
SeaSign: Compact isogeny signatures from class group actions

Luca De Feo1[0000−0002−9321−0773] and Steven D. Galbraith2[0000−0001−7114−8377]

1 Université Paris-Saclay – UVSQ, LMV, UMR CNRS 8100, Versailles, FR. https://defeo.lu/
2 Mathematics Department, University of Auckland, NZ. s.galbraith@auckland.ac.nz

Abstract. We give a new signature scheme for isogenies that combines the class group actions of CSIDH with
the notion of Fiat-Shamir with aborts. Our techniques allow to have signatures of size less than one kilobyte at the
128-bit security level, even with tight security reduction (to a non-standard problem) in the quantum random oracle
model. Hence our signatures are potentially shorter than lattice signatures, but signing and verification are currently
very expensive.
c©IACR 2019. This is the full version of an article published by Springer-Verlag at EUROCRYPT 2019.”

1 Introduction

Stolbunov [51] was the first to sketch a signature scheme based on isogeny problems. Stolbunov’s scheme is in the
framework of class group actions. However the scheme was not analysed in the post-quantum setting, and a naive
implementation would leak the private key. Due to renewed interest in class group actions, especially CSIDH [13]
(due to Castryck, Lange, Martindale, Panny and Renes) and the scheme by De Feo, Kieffer and Smith [22], it is of
interest to develop a secure signature scheme in this setting. Our main contribution is to use Lyubashevsky’s “Fiat-
Shamir with aborts” strategy [41] to obtain a secure signature scheme. We also describe some methods to obtain much
shorter signatures than in Stolbunov’s original proposal.

Currently it is a major problem to get practical signatures from isogeny problems. Yoo et al. (see Table 1 of [55])
state signatures of over 100 KiB and signing/verification that take a few seconds on a PC. This can be reduced using
some optimisations. For example [29] state approximately 12 KiB for this signature scheme (for classical 128-bit
security level) and approximately 11 KiB for their main scheme. In contrast, in this paper we are able to get signatures
smaller than a kilobyte, which is better even than lattice signatures. Unfortunately, signing and verification are very
slow (the order of minutes), but we hope that future work (see for example [23]) will lead to more efficient schemes.

We now briefly summarise the main findings in the paper (for more details see Table 2). For the parameters
(n,B) = (74, 5) as used in CSIDH [13] we propose a signature scheme whose public key is 4 MiB, signature size
is 978 bytes, and verification time is under 3 minutes (signing time is three times longer than this on average, since
rejection sampling requires repeating the signing algorithm). For the same parameters we show that one can reduce the
public key size to only 32 bytes, but this increases the signature size to around 3 KiB and does not add any significant
additional cost to signing or verification time. One can obtain even shorter signatures by taking different choices of
parameters, for example taking (n,B) = (20, 3275) leads to signatures as small as 416 bytes, but we do not have an
estimate of the verification time for these parameters.

The paper is organised as follows. Section 3 gives the basic signature scheme concept, that was proposed by
Stolbunov, and our secure variant based on Fiat-Shamir with aborts. Section 4 explains how to get shorter signatures,
at the expense of public key size, by using challenges that are more than just a single bit. This optimisation also leads
to faster signing and verification. Section 5 shows how to retain the benefit of shorter signatures, while also having
a short public key, by using modified Merkle trees. Section 7 sketches some optimisations and variants. Section 8
shows how to use our scheme in the context of lossy keys, from which we obtain tight security in the quantum random
oracle model via the results of Kiltz, Lyubashevsky and Schaffner [37] (and this security enhancement involves no
increase in signature size, though the primes are larger so computations will be somewhat slower). This is the first
time that lossy keys have been used in the isogeny setting. Section 9 explains that, if a quantum computer is available
during parameter generation, then a much more practical signature scheme can be obtained by following the methods
in Stolbunov’s thesis.

The name “SeaSign” is a reference to the name CSIDH, which is pronounced “sea-side”.

https://defeo.lu/

2 Background and notation

We use the following notation: #X is the number of elements in a finite set X; log denotes the logarithm in base 2;
KiB and MiB denote kilobytes and megabytes respectively; for B ∈ N we denote by [−B,B] the set of integers u
with −B ≤ u ≤ B.

2.1 Elliptic curves, isogenies, ideal class groups

References for elliptic curves over finite fields and isogenies are Silverman [50], Washington [54], Galbraith [27],
Sutherland [52] and De Feo [20]. A good reference for ideal class groups and class group actions is Cox [19].

Let E be an elliptic curve over a field K and let P ∈ E(K) be a point of order m. Then there is a unique (up
to isomorphism) elliptic curve E′ and separable isogeny φ : E → E′ such that ker(φ) = 〈P 〉. Vélu [53] gives an
algorithm to compute an equation for E′ and rational functions that enable to compute φ. The complexity of this
algorithm is linear in m and requires field operations in K, so when K is a finite field it has cost O(m log(#K)2)
bit operations using standard arithmetic. In the worst case (i.e., when m is large) this algorithm is exponential-time.
In practice this computation is only feasible when m is relatively small (say m < 1000) and when the field K over
which P is defined is not too large (say, at most a few thousand bits) For an elliptic curve E over a field K we define
End(E) to be the the ring of endomorphisms of E defined over the algebraic closure of K, and EndK(E) to be the
the ring of endomorphisms defined over K. Since we are mostly concerned with the CSIDH [13] approach, we will be
interested in supersingular elliptic curves E such that j(E) ∈ Fp, where p is a large prime. In this case End(E) is a
maximal order in a quaternion algebra, while EndFp

(E) is an order in the imaginary quadratic field Q(
√
−p). Indeed,

Z[
√
−p] ⊆ EndFp

(E).
We will be concerned with the ideal class group of the order O = EndFp

(E). This is the quotient of the group of
fractional invertible ideals inO by the subgroup of principal fractional invertible ideals. The principal ideal (1) = O is
the identity element of the ideal class group. Given two invertibleO-ideals a, b we write a ≡ b if a and b are equivalent
(meaning that ab−1 is a principal fractional O-ideal).

2.2 Class group actions and computational problems

Let p be a prime. Let E be an ordinary elliptic curve over Fp with End(E) ∼= O or E a supersingular curve over Fp
with EndFp

(E) ∼= O where O is an order in an imaginary quadratic field. Let Cl(O) be the ideal class group of O.
One can define the action of an O-ideal a on the curve E as the image curve E′ under the isogeny φ : E → E′ whose
kernel is equal to the subgroup E[a] = {P ∈ E(Fp) : α(P) = 0 ∀α ∈ a}. We denote E′ by a ∗ E.

The set {j(E)} of isomorphism classes of elliptic curves with End(E) ∼= O is a principal homogeneous space for
Cl(O). Good references for the details are Couveignes [18] and Stolbunov [51]. The key exchange protocol proposed
by Couveignes and Stolbunov is for Alice to send a ∗ E to Bob and Bob to send b ∗ E to Alice; the shared key is
(ab) ∗ E.

The difficulty is that if a ⊂ O is an arbitrary ideal then the subgroup E[a] is typically defined over a very large
field extension and the computation of a ∗ E has exponential complexity. For efficient computation it is necessary to
work with ideals that are a product of powers of small prime ideals, so it is necessary to find a “smooth” ideal in the
ideal class of a. Techniques for smoothing an ideal class in the context of isogeny computation were first proposed
in [28] and developed further in [12,35,8]. The state of the art is [8] which computes a ∗ E for any ideal class in
subexponential complexity in log(# Cl(O)).

Since subexponential complexity is not good enough for cryptographic applications it is necessary to choose ideals
deliberately of the form a =

∏n
i=1 l

ei
i where l1, . . . , ln are split primeO-ideals of small norm `i and where (e1, . . . , en)

is an appropriately chosen vector of exponents. Then, the action of a can be computed as a composition of isogenies
of degree `i. Throughout the paper we assume that {l1, . . . , ln} is a set of non-principal prime ideals in O, generating
Cl(O), of norm polynomial in the size of the class group. Theoretically we have the bounds # Cl(O) = O(

√
p log(p))

and, assuming a generalised Riemann hypothesis, `i = O(log(p)2). In practice one usually takes `i = O(log(p)) for
efficiency reasons; heuristically, this is more than enough to generate the class group.

The basic computational assumption is to invert the action of an ideal. Couveignes called Problem 1 “vectorisation”
and Stolbunov called it “Group Action Inverse Problem (GAIP)”. The CSIDH paper speaks of hard homogeneous
spaces and calls the problem “Key recovery”.

2

Problem 1. Given two elliptic curves E and EA tover the same field with End(E) = End(EA) = O. Find an ideal a
such that j(EA) = j(a ∗ E).

The best classical algorithms for this problem in the general case have exponential time (at least
√

Cl(O)
isogeny computations). Childs, Jao and Soukharev [15] were the first to point out that this problem can be formulated
as a “hidden shift” problem, and so quantum algorithms for the hidden shift problem can be applied. Hence, there
are subexponential-time quantum algorithms for Problem 1 based on the quantum algorithms of Kuperberg [39] and
Regev [47]. It is still an active area of research to assess the exact quantum hardness of these problems; see the re-
cent papers by Biasse-Iezzi-Jacobson [9], Bonnetain-Schrottenloher [11], Jao-LeGrow-Leonardi-Ruiz-Lopez [34] and
Bernstein-Lange-Martindale-Panny [7]. But at the very least, Kuperberg’s algorithm requires at least Õ(2

√
log(p)/2)

quantum gates, thus taking

p > 22λ
2

, (1)

where λ is the security parameter, should be sufficient to make Problem 1 hard for a quantum computer.
If the ideals a in Problem 1 are sampled uniformly at random then the problem admits a random self-reduction:

given an instance (E,EA) one can choose random ideal classes b1, b2 and construct the instance (E1, E2) = (b1 ∗
E, b2 ∗EA), which is now uniformly distributed across the set of pairs of isomorphism classes of curves in the isogeny
class. If a′ is a solution to the instance (E1, E2) then any ideal equivalent to the fractional ideal a′b1b−12 is a solution
to the original instance. This is a nice feature for security proofs that is not shared by SIDH [33]3; we use this idea in
Section 4.2.

As already mentioned, when instantiating the group action in practice, one must choose parameters that make
evaluating isogenies of degree `i as efficient as possible. This is done both by choosing the primes `i to be as small as
possible, and also by arranging that the kernel subgroups E[`i] are defined over as small a field extension as possible
(so that Vélu’s formulas can be used). In the ordinary case, the best technique currently available to select parameters
is due to De Feo, Kieffer and Smith [22]. Despite the optimisations described in [22], this technique requires years of
CPU time to construct a good curve. Like [22], CSIDH [13] chooses a special prime of the form p + 1 = 4

∏n
i=1 `i,

but, instead of ordinary curves, it uses supersingular curves defined over Fp. This makes the search for a suitable curve
virtually instantaneous, and produces very efficient parameters; indeed note that the formula for p + 1 implies that
each prime `i splits in Q(

√
−p) as a product (`i) = līli of distinct prime ideals. For key exchange, CSIDH samples

the exponent vectors e = (e1, . . . , en) ∈ [−B,B]n ⊆ Zn for a suitable constant B.
This leads to a special case of Problem 1 where the ideals may not be uniformly distributed in the ideal class group.

