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Abstract

Quantifying the privacy loss of a privacy-preserving mechanism on potentially sensitive data is
a complex and well-researched topic; the de-facto standard for privacy measures are ε-differential
privacy (DP) and its versatile relaxation (ε, δ)-approximate differential privacy (ADP). Recently,
novel variants of (A)DP focused on giving tighter privacy bounds under continual observation. In
this paper we unify many previous works via the privacy loss distribution (PLD) of a mechanism.
We show that for non-adaptive mechanisms, the privacy loss under sequential composition undergoes
a convolution and will converge to a Gauss distribution (the central limit theorem for DP). We
derive several relevant insights: we can now characterize mechanisms by their privacy loss class,
i.e., by the Gauss distribution to which their PLD converges, which allows us to give novel ADP
bounds for mechanisms based on their privacy loss class; we derive exact analytical guarantees for
the approximate randomized response mechanism and an exact analytical and closed formula for
the Gauss mechanism, that, given ε, calculates δ, s.t., the mechanism is (ε, δ)-ADP (not an over-
approximating bound).
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1 Introduction

Privacy-preservation of personal data is an increasingly important design goal of data processing sys-
tems, in particular with recently enacted strong privacy regulations [24]. Modern systems, however, are
increasingly reliant on personal data to provide the expected utility. Hence, privacy and utility are often
diametrical, rendering perfect solutions impossible but leaving space for solutions that provide privacy
under limited usage.

To quantify the privacy of a mechanism, Dwork et al. [10] proposed a strong privacy notion, called
(ε, δ)-approximate differential privacy (ADP). By now, there is a rich literature on ADP guarantees
(e.g., [27, 13]). These privacy guarantees naturally deteriorate under repeated adversarial observation,
i.e., continued usage increases (ε, δ) to a point where using the mechanism is considered insecure. A tight
assessment of this deterioration is essential since loose bounds can lead to underestimating how often a
mechanism can be used or to using too much noise. Finding tight bounds is a challenging task and has
inspired a rich body of work [16, 2, 8, 12, 21, 20, 26].

The literature contains adaptive sequential composition bounds [26, 16] that are mechanism-oblivious
in the following sense: given a sequence of ADP parameters (εi, δi)i, the adversary may in round j adap-
tively choose any mechanism that satisfies (εj , δj)-ADP. It has been shown [16, 22] that analyzing the
approximate randomized response (ARR) mechanism, i.e., analyzing two worst-case (output) distribu-
tions parametric solely in a (εj , δj) pair, exactly yields optimal mechanism-oblivious bounds. These
results have been used [27] to analyze a mechanism by deriving (ε, δ) before composition and then
computing an adaptive composition bound.

Often we are interested in quantifying the privacy of a particular mechanism under composition
instead of the privacy of adversarially chosen mechanisms. Recent results show that better fitting worst-
case distributions can lead to significantly tighter bounds under composition (Concentrated DP [8, 12],
moments accountant & Rényi DP [2, 21], and Privacy Buckets [20]).

These methods started to more intensely use the privacy loss of a mechanism that has been proposed
by a seminal work by Dinur and Nissim [9]. Most of these approaches, however, introduced novel privacy
notions derived from characterizing the moments of the privacy loss (CDP, MA, RDP) and only derived
loose bounds for well-established privacy notions, such as ADP. A notable exception is the iterative and
numerical PB approach that can fall prey to numerical errors, memory limitations, and discretization
problems.

1.1 Contribution

This work directly leverages the privacy loss [9] by constructing a probability distribution out of it, the
privacy loss distribution (PLD). The PLD is similar to the privacy loss random variable used by Dwork
and Rothblum [12], but we also consider corner cases where the loss becomes infinite. Our analysis
of the PLD, particularly under sequential composition of the mechanism it resulted from, deepens our
understanding of privacy-deterioration under composition and yields a list of foundational and practical
contributions.

(a) We show that the PLD can be used for deriving the following differential privacy metrics: pure dif-
ferential privacy (DP), approximate differential privacy (ADP), concentrated differential privacy (CDP),
Rényi differential privacy (RDP), and probabilistic differential privacy (PDP). We show that the PLD
is a unique canonical representation for RDP and ADP.

(b) We prove that the PLD of any mechanism evolves under independent non-adaptive sequential
composition as a convolution and thus, as an application of the central limit theorem, converges to a
Gauss distribution, which we call the privacy loss class of the mechanism. This Gauss distribution has a
variance and mean that directly follows from the variance and mean of the PLD and both values linearly
grow under composition. We can extend this insight from non-adaptive composition to some adaptive
mechanisms (such as adaptive query-response mechanisms), by finding worst-case distributions and an-
alyzing the PLD of these worst-case distributions. The leniency regarding adaptive choices naturally
reduces the tightness of the resulting bounds and is not the main focus of this work.

(c) As a practical application, we use these privacy loss classes to prove that the PLD of the Gauss
mechanism is again a Gauss distribution, and the privacy loss distribution of the randomized response
mechanism is a binomial distribution. As these distributions remain Gauss / binomial distributions
under self-convolution, our analysis directly yields analytical formulas for ADP and PDP for the Gauss
mechanism and the randomized response mechanism. For both mechanism, we provide tight ADP- and
PDP-parameters under sequential composition that can be efficiently calculated. Moreover, we utilize
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the tightness to invert our formulas, providing analytic (PDP) and numeric (ADP) methods to obtain
the smallest standard deviation possible still fulfilling given (ε, δ)-privacy requirements under n-fold
sequential composition; maximizing utility.

(d) Our analysis shows that the Gauss mechanism clearly outperforms the one-dimensional Laplace
mechanism under composition in terms of a variance to privacy trade-off: A Gauss mechanism with half
the variance as the Laplace mechanism provides the same privacy guarantees, for ADP, PDP and even
for (almost) pure DP, except for a tiny delta, which in our example (σ = 40) can be considered negligible
even by cryptographic standards: less than 2−80 after 128 compositionsand less than 2−150 after 256
compositions.

(e) We further use the privacy loss class of a given non-adaptive mechanism to prove upper and
lower ADP bounds for n-fold sequential composition. We apply the Berry-Esseen and Nagaev normal
approximation theorems to the privacy loss class and approximate the PLD after n convolutions (for n-
fold sequential composition). We, thus, pave the way for future research on tight normal approximation
bounds for PLDs, which would result in tight bounds for n-fold sequential composition.

(f) We prove that ADP bounds on a differentially private mechanism derived over the PLD can be
translated to bound a variation of this mechanism that includes distinguishing events. As an example,
we generalize the RDP bounds [2, 21] for the Gauss mechanism to RDP bounds for the truncated Gauss
mechanism.

Next, we characterize the PLD under sequential composition (Contribution (b)).
Informal Theorem 4 (The CLT for ADP): Let M be a mechanism and x0, x1 be two inputs yielding
the privacy loss distribution ω with finite variance σ2 and finite mean µ. Then, the privacy loss distri-
bution ωn of M on x0 and x1 after n non-adaptive sequential compositions has variance n ·σ2 and mean
n · µ. Moreover, if σ2 > 0 and the third absolute moment of ω is finite, then ωn converges against a
Gauss distribution with variance n · σ2 and mean n · µ.

5



2 Overview

We illustrate a selection of our results to highlight key ideas. Dwork and Rothblum defined the privacy
loss of any observable outcome o of a mechanism M on inputs x0 or x1 as the logarithmic ratio between
the probability to observe o on input x0 compared to on input x1.

LM(x0)/M(x1) (o) = ln

(
Pr [M(x0) = o]

Pr [M(x1) = o]

)
.

This privacy loss spans a real-valued random variable obtained by sampling o ∼ M(x0) and outputting
LM(x0)/M(x1) (o), which in turn defines the privacy loss distribution (PLD).

2.1 Worst-case distributions

The privacy loss is computed for two distributions, but is not restricted to special cases. For many
mechanisms M there are so-called worst-case distributions A and B with a privacy loss maximally as
great as that of M(x0) and M(x1) for all pairs of neighboring inputs x0 and x1. We give some intuition
on how worst-case distributions work and why they typically exist, but refer to Meiser and Mohammadi’s
recent work [20] for a more detailed discussion.

For non-adaptive mechanisms, i.e., for mechanisms that do not change structurally from one exe-
cution to the next, there is always such a pair of worst-case distributions [11, 2]. In most cases, the
worst-case distribution is defined by the worst possible (in terms of privacy) pair of inputs that is still
considered neighboring. If mechanisms behave structurally differently on different inputs, the worst-case
distributions have to be artificially created by combining the PLDs for all neighboring pairs of inputs,
which might be computationally challenging.

Adaptive queries can often be captured as well: queries can be considered part of the input, and
they are neighboring if, e.g., without adding noise, the results at most differ by the application-specific
sensitivity. As an illustrative example, consider a database-query-response system that adds noise to
its real-valued answers to queries q : X → R before releasing them: M(x) := q(x) + N , where N is
a symmetrically distributed random variable with mean zero, e.g., given by the Laplace distribution
or the Gauss distribution. If q has a sensitivity of 1, i.e., for all allowed pairs of inputs x0, x1 we
have |q(x0) − q(x1)| ≤ 1, as is the case for sum-queries, then the distributions obtained by M(0) and
M(1) are worst-case distributions. If a subsequent query q′ differs from q (potentially depending on the
mechanism’s output for q), the worst-case distributions remain unchanged, as long as |q′(x0)−q′(x1)| ≤ 1.
Hence, the results we give for the Gauss mechanism, specifically our analytical formula for differential
privacy (Theorem 5), holds in the light of adaptive queries.

For analyzing a mechanism, a pair of worst-case distributions has to exist for M and for all inputs
that fall into the neighboring relation. In doing so, we abstract away from the concepts of utility
and sensitivity and require the privacy analyst interested in applying our results to provide worst-case
distributions. In the remainder of this work we concentrate on a pair of distributions M(x0) and M(x1)
for a mechanism M : X → U and two concrete inputs x0, x1 ∈ X . All our results also apply for a pair of
worst-case distributions.

2.2 The privacy loss distribution

Given a pair of distributions, we can consider the corresponding privacy loss distribution. This pri-
vacy loss distribution naturally evolves under sequential composition as a convolution of privacy loss
distributions (Theorem 1), as Figure 1 illustrates for the Laplace mechanism. By the central limit the-
orem, a privacy loss distribution converges to a predictable Gauss distribution under sufficiently many
compositions (Theorem 4).

The privacy loss distribution of the Gauss mechanism also is a Gauss distribution and under convo-
lution again remains a Gauss distribution. We give an analytical and efficiently computable formula for
ADP and PDP composition bounds for any number of compositions. Note that these are not approximate
bounds, but indeed precise characterizations (Theorem 5, Figure 5).

We also provide bounds for arbitrary mechanisms (for which a worst-case reduction exists); after
many (n > 222) compositions, our bounds outperform previous work. Our representation with PLDs
directly shows that the moments accountant and the RDP bound actually are applications of the Markov
inequality to compute a PDP bound. With our representation, we can naturally extend that bound to
ADP, which results in tighter bounds (Markov-ADP bound: Theorem 3). At the same time, we can
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apply normal approximation theorems (the Berry-Esseen Theorem and Nagaev-Bound) to achieve tight
bounds for a very large number of observations and very small epsilons, as is, e.g., needed for timing
leakage analyses as in CoverUp [25], see Figure 6. The minimum of these normal approximation bounds
and the ADP-version of the Markov inequality achieves a very competitive bound, in particular for a
very large number of observations. We offer an efficient implementation for computing this minimum.

Figure 2 illustrates our results. The left graph plots for a recent mechanism for training deep neural
networks [2] for each ε the minimal δ(ε) such that the mechanism is still (ε, δ(ε))-ADP after 216 com-
positions. The right graph shows the minimal ε for which δ(ε) < 10−4 over the number of compositions
n. The figure displays the performance of our improved Markov-ADP bound and the performance of
our normal approximation bounds, Berry-Esseen and Nagaev. The figure even displays that our exact
bound for the Gauss distribution that matches the privacy loss class of the mechanism is very close to
the other bounds. Section 6 provides strong evidence that the privacy loss class is actually an accurate
characterization of the privacy-preservation of a mechanism and even closer to the tight bounds.

3 Related Work

Vadhan et al. [26] examined the same kind of n-fold adaptive composition as this work. Roughly speaking,
they have shown that privacy will deteriorate as

√
nε+nε2 , rather than the (trivial) worst-case nε known

in the literature. Meiser and Mohammadi [20] have recently introduced a novel numerical method for
computing ADP bounds, based on a pair of distributions. Their work investigated the privacy loss of
mechanisms and approximated this loss to give very good ADP bounds (including lower bounds) under
continual observation. Computing their bounds has higher computation requirements, in particular
for a very large number n of observations. For the Gauss mechanism our results (Theorem 5) clearly
show tighter results for very large n. When repeating their CoverUp analysis, our approach leads to
significantly improved results for very high n values, which is highly relevant for a system like CoverUp.

Kairouz et al. [16] derive tight ADP bounds for the approximate randomized response mechanism
(ARR) and use these bounds to prove upper ADP bounds for any mechanism. Their work characterizes
set of bounds for the ARR mechanism that contains the tight bounds. This results in a non-trivial
optimization problem to find the minimal bounds in this set of bounds. We derive a formula (Example 1)
for the ARR under sequential composition that directly computes such minimal bounds.

Recent work on concentrated differential privacy (CDP) [12, 8] directly focuses on the privacy loss for
deriving tighter ADP and PDP bounds. This line of work provides interesting insights into differential
privacy and into improved bounds for the Gauss mechanism; for other mechanisms, however, these results
either provide very loose bounds (e.g., the truncated Laplace mechanism) or no bounds at all (e.g., [2]).
Our work, in contrast, identifies the variance, the mean, and the mass of the distinguishing events of
the privacy loss distribution before composition (the privacy loss class) as a valuable characterization
for the degree of privacy that a mechanism provides. We illustrate that this characterization is accurate
and derive upper and lower ADP and PDP bounds.

Rényi differential privacy (RDP) [21] is a privacy notion based on the log normalized-moments of the
privacy loss distribution (the Rényi divergence). RDP is a generalization of the moments account bound
(MA) [2]. We evaluate MA in Section 6 and show an equivalence between RDP’s moments, the PLD,
and ADP (Theorem 2), which exceeds the RDP to ADP bound in [21].

In a concurrent work, Balle et al. [5] revisited the Gauss mechanism for optimal denoising in differ-
ential privacy. Interestingly, their concurrent work results in the same exact ADP-bound of the Gauss
mechanism, without any composition results, however. Additionally, Balle et al. [4] leveraged the char-
acterization of differential privacy as an f-divergence to achieve privacy amplification by subsampling.
They concurrently proved that ADP bounds imply RDP bounds but not the converse direction. Wang
et al. [28] applied similar ideas to Rényi-DP.

4 Privacy Loss Space

We review the privacy loss, a representation of the privacy leakage introduced by Dinur and Nissim [9].
We define a probability distribution from it, the privacy loss distribution (PLD) and show that it is useful
for defining many privacy notions from the literature: approximate differential privacy (ADP) [10], prob-
abilistic differential privacy (PDP) [18, 14], and Rényi differential privacy (RDP) [21], and concentrated
differential privacy (CDP) [12, 8]. For a generalization of ADP (Definition 5) and for RDP, the PLD
is even a canonical, unique, and succinct representation of the leakage (Theorem 2 and Corollary 2.1).
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M (x0), random variable of a probabilistic mechanism ap-
M (x1) plied to input x0 and x1, often abbreviated as A and B
Pr [o←A] probability of o in A
X set of mechanism-inputs
U universe of the mechanisms’ the atomic events
o atomic event in U
LA/B (o) privacy loss of observation o of A over B
ω privacy loss distribution (PLD)
y privacy loss (i.e., atomic event) in the PLD
ω(y) privacy loss pdf/pmf for y
Y set of atomic events in the PLD, the image of LA/B (U)

ω, ω(y),

Y

dual PLD of ω (Definition 3)

Table 1: Notation table

We further prove that a sequential composition translates to convolution of the respective privacy loss
distributions (Theorem 1).
Notation. See Table 1 for a summary of our notation. Formally, a probabilistic mechanism M from X
to Y describes function M : X → (Ω→ Y ), with Ω :=

⋃
x∈X Ωx and Ωx being the set of measurable sets

on which the random variable M(x) (for x ∈ X) is defined.

