
Aurora: Transparent Succinct Arguments for R1CS

Eli Ben-Sasson
eli@cs.technion.ac.il

Technion

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Michael Riabzev
mriabzev@cs.technion.ac.il

Technion

Nicholas Spooner
nick.spooner@berkeley.edu

UC Berkeley

Madars Virza
madars@mit.edu

MIT Media Lab

Nicholas P. Ward
npward@berkeley.edu

UC Berkeley

September 4, 2018

Abstract

We design, implement, and evaluate a zero knowledge succinct non-interactive argument (SNARG) for
Rank-1 Constraint Satisfaction (R1CS), a widely-deployed NP language undergoing standardization. Our
SNARG has a transparent setup, is plausibly post-quantum secure, and uses lightweight cryptography. A
proof attesting to the satisfiability of n constraints has size O(log2 n); it can be produced with O(n log n)
field operations and verified with O(n). At 128 bits of security, proofs are less than 250 kB even for
several million constraints, more than 10× shorter than prior SNARGs with similar features.

A key ingredient of our construction is a new Interactive Oracle Proof (IOP) for solving a univariate
analogue of the classical sumcheck problem [LFKN92], originally studied for multivariate polynomials.
Our protocol verifies the sum of entries of a Reed–Solomon codeword over any subgroup of a field.

We also provide libiop, a library for writing IOP-based arguments, in which a toolchain of
transformations enables programmers to write new arguments by writing simple IOP sub-components.
We have used this library to specify our construction and prior ones, and plan to open-source it.

Keywords: zero knowledge; interactive oracle proofs; succinct arguments; sumcheck protocol

1

Contents
1 Introduction 3

1.1 The need for a transparent setup . 3
1.2 Our goal . 4
1.3 Our contributions . 5
1.4 Prior implementations of transparent SNARGs . 6

2 Techniques 9
2.1 Our interactive oracle proof for R1CS . 9
2.2 A sumcheck protocol for univariate polynomials . 10
2.3 Efficient zero knowledge from algebraic techniques . 11
2.4 Perspective on our techniques . 12

3 Roadmap 13

4 Definitions 14
4.1 Codes . 14
4.2 Representations of polynomials . 14
4.3 The fast Fourier transform . 14
4.4 Subspace polynomials . 14
4.5 Interactive oracle proofs . 15
4.6 Zero knowledge . 16
4.7 Reed–Solomon encoded IOP . 17

5 Univariate sumcheck 19
5.1 Zero knowledge . 21
5.2 Amortization . 22

6 Univariate lincheck 24

7 Univariate rowcheck 26

8 An RS-encoded IOP for rank-one constraint satisfaction 28
8.1 Zero knowledge . 30
8.2 Amortization . 32

9 From RS-encoded provers to arbitrary provers 33
9.1 Zero knowledge . 36

10 Aurora: an IOP for rank-one constraint satisfaction (R1CS) 38

11 libiop: a library for IOP-based non-interactive arguments 41
11.1 Library for IOP protocols . 41
11.2 BCS transformation . 41
11.3 Portfolio of IOP protocols and sub-components . 42

12 Evaluation 43
12.1 Performance of Aurora . 43
12.2 Comparison of Ligero, Stark, and Aurora . 43

A Proof of Lemma 5.4 46

B Adaptation of Ligero to the R1CS relation 47
B.1 Interleaved lincheck . 47
B.2 Interleaved rowcheck . 48
B.3 Interleaved ZKIPCP for R1CS . 49
B.4 From encoded IPCP to regular IPCP . 53

C Additional comparisons 55
C.1 Comparison of the LDTs in Ligero, Stark, and Aurora . 55
C.2 Comparison of the IOPs in Ligero, Stark, and Aurora . 55

Acknowledgments 57

References 57

2

1 Introduction

A zero knowledge proof is a protocol that enables one party (the prover) to convince another (the verifier)
that a statement is true without revealing any information beyond the fact that the statement is true. Since
their introduction [GMR89], zero knowledge proofs have become fundamental tools not only in the theory of
cryptography but also, more recently, in the design of real-world systems with strong privacy properties.