For further discussion see Definition 1 and the discussion that follows it. In this special case one can also consider a
straightforward meet-in-the-middle attack: Let E and a ∗ E be given, where a =

∏n
i=1 l

ei
i over ei ∈ [−B,B]. We

compute lists (assume n is even)

L1 =

(
n/2∏
i=1

leii
)
∗ E : ei ∈ [−B,B]

 , L2 =

(
n∏

i=n/2+1

leii
)
∗ EA : ei ∈ [−B,B]

 .

If L1 ∩ L2 6= ∅ then we have solved the isogeny problem. This attack is faster than general methods when the set of
ideal classes generated is a small subset of Cl(O). Hence for security we may require

(2B + 1)n > 22λ, (2)

where λ is the security parameter. Further, there is a quantum algorithm due to Tani, which is straightforward to adapt
to this problem (we refer to Section 5.2 of De Feo, Jao and Plût [21] for details). This means we might need to take
(2B + 1)n > 23λ to have post-quantum security. However, recent analyses [2,36] question the pertinence of the
complexity models of the meet-in-the-middle and Tani algorithms, and advocate for more relaxed bounds.

Choosing the best values of B,n, p for large choices of λ (e.g., satisfying the constraints of equations (1) and (2))
is non-trivial, but will generally lead to sampling in a very small subset of the whole ideal class group.

3 On the other hand, SIDH has the advantage that no subexponential-time algorithm is known to break it.

3

We remark that Kuperberg’s algorithm uses the entire class group, and there seems to be no way to improve the
algorithm for the case where the “hidden shift” is sampled from a distribution far from the uniform distribution. We
leave the study of this question to future work.

By taking into account the best known attacks, the CSIDH authors propose parameters for the three NIST cate-
gories [45], as summarised in Table 1. Note that in all CSIDH instances the set of sampled ideal classes is (heuristically)
likely to cover the whole class group. Their implementation of the smallest parameter size CSIDH-512 computes one
class group action in 40ms on a 3.5GHz processor.

n blog2 pc B NIST classical quantum message private
level security security size key size

CSIDH-512 74 510 5 1 127 bits 62 qbits 64B 37B
CSIDH-1024 130 1019 8 3 257 bits 94 qbits 127B 82B
CSIDH-1792 208 1786 10 5 449 bits 129 qbits 223B 130B

Table 1. Proposed parameters for CSIDH [13]. Effective parameters p, n and B for CSIDH-1024 and CSIDH-1792 were not given
in the paper, and are produced here following their methodology. Message size is the number of bytes to represent a j-invariant,
and private key size is the space required to store the exponent vector e ∈ Zn.

For our signature schemes we may work with more general primes than considered in CSIDH [13]. For example,
CSIDH takes p+ 1 = 4

∏n
i=1 `i, whereas we may be able to use fewer primes and just multiply by a random co-factor

to get a large enough p.

2.3 Public key signature schemes

One can describe Fiat-Shamir-type signatures in various ways, including the language of sigma protocols or identifica-
tion schemes. In the main body of our paper we mostly work with the language of signatures, and give proofs directly
in this formulation. In Section 8.1 we use the language of identification schemes, and introduce the terminology fully
there.

A canonical identification scheme consists of algorithms (KeyGen,P1,P2,V) and a set ChSet. The randomised
algorithm KeyGen(1λ) outputs a key pair (pk, sk). The deterministic algorithm P1 takes sk and randomness r1 and
computes (W, st) = P1(sk, r1). Here st denotes state information to be passed to P2. A challenge c is sampled
uniformly from ChSet. The deterministic algorithm P2 then computes Z = P2(sk,W, c, st, r2) or ⊥, where r2 is
the randomness. The output ⊥ corresponds to an abort in the “Fiat-Shamir with aborts” paradigm. We require that
V(pk,W, c, Z) = 1 for a correctly formed transcript (W, c, Z).

A public key signature scheme consists of algorithms KeyGen,Sign,Verify. The randomised algorithm KeyGen(1λ)
outputs a pair (pk, sk), where λ is a security parameter. The randomised algorithm Sign takes input the private key sk
and a message msg, and outputs σ = Sign(sk,msg). The verification algorithm Verify(pk,msg, σ) returns 0 or 1. We
require Verify(pk,msg,Sign(sk,msg)) = 1.

The Fiat-Shamir transform is a construction to turn a canonical identification scheme into a public key signature
scheme. The main idea is to make the interactive identification scheme into a non-interactive scheme by replacing the
challenge c by a hash H(W,msg).

The standard notion of security is unforgeability against chosen-message attack (UF-CMA). A UF-CMA ad-
versary against the signature scheme is a randomised polynomial-time algorithm A that plays the following game
against a challenger. The challenger runs KeyGen to get (pk, sk) and runs A(pk). The adversary A sends messages
msg to the challenger, and receives σ = Sign(sk,msg) in return. The adversary outputs (msg∗, σ∗) and wins if
Verify(pk,msg∗, σ∗) = 1 and if msg∗ was not one of the messages previously sent by the adversary to the chal-
lenger. A signature scheme is UF-CMA secure if there is no polynomial-time adversary that wins with non-negligible
probability.

4

3 Basic Signature Scheme

This section contains our main ideas and presents a basic signature scheme. We focus in this section on classical adver-
saries and proofs in the random oracle model. Hence our signature is based on the traditional Fiat-Shamir transform.
For schemes and analysis against a post-quantum adversary see Section 8.

For simplicity, we describe our schemes in the setting of a general class group action on a set of j-invariants of
elliptic curves. In Section 3.3 we explain one small subtlety that arises when implementing the scheme in the setting
of CSIDH.

3.1 Stolbunov’s scheme

Section 2.B of Stolbunov’s PhD thesis [51] contains a sketch of a signature scheme based on isogeny problems (though
his description is not complete and he does not give a proof of security). It is a Fiat-Shamir scheme based on an
identification protocol. Section 4 of Couveignes [18] also sketches the identification protocol, but does not mention
signature schemes.

The public key consists of E and EA = a ∗ E, where a =
∏n
i=1 l

ei
i is the private key. To construct the private key

one uniformly chooses an exponent vector e = (e1, . . . , en) ∈ [−B,B]n ⊆ Zn for some suitably chosen constant B.
Stolbunov assumes the relation lattice for the ideal class group is known, and uses it in Section 2.6.1 to sample ideal
classes uniformly at random. Section 2.6.2 of [51] suggests an approach to approximate the uniform distribution.

In the identification protocol the prover generates t random ideals bk =
∏n
i=1 l

fk,i

i for 1 ≤ k ≤ t and computes
Ek = bk ∗ E. Here the exponent vectors fk = (fk,1, . . . , fk,n) are uniformly and independently sampled in a region
like [−B,B]n (Stolbunov assumes these ideal classes are uniformly sampled). The prover sends (j(Ek) : 1 ≤ k ≤ t)
to the verifier. The verifier responds with t uniformly chosen challenge bits b1, . . . , bt ∈ {0, 1}. If bk = 0 the prover
responds with fk = (fk,1, . . . , fk,n) and the verifier checks that j(Ek) = j((

∏n
i=1 l

fk,i

i) ∗ E). If bk = 1 the prover
responds with a representation of bka−1. When bk = 1 the verifier checks that j(Ek) = j((bka

−1) ∗ EA). A cheating
prover (who does not know the private key) can succeed with probability 1/2t.

The major problem with the above idea is how to represent the ideal class of bka−1 in a way that does not leak a.
Stolbunov notes that sending the vector fk − e = (fk,i − ei)1≤i≤n would not be secure as it would leak the private
key. Instead, Stolbunov (and also Couveignes) work in the setting where the relation lattice in the ideal class group
is known; we discuss this further in Section 9. A main contribution of our paper is to give solutions to this problem
(using Fiat-Shamir with aborts) that do not require to know the relation lattice.

To obtain a signature scheme Stolbunov applies the Fiat-Shamir transform, and hence obtains the challenge bits bk
as the hash value H(j(E1), . . . , j(Et),msg) where H is a cryptographic hash function with t-bit output and msg is the
message to be signed. The signature consists of the binary string b1 · · · bt and the representations of the ideal classes
bk when bk = 0 and bka

−1 when bk = 1.
The verifier computes, for 1 ≤ k ≤ t, Ek = bk ∗E when bk = 0 and Ek = bka

−1 ∗EA when bk = 1. The verifier
then computes H(j(E1), . . . , j(Et),msg) and checks whether this is equal to the binary string b1 · · · bt, and accepts
the signature if and only if the strings agree.

We stress that neither Couveignes nor Stolbunov give a secure post-quantum signature scheme. Both authors
assume that the relations in the ideal class group have been computed (Stolbunov needs this to prevent leakage).
However the cost to compute the relations in the ideal class group on a classical computer is in essentially the same
asymptotic complexity class as the cost to break the scheme on a quantum computer (using the Kuperberg or Regev
algorithms). Hence it may not make sense to require the Key Generation algorithm of the scheme to compute the
relations in the ideal class group. On the other hand, in the fully post-quantum setting where quantum computers are
readily available then the relation lattice can be computed in polynomial time. We revisit this issue in Section 9.

3.2 Using rejection sampling

To prevent signatures from leaking the private key, we use rejection sampling in exactly the way proposed by Lyuba-
shevsky [41] in the context of lattice signatures.

Let B > 0 be a constant. When generating the private key we sample uniformly ei ∈ [−B,B] for 1 ≤ i ≤ n. Let
e = (e1, . . . , en). The value B may be chosen large enough that

∏n
i=1 l

ei
i covers most ideal classes and so that the

5

output distribution is close to uniformly distributed in Cl(O), but we avoid any explicit requirement or assumption that
this distribution is uniform. We refer to Definition 1 for more discussion of this issue, and in Section 8 we consider a
variant where the ideals are definitely not distributed uniformly in Cl(O).

Exponents fk,i are sampled uniformly in [−(nt+ 1)B, (nt+ 1)B], where t is the number of parallel rounds of the
identification/signature protocol and n is the number of primes. Let fk = (fk,1, . . . , fk,n), bk =

∏n
i=1 l

fk,i

i and define
Ek = bk ∗ E.

If the k-th challenge bit bk is zero then the prover responds with fk = (fk,1, . . . , fk,n) and the verifier checks
that j(Ek) = j((

∏n
i=1 l

fk,i

i) ∗ E) as in the basic scheme above.4 If bk = 1 then the prover is required to provide
a representation of bka−1, the idea is to compute the vector zk = (zk,1, . . . , zk,n) defined by zk,i = fk,i − ei for
1 ≤ i ≤ n. As already noted, outputting z directly would potentially leak the secret. To prevent this leakage we only
output zk if all its entries satisfy |zk,i| ≤ ntB. We give the signature scheme in Figure 1. It remains to show that in
the accepting case the vector leaks no information about the private key, and that the rejecting case occurs with low
probability. We do this in the following two lemmas.