4.1 Privacy Loss Variables / Distributions

At the core of this work lies the representation of privacy leakage as the privacy loss. The privacy loss
L of any one output of the mechanism with respect to two potential inputs is the logarithmic ratio
between the probabilities to observe the output for each input. This ratio is of course not defined if this
probability is 0 for either the nominator or the denominator. For a more uniform treatment of realistic
mechanisms, we introduce distinct symbols∞ and −∞ that behave similar to infinity and minus infinity.
If the nominator is 0, we define the privacy loss L to be −∞, and analogously if only the denominator is
0 we define it to be ∞. This captures distinguishing events, which, if observed, reveal which of the two
inputs was used.

Definition 1 (Privacy Loss Random Variable). Given a probabilistic mechanism M : X → U , let o ∈ U
be any potential output of M and let x0, x1 ∈ X be two inputs. We define the privacy loss random
variable of o for x0, x1 as

LM(x0)/M(x1) (o) =


∞ if Pr [o←M (x0)] 6= 0 and Pr [o←M (x1)] = 0

ln
(

Pr[o←M(x0)]
Pr[o←M(x1)]

)
if Pr [o←M(xi)] 6= 0 ∀i∈{0, 1}

-∞ else,

where we consider ∞ and -∞ to be distinct symbols.

For readability, we write A := M (x0) and B := M (x1) for the output distributions of M on two

particular inputs x0 and x1 and then write LA/B (o) = ln
(

Pr[o←A]
Pr[o←B]

)
for the privacy loss of the observation

o.
The privacy loss L naturally gives rise to a probability distribution over the privacy losses, the

privacy loss distribution (PLD), for two given probability distributions A and B. The set of privacy
losses Y :=

⋃
o∈U

{
LA/B (o)

}
are the atomic events of the distribution. The respective probability

density/mass function ω of a privacy loss y is defined as the cumulative weight of all observations o
in A with privacy loss y: ω(y) :=

∑
{o | LA/B(o)=y, o∈U} Pr [o←A] with y ∈ Y. Formally, the PLD is

the compound probability distribution of the random variable L. To be able to sum over all events,
we require the universe U to be countable. For continuous distributions we generalize our results to
Lebesgue measurable sets (c.f. Section 5.2).

Definition 2 (Privacy Loss Distribution (PLD)). Let A and B be two probability distributions over the
countable universe U . The privacy loss distribution ω of A over B is defined as follows:
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Y =
⋃
o∈U

{
LA/B (o)

}
⊂ R

ω(y) =
∑
{o | LA/B(o)=y, o∈U}

Pr [o←A] with y ∈ Y

The support Y of ω additionally includes the symbol1 -∞: supp(ω) := {y | ω(y) 6= 0} ∪ {-∞}. We define
∀y ∈ R : -∞<y<∞, y+∞=∞, -∞+y= -∞, -∞+∞= -∞.

Next, we prove basic properties about the PLD.

Lemma 1 (Basic Properties of PLD). For two distributions A and B, let Y and ω(y) be as in Defini-
tion 2, we have

1. The set Y is countable.

2. ∀y ∈ Y : ω(y) ≥ 0

3.
∑
y∈Y ω(y) = 1

4. ω(∞) =
∑
{x | Pr[o←B]=0} Pr [o←A]

5. ω(-∞) = 0

Proof. The proofs directly follow from Definitions 1 and 2.

1. Y is a mapping from the countable set U and is therefore countable as well.

2. Follows from Pr [o←A] ≥ 0 ∀o ∈ U .

3.
∑
y∈Y ω(y) =

∑
o∈U Pr [o←A] = 1.

4. Follows by the definition of the privacy loss L.

5. By definition of L, o ∈ U :

ω(-∞) =
∑
{o | LA/B(o)=-∞} Pr [o←A]

=
∑
{o | Pr[o←A]=0} Pr [o←A] = 0

With these properties at hand, we can prove that the privacy loss distribution of a pair of independent
product distributions A × C vs. B ×D is the same as the convolution of the privacy loss distributions
of the pair of single distributions A vs. B and C vs. D. This theorem is vital because sequential
composition of non-adaptive mechanisms, translates to the independent product distributions of the
respective mechanisms.

Theorem 1 (Composition). Let M : X → U and M ′ : X ′ → U ′ be independent probabilistic mechanisms,
and let x0, x1 ∈ X and x′0, x

′
1 ∈ X ′. Let ω be the privacy loss distribution created by M(x0) over M(x1)

with support Y, and ω′ by M ′(x′0) over M ′(x′1) with support Y′ respectively. Let ωc with support Yc
be the privacy loss distribution created by M(x0) ×M ′(x′0) over M(x1) ×M ′(x′1) where × denotes the
independent distribution product. Then, ωc can be derived from ω and ω′ as follows:

Yc =
{
yc | yc = y + y′ ∀y ∈ Y, ∀y′ ∈ Y′

}
So, ∀yc ∈ Yc \ {-∞, ∞} we have

ωc (yc) = (ω ∗ ω′)(yc)
=

∑
{y, y′|y+y′=yc}

ω(y) · ω(y′)

ωc (∞) = 1− [1−ω(∞)]·[1−ω′(∞)]

ωc (-∞) = 0

where ω ∗ ω′ is a convolution, and the set Yc is countable.
1We are aware that the support of a probability mass function ω(y) is usually defined as the set of y with ω(y) 6= 0.

The inclusion of -∞ simplifies notation.
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Proof. Let M : X → U and M ′ : X ′ → U ′ be two probabilistic mechanisms, let x0, x1 ∈ X and x′0, x
′
1 ∈

X ′. For ease of readability we write U2 = U × U ′. We put emphasis on the difference between M(x0)
and M(x1), as well as between M ′(x′0) and M ′(x′1) respectively, which leads to four different probability-
terms, namely Pr [o←M(x0)], Pr [o←M(x1)], Pr [o′←M ′(x′0)], and Pr [o′←M ′(x′1)] all defined on o ∈
U , o′ ∈ U ′. We split U2 = U × U ′ into three sets as follows

U2
+ = {(o, o′) | ∀(o, o′) ∈ U2, ∀i ∈ {0, 1} : Pr [o = M(xi)] 6= 0 ∧ Pr [o′ = M ′(x′i)] 6= 0}
U2

0 = {(o, o′) | ∀(o, o′) ∈ U2, ∀i ∈ {0, 1} : Pr [o = M(xi)] = 0 ∧ Pr [o′ = M ′(x′i)] = 0}
U2
∞ = U2 \ (U2

+∪ U2
0 ) (one to three probabilities are 0)

Obviously, they are pairwise distinct and contain together all elements in U2 =U2
+∪ U2

∞∪ U2
0 . Therefore,

this proof examines these sets separately: first, the set U2
+ (leading to the convolution property), second

U2
∞ ( for ω(∞) and partly ω(-∞)), and last U2

0 (leftover ω(-∞)).
First, we examine the set U2

+. This will lead to the convolution property for y 6= -∞,∞. As the
tree sets are separated in a way that no event (o, o′) in U2

+ has a probability of zero, we do not need
to consider ωc (∞) or ωc (-∞) in this part. For all events (o, o′) ∈ U2

+, the privacy loss is additive under
composition: ∀(o, o) ∈ U2

+

L(M(x0),M ′(x′0))/(M(x1),M ′(x′1)) (o, o′) = ln

(
Pr [(o, o′)←(M(x0),M ′(x′0))]

Pr [(o, o′)←(M(x1),M ′(x′1))]

)
= ln

(
Pr [o←M(x0)]

Pr [o←M(x1)]

Pr [o′←M ′(x′0)]

Pr [o′←M ′(x′1)]

)
= ln

(
Pr [o←M(x0)]

Pr [o←M(x1)]

)
+ ln

(
Pr [o′←M ′(x0)]

Pr [o′←M ′(x′1)]

)
= LM(x0)/M(x1) (o) + LM ′(x1)/M ′(x′1) (o′)

since M and M ′ are independent. Let us define

Y+ =
{
yc | yc = y + y′ y ∈ Y, y′ ∈ Y′, y, y′ 6= -∞,∞

}
.

As Y and Y′ are countable, their composition Y+ is countable as well. For readability, let us define

Lc (o, o′) :=L(M(x0),M ′(x′0))/(M(x1),M ′(x′1)) (o, o′)

L (o) :=LM(x0)/M(x1) (o)

L′ (o′) :=LM ′(x′0)/M ′(x′1) (o′)

With yc ∈ Y+

ωc (yc) =
∑

{(o,o′) | Lc(o,o′)=yc}
Pr [(o, o′)←(M(x0),M ′(x′0))]

=
∑

{(o,o′) | L(o)+L′(o′)=yc}
Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

=
∑

{(y,y′)|y+y′=yc}

∑
{o | L(o)=y}

Pr [o←M(x0)] ·

∑
{o′ | L′(o′)=y′}

Pr [o′←M ′(x′0)]


=

∑
{(y,y′)|y+y′=yc}

ω(y) · ω′(y′),

which is a convolution. We have used that the sums considered converge absolutely; thus, the sum-
product is a Cauchy product and thereby the last equality is valid. For the second equality, we have
used the independence of M and M ′. As there are no events (o, o′) in U2

+ for which one of the four
probabilities Pr [o←M(xi)], Pr [o′←M ′(xi)] with i ∈ {0, 1} equals to zero, we do not need to consider
ωc (∞) or ωc (-∞) here.

In the second part, we prove the composition of ωc (∞) and show that all events in U2
∞ which add

to ωc (-∞) are zero. Next, we define four sets U∞,U ′∞,U+,U ′+ from the set U2
∞ and then subtract
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combinations of these four sets from U2
∞ to define U2

⊥:

U∞ = {o | Pr [o←M(x1)] = 0, (o, o′) ∈ U2
∞}

U ′∞ = {o′ | Pr [o′←M ′(x′1)] = 0, (o, o′) ∈ U2
∞}

U+ = {o | Pr [o←M(x1)] 6= 0, (o, o′) ∈ U2
∞}

U ′+ = {o′ | Pr [o′←M ′(x′1)] 6= 0, (o, o′) ∈ U2
∞}

U2
⊥ = U2

∞ \ (U+×U ′∞)∪(U∞×U ′+)∪(U∞×U ′∞)

First, let us argue about ω(-∞): It is always zero as for any corresponding events of M(x0) have
occurrence probability 0 as in Lemma 1. By construction, the sets U+ and U ′+ contain all events
o, o′ for which the corresponding Pr [o←M(xi)] 6= 0 and Pr [o′←M ′(x′i)] 6= 0 for i ∈ {0, 1}. There-
fore

∑
o∈U+ Pr [o←M(x0)] = 1 − ω(∞) (analogously for M ′). Moreover, all the leftover events in U2

⊥
have either Pr [o←M(x0)] = 0 or Pr [o′←M ′(x′0)] = 0 or both and are captured in the third and
fourth statement. By construction, if and only if (o, o′) ∈ (U+ × U ′∞) ∪ (U∞ × U ′+) ∪ (U∞ × U ′∞), then
Pr [(o, o′)←(M(x1),M ′(x′1))] = 0 and thus the event is within ωc (∞).

ωc (∞) =
∑
{(o,o′)|Pr[(o,o′)←(M(x1),M ′(x′1))]=0}

Pr [(o, o′)←(M(x0),M ′(x′0))]

=
∑
{(o,o′)|Pr[o←M(x1)]·Pr[o′←M ′(x′1)]=0}

Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

=
∑

(o,o′)∈(U+×U ′∞)

Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

+
∑

(o,o′)∈(U∞×U ′+)

Pr [o←M(x0)] · Pr [o′←M ′(x′0)]

+
∑

(o,o′)∈(U∞×U ′∞)

Pr [o←M(x′0)] · Pr [o′←M ′(x′0)]

= [1− ω(∞)]ω′(∞) + ω(∞)[1− ω′(∞)] + ω(∞)ω′(∞)

= 1− [1− ω(∞)][1− ω′(∞)]

where we have separated the infinite sums as before (independence and Cauchy products) and we have
used

∑
o∈U+ Pr [o←M(x0)] = 1− ω(∞) (analogously for M ′).

For the third set U2
0 , the observation that for any (o, o′) ∈ U2

0 the loss function evaluates to -∞, but
any occurrence-probabilities are zero leads to the conclusion that its contribution to any event in ωc is
0.

We show Yc =
{
yc | yc = y + y′ ∀y ∈ Y, ∀y′ ∈ Y′

}
Note that for all events in U2

∞ \ U2
⊥ we can set

y = ∞ and for all events in U2 \ (U2
+∪ U2

∞) we can set y = -∞. Together with the addition rules in
Definition 2, it is valid to define Yc = Y+∪{-∞,∞}. Again, we neglect the set U2

⊥ and U2
0 as they do

not contribute to the privacy loss distribution. Yc is countable as Y and Y′ and {-∞,∞} are countable.
this concludes the proof.

4.2 Dual Privacy Loss Distribution

The ADP definition is symmetric, but the notion of a privacy loss distribution (PLD) of A over B is
inherently asymmetric since ω(y) is defined by probabilities in A. We show that it is possible to derive
the PLD of B over A, the dual PLD, directly from the PLD of A over B.

Definition 3 (Dual PLD). Given a probabilistic mechanism M : X → U , for a privacy loss distribution
ω with support Y created by M(x0) over M(x1)(for x0, x1 ∈ X), the dual privacy loss distribution (dual
PLD) ωwith support

Y

is defined as

Y

= {-y | y ∈ Y}

ω(y) = ω(-y) ey ∀ y∈ Y
ω(∞) = 1−∑y∈ Y\{-∞,∞}

ω(y)

ω(-∞) = 0
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Lemma 2 (Meaning Dual PLD). Given a probabilistic mechanism M : X → U , for a privacy loss
distribution ω created by M(x0) over M(x1), then the PLD created by M(x1) over M(x0) is the dual
PLD ωas defined in Definition 3.

Proof. Let us split U in three sets

U+ = {o | LM(x1)/M(x0) (o) ∈ Y\ {-∞, ∞}, o ∈ U}
U∞ = {o | LM(x1)/M(x0) (o) =∞, o ∈ U}
U0 = {o | LM(x1)/M(x0) (o) = -∞, o ∈ U}

Note that the sets U+,U∞,U0 are pairwise distinct and U = U+∪U∞∪U0. We look at each set individually.
First, the set U+: As for for all events o ∈ U+ neither Pr [o←M(x0)] nor Pr [o←M(x1)] evaluates to
zero, we can use the logarithmic nature of the privacy loss LM(x0)/M(x1) (o) = −LM(x1)/M(x0) (o) which

gives us

Y+ = {-y | ∀y ∈ Y \ {-∞,∞}}. So, ∀y ∈ Y+

ω(y) =
∑

{o | LM(x1)/M(x0)(o)=y}
Pr [o←M(x1)] ,

=
∑

{x | LM(x0)/M(x1)(o)=-y}
Pr [o←M(x0)] · Pr [x←M(x1)]

Pr [o←M(x0)]

=
∑

{x | LM(x0)/M(x1)(o)=-y}
Pr [o←M(x0)] · eLM(x1)/M(x0)(o)

= ω(-y) ey

There are no events in U+ which could go into ω(-∞) or ω(∞). Next, we look at U0. We use the fact that
for all o ∈ U0, LM(x1)/M(x0) (o) = -∞ and thus Pr [o←M(x0)] = 0. In this case, according to Lemma 1:

ω(-∞) = 0. Next, for the set U∞, we use

ω(∞) =
∑
o∈U∞

Pr [o←M(x1)]

=
∑

o∈U\U0,U+
Pr [o←M(x1)]

= 1− ω(−∞)︸ ︷︷ ︸
=0

−
∑
y∈ Y+

ω(y)

Finally, note that the support of ωnamely

Y

coincides with

Y+∪{-∞,∞}. This concludes the proof.

