
Side-channel Assisted Existential Forgery Attack
on Dilithium - A NIST PQC candidate

Prasanna Ravi1, Mahabir P. Jhanwar2, James Howe3, Anupam Chattopadhyay4,
and Shivam Bhasin1

1 Temasek Laboratories, Nanyang Technological University, Singapore
2 Ashoka University, Delhi
3 University of Bristol, UK

4 School of Computer Science and Engineering
Nanyang Technological University, Singapore

prasanna.ravi@ntu.edu.sg mahavir.jhawar@ntu.edu.sg

james.howe@bristol.ac.uk anupam@ntu.edu.sg sbhasin@ntu.edu.sg

Abstract. The recent lattice-based signature scheme Dilithium, sub-
mitted as part of the CRYSTALS (Cryptographic Suite for Algebraic
Lattices) package, is one of a number of strong candidates submitted for
the NIST standardization process of post-quantum cryptography. The
Dilithium signature scheme is based on the Fiat-Shamir paradigm and
can be seen as a variant of the Bai-Galbraith scheme (BG) combined with
several improvements from previous ancestor lattice-based schemes like
GLP and BLISS signature schemes. One of the main features of Dilithium
is the compressed public-key, which is a rounded version of the LWE
instance. This implies that Dilithium is not breakable with the knowledge
of only the secret or the error of the LWE instance, unlike its ancestor
lattice-based signature schemes. In this paper, we investigate the security
of Dilithium against a combination of side-channel and classical attacks.
Side-channel attacks on schoolbook and optimised polynomial multiplica-
tion algorithms in the signing procedure are shown to extract the secret
component of the LWE instance, which is just one among the multiple
components of the secret-key of Dilithium. We then propose an alterna-
tive signing procedure, through which it is possible to forge signatures
with only the extracted portion of the secret-key, without requiring the
knowledge of all its elements. Thus showing that Dilithium too breaks on
just knowing the secret portion of the LWE instance, similar to previous
lattice-based schemes.

1 Introduction

Recently, NIST has called for proposals for standardization of post-quantum
cryptographic schemes for public-key encryption, digital signatures, and key
establishment protocols [18]. This initiative is partly driven by the onset of the
era of practical and scalable quantum computers [3, 15, 26], which has motivated
the cryptographic community to develop cryptographic schemes that are immune

to cryptanalytic efforts using quantum algorithms. Amongst the initial candidates
from different types of post-quantum cryptography, lattice-based cryptography
has emerged as the largest category in terms of submission numbers. NIST [19]
state that “schemes that can be made resistant to side-channel attack at minimal
cost are more desirable than those whose performance is severely hampered by
any attempt to resist side-channel attacks. Thus, it has become essential to the
standardisation process to analyse the implementation security of these proposals
against active and passive side-channel attacks.”

Over the years, significant research has shown that lattice-based cryptographic
algorithms [13, 22] have the performance required to replace currently used
classical cryptographic primitives such as RSA and ECC [14]. Most of the
efficient lattice-based signature schemes [9, 10,13] are based on the variant of the
Fiat-Shamir with Aborts framework, first proposed by Lyubashevsky [16]. The
BLISS signature scheme [9] based on the same framework attracted significant
attention from the scientific community, owing to its security and efficiency
guarantees. However, its physical security came under strong scrutiny, owing
to the number of implementation attacks [6, 11, 12, 20, 21], which targetted its
modules such as Gaussian sampling and rejection sampling.

These attacks have lead the cryptographic community to look beyond the
BLISS signature scheme and recently Ducas et al. proposed Dilithium [10,17], a
lattice-based signature scheme submitted to NIST for post-quantum standardisa-
tion, which removes the Gaussian sampling attack vector by employing uniform
sampling instead. The signature scheme derives its hardness guarantees from
hard problems on modular lattices, which has a lesser exploitable structure com-
pared to ideal lattices, which is used in BLISS. The scheme also derives certain
properties from other previously proposed signature schemes [2, 9, 13] to improve
upon the sizes of public-key and signature. Certain decisions on the algorithm
and parameters have been taken to make sure that some implementation attacks
reported on BLISS cannot be easily applied on the Dilithium signature scheme.

Most, if not all, lattice-based signature schemes partition their secret-keys in
the form of two polynomials; s1 and s2, and are used to form a LWE instance
t = as1 + s2, which is declared as the public key. A scheme utilising this format
thus breaks down with knowledge of either of the secrets, since the LWE instance
becomes trivially solvable. While this is the case with Dilithium’s ancestral schemes
like BLISS, GLP and BG, Dilithium publishes only a rounded version of the LWE
instance as its public key. Thus, unlike its ancestral scheems, Dilithium does
not trivially break-down with the knowledge of the secret or the error. In this
paper, we demonstrate a side-channel assisted existential forgery attack on the
Dilithium signature scheme wherein we mainly bring to light the possibility of
forging signatures with only the partial knowledge of the secret-key s1. We first
demonstrate a side-channel attack on the polynomial multiplication component,
to retrieve the secret of the LWE instance, which is only one of the many
components of its secret-key, and further propose an alternate signing procedure
that utilizes only the extracted portion of the secret-key (s1) to produce valid

signatures, thus showing that Dilithium too breaks with the knowledge of only
the secret of the LWE instance s1.

1.1 Contribution

In this work, we propose a side-channel assisted existential forgery attack on the
Dilithium signature scheme.

– The side-channel attack is designed to retrieve partial secret-key (s̄1) through
a power analysis attack on the polynomial multiplier in the signing procedure.

– We further exploit certain properties of the Dilithium signature scheme to
show that one can forge signatures with only knowledge of the partial secret-
key. This procedure can also be viewed as an alternative signing procedure
which involves lesser computations compared to the original scheme, but
accompanied with a certain failure probability.

The idea of the attack over the polynomial multiplier was proposed by Espitau
et al. [12]. We modified the attack to suit the specifications of Dilithium and
exploit the leakage in a different operation of the polynomial multiplication.
We acknowledge another parallel work of Bruinderink and Pessl [7] which also
proposes a forgery attack with the knowledge of the partial secret-key, however
we provide a simpler alternate forgery scheme with a concrete analysis of the
properties of the Dilithium scheme that facilitated our attack.