Lemma 1. The distribution of vectors zk output by the signing algorithm is the uniform distribution and therefore is
independent of the private key e.

Proof. Let U = [−(nt+ 1)B, (nt+ 1)B]. Then #U = 2(nt+ 1)B + 1. If e ∈ [−B,B] then

[−ntB, ntB] ⊆ U − e = {f − e : f ∈ U} ⊆ [−(nt+ 2)B, (nt+ 2)B].

Hence, when rejection sampling (only outputting values fk,i− ei in the range [−ntB, ntB]) is applied then the output
distribution of zk is the uniform distribution on [−ntB, ntB]n. This argument does not depend on the choice of e, so
the output distribution is independent of e. ut

Lemma 2. The probability that the signing algorithm outputs a signature (i.e., does not output ⊥) is at least 1/e >
1/3.

Proof. Let notation be as in the proof of Lemma 1. For fixed e ∈ [−B,B] and uniformly sampled f ∈ U = [−(nt+
1)B, (nt+ 1)B], the probability that a value f − e lies in [−ntB, ntB] is

2ntB + 1

2(nt+ 1)B + 1
= 1− 2B

2(nt+ 1)B + 1
≥ 1− 1

nt+ 1
.

Hence, the probability that all of the values zk,i over 1 ≤ k ≤ t, 1 ≤ i ≤ n lie in [−ntB, ntB] is at least (1− 1/(nt+
1))nt. Using the inequality 1 − 1/(x + 1) ≥ e−1/x for x ≥ 1 it follows that the probability that all values are in the
desired range is at least (

e−1/nt
)nt

= e−1.

This completes the proof. ut

We can therefore get a rough idea of parameters and efficiency for the scheme. Let λ be a security parameter (e.g.,
λ = 128 or λ = 256), for security we need at least t = λ so that an attacker cannot guess the hash value or invert the
hash function (see also the proof of Theorem 1). We also need a large enough set of private keys, so we need (2B+1)n

large enough. The signature contains one hash value of t bits, plus t vectors fk or zk with entries of size bounded by
(nt + 1)B, for a total of λ + tdn log(2(nt + 1)B + 1)e bits (assuming each vector is represented optimally). If we
take t = λ = 128, and (n,B) = (74, 5) as in CSIDH-512, we obtain signatures of around 20 KiB (see also Table 2).

To sign/verify one needs to evaluate the action of either of bk and bka
−1 for every 1 ≤ k ≤ t, which means

that for each k and each prime li one needs to compute up to ntB isogenies of degree `i. Hence, the total number of

4 In the scheme and analysis we apply rejection sampling to the case bk = 0 as well as the case bk = 1. An alternative would be
to only apply rejection sampling in the case bk = 1. It doesn’t really matter one way or the other, since in both settings we are
able to simulate a signer in the random oracle model and so the security proof works.

6

Algorithm 1 KeyGen
Input: B, l1, . . . , ln, E
Output: sk = e and pk = EA

1: e← [−B,B]n

2: EA = (
∏n
i=1 l

ei
i) ∗ E

3: return sk = e, pk = EA

Algorithm 2 Sign
Input: msg, (E,EA), e
Output: (z1, . . . , zt, b1, . . . , bt)
1: for k = 1, . . . , t do
2: fk ← [−(nt+ 1)B, (nt+ 1)B]n

3: Ek = (
∏n
i=1 l

fk,i

i) ∗ E
4: end for
5: b1‖ · · · ‖bt = H(j(E1), . . . , j(Et),msg)
6: for k = 1, . . . , t do
7: if bk = 0 then
8: zk = fk
9: else

10: zk = fk − e
11: end if
12: if zk 6∈ [−ntB, ntB]n then
13: return ⊥
14: end if
15: end for
16: return σ = (z1, . . . , zt, b1, . . . , bt)

Algorithm 3 Verify
Input: msg, (E,EA), σ
Output: Valid/Invalid
1: Parse σ as (z1, . . . , zt, b1, . . . , bt)
2: for k = 1, . . . , t do
3: if bk = 0 then
4: Ek = (

∏n
i=1 l

zk,i

i) ∗ E
5: else
6: Ek = (

∏n
i=1 l

zk,i

i) ∗ EA
7: end if
8: end for
9: b′1‖ · · · ‖b′t = H(j(E1), . . . , j(Et),msg)

10: if (b′1, . . . , b′t) = (b1, . . . , bt) then
11: return Valid
12: else
13: return Invalid
14: end if

Fig. 1. The basic signature scheme using rejection sampling.

7

isogeny computations is upper bounded by (nt)2B. The quadratic dependence on nt is a major inconvenience. For
example, taking (n, t, B) = (74, 128, 5) gives around 228 isogeny computations in signature/verification. We can make
t small using the techniques in later sections, but one needs n large unless B is going to get very large. So even going
down to t = 8 still has signatures requiring around 220 isogeny computations. The acceptance probability estimate
from Lemma 2 is very close to the true value: for example, when (n, t, B) = (74, 128, 5) then the true acceptance
probability is approximately 0.36790, while e−1 ≈ 0.36788.

We discuss some possible optimisations in Section 7, including the idea to use discrete Gaussians instead of
uniform distributions for the vectors.

3.3 CSIDH implementation

The above description represents the isomorphism class of a ∗ E using a j-invariant. But, as explained in [24,13], in
the case of supersingular curves over Fp there are two isomorphism classes for each j-invariant and so the j-invariant
alone is not an adequate representation for a ∗ E. Castryck et al. [13] observe that the Montgomery model for these
curves provides an elegant solution to the dilemma. Instead of representing a ∗ E with a j-invariant one uses the
“A coefficient” of the Montgomery equation. This works when choosing p ≡ 3 (mod 8) and using curves whose
endomorphism ring is on the “floor” of the 2-isogeny volcano; we refer to Proposition 8 of [13] for the details.

In short, when implementing our signature schemes using CSIDH one should choose p ≡ 3 (mod 8) and replace
the words “j-invariant” by “Montgomery coefficient”. In terms of the security analysis, strictly speaking the security
proofs use variants of the computational problems expressed in terms of Montgomery coefficients. It is a simple
exercise to show that these problems are equivalent to problems expressed using j-invariants. Hence the theorem
statements in our paper are all correct in the setting of CSIDH.

3.4 Security proof

We now prove security of the basic scheme in the random oracle model against a classical adversary. The proof
technique is the standard approach that uses the forking lemma. In this section we do not consider quantum adversaries,
or give a proof in the quantum random oracle model (QROM). A proof in the QROM follows from the approach in
Section 8.

First we need to discuss some subtleties about the distribution of ideal classes coming from the key generation and
signing algorithms.

Definition 1. Fix distinct ideals l1, . . . , ln. For B ∈ N, consider the random variable a which is the ideal class of∏n
i=1 l

ei
i over a uniformly random e ∈ [−B,B]n. Define DB to be the distribution on Cl(O) corresponding to this

random variable. Define MB to be an upper bound on the probability, over a, b sampled from DB , that a ≡ b.

In other words,DB is the output distribution of the public key generation algorithm. Understanding the distribution
DB is non-trivial in general.5 For small B and n (so that (2B + 1)n � # Cl(O)) we expect DB to be the uniform
distribution on a subset of Cl(O) of size (2B + 1)n. For fixed n and large enough B it should be the case that DB is
very close to the uniform distribution on Cl(O). A full study of the distribution DB is beyond the scope of this paper,
but is a good problem for future work.

For the isogeny problem to be hard for public keys we certainly need MB ≤ 1/2λ, where λ is the security
parameter. In the proof we will need to use MntB , since the concern is about the auxiliary curves generated during the
signing algorithm. We do not require these curves to be uniformly sampled, but in practice we can certainly assume
that MntB = O(1/

√
p). In any case, it is negligible in the security parameter.

Problem 2. Let notation be as in the key generation protocol of the scheme. Given (E,EA), where EA = a ∗ E for
some ideal a =

∏n
i=1 l

ei
i and where the exponent vector e = (e1, . . . , en) is uniformly sampled in [−B,B]n ⊆ Zn,

to compute any ideal equivalent to a.

5 Even the analogous problem of understanding the distribution of
∏
i `
ei
i (mod q), where `i are small primes and q is some

integer, is an open problem in general.

8

Depending on how close to uniform is the distributionDB , this problem may or may not be equivalent to Problem 1
and may or may not have a random self-reduction. Nevertheless, we believe this is a plausible assumption.

We recall the forking lemma, in the formulation of Bellare and Neven [4].

Lemma 3. (Bellare and Neven [4]) Fix an integer Q ≥ 1. Let A be a randomised algorithm that takes as input
h1, . . . , hQ ∈ {0, 1}t and outputs (J, σ) where 1 ≤ J ≤ Q with probability ℘. Consider the following experiment:
h1, . . . , hQ are chosen uniformly at random in {0, 1}t; A(h1, . . . , hQ) returns (I, σ) such that I ≥ 1; h′I , . . . , h

′
Q are

chosen uniformly at random in {0, 1}t;A(h1, . . . , hI−1, h
′
I , . . . , h

′
Q) returns (I ′, σ′). Then the probability that I ′ = I

and h′I 6= hI is at least ℘(℘/Q− 1/2t).

Theorem 1. In the random oracle model, the basic signature scheme of Figure 1 is unforgeable under a chosen
message attack under the assumption that Problem 2 is hard.

Proof. Consider a polynomial-time adversary A against the signature scheme. So A takes a public key, makes queries
to the hash function H and the signing oracle, and outputs a forgery of a signature with respect the public key.

Let (E,EA = a ∗ E) be an instance of Problem 2. The simulator runs the adversary A with public key (E,EA).
Suppose the adversary A makes at most Q (polynomial in the security parameter) queries in total to either the

random oracle H or the signing oracle. We now explain how the simulator responds to these queries. The simulator
maintains a list, initially empty, of pairs (x,H(x)) for each value of the random oracle that has been defined.
Sign queries: To answer a Sign query on message msg the simulator chooses t uniformly chosen bits b1, . . . , bt ∈
{0, 1}. When bk = 0 the simulator randomly samples zk ← [−ntB, ntB]n and sets bk =

∏n
i=1 l

zk,i

i and computes
Ek = bk∗E, just like in the real signing algorithm. When bk = 1 the simulator chooses a random ideal ck =

∏n
i=1 l

zk,i

i

for zk,i ∈ [−ntB, ntB] and computes Ek = ck∗EA. By Lemma 1, the values j(Ek) and zk are distributed exactly as in
the real signing algorithm. We program the random oracle (update the hash list) so that H(j(E1), . . . , j(Et),msg) :=
b1 · · · bt, unless the random oracle has already been defined on this input in which case the simulation fails and outputs
⊥. The probability of failure is at most Q/M t

ntB , where MntB is defined in Definition 1 to be an upper bound on the
probability of a collision in the sampling of ideal classes. Note that Q/M t

ntB is negligible. Assuming the simulation
does not fail, the output is a valid signature and is indistinguishable from signatures output by the real scheme in the
random oracle model.
Hash queries: To answer a random oracle query on input x the simulator checks if (x, y) already appears in the list,
and if so returns y. Otherwise the simulator chooses uniformly at random y ∈ {0, 1}t and sets H(x) := y and adds
(x, y) to the list.

