches
the privacy loss class of the mechanism is very close to the other bounds. Section 6 provides strong
evidence that the privacy loss class is actually an accurate characterization of the privacy-preservation
of a mechanism and even closer to the tight bounds.
What about utility and sensitivity? By considering pairs of distributions, we abstract away from
utility and sensitivity. As argued above, for any sensitivity and any utility function non-static mechanisms
have worst-case distributions.

3 Related work

Meiser and Mohammadi [19] have recently introduced a novel numerical method for computing ADP
bounds, based on a pair of distributions. Their work investigated the privacy loss of mechanisms and
approximated this loss to give very good ADP bounds (including lower bounds) under continual obser-
vation. Their work is exploratory and interesting, but lacks the mathematical insights provided here.
Moreover, they have higher computation requirements, in particular for a very large number n of obser-
vations. For the Gauss mechanism our results (Theorem 5) clearly show tighter results for very large
n. When repeating their CoverUp analysis, our approach also shows far better results for very high n
values, which is highly relevant for a system like CoverUp.

Kairouz et al. [15] derive tight ADP bounds for the approximate randomized response mechanism
(ARR) and use these bounds to prove upper ADP bounds for any mechanism. Their work, however,
characterizes set of bounds for the ARR mechanism that contains the tight bounds. This results in a
non-trivial optimization problem to find the minimal bounds in this set of bounds. We derive a formula
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M (x0), random variable of a probabilistic mechanism ap-
M (x1) plied to input x0 and x1, often abbreviated as A and B
Pr [o←A] probability of o in A
X set of mechanism-inputs
U universe of the mechanisms’ the atomic events
o atomic event in U
LA/B (o) privacy loss of observation o of A and B
ω privacy loss distribution (PLD)
y privacy loss (i.e., atomic event) in the PLD
ω(y) privacy loss pdf/pmf for y
Y set of atomic events in the PLD, the image of LA/B (U)

ω, ω(y),

Y

dual PLD of ω (Definition 4.3)

Table 1: Notation table

(Example 1) for the ARR under sequential composition that directly computes such minimal bounds.
Recent work on concentrated differential privacy (CDP) [10, 6] directly focuses on the privacy loss for

deriving tighter ADP and PDP bounds. That work provides interesting insights into differential privacy
and into improved bounds for the Gauss mechanism, but for other mechanism that work provides at
most very loose bounds. Our work, in contrast, identifies the variance, the mean, and the mass of the
distinguishing events of the privacy loss distribution before composition (which we call the privacy loss
class) as a valuable characterization for the degree of privacy that a mechanism provides. We illustrate
that this characterization is accurate and derive upper and lower ADP and PDP bounds from it.

Rényi differential privacy [20] introduces a privacy notion that is based on the log normalized-moments
of the privacy loss distribution (the Rényi divergence). It is a generalization of the moments account
bound [2]. We evaluate the moments accountant bound in Section 6, and show that there is a close
connection between Rényi differential privacy and ADP (Theorem 2).

4 Privacy Loss Space

We review the privacy loss, a representation of the privacy leakage introduced by Dinur and Nissim [7].
We define a probability distribution from it, the privacy loss distribution (PLD), and show that it is useful
for defining many privacy notions from the literature: approximate differential privacy [8], probabilistic
differential privacy [17, 13], and Rényi differential privacy [20]. We further prove that a sequential
composition translates to convolution of the respective privacy loss distributions.

4.1 Privacy Loss Variables and Distributions

At the core of this work lies the representation of privacy leakage as the privacy loss. The privacy loss
L of any one output of the mechanism with respect to two potential inputs is the logarithmic ratio
between the probabilities to observe the output for each input. This ratio is of course not defined if this
probability is 0 for either the nominator or the denominator. For a more uniform treatment of realistic
mechanisms, we introduce distinct symbols∞ and −∞ that behave similar to infinity and minus infinity.
If the nominator is 0, we define the privacy loss L to be −∞, and analogously if only the denominator is
0 we define it to be ∞. This captures distinguishing events, which, if observed, reveal which of the two
inputs was used.

Definition 4.1. Given a probabilistic mechanism M : X → U , let o ∈ U be any potential output of M
and let x0, x1 ∈ X be two inputs. We define the privacy loss random variable of o for x0, x1 as

LM(x0)/M(x1) (o) =


∞ if Pr [o←M (x0)] 6= 0 and Pr [o←M (x1)] = 0

ln
(

Pr[o←M(x0)]
Pr[o←M(x1)]

)
if Pr [o←M(xi)] 6= 0 ∀i∈{0, 1}

-∞ else,

where we consider ∞ and -∞ to be distinct symbols.
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For readability, we write A := M (x0) and B := M (x1) for the output distributions of M on two

particular inputs x0 and x1 and then write LA/B (o) = ln
(

Pr[o←A]
Pr[o←B]

)
for the privacy loss of the observation

o.
The privacy loss L naturally gives rise to a probability distribution over the privacy losses, the

privacy loss distribution (PLD), for two given probability distributions A and B. The set of privacy
losses Y :=

⋃
o∈U

{
LA/B (o)

}
are the atomic events of the distribution. The respective probability

density/mass function ω of a privacy loss y is defined as the cumulative weight of all observations o in
A with privacy loss y: ω(y) :=

∑
{o | LA/B(o)=y, o∈U} Pr [o←A] with y ∈ Y. Formally, the PLD is the

compound probability distribution of the random variable L. To be able to sum over all events, we
require the universe U to be countable. For continuous distributions, this restriction can be generalized
to Lebesgue measurable sets which we will do in Section 5.2.

Definition 4.2 (Privacy Loss Distribution (PLD)). A privacy loss distribution ω of A over B is defined
as follows: there exist two probability distributions A,B over the countable universe U such that

Y =
⋃
o∈U

{
LA/B (o)

}
⊂ R (1)

ω(y) =
∑
{o | LA/B(o)=y, o∈U}

Pr [o←A] with y ∈ Y (2)

The support Y of ω additionally includes the symbol2 -∞: supp(ω) := {y | ω(y) 6= 0} ∪ {-∞}. We define
∀y ∈ R : -∞<y<∞, y+∞=∞, -∞+y= -∞, -∞+∞= -∞.

Next, we prove basic properties about the PLD.

Lemma 1. For two distributions A and B, let Y and ω(y) be as in Definition 4.2, we have

1. The set Y is countable.

2. ∀y ∈ Y : ω(y) ≥ 0

3.
∑
y∈Y ω(y) = 1

4. ω(∞) =
∑
{x | Pr[x←B]=0} Pr [x←A]

5. ω(-∞) = 0

Proof. The proofs directly follow from Definitions 4.1 and 4.2.

1. Y is a mapping from the countable set U and is therefore countable as well.

2. Follows from Pr [o←A] ≥ 0 ∀o ∈ U .

3.
∑
y∈Y ω(y) =

∑
o∈U Pr [o←A] = 1.

4. Follows by the definition of the privacy loss L.

5. By definition of L, o ∈ U :

ω(-∞) =
∑
{o | LA/B(o)=-∞} Pr [o←A]

=
∑
{o | Pr[o←A]=0} Pr [o←A]

= 0

With these properties at hand, we can prove that the privacy loss distribution of a pair of independent
product distributions A × C vs. B ×D is the same as the convolution of the privacy loss distributions
of the pair of single distributions A vs. B and C vs. D. This theorem is vital because sequential
composition of non-adaptive mechanisms, translates to the independent product distributions of the
respective mechanisms.

2We are aware that the support of a probability mass function ω(y) is usually defined as the set of y with ω(y) = 0.
The extension simplifies notation.
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Theorem 1 (Composition). Let M : X → U and M ′ : X ′ → U ′ be independent probabilistic mechanisms,
and let x0, x1 ∈ X and x′0, x

′
1 ∈ X ′. Let ω be the privacy loss distribution created by M(x0) over M(x1)

with support Y, and ω′ with support Y′ by M ′(x′0) over M ′(x′1) respectively. Let ωc with support Yc
be the privacy loss distribution created by M(x0) ×M ′(x′0) over M(x1) ×M ′(x′1) where × denotes the
independent distribution product. Then, ωc can be derived from ω and ω′ as follows:

Yc =
{
yc | yc = y + y′ ∀y ∈ Y, ∀y′ ∈ Y′

}
(3)

ωc (y) = (ω ∗ ω′)(y) ∀y ∈ Y \ {-∞,∞}
=
∑

{y, y′|y1+y2=y}
ω(y) · ω(y′) (4)

ωc (∞) = 1− [1−ω(∞)] · [1−ω′(∞)] (5)

ωc (-∞) = 0 (6)

where ω ∗ ω′ is a convolution, and the set Yc is countable.

Proof. For ease of readability, we assume that M and M ′ are defined on the input set X and on the
same output set U . The same proof applies if they are defined on different sets. We put emphasis on
the difference between M(x0) and M(x1), as well as between M ′(x′0) and M ′(x′1) respectively, which
leads to four different probability-terms, namely Pr [o←M(x0)], Pr [o←M(x1)], Pr [o′←M ′(x′0)], and
Pr [o′←M ′(x′1)] all defined on o, o′ ∈ U . Let us split U2 = U × U in three sets

U2
+ = {(o, o′) | ∀(o, o′) ∈ U2, ∀i ∈ {0, 1} : Pr [o = M(xi)] 6= 0 ∧ Pr [o′ = M ′(x′i)] 6= 0}
U2

0 = {(o, o′) | ∀(o, o′) ∈ U2, ∀i ∈ {0, 1} : Pr [o = M(xi)] = 0 ∧ Pr [o′ = M ′(x′i)] = 0}
U2
∞ = U2 \ (U2

+∪ U2
0 ) (one to three probabilities are 0)

Obviously, they are pairwise distinct and contain together all elements in U2 =U2
+∪ U2

∞∪ U2
0 . Therefore,

this proof examines these sets separately: first, the set U2
+ (leading to the convolution property), second

U2
∞ ( for ω(∞) and partly ω(-∞)), and last U2

0 (leftover ω(-∞)).
First, we examine the set U2

+. This will lead to the convolution property for y 6= -∞,∞. As the
tree sets are separated in a way that no event (o, o′) in U2

+ has a probability of zero, we do not need
to consider ωc (∞) or ωc (-∞) in this part. For all events o, o′ ∈ U+, the privacy loss is additive under
composition:

∀(o, o) ∈ U2
+ :

L(M(x0),M ′(x′0))/(M(x1),M ′(x′1)) (o, o′)

= log

(
Pr [(o, o′)←(M(x0),M ′(x′0))]

Pr [(o, o′)←(M(x1),M ′(x′1))]

)
= log

(
Pr [o←M(x0)]

Pr [o←M(x1)]

Pr [o′←M ′(x′0)]

Pr [o′←M ′(x′1)]

)
= log

(
Pr [o←M(x0)]

Pr [o←M(x1)]

)
+log

(
Pr [o′←M ′(x0)]

Pr [o′←M ′(x′1)]

)
= LM(x0)/M(x1) (o)+LM ′(x1)/M ′(x′1) (o′)

where we have used that M and M ′ are independent. Let us define

Y+ =
{
yc | yc = y + y′ ∀y ∈ Y, ∀y′ ∈ Y′, y, y′ 6= -∞,∞

}
As Y and Y′ are countable, their composition Y+ is countable as well.

For readability, let us define

Lc (o, o′) :=L(M(x0),M ′(x′0))/(M(x1),M ′(x′1)) (o, o′)

L (o) :=LM(x0)/M(x1) (o)

L′ (o′) :=LM ′(x′0)/M ′(x′1) (o′)

8



With yc ∈ Y+

ωc (yc) =
∑

{(o,o′) | Lc(o,o′)=yc}

Pr [(o, o′)←(M(x0),M ′(x′0))]

=
∑

{(o,o′) | L(o)+L′(o′)=yc}

Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

=
∑

{(y,y′)|y+y′=yc}

∑
{o | L(o)=y}

Pr [o←M(x0)] ·

∑
{o′ | L′(o′)=y′}

Pr [o′←M ′(x′0)]


=

∑
{(y,y′)|y+y′=yc}

ω(y) · ω′(y′)

Which is a convolution. We have used that the sums considered converge absolutely; thus, the sum-
product is a Cauchy product and thereby the last equality is valid. For the second equality, we have
used the independence of M and M ′. As there are no events (o, o′) in U2

+ for which one of the four
probabilities Pr [o←M(xi)], Pr [o′←M ′(xi)] with i ∈ {0, 1} equals to zero, we do not need to consider
ωc (∞) or ωc (-∞) here.