2 Preliminaries

Let q ∈ N be a prime. For an integer r and an even positive integer α, we
define centered reduction modulo q, denote as r (mod ± α), to be the unique
integer r0 such that, r ≡ r0 (mod α) and α

2 < r0 ≤ α
2 . The usual modulo

reduction is denoted by r (mod q). We let Z denote the ring of integers, and
Zq the ring of integers modulo q. The elements in Z, Zq are denoted by regular
font letters, viz. a, b ∈ Z or Zq. We let Rq denote the ring Zq[X]/〈Xn + 1〉,
q, n ∈ N. Bold lower-case letters represents elements in Rq, viz. a, b ∈ Rq.
Column vectors with coefficients in Rq are denoted by bold lower-case letters
with an overhead bar, viz. ā, b̄ ∈ R`q, ` ∈ N. Note that, elements a ∈ Rq are
polynomials of degree at most n− 1 with coefficients in Zq and therefore can be
represented as n-length vectors (a0, . . . , an−1), ai ∈ Zq. By default, all vectors
will be column vectors. Matrices with coefficients in Rq are denoted by bold
upper-case letters, viz. A ∈ Rk×`q , k, ` ∈ N. Transpose of a vector ā is denoted by

āT. For q, n, ` ∈ N, R`q is an R module with scalar multiplication R×R`q → R`q
defined as follows: for a ∈ R, b̄ = (b0, . . . , bn−1)T ∈ R`q, ab̄ = (ab0, . . . ,abn−1)T,
where abi is polynomial multiplication defined in the ring Rq. A definition for
the length of elements in Rq is as follows. For an element a = (a0, . . . , an−1),
define ‖a‖∞ = max

0≤i≤n−1
‖ai‖∞, where ‖ai‖∞ = |ai (mod ± q)|. Similarly, for

ā = (a1, . . . ,a`)
T ∈ R`q, we define ‖ā‖∞ = max

1≤i≤`
‖ai‖∞. Finally, for a η ∈ N,

define Sη = {a ∈ Rq | ‖a‖∞ ≤ η}. For a set X, we write x
$← X to denote that

x is chosen uniformly at random from X, and x
D← X when D : X → [0, 1] is a

specific (non-uniform) probability distribution.

2.1 Underlying Lattice Problems

Definition 1 (MLWE). The module learning with error (MLWE) assumption
states, roughly, that the distribution (A, t̄) and (A,As̄1 + s̄2) are computationally

indistinguishable when A
$← Rk×`q (k, ` ∈ N), t̄ $← Rkq , s̄1

$← S`η, and s̄2
$← Skη

(η ∈ N). In particular, for positive integers k, `, η, the advantage of an adversary
A in solving a decisional MLWEk,`,η problem instance over the ring Rq is

AdvA.MLWEk,`,η = |P[A(A, t̄) = 1 | A $← Rk×`q ; t̄
$← Rkq]

− P[A(A,As̄1 + s̄2) = 1 | A $← Rk×`q ; s̄1
$← S`η; s̄2

$← Skη]|

and the MLWE hardness assumption says that the advantage AdvA.MLWEk,`,η
for any probabilistic polynomial time (PPT) adversary A is negligible.

Definition 2 (MSIS). The MSIS hardness assumptions states that given (A, t̄, β),

where A
$← Rk×`q , t̄ ∈ Rkq , and β ∈ N, it is hard to compute an x̄ ∈ R`+kq such

that ‖x‖∞ ≤ β and [A|I]x̄ = t̄, where I = Ik×k, k order identity matrix. In
particular, for positive integers k, `, β, the advantage of an adversary A in solving
a MSISk,`,β problem instance over the ring Rq is

AdvA.MSISk,`,β = P[‖x̄‖∞ ≤ β ∧ [A|I]x̄ = t̄ | A $← Rk×`q ; t̄ ∈ Rkq ; x̄← A(A, t̄, β)]

and the MSIS hardness assumption says that the advantage AdvA.MSISk,`,β for
any probabilistic polynomial time (PPT) adversary A is negligible.

2.2 Rounding Algorithms

This section describes several rounding procedures used in Dilithium. The purpose
of them is to provide better compression of Dilithium’s public-key and signature.
Figure 1 lists the full details of these algorithms. For non-negative integers r, α,
the procedure r (mod ± α) outputs unique integer r0 in −α/2 < r0 ≤ α/2
such that r ≡ r0 (mod α). The procedure Dq(r, α) decomposes r into a pair
of integers (r1, r0). The procedures HBq(r, α) and LBq(r, α) extracts r1 and r0
respectively from Dq(r, α). The procedure MHq(u, r, α) produces a bit h ∈ {0, 1}.
The procedure UHq(h, r, α) shows how to use h as a hint to derive HBq(u+ r, α)
when z is not known and its correctness is stated in the following lemma.

Lemma 1 ([17]). For r, z ∈ Zq with ||z||∞ ≤ α/2, we have

UseHintq (MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α) (1)

1 Function
CenteredModulo r(mod ± α):

2 Compute r0 = r (mod α)
3 if r0 > α/2 then
4 r0 = r0−α
5 end
6 return r (mod ± α) = r0

7 Function Decompose Dq(r, α):
8 Compute r = r (mod q)
9 Compute r0 = r (mod ± α)

10 if r − r0 = q − 1 then
11 r1 = 0
12 r0 = r0 − 1

13 else
14 r1 = (r − r0)/α
15 end
16 return Dq(r, α) = (r1, r0)

17 Function HighBits HBq(r, α):
18 Compute (r1, r0) = Dq(r, α)
19 return HBq(r, α) = r1

20 Function LowBits LBq(r, α):
21 Compute (r1, r0) = Dq(r, α)
22 return LBq(r, α) = r0

1 Function MakeHint MHq(u, r, α):
2 Compute r1 = HBq(r, α)
3 Compute v1 = HBq(u+ r, α)
4 if r1 = v1 then
5 h = 0
6 else
7 h = 1
8 end
9 return MHq(u, r, α) = h

10 Function UseHint UHq(h, r, α):
11 Compute m = (q − 1)/α
12 Compute (r1, r0) = Dq(r, α)
13 if h = 1 and r0 > 0 then
14 r1 = (r1 + 1) (mod m)
15 end
16 else if h = 1 and r0 ≤ 0 then
17 r1 = (r1−1) (mod + m)
18 else
19 r1 = r1
20 end
21 return UHq(h, r, α) = r1

Fig. 1: Rounding Algorithms

All these procedures extend naturally to ring elements in Rq. For example,
if r = (r0, . . . , rn−1) ∈ Rq then Dq(r, α) = (Dq(r0), . . . ,Dq(rn−1)). Finally
the procedures are extended to vectors in R`q and matrices in Rk×`q : for ā =

(a1, . . . ,a`)
T ∈ R`q, HBq(ā, α) = (HBq(a1, α), . . . ,HBq(a`, α)).