Eventually A outputs a forgery (msg, σ = (z1, . . . , zt, b1 · · · bt)) that passes the verification equation. Define
ck =

∏
i l
zk,i

i . The proof now invokes the Forking Lemma (see Bellare-Neven [4]). The adversary is replayed with
the same random tape and the exact same simulation, except that one of the hash queries is answered with a different
binary string. With non-negligible probability the adversary outputs a forgery σ = (z′1, . . . , z

′
t, b
′
1 · · · b′t) for the same

message msg and the same input (j(E1), . . . , j(Et),msg) to H , but a different output string b′1 · · · b′t. Let k be an index
such that bk 6= b′k (without loss of generality bk = 0 and b′k = 1). Then the ideal classes ck and c′k in the two signatures

are such that j(ck ∗ E) = j(c′k ∗ EA) and so c′kc
−1
k =

∏
i l
z′k,i−zk,i

i is a solution to the problem instance. ut

We make two observations about the use of the forking lemma. First, as always, the proof is not tight since
if the adversary succeeds with probability ε then the simulator solves the computational problem with probability
proportional to ε2. Second, the hash output length t in Lemma 3 only appears in the term 1/2t, so it suffices to take
t = λ. There may be situations where a larger hash output is needed; for more discussion about hash output sizes we
refer to Neven, Smart and Warinschi [46].

4 Smaller signatures and faster signing/verification

The signature size of the basic scheme is rather large (around 20 KiB), since the sigma protocol that underlies the
identification scheme only has single bit challenges. In practice we need t ≥ 128, which means signatures are very
large (several megabytes). To get shorter signatures it is natural to try to increase the size of the challenges. In this

9

section we sketch an approach to obtain s-bit challenge values for any small integer s ∈ N, by trading the challenge
size with the public key size. This optimisation also dramatically speeds up signing and verification. In the next section
we explain how to shorten the public keys again.

The basic idea is to have public keys (EA,0 = a0 ∗ E, . . . , EA,2s−1 = a2s−1 ∗ E). For each 0 ≤ m < 2s we
choose em ← [−B,B]n and set EA,m = (

∏n
i=1 l

em,i

i) ∗E. The signing algorithm for user A chooses t random ideals
bk =

∏n
i=1 l

fk,i

i and computes Ek = bk ∗E, as before. Now we have s-bit challenges b1, . . . , bt ∈ {0, 1, . . . , 2s − 1}.
For each 1 ≤ k ≤ t the signer computes zk = fk − ebk , which corresponds to the ideal class ck = bka

−1
bk

and the
verifier can check that j(Ek) = j(ck ∗ EA,bk).

A signature consists of one hash value, plus t vectors zk with entries of size bounded by ntB, i.e., a total of
λ + tdn log(2ntB + 1)e bits, similar to the previous section. But now for security we only require ts ≥ λ. Taking,
say, λ = 128 and s = 16 can mean t as low as 8, and so only 8 vectors need to be transmitted as part of the signature,
giving signatures of well under 1 KiB (see Table 3). Of course the public key now includes 216 j-invariants (elements
of Fp) which would be around 4 MiB, and key generation is also 216 times slower.

As far as we can tell, this idea cannot be applied to the schemes of Yoo et al. [55] or Galbraith et al. [29].

4.1 Security

A trivial modification to the proof of Theorem 1 can be applied in this setting. But note that the forking lemma produces
two signatures such that bk 6= b′k for some index k. Hence from a successful forger we derive two ideal classes ck
and c′k such that j(ck ∗ EA,bk) = j(c′k ∗ EA,b′k). It follows that (c′k)−1ck is an ideal class corresponding to an isogeny
EA,bk → EA,b′k . Hence the computational assumption underlying the scheme is the following.

Problem 3. Let notation be as in the key generation protocol of the scheme. Consider a set of 2s elliptic curves
{EA,0, . . . , EA,2s−1}, all of the form EA,m = am ∗ E for some ideal am =

∏n
i=1 l

em,i

i where the exponent vectors
em are uniformly sampled in [−B,B]n ⊆ Zn. The problem is to compute an ideal corresponding to any isogeny
EA,m → EA,m′ for some m 6= m′.

We believe this problem is hard for classical and quantum computers. One can easily obtain a non-tight reduction
of this problem to Problem 2. However, if the ideals am are not sampled uniformly at random from Cl(O) then we do
not know how to obtain a random-self-reduction for this problem, which prevents us from having a tight reduction to
Problem 2.

Theorem 2. In the random oracle model, the signature scheme of this section is unforgeable under a chosen message
attack under the assumption that Problem 3 is hard.

The proof of this theorem is almost identical to the proof of Theorem 1 and so is omitted.

4.2 Variant based on a more natural problem

Problem 3 is a little un-natural. It would be more pleasing to prove security based on Problem 1 or Problem 2. We now
explain that one can prove security based on Problem 1, under an assumption about uniform sampling of ideal classes.

Suppose in this section that the distributionDB of Definition 1 has negligible statistical distance (Renyi divergence
can also be used here) from the uniform distribution. This assumption is reasonable for bounded n and very large B;
but we leave for future work to determine whether practical parameters for isogeny based cryptography can be obtained
under this constraint.

Lemma 4. Let parameters be such that the statistical distance between DB and the uniform distribution on Cl(O) is
negligible. Suppose that all the prime ideals li have norm bounded as O(log(p)) Then given an algorithm that runs in
time T and solves Problem 3 with probability ε, there is an algorithm to solve Problem 1 with time T +O(2s log(p)5)
and success probability ε/2.

10

Proof. Let A be an algorithm for Problem 3, and let (E,EA = a ∗ E) be an instance of Problem 1.
Choose random ideal classes b0, . . . , b2s−1 (chosen as bm =

∏n
i=1 l

ui,m

i for 0 ≤ m < 2s and ui,m ∈ [−B,B]) and
computeE′A,m = bm∗E for 0 ≤ m < 2s−1 andE′A,m = bm∗EA for 2s−1 ≤ m < 2s. Choose a random permutation
π on {0, 1, . . . , 2s − 1} and construct the sequence EA,m = E′A,π(m). This computation takes O(2s log(p)5) bit
operations, since n and B and the norm `i of li are all O(log(p)). Note that these curves are all uniformly sampled in
the isogeny class, and so there is no way to distinguish whether any individual curve has been generated from E or
EA. This is where the subtlety about distributions appears: it is crucial that the curves derived from the pair (E,EA)
are indistinguishable from the curves in Problem 3.

Now run the algorithm A on this input. Since the input is indistinguishable from a real input, A runs in time T and
succeeds with probability ε. In the case of success, we have an ideal c corresponding to an isogeny EA,m → EA,m′

for some m 6= m′. With probability 1/2 we have that one of the curves, say EA,m, is known to the simulator as b ∗E
and the other (i.e., EA,m′) is known as b′ ∗ EA. If this event occurs then we have cb ∗ E = b′ ∗ EA (or vice versa) in
which case cb(b′)−1 is a solution to the original instance. ut

Note that this proof introduces an extra 1/2 factor in the success probability, but this is not a serious issue since
the security proof isn’t tight anyway.

Using this result, the following theorem is an immediate consequence of Theorem 2.

Theorem 3. Let parameters be such that the statistical distance between DB and the uniform distribution on Cl(O)
is negligible. In the random oracle model, the signature scheme of this section is unforgeable under a chosen message
attack under the assumption that Problem 1 is hard.

We have a tight proof in Section 8 based on a less standard assumption (see Problem 4). It is an open problem to
have a tight proof and also the security based on Problem 1.

4.3 Reducing storage for private keys

Rather than storing all the private keys am for 0 ≤ m < 2s one could have generated them using a pseudorandom
function as PRF(seed, i) where seed is a seed and i is used to generate the i-th private key (which is an integer exponent
vector). The prover only needs to store seed and can then recompute the private keys as needed. Of course, during key
generation one needs to compute all the public keys, but during signing one only needs to determine t ≈ 8 private keys
(although this adds a cost to the signing algorithm).

5 Smaller public keys

The approach of Section 4 gives signatures that are potentially quite small, but at the expense of very large public keys.
In some settings (e.g., software signing or licence checks) large public keys can be easily accommodated, while in other
settings (e.g., certificate chains) it makes no sense to shorten signatures at the expense of public key size. In this section
we explain how to use techniques from hash-based signatures to compress the public key while also maintaining
compact signatures. The key idea is to use a Merkle tree [43] with leaves the public curves EA,0, . . . , EA,2s−1, and
use the tree root (a single hash value) as public key. However, the security of plain Merkle trees depends on collision
resistance of the underlying hash function, thus requiring hashes of size at least twice the security parameter. Instead,
we use a modified Merkle tree, as introduced in the hash-based signatures XMSS-T [32] and SPHINCS+ [5], whose
security relies on the second-preimage resistance of a keyed hash function.

Let λ be a security parameter, and let n,B, s, t, p be as in the previous sections; we assume that dlog pe > 2λ, as
this is the case in any secure instantiation. Let the following (public) functions be given:

– PRFsecret : {0, 1}λ × {0, 1}s → [−B,B]n,
– PRFkey : {0, 1}λ × {0, 1}s+1 → {0, 1}λ,
– PRFmask : {0, 1}λ × {0, 1}s+1 → {0, 1}dlog pe three pseudo-random functions, and
– M : {0, 1}λ × {0, 1}dlog pe → {0, 1}λ a keyed hash function (where we think of the first λ bits as the key and the

second dlog pe bits as the input).

11

Finally, let PK.seed and SK.seed be two random seeds; as the names suggest, PK.seed is part of the public key,
while SK.seed is part of the secret key. Like in Section 4.3, we define the secret ideals am =

∏n
i=1 l

em,i

i , where
em = PRFsecret(SK.seed,m), and the public curves EA,m = am ∗ E, for 0 ≤ m < 2s.

We set up a hash tree by defining hl,u for 0 ≤ l ≤ s and 0 ≤ u < 2s−l. First we set

hs,u = M
(
PRFkey(PK.seed, 2s + u), j(EA,u)⊕ PRFmask(PK.seed, 2s + u)

)
for 0 ≤ u < 2s, where ⊕ denotes bitwise XOR. Now, for any 0 ≤ l < s, the rows of the hash tree are defined as

hl,u = M
(
PRFkey(PK.seed, 2l + u), (hl+1,2u‖hl+1,2u+1)⊕ PRFmask(PK.seed, 2l + u)

)
.

Finally, the public key is set to the pair (PK.seed, h0,0).
To prove that a value EA,u is in the hash tree, we use its authentication path. That is the list of the hash values

hl,u′ , for 1 ≤ l ≤ s, occurring as siblings of the nodes on the path from hs,u to the root. The proof in [32, Appendix B]
shows that having M output λ-bit hashes gives a (classical) security of approximately 2λ. See [32,5] for more details.