In the second part, we prove the composition of ωc (∞) and show that all events in U2
∞ which add to

ωc (-∞) are zero. Let us split the set U2
∞ in four subsets

U∞ = {o | Pr [o←M(x1)] = 0, (o, o′) ∈ U2
∞}

U ′∞ = {o′ | Pr [o′←M ′(x′1)] = 0, (o, o′) ∈ U2
∞}

U+ = {o1 | Pr [o←M(x1)] 6= 0, (o, o′) ∈ U2
∞}

U ′+ = {o2 | Pr [o′←M ′(x′1)] 6= 0, (o, o′) ∈ U2
∞}

U2
⊥ = U2

∞ \ (U+×U ′∞)∪(U∞×U ′+)∪(U∞×U ′∞)

First, let us argue about ω(-∞): It is always zero as for any corresponding events of M(x0) have
occurrence probability 0 as in Lemma 1. By construction, the sets U+ and U ′+ contain all events
o, o′ for which the corresponding Pr [o←M(xi)] 6= 0 and Pr [o′←M ′(x′i)] 6= 0 for i ∈ {0, 1}. There-
fore

∑
o∈U+ Pr [o←M(x0)] = 1 − ω(∞) (analogously for M ′). Moreover, all the leftover events in U2

⊥
have either Pr [o←M(x0)] = 0 or Pr [o′←M ′(x′0)] = 0 or both and are captured in the third and
fourth statement. By construction, if and only if (o, o′) ∈ (U+ × U ′∞) ∪ (U∞ × U ′+) ∪ (U∞ × U ′∞), then
Pr [(o, o′)←(M(x1),M ′(x′1))] = 0 and thus the event is within ωc (∞).

ωc (∞) =
∑
{(o,o′)|Pr[(o,o′)←(M(x1),M ′(x′1))]=0}

Pr [(o, o′)←(M(x0),M ′(x′0))]

=
∑
{(o,o′)|Pr[o←M(x1)]·Pr[o′←M ′(x′1)]=0}

Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

=
∑

(o,o′)∈(U+×U ′∞)

Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

+
∑

(o,o′)∈(U∞×U ′+)

Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

+
∑

(o,o′)∈(U∞×U ′∞)

Pr [o←M(x′0)] · Pr [o′←M ′(x′0)]

= [1−ω(∞)]ω′(∞) + ω(∞)[1−ω′(∞)]

+ ω(∞)ω′(∞)

= 1− [1− ω(∞)][1− ω′(∞)]

9



where we have separated the infinite sums as before (independence and Cauchy products) and we have
used

∑
o∈U+ Pr [o←M(x0)] = 1− ω(∞) (and analogously for M ′).

For the third set U2
0 , the observation that for any (o, o′) ∈ U2

0 the loss function evaluates to -∞, but
any occurrence-probabilities are zero leads to the conclusion that its contribution to any bucket is 0.

To prove the structure of Yc

Yc =
{
yc | yc = y + y′ ∀y ∈ Y, ∀y′ ∈ Y′

}
Note that for all events in U2

∞ \ U2
⊥ we can set y = ∞ and for all events in U2 \ (U2

+∪ U2
∞) we can set

y = -∞. Together with the addition rules in Definition 4.2, it is valid to define Yc = Y+∪{-∞,∞}.
Again, we neglect the set U2

⊥ and U2
0 as they do not contribute to the privacy loss distribution. Yc is

countable as Y and Y′ and {-∞,∞} are countable. this concludes the proof.

4.2 Dual Privacy Loss Distribution

The ADP definition is symmetric, but the notion of a privacy loss distribution (PLD) of A over B is
inherently asymmetric, since ω(y) is defined by probabilities in A. We show that it is possible to derive
the PLD of B over A, the dual PLD, directly from the PLD of A over B.

Definition 4.3 (Dual PLD). Given a mechanism M : X → U , for a privacy loss distribution ω with
support Y created by M(x0) over M(x1), the dual privacy loss distribution (dual PLD) ωwith supportY

is defined as

Y

= {-y | y ∈ Y} (7)

ω(y) = ω(-y) ey (8)

ω(∞) = 1−∑y∈ Y\{-∞,∞}

ω(y) (9)

ω(-∞) = 0 (10)

Lemma 2. Given a mechanism M : X → U , for a privacy loss distribution ω created by M(x0) over
M(x1), then the privacy loss distribution created by M(x1) over M(x0) is the dual PLD ωas defined in
Definition 4.3.

Proof. Let us split U in three sets

U+ = {o | LM(x1)/M(x0) (o) ∈ Y\ {-∞, ∞}, ∀o ∈ U}
U∞ = {o | LM(x1)/M(x0) (o) =∞, ∀o ∈ U}
U0 = {o | LM(x1)/M(x0) (o) = -∞, ∀o ∈ U}

Note that the sets U+,U∞,U0 are pairwise distinct and U = U+∪U∞∪U0. We look at each set individually.
First, the set U+: As for for all events o ∈ U+ neither Pr [o←M(x0)] nor Pr [o←M(x1)] evaluates to
zero, we can use the logarithmic nature of the privacy loss LM(x0)/M(x1) (o) = −LM(x1)/M(x0) (o) which
gives us Y+ = {-y | ∀y ∈ Y \ {-∞,∞}}
So, ω(y) =

∑
{o | LM(x1)/M(x0)(o)=y}

Pr [o←M(x1)] , ∀y ∈ Y+

=
∑
{x | LM(x0)/M(x1)(o)=-y}

Pr [o←M(x0)] · Pr [x←M(x1)]

Pr [o←M(x0)]

=
∑
{x | LM(x0)/M(x1)(o)=-y}

Pr [o←M(x0)] · eLM(x1)/M(x0)(o)

= ω(-y) ey

There are no events in U+ which could go into ω(-∞) or ω(∞). Next, we look at U0. We use the fact
that Pr [o←M(x0)] = 0 and for all o ∈ U0, LM(x1)/M(x0) (o) = -∞. In this case, according to Lemma 1:
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ω(-∞) = 0. Next, for the set U∞, we use

ω(∞) =
∑
o∈U∞

Pr [o←M(x1)]

=
∑

o∈U\U0,U+
Pr [o←M(x1)]

= 1− ω(−∞)︸ ︷︷ ︸
=0

−
∑
y∈ Y+

ω(y)

Finally, note that the support of ωnamely

Y

coincides with

Y+∪{-∞,∞}. This concludes the proof.

4.3 Approximate Differential Privacy

We first present the definition from the literature and then prove that our PLD-based definition is
equivalent.

Definition 4.4 (ADP). Given a neighboring relation, let M : X → U be a probabilistic mechanism. We
say M is (ε, δ)-differentially private (or (ε, δ)-ADP), if for all neighboring x0, x1 ∈ X and for all sets
S ⊆ U we have

Pr [M(x0) ∈ S] ≤ eε Pr [M(x1) ∈ S] + δ.

We say that δ is tight for ε if there is no δ′ < δ such that the mechanism is (ε, δ′)-ADP. We write δ(ε)
for this tight δ of an ε. The ADP-graph is defined as (ε, δ(ε))ε∈R.

The same definition applies if, instead of talking about mechanisms that were based on data universes
X , we consider the timing leakage of an algorithm that is based on a secret key, or if we quantify the
difficulty of distinguishing two distributions after a single event. For a illustration of ADP on two
probability distributions, see Figure 3, following a depiction in [19].

The privacy loss space directly enables us to compute a tight value δ for every value of ε such that
(ε, δ)-differential privacy is satisfied. This representation is vital for this work. We connect our definition
from above to the definition of tight ADP [19].

Definition 4.5. For a mechanism M : X → U with neighboring inputs x0, x1 ∈ X creating a privacy
loss distribution ω with support Y and for ε ≥ 0 we define

δ∗M(x0)(ε) = ω(∞) +
∑
y>ε, y∈Y\{-∞,∞}

(1− eε−y)ω(y)

δ∗M(x1)(ε) = ω(∞) +
∑
y>ε, y∈ Y\{-∞,∞}

(1− eε−y) ω(y)

where ωdenotes the dual PLD with support

Y

.

We now show that Definitions 4.4 and 4.5 are equivalent.

Lemma 3. For every probabilistic mechanism M : X → U , and for any values ε, δ ≥ 0, M is (ε, δ(ε))-
tightly differentially private as in Definition 4.4 if and only if, for any two neighboring x0, x1 ∈ Xn, we

have δ(ε) = max
(
δ∗M(x0)(ε), δ

∗
M(x1)(ε)

)
(c.f., Definition 4.5).

Proof. For simplicity, let us denoteA(o) := Pr [o←M(x0)] andB(o) := Pr [o←M(x1)], and let L−1
A/B (y) =

{o | y = LA/B (o), o ∈ U} be the pre-image of y. This proof has two parts. First, we show that∑
o∈U

max(0, A(o)− eεB(o)) = ω(∞) +
∑
y>ε, y∈Y\{-∞,∞}

(1− eε−y)ω(y)

∑
o∈U

max(0, B(o)− eεA(o)) = ω(∞) +
∑
y>ε, y∈ Y\{-∞,∞}

(1− eε−y) ω(y)

where ωwith support

Y

denotes the dual distribution of ω. Afterwards, we apply a lemma from prior
work to prove the equivalence of the left hand side to tight-ADP.
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Let us first consider only the term max(0, A(o)−eεB(o)): for any y ∈ Y \ {-∞,∞} and ∀o ∈ L−1
A/B (y)

y = log
A(o)

B(o)
⇔ B(o) = e−yA(0)

This allows us to re-write

max(0, A(o)−eεB(o)) = max(0, (1−eε−y) ·A(o))

=

{
[1− eε−y]A(o) if y > ε

0 else

where we have used the fact that ∀o ∈ U , A(0) ≥ 0. After this preparation, we can come to the next
step. Keep in mind that the support Y of ω contains all possible outcomes the loss LA/B (o) can achieve
for all o ∈ U . Then ∑

o∈U
max(0, A(o)− eεB(o))

=
∑

o∈L−1(∞)

max(0, A(o)− eεB(o)︸ ︷︷ ︸
=0

)

+
∑

o∈L−1(-∞)

max(0,

=0︷︸︸︷
A(o)−eεB(o)︸ ︷︷ ︸

≤0

)

+
∑

y∈Y\{-∞,∞}

∑
o∈L−1(y)

max(0, [1−eε−y] ·A(o))

=
∑
o∈L−1(∞)

A(o) +
∑

y>ε,y 6=∞

∑
o∈L−1(y)

[1−eε−y] ·A(o)

= ω(∞) +
∑
y>ε, y∈Y\{-∞,∞}

[1−eε−y]ω(y)

where we have used the definition of ω(y) =
∑
o∈L−1(y)A(o), the fact that eε > 0, and ∀o ∈ U , A(o), B(o) ≥

0. By this, we have proven the first equality from the beginning of the proof. The equation for ωis proven
identically as we only have to switch A(x) and B(x) to create the dual distribution ωto ω. What is left
is the connection to tight-ADP. For this, we use Lemma 1 in [19]:

Lemma (Connection to tight-ADP,[19]). For every ε, two distributions A and B over a finite universe
U are tightly (ε, δ)-ADP with

δ = max
(∑

o∈U max (Pr [o←A]− eε Pr [o←B] , 0) ,∑
o∈U max(Pr [o←B]− eε Pr [o←A] , 0)

)
.

which in application directly concludes the proof.

One immediate corollary is the exact tight-ADP formula for the approximate randomized response
mechanism Mε,δ (with parameters ε ≥ 0, δ ∈ [0, 1]), shown to be a worst case mechanism [15] for
(ε, δ)-ADP.