2.3 Dilithium

In the following, we recall the Dilithium signature scheme [10,17]. The underlying
approach of the scheme is based on the “Fiat-Shamir with Aborts” approach [16]
and is an improved variant of the scheme proposed by Bai and Galbraith [2].
Dilithium depends on parameters q, n, k, `, η, d, γ1, γ2, β, ω. Various constraints and
recommended values for these parameters are provided in the specifications [17].
While reading the scheme below, the reader may keep in mind the following set
of recommended parameters: (q = 8380417 = 223 − 213 + 1, n = 256, k = 3, ` =
2, η = 7, d = 14, γ1 = (q − 1)/16, γ2 = γ1/2, β = 375, ω = 64). In addition, the
scheme also uses:

– H : {0, 1}∗ → Bh, a hash function, where Bh denote the set of elements of
Rq that have h coefficients that are either −1 or 1 and the rest are 0;

– ExpandA : {0, 1}256 → {A | A ∈ Rk×`q };
– ExpandMask : {0, 1}256 × {0, 1}∗ × N→ S`γ1−1; and
– a collision resistant hash function CRH : {0, 1}∗ → {0, 1}384.

For complete details of these function please refer to [17]. The key generation,
signing and verification algorithms for Dilithium are presented in Figure 2.

– Key Generation: The key generation algorithm, KeyGen, begins by choosing

ρ,K
$← {0, 1}256. It then computes a matrix A ∈ Rk×`q = ExpandA(ρ).

Next, it samples secret-key vectors s̄1 ∈ S`η, s̄2 ∈ Skη . It then computes

t̄ = As̄1 + s̄2 and decomposes it into HBq(t̄, 2
d) = t̄1 and LBq(t̄, 2

d) = t̄0.
Finally, s̄1, s̄2, t̄0,K are set as part of the secret-key; and t̄1 is set as part of
public-key.

– Signing: The signing algorithm, Sign, proceeds by generating a masking
vector ȳ ∈ S`γ1−1 using ExpandMask function. It then computes w̄ = Aȳ
and sets w̄1 to be the HBq(w̄, 2γ2). The challenge, c, is created as the hash
of µ and w̄1. The potential signature is then computed as z̄ = ȳ + cs̄1.
To avoid the dependency of z̄ on the secret-key s̄1, rejection sampling on
z̄ is used unless ‖z̄‖∞ < γ1 − β (the probability of the later event is high
as β is so chosen that ‖cs̄2‖∞ ≤ β). The rejection sampling on z̄ also
checks if LBq(w̄ − cs̄2, 2γ2) < γ2 − β (note that, Az̄ − ct̄ = w̄ − cs̄2),
this check is to ensure both security and correctness. In order to further
proceed with the sampled z̄ it finally checks if HBq(w̄ − cs̄2, 2γ2) = w̄1.
At this moment, the tuple (z̄, c), together with t̄, can be used to verify if

c
?
= H(µ||HBq(Az̄ − ct̄, 2γ2)). But the public-key of the verifier only has

t̄1 = HBq(t̄, 2
d). To overcome this problem, the signing algorithm provides

a hint vector h̄ (in fact, a binary matrix) which will allow the verifier to
compute w̄1. This is done in Step 23 (Figure 2) with some other additional
checks carried out in Step 24.

– Verification: The verifier computes w̄′1 = UHq(h̄,Az̄−ct̄1·2d, 2γ2), and then
accepts if ‖z̄‖∞ < γ1 − β, c = H(CRH(CRH(ρ||t̄1)||M), w̄′1), and wt(h̄) ≤
ω. Let us look at why verification works, in particular as to why w̄1 =
UHq(h̄,Az̄ − ct̄1 · 2d, 2γ2). Notice that Az̄ − ct̄1 · 2d = w̄ − cs̄2 + ct̄0.
Therefore,

w̄1 = HBq(w̄, 2γ2)
∗
= HBq(w̄ − cs̄2, 2γ2)

= HBq((−ct̄0) + (w̄ − cs̄2 + ct̄0), 2γ2)
∗∗
= UHq(MHq(−ct̄0, w̄ − cs̄2 + ct̄0, 2γ2), w̄ − cs̄2 + ct̄0, 2γ2)

= UHq(h̄,Az̄ − ct̄1 · 2d, 2γ2).

The * equality is true as follows: w̄−cs̄2 = r̄1×2γ2 +LBq(w̄−cs̄2, 2γ2) such
that ‖LBq(w̄ − cs̄2, 2γ2)‖∞ ≤ γ2 − β (ensured during signing). This implies,
w̄ = (w̄−cs̄2)+cs̄2 = r̄1×2γ2+LBq(w̄−cs̄2, 2γ2)+cs̄2. But, as ‖cs̄2‖∞ ≤ β,
‖LBq(w̄−cs̄2, 2γ2)+cs̄2‖∞ ≤ ‖LBq(w̄−cs̄2, 2γ2)‖∞+‖cs̄2‖∞ ≤ γ2−β+β =

γ2. Thus, from the definition of centered reduction modulo 2γ2, it follows
that HBq(w̄ − cs̄2, 2γ2) = HBq(w̄, 2γ2) = w̄1. The ** equality follows from
Lemma 1, as ‖ − ct̄0‖∞ ≤ 2d ≤ γ2.

2.4 Security of Dilithium

The security of Dilithium is derived from MLWE and MSIS problems. In particular,
security against key-recovery attack under classical random oracle model is based
on the hardness assumption of the MLWE problem; and the security against
existential signature forgery is due to MSIS hardness assumption. The scheme’s
security against strong signature forgery attack, under quantum random oracle
is also discussed by the authors [17].

2.5 Side-Channel Attacks on Lattice-Based Cryptography

Lattice-based cryptography has gained significant attention from the perspective
of SCA and fault attacks. Especially, predecessing lattice-based signature schemes
like GLP [13], BLISS [9], and Ring-Tesla [1], which have been scrutinized through a
number of active and passive implementation attacks, such as power analysis [20,
27], fault attacks [5, 11], branch-tracing [12], and cache-timing [6, 21]. These
signature schemes opted to sample their error vectors from a Gaussian distribution
and used rejection sampling to hide the information about the secret-key in the
signature. Most of the side channel analysis research targetted the data dependent
side-channel leakage from these Gaussian sampling and the rejection sampling
components.

The attacks on the Gaussian samplers and rejection sampling techniques
prompted the designers of the newer signature schemes, like Dilithium and qTESLA,
to instead sample from uniform distributions during signing. This both simplifies
the rejection step in addition to simplifying the sampling procedure, albeit with
the cost of increased size of the signatures.

Lattice-based signature schemes have also been the target of a number of fault
attacks [5,7, 11]. Bindel et al. [5] proposed a variety of randomization, zeroing,
and skipping fault attacks that lead to either key recovery or forging of signatures,
applicable to BLISS, GLP, and Ring-TESLA. This was followed by a generic and
much stronger fault attack on lattice-based signature schemes by Espitau et
al. [11], based on loop abort faults. They were able to show that the signing
step z̄ = s̄1c + ȳ, can be converted into a solvable CVP instance, provided the
masking polynomials are limited to low degrees using loop abort faults. The
first differential style fault attacks on Dilithium and qTESLA, signatures that are
potential NIST standards, have been reported by Bruinderink and Pessl [7], which
targets the generation of the z̄ component of the signature and work with a fault
model of injecting random faults using clock glitches on an ARM Cortex-M4F
based microcontroller.