Typically, in hash-based signatures the secret key would only contain SK.seed, since all secret and public values
can be reconstructed from it at an acceptable cost. However, in our case recomputing the leaves of the hash tree (2s

class group actions) is much more expensive than recomputing the internal nodes (2s − 1 hash function evaluations),
thus we set the secret key to the tuple (SK.seed, hs,0, . . . , hs,2s−1). This is a considerably large secret key, e.g., around
1 MiB when λ = 128 and s = 16, but it is offset by a more than tenfold gain in signing time. Also note that the values
hs,u can (and will) be leaked without any loss in security, they are indeed part of the uncompressed public key, thus
they are more formally treated as auxiliary signer data, rather than as part of the secret key.

To sign we proceed like in Section 4, but the signature now needs to contain additional information. The signer
computes the random ideals b1, . . . , bt and the associated curves E1, . . . , Et to obtain the challenges b1, . . . , bt. Then,
using PRFsecret, they obtain the secrets ab1 , . . . , abt , recompute the public curves EA,b1 , . . . , EA,bt , and the ideals
ci = a−1bi bi. The signature is made of the ideals c1, . . . , ct, the curves EA,b1 , . . . , EA,bt , and their authentication paths
in the hash tree. The verifier computes Ei as ci ∗ EA,bi , obtains the challenges b1, . . . , bt, and uses them to verify
the authentication paths. Hence, the signature contains t ideals represented as vectors in [−ntB, ntB]n, t curves
represented by their j-invariants, and t authentication paths of length s. The t authentication paths eventually merge
before the root, thus some hash values will be repeated. We can save some space by only sending the hash values
once, in some standardised order: the worst case happening when no path merges before level log(t), no more than
t(s− log(t)) hash values need to be sent as part of the signature. In total, a signature requires at most tdn log(2ntB+
1)e + t log(p) + tλ(s − log(t)) bits. For our parameters t = 8, s = 16 and λ = 128, this adds about 2 KiB to the
signature of Section 4. Note that this is still less than half the size of the best stateless hash-based signature schemes
(the NIST candidate SPHINCS+ [6,5] has size-optimized signatures of 8080 bytes at the NIST security level 1), and
is comparable in size to stateful hash-based signatures (e.g., the IETF draft XMSS [31, § 5.3.1]) and to the shortest
known lattice-based signatures.

Concerning security, the proofs of the previous sections, and that of [32, Appendix B] can be combined to prove
the following theorem.

Theorem 4. The signature scheme of this section is unforgeable under a chosen message attack under the following
assumptions:

– Problem 3 is hard;
– The multi-function multi-target second-preimage resistance of the keyed hash function M ;
– The pseudo-randomness of PRFsecret;

when the hash function H and the pseudo-random functions PRFkey and PRFmask are modelled as random oracles
(ideal random functions).

Like in the previous section, it is possible to replace Problem 3 with Problem 1, modulo some additional assump-
tions. Both proofs are straightforward adaptations, and we omit them for conciseness. As already noted, the proofs are
not tight, however the part concerned with the second-preimage resistance of M is.

12

6 Performance

Table 2 gives some estimates of cost for the schemes presented in Sections 3, 4, 5. The rows of the table are divided
into three sections.

The first section of the table (under the heading “Exact”) reports the parameter sizes, as a number of bits, already
computed in each section, where λ is the security parameter, n,B and s are as described previously (in Section 3
we have s = 1). To simplify the expressions we assume that all hash functions have λ-bit outputs, and we set the
parameter t = λ/s.

In all sections we give a rough lower bound for the performance of the keygen and sign/verify algorithms, in terms
of Fp-operations. The lower bound only takes into account the number of operations needed to compute and evaluate
the isogeny path, and so the exact cost may be higher.

13

Rejection sampling (Section 3.2) Shorter signatures (Section 4) Smaller public keys (Section 5)
Exact

Sig size λndlog(2nλB + 1)e+ λ λ
s
ndlog(2nλ

s
B + 1)e+ λ λ

s
(ndlog(2nλ

s
B + 1)e+ log p) + λ(λ− λ

s
log λ

s
)

PK size log p 2s log p 2λ
SK size n log(2B + 1) λ (2s + 1)λ
Performance (Fp-ops)
→ keygen Ω

(
Bn2 log(n)

)
Ω
(
2sBn2 log(n)

)
Ω
(
2sBn2 log(n)

)
→ sign/verify Ω

(
λ2Bn3 log(n)

)
Ω
(
(λ/s)2Bn3 log(n)

)
Ω
(
(λ/s)2Bn3 log(n)

)
Asymptotic

Sig size O(λ2 log(λ)) O((λ2/s) log(λ)) O(λ3/s)
PK size 2λ2 2s+1λ2 2λ
SK size 3λ λ (2s + 1)λ
Performance (bits)
→ keygen Ω

(
λ4 log(λ)2

)
Ω
(
2sλ4 log(λ)2

)
Ω
(
2sλ4 log(λ)2

)
→ sign/verify Ω

(
λ7 log(λ)2

)
Ω
(
(λ7/s2) log(λ)2

)
Ω
(
(λ7/s2) log(λ)2

)
CSIDH

Sig size 20144 B 978 B 3136 B
PK size 64 B 4096 KiB 32 B
SK size 32 B 16 B 1024 KiB
Est. keygen time 0.03 s 1966 s 1966 s
Est. verify time 36372 s 142 s 142 s

Table 2. Parameter size and performance of the various signature protocols. Parameters taken in the asymptotic analysis are: log p ∼ 2λ2, n log(B) ∼ 3λ, B = O(1).
The entry CSIDH is for parameters (λ, n,B, log(p)) = (128, 74, 5, 510) with (s, t) = (1, 128) in the first column and (s, t) = (16, 8) in the second two columns. All
logarithms are in base 2. Signing time is on average 3 times the estimated verification time.

14

The operation count is based on the following estimates.

1. Based on [17,48], we estimate that computing/evaluating an isogeny of degree `, when given a kernel point, costs
O(`) operations.

2. By the prime number theorem
∑n
i=1 `i ∼

1
2n

2 ln(n), and the estimate is very accurate already for n > 3.

Putting these estimates together, an ideal with exponent vector within [−C,C]n can be evaluated in O(Cn2 log(n))
operations on average and in the worst case. We note that the above estimate is not likely to be the dominant part in
the computation, especially asymptotically, as scalar multiplications of elliptic points are likely to dominate. However,
estimating this part of the algorithm is much more complex and dependent on specific optimisations, we thus leave a
more precise analysis for future work.

The second section of rows in the table (under the heading “Asymptotic”) gives asymptotic estimates in terms only
of the security parameter λ, and the parameter of s of Section 4. We now give a brief justification for the parameter
restrictions in terms of λ.

1. Kuperberg’s algorithm is believed to require at least 2
√

log(N) operations in a group of size N . In our case N >√
p. Taking log(p) > 2λ2 gives √

log(N) >
√

1
2 log(p) >

√
1
22λ2 = λ.

So we choose log(p) ≈ 2λ2.
2. To resist a classical meet-in-the-middle attack we need (2B + 1)n > 22λ, although the work of Adj et al. [2]

suggests this may be too cautious. For security against Tani’s quantum algorithm we may require (2B+1)n > 23λ,
and so n log(B) ∼ 3λ, though again this may not be necessary [36]. In any case, we have n log(B) = Ω(λ).

3. Assuming that one wants to optimise for (asymptotic) performance, the best choice is then to take B = O(1) and
n = Ω(λ), which means that the prime ideals li have norm `i = Ω(n log(n)) = Ω(λ log(λ)). Note that this is
compatible with the requirement log(p) > 2λ2, since

∑n
i=1 ln(`i) ∼ n ln(n) ∼ λ log(λ)2.

4. Instead of measuring performance in terms of Fp-operations, here we measure them in terms of bit-operations.
After substituting B and n, this adds a factor λ2 log(λ) in front of the lower bound if using fast (quasi-linear
complexity) modular arithmetic.

Note that our asymptotic choices forbid the key space from covering the whole class group. If the conditions of
Problem 1 are wanted, different choices must be made for n and B. In this case it is best to choose primes of the form
p + 1 = 4

∏n
i=1 `i, as in CSIDH [13]. Then, n log(n) ∼ log(p) ∼ 2λ2 and so we have n ∼ λ2/ log(λ). To have a

distribution of ideal classes close to uniform we need (2B+1)n � √p and so log(B) > log(
√
p)/n ∼ log(λ). Hence

B >
√
n, making all asymptotic bounds considerably worse.

The third block of rows (under the heading “CSIDH”) gives concrete sizes obtained by fixing λ = 128 and s = 16
and using the CSIDH-512 primitive, i.e., (n,B, log(p)) = (74, 5, 510). We estimate these parameters to correspond to
the NIST-1 security level. Note that we are able to get smaller signatures at similar cost, for example see the various
options in Table 3 (and one can also potentially consider s > 16, such as (s, t) = (21, 6)). However, for Table 2
we choose the same parameters as [13] so that we are able to refer to their running-time computations. We estimate
real-world performance, using as baseline the worst-case time for one isogeny action in CSIDH. In [13,44], for an
exponent vector in [−B,B]n, this time is reported to be around 30 milliseconds. Accordingly, we multiply this time
by the size of the exponent vector to obtain our estimates. Note that the estimates are very rough, as they purposely
ignore other factors such as hash tree computations. However the results in [32,5] show that hash trees much larger
than ours can be computed in a fraction of the time we need to compute isogenies.

7 Variants

One can consider various ideas to get more efficient (i.e., faster signing and verification) or more compact signatures.

1. Following Stolbunov one could use higher powers for the smaller primes, but it is unclear that this provides any
benefit in practice.

15

n B dlog2(2ntB + 1)e Signature size (bytes)
20 3275 20 416
28 293 17 492
33 124 16 544
37 55 15 571
46 22 14 660

Table 3. Parameter choices for small signatures, with (s, t) = (16, 8), at around 128-bit classical security level. Signature size is
ntdlog2(2ntB + 1)e+ 128 bits.

2. A natural idea is to sample the exponents ei from a discrete Gaussian distribution (or perhaps some other distribu-
tion), as has been done with lattice signatures. We could hope that this leads to shorter signatures.

Suppose the ei are sampled from a discrete Gaussian distribution with parameter σ, so that the standard deviation
is close to σ. The entropy of the continuous Gaussian distribution with standard deviation σ is log(2πeσ2)/2.

For example, take n = 50, s = 16, t = 8 and choose σ = 5 (so almost all values ei will lie in [−15, 15] but
occasionally one is larger than this. Then

n log(2πeσ2)/2 ≈ 218

so determining the ei using a meet-in-the-middle strategy should require at least 2109 iterations, and realistically
much more than this since organising a search based on the entropy is hard to do. For post-quantum security we
might want to replace 2λ with 3λ in the above.

We follow the methods and results of Lyubashevsky [42]. Lemma 4.3(3) of [42] shows we can bound the norm
‖e‖ by T = 2σ

√
n. Now we need to choose the fk,i from a discrete Gaussian with parameter σ′, so that the

distribution of fk,i − ei is close (within statistical distance, though we could probably use Renyi divergence to
get better results) to the discrete Gaussian with parameter σ′. Lemma 4.6 of [42] suggests that σ′ = T

√
log(n) is

sufficient, though in practice one usually chooses σ′ = αT where α ≈ 10. In our case we need to apply rejection
sampling to all t vectors zk simultaneously, which leads to an additional factor.