4.3 Inner Privacy Loss Distribution

Most of the privacy bounds in this work and in the literature do not consider distinguishing events,
i.e., ω(∞) = 0. Hence, these events with L (o) = ∞ have to be treated differently. We examine the
distribution conditioned on excluding such events.

Definition 4 (Inner Distribution). The inner distribution ω̄ of a privacy loss distribution ω is the
normalized distribution without ω(−∞) and ω(∞). ∀y ∈ Y \ {-∞,∞}

ω̄(y) = Pr
y∼ω

[y | y 6=∞] =
ω(y)

1− ω(∞)

We can define a mechanism M ′ that leads to the inner distribution directly.

Lemma 3 (Mechanism for Inner Distribution). Let M : X → U be a probabilistic mechanism and
x0, x1 be inputs with common support O = {o|∀i ∈ {0, 1},Pr [o←M(xi)] 6= 0, o ∈ U}, leading to a
privacy loss distribution ω. Let M ′M,O : X → U be a probabilistic mechanism with Pr

[
o←M ′M,O(x)

]
=

Pr [o←M(x)|o ∈ O]. Then, the privacy loss distribution created by M ′M,O(x0) over M ′M,O(x1) is equal
to the inner distribution ω̄ of ω.
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Proof. Let Y be the support of ω, y ∈ Y \ {-∞,∞}. Note that ∀o ∈ U , Pr
[
o←M ′M,O(xi)

]
=

Pr [o←M(xi)|o ∈ O]. Note that ∀o ∈ O, LM ′M,O(x0)/M ′M,O(x1) (o) = LM(x0)/M(x1) (o) and LM(x0)/M(x1) (o) ∈
Y \ {-∞,∞}. The PLD of M ′M,O(x0) over MM,O′(x1) is

ω′(y) =
∑

o∈L−1
M′
M,O

(x0)/M′
M,O

(x1)
(y)

Pr
[
o←M ′M,O(x0)

]

=
∑

o∈L−1
M(x0)/M(x1)

(y)

Pr [o←M(x0)]

Pr [M(x0) ∈ O]

=
1

1− Pr [M(x0) /∈ O]

∑
o∈L−1

M(x0)/M(x1)
(y)

Pr [o←M(x0)]

=
ω(y)

1− ω(∞)

= ω̄(y) .

The following lemma shows that many of the bounds that do not consider distinguishing events can
be generalized if the bound is considered to constrain only the inner distribution.

Lemma 4 (Bound Conversion). Let ω be a privacy loss distribution with support Y. If there exists a
bound B(γ) on the inner distribution ω̄ for a positive function g : Y → R and for γ ∈ Y \ {-∞,∞}∑

y≥γ
g(y) ω̄(y) ≤ B(γ)

then the bound can be expressed for the full distribution:∑
y≥γ

g(y)ω(y) ≤ ω(∞) + [1−ω(∞)]B(γ)

with g(∞) = 1.

Proof. Let the variables be defined as in the lemma. The statement follows immediately from the
definition, setting g(∞) = 1:∑

y≥γ
g(y) ω̄(y) =

1

1− ω(∞)

∑
y≥γ, y 6=∞

g(y)ω(y) ≤ B(γ)

⇐⇒
∑

y≥γ, y 6=∞
g(y)ω(y) ≤ [1− ω(∞)]B(γ)

⇐⇒
∑
y≥γ

g(y)ω(y) ≤ ω(∞) + [1− ω(∞)]B(γ)

4.4 Approximate Differential Privacy

We first present the definition from the literature and then prove that our PLD-based definition is
equivalent.

Definition 5 (ADP). Let M : X → U be a probabilistic mechanism and x0, x1 ∈ X . We say M is
(ε, δ)-differentially private (or (ε, δ)-ADP) for x0, x1 if we have for all sets S ⊆ U

Pr [M(x0) ∈ S] ≤ eε Pr [M(x1) ∈ S] + δ.

We say that δ is tight for ε and x0, x1 if there is no δ′ < δ such that the mechanism is (ε, δ′)-ADP
for x0, x1. We write δ(ε) for this tight δ of an ε. The ADP-graph is defined as (ε, δ(ε))ε∈R. Given
a neighboring relation, we call the mechanism M (ε, δ)-ADP if M is (ε, δ)-ADP for all neighboring
x0, x1 ∈ X .
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The same definition applies if, instead of talking about mechanisms that were based on data universes
X , we consider the timing leakage of an algorithm that is based on a secret key, or if we quantify the
difficulty of distinguishing two distributions after a single event. For a illustration of ADP on two
probability distributions, see Figure 4, following a depiction in [20].

The privacy loss space directly enables us to compute a tight value δ for every value of ε such that
(ε, δ)-differential privacy is satisfied. This representation is vital for this work. We connect our definition
from above to the definition of tight ADP [20].

Definition 6 (δ∗(ε) from PLD). For a probabilistic mechanism M : X → U with inputs x0, x1 ∈ X
creating a privacy loss distribution ω with support Y and for ε ≥ 0 we define

δ∗M(x0),M(x1)(ε) = ω(∞) +
∑
y>ε, y∈Y\{-∞,∞}

(1− eε−y)ω(y)

We now show that Definitions 5 and 6 are equivalent.

Lemma 5 (δ∗(ε) equals tight-ADP). For every probabilistic mechanism M : X → U , x0, x1 ∈ X , and
for any values ε, δ ≥ 0, M is (ε, δ(ε))-tightly ADP for x0, x1 as in Definition 5 iff we have δ(ε) =(
δ∗M(x0),M(x1)(ε)

)
(c.f., Definition 6).

Proof. Let M be a probabilistic mechanism and x0, x1 ∈ X be two inputs. For simplicity, let us denote
A(o) := Pr [o←M(x0)] and B(o) := Pr [o←M(x1)], and let L−1

A/B (y) = {o | y = LA/B (o), o ∈ U} be the

pre-image of y. First, we show that∑
o∈U

max(0, A(o)− eεB(o)) = ω(∞) +
∑
y>ε, y∈Y\{-∞,∞}

(1− eε−y)ω(y)

Afterwards, we apply a lemma from prior work to prove the equivalence of the left hand side to tight-ADP.
Let us first consider only the term max(0, A(o)−eεB(o)): for any y ∈ Y \ {-∞,∞} and ∀o ∈ L−1

A/B (y)

y = ln
A(o)

B(o)
⇐⇒ B(o) = e−yA(0)

This allows us to re-write

max(0, A(o)− eεB(o)) = max(0, (1− eε−y) ·A(o)) =

{
[1− eε−y]A(o) if y > ε

0 else

where we have used the fact that ∀o ∈ U , A(0) ≥ 0. After this preparation, we can come to the next
step. Keep in mind that the support Y of ω contains all possible outcomes the loss LA/B (o) can achieve
for all o ∈ U . Then∑

o∈U
max(0, A(o)− eεB(o)) =

∑
o∈L−1(∞)

max(0, A(o)− eεB(o)︸ ︷︷ ︸
=0

)

+
∑

o∈L−1(-∞)

max(0,

=0︷︸︸︷
A(o)−eεB(o)︸ ︷︷ ︸

≤0

)

+
∑

y∈Y\{-∞,∞}

∑
o∈L−1(y)

max(0, [1−eε−y] ·A(o))

=
∑

o∈L−1(∞)

A(o) +
∑

y>ε,y 6=∞

∑
o∈L−1(y)

[1−eε−y] ·A(o)

= ω(∞) +
∑

y>ε, y∈Y\{-∞,∞}
[1−eε−y]ω(y)

= δ∗M(x0),M(x1)

=: δ∗

where we have used the definition of ω(y) =
∑
o∈L−1(y)A(o), the fact that eε > 0, and ∀o ∈ U , A(o), B(o) ≥

0. By this, we have proven the first equality from the beginning of the proof. What is left is the connection
to tight-ADP; we use Lemma 1 in [20]:
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Figure 3: Uniform noise and its privacy loss distribution before composition (n = 1) and after a few
compositions (n = 4).

Claim ([20, Lemma 1], Connection to tight-ADP). For every ε, two distributions A and B over a finite
universe U are tightly (ε, δ)-ADP with

δ = max
(∑

o∈U max (Pr [o←A]− eε Pr [o←B] , 0) ,∑
o∈U max(Pr [o←B]− eε Pr [o←A] , 0)

)
.

which in application directly concludes the proof.

One immediate corollary is the exact tight-ADP formula for the approximate randomized response
mechanism Mε,δ (with parameters ε ≥ 0, δ ∈ [0, 1]), shown to be a worst case mechanism [16] for
(ε, δ)-ADP.

Example 1 (ARR). Approximate Randomized Response for ξ ≥ 0, 1 ≥ ∆ ≥ 0, is defined as follows:
Pr [o←M(x0)] = p0(o),Pr [o←M(x1)] = p1(o) with

p0(o) =


∆ o = 1
(1−∆)eξ

eξ+1
o = 2

(1−∆)
eξ+1

o = 3

0 o = 4

p1(o) =


0 o = 1
(1−∆)
eξ+1

o = 2
(1−∆)eξ

eξ+1
o = 3

∆ o = 4

Its privacy loss distribution ω can be seen as a shifted binomial distribution, which has a very simple
form under convolution. Using Theorem 1 and Lemma 5, for n compositions, we get the exact result

δ(ε) =
(1− δ)n
(1 + eξ)n

·
n∑

k=dkn,εe

(
n

k

)[
1− eε−ξ(2k−n)

]
eξ(n−k)

+ [1− (1− δ)n]

with dkn,εe = max[0,min[n, ceil( ε+nξ2ξ )]]. For a detailed derivation, see Appendix A.1.

Example 2 (Non-DP uniform noise). Consider a mechanism that adds uniform noise to its input. We
refer to Figure 3 for a graphical depiction. Let M : X → U , with U = {−5, . . . , 5}, x1, x2 ∈ X, and
Pr [o←M(x0)] = p0(o), Pr [o←M(x1)] = p1(o) be

p0(o) =

{
1
9 o ∈ {−5, .., 4}
0 o = 5

p1(o) =

{
0 o = −4
1
9 o ∈ {−4, .., 5}

leading to

ω(y) =

{
8
9 y = 0
1
9 y =∞

The privacy loss distribution ω is not (ε, 0)-ADP as ∀ε > 0, ε < LM(x0)/M(x1) (o = −5) = ∞, i.e.

ω(∞) 6= 0, but it is (ε, 1
9 )-ADP ∀ε ≥ 0. Moreover,

ωn(y) =

{
( 8

9 )n y = 0

1−
(

8
9

)n
y =∞

is the PLD after n compositions, according to Theorem 1.
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eε ·A
δADP(ε)

δPDP(ε)

Figure 4: A graphical depiction of the (truncated) Gauss mechanism on two inputs, A = N
(
0, σ2

)
, B =

N
(
1, σ2

)
, and of how to compute ADP δADP (ε) and PDP δPDP(ε) for a given value ε. Note that eε ·A

is not a probability distribution.

4.4.1 Equivalence of PLD and ADP-Graphs

We now show that an ADP-graph is as expressive as the privacy loss distribution. For distributions
with finite support, it is possible to reconstruct the PLD from the (ε, δ(ε))ε sequence. In practice,
finite support is typically the case due to discretization and finite representations of numbers. From
Lemma 5, the opposite direction then follows. This is a significant result, as the privacy loss distribution
is sufficiently strong for other important privacy notions.

Lemma 6 (Equivalence of ADP and PLD). There exists a bijection R such that the following holds. For
any probabilistic mechanism M on inputs x0 and x1 with a privacy loss distribution (Y, ω) with finite
cardinality |Y| = k (for k ∈ N), we get the tight ADP-graph (ε, δ(ε))ε for x0, x1 (as in Definition 5) with
R(Y, ω) = (ε, δ(ε))ε and backwards R−1 ((ε, δ(ε))ε) = (Y, ω).

Proof. To show bijectivity of R, we need to prove injectivy and surjectivity. First, some general con-
siderations. According to Definition 5 and Lemma 5, for all mechanisms M : X → U and all inputs
x0, x1 ∈ X , δ(ε) of the tight ADP-graph is of the following form, where (Y, ω) is the PLD of M(x0) and
M(x1): δ(ε) =

∑
y>ε,y∈Y(1− eε−y)ω(y). Moreover, for any PLD and for all y ∈ Y, ω(y) > 0 and thus

each single summand (1− eε−y)ω(y) that is included in the sum (i.e., y > ε) is always positive.
By definition, for all PLDs (Y, ω) generated by all M on all inputs x0, x1, the image of the map

R : (Y, ω)→

ε, ∑
y>ε,y∈Y

(1− eε−y)ω(y)


ε

(1)

contains all valid tight ADP-graphs. Therefore, R is surjective.
We now prove injectivity by contradiction. Assume there are two non-equal PLDs (Y, ω), (Y′, ω′)

for which R outputs the same tight ADP-graph R(Y, ω) = (ε, δ(ε))ε and R(Y′, ω′) = (ε, δ′(ε))ε with
R(Y, ω) = R(Y′, ω′).

If the PLDs consist of a single and identical y, i.e. Y = Y′ = {y}, from δ(ε) = δ′(ε) follows
immediately ω(y) = ω′(y) as the term (1− eε−y) is identical in both. This is a contradiction. Otherwise,
if we have more than a single and identical y, we can find the minimal distance between any two y in
Y∪Y′: As k is finite and Y,Y′ are discrete, the minimal distance is η = miny0,y1∈Y∪Y′,y0 6=y1 |y0−y1| > 0.
This means that ∀y0, y1 ∈ Y ∪ Y′ with y0 6= y1, y1 /∈ (y0 − η, y0).

Let yn = maxy∈Y∪Y′ y. We prove the statement by induction. Base step: As δ′(yn) = δ(yn), we get
ω′(∞) = ω(∞) immediately by Definition 6. Induction step: Let yn ∈ Y, otherwise, switch (Y, ω) and
(Y′, ω′). If yn /∈ Y′, then ∀ε ∈ (yn − η, yn), δ(ε)− δ′(ε) = (1− eε−yn)ω′(yn) > 0. Therefore, δ(ε) 6= δ′(ε).
This is a contradiction. If yn ∈ Y′, then let ε1 = yn − η

2 and

δ′(ε1) = (1− eε1−yn)ω′(yn) +
∑

y′>yn,y′∈Y′
(1− eε1−y′)ω′(y′) + ω′(∞)

δ(ε1) = (1− eε1−yn)ω(yn) +
∑

y>yn,y∈Y
(1− eε1−y)ω(y) + ω(∞)
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But by previous induction steps:∑
y′>yn,y

′∈Y′
(1− eε1−y′)ω′(y′) + ω′(∞) =

∑
y>yn,y∈Y

(1− eε1−y)ω(y) + ω(∞)

Therefore, by δ′(ε1) = δ(ε1) ⇒ ω′(yn) = ω(yn) as the term (1 − eε1−yn) is identical. Now we define
yn−1 = maxy∈Y∪Y′\{ym|m≥n} y and repeat until Y ∪ Y′ \ {ym|m ≥ n} = {}. This will give us Y = Y′
and ω′ = ω, which is in contradiction to our assumptions. This proves injectivity. As we have proven
injectivity and surjectivity for R, we can conclude bijectivity.