For example, zero knowledge proofs are the core technology in Zcash [BCGGMTV14; Zca], a popular
cryptocurrency that preserves a user’s payment privacy. While in Bitcoin [Nak09] users broadcast their
private payment details in the clear on the public blockchain (so other participants can check the validity
of the payment), users in Zcash broadcast encrypted transaction details and prove, in zero knowledge, the
validity of the payments without disclosing what the payments are.

Many applications, including the aforementioned, require that proofs are succinct, namely, that proofs
scale sublinearly in the size of the witness for the statement, or perhaps even in the size of the computation
performed to check the statement. This strong efficiency requirement cannot be achieved with statistical
soundness (under standard complexity assumptions) [GH98], and thus one must consider proof systems that
are merely computationally sound, known as argument systems [BCC88]. Many applications further require
that a proof consists of a single non-interactive message that can be verified by anyone; such proofs are cheap
to communicate and can be stored for later use (e.g., on a public ledger). Constructions that satisfy these
properties are known as (publicly verifiable) succinct non-interactive arguments (SNARGs) [GW11].

In this work we present Aurora, a zero knowledge SNARG for (an extension of) arithmetic circuit
satisfiability whose proof size is polylogarithmic in the circuit size. Aurora also has attractive features: it
uses a transparent setup, is plausibly post-quantum secure, and only makes black-box use of fast symmetric
cryptography (any cryptographic hash function modeled as a random oracle).

Our work makes an exponential asymptotic improvement in proof size over Ligero [AHIV17], a recent
zero knowledge SNARG with similar features but where proofs scale as the square root of the circuit size.
For example, Aurora’s proofs are 20× smaller than Ligero’s for circuits with a million gates (which already
suffices for representative applications such as Zcash).

Our work also complements and improves on Stark [BBHR18a], a recent zero knowledge SNARG that
targets computations expressed as bounded halting problems on random access machines. While Stark was
designed for a different computation model, we can still study its efficiency when applied to arithmetic
circuits. In this case Aurora’s prover is faster by a logarithmic factor (in the circuit size) and Aurora’s proofs
are concretely much shorter, e.g., 15× smaller for circuits with a million gates.

The efficiency features of Aurora stem from a new Interactive Oracle Proof (IOP) that solves a univariate
analogue of the celebrated sumcheck problem [LFKN92], in which query complexity is logarithmic in the
degree of the polynomial being summed. This is an exponential improvement over the original multi-variate
protocol, where communication complexity is (at least) linear in the degree of the polynomial. We believe
this protocol and its analysis are of independent interest.

1.1 The need for a transparent setup

The first succinct argument is due to Kilian [Kil92], who showed how to use collision-resistant hashing
to compile any Probabilistically Checkable Proof (PCP) [BFLS91; FGLSS96; AS98; ALMSS98] into a
corresponding interactive argument. Micali then showed how a similar construction, in the random oracle
model, yields succinct non-interactive arguments (SNARGs). Subsequent work [IMSX15] noted that if the
underlying PCP is zero knowledge then so is the SNARG. Unfortunately, PCPs remain very expensive, and
this approach has not led to SNARGs with good concrete efficiency.

3

In light of this, a different approach was initially used to achieve SNARG implementations with good
concrete efficiency [PGHR13; BCGTV13]. This approach, pioneered in [Gro10; GGPR13; Lip13; BCIOP13],
relied on combining certain linearly homomorphic encodings with lightweight information-theoretic tools
known as linear PCPs [IKO07; BCIOP13; SBVBPW13]; this approach was refined and optimized in several
works [BCTV14b; BCTV14a; CFHKKNPZ15; Gro16; BISW17; GM17]. These constructions underlie
widely-used open-source libraries [SCI] and deployed systems [Zca], and their main feature is that proofs are
very short (a few hundred bytes) and very cheap to verify (a few milliseconds).