Example 1 (ARR). Approximate Randomized Response for ε ≥ 0, 1 ≥ δ ≥ 0, is defined as follows:
Pr [o←M(x0)] = p0(o),Pr [o←M(x1)] = p1(o) with

p0(o) =


δ o = 1
(1−δ)eε
eε+1 o = 2

(1−δ)
eε+1 o = 3

0 o = 4

p1(o) =


0 o = 1
(1−δ)
eε+1 o = 2
(1−δ)eε
eε+1 o = 3

δ o = 4

Its privacy loss distribution ω can be seen as a shifted binomial distribution, which has a very simple
form under convolution. Using Theorem 1 and Lemma 3, for n compositions, we get the exact result

δ(ξ) =
(1− δ)n
(1 + eε)n

·
n∑

k=dkn,ξe

(
n

k

)[
1− eξ−ε(2k−n)

]
eε(n−k)

+ [1− (1− δ)n]

12
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eε ·A
δADP(ε)

δPDP(ε)

Figure 3: A graphical depiction of the (truncated) Gauss mechanism on two inputs, A = N
(
0, σ2

)
, B =

N
(
1, σ2

)
, and of how to compute ADP δADP (ε) and PDP δPDP(ε) for a given value ε. Note that eε ·A

is not a probability distribution.

with dkn,ξe = max[0,min[n, ceil( ξ+nε2ε )]]. For a detailed derivation, see Appendix A.1.

4.3.1 Equivalence of PLD and ADP-Graphs

We now show that an ADP-graph is as expressive as the privacy loss distribution. For distributions with
finite support3, it is possible to reconstruct the privacy loss distribution from the (ε, δ(ε))ε sequence.
From Lemma 3 the opposite direction then follows. This is a significant result, as the privacy loss
distribution is sufficiently strong for other important privacy notions.

Theorem 2 (Bijection Between ADP and PLD). Given a set Y with finite cardinality |Y| = k (for k ∈
N), for every PLD ω with support Y, there exists a bijection between the ADP-graph (as in Definition 4.4)
and ω.

Proof. First, define
g(y) = (1− e−y) , y ∈ R and g(∞) = 1. (11)

This function is strong monotonically increasing and therefore there exists maximally one value where
g(y) = 0, namely y = 0, and so ∀y > 0⇒ g(y) > 0.

Second, denote the cardinality k = |Y|, and sort the set Y in ascending order which is possible as the
number of elements in Y is finite. Denote ε1 as the smallest element in Y, ε2 the second, and so forth up
to ε∞ as the largest. Then, for any i ∈ {2, . . . , n− 1,∞}: εi−1 < εi with ε∞− εi =∞ and ε∞− ε∞ = 0.

Third, consider the two equations:

C =
∑
y∈Y

ω(y) (12)

δA(εi) =
∑
y≥εi
y∈Y

(
1− eεi−y

)
ω(y) with εi ∈ Y (13)

and noticing that g(εi − εi) = 0; they can be written in matrix form:

1 1 1 1 . . . 1
0 g(ε2 − ε1) g(ε3 − ε1) g(ε4 − ε1) . . . g(ε∞ − ε1)
0 0 g(ε3 − ε2) g(ε4 − ε2) . . . g(ε∞ − ε2)
0 0 0 g(ε4 − ε3) . . . g(ε∞ − ε3)
0 0 0 0 . . . g(ε∞ − ε4)
...

...
...

...
...

...
0 0 0 0 . . . g(ε∞ − εn−1)


·


ω(ε1)
ω(ε2)

...
ω(n− 1)
ω(∞)

 =



C
δA(ε1)
δA(ε2)
δA(ε3)
δA(ε4)

...
δA(εn−1)


The first matrix is a upper n · n-triangle matrix with strictly positive entries on its diagonal (∀j ∈
{1, . . . , n} : mjj > 0) as ∀i ∈ {2, . . . , |Y|− 1,∞}: εi− εi−1 > 0 and ∀y > 0 : g(y) > 0. It is a well known
result in linear algebra that a upper triangular matrix with non-zero entries on the diagonal is invertible
and thereby is a bijection[24]. This leads to the conclusion that any discrete privacy loss distribution ω
with finite number of elements in its support has a unique representation {δA(εy)}y∈Y and vice versa.

3In practice this is anyway typically the case due to discretization and finite representations of numbers.
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4.4 Probabilistic Differential Privacy

Probabilistic differential privacy [17, 13] is a very intuitive variant of approximate differential privacy (see
Figure 3). The main idea is to require that with probability 1-δ pure ε-differential privacy holds. While
this definition has a clear semantics and is easy to understand, it is not closed under post-processing [18],
which is a crucial property for practical applications; hence, this work concentrates on ADP. Nevertheless,
we show that the privacy loss distribution is sufficient for precisely computing PDP bounds.

Definition 4.6 (PDP). Given a neighboring relation, a mechanism M is (ε, δ)-probabilistically differen-
tially private (PDP), where ε ≥ 0 and δ ≥ 0, if for all neighboring x0, x1 ∈ X there are sets Sδ0 , S

δ
1 ⊆ [M ]

with Pr
[
M(x0) ∈ Sδ0

]
≤ δ and Pr

[
M(x1) ∈ Sδ1

]
≤ δ, s.t., for all sets S ⊆ [M ], where [M ] is the range

of M , the following in-equations hold:

Pr
[
M(x0) ∈ S \ Sδ0

]
≤ eε · Pr

[
M(x1) ∈ S \ Sδ0

]
∧Pr

[
M(x1) ∈ S \ Sδ1

]
≤ eε · Pr

[
M(x0) ∈ S \ Sδ1

]
.

(14)

A mechanism M is tightly (ε, δ)-PDP if δ is minimal for ε, i.e., if for all δ′ such that M is (ε, δ′)-PDP,
δ′ ≥ δ.

The conditions of PDP can be directly translated to the privacy loss space as it requires each of tails
with y ≥ ε of a PLD ω and its dual PLD ωto be smaller than δ:

Lemma 4 (Connection to PDP). Let ω be a privacy loss distribution and ωits dual PLD. Then

ω is (ε, δ)-PDP ⇐⇒
∑

y>ε,y∈Y ω(y) ≤ δ∑
y>ε,y∈ Y

ω(y) ≤ δ (15)

Proof. Let ω be created by M(x0) and M(x1). First, notice that Equation (14) in the PDP definition is
equal to the privacy loss function for i ∈ {0, 1}:

LM(xi)/M(x1−i)

(
S \ Sδi

)
= log

Pr
[
M(xi) ∈ S \ Sδi

]
Pr
[
M(x1−i) ∈ S \ Sδi

] ≤ ε
Let us create two sets

S′1 := {o | LM(x0)/M(x1) (o) > ε, ∀o ∈ Sδ0}
S′0 := {o | LM(x1)/M(x0) (o) > ε, ∀o ∈ Sδ1}

As S′i ⊆ Sδi ⇒ Pr [M(xi) ∈ S′i] ≤ δ. Moreover, ∀o ∈ Sδi \ S′i : LM(xi)/M(x1−i) (o) ≤ ε by construction.
Therefore,

LM(xi)/M(x1−i) (o) ≤ ε ∀o ∈ S \ S′i = (S \ Sδi ) ∪ (Sδi \ S′i) (16)

which means that all o ∈ S with Li(o) > ε are in S′i. Let us denote ω0 as the privacy loss distribution
created by M(x0) and M(x1) with support Y0 and ω1 by M(x1) and M(x0) with support Y1 respectively.
Then,

δ ≥ Pr [M(xi) ∈ S′i]
I
=
∑
o∈S′i

Pr [o←M(xi)]

II
=
∑
{o | LM(xi)/M(x1−i)(o)>ε, o∈S}

Pr [o←M(x0)]

III
=
∑
y>ε

ωi(y) y ∈ Yi

where we have used independence of elementary events (I), Equation (16) (II) and the privacy distri-
bution definition (III). Next, notice that ω1(y) = ω(y) is the dual distribution to ω(y). This proves
ω ⇒PDP. For the other direction, note that we have only used equalities, that S′i ⊆ Sδi , and that
LM(xi)/M(x1−i) (S \ S′i) ≤ ε⇒ LM(xi)/M(x1−i)

(
S \ Sδi

)
≤ ε. Therefore, the statement is proven.
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4.5 Rényi Differential Privacy & Concentrated Differential Privacy

Recent work introduced novel ADP bounds that are based on the Rényi divergence (the higher moments
of the exponentiated privacy loss random variable eL): concentrated DP (CDP) [10, 6], Rényi DP
(RDP) [20], and the moments accountant [2]. These bounds were motivated as more comprehensively
capturing the privacy guarantees of mechanisms. In fact, the work on concentrated differential privacy
can be seen as a direct predecessor of the present work.

The Rényi divergence of two distributions can be directly derived from their PLD. By our Theorem 2,
we can hence show that for distributions with finite support RDP and CDP can be determined from the
set of all (ε, δ(ε)) ADP bounds. We begin with defining the Rényi divergence, RDP and CDP.

Definition 4.7 (Rényi Divergence). The Rényi divergence Dα(M(x0)|M(x1)) with α > 1 for a mecha-
nism M and two inputs x0 and x1 is defined as

Dα(M(x0)|M(x1)) =
1

α−1
log E

x∼M(x1)

(
eLM(x0)/M(x1)

)α-1
D1(M(x0)|M(x1)) = E

x∼M(x0)

(
LM(x0)/M(x1)

)
Kullback-Leibler Divergence. Computing the Kullback-Leibler (KL) divergence from the PLD is
straight-forward. We recall the definition of the KL divergence from M(x1) to M(x0) and directly see
that it is a natural property of the PLD, if and only if no output o ∈ U has an infinite privacy loss:

DKL(M(x1)||M(x0))

=
∑
o∈U

Pr [o←M (x0)] ln

(
Pr [o←M (x0)]

Pr [o←M (x1)]

)
=
∑
o∈U

Pr [o←M (x0)]LM(x0)/M(x1) (o) =
∑
y∈Y

ω(y) · y,

where ω is the PLD of M(x0) over M(x1) with support Y. Analogously, we get the KL divergence from
M(x1) to M(x0) by the dual PLD ω.

Rényi differential privacy directly characterizes the privacy as the sequence of Rényi divergences:
(α,Dα)α.

Definition 4.8 (RDP). A randomized mechanism M : X → U has ε Rényi differential privacy of order
α > 1, or (α, ε)-RDP for short, if for all neighboring x0, x1 ∈ X we have ε = Dα(M(x0)|M(x1)).

Rényi differential privacy can be translated to (ε, δ)-PDP by using a logarithmic version of the Markov
bound as follows: whenever (α,Dα)α, then also (ε, αDα−αε)-ADP holds. The moments accountant uses
the same characterization and proposes (ε,minα(αDα−αε)) as ADP bounds (as (ε, δ)-PDP implies (ε, δ)-
ADP).

A pair of distributions A,B satisfies (ξ, ρ)-concentrated DP if the Rényi divergence is bounded by an
affine linear function: Dα ≤ ξ + ρα (for all α ≥ 0).

Definition 4.9 (CDP). A mechanism M satisfies (ξ, ρ)-concentrated differential privacy if for all α > 0,
and all x0, x1 Dα(M(x0)|M(x1)) ≤ ξ + ρα. (17)

4.5.1 Connection to Rényi Differential Privacy

Rényi differential privacy is closely connected to the moments of the privacy loss distribution. In fact,
the α-Rényi-divergence Dα are the (α-1)-log-moments of ω. If the moments ρλ of ω are are not growing
too fast, |ρλ| < cdλλ! for a λ > 0, then we have equivalence. Consequently, for privacy loss distributions
on bounded support, we get equivalence always.