4.5 Probabilistic Differential Privacy

Probabilistic differential privacy [18, 14] is a very intuitive variant of approximate differential privacy (see
Figure 4). The main idea is to require that with probability 1-δ pure ε-differential privacy holds. While
this definition has a clear semantics and is easy to understand, it is not closed under post-processing [19],
which is a crucial property for practical applications; hence, this work concentrates on ADP. Nevertheless,
we show that the privacy loss distribution is sufficient for precisely computing PDP bounds.

Definition 7 (PDP). A probabilistic mechanism M : X → U is (ε, δ)-probabilistically differentially
private (PDP) for x0, x1 ∈ X , where ε ≥ 0 and δ ≥ 0, if there are sets Sδ0 , S

δ
1 ⊆ U with Pr

[
M(x0) ∈ Sδ0

]
≤

δ and Pr
[
M(x1) ∈ Sδ1

]
≤ δ, s.t., for all sets S ⊆ U , the following in-equations hold:

Pr
[
M(x0) ∈ S \ Sδ0

]
≤ eε · Pr

[
M(x1) ∈ S \ Sδ0

]
∧Pr

[
M(x1) ∈ S \ Sδ1

]
≤ eε · Pr

[
M(x0) ∈ S \ Sδ1

]
.

(2)

M is tightly (ε, δ)-PDP for x0, x1 if δ is minimal for ε, i.e., if for all δ′ such that M is (ε, δ′)-PDP for
x0, x1, δ′ ≥ δ. Given a neighboring relation, if M is (ε, δ)-PDP for any neighboring x0, x1 ∈ X then M
is (ε, δ)-PDP.

The conditions of PDP can be directly translated to the privacy loss space as it requires each of tails
with y ≥ ε of a PLD ω and its dual PLD ωto be smaller than δ:

Lemma 7 (Connection to PDP). Let M : X → U be a probabilistic mechanism and x0, x1 ∈ X two
inputs with the PLD ω and let ωbe its dual PLD, then

M is (ε, δ)-PDP for x0, x1 ⇐⇒
∑

y>ε,y∈Y ω(y) ≤ δ∑
y>ε,y∈ Y

ω(y) ≤ δ

Proof. Let ω with support Y be created by M(x0) and M(x1). First, notice that Equation (2) in the
PDP definition is equal to the privacy loss function: for i ∈ {0, 1}:

LM(xi)/M(x1−i)

(
S \ Sδi

)
= ln

Pr
[
M(xi) ∈ S \ Sδi

]
Pr
[
M(x1−i) ∈ S \ Sδi

] ≤ ε
Let us create two sets

S′i := {o | LM(xi)/M(x1−i) (o) > ε, o ∈ Sδi }

As S′i ⊆ Sδi ⇒ Pr [M(xi) ∈ S′i] ≤ δ. Moreover, ∀o ∈ Sδi \ S′i : LM(xi)/M(x1−i) (o) ≤ ε by construction.
Therefore,

LM(xi)/M(x1−i) (o) ≤ ε ∀o ∈ S \ S′i = (S \ Sδi ) ∪ (Sδi \ S′i) (3)

which means that all o ∈ S with Li(o) > ε are in S′i.

δ ≥ Pr [M(x0) ∈ S′0]

I
=
∑
o∈S′0

Pr [o←M(x0)]

II
=
∑
{o | LM(x0)/M(x1)(o)>ε, o∈S}

Pr [o←M(x0)]

III
=
∑
y>ε

ω(y) y ∈ Y
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where we have used independence of elementary events (I), Equation (3) (II), and the privacy dis-
tribution definition (III). The argument for ωfollows analogously. This proves one direction of the
lemma. For the other direction, note that we have only used equalities, that S′i ⊆ Sδi , and that
∀o ∈ S \ S′i,LM(xi)/M(x1−i) (o) ≤ ε⇒ ∀o ∈ S \ Sδi ,LM(xi)/M(x1−i) (o) ≤ ε.

4.6 Rényi Differential Privacy & Concentrated Differential Privacy

Recent work introduced novel ADP bounds that are based on the Rényi divergence (the logarithm of the
higher moments of the exponentiated privacy loss random variable eL): concentrated DP (CDP) [12, 8],
Rényi DP (RDP) [21], and the moments accountant [2]. This Rényi divergence can be defined using the
PLD. In particular, as CDP and RDP are based on the Rényi divergence, Lemma 6 implies that RDP
and CDP can be determined from the tight APD-graph (ε, δ(ε))ε (for distributions with finite support).
These bounds were motivated as more comprehensively capturing the privacy guarantees of mechanisms.
In fact, the work on concentrated differential privacy can be seen as a direct predecessor of the present
work.

The Rényi divergence of two distributions can be directly derived from their PLD. We begin with
defining the Rényi divergence, then proceed with RDP and then with CDP.

Definition 8 (Rényi Divergence & RDP). The Rényi divergence Dα(M(x0)|M(x1)) with α > 1 for a
probabilistic mechanism M : X → U and two inputs x0, x1 ∈ X is defined as

Dα(M(x0)|M(x1)) =
1

α−1
ln E
o∼M(x1)

(
eLM(x0)/M(x1)(o)

)α
D1(M(x0)|M(x1)) = E

o∼M(x0)

(
LM(x0)/M(x1) (o)

)
Rényi differential privacy characterizes privacy as the sequence of Rényi divergences: (α,Dα)α. Given a
neighboring relation, M has ε-Rényi differential privacy of order α > 1 ((α, ε)-RDP) if Dα(M(x0)|M(x1)) ≤
ε for all neighboring x0, x1 ∈ X .

Note that D1(M(x0)|M(x1) coincides with the Kullback-Leibner (KL) divergence from M(x0) to
M(x1). This is a natural property of the PLD, if and only if no output o ∈ U has an infinite privacy
loss. Analogously, we get the KL divergence from M(x1) over M(x0) by the dual PLD ω.

Rényi differential privacy can be translated to (ε, δ)-PDP by using a logarithmic version of the Markov
bound as follows: whenever (α,Dα)α, then also (ε, αDα−αε)-ADP holds [21]. The moments accountant
uses the same characterization and proposes (ε,minα(αDα−αε)) as ADP bounds (as (ε, δ)-PDP implies
(ε, δ)-ADP).

CDP requires that the Rényi divergence be bounded by an affine linear function, which can lead
to tighter bounds for some mechanisms (e.g., the Gauss mechanism) but renders CDP unapplicable for
other mechanisms (e.g. [2], see Section 6). We use the representation from Bun and Steinke [8], called
zero-concentrated DP.

Definition 9 (Concentrated differential privacy). A mechanism M : X → U satisfies (ξ, ρ)-CDP if for
all α > 0, and all neighboring x0, x1 ∈ X (for a neighboring relation), Dα(M(x0)|M(x1)) ≤ ξ + ρα.

4.6.1 Equivalence of PLD and RDP

RDP is closely connected to the moments of the privacy loss distribution [28]. In fact, the α-Rényi-
divergence Dα is the α-1-root of the logarithm of the (α-1)-moments of the exponentiated distribution of
ω. If the moments ρλ of the exponentiated ω are are not growing too fast, |ρλ| < cdλλ! for a λ > 0, then
we have equivalence, i.e., we can compute the moments from the privacy loss distribution of a mechanism
and vice versa. For privacy loss distributions on a bounded support we always have equivalence.

Lemma 8 (Equivalence of PLD and RDP). There exists a bijection RRDP such that the following holds.
For any probabilistic mechanism M with a countable support on inputs x0 and x1 with a privacy loss
distribution (Y, ω), s.t., ω(∞) = 0, the Rényi Divergence of order λ with λ > 0 of M(x0) and M(x1) is

mλ =
1

λ
ln

(
E
y∼ω

eλy
)

= Dλ+1(M(x0)|M(x1)) (4)

Moreover, if exp(λ·mλ) < cdλλ! for two positive constants c, d, then we get the Rényi-Divergence-sequence
RRDP((Y, ω)) = (α,Dα)α and the PLD R−1

RDP ((α,Dα)α) = (Y, ω).

18



Proof. This proof is separated in three parts. First, we show Equation (4). Second, we show that there
exists a bijectionR′ between Rényi-DP and the exponentiated PLD (exp-PLD), defined as ({exp(y)|y ∈ Y} , ω◦
ln), where (Y, ω) is the PLD of A and B. Third, we show the existence of a bijection R between the
exp-PLD and the PLD itself.

First, let us show the equality between mλ and the Rényi-Divergence Dα. For simplicity, let us denote
A(o) := Pr [o←M (x0)] and B(o) := Pr [o←M (x1)]. As ω(∞) = 0, there is no o ∈ U where B(o) = 0
and A(x) 6= 0. Therefore, we can do the following:

1

λ
ln

(
E
y∼Ω

eλy
)

=
1

λ
ln

(
E
o∼A

(
A(o)

B(o)

)λ)

=
1

λ
ln
∑
o∈U

A(o)

(
A(o)

B(o)

)λ
=

1

λ
ln
∑
o∈U

B(o)

(
A(o)

B(o)

)λ+1

=
1

λ
ln E
o∼B

(
A(o)

B(o)

)λ+1

= Dλ+1(A|B)

For the second part, the bijection between RDP and exp-PLD, we derive for any λ the corresponding
moment as in the calculation from above. This is an algebraic identity, i.e. any PLD ω generated by two
distributions A and B results in one specific Rényi sequence (α,Dα(A|B))α.

The other direction ω ◦ ln⇐ (α,Dα)α is more tricky as there are cases where more than one distribu-
tion have the same moments (Hausdorff moments problem). First, let us define ρλ := exp(λ·mλ) > 0 and

notice that the condition ρλ < cdλλ! is sufficient such that the power series
∑
λ>0 ρλ

rλ

λ! has a positive

convergence radius. More formally, if ∃c, d, d′>0, s.t. 0<ρλ<cd
λλ! and d′>d, then ∀r with 0<r< 1

d′

the power series 0 <
∑
λ ρλ

rλ

λ! <
∑
λ cd

λλ! r
λ

λ! < c
∑
λ

(
d
d′

)λ
<∞ as 0< d

d′ <1 leads to a geometric series.
Now we apply the following claim about probability measures and moments:

Claim ([6, Theorem 30.1]). Let µ be probability measure on the line having finite moments a =
∫∞
∞ xkµ(dx)

of all orders. If the power series
∑
k αkr

k/k! has a positive radius of convergence, then µ is the only
probability measure with the moments (αi)i∈N.

By this claim, we know that, if the previous power series has a positive convergence radius, then
there exists a unique probability measure µ for a given series of moments (Dα(A|B))α. As shown above,
the moments of the exp-PLD are exactly the Rényi divergences; hence, this uniqueness of the measure
implies that µ equals the exp-PLD (Y′, ω ◦ ln).

For the third part, we then observe that we can transform any PLD into the exp-PLD (Y′, ω ◦ ln)
and vice versa. This is a bijective step, since the exponentiation exp : (-∞,∞)→ (0,∞) is bijective and
the logarithm ln : (0,∞) → (-∞,∞) is bijective on the domain of strictly positive real values. More
precisely, for a probability space (Y, E, ω) the following function R is bijective, where Y is the set of
atomic events, E := 2Y is the set of all events on Y, and ω is the probability measure:

R(Y, ω) := ({exp(y) | y ∈ Y}︸ ︷︷ ︸
=:Y′

, ω ◦ ln︸ ︷︷ ︸
=:ω′

)

Next, we will show that, with E′ = 2Y
′

= {{exp(y) | y ∈ v} | v ∈ E}, (Y′, E′, ω′) is a probability space.
In particular, we show that in this new probability space, ω ◦ ln is countably additive: for any countable
collection {E′i}i∈I with pairwise disjoint events E′i ∈ E′, we know that there are events Ei ∈ E s.t.,
E′i = {exp(v) | v ∈ Ei} for all i. We show that ω′ on {E′i}i∈I can be expressed using ω and {Ei}i∈I as
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follows.

ω′
(⋃
i∈I

E′i

)
= ω

(
ln

(⋃
i∈I

E′i

))

= ω

({
ln(v′) | v′ ∈

⋃
i∈I

E′i

})

= ω

ln(exp(v))︸ ︷︷ ︸
=v

| v ∈
⋃
i∈I

Ei




= ω

(⋃
i∈I
{v | v ∈ Ei}

)

As Y is countable and ω is countably additive, we can write this as a sum (∗). Since the sets Ei are
pairwise disjoint, equality (∗∗) holds. Plugging in the definition of ω′ and Ei, we get the following.

ω

(⋃
i∈I
{v | v ∈ Ei}

)
(∗)
=
∑

v∈⋃i∈I Ei
ω(v)

(∗∗)
=
∑
i∈I

ω(Ei) =
∑
i∈I

ω ◦ ln(E′i) =
∑
i∈I

ω′(E′i)

Hence, we obtain that (Y′, ω′) (together with E′ = 2Y
′
) is a probability space. Now, we can create a

bijection RRDP. As R(Y, ω) = (Y′, ω◦ln) and R′(Y′, ω◦ln) = (α,Dα)α are both bijections, RRDP := R′◦R
is also a bijection and RRDP(Y, ω) = R′(R(Y, ω)) = R′(Y′, ω ◦ ln) = (α,Dα)α.

4.7 Equivalence of Rényi-DP and ADP

From Lemma 6, we know that for any mechanism M and any two inputs x0, x1 the ADP-graph can
be bijectively mapped to the PLD and vice versa, if the common support is discrete and finite. From
Lemma 8, we know that for any mechanism M and any two inputs x0, x1 the Renyi Divergences can be
bijectively mapped to the PLD and vice versa, as long as the sequence of Rényi Divergences satisfy a
technical sanity condition. As a result, we can conclude that the series of moments (Dα)α, the ADP-graph
and the PLD contain the same information and can be transformed into one another.

Theorem 2 (Equivalence of ADP, RDP and PLD). There exists bijections RADP and RRDP such that
the following holds. Given a mechanism M . Let (x0, x1) be an arbitrary but fixed pair of inputs such that

• ∀o ∈ U , i ∈ {0, 1}, Pr [o←M(xi)] 6= 0

• the support Y of the PLD of M(x0) and M(x1) has finite cardinality |Y| = k (for k ∈ N),

• the support of M(x0) and of M(x1) is countable, and

• ∀λ > 0, Eo∼M(x0)

[
Pr[o←M(x0)]
Pr[o←M(x1)]

]λ
< cdλλ! for two positive constants c, d.