Unfortunately, the foregoing approach suffers from a severe limitation, namely, the need for a central
party to generate system parameters for the proof system. Essentially, this party must run a probabilistic
algorithm, publish its output, and “forget” the secret randomness used to generate it. This party must be
trustworthy because knowing these secrets allows forging proofs for false assertions. While this may sound
like an inconvenience, it is a colossal challenge to real-world deployments. When using cryptographic proofs
in distributed systems, relying on a central party negates the benefits of distributed trust and, even though it is
invoked only once in a system’s life, a party trusted by all users typically does not exist!

The responsibility for generating parameters can in principle be shared across multiple parties via
techniques that leverage secure multi-party computation [BCGTV15; BGG17; BGM17]. This was the
approach taken for the launch of Zcash [The], but it also demonstrated how unwieldy such an approach is,
involving a costly and logistically difficult real-world multi-party “ceremony”. Successfully running such a
multi-party protocol was a singular feat, and systems without such expensive setup are decidedly preferable.

Some setup is unavoidable because if SNARGs without any setup existed then so would sub-exponential
algorithms for SAT [Wee05]. Nevertheless, one could still aim for a “transparent setup”, namely one that
consists of public randomness, because in practice it is cheaper to realize. Recent efforts have thus focused
on designing SNARGs with transparent setup (see discussion in Section 1.4).

1.2 Our goal

The goal of this paper is to obtain transparent SNARGs that satisfy the following desiderata.

• Post-quantum security. Practitioners, and even standards bodies [NIS16], have a strong interest in crypto-
graphic primitives that are plausibly secure against efficient quantum adversaries. This is motivated by the
desire to ensure long-term security of deployed systems and protocols.
• Concrete efficiency. We seek proof systems that not only exhibit good asymptotics (in proof length and

prover/verifier time) but also demonstrably offer good efficiency via a prototype.

The second bullet warrants additional context. Most proof systems support an NP-complete problem, so they
are in principle equivalent under polynomial-time reductions. Yet, whether such protocols can be efficiently
used in practice actually depends on: (a) the particular NP-complete problem “supported” by the protocol;
(b) the concrete efficiency of the protocol relative to this problem. This creates a complex tradeoff.

Simple NP-complete problems, like boolean circuit satisfaction, facilitate simple proof systems; but
reducing the statements we wish to prove to boolean circuits is often expensive. On the other hand, one can
design proof systems for rich problems (e.g., an abstract computer) for which it is cheap to express the desired
statements; but the resulting proof systems might require expensive tools to support these rich problems.

Our goal is concretely-efficient proof systems that support rank-1 constraint satisfaction (R1CS), which
is the following natural NP-complete problem: given a vector v ∈ Fk and three matrices A,B,C ∈ Fm×n,
can one augment v to z ∈ Fn such that Az ◦Bz = Cz? (We use “◦” to denote the entry-wise product.)

We choose R1CS because it strikes an attractive balance: it generalizes circuits by allowing “native” field
arithmetic and having no fan-in/fan-out restrictions, but it is simple enough that one can design efficient proof

4

systems for it. Moreover, R1CS has demonstrated strong empirical value: it underlies real-world systems
[Zca] and there are compilers that reduce program executions to it (see [WB15] and references therein). This
has led to efforts to standardize R1CS formats across academia and industry [Zks].

1.3 Our contributions

In this work we study Interactive Oracle Proofs (IOPs) [BCS16; RRR16], a notion of “multi-round PCPs” that
has recently received much attention [BCGV16; BCFGRS17; BBCGGHPRSTV17; BBHR18b; BBHR18a;
BKS18]. These types of interactive proofs can be compiled into non-interactive arguments in the random
oracle model [BCS16], and in particular can be used to construct transparent SNARGs. Building on this
approach, we present several contributions: (1) an IOP protocol for R1CS with attractive efficiency features;
(2) the design, implementation, and evaluation of a transparent SNARG for R1CS, based on our IOP protocol;
(3) a generic library for writing IOP-based non-interactive arguments. We now describe each contribution.

(1) IOP for R1CS. We construct a zero knowledge IOP protocol for rank-1 constraint satisfaction (R1CS)
with linear proof length and logarithmic query complexity.