Lemma 5 (Equivalence to Rényi-DP). Let the privacy loss distribution ω be created by M(x0) over
M(x1). Let ω(∞) = 0. Then, its λ-log-moment is

mλ = log

(
E
y∼ω

yλ
) 1
λ

= Dλ+1(M(x0)|M(x1)) (18)

with λ > 0. Moreover, if exp(λ · |mλ|) < cdλλ! for two positive constants c, d, then there exists a bijection
between the Rényi-sequence (α,Dα)α and ω.
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Proof. First, let us show the equality between the moments mλ and the Rényi-Divergence Dα. For
simplicity, let us denote A(o) := Pr [o←M (x0)] and B(o) := Pr [o←M (x1)]. As ω(∞) = 0, there is no
o ∈ U where B(o) = 0 and A(x) 6= 0. Therefore, we can do the following:

log

(
E
y∼Ω

yλ
) 1
λ

= log

(
E
o∼A

(
A(o)

B(o)

)λ) 1
λ

=
1

λ
log
∑
o∈X

A(o)

(
A(o)

B(o)

)λ
=

1

λ
log
∑
o∈X

B(o)

(
A(o)

B(o)

)λ+1

=
1

λ
E
o∼B

(
A(o)

B(o)

)λ+1

= Dλ+1(A|B)

For the second statement, we need to prove that ω leads to a unique sequence (α,Dα)α and vice versa.
The first direction ω ⇒ (α,Dα)α follows immediately by applying the previously proven transformation.

The other direction ω ⇐ (α,Dα)α is more tricky as there are cases where more than one distribution
have the same moments (Hausdorff moments problem). First, let us define ρλ := exp(λ · |mλ|) and

notice that the condition |ρλ| < CDλλ! is sufficient such that the power series
∑
λ>0 ρλ

rλ

λ! has a positive
convergence radius. Now we apply Theorem 30.1 from [4] which states that for a series of moments a
unique probability measure exists if the previous power series has a positive convergence radius. As both,
the Rényi-sequence (α,Dα)α and the privacy loss distribution ω are generated by the same mechanisms
M(x0) and M(x1), the unique probability measure derived from the Rényi-sequence is a valid privacy
loss distribution. This concludes the proof.

Example 2. For example, the Gauss distribution N
(
0, σ2

)
, which is on infinite support, can be derived

by their moments ρλ[21] uniquely:

|ρλ|=
∣∣∣∣ E
y∼N(0,σ2)

yλ
∣∣∣∣=
{

0 λ odd

(λ−1)!! · σλ λ even
≤ cdλλ! (19)

for two constants c and d, which means by Lemma 5 that there exist a unique probability density function
derived from the moments, i.e. N

(
0, σ2

)
.

4.6 Markov-ADP Bound

Next, we refine an ADP bound introduced by Abadi et al. [2], called the moments accountant. Our
viewpoint with privacy loss distributions enables us to elegantly improve the moments accountant bound,
which we named Markov-ADP bound.

Theorem 3 (Markov-ADP). Given a neighboring relation, a mechanism M : X → U with two neighbor-
ing inputs x0, x1 ∈ X , and a privacy loss distribution ω with support Y created by M(x0) over M(x1). Let
P be any finite partition of Yn, P = {y0, . . . , yk} ⊆ Rk+1 with yi < yi+1∀i. Then, after n compositions
and ε ∈ P, ε < y0

δM(x0)(ε) ≤ T (yk) +
∑

yi≥ε,yi∈P

(
1− eε−yi

)
· [T (yi)− T (yi−1)] (20)

and
T (y) = min

λ
E

o∼M(x0)

[
e
λ·log

(
Pr[o←M(x0)]

Pr[o←M(x1)]

)]n
· e−λ·y (21)

is a upper bound for tight-ADP and smaller or equal to the Rényi-DP bound.

Proof. Let ωn generated byMn(x0) andMn(x1) be the distribution ω after n independent self-compositions.
The beginning of this proof is inspired by Theorem 2 of [2] which has already proven the composability
of the log moments

αAn,Bn(λ) ≤
n∑
i=0

αA,B(λ) = n · αA,B(λ) (22)

with αA,B(λ) = log E
x∼A

eλ log
Pr[x←A]
Pr[x←B] = log E

y∼Yn
eλ logω(y) (23)
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for all λ > 0. Moreover, by applying Markov’s inequality, they have proven for all γ > 0, λ > 0,

Pr
y∼ω

[y ≥ γ] =
∑

y≥γ,y∈Yn
ω(y) ≤ exp(αA,B(λ)− λγ) (24)

From which follows for ωn = (Yn, {ω(y)n})∑
y≥γ,y∈Yn
ωn(y) ≤ min

λ>0
exp

(
n·logE

y∼Yn

[
eλ logω(y)

]
−λγ

)
(25)

= min
λ>0

Ex∼A
[
eλ·log(A(x)

B(x) )
]n

eλ·γ
(26)

= T (γ) (27)

as this is valid for all λ, the term can be minimized.
W.l.o.g, we can assume T (γ) to be monotone decreasing (∀ η > 0, T (γ) ≥ T (γ + η)), else we just set

T (γ) = T (γ + η) as a probability mass cannot increase while we reduce the evaluated events.
For every ε ∈ P we have ∑

y>ε,y∈Yn
(1− eε−y)ωn(y) (28)

≤T (yk) +
∑

yj≥ε,yj∈P
(1− eε−yj ) [T (yj−1)− T (yj)]

Due to the (1 − eε−y) terms, which are smaller than 1 (as in the RDP formula), this bound is less or
equal to Rényi-DP.

To see why Equation (28) is true, we first investigate properties of ωn. Note that in general, a < b⇒
(1− 1

ea ) ≤ (1− 1
eb

). Thus, for every f ≥ 0 and for all numbers a0 ≤ a1,∑
a0≤a<a1

(1− eε−a)f(a) ≤ (1− eε−a1)
∑

a0≤a<a1
f(a).

We split Yn into several chunks P = {y0, . . . , yk} ⊆ Rk+1 with yi < yi+1∀i. We define, for i ∈
{0, . . . , k},

T ′′(i) :=
∑

y∈Yn,y≥yi
ωn(y)

T ′(k) := T ′′(k)

for i ¡ k: T ′(j) := T ′′(i)− T ′′(i+ 1)

We retain for every yi ∈ P, ∑
y≥yi,y∈Yn

ωn(y) =
∑

j≥i,j∈{0,...,k}
T ′(j)

We retain for every yi ∈ P, ∑
yi≤y,y∈Yn

(1− eε−y)ωn(y)

=
∑

j≥i,j∈{0,...,k−1}

∑
yj≤y<yi+1,y∈Yn

(1−eε−y)ωn(y)

+
∑
yk≤y,y∈Yn

(1−eε−y)ωn(y)

≤
∑

j≥i,j∈{0,...,k−1}

(1− eε−yj+1)
∑

yj≤y<yj+1,y∈Yn
ωn(y)

+
∑

yk≤y,y∈Yn
ωn(y)

=
∑

j≥i,j∈{0,...,k−1}

(
(1− eε−yj+1)T ′(j)

)
+ T ′(k)
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Claim: For functions f1, f2 s.t. for all i ∈ {0, . . . , k}: ∑i≤j,j∈{0,...,k} f1(j) ≥ 0,
∑
i≤j,j∈{0,...,k} f2(j) ≥ 0

and
∑
i≤j,j∈{0,...,k} f1(j) ≤∑i≤j,j∈{0,...,k} f2(j) and for all monotonously increasing functions g ≥ 0,∑

i≤j,j∈{0,...,k}
f1(j)g(j) ≤

∑
i≤j,j∈{0,...,k}

f2(j)g(j)

To see why the claim is true, let f1, f2, g be functions as above. We know that

∑
i≤j,j∈{0,...,k}

f1(j) ≤
∑

i≤j,j∈{0,...,k}
f2(j)

⇔
∑

i≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0

We start with this statement, but use it for other values of i subsequently.

∑
i≤j,j∈{0,...,k}

(f1(j)− f2(j)) ≤ 0

⇒ g(i) ·
∑

i≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0

⇔ g(i)(f1(i)− f2(i)) + g(i) ·
∑

i+1≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0

Since
∑
i+1≤j,j∈{0,...,k} (f1(j)− f2(j)) ≤ 0 and g(i) ≤ g(i+ 1) we thus know that

g(i)(f1(i)− f2(i)) + g(i+ 1) ·
∑

i+1≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0.

We apply this argument repeatedly to yield∑
i≤j,j∈{0,...,k}

g(i) · (f1(j)− f2(j)) ≤ 0

⇔
∑

i≤j,j∈{0,...,k}
g(i)f1(j) ≤

∑
i≤j,j∈{0,...,k}

g(i)f2(j).

This shows the claim. We split the Markov tails T into T ′ analogously to how we have split T into T ′:

T ′(k) := T (yk)

for i ¡ k: T ′(i) := T (yi)− T (yi+1)

We again retain for every yi ∈ P,

T (yi) =
∑

yj≥yi,yj∈P
T ′(i)

Note that for all i ∈ {0, . . . , k}, ∑
i≤j,j∈{0,...,k}

T ′(j) ≤
∑

i≤j,j∈{0,...,k}
T ′(j)

and that furthermore we are now finally able to apply our property. Given yi ∈ P, we get∑
yi≤y,y∈Yn

(1− eε−y)ωn(y)

≤
∑

j≥i,j∈{0,...,k−1}

(
(1− eε−yj+1)T ′(j)

)
+ T ′(k)

≤
∑

j≥i,j∈{0,...,k−1}

(
(1− eε−yj+1)T ′(j)

)
+ T ′(k)

≤T (yk) +
∑

yj≥yi,yj∈P
(1− eε−yj ) [T (yj−1)− T (yj)]
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This concludes our discussion and review of individual bounds from our perspective on the privacy
loss distribution. We see that considering privacy loss distributions is insightful and allows for a com-
prehensive investigation of a wide variety of privacy aspects. Next we turn to a central insight from our
analyses of the privacy loss space: the privacy loss under sequential composition inevitably acquires the
shape of a Gauss distribution. This insight then enables us to present a novel, elegant, and expressive
characterizations for various mechanisms, which we call privacy loss classes.

5 Privacy Loss Classes

We characterize the approximate behavior of mechanisms the privacy loss distribution of M(x0) and
M(x1) under sequential composition with a notion of a privacy loss class. The privacy loss class has
the following property: with an increasing number of compositions n, two different privacy loss distribu-
tions (PLD) in the same privacy loss class converge to the same Gauss PLD. As composition excluding
distinguishing events translates to convolution of PLDs (Theorem 1), the convergence is implied by the
central limit theorem.

The central limit theorem further implies that it suffices to know the variance and mean of the
two PLDs before convolution (i.e., composition). The variance and mean of the combined privacy
loss distribution (i.e., after convolution) is the sum of the respective values. Thus, by classifying each
mechanism by the variance and mean of the respective privacy loss distribution, we can (in the limit)
describe the privacy loss of the mechanism and approximately calculate its privacy loss. Section 6
highlights that this description is actually very accurate in practical cases.

This convergence to a Gauss distribution is contrasted by events that have an infinite privacy loss
∞. These events have to be treated differently, so we first strip them away from the distribution. We
renormalize the distribution afterwards, but remember the magnitude of the removed events.

Definition 5.1 (Inner Distribution). The inner distribution ω̄ of a privacy loss distribution ω is the
normalized distribution without ω(−∞) and ω(∞). ∀y ∈ Y \ {-∞,∞}

ω̄(y) = Pr
y∼ω

[y | y 6=∞] =
ω(y)

1− ω(∞)
(29)

Therefore, privacy loss classes have three defining elements: the mean and the variance of the inner
distribution, and the distinguishing events ω(∞). In short: privacy loss class (µ, σ2, ω(∞)).

For the remaining inner distribution we now define privacy loss classes, i.e., functions that describe
the privacy loss against which a given privacy loss distribution converges.

Definition 5.2 (Privacy Loss Classes). A privacy loss distribution ω with support Y belongs to the
(µ, σ2, ω(∞))-privacy loss class

µ =
∑

y∈Y\{-∞,∞}
y · ω̄(y) (30)

σ2 =
∑

y∈Y\{-∞,∞}
(y − µ)2 · ω̄(y) (31)

if ω(∞) 6= 1, or to the privacy loss class (0, 0, 1) else.

Note that the privacy loss class of every privacy loss distribution coincides (by definition) with the
mean and variance of the inner distribution.

All the privacy bounds discussed in the previous section, and most privacy bounds in literature as
well, do not consider distinguishing events, i.e, ω(∞) = 0. The following lemma shows that all of them
can be generalized if the bound is considered to constrain only the inner distribution.