Let (ε, δ(ε))ε∈R be the ADP-Graph for x0, x1 (Definition 5), let (α,Dα(M(x0)||M(x1))) be the Rényi-
Divergence-sequence ([21]), let ω be the PLD (Definition 2). Then, the following diagram commutes:

M,x0, x1

PLD
(Y, ω)

RDP
(α,Dα(M(x0)||M(x1)))α∈N

ADP
(ε, δ(ε))ε∈R

RRDPRADP

Proof. Lemma 6 states that there is a bijection RADP such that for all mechanisms and all pairs of
inputs x0, x1 such that the support of the PLD Y has finite cardinality |Y| = k (for k ∈ N) we have
RADP((ε, δ(ε))ε∈R) = ω. Lemma 8 states that there is a bijection RRDP such that for all mechanisms
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with the support of M(x0) and of M(x1) is countable and exp(λ · |mλ|) < cdλλ! for two positive constants
c, d we have RRDP((α,Dα(M(x0)||M(x1)))α) = ω. Note that

mλ =
1

λ
ln

(
E
y∼ω

eλy
)

=
1

λ
ln

(
E

o∼M(x0)
e
λ ln

Pr[o←M(x0)]

Pr[o←M(x1)]

)
leads to

E
o∼M(x0)

[
Pr [o←M(x0)]

Pr [o←M(x1)]

]λ
< cdλλ!

As both mappings are bijections, the diagram commutes.

The previous result can be extended to mechanisms with non-equal image space, i.e. with ω(∞) 6= 0.

Corollary 2.1 (Equivalence with distinguishing events). Given M on two inputs x0, x1 with distinguish-
ing events and M ′M,O(x) as in Lemma 3, we can apply Theorem 2, resulting in a bijection for the inner
distribution ω̄ of M(x0) over M(x1) (see Definition 4), which allows us to consider the distinguishing
events separately.

Proof. This follows directly from Lemma 3 and Theorem 2.

4.8 Markov-ADP Bound

Next, we refine an ADP bound introduced by the moments accountant [2], which we coin Markov-ADP
bound. We use Markov’s inequality to limit the privacy loss. In contrast to [2], we discretize the tail
and incorporate its contribution in a more fine-grained manner.

Theorem 3 (Markov-ADP bound). A mechanism M : X → U with two inputs x0, x1 ∈ X , and a
privacy loss distribution ω with support Y created by M(x0) over M(x1). Let P be any finite non-empty
sub-set of Yn, i.e., P = {y0, . . . , yk} ⊆ Rk+1 with yi < yi+1∀i. Then, after n compositions and for ε ∈ P,
ε < y0,

δ∗M(x0)(ε) ≤ T (yk) +
∑

yi≥ε,yi∈P

(
1− eε−yi

)
· [T (yi)− T (yi−1)]

with

T (y) = min
λ

E
o∼M(x0)

[
e
λ·ln

(
Pr[o←M(x0)]

Pr[o←M(x1)]

)]n
· e−λ·y

is a upper bound for tight-ADP for x0, x1 and smaller or equal to the PDP bound given by RDP [21].

Proof. Let ωn generated by A = Mn(x0) and B = Mn(x1) be the distribution ω after n independent
self-compositions. The beginning of this proof is inspired by Theorem 2 of [2] which has already proven
the composability of the log moments

αAn,Bn(λ) ≤
n∑
i=0

αA,B(λ) = n · αA,B(λ)

with

αA,B(λ) = ln E
o∼A

eλ ln
Pr[o←A]
Pr[o←B]

for all λ > 0. Moreover, by applying Markov’s inequality, they have proven for all γ > 0, λ > 0,

Pr
y∼ω

[y ≥ γ] =
∑

y≥γ,y∈Yn
ω(y) ≤ exp(αA,B(λ)− λγ)

From which follows for ωn and the corresponding Yn∑
y≥γ,y∈Yn
ωn(y) ≤ min

λ>0
exp(αAn,Bn(λ)− λγ)

≤ min
λ>0

exp(n · αA,B(λ)− λγ)

= min
λ>0

exp

(
n·lnE

o∼A

[
eλ ln

Pr[o←A]
Pr[o←B]

]
−λγ

)

= min
λ>0

Eo∼A
[
eλ·ln

Pr[o←A]
Pr[o←B]

]n
eλ·γ

= T (γ)
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as this is valid for all λ, the term can be minimized.
W.l.o.g, we can assume T (γ) to be monotone decreasing (∀ η > 0, T (γ) ≥ T (γ + η)), else we just set

T (γ) = T (γ + η) as a probability mass cannot increase while we reduce the evaluated events. For every
ε ∈ P we want to show ∑

y>ε,y∈Yn
(1− eε−y)ωn(y) (5)

≤T (yk) +
∑

yj≥ε,yj∈P
(1− eε−yj ) [T (yj−1)− T (yj)]

Due to the (1− eε−y) terms, which are smaller than 1 (as in the RDP bound formula [21]), this bound
is less or equal to the Rényi-DP bound. To see why Equation (5) is true, we first investigate properties
of ωn. Note that in general, a < b ⇒ (1 − 1

ea ) ≤ (1 − 1
eb

). Thus, for every f ≥ 0 and for all numbers
a0 ≤ a1, ∑

a0≤a<a1
(1− eε−a)f(a) ≤ (1− eε−a1)

∑
a0≤a<a1

f(a).

We split Yn into chunks with boundaries P = {y0, .., yk} ⊆ Rk+1 with yi < yi+1∀i. We define, for
i ∈ {0, .., k}, T ′′(i) :=

∑
y∈Yn,y≥yi ωn(y) , T ′(k) := T ′′(k), for i ¡ k: T ′(j) := T ′′(i) − T ′′(i + 1). We

retain for every yi ∈ P, ∑
y≥yi,y∈Yn

ωn(y) =
∑

j≥i,j∈{0,...,k}
T ′(j)

We retain for every yi ∈ P, ∑
yi≤y,y∈Yn

(1− eε−y)ωn(y)

=
∑

j≥i,j∈{0,...,k−1}

∑
yj≤y<yj+1,y∈Yn

(1−eε−y)ωn(y)

+
∑
yk≤y,y∈Yn

(1−eε−y)ωn(y)

≤
∑

j≥i,j∈{0,...,k−1}

(1− eε−yj+1)
∑

yj≤y<yj+1,y∈Yn
ωn(y)

+
∑

yk≤y,y∈Yn
ωn(y)

=
∑

j≥i,j∈{0,...,k−1}

(
(1− eε−yj+1)T ′(j)

)
+ T ′(k)

Claim: For functions f1, f2 s.t. for all i ∈ {0, . . . , k}: ∑i≤j,j∈{0,...,k} f1(j) ≥ 0,
∑
i≤j,j∈{0,...,k} f2(j) ≥ 0

and
∑
i≤j,j∈{0,...,k} f1(j) ≤∑i≤j,j∈{0,...,k} f2(j) and for all monotonously increasing functions g ≥ 0,∑

i≤j,j∈{0,...,k}
f1(j)g(j) ≤

∑
i≤j,j∈{0,...,k}

f2(j)g(j)

To see why the claim is true, let f1, f2, g be functions as above. We know that

∑
i≤j,j∈{0,...,k}

f1(j) ≤
∑

i≤j,j∈{0,...,k}
f2(j)

⇔
∑

i≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0

We start with this statement, but use it for other values of i subsequently.
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∑
i≤j,j∈{0,...,k}

(f1(j)− f2(j)) ≤ 0

⇒ g(i) ·
∑

i≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0

⇔ g(i)(f1(i)− f2(i)) + g(i) ·
∑

i+1≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0

Since
∑
i+1≤j,j∈{0,...,k} (f1(j)− f2(j)) ≤ 0 and g(i) ≤ g(i+ 1) we thus know that

g(i)(f1(i)− f2(i)) + g(i+ 1) ·
∑

i+1≤j,j∈{0,...,k}
(f1(j)− f2(j)) ≤ 0.

We apply this argument repeatedly to yield∑
i≤j,j∈{0,...,k}

g(i) · (f1(j)− f2(j)) ≤ 0

⇔
∑

i≤j,j∈{0,...,k}
g(i)f1(j) ≤

∑
i≤j,j∈{0,...,k}

g(i)f2(j).

This shows the claim. We split the Markov tails T into T ′ analogously to how we have split T into T ′:

T ′(k) := T (yk)

for i ¡ k: T ′(i) := T (yi)− T (yi+1)

We again retain for every yi ∈ P,

T (yi) =
∑

yj≥yi,yj∈P
T ′(i)

Note that for all i ∈ {0, . . . , k}, ∑
i≤j,j∈{0,...,k}

T ′(j) ≤
∑

i≤j,j∈{0,...,k}
T ′(j)

and that furthermore we are now finally able to apply our property. Given yi ∈ P, we get∑
yi≤y,y∈Yn

(1− eε−y)ωn(y)

≤
∑

j≥i,j∈{0,...,k−1}

(
(1− eε−yj+1)T ′(j)

)
+ T ′(k)

≤
∑

j≥i,j∈{0,...,k−1}

(
(1− eε−yj+1)T ′(j)

)
+ T ′(k)

≤T (yk) +
∑

yj≥yi,yj∈P
(1− eε−yj ) [T (yj−1)− T (yj)]

Please note that the Markov-ADP bound limits only δ∗M(x0)(ε). For common (ε, δ)-ADP guarantees

that are valid for both combinations of input x0 and x1, the dual distribution condensed to δ∗M(x1)(ε) need

to be evaluated as well. Then, as with RDP, bounds for x0 and x1 are δ = max( δ∗M(x0)(ε), δ
∗
M(x1)(ε) )

for any ε > 0. In literature, ADP analyses often bounds derived by worst case neighboring input pairs
to obtain bounds for all neighboring input pairs. Here, x0 and x1 can be seen as such worst-case inputs.

This concludes our discussion and review of individual bounds from our perspective on the privacy
loss distribution. We see that considering privacy loss distributions is insightful and allows for a com-
prehensive investigation of a wide variety of privacy aspects. Next, we turn to a central insight from our
analyses of the privacy loss space: the privacy loss under sequential composition inevitably acquires the
shape of a Gauss distribution. This insight then enables us to present a novel, elegant, and expressive
characterizations for various mechanisms, which we call privacy loss classes.
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5 Privacy Loss Classes

We characterize the approximate behavior of the privacy loss distribution of M(x0) and M(x1) under
sequential composition with a notion of a privacy loss class. The privacy loss class has the following
property: with an increasing number of compositions n, two different privacy loss distributions (PLD)
in the same privacy loss class converge to the same Gauss PLD. As composition excluding distinguishing
events translates to convolution of PLDs (Theorem 1), the convergence is implied by the central limit
theorem.

The central limit theorem further implies that it suffices to know the variance and mean of the
two PLDs before convolution (i.e., composition). The variance and mean of the combined privacy
loss distribution (i.e., after convolution) is the sum of the respective values. Thus, by classifying each
mechanism by the variance and mean of the respective privacy loss distribution, we can (in the limit)
describe the privacy loss of the mechanism and approximately calculate its privacy loss. Section 6
highlights that this description is actually very accurate in practical cases.

This convergence to a Gauss distribution does not apply to events that have an infinite privacy loss
∞. Consequently, we focus on the inner distribution (c.f., Section 4.3). Recall that the inner distribution
is the renormalized privacy loss distribution without distinguishing events.

Under composition, the probability that a distinguishing event occurs changes in a simple and straight-
forward way. Consequently, privacy loss classes have three defining elements: (µ, σ2, ω(∞)), the mean
and the variance of the inner distribution, and the probability of distinguishing events ω(∞).

Definition 10 (Privacy Loss Classes). A privacy loss distribution ω with support Y belongs to the
(µ, σ2, ω(∞))-privacy loss class

µ =
∑

y∈Y\{-∞,∞}
y · ω̄(y) ,

σ2 =
∑

y∈Y\{-∞,∞}
(y − µ)2 · ω̄(y)

if ω(∞) 6= 1, or to the privacy loss class (0, 0, 1) else.

Note that the privacy loss class of every privacy loss distribution coincides (by definition) with the
mean and variance of the inner distribution.

5.1 The Central Limit Theorem of ADP

We now show our main theoretical result: all privacy loss distributions converge to Gauss privacy loss
distributions.

Theorem 4 (The Central Limit Theorem for ADP). Let M : X → U be a mechanism with two inputs
x0, x1 ∈ X . Let ω1 be the corresponding privacy loss distribution with support Y1 and privacy loss class
(µ,σ2,ω(∞)) where µ and σ2 are finite. Let ωn be the privacy loss distribution with support Yn after n
repeated independent compositions of M (x0) and M (x1). Then

Yn =

{
y | y =

n∑
i=1

ỹi, ∀ỹ ∈ Yn
}

ωn(y) = (~ni=1 ω1) [y] ∀y ∈ Yn \ {-∞, ∞}
ωn(∞) = 1− [ 1− ω1(∞) ]n

ωn(-∞) = 0

with privacy loss class (nµ, nσ2, ωn(∞)) where ~ denotes convolution. Moreover, if σ2 > 0 and the

third absolute moment of the inner distribution γ = E |ω̄1(y)|3 < ∞, then the inner distribution ω̄n(y)
converges in distribution against a normalized Gauss with∣∣∣∣ Pr

y∼ωn
[y ≤ z | y 6=∞]− Φ

(
z−nµ√
nσ

)∣∣∣∣ < cu ·
γ√
nσ3
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∀z ∈ R, or equivalently ∑
y≤z, y∈Y\{-∞,∞}

ωn(y)
d−→ [ 1−ωn(∞) ] · Φ

(
z−nµ√
nσ

)
where Φ(z) denotes the cumulative distribution function of N (0, 1) and cu = 0.4748.

Proof. For any i ∈ N, let ωi denote the privacy loss distribution with support Yi after i compositions and
let (µi, σ

2
i , ωi(∞)) be the corresponding privacy loss class. Note that ω1 is the original distribution. The

proof for this theorem is split into three parts: first, we prove the properties of ωn(y) under composition,
second we approach the privacy loss class, and as a third, we apply the central limit theorem implied
by Berry-Esseen to ωn(y)∀y ∈ Yn \ {-∞, ∞} for the Gauss shape. To ease readability we write y for a
vector of elements y1, . . . , yk and we omit the exact declaration y = y1, . . . , yk if that is clear from the
context.

The first part will be proven by induction based on Theorem 1. If we use the same privacy loss
distribution ω1 twice for Theorem 1, we get directly

Y2 = {y | y = ỹ1 + ỹ2, ∀ỹ ∈ Y × Y}
ω2(y) =

(
~2
i=1 ω1

)
[y] ∀y ∈ Y2 \ {-∞, ∞}

ω2(∞) = 1− [ 1− ω1(∞) ]2

ω2(-∞) = 0

and as Theorem 1 allows different privacy distributions as input, we use there ω1 and n independent
compositions of ω1 (creating ωn). Then by the theorem

Yn+1 =

{
ŷ | ŷ = y +

n∑
i=1

ỹi + y, ∀y ∈ Y, ∀ỹ ∈ Yn
}

=

{
ŷ | ŷ =

n+1∑
i=1

ỹi, ∀ỹ ∈ Yn+1

}
ωn+1(y) = (ω ∗ ωn) [y] ∀y ∈ Yn+1 \ {-∞, ∞}

=
(
~n+1
i=1 ω1

)
[y]

ωn+1(∞) = 1− [ 1− ωn(∞) ] · [ 1− ω1(∞) ]

= 1− [ 1− ω1(∞)]n+1

ωn+1(-∞) = 0

which is exactly privacy loss distribution after n+ 1 compositions.
For the rest of this proof, we omit ωi(-∞) as they are always zero and do not cause any problems.