1 Function KeyGen(q, n, k, `, η, d, γ1, γ2, β, ω):
2 ρ← {0, 1}256
3 K ← {0, 1}256

4 A ∈ Rk×`q := ExpandA(ρ)

5 (s̄1, s̄2)← S`η × Skη
6 t̄ = As̄1 + s̄2

7 (t̄1, t̄0) = Dq(t̄, 2
d)

8 tr = CRH(ρ||t̄1)
Return : pk = (t̄1, ρ, n, q, k, d, `, γ1, γ2, β, ω), sk = (K, tr, s̄1, s̄2, t̄0, pk)

9 Function Sign(sk,M):

10 A ∈ Rk×`q := ExpandA(ρ)
11 µ = CRH(tr‖M)
12 κ = 0, (z̄, h̄) = ⊥
13 while (z̄, h̄) = ⊥ do

14 ȳ ∈ S`γ1−1 := ExpandMask(K‖µ‖κ)
15 w̄ = Aȳ
16 w̄1 = HBq(w̄, 2γ2)
17 c ∈ B60 = H(µ‖w̄1)
18 z̄ = ȳ + cs̄1
19 (r̄1, r̄0) := Dq(w̄ − cs̄2, 2γ2)
20 if ‖z̄‖∞ ≥ γ1 − β or ‖r̄0‖∞ ≥ γ2 − β or r̄1 6= w̄1 then
21 (z̄, h̄) = ⊥
22 else
23 h̄ = MHq(−ct̄0, w̄ − cs̄2 + ct̄0, 2γ2)
24 if ‖ct̄0‖∞ ≥ γ2 or wt(h̄) > ω then
25 (z̄, h̄) = ⊥
26 end
27 κ = κ+ 1

28 end
Return : σ = (z̄, h̄, c)

29 Function Verify(pk,M, σ = (z̄, h̄, c)):

30 A ∈ Rk×`q := ExpandA(ρ)
31 µ = CRH (CRH(ρ‖t̄1)‖M)

32 w̄1 := UHq(h̄,Az̄ − ct̄1 · 2d, 2γ2)
33 if c = H(µ, w̄1) and ‖z̄‖∞ < γ1 − β and wt(h̄) ≤ ω then
34 return 1
35 else
36 return 0
37 end

Fig. 2: Dilithium Signature Scheme

3 Motivation

In this section, we motivate the idea of existential forgery attacks with only
knowledge of the partial secret-key. We first investigate the key features that
distinguish Dilithium from some of the previous practical lattice-based signature
schemes like BLISS [9], GLP [13], and Ring-TESLA [1] signature schemes. We
provide some intuition which lead to the idea of signature forgery using partial
knowledge of the secret-key. Additionally, we also highlight the importance of
the signature forgery technique from the perspective of a side-channel adversary.

3.1 A few observations on Dilithium

Although most of the features in Dilithium are similar to those in its predecessors,
like GLP or BLISS, one stand out property that differentiates it is the public-
key being a compressed version of the LWE instance. The reason for this is to
compress the size of the public-key. As noted earlier, only the d higher-order
bits (i.e., 14 out of the 23 bits) of every coefficient of t̄ are revealed as the
public-key. Alternatively, this can be seen as an additional error of about (±214)
to every coefficient, thus making it a LWE instance with an additional error.
With such an instance at our disposal, even retrieval of the complete s̄1 does not
result in a straight-forward retrieval of the error s̄2. But, previous schemes like
GLP, BLISS, and BG signature schemes would be completely broken with the
knowledge of either the secret or the error of the LWE instance. Thus, preliminary
observations suggest that the compressed public key offers increased protection
against signature forgery though the authors do not claim any additional security
due to the compression of the public-key [17].

Another difference is that the z̄2 component of the signature, that directly
depends on the value of s̄2, previously present in schemes like GLP and BLISS,
has been completely removed owing to the effort to decrease the signature size,
an idea derived from the BG signature scheme. Thus, Dilithium only consists
of three components, (z̄, c) and the additional hint vector h̄. One can generate
the signature components z̄ and c with only the knowledge of s̄1. As stated
before, preliminary observations suggest that the s̄2 component is required to
generate the hint vectors. But, another parallel observation of the signing and
verification procedures suggest that both the signer and verifier only commit
over the higher-order bits of a particular intermediate value (w̄1). With s̄2 being
small and only used in the product of c · s̄2, which is again a module with very
small coefficients, it leads us to think if s̄2 will have any observable impact over
the committed value (w̄1), which also naturally leads us to think if it is possible
to bypass the use of s̄2 to forge signatures. A concrete analysis of this idea is
followed in Section 4, where we show that it is indeed possible to forge signatures
with only the knowledge of s̄1.

3.2 Analysis from the perspective of a side-channel adversary

Analysis of previous works on implementation security of lattice-based signa-
tures [5,7,11,12] suggest that most of the attacks only concentrated on recovering

s̄1, as the retrieval of s̄2 from the completely available LWE instance directly
followed. Thus, the step of calculating the z̄ component of the signature, which
involves the only computation using s̄1 in the signing procedure, has been greatly
scrutinized from a SCA and fault attack perspective to a great extent. A similar
attack can also be mounted on Dilithium to retrieve s̄1 (Step 19 of signing in
Figure 2) provided the implementation is not sufficiently hardened against the
previously known attacks. Upon recovering s̄1, there are two possible methods
that an adversary can follow to forge signatures.

The first technique is to try to recover the other secret s̄2 using statistical
analysis. With the knowledge of s̄1, the adversary can trivially calculate the w̄
component for all the valid signatures. Since we also know that all the signatures
output adhere to the condition HBq(w̄−cs̄2, 2γ2) ≤ γ2−β, it is possible to derive
certain conditions of the possible values of s̄2. But as stated by Bruinderink
and Pessl [7], it would require a large number of signatures and a very high
computational effort, thus increasing the attacker’s complexity. Additionally,
an adversary cannot use this technique in an ephemeral key setting as they
cannot expect to observe suitably many signatures to be generated using the
same secret-key.

Additionally, the authors of Dilithium do not assume any secrecy with respect
to the lower order bits of t̄ (i.e, t̄0). In fact, the security proof of Dilithium is
sketched under the assumption that the whole of t̄ is known to the adversary.
Thus, it might indeed be possible that the whole of t̄ leaks as part of the signature
and observations of sufficiently many signatures might lead to the recovery of
the complete LWE instance, t̄. But again, we expect the number of signatures
and the computational effort to be very high, which cannot be expected in a
practical SCA setting.