Lemma 6 (Bound Conversion). Let ω be a privacy loss distribution with support Y. If there exists a
bound B(γ) on the inner distribution ω̄ for a positive function g : Y → R and for γ ∈ Y \ {-∞,∞}∑

y≥γ
g(y) ω̄(y) ≤ B(γ) (32)
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then the bound can be expressed for the full distribution:∑
y≥γ

g(y)ω(y) ≤ ω(∞) + [1−ω(∞)]B(γ) (33)

with g(∞) = 1.

Proof. Let the variables be defined as in the lemma. The statement follows immediately from the
definition: ∑

y≥γ
g(y) ω̄(y) =

1

1− ω(∞)

∑
y≥γ, y 6=∞

g(y)ω(y)

≤ B(γ)

⇐⇒
∑

y≥γ, y 6=∞
g(y)ω(y) ≤ [1− ω(∞)]B(γ)

⇐⇒
∑
y≥γ

g(y)ω(y) ≤ ω(∞) + [1− ω(∞)]B(γ)

with setting g(∞) = 1.

5.1 The Central Limit Theorem of ADP

We now show our main theoretical result: all privacy loss distributions converge to Gauss privacy loss
distributions.

Theorem 4 (The Central Limit Theorem for ADP). Let M (x0) and M (x1) be two probabilistic mech-
anisms. Let ω1 be the corresponding privacy loss distribution with support Y1 and privacy loss class
(µ,σ2,ω(∞)) where µ and σ2 are finite. Let ωn be the privacy loss distribution with support Yn after n
repeated independent compositions of M (x0) and M (x1). Then

Yn =

{
y | y =

n∑
i=1

ỹi, ∀ỹ ∈ Yn
}

(34)

ωn(y) = (~ni=1 ω1) [y] ∀y ∈ Yn \ {-∞, ∞} (35)

ωn(∞) = 1− [ 1− ω1(∞) ]n (36)

ωn(-∞) = 0 (37)

with privacy loss class (nµ, nσ2, ωn(∞)) where ~ denotes convolution. Moreover, if σ2 > 0 and the

third absolute moment of the inner distribution γ = E |ω̄1(y)|3 < ∞, then the inner distribution ω̄n(y)
converges in distribution against a normalized Gauss with∣∣∣∣ Pr

y∼ωn
[y ≤ z | y 6=∞]− Φ

(
z−nµ√
nσ

)∣∣∣∣ < cu ·
γ√
nσ3

(38)

∀z ∈ R, or equivalently ∑
y≤z, y∈Y\{-∞,∞}

ωn(y)
d−→ [ 1−ωn(∞) ] · Φ

(
z−nµ√
nσ

)
(39)

where Φ(z) denotes the cumulative distribution function of N (0, 1) and cu = 0.4748.

Proof. For any i ∈ N, let ωi denote the privacy loss distribution with support Yi after i compositions and
let (µi, σ

2
i , ωi(∞)) be the corresponding privacy loss class. Note that ω1 is the original distribution. The

proof for this theorem is split into three parts: first, we prove the properties of ωn(y) under composition,
second we approach the privacy loss class, and as a third, we apply the central limit theorem implied
by Berry-Esseen to ωn(y)∀y ∈ Yn \ {-∞, ∞} for the Gauss shape. To ease readability we write y for a
vector of elements y1, . . . , yk and we omit the exact declaration y = y1, . . . , yk if that is clear from the
context.
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The first part will be proven by induction based on Theorem 1. If we use the same privacy loss
distribution ω1 twice for Theorem 1, we get directly

Y2 = {y | y = ỹ1 + ỹ2, ∀ỹ ∈ Y × Y}
ω2(y) =

(
~2
i=1 ω1

)
[y] ∀y ∈ Y2 \ {-∞, ∞}

ω2(∞) = 1− [ 1− ω1(∞) ]2

ω2(-∞) = 0

and as Theorem 1 allows different privacy distributions as input, we use there ω1 and n independent
compositions of ω1 (creating ωn). Then by the theorem

Yn+1 =

{
ŷ | ŷ = y +

n∑
i=1

ỹi + y, ∀y ∈ Y, ∀ỹ ∈ Yn
}

=

{
ŷ | ŷ =

n+1∑
i=1

ỹi, ∀ỹ ∈ Yn+1

}
ωn+1(y) = (ω ∗ ωn) [y] ∀y ∈ Yn+1 \ {-∞, ∞}

=
(
~n+1
i=1 ω1

)
[y]

ωn+1(∞) = 1− [ 1− ωn(∞) ] · [ 1− ω1(∞) ]

= 1− [ 1− ω1(∞)]n+1

ωn+1(-∞) = 0

which is exactly privacy loss distribution after n+ 1 compositions.
For the rest of this proof, we omit ωi(-∞) as they are always zero and do not cause any problems.

For the second part, we use the well known fact that for the inner distribution ∀y ∈ Yi \ {-∞, ∞}

ω̄i(y) = Pr
y∼ωi

[y | y 6=∞] =
ωi(y)

1− ωi(∞)

which sums up to 1 and with finite mean and variance, we can add mean and variance. For any i, j ∈ N+:

µi+j = E
y∼ω̄i+j

y

=
∑

y∈Yi+j
ω̄i+j(y) y

=
∑

y∈Yi+y

∑
yi∈Yi

ω̄i(yi) · ω̄j(y − yi) y

I
=
∑
yi∈Yi

ω̄i(yi) ·
∑
y∈Yj

ω̄j(yj) (yi + yj)

II
=
∑
yi∈Yi

ω̄i(yi) · (yi + µj)

III
= µi + µj

where we have used a variable shift y → yi + yj and the absolute convergence property to re-order the
summands (I), and the property

∑
yi∈Yi ω̄i(yi) = 1 and the definition of µi (II, III). Exactly the same

way one proves σ2
m+l = σ2

l + σ2
m, which we omit here. As these µ and σ2 and ωn(∞) coincide with the

definition of the privacy loss class, the theorem statement about the obtained privacy loss class follows
directly by induction.

For the third part, we apply Berry-Esseen as stated in definition 11 directly on the normalized
distribution PrΩn [y | y 6=∞] = ω̄n(y). All its requirements, namely finite γ, σ2 <∞ and IID composition
of ω1, are met by the theorem assumptions. Therefore, ∀z ∈ R∣∣∣∣Pr

ωn
[y ≤ z | y 6=∞]− Φ

(
z − nµ√
nσ

)∣∣∣∣ ≤ cu γ√
nσ3
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The last theorem statement follows by Lemma 6 and by the fact that

Pr
ωn

[y ≤ z | y 6=∞] =
∑

y≤z, y∈Y\{-∞,∞}
ωn(y)

It should be mentioned that privacy loss distributions of two different independent mechanisms can
converge to a Gauss as well, if they satisfy the so called Lindenberg condition [16]. Informally, the
Lindenberg condition requires that no variance of the composing independent distributions dominates
the other variances too much. This allows us to combine arbitrary privacy loss distributions while
predicting their privacy loss class and therefore their privacy loss as long as they fulfill the Lindenberg
condition.

5.2 Generalization to Lebesgue-Integrals

So far we have only considered discrete random variables. Now we extend our analysis to the continuous
case, which formally requires us to consider Lebesgue integrals. This will eventually lead us to the
analysis of the Gauss mechanism and its exact ADP-bound.

Lemma 7 (Lebesgue-Generalization). Let the continuous probabilistic mechanism M : X → Ũ define a

Lebesgue–Rokhlin probability space (Ũ , B(R), λi) where Ũ ∈ R, B(Ũ) denotes the Borel set and λi(O ⊆
Ũ) = Pr [M(xi) ∈ O] is a Lebesgue measure.

Let the privacy loss function L : Ũ → B(R)∪ {-∞,∞} be generalized to sets as follows: ∀O∈B(Ũ) :

LM(x0)/M(x1)(O) = {y | y=LM(x0)/M(x1)(o),∀o∈O} (40)

Let Ỹ = L
(
Ũ
)
\{-∞,∞}. Let L to be integrable in respect to λ. Then we define the pushforward measure

ω(y) for a Lebesgue integrable function g as

∀A ∈ B(Ỹ) :

∫
A

g dω(y) :=

∫
L−1(A)⊆Ũ
g ◦ L (u) dλ(u) (41)

if g ◦ L is integrable with respect to λ. Moreover,

∀y ∈ B(Ỹ) : ω(y) =

∫
L−1(y)

dλ(u) (42)

Additionally, let ω(∞) =
∫
L−1(∞)

dλ(u) and ω(-∞) = 0. This together gives us a measure space

(Ỹ, B(Ỹ), ω) with the finite measure ω, on which we are able to rewrite the previous quantities:

ω̄(y) =
ω(y)

1− ω(∞)
∀y ∈ B(Ỹ) (43)

µ =

∫
Ỹ
y dω̄(y) (44)

σ2 =

∫
Ỹ

(y − µ)2 dω̄(y) (45)

δM(x0)(ε) = ω(∞) +

∫
[ε,∞)∩Ỹ

(1− eε−y) dω(y) (46)

Proof. First, note that λ(u) is a σ-finite measure. The push-forward measure we can define as Ỹ and Ũ
are both a subset of R [5].

Second, as ω(y) and λ(u) are σ-finite measures and λ(u) = 0 ⇒ ω(y) = 0, the loss random variable
is a valid Radon–Nikodym derivative by the Radon-Nikodym theorem[5], and we can write ω(y).

To the generalized statements: The inner distribution (Equation (43)) is just a multiplication with
a positive constant (the normalization) to the measure λ(u) which is valid as λ(u) ∈ R everywhere. The

mean and variance are defined as ∀y ∈ R : ω̄(y) ∈ R, and Ỹ ⊆ R without -∞ and ∞. The derivation of

δM(x0)(ε) identical to Lemma 3 except that the set Ỹ does not include the distinguishing events.
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One advantage of the continuous perspective is the ability to derive sometimes a analytic form of the
privacy loss distribution directly from the mechanism distribution itself. If the privacy loss variable L is
bijective and derivable, then we can apply integration by substitution.

Lemma 8 (Density Transformation). Let M(x0) and M(x1) be probabilistic mechanisms. Let the proba-
bility density A(u) := Pr [M(x0)←u] be continuous. Let privacy loss distribution ω be created by M(x0)

over M(x1) with support Ỹ. For a subset y ⊆ Ỹ, let O = L−1
M(x0)/M(x1) (y). Let LM(x0)/M(x1) be bijective

on O, and let the derivative of the inverse ∂L−1
∂y be integrable on y. Then

dω(y) = A(L−1(y) )

(
∂L−1

∂y

)
(y) dy (47)

Proof. As we can evaluate a continuous function f(y) in the bucket space as follows∫
Ũ
f(L(o) )A(o) do

we can apply integration by substitution with L−1:∫
O

f(L (o))A(o) do =

∫
L(O)

f(y) A(L−1(y) )

(
∂L−1

∂y

)
(y) dy︸ ︷︷ ︸

dω(y)

=

∫
L(O)

f(y) dω(y)

5.3 ADP for the Gauss Mechanism

We here present a tight analytic formula for δ(ε) for the Gauss mechanism. This result is a significant
contribution in its own right, as it allows to compute (not just approximate a sound bound) the exact
privacy loss and thus ADP for Gauss noise under an arbitrary number of compositions. It is based on
the observation that the PLD of a two Gauss mechanisms is a Gauss distribution again and the fact that
we can compute exact tight-ADP for Gauss PLD after an arbitrary number of compositions.

Lemma 9 (PLD of Gauss Mechanism). Let M(x0) : X → Ũ and M(x1) : X → Ũ be a Gauss mechanism
with

M(x) ∼ N
(
x, σ2

)
for σ2 > 0, then the privacy loss distribution ω generated by M(x0) and M(x1) is a Gauss distribution

ω ∼ N
(

(x0−x1)2

2σ2
,

(x0−x1)2

σ2

)
(48)

and ω(∞) = 0 for x0, x1 ∈ X with privacy loss class
(

(x0−x1)2

2σ2 , (x0−x1)2

σ2 , 0
)

.