For the second part, we use the well known fact that for the inner distribution ∀y ∈ Yi \ {-∞, ∞}

ω̄i(y) = Pr
y∼ωi

[y | y 6=∞] =
ωi(y)

1− ωi(∞)

which sums up to 1 and with finite mean and variance, we can add mean and variance. For any i, j ∈ N+:

µi+j = E
y∼ω̄i+j

y =
∑

y∈Yi+j
ω̄i+j(y) y

=
∑

y∈Yi+y

∑
yi∈Yi

ω̄i(yi) · ω̄j(y − yi) y

I
=
∑
yi∈Yi

ω̄i(yi) ·
∑
y∈Yj

ω̄j(yj) (yi + yj)

II
=
∑
yi∈Yi

ω̄i(yi) · (yi + µj)
III
= µi + µj

where we have used a variable shift y → yi + yj and the absolute convergence property to re-order the
summands (I), and the property

∑
yi∈Yi ω̄i(yi) = 1 and the definition of µi (II, III). Exactly the same

way one proves σ2
m+l = σ2

l + σ2
m, which we omit here. As these µ and σ2 and ωn(∞) coincide with the
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definition of the privacy loss class, the theorem statement about the obtained privacy loss class follows
directly by induction.

For the third part, we apply Berry-Esseen as stated in definition 13 directly on the normalized
distribution PrΩn [y | y 6=∞] = ω̄n(y). All its requirements, namely finite γ, σ2 <∞ and IID composition
of ω1, are met by the theorem assumptions. Therefore, ∀z ∈ R∣∣∣∣Pr

ωn
[y ≤ z | y 6=∞]− Φ

(
z − nµ√
nσ

)∣∣∣∣ ≤ cu γ√
nσ3

The last theorem statement follows by Lemma 4 and by the fact that

Pr
ωn

[y ≤ z | y 6=∞] =
∑

y≤z, y∈Y\{-∞,∞}
ωn(y)

It should be mentioned that privacy loss distributions of different independent mechanisms can con-
verge to a Gauss distribution as well if they satisfy the so-called Lindenberg condition [17]. Informally,
the Lindenberg condition requires that no variance of the composing independent distributions domi-
nates the other variances too much. This allows us to combine arbitrary privacy loss distributions while
predicting their privacy loss class and therefore their privacy loss as long as they fulfill the Lindenberg
condition. Assume that for every input x ∈ X to M the output distribution and therefore for every pair
M(x0),M(x1) the PLD is known. Then the resulting PLD after multiple compositions for each pair of
inputs can be computed (see Theorem 1). Instead of invoking the computationally expensive convolu-
tion, the privacy loss class can be computed directly from the individual µ and σ of each PLD involved.
As the individual inputs are known, expensive convolution operations on the PLD of M(x0) and M(x1)
can be neglected, and we can directly operate on the individual inputs to estimate the privacy loss with
the bounds from Theorem 4.

5.2 Generalization to Lebesgue-Integrals

So far we have only considered discrete random variables. Now we extend our analysis to the continuous
case, which formally requires us to consider Lebesgue integrals. This will eventually lead us to the
analysis of the Gauss mechanism and its exact ADP-bound.

Lemma 9 (Lebesgue-Generalization). Let M : X → Ũ be a mechanism with two inputs x0, x1 ∈ X with

continuous universe Ũ . Define a Lebesgue–Rokhlin probability space (Ũ , B(R), λi) where Ũ ∈ R, B(Ũ)

denotes the Borel set and λi(O ⊆ Ũ) = Pr [M(xi) ∈ O] is a Lebesgue measure (for i ∈ {0, 1}). Let the

privacy loss function L : Ũ → B(R) ∪ {-∞,∞} be generalized to sets as follows: ∀O∈B(Ũ) :

LM(x0)/M(x1)(O) = {y | y=LM(x0)/M(x1)(o),∀o∈O}

Let Ỹ = L
(
Ũ
)
\{-∞,∞}. Let L to be integrable in respect to λ. Then we define the pushforward measure

ω(y) for a Lebesgue integrable function g as

∀A ∈ B(Ỹ) :

∫
A

g dω(y) :=

∫
L−1(A)⊆Ũ
g ◦ L (u) dλ(u)

if g ◦ L is integrable with respect to λ. Moreover,

∀y ∈ B(Ỹ) : ω(y) =

∫
L−1(y)

dλ(u)

Additionally, let ω(∞) =
∫
L−1(∞)

dλ(u) and ω(-∞) = 0. This gives us a measure space (Ỹ, B(Ỹ), ω) with

the finite measure ω, allowing us to rewrite previous quantities:

ω̄(y) =
ω(y)

1− ω(∞)
∀y ∈ B(Ỹ) (6)

µ =

∫
Ỹ
y dω̄(y)

σ2 =

∫
Ỹ

(y − µ)2 dω̄(y)

δM(x0)(ε) = ω(∞) +

∫
[ε,∞)∩Ỹ

(1− eε−y) dω(y)
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Proof. First, note that λ(u) is a σ-finite measure. The push-forward measure we can define as Ỹ and

Ũ are both a subset of R [7]. Second, as ω(y) and λ(u) are σ-finite measures and λ(u) = 0 ⇒ ω(y) = 0,
the loss random variable is a valid Radon–Nikodym derivative by the Radon-Nikodym theorem[7], and
we can write ω(y).

To the generalized statements: The inner distribution (Equation (6)) is just a multiplication with a
positive constant (the normalization) to the measure λ(u) which is valid as λ(u) ∈ R everywhere. The

mean and variance are defined as ∀y ∈ R : ω̄(y) ∈ R, and Ỹ ⊆ R without -∞ and ∞. The derivation of

δM(x0)(ε) identical to Lemma 5 except that the set Ỹ does not include the distinguishing events.

One advantage of the continuous perspective is the ability to derive sometimes an analytic form of
the privacy loss distribution directly from the mechanism distribution itself. If the privacy loss variable
L is bijective and derivable, then we can apply integration by substitution.

Lemma 10 (Density Transformation). Let M : X → Ũ be a mechanism with two inputs x0, x1 ∈ X . Let
the probability density A(u) := Pr [u←M(x0)] be continuous. Let privacy loss distribution ω be created

by M(x0) over M(x1) with support Ỹ. For a subset y ⊆ Ỹ, let O = L−1
M(x0)/M(x1) (y). Let LM(x0)/M(x1)

be bijective on O, and let the derivative of the inverse ∂L−1
∂y be integrable on y. Then

dω(y) = A(L−1(y) )

(
∂L−1

∂y

)
(y) dy

Proof. As we can evaluate a continuous function f(y) in the privacy loss space as
∫
Ũ f(L(o) )A(o) do,

we can apply integration by substitution with L−1:∫
O

f(L (o))A(o) do =

∫
L(O)

f(y) A(L−1(y) )

(
∂L−1

∂y

)
(y) dy︸ ︷︷ ︸

dω(y)

=

∫
L(O)

f(y) dω(y)

5.3 ADP for the Gauss Mechanism

The Gauss mechanism applies Gauss distributed noise to a real-valued deterministic function, e.g., a
query-response mechanism that gets as input a database D and a query q and outputs q(D) +N

(
0, σ2

)
.

We abstract away from the use case and analyze the privacy loss of M(x) = x+N
(
0, σ2

)
. Consequently,

we can focus on a simple neighboring relation: x0 and x1 are neighboring iff |x0 − x1| ≤ s, where s ∈ R
is the (limited) sensitivity. In the query-response example, x = q(D); note that we can easily replace q:
queries of subsequent runs can be chosen adaptively (as long as the sensitivity is not exceeded) and we
will still analyze the same mechanism on inputs x0, x1 with |x0 − x1| ≤ s. Our analysis also applies to
other use cases as long as the query on neighboring inputs has a sensitivity bounded by s. We here present
a tight analytic formula for δ(ε) for the Gauss mechanism. This result is a significant contribution, as
it allows to compute (not just approximate) the exact privacy loss. We show that PLD of the Gauss
mechanisms also is a Gauss distribution and under composition remains a Gauss distribution. Thus, we
yield a tight analytic formula for the Gauss mechanism after an arbitrary number of compositions. If
the actual sensitivity of the underlying function differs from s our bounds naturally lose their tightness.

Based on the tightness of our analytic formula, we illustrate how the optimal degree of Gauss Noise
σ (the standard deviation) is found, i.e., for given privacy constraints expressed by (ε, δ), we provide the
smallest degree of noise σ such that the privacy constraints are still satisfied after n compositions; and
therefore, maximising utility. While we can provide such a formula for PDP analytically, the solution
for ADP is obtained numerically.

Lemma 11 (PLD of Gauss Mechanism). Let M be a probabilistic Gauss mechanism with M : X → Ũ
and

M(x) ∼ N
(
x, σ2

)
for σ2 > 0 and let x0, x1 ∈ X . Then the privacy loss distribution ω generated by M(x0) and M(x1) is a
Gauss distribution

ω ∼ N
(

(x0−x1)2

2σ2
,

(x0−x1)2

σ2

)
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and ω(∞) = 0 with privacy loss class
(

(x0−x1)2

2σ2 , (x0−x1)2

σ2 , 0
)

.

Proof. Let the variables be defined as in the lemma statement. Let u ∈ Ũ . This is a application of
lemma 10. The privacy loss function L : Ũ → R is

LN(x0,σ2)/N(x1,σ2) (u) = ln

1√
2πσ2

e−
(u−x0)2

2σ2

1√
2πσ2

e−
(u−x1)2

2σ2

=
2u(x0 − x1)− (x2

0 − x2
1)

2σ2

Note ∀u ∈ Ũ : LN(x0,σ2)/N(x1,σ2) (u) 6= ∞ ⇒ ω(∞) = 0. Let us denote y := LN(x0,σ2)/N(x1,σ2) (u). This

function is invertible L−1(y) =
yσ2+(x2

0−x2
1)

2(x0−x1) and it is derivable. As all involved functions are continuous,

we can use Riehmann-integrals. Let A(u) := Pr [u←M(x0)]. Using Lemma 10,

dω(y) = A(L−1(y) )

(
∂L−1

∂y

)
(y) dy

=
1√

2πσ2
e−

(L−1(y)−x0)2

2σ2

(
σ2

2(x0 − x1)

)
dy

=
1√

2π
[

(x0−x1)2

σ2

] exp

−
(
y−
[

(x0−x1)2

2σ2

])2

2
[

(x0−x1)2

σ2

]
 dy

∼ N
(

(x0−x1)2

2σ2
,

(x0−x1)2

σ2

)
This proves the first statement. In regard of the privacy loss class, note that µ = Ey∼ω y = (x0−x1)2

2σ2 and

σ2 = Ey∼ω y2 = (x0−x1)2

σ2 can be read out by inspection immediately. With priorly proven ω(∞) = 0, the

privacy loss class of this distribution is ( (x0−x1)2

2σ2 , (x0−x1)2

σ2 , 0).

Bun and Steinke have already derived the absolute moments of the Gauss mechanism [8, Lemma 2.4]
which implies the result of Lemma 11 as well.

Lemma 12 (Tight ADP for Gauss PLD). Let ω be a continuous privacy loss distribution in the shape
of a Gauss distribution

dω(y) =
1− ω(∞)√

2πσ2
e−

(y−µ)2

2σ2 dy

and with privacy loss class (µ, σ2, ω(∞)) for any 0 ≤ ω(∞) ≤ 1. Then

δM(x0)(ε) = ω(∞) +
1− ω(∞)

2

[
erfc

(
ε− µ√

2σ

)
− eε−µ+σ2

2 erfc

(
ε− µ+ σ2

√
2σ

)]
(7)

where erfc(z) = 2√
π

∫∞
z

exp (−t2)dt is the well studied complementary error function [3].

Proof. First, use the definition

δ(ε) = ω(∞) +

∫ ∞
ε

(1− eε−y) dω(y)

= ω(∞) + [1− ω(∞)]

∫ ∞
ε

(1− eε−y)
1√

2πσ2
e

(y−µ)2

2σ2 dy

Let us split the integral in two parts and solve them separately.∫ ∞
ε

1√
2πσ

e−
(x−µ)2

2σ2 dx =

∫ ∞
ε−µ√

2σ

1√
π
e−u

2

du =
1

2
erfc

(
ε− µ√

2σ

)
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∫ ∞
ε

eε−x
1√
2πσ

e−
(x−µ)2

2σ2 dx =eε
∫ ∞
ε

1√
2πσ

e−
(x−µ)2−2xσ2

2σ2 dx

=eε
∫ ∞
ε

1√
2πσ

e−
−x2+2x(µ−σ2)−µ2−σ4−2µσ2+σ4+2µσ2

2σ2 dx

=eε
∫ ∞
ε

1√
2πσ

e−
−(x−(µ−σ2))2

2σ2 e
−σ4+2µσ2

2σ2 dx

=
1

2
eε+

σ2

2 −µ erfc

(
ε− µ+ σ2

√
2σ

)
The lemma statement follows directly by combining everything.

Note: for numerical stability, the second term in Equation (7) should be evaluated in log-space as

eε+
σ2

2 −µ · erfc

(
ε− µ+ σ2

√
2σ

)
= exp

(
log erfc

(
ε− µ+ σ2

√
2σ

)
+ ε+

σ2

2
− µ

)
The GNU Scientific library offers such a function named gsl sf log erfc.

Recall from Lemma 11 that for the Gauss mechanism with noise parameter σ and sensitivity |x0 −
x1|,2the mean µpld and variance σ2

pld of their respective privacy loss distribution are related: µpld =

σ2
pld/2 = |x0−x1|

σ

2
/2. Hence, Lemma 12 directly implies the following theorem.

Theorem 5 (Tight ADP for the Gauss Mechanism). A Gauss mechanism M : X → Ũ with sensitivity
s and M(x) ∼ N

(
x, σ2

)
for σ2>0 has exactly

δ(ε) =
1

2

[
erfc

(
ε−nµpld√

2nσpld

)
−eε ·erfc

(
ε+nµpld√

2nσpld

)]
after n compositions, with σpld = s

σ and µpld = σ2
pld/2 and is tightly (ε, δ(ε))-ADP as in Definition 5.

Proof. Let the variables be as in the theorem statement and let x0, x1 ∈ R with |x0 − x1| = s. By
Lemma 11 we know that the probabilistic mechanisms M(x0) and M(x1) are again depicted as a Gauss

in the privacy loss space with the privacy loss class
(

(x0−x1)2

2σ2 , (x0−x1)2

σ2 , 0
)

. It is well known that a

convolution of two Gauss is a Gauss again

N
(
y1, σ

2
)

+N
(
y2, σ

2
)

= N
(
y1 + y2, 2σ

2
)

y1, y2 ∈ R

which can be generalized to
⊕n

i=0N
(
y, σ2

)
= N

(
ny, nσ2

)
. Applying this, the privacy loss class, and

Theorem 4 (CLT for differential privacy) gives us after n composition a Gauss shaped probability distri-
bution ωn created by Mn(x0) and Mn(x1) with

ωn ∼ N
(
n

(x0−x1)2

2σ2
, n

(x0−x1)2

σ2

)
and privacy loss class (n (x0−x1)2

2σ2 , n (x0−x1)2

σ2 , 0). As ωn is Gauss shaped, we can apply Lemma 12 and get

δMn(x0)(ε) =
1

2

[
erfc

(
ε− n (x0−x1)2

2σ2√
2n |x0−x1|

σ

)
− eε · erfc

(
ε+ n (x0−x1)2

2σ2√
2n |x0−x1|

σ

)]
,

where we assumed the root of the variance in the privacy loss space to be positive. As the discussed
problem is symmetric in M(x0) and M(x1), we get δMn(x0)(ε) = δMn(x1)(ε) which results according to
Lemma 5 in tight (ε, δ(ε))-ADP.

Corollary 5.1 (Tight PDP for the Gauss Mechanism). A Gauss mechanism M : X → Ũ with M(x) ∼
N
(
x, σ2

)
for σ2 > 0 has for x0, x1 ∈ X after n compositions exactly

δPDP(ε) =
1

2

[
erfc

(
ε− nµpld√

2nσpld

)]

with σpld = |x0−x1|
σ and µpld = σ2

pld/2 and is tightly (ε, δPDP(ε))-PDP as in Definition 7.
2As discussed in Section 2, for a large class of real-valued queries, the sensitivity can be represented as |x0 − x1|.
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Proof. The corollary follows analogously to Theorem 5 by considering only the tail bound; we simply
do not subtract the terms within the tail that are captured by eε bound.