The other technique the SCA adversary can attempt is to recover the other
secret, s̄2 or t̄0, through side channels. There have been previous works on
SCA and fault attacks over the polynomial multiplication operation cs̄i, for
i = {1, 2} [12, 27]. Since both the products are computed during the signing
procedure, it is possible to mount similar SCA attacks to recover both s̄1 and s̄2
and also t̄0.

But, in a practical SCA setting, it might not be always possible to retrieve
the secrets completely and might pose a significant challenge owing to the
requirement for the attacker to either analyse a large number of observations [12]
for a given secret-key or inject a large number of successful faults [5]. Thus,
an adversary might have to brute-force over the remaining coefficients of the
attacked component (s̄2 or t̄0) to completely recover the key.

We analysed this case, with the recommended parameter set of Dilithium, to
estimate the brute-force complexity. Figure 3 shows the brute-force complexity of
finding the remaining coefficients of both the secrets, s̄1 and s̄2 plotted against
the success rates in retrieving coefficients. It shows that the attack’s complexity
increases substantially, compared to when brute-forcing just one of the secrets.
Thus, we can see that even for a success rate in retrieving the coefficients that is
as high as 98%, the brute-force complexity is well over the 128 bit security level.

Even brute-forcing over one of the secrets with very high success rates of over
97% also crosses the 128-bit security level. Thus, in a practical setting, trying to
retrieve both s̄1 and s̄2 might not be feasible even if success rate is very high
and only very small percentage of coefficients are left unrecovered.

0 1 2 3 4 5 6
 % of coefficients to brute force

0

100

200

300

400

500

lo
g
2

(b
ru

te
 f

o
rc

e
 c

o
m

p
le

x
it

y
)

s1

s2

Both s1 and s2

128 bit security level

Fig. 3: Brute-force complexity versus the % of coefficients yet to be found.

Alternatively, the adversary can try to retrieve the remaining coefficients
of s̄1 using algorithms that solve lattice problems. A similar technique was
proposed by Bindel et al. [5], who propose a hybrid approach to reduce the
number of fault attacks to retrieve a certain number of coefficients, leaving the
remaining coefficients to be retrieved using LWE solvers. This technique reduces
the attacker’s complexity in retrieving the whole of s̄1. But, even if the whole of
s̄1 is retrieved, the remaining coefficients of s̄2 still remain unknown. Referring
to Figure 3, we again see that brute-forcing over remaining coefficients of one of
the secrets requires a very high computation cost, even with a very high success
rate.

Given all the above scenarios from an SCA perspective, we try to motivate
the importance of our forgery signature scheme which requires only the partial
knowledge of the secret-key. We do acknowledge another very recent parallel
work by Bruinderink and Pessl [7], which proposes a different strategy to forge
signatures in Dilithium with only the knowledge of s̄1. However, the research
lacks a clear analysis of the underlying factors that enabled signature forgery,
with only the knowledge of s̄1. However, we propose an alternate simpler forgery
signature scheme backed up by a careful analysis along with a novel EM-based
side channel attack strategy to recover s̄1.

4 Existential Forgery Assuming Partial Secret-Key
Knowledge

We now present an existential forgery attack on Dilithium assuming the knowledge
of partial secret-key, s̄1. For the following attack, refer to the function Sign in
Figure 2. We consider an adversary A, who has knowledge of s̄1, and whose goal
is to produce a valid signature of a new message. Execution of Lines 10 through
18 require knowledge of K (Line 14) and s̄1 (Line 18) the partial secret-key. The
security of Dilithium is unaffected if K is made public, indeed K is only used to
deterministically generate randomness ȳ. Thus, A proceeds through Lines 10 to
18, choosing ȳ uniformly at random from S`γ1−1 in Line 14 and computing z̄ in
Line 18 using s̄1.

Signature verification requires knowledge of w̄1. In the specifications [17], it is

proven that the P[w̄1 = HBq(w̄− cs̄2, 2γ2)] ≈ e−nβ(
`
γ1

+ k
γ2

), very close to 1. Now
w̄− cs̄2 = (−ct̄0) + (w̄− cs̄2 + ct̄0). Writing ū = −ct̄0, r̄ = w̄− cs̄2 + ct̄0, and
the fact that P[‖ū‖∞ ≤ γ2] ≈ 1 (indeed, ‖− ct̄0‖∞ ≤ ‖t̄0‖∞ < 2d < γ2) together
ensure (Lemma 1) that w̄1 can be computed as follows:

UHq (MHq(ū, r̄, 2γ2), r̄, 2γ2) = HBq(ū + r̄, 2γ2)

= HBq(w̄ − cs̄2, 2γ2)

= w̄1.

But computation of MHq(ū, r̄, 2γ2) requires knowledge of ū = −ct̄0, and therefore
subsequently the partial secret-key t̄0. The problem for A is now to compute
hint matrix h̄ = MHq(ū, r̄, 2γ2) without the knowledge of t̄0. In the following we
first show that UHq function could be inverted to produce the correct hint. In
particular UHq(h, r, α), given q, α, r ∈ Zq and HBq(u+ r, α), is invertible on h if
‖u‖∞ ≤ α/2. Lemma 2 summarizes this fact.

Lemma 2. Let u ∈ Zq with ‖u‖∞ ≤ α/2, where α > 0. Then, given any r ∈ Zq
and HBq(u+ r, α), it is easy to compute MHq(u, r, α).

Proof: The algorithm in Figure 4, given below, illustrates this claim. The
correctness of the algorithm follows immediately from Lemma 1 and Lemma 3.

Lemma 3 ([17]). Let r ∈ Zq and h, h′ ∈ {0, 1}. If UHq(h, r, α) = UHq(h
′, r, α),

then h = h′.

Thus, in order to compute h̄, A must ensure that it has access to HBq(ū +
r̄, 2γ2) = HBq(w̄ − cs̄2), and r̄ = w̄ − cs̄2 + ct̄0. Computing r̄ is easy as
w̄−cs̄2 +ct̄0 = Az̄−ct̄12d. To compute HBq(w̄−cs̄2) all A has access to is w̄1.
But it is known that HBq(w̄− cs̄2, 2γ2) = w̄1 provided ‖LBq(w̄− cs̄2, 2γ2)‖∞ ≤
γ2 − β. A valid signer could ensure this check, but for A it is not possible as it
requires knowledge of s̄2. But, this is not a problem as it is proven in [17] that,

for a ȳ
$← S`γ1 , P[‖LBq(w̄ − cs̄2, 2γ2)‖∞ ≤ γ2 − β] ≈ e

−nβk
γ2 , very close to 1. We

now finally present complete details of our existential forgery attack in Figure 5.

input : q, r, α, θ = HBq(u+ r, α)
output :MHq(u, r, α)

1 Set h = 0;
2 Compute φ = UHq(h, r, α);
3 if φ = θ then
4 return h
5 else
6 return 1
7 end

Fig. 4: Inverting UHq for the hint bit h.