Given an R1CS instance C = (A,B,C) with A,B,C ∈ Fm×n, we denote by N = Ω(m+ n) the total
number of non-zero entries in the three matrices and by |C| the number of bits required to represent these;
note that |C| = Θ(N log |F|). One can view N as the number of “arithmetic gates” in the R1CS instance.

Theorem 1.1 (informal). There is an O(logN)-round IOP protocol for R1CS with proof length O(N) over
alphabet F and query complexity O(logN). The prover uses O(N logN) field operations, while the verifier
uses O(N) field operations. The IOP protocol is public coin and is a zero knowledge proof of knowledge.

The core of our result is a solution to a univariate analogue of the classical sumcheck problem [LFKN92].
Our protocol (including zero knowledge and soundness error reduction) is relatively simple: it is specified in
a single page (see Fig. 5 in Section 10), given a low-degree test as a subroutine. The low degree test that we
use is a recent highly-efficient IOP for testing proximity to the Reed–Solomon code [BBHR18b].

(2) SNARG for R1CS. We design, implement, and evaluate Aurora, a zero knowledge SNARG for
R1CS with several notable features: (a) it only makes black-box use of fast symmetric cryptography (any
cryptographic hash function modeled as a random oracle); (b) it has a transparent setup (users merely need to
“agree” on which cryptographic hash function to use); (c) it is plausibly post-quantum secure (there are no
known efficient quantum attacks against this construction). These features follow from the fact that Aurora is
obtained by applying the transformation of [BCS16] to our IOP for R1CS.

In terms of asymptotics, given an R1CS instance C over F with N gates (and here taking for simplicity F
to have size 2O(λ) where λ is the security parameter), Aurora provides proofs of length Oλ(log2N); these
can be produced in time Oλ(N logN) and checked in time Oλ(N).

For example, when setting our implementation to a security level of 128 bits over a 192-bit finite field,
proofs range from 50 kB to 250 kB for instances of up to millions of gates; producing proofs takes on the
order of several minutes and checking proofs on the order of several seconds. (See Section 12 for details.)

Overall, as indicated in Fig. 2, we achieve the smallest proof size among (plausibly) post-quantum
non-interactive arguments for circuits, more than an order of magnitude. Other approaches achieve smaller
proof sizes by relying on (public-key) cryptographic assumptions that are vulnerable to quantum adversaries.

(3) libiop: a library for non-interactive arguments. We provide libiop, a codebase that enables the
design and implementation of non-interactive arguments based on IOPs. The codebase uses the C++ language
and has three main components: (1) a library for writing IOP protocols; (2) a realization of [BCS16]’s

5

transformation, mapping any IOP written with our library to a corresponding non-interactive argument; (3) a
portfolio of IOP protocols, including Ligero [AHIV17], Stark [BBHR18a], and ours.

We plan to open-source libiop under a permissive software license for the community, so that others
may benefit from its portfolio of IOP-based arguments, and may even write new IOPs tailored to new
applications. We believe that our library will serve as a powerful tool in meeting the increasing demand by
practitioners for transparent non-interactive arguments.

1.4 Prior implementations of transparent SNARGs

We summarize prior work that has designed and implemented transparent SNARGs; see Fig. 2.1

Based on asymmetric cryptography. Bulletproofs [BCCGP16; BBBPWM17] proves the satisfaction of an
N -gate arithmetic circuit via a recursive use of a low-communication protocol for inner products, achieving a
proof with O(logN) group elements. Hyrax [WTSTW17] proves the satisfaction of a layered arithmetic
circuit of depth D and width W via proofs of O(D logW) group elements; the construction applies the
Cramer–Damgård transformation [CD98] to doubly-efficient Interactive Proofs [GKR15; CMT12]. Both
approaches use Pedersen commitments, and so are vulnerable to quantum attacks. Also, in both approaches
the verifier performs many expensive cryptographic operations: in the former, the verifier uses O(N) group
exponentiations; in the latter, the verifier’s group exponentiations are linear in the circuit’s witness size.
(Hyrax allows fewer group exponentiations but with longer proofs; see [WTSTW17].)