It is of practical interest to find the smallest degree of noise σ such that (ε, δ)-PDP still holds after
n-fold sequential composition. In other words, for given privacy constraints expressed as (ε, δ)-PDP,
we can find the smallest degree of noise σ such that the privacy constraints are still satisfied after n
compositions. For the Gauss mechanism, such a formula directly follows from Corollary 5.1.

Corollary 5.2 (Optimal σ for Gauss-Mechanism PDP). A Gauss mechanism M : X → Ũ with M(x) ∼
N
(
x, σ2

)
with µ = x0 − x1, x0, x1 ∈ X requires for a privacy loss δ := δ(ε) ≤ 1

4 after n compositions

σ(ε, δ, n) =
µ
√
n√

2ε

(
erfc−1(2δ) +

√
(erfc−1(2δ))2 + ε

)

Proof. W.l.o.g., let µ ≥ 0. From Corollary 5.1, we know that δ = 1
2

[
erfc

(
σε−nµ22σ√

2nµ2

)]
holds. Hence, we

get the following derivation.

δ =
1

2

[
erfc

(
σε− nµ2

2σ√
2nµ2

)]

⇔ erfc−1(2δ) =
σε− nµ2

2σ√
2nµ2

⇔
√

2nµ2 erfc−1(2δ) =σε− nµ2

2σ

⇔
√

2nµ2 erfc−1(2δ)

ε
σ =σ2 − nµ2

2ε

Let p := −
√

2nµ2 erfc−1(2δ)/ε, q = −nµ2/2ε, then

⇔ 0 =σ2 + pσ + q

Using the standard formula for quadratic equations, we get

⇔ σ1,2 =
−p±

√
p2 − 4q

2

=

√
2nµ2 erfc−1(2δ)

ε ±
√

2nµ2(erfc−1(2δ))2

ε2 + 4nµ
2

2ε

2

=

√
2nµ2 erfc−1(2δ)

ε ±
√

2nµ2((erfc−1(2δ))2+ε)
ε2

2

=

√
2nµ2 erfc−1(2δ)

ε ±
√

2nµ2
√

(erfc−1(2δ))2+ε

ε

2

=

√
nµ2

√
2ε

(
erfc−1(2δ)±

√
(erfc−1(2δ))2 + ε

)

as σ ≥ 0,
√· is monotonically increasing, and erfc−1(2δ) is positive for δ ≤ 1/4, we get (for δ ≤ 1/4)

σ(ε, δ, n) =

√
nµ2

√
2ε

(
erfc−1(2δ) +

√
(erfc−1(2δ))2 + ε

)

For ADP, however, there might not be a analytic formula for σ because the inversion of two erfc
functions simultaneously is difficult; as δ() is strong monotonically decreasing, a unique solution can be
found numerically.
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5.4 ADP for Arbitrary Distributions

We extract practical utility from the theoretical observation of privacy loss classes and from our analytical
formula for Gauss privacy loss distributions. We provide a generic way to compute a novel ADP bound
for arbitrary distributions. First, we recall bounds on the distance between probability distributions
under convolution and the Gauss distribution. Second, we combine these bounds with our analytical
formula to derive ADP upper and lower bounds.

Lemma 13 (Berry-Esseen and Nagaev Bound,[23]). Let X1, . . . , Xn be independent and identically
distributed zero mean random variables with

S := X1 + · · ·+Xn, γ = E |Xi|3 <∞, and σ :=
√
E |Xi|2

then

|Pr [S > nσz]− Pr [Z > z]| ≤ cu
γ√
nσ3

(Berry-Esseen)

|Pr [S > nσz]− Pr [Z > z]| ≤ ct
γ√

nσ3(1 + z3)
(Nagaev)

where Z ∼ N (0, 1), z ≥ 0, cu = 0.4748, ct = 25.80, and ωn(∞) = 1−[1−ω1(∞)]n.

There exist similar forms of the Berry-Esseen theorem for non-iid random variables with slightly
worse cu ≤ 0.5600 and ct < 31.935 [23].

Theorem 6 (ADP under composition). Let ε ≥ 0 and n be arbitrary but fixed. Let M : X → U be
a mechanism with two inputs x0, x1 ∈ X . Let ω1 be a privacy loss distribution created by M(x0) over
M(x1) with privacy loss class (µ, σ2, ω1(∞)) where 0 < σ2 < ∞ and finite third absolute moment of

the inner distribution γ = E |ω̄1(y)|3 < ∞. Let ωn be the privacy loss distribution after n independent
compositions of ω1. Let the same be valid for the dual distribution ω

1. Let

ωn(∞)=1−[1−ω1(∞)]n, ru :=cu
γ

σ3
, rt(z) :=

{
ct

γ
σ3(1+z3) if z ≥ 0

∞ else

∆ω := ωn(∞) +
1−ωn(∞)

2

[
erfc

(
ε−nµ√

2nσ

)
− eε−nµ+nσ

2

2 erfc

(
ε−nµ+nσ2

√
2nσ

)]
βω :=

[1− ωn(∞)]√
n

min

[
ru, rt

(
z=

ε− nµ√
nσ2

)]
with cu = 0.4748 and ct = 25.80. Then, M is (ε, max (∆ω + βω , ∆ ω+ β ω) )-ADP for x0, x1.

Proof. Let the variables be defined as in the theorem statement. Let Φn(z) be the cumulative distribu-
tion function of N

(
nµ, nσ2

)
. We use a Lebesgue integrable privacy loss density on a measurable space

(R,B(R), ω). By definition we have µ = E ω̄1(y) and finite σ2 = E |ω̄1(y) |2. First, we prove that ∀ε > 0
we have ∣∣∣∣ Pr

y∼ωn
[y ≥ ε | y 6=∞]− Pr [Zn≥ε]

∣∣∣∣ ≤ 1√
n
ru/t

(
z=

ε−nµ√
nσ2

)
where Zn ∼ N

(
nµ, nσ2

)
and where ru/t(z) denotes either ru or rt(z) from Lemma 13. As ∀z ≥ 0, rt(z) ≤

∞ and ru ≤ ∞, we obtain always a valid bound if we take the minimum for ru and rt. Second, let
∀y, ε ∈ R : g(ε − y) := (1 − eε−y). Note that ∀ε ∈ R, ∀y ≥ ε, 0 ≤ g(ε − y) < 1. For simplicity, let

δ̄ω(ε) :=
δω (ε)−ω(∞)

1−ω(∞) .

∣∣δ̄ωn(ε)−δ̄Φn(ε)∣∣ =

∣∣∣∣∫ ∞
ε

g(ε−y)dω̄n(y)−
∫ ∞
ε

g(ε−y)dΦn(y)

∣∣∣∣
I
≤
∣∣∣∣∫ ∞
ε

dω̄n(y)−
∫ ∞
ε

dΦn(y)

∣∣∣∣
=

∣∣∣∣ Pr
y∼ωn

[y ≥ ε | y 6=∞]− Pr [Zn ≥ ε]
∣∣∣∣

II
≤ 1√

n
ru/t

(
ε− nµ√
nσ2

)
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where we have used the fact that ∀ε ∈ R, ∀y ≥ ε, 0 ≤ g(ε − y) < 1 (I), and (II) we have proven
beforehand.

Next, we include ωn(∞). Theorem 4 implies ωn(∞) = 1− [1− ω1(∞)]n. Multiplying [1− ωn(∞)] and
adding zero results in

[1−ωn(∞)]·
∣∣δ̄ωn(ε)−δ̄Φn(ε)∣∣ ≤ [1−ωn(∞)]√

n
·ru/t

(
ε− nµ√
nσ2

)
⇔
∣∣ωn(∞)+[1−ωn(∞)]·δ̄ωn(ε)− ωn(∞)

+[1−ωn(∞)]·δ̄Φn(ε)]
∣∣ ≤ [1−ωn(∞)]√

n
·ru/t

(
ε− nµ√
nσ2

)
⇔ |δωn(ε)− δΦn(ε)| ≤ [1−ωn(∞)]√

n
·ru/t

(
ε− nµ√
nσ2

)
Together with the definition of δωn(ε) = δ∗Mn(x0),M(x1)(ε) and Lemma 12, we obtain∣∣∣δ∗Mn(x0),M(x1)(ε)−∆ωn(∞)

∣∣∣ ≤ βωn(∞)

This defines an upper bound: δ∗Mn(x0),M(x1)(ε) ≤ ∆ωn(∞) +βωn(∞). By applying the same proof before to

the dual distribution ω

n, we can bound δ∗Mn(x0),M(x1)(ε) and δ∗Mn(x0),M(x1)(ε). By taking the maximum,

we get that M is (ε, max (∆ω + βω , ∆ ω+ β ω))-ADP.

Remark: In this paper we have used privacy definitions for M on a concrete pair of inputs x0, x1. If this
pair of inputs is worst-case (i.e., M(x0) and M(x1) are worst-case distributions), the results immediately
generalize to the whole mechanism. Otherwise, if a pair of worst-case distributions A and B can be
found for that particular mechanism and sensitivity notion, we can replace all occurrences of M(x0) by
A and all occurrences of M(x1) by B and our results and proofs still apply word by word.

6 Evaluation

We apply our derived ADP-bounds to different differentially private mechanisms from the literature. In
particular, we compare the Gauss mechanism with the Laplace mechanism and see that the former has
key advantages.

6.1 Evaluating Our Bounds

We apply our various theoretical results to several mechanisms from the literature. For each mechanism,
we display a pair of graphs: an ADP-graph after n compositions (left) and the growth of the minimal ε
such that δ(ε) ≤ 10−4 over the number of compositions leading up to the number in the left graph; as an
exception, for the CoverUp mechanism we display the growth of δ(0) over the number of compositions.
In all figures, the labels are ordered by the values of the respective bounds. We only show bounds that
yield reasonable results for the respective graph, e.g., we omit the Berry-Esseen bound in the right graphs
where δ(ε) ≤ 10−4 is required.

Our figures use the approximate zCDP ADP-bound [8] only for the Gauss mechanism, as zCDP
requires to prove that the log-normalized-moments of the privacy loss distribution can be bounded by
an affine linear function. While zCDP provides compelling ADP bounds for higher epsilons, it provides
grossly inaccurate values for ε = 0 (i.e., total variation) and very small ε values. This observation is
important, as ε = 0 is an important special case: the total variation, δ(0), is used in the statistical
indistinguishability notion. This notion is useful when deniability (ε > 0) is irrelevant and only pure
indistinguishability (ε = 0) matters, as, e.g., in the timing analysis of the CoverUp paper [25].

We use the numerical lower bound provided by the privacy buckets [20] as a benchmark in the right
graph, but omit it in the left graphs to ease readability. In Figure 8 we additionally omit Rényi DP and
Markov-ADP, as computing them lead to numerical problems in the underlying optimization problem.

We discuss each of our bounds separately and refer to different aspects of each of the graphs. We
also portray ADP values directly derived from the privacy loss class of the mechanism (i.e., our Gauss
formula applied to (µ, σ2, ω(∞)) to compare them with the bounds.
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Figure 5: Comparison of Gauss mechanism to known bounds with noise parameter σ2 = 9000002, left:
222 compositions, right: minimal ε values over the number of compositions n for δ ≤ 10−4. Comparing
the exact Gauss-ADP formula with various bounds. In the right graph, Berry-Esseen bound did not fall
into the plotting range and were omitted.
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Figure 6: Comparing bounds for the CoverUp measurement data with noise parameter width of noise =
100, left: after n = 218 compositions, right: δ(0) (i.e., ε = 0) over the number of compositions n. In the
right graph, the Rényi-DP bound and the Nagaev bound did not reach meaningful values of δ(0) ≤ 1.

6.1.1 The Mechanisms in Our Evaluation

We evaluate our bounds with the following mechanisms:
The truncated Gauss mechanism that adds truncated Gauss distributed noise to the result of a

computation (see Section 2 for more). Figure 5 compares previous bounds with our exact characterization
of the ADP-graph at and up to n = 222 compositions.

Gauss distributed noise applied to two histograms based on CoverUp data3, which results in a pair of
Gauss mixture distributions. CoverUp [25] is recent work on anonymous communication which measured
timing-leakage-histograms of network-level delays for a scenario where a particular browser extension is
installed versus a scenario where that browser extension is not installed. Figure 6 displays the ADP-graph
after n = 218 compositions and illustrates the growths of δ(0) (i.e., total variation) over the number of
compositions n. The authors argue that deniability (ε > 0) is not reasonable for their scenario; hence,
total variation is considered. The graph shows that our theoretical insights lead to promising approaches
for deriving valuable bounds.

For Abadi et al.’s differentially private stochastic gradient descent (DP-SGD) mechanism [2], analyz-
ing the following worst-case distributions suffices: a Gauss distribution N

(
0, σ2

)
and a Gauss mixture

distribution qN
(
0, σ2

)
+ (1−q)N

(
1, σ2

)
(with q ∈ [0, 1]). Figure 7 displays the ADP graph after and up

to n = 216 compositions (i.e., around 600 ANN training epochs).
The truncated Laplace mechanism. We omit the KOV bound [16] as the privacy buckets bounds offer

similarly tight bounds and can be computed for a higher number of compositions, which is required for
our choice of n = 220 in Figure 8.

3We use the data-set Linux periodic loading active from the CoverUp measurements found at [1].
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Figure 7: Comparing bounds for differentially private stochastic gradient descent mechanism (DP-SGD)
with noise parameters q = 0.01 and σ = 4, left: after n = 216 compositions, right: minimal ε values over
the number of compositions n for δ ≤ 10−4. In the right graph, the Berry-Esseen bound did not fall into
the plotting range and were omitted.
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Figure 8: Comparison of Laplace mechanism to known bounds with noise parameter λ = 1.26 · 106, left:
220 compositions, right: minimal ε values over the number of compositions n for δ ≤ 10−4. In the right
graph, Berry-Esseen bound did not fall into the plotting range and were omitted.

6.1.2 Markov-ADP

In Section 4.8 we improved the Rényi DP bound (or moments accountant) that was previously tailored
towards PDP for ADP and called it the Markov-ADP bound. In Figures 5 and 8 both the Markov-ADP
bound and the Rényi DP bound are far behind the other bounds; hence, we do not display them. For
both mechanisms, this effect is expected: zCDP is tailored to the Gauss mechanism and we have an exact
characterization for the Gauss mechanism; for the Laplace mechanism this observation is consistent with
previous results about Rényi DP [20].

For CoverUp and DP-SGD in Figures 6 and 7, Markov-ADP clearly outperforms the other bounds,
except the numerical privacy buckets. In particular, the Markov-ADP bound outperforms the Rényi DP
bound.

6.1.3 Normal Approximation Bounds

We have shown in Theorem 4 and illustrated in Figure 1 that every PLD converges to a Gauss distribution
after sufficiently many observations; Theorem 6 provides two separate upper and lower bounds for ADP
under n-fold sequential composition, based on the Berry-Esseen and Nagaev bound.

For CoverUp (Figure 6), the left graph shows that the Berry-Esseen bound is pretty tight until
δ(ε) < 10−2, similarly for DP-SGD (Figure 7) and Laplace (Figure 8) where it is tight almost until 10−3.
The reason for this decline becomes apparent if we look at the Berry-Esseen bound: it decreases with
a factor of 1/

√
n with the number of convolutions. For a higher number of convolutions, the Berry-

Esseen bound provides an even tighter bound. For the Nagaev-based ADP bound, the DP-SGD and the
Laplace figures4 show that the approach of using tail-bounds (such as the Nagaev Theorem) for normal
approximations is a promising direction.