It is important to note that the attack works for the recommended parameter
sets of Dilithium.

We implemented our forgery signing procedure by modifying the reference
implementation of Dilithium that was submitted to the NIST standardization
process. The results were obtained on an Intel Core-i5 (Haswell) processor running
at 2.6 GHz with Turbo Boost and Hyperthreading and compiled with gcc-4.2.1
without modifying the compiler flags set for the reference implementation. We
obtained an average signing time of about 0.3253 msecs for our forgery signing
procedure which is about 2.67 times faster than the signing time for the original
signing procedure of Dilithium which runs at an average time of 0.8689 msec. The
improved speed is due to the reduced number of operations and also the removal
of rejection conditions over the norms of r̄0 and ct̄0. We have uploaded the C
code of our forgery signing procedure in the github link mentioned below5.

It is natural for our forgery scheme to produce invalid signatures since the
conditional checks on the norm of r̄0 and ct̄0 are skipped. We attempted to
empirically compute the failure probability of our forgery signing procedure. We
could run our signature scheme for a total of 228 times on the same platform
with all the signatures verified correctly. This along with its increased signing
rate leads us to hypothesize if our forgery signing procedure can be used as an
alternative signing procedure with improved performance, provided it does not
leak any information about the secret key. Concrete analysis of the same is left
for future work.

4.1 Implications of the forgery signature scheme

Thus, we have shown that it is indeed possible to forge signatures, with only
the knowledge of s̄1, by successfully bypassing the use of the other elements
of the secret-key. We do not claim any major break of the Dilithium signature
scheme, but show that the knowledge of just one component, s̄1, of the secret-key
is enough to forge signatures which will be verified correctly with very high
probability. But, it is important to state that the secret-key components; s̄1, s̄2,

5 https://github.com/jameshoweee/dilithium_forgery

https://github.com/jameshoweee/dilithium_forgery

input : public-key pk = (q, ρ, t̄1), Partial secret-key = s1, A message M
output :A forged Dilithium signature

1 A ∼ Rk×`q := Sam(ρ);
2 µ = H (H(ρ‖t̄1)‖M);

3 ȳ
$← S`γ1−1;

4 w̄ = Aȳ;
5 w̄1 = HBq(w̄, 2γ2);
6 c = H(µ, w̄1);
7 z̄ = ȳ + cs̄1;

8 h̄ =

h10 . . . h1(n−1)

h20 . . . h2(n−1)

...
...

...
hk0 . . . hk(n−1)

 =

0 . . . 0
0 . . . 0
...

...
...

0 . . . 0

;

9 θ =

θ10 . . . θ1(n−1)

θ20 . . . θ2(n−1)

...
...

...
θk0 . . . θk(n−1)

 =

UHq(h10, [Az̄ − ct̄12d]10, 2γ2) . . . UHq(h1(n−1), [Az̄ − ct̄12d]1(n−1), 2γ2)

UHq(h20, [Az̄ − ct̄12d]20, 2γ2) . . . UHq(h2(n−1), [Az̄ − ct̄12d]2(n−1), 2γ2)
...

...
...

UHq(hk0, [Az̄ − ct̄12d]k0, 2γ2) . . . UHq(hk(n−1), [Az̄ − ct̄12d]k(n−1), 2γ2)

;

10 for i = 1 to k do
11 for j = 0 to n− 1 do
12 if θij 6= [w̄1]ij then
13 Set hij = 1
14 end

15 end

16 end

17 if UHq(h,Az̄ − ct̄12d, 2γ2) 6= w̄1 or ‖z̄‖∞ ≥ γ1 − β or wt(h) > ω then
18 Go to 3
19 else
20 return (σ = (z̄, h̄, c))
21 end

Fig. 5: Forgery(pk, s̄1,M)

and t̄0, are related to one another and it is public knowledge that knowing any of
the two aforementioned components will result in a direct break of the signature
scheme. In this research, we have shown that just the knowledge of s̄1 is sufficient
for an existential forgery attack.

A natural question arises as to whether the knowledge of s̄2 only will be
sufficient to forge signatures. But, according to the claim of Bai and Galbraith [2],
the signature does not send any information about the error s̄2 and thus does
proves only the knowledge of s̄1, but not s̄2. Thus with only the knowledge of
s̄2, it should be impossible to forge signatures given the fact that s̄1 and s̄2 are
independent. Thus, we show that the among all the elements of the secret key
(ρ,K, tr, s̄1, s̄2, t̄0), just knowing s̄1 is sufficient to forge signatures, thus showing
that the secrecy of s̄1 is pivotal for the secrurity of Dilithium.

5 Retrieval of s̄1

To complete our existential forgery attack on Dilithium, we demonstrate a power
side-channel attack to retrieve s̄1 by targetting the polynomial multiplication
operation cs̄1. during the signing procedure. Recent public implementations of
Dilithium utilise a number theoretic transform (NTT) for polynomial multipli-
cation. Side-channel vulnerability of NTT-based polynomial multiplications is
already known [27]. Designers can use other alternatives for computing multi-
plication, but the choice of the multiplication architecture does not necessarily
protect against SCA. There are several works that acknowledge the fact that
both the schoolbook and the sparse polynomial multiplier might yield better
performance in certain corner cases over area-constrained devices, due to its
simplified control logic [13,23,24]. Additionally, since the signature component
has to be generated in the normal domain, use of the schoolbook or the sparse
polynomial multiplier might yield better performance results compared to the
use of the NTT polynomial multiplier. The sparse polynomial multiplier has
been used in the reference implementation of another candidate lattice-based
signature scheme, qTESLA [4], which further motivates us analyse the schoolbook
polynomial multiplier and its efficient variant.

We use power analysis to demonstrate two types of attacks to recover s̄1,
targetting the polynomial multiplication operation s̄1 × c, that is Step 19 of the
signing procedure in Figure 2. SCA on two multiplier architectures are considered.
The first one is a conventional DPA style attack on a schoolbook polynomial
multiplier, while the second is a two stage horizontal and vertical DPA style attack
on the efficient sparse polynomial multiplier protected with the countermeasure
of randomized shuffling of non-zero indices of c. The latter attack is based on
implementation by Pöppelmann et al. [25] on 8-bit AVR microcontrollers. Both
the schoolbook and sparse polynomial multiplication algorithms have been used
for design of compact multipliers in a number of reported implementation works
on both hardware and software platforms [8, 24].