For our choices n = 50, t = 8, σ = 5 this gives σ′ ≈ 3500. If we use some kind of compact coding of integers
distributed as Gaussians [25] then signature size would be at best nt log2(2πe(σ′)2)/2 bits. For our example
parameters this would be between 7000-8000 bits, or around 1 KiB again.

The best approach seems to be to sample e uniformly with coefficients in [−B,B], while sampling f from a discrete
Gaussian. Taking n = 74, B = 5 we have ‖e| ≤ T = 24 with reasonable probability. Taking σ′ = 10

√
tT ≈ 790

potentially gives signatures of around 800-900 bytes.

In conclusion, the use of discrete Gaussians does not seem to lead to shorter or faster signatures than using uniform
distributions. Hence we suggest to use uniform distributions since the implementation of rejection sampling is
much simpler and less error-prone.

3. One might try to trade-off the size of exponent vectors and the rejection probability. Lemma 2 is about sampling
fk,i ∈ [−(nt + 1)B, (nt + 1)B] and gives probability of acceptance ≈ 1/e ≈ 0.368. A simple modification of
the proof shows that, for any u > 0, if one samples fk,i ∈ [−u(nt + 1)B, u(nt + 1)B] and accepts only those
zk,i ∈ [−untB, untB], then the acceptance probability is approximately e−1/u.

Taking u = 1/2 roughly halves the time spent on computing bk ∗ E, but changes the acceptance probability to
e−2 ≈ 0.135; overall this is worse than the original proposal since 2e−2 ≈ 0.271 < e−1. Similarly, taking u = 2
doubles the time spent on computing bk ∗E, but changes the acceptance probability to e−1/2 ≈ 0.607; again this
is worse on average than our proposal.

Indeed, if T is the cost for nt computations of bk ∗ E then the expected cost of signing is uTe1/u. Since f(x) =
xe1/x is minimised at x = 1 it follows that taking u = 1 is the optimal choice.

16

8 Tight security reduction based on lossy keys

We now explain how to implement lossy keys in our setting. This allows us to use the methods of Kiltz, Lyubashevsky
and Schaffner [37] (that build on work of Abdalla, Fouque, Lyubashevsky and Tibouchi [1]) to obtain signatures from
lossy identification schemes. This approach gives a tight reduction in the quantum random oracle model.

Here’s the basic idea to get a lossy scheme, using uniform distributions for simplicity (one can also use discrete
Gaussians in this setting): Take a very large prime p so that the ideal class group is very large, but use relatively small
values for n and B so that {a =

∏n
i=1 l

ei
i : |ei| ≤ B} is a very small subset of the class group.6 The real key is

(E,EA = a ∗E) for such an a. The lossy key is (E,EA) where EA is a uniformly random curve in the isogeny class.
Further, choose parameters so that the fk,i are also such that {b =

∏n
i=1 l

fk,i

i : |fk,i| ≤ (nt + 1)B} is a small subset
of the ideal class group. In the case of a real key, the signatures define ideals that correspond to “short” paths from E
or EA to a curve E . In the case of a lossy key, then such ideals do not exist, as for a curve E it is not the case that there
is a short path from E to E AND a short path from EA to E .

In the remainder of this section we develop these ideas.

8.1 Background definitions

We closely follow Kiltz, Lyubashevsky and Schaffner [37]. A canonical identification scheme consists of algorithms
(IGen,P1,P2,V) and a set ChSet. The randomised algorithm IGen(1λ) outputs a key pair (pk, sk). The deterministic
algorithm P1 takes sk and randomness r1 and computes (W, st) = P1(sk, r1). Here st denotes state information to
be passed to P2. A challenge c is sampled uniformly from ChSet. The deterministic algorithm P2 then computes
Z = P2(sk,W, c, st, r2) or ⊥, where r2 is the randomness. The output ⊥ corresponds to an abort in the “Fiat-Shamir
with aborts” paradigm. We require that V(pk,W, c, Z) = 1 for a correctly formed transcript (W, c, Z).

We assume, for each value of λ, there are well-defined setsW and Z , such thatW contains all W output by P1

and Z contains all Z output by P2. The scheme is commitment recoverable if, given c and Z = P2(sk,W, c, st), there
is a unique W ∈ W such that V(pk,W, c, Z) = 1 and this W can be efficiently computed from (pk, c, Z)

A canonical identification scheme is εzk-naHVZK non-abort honest verifier zero knowledge if there is a simulator
that given only pk outputs (W, c, Z) whose distribution has statistical distance at most εzk from the output distribution
of the real protocol conditioned on P2(sk,W, c, st, r2) 6=⊥.

A lossy identification scheme is a canonical identification scheme as above together with a lossy key generation
algorithm LossIGen, which is a randomised algorithm that on input 1λ outputs pk. An adversary against a lossy
identification scheme is a randomised algorithm A that takes an input pk and returns 0 or 1. The advantage of an
adversary against a lossy identification scheme is

AdvLOSS(A) =
∣∣Pr
(
A(pk) = 1 : pk ← LossIGen(1λ)

)
− Pr

(
A(pk) = 1 : pk ← IGen(1λ)

)∣∣ .
The two security properties of a lossy identification scheme are:

1. There is no polynomial-time adversary that has non-negligible advantage AdvLOSS in distinguishing real and lossy
keys.

2. The probability, over (pk,W, c) where pk is an output of the lossy key generation algorithm LossIGen, W ← W
and c← ChSet, that there is some Z ∈ Z with V(pk,W, c, Z) = 1, is negligible.
This will allow to show that no unbounded quantum adversary can pass the identification protocol (or, once
we have applied Fiat-Shamir, forge a signature) with respect to a lossy public key, because with overwhelming
probability no such signature exists.

8.2 Scheme

We can re-write our scheme in this setting, see Figure 2. Here we are assuming that E is a supersingular elliptic curve
with j(E) ∈ Fp where p satisfies the constraint

√
p > (4(nt+ 1)B + 1)n2λ (3)

6 It might even be possible to consider working with subgroups, in the quantum algorithm case where the class group structure is
known. For example, private keys could be sampled from a large subgroup and lossy keys from a non-trivial coset.

17

This bound is sufficient for the keys to be lossy.

Algorithm 4 IGen

Input: B, l1, . . . , ln, E
Output: sk = e and pk = EA

1: e← [−B,B]n

2: EA = (
∏n
i=1 l

ei
i) ∗ E

3: return sk = e, pk = EA

Algorithm 5 P1

Input: (E,EA), r1
Output: W = (j(E1), . . . , j(Et)), st = (f1, . . . , ft)

1: for k = 1, . . . , t do
2: fk ← [−(nt+ 1)B, (nt+ 1)B]n using PRF(r1)

3: Ek = (
∏n
i=1 l

fk,i

i) ∗ E
4: end for
5: return (j(E1), . . . , j(Et)), (f1, . . . , ft)

Algorithm 6 P2

Input: (E,EA), e, W , c, st, r2
Output: Z = (z1, . . . , zt)

1: Parse c as b1‖ · · · ‖bt
2: for k = 1, . . . , t do
3: if bk = 0 then
4: zk = fk
5: else
6: zk = fk − e
7: end if
8: if zk 6∈ [−ntB, ntB]n then
9: return ⊥

10: end if
11: end for
12: return σ = (z1, . . . , zt)

Algorithm 7 V

Input: (E,EA), (W, c, Z)
Output: Valid/Invalid
1: Parse W as (j1, . . . , jt)
2: Parse c as b1‖ · · · ‖bt
3: Parse Z as (z1, . . . , zt)
4: for k = 1, . . . , t do
5: if bk = 0 then
6: Ek = (

∏n
i=1 l

zk,i

i) ∗ E
7: else
8: Ek = (

∏n
i=1 l

zk,i

i) ∗ EA
9: end if

10: end for
11: if (j1, . . . , jt) = (j(E1), . . . , j(Et)) then
12: return Valid
13: else
14: return Invalid
15: end if

Fig. 2. The identification protocol. Note that P1 does not need sk, while P2 does not use r2 (it really is deterministic) and does not
use W . Also note that the scheme is commitment recoverable.

Now we state the generic deterministic signature construction from Kiltz, Lyubashevsky and Schaffner [37]: The
key generation and verification algorithms are the same as Figure 2. The signing algorithm is given in Figure 3. Since
the identification protocol is commitment recoverable, the signatures can be shortened to be (c, Z) instead of (W,Z).

8.3 Proofs

We now explain that our identification scheme satisfies the required properties, from which the security of the signature
scheme will follow from Theorem 3.1 of [37].

We make some heuristic assumptions.

Heuristic 1: There are at least
√
p supersingular elliptic curves with j-invariant in Fp.

This assumption, combined with the bound
√
p � (4(nt + 1)B)n of equation (3), implies that the curves Ek

constructed by algorithm P1 are a negligibly small proportion of all such curves.
Heuristic 2: Each choice of fk ∈ [−(nt+ 1)B, (nt+ 1)B]n gives a unique value for j(Ek).

This is extremely plausible given equation (3). It implies that the min-entropy of the values W output by P1 is
extremely high (more than sufficient for the security proofs).

18

Algorithm 8 Deterministic Signing algorithm
Input: (pk, sk), K, msg
Output: σ
1: l = 0, Z =⊥
2: while Z =⊥ and l ≤ l0 do
3: (W, st) = P1(sk,PRFK(0,msg, l))
4: c = H(W,msg)
5: Z = P2(sk,W, c, st,PRFK(1,msg, l))
6: end while
7: if Z =⊥ then
8: return ⊥
9: else

10: return (W,Z)
11: end if

Fig. 3. The deterministic signature scheme of Kiltz, Lyubashevsky and Schaffner [37]. Here K is a PRF key that is internal to the
signing algorithm and is not required for verification.

Under heuristic assumption 1, we now show that the keys are lossy. The lossy key generator outputs a pair (E,EA)
where E and EA are randomly sampled supersingular elliptic curves with j(E), j(EA) ∈ Fp. To implement this one
constructs a supersingular curve with j-invariant in Fp and then runs long pseudorandom walks in the isogeny graph
until the uniform mixing bounds imply that EA is uniformly distributed.

Lemma 5. Let parameters satisfy the bound of equation (3) and suppose heuristic 1 holds. Let (E,EA) be a key
output by the lossy key generator. Then with overwhelming probability there is no ideal a =

∏n
i=1 l

fi
i such that

f ∈ [−2(nt+ 1)B, 2(nt+ 1)B]n and j(EA) = j(a ∗ E).

Proof. If fi ∈ [−2(nt+1)B, 2(nt+1)B] then there are 4(nt+1)B+1 choices for each fi and so at most (4(nt+1)B+
1)n choices for a. Given E it means there are at most that many j(a ∗ E). Since EA is uniformly and independently
sampled from a set of size at least

√
p > (4(nt+ 1)B+ 1)n2λ, the probability that j(EA) lies in the set of all possible

j(a ∗ E) is at most 1/2λ, which is negligible. ut

We consider the following decisional problem. It is an open challenge to give a “search to decision” reduction in
this context (showing that if one can solve Problem 4 then one can solve Problem 2). This seems to be non-trivial.