Proof. Let the variables be defined as in the lemma statement. Let u ∈ Ũ . This is a application of
lemma 8. The privacy loss function L : Ũ → R is

LN(x0,σ2)/N(x1,σ2) (u) = log

1√
2πσ2

e−
(u−x0)2

2σ2

1√
2πσ2

e−
(u−x1)2

2σ2

=
2u(x0 − x1)− (x2

0 − x2
1)

2σ2

Note ∀u ∈ Ũ : LN(x0,σ2)/N(x1,σ2) (u) 6= ∞ ⇒ ω(∞) = 0. Let us denote y := LN(x0,σ2)/N(x1,σ2) (u). This
function is invertible

L−1(y) =
yσ2 + (x2

0 − x2
1)

2(x0 − x1)
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and it is derivable. As all involved functions are continuous, we can use Riehmann-integrals. Let
A(u) := Pr [u←M(x0)]. Using Lemma 8,

dω(y) = A(L−1(y) )

(
∂L−1

∂y

)
(y) dy

=
1√

2πσ2
e−

(L−1(y)−x0)2

2σ2

(
σ2

2(x0 − x1)

)
dy

=
1√

2π
[

(x0−x1)2

σ2

] exp

−
(
y−
[

(x0−x1)2

2σ2

])2

2
[

(x0−x1)2

σ2

]
 dy

∼ N
(

(x0−x1)2

2σ2
,

(x0−x1)2

σ2

)
This proves the first statement. In regard of the privacy loss class, note that µ = Ey∼ω y = (x0−x1)2

2σ2 and

σ2 = Ey∼ω y2 = (x0−x1)2

σ2 can be read out by inspection immediately. With priorly proven ω(∞) = 0, the

privacy loss class of this distribution is ( (x0−x1)2

2σ2 , (x0−x1)2

σ2 , 0).

It is worth mentioning that Bun and Steinke have already calculated the absolute moments of the
Gauss mechanism [6] Lemma 2.4, which implies the result of Lemma 9 as well.

Lemma 10 (Tight ADP for Gauss PLD). Let ω be a continuous privacy loss distribution in the shape
of a Gauss distribution

ω(y) =
1− ω(∞)√

2πσ2
e−

(y−µ)2

2σ2

and with privacy loss class (µ, σ2, ω(∞)) for any 0 ≤ ω(∞) ≤ 1. Then

δM(x0)(ε) = ω(∞)+
1−ω(∞)

2

[
erfc

(
ε−µ√

2σ

)
− eε−µ+σ2

2 erfc

(
ε−µ+σ2

√
2σ

)]
(49)

where erfc(z) = 2
π

∫∞
z

exp (−t2)dt is the well studied complementary error function[3].

Proof. First, use the definition

δ(ε) = ω(∞) +

∫ ∞
ε

(1− eε−y) dω(y)

= ω(∞) + [1− ω(∞)]

∫ ∞
ε

(1− eε−y)
1√

2πσ2
e

(y−µ)2

2σ2 dy

Let us split the integral in two parts and solve them separately.∫ ∞
ε

1√
2πσ

e−
(x−µ)2

2σ2 dx =

∫ ∞
ε−µ√

2σ

1√
π
e−u

2

du =
1

2
erfc

(
ε− µ√

2σ

)
∫ ∞
ε

eε−x
1√
2πσ

e−
(x−µ)2

2σ2 dx

=eε
∫ ∞
ε

1√
2πσ

e−
(x−µ)2−2xσ2

2σ2 dx

=eε
∫ ∞
ε

1√
2πσ

e−
−x2+2x(µ−σ2)−µ2−σ4−2µσ2+σ4+2µσ2

2σ2 dx

=eε
∫ ∞
ε

1√
2πσ

e−
−(x−(µ−σ2))2

2σ2 e
−σ4+2µσ2

2σ2 dx

=
1

2
eε+

σ2

2 −µ erfc

(
ε− µ+ σ2

√
2σ

)
The lemma statement follows directly by combining everything.
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Note: for numerical stability, the second term in Equation (49) should be evaluated in log-space as

eε+
σ2

2 −µ · erfc

(
ε− µ+ σ2

√
2σ

)
= exp

(
log erfc

(
ε− µ+ σ2

√
2σ

)
+ ε+

σ2

2
− µ

)
(50)

The GNU Scientific library offers such a function named gsl sf log erfc.
Recall from Lemma 9 that for the Gauss mechanism with noise parameter σ and sensitivity |x0−x1|,4

the mean µpld and variance σ2
pld of their respective privacy loss distribution are related: µpld = σ2

pld/2 =
|x0−x1|
σ

2
/2. Hence, Lemma 10 directly implies the following theorem.

Theorem 5 (Tight ADP for the Gauss Mechanism). A Gauss mechanism M : X → Ũ with

M(x) ∼ N
(
x, σ2

)
for σ2 > 0 has for x0, x1 ∈ X after n compositions exactly

δ(ε) =
1

2

[
erfc

(
ε−nµpld√

2nσpld

)
−eε ·erfc

(
ε+nµpld√

2nσpld

)]
(51)

with σpld = |x0−x1|
σ and µpld = σ2

pld/2 and is tightly (ε, δ(ε))-ADP as in Definition 4.4.

Proof. Let the variables be as in the theorem statement. By Lemma 9 we know that the probabilistic
mechanisms M(x0) and M(x1) are again depicted as a Gauss in the privacy loss space with the privacy

loss class ( (x0−x1)2

2σ2 , (x0−x1)2

σ2 , 0). It is well known that a convolution of two Gauss is a Gauss again

N
(
y1, σ

2
)

+N
(
y2, σ

2
)

= N
(
y1 + y2, 2σ

2
)

y1, y2 ∈ R

which can be generalized to
n⊕
i=0

N
(
y, σ2

)
= N

(
ny, nσ2

)
Applying this, the privacy loss class, and Theorem 4 (CLT for differential privacy) gives us after n
composition a Gauss shaped probability distribution ωn created by Mn(x0) and Mn(x1) with

ωn ∼ N
(
n

(x0−x1)2

2σ2
, n

(x0−x1)2

σ2

)
and privacy loss class (n (x0−x1)2

2σ2 , n (x0−x1)2

σ2 , 0). As ωn is Gauss shaped, we can apply Lemma 10 and get
δMn(x0)(ε)

=
1

2

[
erfc

(
ε− n (x0−x1)2

2σ2√
2n |x0−x1|

σ

)
− eε · erfc

(
ε+ n (x0−x1)2

2σ2√
2n |x0−x1|

σ

)]
where we assumed the root of the variance in the privacy loss space to be positive. As the discussed
problem is symmetric in M(x0) and M(x1), we get

δMn(x0)(ε) = δMn(x1)(ε)

which results according to Lemma 3 in tight (ε, δ(ε))-ADP.

Corollary 1 (Tight PDP for the Gauss Mechanism). A Gauss mechanism M : X → Ũ with

M(x) ∼ N
(
x, σ2

)
for σ2 > 0 has for x0, x1 ∈ X after n compositions exactly

δPDP(ε) =
1

2

[
erfc

(
ε− nµpld√

2nσpld

)]
(52)

with σpld = |x0−x1|
σ and µpld = σ2

pld/2 and is tightly (ε, δPDP(ε))-PDP as in Definition 4.6.

Proof. The corollary follows analogously to Theorem 5 by considering only the tail bound; we simply do
not subtract the terms within the tail that are captured by eε bound.

4As discussed in Section 2, for a large class of real-valued queries, the sensitivity can be represented as |x0 − x1|.
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5.4 ADP for Arbitrary Distributions

We extract practical utility from the theoretical observation of privacy loss classes and from our analytical
formula for Gauss privacy loss distributions. We provide a generic way to compute a novel ADP bound
for arbitrary distributions. First, we recall bounds on the distance between probability distributions
under convolution and the Gauss distribution. Second, we combine these bounds with our analytical
formula to derive ADP upper and lower bounds.

Lemma 11 (Berry-Esseen and Nagaev Bound,[22]). Let X1, . . . , Xn be independent and identically
distributed zero mean random variables with

S := X1 + · · ·+Xn, γ = E |Xi|3 <∞, and σ :=
√
E |Xi|2

then |Pr [S > nσz]− Pr [Z > z]| ≤ cu
γ√
nσ3

(Berry-Esseen) (53)

|Pr [S > nσz]− Pr [Z > z]| ≤ ct
γ√

nσ3(1 + z3)
(Nagaev) (54)

where Z ∼ N (0, 1), z ≥ 0, cu = 0.4748, ct = 25.80, and ωn(∞) = 1−[1−ω1(∞)]n.

There exist similar forms of the Berry-Esseen theorem for non-iid random variables with slightly
worse cu ≤ 0.5600 and ct < 31.935 [22].

Theorem 6 (ADP for Arbitrary PLD). Let ε ≤ 0 and n be arbitrary but fixed. Let ω1 be a privacy loss
distribution created by M(x0) over M(x1) with privacy loss class (µ, σ2, ω1(∞)) where 0 < σ2 <∞ and

finite third absolute moment of the inner distribution γ = E |ω̄1(y)|3 < ∞. Let ωn be the privacy loss
distribution after n independent compositions of ω1. Let the same be valid for the dual distribution ω

1.
Let

ωn(∞)=1−[1−ω1(∞)]n, ru :=cu
γ

σ3
, rt(z) :=

{
ct

γ
σ3(1+z3) if z ≥ 0

∞ else

∆ω := ωn(∞) +
1−ωn(∞)

2

[
erfc

(
ε−nµ√

2nσ

)
− eε−nµ+nσ

2

2 erfc

(
ε−nµ+nσ2

√
2nσ

)]
βω :=

[1− ωn(∞)]√
n

min

[
ru, rt

(
z=

ε− nµ√
nσ2

)]
with z ≥ 0, cu = 0.4748 and ct = 25.80. Then∣∣δMn(x0)(ε)−∆ω

∣∣ ≤ βω (55)

Moreover, it is (ε, max (∆ω + βω , ∆ ω+ β ω))-ADP.

Proof. Let the variables be defined as in the theorem statement. Let Φn(z) be the cumulative distribution
function of N (nµ, nσ). We operate by definition of a Lebesgue integrable privacy loss density on a
measurable space (R,B(R), ω). By definition we have µ = E ω̄1(y) and finite σ2 = E |ω̄1(y) |2. First, we
prove that ∀ε > 0 we have∣∣∣∣ Pr

y∼ωn
[y ≥ ε | y 6=∞]− Pr [Zn≥ε]

∣∣∣∣ ≤ 1√
n
ru/t

(
z=

ε−nµ√
nσ2

)
where Zn ∼ N (nµ, nσ) and where ru/t(z) denotes either ru or rt(z). For ru the statement follows directly
from the definition of the Berry-Esseen bound (Lemma 11).

For rt(z), the insight that ∀z, rt(z) ≤ ∞ let us use Lemma 11 as well for Nagaev. As ru < ∞, we
obtain always a valid bound if we take the minimum for ru and rt.

Second, we examine the function

g(ε− y) := (1− eε−y) ∀y, ε ∈ R.

Note that ∀ε ∈ R, ∀y ≥ ε, 0 ≤ g(ε− y) < 1.
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For simplification, let us denote δ̄ω(ε) :=
δω (ε)−ω(∞)

1−ω(∞) . Then

∣∣δ̄ωn(ε)−δ̄Φn(ε)∣∣ =

∣∣∣∣∫ ∞
ε

g(ε−y)dω̄n(y)−
∫ ∞
ε

g(ε−y)dΦn(y)

∣∣∣∣
I
≤
∣∣∣∣∫ ∞
ε

dω̄n(y)−
∫ ∞
ε

dΦn(y)

∣∣∣∣
=

∣∣∣∣ Pr
y∼ωn

[y ≥ ε | y 6=∞]− Pr [Zn ≥ ε]
∣∣∣∣

II
≤ 1√

n
ru/t

(
fracε− nµ

√
nσ2

)
where we have used the fact that ∀ε ∈ R, ∀y ≥ ε, 0 ≤ g(ε − y) < 1 (I), and (II) we have proven
beforehand.