Based on symmetric cryptography. The “original” SNARG construction of Micali [Mic00; IMSX15] has
advantages beyond transparency. First, it is unconditionally secure given a random oracle, which can be
instantiated with extremely fast symmetric cryptography.2 Second, it is plausibly post-quantum secure, in that
there are no known efficient quantum attacks. But the construction relies on PCPs, which remain expensive.

IOPs are “multi-round PCPs” that can also be compiled into non-interactive arguments in the random
oracle model [BCS16]. This compilation retains the foregoing advantages (transparency, lightweight cryp-
tography, and plausible post-quantum security) and, in addition, facilitates greater efficiency, as IOPs have
superior efficiency compared to PCPs [BCGV16; BCFGRS17; BBCGGHPRSTV17; BBHR18b; BBHR18a].

In this work we follow the above approach, by constructing a SNARG based on a new IOP protocol. Two
recent works have also taken the same approach, but with different underlying IOP protocols, which have led
to different features. We provide both of these works as part of our library (Section 11), and experimentally
compare them with our protocol (Section 12). The discussion below is a qualitative comparison.

• Ligero [AHIV17] is a non-interactive argument that proves the satisfiability of an N -gate circuit via proofs
of size O(

√
N) that can be verified in O(N) cryptographic operations. As summarized in Fig. 1, the

IOP underlying Ligero achieves the same oracle proof length, prover time, and verifier time as our IOP.
However, we reduce query complexity from O(

√
N) to O(logN), which is an exponential improvement,

at the expense of increasing round complexity from 2 to O(logN). The arguments that we obtain are still
non-interactive, but our smaller query complexity translates into shorter proofs (see Fig. 2).

• Stark [BBHR18a] is a non-interactive argument for bounded halting problems on a random access machine.
Given a program P and a time bound T , it proves that P accepts within T steps on a certain abstract
1We omit a discussion of prior works without implementations, or that study non-transparent SNARGs; we refer the reader to the

survey of Walfish and Blumberg [WB15] for an overview of sublinear proof systems. We also note that recent work [BBCPGL18]
has used lattice cryptography to achieve sublinear zero knowledge arguments that are plausibly post-quantum secure, which leaves
raises the exciting question of whether these recent protocols can lead to efficient implementations.

2Some cryptographic hash functions, such as BLAKE2, can process almost 1 gibibyte per second [ANWOW13].

6

computer (when given suitable nondeterministic advice) via succinct proofs of size polylog(T). Moreover,
verification is also succinct: checking a proof takes time only |P |+ polylog(T), which is polynomial in
the size of the statement and much better than “naive verification” which takes time Ω(|P |+ T).

The main difference between Stark and Aurora is the computational models that they support. While Stark
supports uniform computations specified by a program and a time bound, Aurora supports non-uniform
computations specified by an explicit circuit (or constraint system). Despite this difference, we can compare
the cost of Stark and Aurora with respect to the explicit circuit model, since one can reduce a given N -gate
circuit (or N -constraint system) to a corresponding bounded halting problem with |P |, T = Θ(N).

In this case, Stark’s verification time is the same as Aurora’s, O(N); this is best possible because just
reading an N -gate circuit takes time Ω(N). But Stark’s prover is a logarithmic factor more expensive
because it uses a switching network to verify a program’s accesses to memory. Stark’s prover uses an IOP
with oracles of size O(N logN), leading to an arithmetic complexity of O(N log2N). (See Figs. 1 and 2.)

Both Stark and Aurora have proof size O(log2N), but additional costs in Stark (e.g., due to switching
networks) result in Stark proofs being one order of magnitude larger than Aurora proofs. That said, we
view Stark and Aurora as complementing each other: Stark offers savings in verification time for succinctly
represented programs, while Aurora offers savings in proof size for explicitly represented circuits.