Problem 4. Consider two distributions on pairs (E,EA) of supersingular elliptic curves over Fp. Let D1 be the out-
put distribution of the algorithm IGen. Let D2 be the uniform distribution (i.e., output distribution of the lossy key
generation algorithm). The decisional short isogeny problem is to distinguish the two distributions when given one
sample.

The next result shows the second part of the security property for lossy keys.

Lemma 6. Assume heuristic 1. Let pk be an output of the lossy key generation algorithm LossIGen. Let W ← W be
an output of P1. Let c← ChSet be a uniformly chosen challenge. Then the probability that there is some Z ∈ Z with
V(pk,W, c, Z) = 1, is negligible.

Proof. Let pk = (E,EA) be an output of LossIGen(1λ). By Lemma 5 we have that with overwhelming probability
j(EA) 6= j(a ∗ E) for all ideals a of the form in Lemma 5. Let W = (j(E1), . . . , j(Et)) be an element ofW , so that
each Ek is of the form ak ∗ E where ak =

∏
i l
fk,i

i for fk,i ∈ [−(nt+ 1)B, (nt+ 1)B].

19

Let c ← ChSet be a uniformly chosen challenge, which means that c 6= 0 with overwhelming probability. Then
there is some k with ck 6= 0 and so if Z was to satisfy the verification algorithm V(pk,W, c, Z) = 1 then it would
follow that zk gives an ideal ck such that j(Ek) = j(ck ∗ EA). From ak ∗ E ∼= Ek ∼= ck ∗ EA it follows that
EA ∼= (c−1k ak) ∗E. But c−1k ak =

∏
i l
fk,i−zk,i

i , which violates the claim about EA corresponding to Lemma 5. Hence
with overwhelming probability Z does not exist, and the result is proved. ut

Note that Heuristic 2 also shows that there are “unique responses” in the sense of Definition 2.7 of [37] (not just
computationally unique, but actually unique). But we won’t need this for the result we state.

We now discuss no-abort honest verifier zero-knowledge (naHVZK). This is simply the requirement that there is a
simulator that produces transcripts (W, c, Z) that are statistically close to real transcripts output by the protocol.

Lemma 7. The identification scheme (sigma protocol) of Figure 2 has no-abort honest verifier zero-knowledge.

Proof. This is simple to show in our setting (due to the rejection sampling): Instead of choosing W = (j((
∏
i l
f1,i
i) ∗

E), . . . , j((
∏
i l
fk,i

i) ∗ E)), then c, and then Z = (z1, . . . , zk) the simulator chooses Z first, then c, and then sets, for
1 ≤ k ≤ t, jk = j((

∏
i l
zk,i

i)∗E) when ck = 0 and jk = j((
∏
i l
zk,i

i)∗EA) when ck = 1. SettingW = (j1, . . . , jk) it
follows that (W, c, Z) is a transcript that satisfies the verification algorithm. Further, the distribution of triples (W, c, Z)
is identical to the distribution from the real protocol since, for any choice of the private key, this choice of W would
have arisen for some choice of the original vectors fk. ut

Theorem 5. Assume Heuristic 1, and the hardness of Problem 2. Then the deterministic signature scheme of Kiltz,
Lyubashevsky and Schaffner (Figure 3) applied to Figure 2 has UF-CMA security in the quantum random oracle
model, with a tight security reduction.

Proof. See Theorem 3.1 of [37]. In particular this theorem gives a precise statement of the advantage. ut

One can then combine this proof with the optimisations of Sections 4 and 5, to get a compact signature scheme
with tight post-quantum security based on a merger of the assumptions corresponding to Problems 3 and 4.

9 Using the relation lattice

This section explains an alternative solution to the problem of representing an ideal class without leaking the private
key of the signature scheme. This variant can be considered if a quantum computer is available during system setup.
Essentially, this is the scheme from Stolbunov’s thesis (see Section 3.1), which can be used securely once the relation
lattice is known. Note that this section is about signatures that involve sampling ideal classes uniformly and so the
techniques can’t be used in the lossy keys setting.

Let (l1, . . . , ln) be a sequence of O-ideals that generates Cl(O). Define

L =

{
(x1, . . . , xn) ∈ Zn :

n∏
i=1

lxi
i ≡ (1)

}
.

Then L is a rank n lattice with volume equal to # Cl(O). Indeed, we have the exact sequence of Abelian groups

0→ L→ Zn → Cl(O)→ 1

where the map f : Zn → Cl(O) is the group homomorphism (x1, . . . , xn) 7→
∏
i l
xi
i . We call L the relation lattice.

A basis for this lattice can be constructed in subexponential time using classical algorithms [30,8]. However, of
interest to us is that a basis can be constructed in probabilistic polynomial time using quantum algorithms: the function
f : Zn → Cl(O) defined in the previous paragraph can be evaluated in polynomial time [49,16], and finding a basis
for L = ker f is an instance of the Hidden Subgroup Problem for Zn, which can be solved in polynomial time using
Kitaev’s generalisation of Shor’s algorithm [38]. The classical approach is not very interesting since the underlying
computational assumption is only subexponentially hard for quantum computers, but it might make sense in a certain
setting. The quantum case would make sense in a post-quantum world where a quantum computer can be used to set

20

up the system parameters for the system and then is not required for further use. It might also be possible to construct
(E, p) such that computing the relation lattice is efficient (e.g., constructing E so that Cl(End(E)) has smooth order),
but we do not consider such approaches in this paper.

For the remainder of this section we assume that the relation lattice is known. Let {x1, . . . ,xn} be a basis for L.
Let F = {

∑n
i=1 : uixi : −1/2 ≤ ui < 1/2} be the centred fundamental domain of the basis of L. Then there is a

one-to-one correspondence between F ∩ Zn and Cl(O) by (z1, . . . , zn) ∈ F ∩ Zn 7→
∏n
i=1 l

zi
i .

Returning to Stolbunov’s signature scheme, the solution to the problem is then straightforward: Given a =
∏n
i=1 l

ei
i

and bk =
∏n
i=1 l

fk,i

i , a representation of bka−1 is obtained by computing the vector z′ = fk − e and then using Babai
rounding to get the unique vector z in F ∩ (z′+L). The vector z is sent as the response to the k-th challenge. Since bk
is a uniformly chosen ideal class, the class bka−1 is also uniformly distributed as an ideal class, and hence the vector
z ∈ F ∩ Zn is uniformly distributed and carries no information about the private key.

Lemma 8. If bk is a uniformly chosen ideal class then the vector z ∈ F ∩ Zn corresponding to fk − e is uniformly
distributed.

Proof. For fixed e the vector z depends only on the ideal class of bk. But bk is uniform and independent of e and not
known to verifier. ut

The above discussion fixes a particular fundamental domain and uses Babai rounding to compute an element in
it, but this may not lead to the most efficient signature scheme. One can consider different fundamental domains and
different “reduction” algorithms to compute z. Since the cost of signature verification depends on the size of the entries
in z, a natural computational problem is to efficiently compute a short vector (z1, . . . , zn) corresponding to a given
ideal class; we discuss this problem in the next subsection.

9.1 Solving close vector problems in the relation lattice

Let w = (w1, . . . , wn) ∈ Zn be given and suppose we want to compute the isogeny a ∗E where a =
∏n
i=1 l

wi
i . Since

the computation of the isogeny depends on the sizes of |wi| it is natural to first compute a short vector (z1, . . . , zn) that
represents the same element of Zn/L. This can be done by solving a close vector problem in the lattice L. Namely, if
v ∈ L is such that ‖w − v‖ is short, then z = w − v is a short vector that can be used to compute a ∗ E. Hence, the
problem of interest is the close vector problem in the relation lattice.

Note that most literature and algorithms for solving close lattice vector problems are with respect to the Euclidean
norm, whereas for isogeny problems the natural norms are the 1-norm ‖z‖1 =

∑n
i=1 |zi| or the ∞-norm ‖z‖∞ =

maxi |zi|. The choice of norm depends on how the isogeny is computed. The algorithm for computing a ∗ E given
in [13] depends mostly on the∞-norm, since the Vélu formulae are used and a block of isogenies are handled together
in each iteration. However, the intuitive cost of the isogeny (and this is appropriate when using modular polynomials
to compute the isogenies) is given by the 1-norm. If the entries zi are uniformly distributed in [−‖z‖∞, ‖z‖∞] then
we have ‖z‖∞ ≈

√
3/n‖z‖2 and ‖z‖1 ≈ n

2 ‖z‖∞ ≈
√

3n/4‖z‖2.
There are many approaches to solving the close vector problem. All methods start with pre-processing the lattice

using some basis reduction, and in our case one can perform a major precomputation to produce a basis customised for
solving close vector problems. Once the instance w is provided one can perform one of the following three approaches:
the Babai nearest plane method (or an iterative version of it, as done by Lindner and Peikert [40]); enumeration;
reducing to SVP (the Kannan embedding technique) and running a basis reduction algorithm. The choice of method
depends on the quality of the original basis, the amount of time available to spend on solving CVP (note that a reduction
in the sizes of the |zi| pays dividends in the time to compute a ∗ E, and so it may be worth to devote more than a few
cycles to this problem).

For this paper we focus on the Babai nearest plane algorithm. Let b1, . . . ,bn be the (ordered) reduced lattice basis
and b∗1, . . . ,b

∗
n the Gram-Schmidt vectors. Equation (4.3) of Babai [3] shows that the nearest plane algorithm on input

w outputs a vector v ∈ L with

‖w − v‖22 ≤ (‖b∗1‖22 + ‖b∗2‖22 + · · ·+ ‖b∗n‖22)/4. (4)

Bounds on ‖b∗i ‖ are regularly discussed in the literature. For example, much work on the BKZ algorithm is devoted
to understanding the sizes of these vectors; see Gama-Nguyen and Chen-Nguyen [14].

21

Fukase and Kashiwabara [26] have discussed lattice reduction algorithms that produce a basis that minimises the
right hand size of equation (4) and hence are good for solving CVP using the nearest-plane algorithm. Blömer [10]
has given a variant of the near-plane algorithm that efficiently solves CVP when given a dual-HKZ-reduced basis.

For our calculations we simply consider a BKZ-reduced lattice basis and, following Chen-Nguyen [14], assume
that

‖b∗i ‖2 ≈ ‖b1‖1−0.0263(i−1)2 .

Some similar calculations are given in [11].

9.2 Optimal signature size

We now use an idea that is implicit in the work of Couveignes [18] and Stolbunov [51] that gives signatures of optimal
size when the relation lattice is known. Suppose the ideal class group is cyclic of order N and let g be a generator
(whose factorisation over (l1, . . . , ln) is known). Then one can choose the private key by uniformly sampling an
integer 0 ≤ x < N and letting a = gx in Cl(O). The public key is EA = a ∗ E as before (this computation requires
“smoothing” the ideal class using the relation lattice). When signing one chooses the t random ideals bk by choosing
uniform integers yk in [0, N) and computing bk = gyk . As before Ek = bk ∗ E. Finally, in the scheme, when bk = 0
we return yk and when bk = 1 we return yk − x (mod N). The verifier just sees a uniformly distributed integer
modulo N , and uses this to recompute Ek from either E or EA (again, this requires reducing a vector modulo the
relation lattice and then computing the corresponding isogenies). This scheme is clearly optimal from the point of
view of signature size, since one cannot represent a random element of a group of order N in fewer than log2(N) bits.