We would like to clarify that s̄1 ∈ R`q, while c ∈ B60 and hence can be
assumed to be an element of Rq. The operation of s̄1 × c will be repeated `

times with each polynomial of module s̄1. But for notational convenience in this
section, s̄1 × c is used to denote a single polynomial multiplication.

5.1 Attacking the schoolbook polynomial multiplier

The operands of the target polynomial multiplication operation (s̄1 × c) are
s̄1, which has small coefficients in [−η, η], and c, which is a sparse polynomial
with coefficients in {0,±1}. If a schoolbook algorithm is used for the polynomial
multiplier, then c(x) = a(x) · b(x) in an ideal lattice setting can be described by
the equation below as follows:

a · b =

[n−1∑
i=0

n−1∑
j=0

ai · bjxi+j
]

mod 〈xn + 1〉 =

n−1∑
i=0

n−1∑
j=0

(−1)b
i+j
n
cai · bjxi+j mod n (2)

The intermediate result ai · bj is targeted (seen in Equation 2), wherein one
of the operands c is known while the other operand s1 is unknown. This is an
ideal setting to mount DPA attacks using a divide-and-conquer approach, and
the secret-key can be retrieved one coefficient at a time. Each coefficient of s1
is multiplied with all the coefficients of c and observing one signature provides
256 points on the trace for the attack. Hence, information about a particular
coefficient can also be retrieved from multiple points on a single trace, in addition
to getting information about the same coefficient by observing multiple signatures.

5.2 Attacking the sparse polynomial multiplier

The sparse polynomial multiplier implementation we use [25] is a much more
optimized algorithm, which takes advantage of the fact that one of the operands
is a sparse polynomial. Only the indices of the non-zero coefficients of c are
stored along with their sign. This restricts the multiplication of the coefficients
of s̄1 to only those that are non-zero, thus saving computational time. As a
preliminary countermeasure, the non-zero coefficients of c are also shuffled and
processed in a random order for each multiplication operation. Figure 6 describes
the code corresponding to the computation of the sparse polynomial multiplier.
Though c is still known, the random shuffling of its coefficients prevents from
mounting a straightforward DPA attack. An attack on a sparse polynomial
multiplier was reported by Espitau et al. [12]. We use a similar technique to
recover s̄1, albeit with modifications to suit Dilithium, while also targeting a
different source of leakage compared to the original attack. The first step of
the attack works by retrieving the order in which c is processed during every
polynomial multiplication. This is done by performing a horizontal DPA attack
on Step 5 of Figure 6. Since, one of the inputs (q) is known, a hypothesis over all
the possible values of c[j] can be constructed to perform a horizontal style DPA
attack using information available from a single trace, as the coefficients of c are
shuffled after each multiplication operation. Once the order of indices for each
polynomial multiplication is revealed, this information can be utilized to retrieve
coefficients of s̄1 using a DPA attack over computation in Step 9, since the value
of val is dependent on c[j].

1 for (q=0; q<N; q++){
2 r e s [q] = 0 ;
3 for (j =0; j<N; j++){
4 i n t 8 t va l = 1 ;
5 i n t 1 6 t i = (q − c [j]) ;
6 i f (i < 0){
7 i += N;
8 va l = −va l ;}
9 va l ∗= s [i] ;

10 r e s [q] += val ;}
11 }

Fig. 6: Code snippet of optimised sparse polynomial multiplier [22]

5.3 Experimental results

The above mentioned attacks were performed in a simulated setting, where
uniform noise (over a given zero centered interval) is added to the traces, to
test the robustness of the attack in a noisy environment. On assuming an 8-
bit Hamming weight (HW) model leakage, there is a very limited number of
observable hamming weights on the trace, given the fact that s1 is small and
coefficients of c ∈ {0, 1}. In addition to this, the distance between the various
observable hamming weights is also very small (at least for values with the same
sign). One can easily distinguish between whether the correct guess is a positive or
negative value (due to the leading ones in the negative value). But distinguishing
between different positive values is very tricky, as there is very little information
that helps the attacker in distinguishing different key hypotheses. We used the
least square error as the statistical distinguisher for both attacks, owing to the
decreased number of observable hamming weights. We observed that some of the
coefficients could not be retrieved even in a perfect noise free setting. For example,
pairs (3, 5) and (−3,−5) are indistinguishable from each other, since they have
the same hamming weights over 8 bits. For η = 6 and N = 256 (N being the
degree of polynomial), the possible values of the coefficient are in [−6, 6], and
thus we cannot distinguish four out of the possible eleven cases. This boils down
to a brute-force complexity of around ≈ 279, on average, for each polynomial
in the secret-key s̄1, which renders the attack impractical. A work by Bindel
et al. [5] showed that it is enough to reveal only 67% of coefficients in order to
reveal the complete secret polynomial s̄1 for BLISS. It is possible that a similar
technique could be used for s1 in Dilithium to recover the remaining coefficients.

But, it is known that real devices do not necessarily leak in a perfect HW
model. Realistically speaking, each bit has a certain bias associated with it and
hence each bit weighs differently in leakage. This model of leakage is known as the
linear regression model, where leakage corresponding to each bit i is weighed with

a particular coefficient αi [28]. Both attacks were repeated in a simulated linear
regression leakage (LR) model. We found that an introduction of a very small bias
that is random in [−0.01, 0.01] to each bit, introduced enough information that
resulted in the recovery of almost all coefficients. But to demonstrate a practical
case, we use the α coefficients that were profiled using an AES S-box on an AVR
microcontroller. An important point to note is that the α coefficients relate to
the characteristics of the device and hence any non-sensitive algorithm can also
be used for profiling the device. In the case of the LR leakage model, we observed
that almost all coefficients were retrieved with very high confidence (with clear
distinction between the correct and wrong key hypotheses). The different bias
associated with each bit helped distinguish the correct hypothesis from the wrong
ones much more easily compared to the HW leakage setting. We also added
uniform noise in interval [−x, x] to test the robustness of both the attacks in a
noisy environment.

Figures 7a and 7b show the plots for the fraction of coefficients retrieved
successfully and the fraction of coefficients to be brute-forced, respectively, against
an increasing value of noise interval. Note that the value of x in the x-axis
corresponds to uniform noise in the interval [−x, x]. It can be seen that the
success rate for both the attacks in the HW model is around 75% with high
confidence and a brute-force on 25% of the coefficients is required on average.
Both attacks in the LR model retrieve almost all coefficients and have a very
high success of 90% retrieval, even in presence of noise, with no coefficients to
brute-force.