7

protocol round proof length query prover time verifier time
type complexity (field elts) complexity (field ops) (field ops)

Ligero IPCP † 2 O(N) O(
√
N) O(N logN) O(N)

Stark IOP O(logN) O(N logN) O(logN) O(N log2N) O(N)
Aurora IOP O(logN) O(N) O(logN) O(N logN) O(N)

Figure 1: Asymptotic comparison of the information-theoretic proof systems underlying Ligero, Stark,
and Aurora, when applied to an N -gate arithmetic circuit.
† An IPCP [KR08] is a PCP oracle that is checked via an Interactive Proof; it is a special case of an IOP.

post proof length verifier non-interactivity
name setup quantum? asymptotic N = 106 time technology

[Gro10][GGPR13]
[Lip13][BCIOP13]...

various private no Oλ(1) 128 B Oλ(k) † linear PCP + linear encoding

[ZGKPP17a] ZK-vSQL private no Oλ(d logN) N/A Oλ(N) apply [CD98]-transform to doubly-
efficient IP [GKR15; CMT12]

[WTSTW17] Hyrax public no Oλ(d logN) ‡ 50 kB Oλ(N) as above (but using a different
polynomial commitment)

[BCCGP16]
[BBBPWM17]

Bulletproofs public no Oλ(logN) 1.5 kB Oλ(N) recursive inner product argument

[AHIV17] Ligero public yes Oλ(
√
N) 4.0 MB Oλ(N) apply [BCS16]-transform to IPCP

[BBHR18a] Stark public yes Oλ(log2N) 3.2 MB Oλ(N) apply [BCS16]-transform to IOP
this work Aurora public yes Oλ(log2N) 220 kB Oλ(N) apply [BCS16]-transform to IOP

Figure 2: Comparison of some non-interactive zero knowledge arguments for proving statements of the
form “there exists a secret w such that C(x,w) = 1” for a given arithmetic circuit C of N gates (and
depth d) and public input x of size k. The table is grouped by “technology”, and for simplicity assumes
that the circuit’s underlying field has size 2O(λ) where λ is the security parameter. Approximate proof
sizes are given for N = 106 gates over a cryptographically-large field, and a security level of 128 bits;
some proof sizes may differ from those reported in the cited works because size had to be re-computed
for the security level and N used here; also, [ZGKPP17a] reports no implementation.
† Given a per-circuit preprocessing step.
‡ A tradeoff between proof size and verifier time is possible; see [WTSTW17].

8

2 Techniques

Our main technical contribution is a linear-length logarithmic-query IOP for R1CS (Theorem 1.1), which
we use to design, implement, and evaluate a transparent SNARG for R1CS. Below we summarize the main
ideas behind our protocol, and postpone to Sections 11 and 12 discussions of our system. In Section 2.1, we
describe our approach to obtain the IOP for R1CS; this approach leads us to solve the univariate sumcheck
problem, as discussed in Section 2.2; finally, in Section 2.3, we explain how we achieve zero knowledge. In
Section 2.4 we conclude with a wider perspective on the techniques used in this paper.

2.1 Our interactive oracle proof for R1CS

The R1CS relation consists of instance-witness pairs ((A,B,C, v), w), where A,B,C are matrices and v, w
are vectors over a finite field F, such that (Az)◦ (Bz) = Cz for z := (1, v, w) and “◦” denotes the entry-wise
product.3 For example, R1CS captures arithmetic circuit satisfaction: A,B,C represent the circuit’s gates, v
the circuit’s public input, and w the circuit’s private input and wire values.4

We describe the high-level structure of our IOP protocol for R1CS, which has linear proof length and
logarithmic query complexity. The protocol tests satisfaction by relying on two building blocks, one for
testing the entry-wise vector product and the other for testing the linear transformations induced by the
matrices A,B,C. Informally, we thus consider protocols for the following two problems.

• Rowcheck: given vectors x, y, z ∈ Fm, test whether x ◦ y = z, where “◦” denotes entry-wise product.

• Lincheck: given vectors x ∈ Fm, y ∈ Fn and a matrix M ∈ Fm×n, test whether x = My.

One can immediately obtain an IOP for R1CS when given IOPs for the rowcheck and lincheck problems.
The prover first sends four oracles to the verifier: the satisfying assignment z and its linear transformations
yA := Az, yB := Bz, yC := Cz. Then the prover and verifier engage in four IOPs in parallel:
– An IOP for the lincheck problem to check that “yA = Az”. Likewise for yB and yC .
– An IOP for the rowcheck problem to check that “yA ◦ yB = yC”.
Finally, the verifier checks that z is consistent with the public input v. Clearly, there exist z, yA, yB, yC that
yield valid rowcheck and lincheck instances if and only if (A,B,C, v) is a satisfiable R1CS instance.