4We omitted the Nagaev-based bound in CoverUp (Figure 6), since the Nagaev is not tight for small ε values.
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6.1.4 Convergence to ADP of the Privacy Loss Class

We evaluate the accuracy of ADP derived directly from the privacy loss class of a mechanism (µ, σ2, ω(∞)).
While this characterization is exact for the Gauss mechanism, it is only approximate for other mech-
anisms. Figure 5 shows that even the privacy buckets, which we use as a benchmark, diverge from
our exact formula for a very large number of compositions. Figure 6 shows that Gauss-ADP is aston-
ishingly accurate in predicting the ADP bounds, already after little more than 10 compositions. This
gives evidence that the privacy loss class, already after a few compositions, is a good characterization of
the privacy loss of a mechanism. It appears that the imprecision of our normal approximation bounds
thus mainly stems from the looseness of these approximation bounds more than from an imprecision
of the ADP values calculated from the privacy loss class. We leave it for future work to prove tighter
ADP-bounds from this privacy loss class.

6.2 Gauss vs Laplace Mechanism

We now compare our results for the Gauss mechanism and the Laplace mechanism. First, we draw a
comparison between the privacy loss classes of both mechanisms, showing that they indeed are related.
Second, show that the Gauss mechanism has a better variance to privacy trade-off, even if pure DP is
preferred, as long as we can tolerate a cryptographically negligible δ.

6.2.1 Comparing the Privacy loss classes

We compare the privacy loss class of a Laplace mechanism with parameter λ (and thus with variance
σ2

L,ev = 2λ2) with that of a Gauss mechanism with parameter σG,ev = λ (thus half the variance σ2
G,ev =

λ2). Using our exact formulas for the mean µL,pld and variance σ2
G,pld of the privacy loss class of the

Laplace mechanism (Appendix A.3), we can show (Appendix A.4) that

µL,pld > µG,pld, σL,pld

(a)
> σG,pld,

(µL,pld, σL,pld)
|x0−x1|

λ →0−−−−−−−→ (µG,pld, σG,pld)

where (a) requires |x0−x1|
λ ≤ 1

2 , which is the case whenever a meaningful degree of privacy is provided.
Note that higher values for µ and σ2 describe a greater privacy loss and result in higher values for δ(ε).

As a result, for relevant sensitivity to noise ratios |x0 − x1|/λ, a Gauss mechanism with parameter
σev = λ has a strictly, although slightly, better privacy loss class than a Laplace mechanism (resulting in
twice the variance, λ2 vs 2λ2). When the sensitivity to noise parameter approaches zero, the privacy loss
classes converge. We consider this observation surprising, as the Gauss distribution has much steeper
falling tail than the Laplace distribution, which comes with a potential advantage: a truncated Gauss
distribution has far less mass in the tail than a Laplace distribution and hence comes with a smaller
inherent distinguishing event ω(∞).

6.2.2 Sacrificing Pure DP for Gauss?

The Laplace mechanism is a very popular mechanism for achieving differential privacy. The most im-
portant argument of the Laplace mechanism over the Gauss mechanism is that the latter cannot achieve
pure differential privacy, i.e., δG(ε) > 0 for all ε (cf. Theorem 5 and Corollary 5.1), while the Laplace
mechanism can, e.g., with scale factor λ we get δL(1/λ) = 0. Under n-fold composition, however, the
Laplace mechanism can only achieve δLn(n/λ) = 0.

We compare different Laplace mechanisms with noise parameter λ and with variance 2λ2 to Gauss
mechanisms with half the variance σ2 = λ2 and thus a potentially higher utility. Figure 9 illustrates
that for ε = n/λ (where δLn(n/λ) = 0) the δGn(n/λ) values fall extremely fast (for ADP and PDP)
and for n = 256 compositions even negligibly small in the (concrete) cryptographic sense (< 10−50 <
2−150). These PDP-results can be interpreted as achieving pure differential privacy with ε = 256/λ with
probability 1− 2−150 with the Gauss mechanism (λ = 40) after 256 compositions.

7 Implementation Considerations

In Figure 5, the upper and lower bounds from privacy buckets’ numerical approximation [20] are as
expected very close to the exact bound, yet they start to lose tightness for very high amount of compo-
sitions. This effect can be credited to numerical errors, memory constraints, and discretization errors.
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Figure 9: Pure DP vs. both ADP and PDP of a Gauss mechanism: Given a Laplace mechanism with
λ, which for n compositions has δLn(n/λ) = 0 (ADP and PDP), compared to tight ADP-δGn and tight
PDP-δGn of a Gauss mechanism with σ = λ. δGn(n/λ) becomes negligible quickly, renders it comparable
to Laplace, with half the variance and therefore potentially higher utility.

Our exact analytical bound, in contrast, can be directly evaluated for number of compositions and any
noise parameters sigma without the need to discretize the Gauss distribution:

δ(ε) =
1

2

[
erfc

(
ε− nµpld√

2nσpld

)
− eε · erfc

(
ε+ nµpld√

2nσpld

)]

where σpld = |x0−x1|
σ and µpld = σ2

pld/2.
We use the gsl sf log erfc function from the GNU Scientific Library [15] on the multiplication for

numerical robustness. We can achieve high numerical stability with our implementation by rescaling
the privacy loss distribution. Recall that the PLD of the Gauss mechanism is a Gauss distribution with
mean µpld and variance σ2

pld. By computing µ0 := µpld/µ = 1 and σ0 := σpld/µ and evaluating δ(ε) as
δ(ε/µ), we can avoid an overflow in computing the exponential function.

8 Conclusion and Future Work

We have analyzed the privacy loss of mechanisms and in doing so unified several perspectives in the
(differential) privacy literature, including Rényi-DP, the moments accountant, (z)CDP, ADP and PDP.
We have shown that the non-adaptive composition of mechanisms corresponds to the convolution of their
respective privacy loss distribution. Consequently, the central limit theorem applies and every privacy
loss distribution converges to a Gauss distribution under composition. We categorize each mechanism
into a privacy loss class by the parameters of this Gauss distribution.

For future work, we encourage finding a tight embedding of novel mechanisms into their respective
privacy loss classes, in addition to the mechanisms for which we already give exact formulas: Laplace,
Gauss and randomized response; and searching for better convergence bounds, which obviously excludes
the Gauss mechanism for which we provided an exact formula.

In practice, the privacy loss distribution typically converges to a Gauss distribution faster than the
mechanism oblivious Berry-Esseen (BE) bound indicates. However, for some worst-case examples, the
BE bound is tight. Using a more mechanism aware approximation bound is an interesting direction for
future research.

Finally, we encourage examining which other distributions are closed under convolution and to find
out whether the Gauss mechanism is provably optimal in the sense that the variance and mean of its
privacy loss class are the smallest w.r.t. its initial variance.
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A Examples

This section lists common examples. The use of the symbols are according to their definition earlier.
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A.1 Approximate Randomized Response

U = {1, 2, 3, 4} (8)

Pr [o←M(x0)] =


δ o = 1
(1−δ)eε
eε+1 o = 2

(1−δ)
eε+1 o = 3

0 o = 4

(9)

Pr [o←M(x1)] =


0 o = 1
(1−δ)
eε+1 o = 2
(1−δ)eε
eε+1 o = 3

δ o = 4

(10)

LM(x0)/M(x1) (o) =


∞ o = 1

ε o = 2

−ε o = 3

−∞ o = 4

(11)

ω(y) =


δ y =∞
(1−δ)eε
eε+1 y = ε

(1−δ)
eε+1 y = −ε
0 y = −∞

(12)

ω̄(y) =

{
eε

eε+1 y = ε
1

eε+1 y = −ε (13)

=

(
2

k

)
pk2,y (1− p)n−k2,y (14)

= Bk2,y (n = 2, p) (15)

with k2,y =
y + 2ε

2ε
, p =

1

eε + 1
(16)

where Bk(n, p) denotes the total success probability of k successes with n trials and individual trial
success probability p according to a Binomial distribution B(n, p). Moreover, the convolution of two
Binomial distributions is again a Binomial:

B(n, p) ~B(m, p) = B(n+m, p)

which gives us after n compositions by Theorem 4

ω̄n(y) =

(
n

kn,y

)
pkn,y (1− p)n−kn,y

ωn(y) =


0 y = −∞
1− (1− δ)n y =∞
(1− δ)n · ω̄n(y) else

with kn,y =
y + nε

2ε
, p =

1

eε + 1

From there follows immediately by definition

δA(ξ) = ωn(∞) + [1−ωn(∞)] ·
n∑

k=dkn,ξc

[
1−eξ−y(k)

] (n
k

)
pk(1−p)n−k

= 1− (1− δ)n +
(1− δ)n
(1 + eε)n

·
n∑

k=dkn,ξe

(n
k

) [
1− eξ−ε(2k−n)

]
eε(n−k)

with y(k) = ε(2k − n) and de rounds up to nearest integer. Obviously, kn,ξ has to stay between 0 and
n. Due to symmetry reasons, δ(ε) of the dual PLD is identical.
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A.2 Gauss Mechanism

Ũ = R (17)

Pr [o←M(x0)] =
e−

(x−x0)2

2σ2√
2πσ

(18)

Pr [o←M(x1)] =
e−

(x−x1)2

2σ2√
2πσ

(19)

for simplicity x0 < x1

LM(x0)/M(x1) (o) =
(x1 − x0)(x0 + x1 − 2o)

2σ2
(20)

ω(∞) = 0 (21)

ω(-∞) = 0 (22)

ω(y) = ω̄(y) (23)

=
1√

2π
[

(x0−x1)2

σ2

] exp

−
(
y−
[

(x0−x1)2

2σ2

])2

2
[

(x0−x1)2

σ2

]
 (24)

µ =
(x0 − x1)2

2σ2
(25)

σ2 =
(x0 − x1)2

σ2
(26)

For δM(x0)(ε) we refer to Theorem 5. Due to symmetry: δM(x0)(ε)=δM(x1)(ε)

A.3 Laplace Mechanism

Ũ = R (27)

Pr [o←M(x0)] =
1

2b
e
|o−x0|
b (28)

Pr [o←M(x1)] =
1

2b
e
|o−x1|
b with x0 < x1 (29)

LM(x0)/M(x1) (o) =


x0−x1

b o ≤ x0

x0+x1−2o
b x0 ≤ o ≤ x1

x1−x0

b o ≤ x1

(30)

(31)

Let us denote A(o) := Pr [o←M(x0)]

µ =

∫ ∞
-∞
L(o)A(o) do = e

x0−x1
b − b+ x0 − x1

b

σ2 =

∫ ∞
-∞

(L(o)− µ)
2
A(o) do

= 3− 2e
x0−x1
b (b− 2(x0 − x1))

b
− e

2(x0−x1)
b
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ω(y) =

∫
L−1(y)

A(o) do

=


∫∞
x1
A(x) y = x0−x1

b

A(x(y)) ∂x∂y
x0−x1

b < y ≤ x1−x0

b∫ 0

-∞A(x) y = x1−x0

b

0 else

=


1
2e

x1−x0
b y = x0−x1

b
1
4e

by−x0+x1
2b dy x0−x1

b < y ≤ x1−x0

b
1
2 y = x1−x0

b

0 else

δA(ε) =

∫ ∞
ε

(1− eε−y) dω(y) with ε ≥ 0

=


1
2e
− x0b

(
e
bε+x0

2b − e x12b
)2

+ 1
2

(
1− eε− x1−x0b

)
ε ≤ x1−x0

b

0 else

Finally, δM(x1)(ε) = δM(x0)(ε) = δA(ε) due to symmetry.

A.4 Gauss vs. Laplace σ2 Derivation

Let z = x0−x1

λ . The two mechanisms (Gauss and Laplace) are symmetric, therefore, w.l.o.g., z > 0. The

Gauss mechanism has the privacy loss class ( z
2

2 , z
2, 0) (see Lemma 11). Using our exact formulas of the

privacy loss class of the Laplace mechanism (Appendix A.3), we get µL,pld = ez − 1 − z. As ex can be

represented as a Taylor expansion,
∑∞
k=i

xk

k! =: T (i, x).

µL,pld = T (1, z)− 1− z =
z2

2︸︷︷︸
µG,pld

+T (3, z)︸ ︷︷ ︸
>0

≥ µG,pld

Similarly for the variance:

σ2 = 3− 2e
x0−x1
λ (λ− 2(x0 − x1))

λ
− e2

(x0−x1)
λ

= 3− ez (2− 4z)− e2z = 3− ez (2− 4z + ez)

= 3− (1 + z +

∞∑
i=2

zi

z!
) (2− 4z + ez)

= 3− (2− 4z + ez)− z (2− 4z + ez)

− (

∞∑
i=2

zi

z!
) (2− 4z + ez)

= 1 + 4z − ez − 2z + 4z2 − zez − (

∞∑
i=2

zi

z!
) (2− 4z + ez)

= 1 + 2z − (1 + z +

∞∑
i=2

zi

z!
) + 4z2 − z(1 + z +

∞∑
i=2

zi

z!
)

− (

∞∑
i=2

zi

z!
) (2− 4z + ez)
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= −(

∞∑
i=2

zi

z!
) + 3z2 − z(

∞∑
i=2

zi

z!
)

− 1 · (
∞∑
i=2

zi

z!
) (2− 4z + ez)

= 3z2 − (

∞∑
i=2

zi

z!
) (3− 3z + ez)

= z2 + 2z2 − (

∞∑
i=2

zi

z!
)

(
3− 3z + 1 + z +

∞∑
i=2

zi

z!

)

= z2 + 2z2 − (

∞∑
i=2

zi

z!
)

(
4− 2z +

∞∑
i=2

zi

z!

)

= z2 + 2z2 −
(

2z2 − z3 +
z2

2

∞∑
i=2

zi

z!

)

− (

∞∑
i=3

zi

z!
)

(
4− 2z +

∞∑
i=2

zi

z!

)

= z2 + z3 − z2

2

∞∑
i=2

zi

z!
− (

∞∑
i=3

zi

z!
)

(
4− 2z +

∞∑
i=2

zi

z!

)

(a)

≥ z2 + z3 − z2

2

∞∑
i=2

zi

z!
− (

∞∑
i=3

zi

z!
) · (4− z)

= z2 + z3 − z4

4
− z5

12
− z2

2
T (z, 4)− 4T (z, 3) + zT (z, 3)

= z2 +
2

6
z3 − z4

4
− z5

12
− z2

2
T (z, 4)− 4T (z, 4) +

z4

6
+

3

2
zT (z, 4)

≥ z2 +
2

6
z3 − z4

4
− z5

12
− z2

2
T (z, 4)− 4T (z, 4) +

z4

4
+

3

2
zT (z, 4)

= z2 +
2

6
z3 − z5

12
− z2

2
T (z, 4)− 4T (z, 4) +

3

2
zT (z, 4)

= z2 +
2

6
z3 − z6

24
− z2

2
T (z, 5)− 4T (z, 4) +

z5

24
+

3

2
zT (z, 5)

≥ z2 +
2

6
z3 − z2

2
T (z, 5)− 4T (z, 4) +

3

2
zT (z, 5)

≥ z2 +
2

6
z3 − 1

3
z4 − 4T (z, 5) ≥ z2 +

1

12
z3

Inequality (a) holds since for z ≤ 1
2 , 1

2z ≥ T (z, 2) (and the term we removed is overall positive). Note
z2 = σG,pld.
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