Now let us include ωn(∞). Theorem 4 gives us immediately ωn(∞) = 1− [1−ω1(∞)]n. If we multiply
by [1− ωn(∞)] and add zero, we get

[1−ωn(∞)]·
∣∣δ̄ωn(ε)−δ̄Φn(ε)∣∣ ≤ [1−ωn(∞)]√

n
·ru/t

(
ε− nµ√
nσ2

)
⇔
∣∣ωn(∞)+[1−ωn(∞)]·δ̄ωn(ε)− ωn(∞)

+[1−ωn(∞)]·δ̄Φn(ε)]
∣∣ ≤ [1−ωn(∞)]√

n
·ru/t

(
ε− nµ√
nσ2

)
⇔ |δωn(ε)− δΦn(ε)| ≤ [1−ωn(∞)]√

n
·ru/t

(
ε− nµ√
nσ2

)
Together with the definition of δωn(ε) = δMn(x0)(ε) and Lemma 10, we can directly obtain∣∣∣δMn(x0)(ε)−∆n,ε

µ,σ2,ωn(∞)

∣∣∣ ≤ βn,εµ,σ2,ωn(∞)

Obviously, this defines an upper bound: δMn(x0)(ε) ≤ ∆n,ε
µ,σ2,ωn(∞) + βn,εµ,σ2,ωn(∞). For the ADP property,

apply all of the proof before to the dual distribution ω

n with privacy loss class ( µ, σ2, ω(∞)) an then
invoke Lemma 3 on the upper bounds.

6 Evaluation

We apply our derived ADP-bounds to different differentially private mechanisms from the literature.
In particular, we compare the Gauss mechanism with the Laplace mechanism and see that the Gauss
mechanism has several key advantages.

6.1 Evaluating Our Bounds

We apply our various theoretical results to several mechanism from the literature. For each mechanism,
we display a pair of graphs: an ADP-graph after n compositions (left) and the growth of the minimal ε
such that δ(ε) ≤ 10−4 over the number of compositions leading up to the number in the left graph; as an
exception, for the CoverUp mechanism we display the growth of δ(0) over the number of compositions.
In all figures, the labels are ordered by the values of the respective bounds. We only show bounds
that yield reasonable results for the respective graph, e.g., we omit the Berry-Esseen bound in the right
graphs where δ(ε) ≤ 10−4 is required. Our figures use approximate zCDP only for the Gauss mechanism,
as zCDP requires an to prove that the log-normalized-moments of the privacy loss distribution can be
bounded by an affine linear function.

We use the numerical lower bound provided by the privacy buckets [19] as a benchmark in the right
graph, but omit it in the left graphs to ease readability. In Figure 7 we additionally omit Rényi DP and
Markov-ADP, as computing them lead to numerical problems in the underlying optimization problem.

We discuss each of our bounds separately and refer to different aspects of each of the graphs. We
also portray ADP values directly derived from the privacy loss class of the mechanism (i.e., our Gauss
formula applied to (µ, σ2, ω(∞)) to compare them with the bounds.
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Figure 4: Comparison of Gauss mechanism to known bounds with noise parameter σ2 = 9000002, left:
222 compositions, right: minimal ε values over the number of compositions n for δ ≤ 10−4. Comparing
the exact Gauss-ADP formula with various bounds. In the right graph, Berry-Esseen bound did not fall
into the plotting range and were omitted.
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Figure 5: Comparing bounds for the CoverUp measurement data with noise parameter width of noise =
100, left: after n = 218 compositions, right: δ(0) (i.e., ε = 0) over the number of compositions n. In the
right graph, the Rényi-DP bound and the Nagaev bound did not reach meaningful values of δ(0) ≤ 1.

6.1.1 The Mechanisms in Our Evaluation

We evaluate our bounds with the following mechanisms:
The truncated Gauss mechanism that adds truncated Gauss distributed noise to the result of a

computation (see Section 2 for more). Figure 4 compares previous bounds with our exact characterization
of the ADP-graph at and up to n = 222 compositions.

Gauss distributed noise applied to two histograms based on CoverUp data5, which results in a pair
of Gauss mixture distributions. CoverUp [26] is a recent work on anonymous communication which
measured timing-leakage-histograms of network-level delays for a scenario where a particular browser
extension is installed versus a scenario where that browser extension is not installed. Figure 5 displays
the ADP-graph after n = 218 compositions and illustrates the growths of δ(0) (i.e., total variation) over
the number of compositions n. The authors argue that deniability (ε > 0) is not reasonable for their
scenario; hence, total variation is considered. The graph shows that our theoretical insights lead to
promising approaches for deriving valuable bounds.

Abadi et al.’s differentially private stochastic gradient descent (DP-SGD) mechanism [2]; they showed
that analyzing the following worst-case distributions suffices: a Gauss distribution N (0, σ) and a Gauss
mixture distribution qN (0, σ) + (1−q)N (1, σ) (for some q ∈ [0, 1] and variation σ2). Figure 6 displays
the ADP graph after and up to n = 216 compositions (i.e., around 600 ANN training epochs).

The truncated Laplace mechanism. We omit the KOV bound [15] as the privacy buckets bounds offer
similarly tight bounds and can be computed for a higher number of compositions, which is required for
our choice of n = 220 in Figure 7 .

5We use the data set Linux periodic loading active from the CoverUp measurements found at [1].

28



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10−8

10−6

10−4

10−2

100

ε

δ(
ε)

DP-SGD, n = 216
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Figure 6: Comparing bounds for differentially private stochastic gradient descent mechanism (DP-SGD)
with noise parameters q = 0.01 and σ = 4, left: after n = 216 compositions, right: minimal ε values over
the number of compositions n for δ ≤ 10−4. In the right graph, the Berry-Esseen bound did not fall into
the plotting range and were omitted.
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Figure 7: Comparison of Laplace mechanism to known bounds with noise parameter λ = 1.26 · 106, left:
220 compositions, right: minimal ε values over the number of compositions n for δ ≤ 10−4. In the right
graph, Berry-Esseen bound did not fall into the plotting range and were omitted.

6.1.2 Markov-ADP

In Section 4.6 we improved the Rényi DP bound (or moments accountant) that was previously tailored
towards PDP for ADP and called it the Markov-ADP bound. In Figures 4 and 7 both the Markov-ADP
bound and the Rényi DP bound are far behind the other bounds; hence, we do not display them. For
both mechanisms, this effect is expected: zCDP is tailored to the Gauss mechanism and we have an exact
characterization for the Gauss mechanism; for the Laplace mechanism this observation is consistent with
previous results about Rényi DP [19].

For CoverUp and DP-SGD in Figures 5 and 6, Markov-ADP clearly outperforms the other bounds,
except the numerical privacy buckets. In particular, the Markov-ADP bound outperforms the Rényi DP
bound.

6.1.3 Normal Approximation Bounds

We have shown in Theorem 4 and illustrated in Figure 1 that every PLD converges to a Gauss distribution
after sufficiently many observations; Theorem 6 provides two separate upper and lower bounds for ADP
under n-fold sequential composition, based on the Berry-Esseen and the Nagaev bound respectively.

For CoverUp (Figure 5), the left graph shows that the Berry-Esseen bound is pretty tight until
δ(ε) < 10−2, similarly for DP-SGD (Figure 6) and Laplace (Figure 7) where it is tight almost until 10−3.
The reason for this decline becomes apparent if we look at the Berry-Esseen bound: it decreases with
a factor of 1/

√
n with the number of convolutions. For a higher number of convolutions, the Berry-

Esseen bound provides an even tighter bound. For the Nagaev-based ADP bound, the DP-SGD and the
Laplace figures6 shows that the approach of using tail-bounds (such as the Nagaev Theorem) for normal

6We omitted the Nagaev-based bound in CoverUp (Figure 5), since the Nagaev is not tight for small ε values.
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approximations is a promising direction.

6.1.4 Convergence to ADP of the Privacy Loss Class

We evaluate the accuracy of ADP derived directly from the privacy loss class of a mechanism (µ, σ2, ω(∞)).
While this characterization is exact for the Gauss mechanism, it is only approximate for other mech-
anisms. Figure 4 shows that even the privacy buckets, which we use as a benchmark, diverge from
our exact formula for a very large number of compositions. Figure 5 shows that Gauss-ADP is aston-
ishingly accurate in predicting the ADP bounds, already after little more than 10 compositions. This
gives evidence that the privacy loss class, already after a few compositions, is a good characterization of
the privacy loss of a mechanism. It appears that the imprecision of our normal approximation bounds
thus mainly stems from the looseness of these approximation bounds more than from an imprecision
of the ADP values calculated from the privacy loss class. We leave it for future work to prove tighter
ADP-bounds from this privacy loss class.

6.1.5 zCDP

We only use the approximate zCDP bounds for the Gauss mechanism, as the authors provide explicit
bounds for Gauss mechanism. While zCDP provides compelling bounds for higher epsilons, it provides
grossly inaccurate values for ε = 0 (i.e., total variation) and very small ε values. This observation is
important, as ε = 0 is an important special case: the total variation, δ(0), is used in the statistical
indistinguishability notion. This notion is useful when deniability (ε > 0) is irrelevant and only pure
indistinguishability (ε = 0) matters, as, e.g., in the timing analysis of the CoverUp paper [26].

6.2 Gauss vs. Laplace Mechanism

We now compare our results for the Gauss mechanism and the Laplace mechanism. First, we draw a
comparison between the privacy loss classes of both mechanisms, showing that they indeed are related.
Second, show that the Gauss mechanism has a better variance to privacy trade-off, even if pure DP is
preferred, as long as we can tolerate a cryptographically negligible δ.

6.2.1 Comparing the Privacy loss classes

We compare the privacy loss class of a Laplace mechanism with parameter λ (and thus with variance
σ2

L,ev = 2λ2) with that of a Gauss mechanism with parameter σG,ev = λ (thus half the variance σ2
G,ev =

λ2). Using our exact formulas for the mean µL,pld and variance σ2
G,pld of the privacy loss class of the

Laplace mechanism (Appendix A.3), we can show (Appendix A.4)

µL,pld > µG,pld (56)

σL,pld

(a)
> σG,pld (57)

(µL,pld, σL,pld)
|x0−x1|

λ →0−−−−−−−→ (µG,pld, σG,pld) (58)

where (a) requires |x0−x1|
λ ≤ 1

2 , which is the case whenever a meaningful degree of privacy is provided.
Note that higher values for µ and σ2 describe a greater privacy loss and result in higher values for δ(ε).

As a result, for relevant sensitivity to noise ratios |x0 − x1|/λ, a Gauss mechanism with parameter
σev = λ has a strictly, although slightly, better privacy loss class than a Laplace mechanism (resulting
in twice the variance, λ2 vs. 2λ2). When the sensitivity to noise parameter approaches zero, the privacy
loss classes converge. We consider this observation surprising, as the Gauss distribution has much steeper
falling tail than the Laplace distribution, which comes with a potential advantage: a truncated Gauss
distribution has far less mass in the tail than a Laplace distribution and hence comes with a smaller
inherent distinguishing event ω(∞).

6.2.2 Sacrificing Pure DP for Gauss?

The Laplace mechanism is a very popular mechanism for achieving differential privacy. The most im-
portant argument of the Laplace mechanism over the Gauss mechanism is that the latter cannot achieve
pure differential privacy, i.e., δG(ε) > 0 for all ε (cf. Theorem 5 and Corollary 1), while the Laplace
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Figure 8: Pure DP vs. both ADP and PDP of a Gauss mechanism: Given a Laplace mechanism with
λ, which for n compositions has δLn(n/λ) = 0 (ADP and PDP), compared to tight ADP-δGn and tight
PDP-δGn of a Gauss mechanism with σ = λ. δGn(n/λ) becomes negligible quickly, renders it comparable
to Laplace, with half the variance and therefore potentially higher utility.

mechanism can, e.g., with scale factor λ we get δL(1/λ) = 0. Under n-fold composition, however, the
Laplace mechanism can only achieve δLn(n/λ) = 0.