The method used to compute the isogenies during verification is left for the verifier to decide. In practice all users
will work with the same prime p (e.g., the 512-bit CSIDH prime) in which case the relation lattice can be precom-
puted and optimised. The verifier then solves the CVP instances using their preferred method and then computes the
isogenies.

One can then prove a variant of Theorem 1 and adapt the optimisations of Sections 4 and 5. This approach gives
rise to smaller signatures, and much faster signature and verification times: in terms of the security parameter λ the size
gain is logarithmic gain, while the performance gain is quadratic. Public/private key sizes and key generation time are
unaffected. We summarise the obtained parameters and expected performance in Table 4, using the same conventions
as in Table 2; we only report data on signature size and sign/verify performance, and we refer to Table 2 for the other
(unchanged) entries.

Stolbunov scheme Shorter signatures Smaller public keys
Exact

Sig size λdn log(2B + 1)e+ λ λ
s
dn log(2B + 1)e+ λ λ

s
(dn log(2B + 1)e+ log p) + λ(λ− λ

s
log λ

s
)

Performance (Fp-ops) Ω
(
λBn2 log(n)

)
Ω
(
(λ/s)Bn2 log(n)

)
Ω
(
(λ/s)Bn2 log(n)

)
Asymptotic

Sig size O(λ2) O(λ2/s) O(λ3/s)
Performance (bits) Ω

(
λ5 log(λ)2

)
Ω
(
(λ5/s) log(λ)2

)
Ω
(
(λ5/s) log(λ)2

)
CSIDH

Sig size 5888 B 79 B 2237 B
Est. verify time 13 s 2 s 2 s

Table 4. Signature size and sign/verify performance of Stolbunov’s protocol, when combined with the variants of Sections 4 and 5.
The conventions are the same as in Table 2: log p ∼ 2λ2, n log(B) ∼ 3λ, B = O(1) for asymptotic analysis, (λ, n, log(p)) =
(128, 74, 510) with (s, t) = (1, 128) or (16, 8) for the CSIDH entry. All logarithms are in base 2.

10 Conclusions

We have given a signature scheme suitable for the CSIDH isogeny setting. This solves an unresolved problem in
Stolbunov’s thesis. We have also shown how to get shorter signatures by increasing the public key size. We do not

22

know how to obtain a similar trade-off between public key size and signature size for the schemes of Yoo et al. [55]
or Galbraith et al. [29] based on the SIDH setting.

Acknowledgements

Thanks to Samuel Dobson for doing some experiments with discrete Gaussians. Thanks to Lorenz Panny for comments
and suggestions. Thanks to Damien Stehlé for references about solving close vector problems. Thanks to the Eurocrypt
referees for their careful reading of the paper.

Luca De Feo was supported by the French Programme d’Investissements d’Avenir under the national project RISQ
no P141580-3069086/DOS0044212.

References

1. Abdalla, M., Fouque, P., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 572–590.
Springer (2012)

2. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J.J., Menezes, A., Rodrı́guez-Henrı́quez, F.: On the cost of computing iso-
genies between supersingular elliptic curves. In: Cid, C., Jr., M.J.J. (eds.) Selected Areas in Cryptography 2018. Lecture Notes
in Computer Science, vol. 11349. Springer (2019)

3. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright,

R.N., di Vimercati, S.D.C. (eds.) ACM CCS 2006. pp. 390–399. ACM (2006)
5. Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T.,

Lauridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P.: SPHINCS+ (Nov 2017), https:
//sphincs.org/data/sphincs+-submission-nist.zip

6. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Papachristodoulou, L., Schneider, M., Schwabe, P.,
Wilcox-O’Hearn, Z.: SPHINCS: practical stateless hash-based signatures. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 368–397. Springer (2015)

7. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the CSIDH: optimizing quantum evaluation of
isogenies. to appear at EuroCrypt 2019 (2019)

8. Biasse, J., Fieker, C., Jacobson, M.J.: Fast heuristic algorithms for computing relations in the class group of a quadratic order,
with applications to isogeny evaluation. LMS Journal of Computation and Mathematics 19(A), 371–390 (2016)

9. Biasse, J., Iezzi, A., Jr., M.J.J.: A note on the security of CSIDH. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. vol.
11356, pp. 153–168. Springer (2018)

10. Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of lattices. In: Montanari, U., Rolim, J.D.P., Welzl, E.
(eds.) ICALP 2000. Lecture Notes in Computer Science, vol. 1853, pp. 248–259. Springer (2000)

11. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordinary isogeny-based schemes. IACR Cryptol-
ogy ePrint Archive 2018/537 (2018)

12. Bröker, R., Charles, D.X., Lauter, K.E.: Evaluating large degree isogenies and applications to pairing based cryptography. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. Lecture Notes in Computer Science, vol. 5209, pp. 100–112. Springer
(2008)

13. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient post-quantum commutative group action. In:
Peyrin, T., Galbraith, S.D. (eds.) ASIACRYPT 2018. Lecture Notes in Computer Science, vol. 11274, pp. 395–427. Springer
(2018)

14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. Lecture
Notes in Computer Science, vol. 7073, pp. 1–20. Springer (2011)

15. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. Journal of Mathe-
matical Cryptology 8(1), 1–29 (2014)

16. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer-Verlag New York, Inc., New York, NY, USA
(1993)

17. Costello, C., Hisil, H.: A simple and compact algorithm for sidh with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.)
Advances in Cryptology – ASIACRYPT 2017. pp. 303–329. Springer International Publishing, Cham (2017)

18. Couveignes, J.M.: Hard homogeneous spaces. eprint 2006/291 (2006)
19. Cox, D.A.: Primes of the form x2 + ny2: Fermat, class field theory, and complex multiplication. Wiley (1997)

23

https://sphincs.org/data/sphincs+-submission-nist.zip
https://sphincs.org/data/sphincs+-submission-nist.zip

20. De Feo, L.: Mathematics of isogeny based cryptography. Notes from a summer school on Mathematics for Post-quantum
cryptography (2017), https://arxiv.org/abs/1711.04062

21. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. Journal of
Mathematical Cryptology 8(3), 209–247 (2014)

22. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary isogeny graphs. In: Peyrin, T., Galbraith, S.D.
(eds.) ASIACRYPT 2018. Lecture Notes in Computer Science, vol. 11274, pp. 365–394. Springer (2018)

23. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved rejection sampling. to appear at PQCrypto
2019 (2019)

24. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic curves over Fp. Des. Codes Cryptography 78(2),
425–440 (2016)

25. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. Lecture Notes in Computer Science, vol. 8042, pp. 40–56. Springer (2013)

26. Fukase, M., Kashiwabara, K.: An accelerated algorithm for solving SVP based on statistical analysis. Journal of Information
Processing 23(1), 67–80 (2015)

27. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University Press (2012)
28. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS weil descent attack. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.

Lecture Notes in Computer Science, vol. 2332, pp. 29–44. Springer (2002)
29. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes based on supersingular isogeny problems.

In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. Lecture Notes in Computer Science, vol. 10624, pp. 3–33. Springer (2017)
30. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation of class groups. Journal of the American

mathematical society 2(4), 837–850 (1989)
31. Huelsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: eXtended Merkle Signature Scheme. RFC 8391

(May 2018)
32. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng, C.M., Chung, K.M.,

Persiano, G., Yang, B.Y. (eds.) Public-Key Cryptography – PKC 2016. pp. 387–416. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2016)

33. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B. (ed.)
PQCrypto 2011. Lecture Notes in Computer Science, vol. 7071, pp. 19–34. Springer (2011)

34. Jao, D., LeGrow, J., Leonardi, C., Ruiz-Lopez, L.: A subexponential-time, polynomial quantum space algorithm for inverting
the CM group action. To appear in proceedings of MathCrypt (2019)

35. Jao, D., Soukharev, V.: A subexponential algorithm for evaluating large degree isogenies. In: ANTS. pp. 219–233 (2010)
36. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE. Cryptology ePrint

Archive, Report 2019/103 (2019), https://eprint.iacr.org/2019/103
37. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model.

In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 10822, pp. 552–586.
Springer (2018)

38. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. arXiv preprint quant-ph/9511026 (1995), https:
//arxiv.org/abs/quant-ph/9511026

39. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM Journal of Com-
puting 35(1), 170–188 (2005)

40. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. Lecture
Notes in Computer Science, vol. 6558, pp. 319–339. Springer (2011)

41. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer (2009)

42. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. Lecture
Notes in Computer Science, vol. 7237, pp. 738–755. Springer (2012)

43. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings. pp.
218–238. Springer New York, New York, NY (1990)

44. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. Lecture Notes in
Computer Science, vol. 11356, pp. 137–152. Springer (2018)

45. National Institute of Standards and Technology: Announcing request for nominations for public-key post-quantum crypto-
graphic algorithms (2016), https://www.federalregister.gov/d/2016-30615

46. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr signatures. J. Mathematical Cryptology 3(1),
69–87 (2009)

47. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. arXiv:quant-
ph/0406151 (Jun 2004), http://arxiv.org/abs/quant-ph/0406151

24

https://arxiv.org/abs/1711.04062
https://eprint.iacr.org/2019/103
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://www.federalregister.gov/d/2016-30615
http://arxiv.org/abs/quant-ph/0406151

48. Renes, J.: Computing isogenies between montgomery curves using the action of (0, 0). In: Lange, T., Steinwandt, R. (eds.)
Post-Quantum Cryptography. pp. 229–247. Springer International Publishing, Cham (2018)

49. Shanks, D.: On Gauss and composition. In: Number Theory and Applications. pp. 163–204. NATO – Advanced Study Institute,
Kluwer Academic Press (1989)

50. Silverman, J.H.: The arithmetic of elliptic curves, GTM, vol. 106. Springer (1986)
51. Stolbunov, A.: Cryptographic schemes based on isogenies. Doctoral thesis, NTNU (2012)
52. Sutherland, A.: Elliptic curves. Lecture notes from a course (18.783) at MIT (2017), http://math.mit.edu/classes/

18.783/2017/lectures
53. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de Paris 273, 238–241 (1971)
54. Washington, L.C.: Elliptic curves: Number theory and cryptography, 2nd ed. CRC Press (2008)
55. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme based on supersingular

isogenies. In: Kiayias, A. (ed.) Financial Cryptography and Data Security FC 2017. Lecture Notes in Computer Science, vol.
10322, pp. 163–181. Springer (2017)

25

http://math.mit.edu/classes/18.783/2017/lectures
http://math.mit.edu/classes/18.783/2017/lectures

	SeaSign: Compact isogeny signatures from class group actions