0 1 2 3 4 5 6
Noise Interval

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Fr
a
ct

io
n
 o

f
C

o
e
ff

ic
ie

n
ts

 R
e
tr

ie
v
e
d

Mulsparse(HW model)

Schoolbook(HW model)

Mulsparse(LR model)

Schoolbook(LR model)

(a) Fraction of coefficients retrieved against
uniform noise.

0 1 2 3 4 5 6
Noise Interval

0.0

0.1

0.2

0.3

0.4

0.5

Fr
a
ct

io
n
 o

f
C

o
e
ff

ic
ie

n
ts

 t
o
 b

ru
te

 f
o
rc

e

Mulsparse(HW model)

Schoolbook(HW model)

Mulsparse(LR model)

Schoolbook(LR model)

(b) Fraction of coefficients to brute-force
against uniform noise.

Fig. 7: Practical results for DPA attack against Noise

Comparing the results in Figure 7b with Figure 3, it can be seen that even
with very low noise levels, the brute-force complexity can go beyond polynomial
time. In such cases, the attacker runs at an advantage if only one of s̄1 or s̄2 has
to be recovered.

6 Conclusion

In this work, we have demonstrated a side channel assisted forgery attack on the
Dilithium signature scheme which is one of the leading candidates to the NIST
call for standardization of post-quantum cryptography. Our attack proceeds in
two stages, wherein the the partial secret-key s̄1 is retrieved through a novel
power analysis attack on the polynomial multiplier. We follow it up with a forgery
signature scheme, wherein we show that it is indeed possible to forge signatures
with only the knowledge of s̄1 while bypassing the use of the other parts of the
secret-key. We again stress that we neither claim a major break of the Dilithium
signature scheme nor any reduction in security of the same. But, we show that
the Dilithium scheme breaks on only the knowledge of s̄1, which is otherwise not
very intuitive given the fact that only a fraction of the LWE instance is revealed
as the public-key. Thus the secrecy of s̄1 is pivotal in ensuring the security of the
Dilithium signature scheme.

References

1. Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and Giorgia Az-
zurra Marson. An efficient lattice-based signature scheme with provably secure
instantiation. In International Conference on Cryptology in Africa, pages 44–60.
Springer, 2016.

2. Shi Bai and Steven D Galbraith. An Improved Compression Technique for Signatures
Based on Learning with Errors. In CT-RSA, volume 8366, pages 28–47, 2014.

3. Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan
Jeffrey, Ted C White, Josh Mutus, Austin G Fowler, Brooks Campbell, et al.
Superconducting quantum circuits at the surface code threshold for fault tolerance.
Nature, 508(7497):500–503, 2014.

4. Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa, Harun
Polat, Jefferson E. Ricardini, and Gustavo Zanon. qTESLA. Technical report,
National Institute of Standards and Technology, 2017. available at https://csrc.

nist.gov/projects/post-quantum-cryptography/round-1-submissions.
5. Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signature

schemes and their sensitivity to fault attacks. In Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016 Workshop on, pages 63–77. IEEE, 2016.

6. Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush,
Gauss, and Reload–a cache attack on the BLISS lattice-based signature scheme.
In International Conference on Cryptographic Hardware and Embedded Systems,
pages 323–345. Springer, 2016.

7. Leon Groot Bruinderink and Peter Pessl. Differential Fault Attacks on Deterministic
Lattice Signatures. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(3), 2018. https://eprint.iacr.org/2018/355.pdf.

8. Johannes Buchmann, Florian Göpfert, Tim Güneysu, Tobias Oder, and Thomas
Pöppelmann. High-performance and lightweight lattice-based public-key encryption.
In Proceedings of the 2nd ACM International Workshop on IoT Privacy, Trust,
and Security, pages 2–9. ACM, 2016.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2018/355.pdf

9. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. In Advances in Cryptology–CRYPTO 2013,
pages 40–56. Springer, 2013.

10. Léo Ducas, Eike Kiltz, Tancrde Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehl. CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(1):238–268, Feb. 2018.

11. Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Tibouchi. Loop-
abort faults on lattice-based Fiat-Shamir and hash-and-sign signatures. In Inter-
national Conference on Selected Areas in Cryptography, pages 140–158. Springer,
2016.

12. Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Tibouchi. Side-
channel attacks on BLISS lattice-based signatures: Exploiting branch tracing against
strongswan and electromagnetic emanations in microcontrollers. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1857–1874. ACM, 2017.

13. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-
based cryptography: A signature scheme for embedded systems. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 530–547.
Springer, 2012.

14. Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang
Shantz. Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In Inter-
national Conference on Cryptographic Hardware and Embedded Systems, volume 4,
pages 119–132. Springer, 2004.

15. TP Harty, DTC Allcock, C J Ballance, L Guidoni, HA Janacek, NM Linke,
DN Stacey, and DM Lucas. High-fidelity preparation, gates, memory, and readout
of a trapped-ion quantum bit. Physical review letters, 113(22):220501, 2014.

16. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 598–616. Springer, 2009.

17. Vadim Lyubashevsky, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Peter Schwabe,
Gregor Seiler, and Damien Stehle. CRYSTALS-Dilithium. Technical report, National
Institute of Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

18. NIST. Post-Quantum Crypto Project. http://csrc.nist.gov/groups/ST/post-

quantum-crypto/, 2016.
19. NIST. Submission requirements and evaluation criteria for the post-quantum cryp-

tography standardization process. https://csrc.nist.gov/csrc/media/

projects/post-quantum-cryptography/documents/call-for-proposals-

final-dec-2016.pdf, 2016.
20. Peter Pessl. Analyzing the shuffling side-channel countermeasure for lattice-based

signatures. In INDOCRYPT 2016, pages 153–170. Springer, 2016.
21. Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be:

Attacking strongSwan’s Implementation of Post-Quantum Signatures. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1843–1855. ACM, 2017.

22. Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based
signatures on reconfigurable hardware. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 353–370. Springer, 2014.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf

23. Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware. In International Conference on
Cryptology and Information Security in Latin America, pages 139–158. Springer,
2012.

24. Thomas Pöppelmann and Tim Güneysu. Area optimization of lightweight lattice-
based encryption on reconfigurable hardware. In Circuits and Systems (ISCAS),
2014 IEEE International Symposium on, pages 2796–2799. IEEE, 2014.

25. Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance ideal
lattice-based cryptography on 8-bit atxmega microcontrollers. In International
Conference on Cryptology and Information Security in Latin America, pages 346–365.
Springer, 2015.

26. John Preskill. Reliable quantum computers. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, volume 454, pages
385–410. The Royal Society, 1998.

27. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks
on masked lattice-based encryption. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 513–533. Springer, 2017.

28. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 30–46. Springer, 2005.

	Side-channel Assisted Existential Forgery Attack on Dilithium - A NIST PQC candidate