We compare different Laplace mechanisms with noise parameter λ and with variance 2λ2 to Gauss
mechanisms with half the variance σ2 = λ2 and thus a potentially higher utility. Figure 8 illustrates
that for ε = n/λ (where δLn(n/λ) = 0) the δGn(n/λ) values fall extremely fast (for ADP and PDP)
and for n = 256 compositions even negligibly small in the (concrete) cryptographic sense (< 10−50 <
2−150). These PDP-results can be interpreted as achieving pure differential privacy with ε = 256/λ with
probability 1− 2−150 with the Gauss mechanism (λ = 40) after 256 compositions.

6.3 Implementation Considerations

In Figure 4, the upper and lower bounds from privacy buckets’ numerical approximation [19] are as
expected very close to the exact bound, yet they start to loose tightness for very high amount of com-
positions. This effect can be credited to numerical errors, memory constraints, and discretization errors.
Our exact analytical bound, in contrast, can be directly evaluated for number of compositions and any
noise parameters sigma without the need to discretize the Gauss distribution:

δ(ε) =
1

2

[
erfc

(
ε− nµpld√

2nσpld

)
− eε · erfc

(
ε+ nµpld√

2nσpld

)]

where σpld = |x0−x1|
σ and µpld = σ2

pld/2.
We use the gsl sf log erfc function from the GNU Scientific Library [14] on the multiplication for

numerical robustness. We can achieve very high numerical stability with our implementation by rescaling
the privacy loss distribution. Recall that the privacy loss distribution of the Gauss mechanism is again a
Gauss distribution with mean µpld and variance σ2

pld. By computing µ0 := µpld/µ = 1 and σ0 := σpld/µ,
we can avoid an overflow in computing the exponential function. Of course, in this case we need to divide
the ε of interest by µ as well to achieve the same results.

7 Conclusion and Future Work

In this paper, we have analyzed the privacy loss of privacy-preserving mechanisms and in doing so unified
several seemingly different perspectives in the (differential) privacy literature, including Rényi-DP, the
moments accountant, (z)CDP, ADP and PDP. We have shown that the non-adaptive composition of
mechanisms corresponds to the convolution of their respective privacy loss distribution. Consequently,
we were able to apply the central limit theorem, showing that every privacy loss distribution converges
to a Gauss distribution under composition.

Our theoretical analysis shifts the perspective of creating new privacy analysis from finding seem-
ingly unrelated upper bounds of the privacy loss a mechanism has to a much clearer procedure: we now
understand that all mechanisms fall into straight-forward privacy loss classes and that their privacy loss
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converges towards a Gauss distribution either fast or more slowly. Consequently, we see the following
directions for future work: 1) finding a tight or even exact embedding of novel mechanisms into their
respective privacy loss classes, except for the three widely used mechanisms for which we already give ex-
act formulas: Laplace, Gauss and randomized response, and 2) searching for better convergence bounds,
which obviously excludes the Gauss mechanism for which we have an exact formula and hence don’t
require a bound. One interesting candidate is the staircase mechanism [12], which has been proven to be
optimal for differential privacy (without considering composition for ADP) for a class of utility functions.
We expect this mechanism to have a privacy loss distribution that is very similar to the Laplace mecha-
nism; hence, the Gauss mechanism would also offer an improved variance over the staircase mechanism.
We deem it furthermore particularly interesting to examine which other distributions are closed under
convolution and, ultimately, to find out whether the Gauss mechanism is merely a very good mechanism
that is better than Laplace, or whether it is provably optimal in the sense that the variance and (partic-
ularly) the mean of its privacy loss class is the smallest w.r.t. its initial variance σ? In other words, is
there a mechanism of the form M(x) = q(x) +N where N has a smaller variance, but achieves the same
or even a better privacy loss class than the Gauss mechanism?
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A Examples

This section lists common examples. The use of the symbols are according to their definition earlier.

A.1 Approximate Randomized Response

U = {1, 2, 3, 4} (59)

Pr [o←M(x0)] =


δ o = 1
(1−δ)eε
eε+1 o = 2

(1−δ)
eε+1 o = 3

0 o = 4

(60)

Pr [o←M(x1)] =


0 o = 1
(1−δ)
eε+1 o = 2
(1−δ)eε
eε+1 o = 3

δ o = 4

(61)

LM(x0)/M(x1) (o) =


∞ o = 1

ε o = 2

−ε o = 3

−∞ o = 4

(62)

ω(y) =


δ y =∞
(1−δ)eε
eε+1 y = ε

(1−δ)
eε+1 y = −ε
0 y = −∞

(63)

ω̄(y) =

{
eε

eε+1 y = ε
1

eε+1 y = −ε (64)

=

(
2

k

)
pk2,y (1− p)n−k2,y (65)

= Bk(n = 2, p) (66)

with k2,y =
y + 2ε

2ε
, p =

1

eε + 1
(67)

where Bk(n, p) denotes the kth summand of a Binomial distribution B(n, p) with n trials and success
probability p. Moreover, the convolution of two Binomial distributions is again a Binomial:

B(n, p) +B(m, p) = B(n+m, p) (68)
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which gives us after n compositions by Theorem 4

ω̄n(y) =

(
n

k

)
pkn,y (1− p)n−kn,y (69)

ωn(y) =


0 y = −∞
1− (1− δ)n y =∞
(1− δ)n · ω̄n(y) else

(70)

with kn,y =
y + nε

2ε
, p =

1

eε + 1

From there follows immediately by definition

δA(ξ) = [1−ωn(∞)] ·
n∑

k=dkn,ξc

[
1−eξ−y(k)

](n
k

)
pk(1−p)n−k

+ ωn(∞) (71)

=
(1− δ)n
(1 + eε)n

·
n∑

k=dkn,ξe

(
n

k

)[
1− eξ−ε(2k−n)

]
eε(n−k)

+ [1− (1− δ)n] (72)

with y(k) = ε(2k−n) and de rounds up to nearest integer. Obviously, kn,ξ has to stay between 0 and n.
Due to symmetry reasons, δ(ε) of the dual PLD is identical.

A.2 Gauss Mechanism

Ũ = R (73)

Pr [o←M(x0)] =
e−

(x−x0)2

2σ2√
2πσ

(74)

Pr [o←M(x1)] =
e−

(x−x1)2

2σ2√
2πσ

(75)

for simplicity x0 < x1

LM(x0)/M(x1) (o) =
(x1 − x0)(x0 + x1 − 2x)

2σ2
(76)

ω(∞) = 0 (77)

ω(-∞) = 0 (78)

ω(y) = ω̄(y) (79)

=
1√

2π
[

(x0−x1)2

σ2

] exp

−
(
y−
[

(x0−x1)2

2σ2

])2

2
[

(x0−x1)2

σ2

]
 (80)

µ =
(x0 − x1)2

2σ2
(81)

σ2 =
(x0 − x1)2

σ2
(82)

For δM(x0)(ε) we refer to Theorem 5. Due to symmetry: δM(x0)(ε)=δM(x1)(ε)
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A.3 Laplace Mechanism

Ũ = R (83)

Pr [o←M(x0)] =
1

2b
e
|o−x0|
b (84)

Pr [o←M(x1)] =
1

2b
e
|o−x1|
b with x0 < x1 (85)

LM(x0)/M(x1) (o) =


x0−x1

b o ≤ x0

x0+x1−2o
b x0 ≤ o ≤ x1

x1−x0

b o ≤ x1

(86)

(87)

Let us denote A(o) := Pr [o←M(x0)]

µ =

∫ ∞
-∞
L(o)A(o) do (88)

= e
x0−x1
b − b+ x0 − x1

b
(89)

σ2 =

∫ ∞
-∞

(L(o)− µ)
2
A(o) do (90)

= 3− 2e
x0−x1
b (b− 2(x0 − x1))

b
− e

2(x0−x1)
b (91)

ω(y) =

∫
L−1(y)

A(o) do (92)

=


∫∞
x1
A(x) y = x0−x1

b

A(x(y)) ∂x∂y
x0−x1

b < y ≤ x1−x0

b∫ 0

-∞A(x) y = x1−x0

b

0 else

(93)

=


1
2e

x1−x0
b y = x0−x1

b
1
4e

by−x0+x1
2b dy x0−x1

b < y ≤ x1−x0

b
1
2 y = x1−x0

b

0 else

(94)

δA(ε) =

∫ ∞
ε

(1− eε−y) dω(y) with ε ≥ 0 (95)

=


1
2e
− x0b

(
e
bε+x0

2b − e x12b
)2

+ 1
2

(
1− eε− x1−x0b

)
ε ≤ x1−x0

b

0 else

(96)

Finally, δM(x1)(ε) = δM(x0)(ε) = δA(ε) due to symmetry.

A.4 Gauss vs. Laplace σ2 derivation

Let z = x0−x1

λ . The two mechanisms (Gauss and Laplace) are symmetric, therefore, w.l.o.g., z > 0. The

Gauss mechanism has the privacy loss class ( z
2

2 , z
2, 0) (see Lemma 9). Using our exact formulas of the

privacy loss class of the Laplace mechanism (Appendix A.3), we get µL,pld = ez − 1 − z. As ex can be
represented as a Taylor expansion,

∞∑
k=i

xk

k!
=: T (i, x)

µL,pld = T (1, z)− 1− z =

µG,pld︷︸︸︷
z2

2
+

>0︷ ︸︸ ︷
T (3, z) ≥ µG,pld
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Similarly for the variance:

σ2 = 3−2e
x0−x1
λ (λ−2(x0−x1))

λ
−e2

(x0−x1)
λ

= 3−ez (2−4z)−e2z = 3−ez (2−4z+ez)

= 3−(1+z+

∞∑
i=2

zi

z!
) (2−4z+ez)

= 3−(2−4z+ez)−z (2−4z+ez)

−(

∞∑
i=2

zi

z!
) (2−4z+ez)

= 1+4z−ez−2z+4z2−zez−(

∞∑
i=2

zi

z!
) (2−4z+ez)

= 1+2z−(1+z+

∞∑
i=2

zi

z!
)+4z2−z(1+z+

∞∑
i=2

zi

z!
)

−(

∞∑
i=2

zi

z!
) (2−4z+ez)

= −(

∞∑
i=2

zi

z!
)+3z2−z(

∞∑
i=2

zi

z!
)

−1·(
∞∑
i=2

zi

z!
) (2−4z+ez)

= 3z2−(

∞∑
i=2

zi

z!
) (3−3z+ez)

= z2+2z2−(

∞∑
i=2

zi

z!
)

(
3−3z+1+z+

∞∑
i=2

zi

z!

)

= z2+2z2−(

∞∑
i=2

zi

z!
)

(
4−2z+

∞∑
i=2

zi

z!

)

= z2+2z2−
(

2z2−z3+
z2

2

∞∑
i=2

zi

z!

)

−(

∞∑
i=3

zi

z!
)

(
4−2z+

∞∑
i=2

zi

z!

)

= z2+z3−z
2

2

∞∑
i=2

zi

z!
−(

∞∑
i=3

zi

z!
)

(
4−2z+

∞∑
i=2

zi

z!

)
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(a)

≥ z2+z3−z
2

2

∞∑
i=2

zi

z!
−(

∞∑
i=3

zi

z!
)·(4−z)

= z2+z3−z
4

4
− z

5

12
−z

2

2
T (z, 4)−4T (z, 3)+zT (z, 3)

= z2+
2

6
z3−z

4

4
− z

5

12
−z

2

2
T (z, 4)−4T (z, 4)+

z4

6
+

3

2
zT (z, 4)

≥ z2+
2

6
z3−z

4

4
− z

5

12
−z

2

2
T (z, 4)−4T (z, 4)+

z4

4
+

3

2
zT (z, 4)

= z2+
2

6
z3− z

5

12
−z

2

2
T (z, 4)−4T (z, 4)+

3

2
zT (z, 4)

= z2+
2

6
z3− z

6

24
−z

2

2
T (z, 5)−4T (z, 4)+

z5

24
+

3

2
zT (z, 5)

≥ z2+
2

6
z3−z

2

2
T (z, 5)−4T (z, 4)+

3

2
zT (z, 5)

≥ z2+
2

6
z3−1

3
z4−4T (z, 5)

≥ z2+
1

12
z3

Inequality (a) holds since for z ≤ 1
2 , 1

2z ≥ T (z, 2) (and the term we removed is overall positive). Note
z2 = σG,pld.
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