The foregoing reduces the goal to designing IOPs for the rowcheck and lincheck problems.
As stated, however, the rowcheck and lincheck problems only admit “trivial” protocols in which the

verifier queries all entries of the vectors in order to check the required properties. In order to allow for
sublinear query complexity, we need the vectors x, y, z to be encoded via some error-correcting code. We
use the Reed–Solomon (RS) code because it ensures constant distance with constant rate while at the same
time it enjoys efficient IOPs of Proximity [BBHR18b].

Given an evaluation domain L ⊆ F and rate parameter ρ ∈ [0, 1], RS [L, ρ] is the set of all codewords
f : L → F that are evaluations of polynomials of degree less than ρ|L|. Then, the encoding of a vector
v ∈ FS with S ⊆ F and |S| < ρ|L| is v̂|L ∈ FL where v̂ is the unique polynomial of degree |S| − 1 such
that v̂|S = v. Given this encoding, we consider “encoded” variants of the rowcheck and lincheck problems.

3Throughout, we assume that F is “friendly” to FFT algorithms, i.e., F is a binary field or its multiplicative group is smooth.
4The reader may be familiar with a standard arithmetization of circuit satisfaction (used, e.g., in the inner PCP of [ALMSS98]).

Given an arithmetic circuit with m gates and n wires, each addition gate xi ← xj + xk is mapped to the linear constraint
xi = xj + xk and each product gate xi ← xj · xk is mapped to the quadratic constraint xi = xj · xk. The resulting system of
equations can be written as A · ((1, x)⊗ (1, x)) = b for suitable A ∈ Fm×(n+1)2 and b ∈ Fm. However, this reduction results in a
quadratic blowup in the instance size. There is an alternative reduction due to [Mei12; GGPR13] that avoids this.

9

• Univariate rowcheck (Definition 7.1): given a subset H ⊆ F and codewords f, g, h ∈ RS [L, ρ], check
that f̂(a) · ĝ(a)− ĥ(a) = 0 for all a ∈ H . (This is a special case of the definition that we use later.)

• Univariate lincheck (Definition 6.1): given subsets H1, H2 ⊆ F, codewords f, g ∈ RS [L, ρ], and a
matrix M ∈ FH1×H2 , check that f̂(a) =

∑
b∈H2

Ma,b · ĝ(b) for all a ∈ H1.

Given IOPs for the above problems, we can now get an IOP protocol for R1CS roughly as before. Rather
than sending z,Az,Bz,Cz, the prover sends their encodings fz, fAz, fBz, fCz . The prover and verifier then
engage in rowcheck and lincheck protocols as before, but with respect to these encodings.

For these encoded variants, we achieve IOP protocols with linear proof length and logarithmic query
complexity, as required. For both cases, we do not use any routing and instead use a standard technique
(dating back at least to [BFLS91]) to reduce the given testing problem to a sumcheck instance. However,
since we are not working with multivariate polynomials, we cannot rely on the usual (multivariate) sumcheck
protocol. Instead, we present a novel protocol that realizes a univariate analogue of the classical sumcheck
protocol, and use it as the testing “core” of our IOP protocol for R1CS. We discuss univariate sumcheck next.

Remark 2.1. The verifier receives as input an explicit (non-uniform) description of the set of constraints,
namely, the matrices A,B,C. In particular, the verifier runs in time that is at least linear in the number of
non-zero entries in these matrices (if we consider a sparse-matrix representation for example).

2.2 A sumcheck protocol for univariate polynomials

A key ingredient in our IOP protocol is a univariate analogue of the classical (multivariate) sumcheck protocol
[LFKN92]. Recall that the classical sumcheck protocol is an IP for claims of the form “

∑
~a∈Hm f(~a) = 0”,

where f is a given polynomial in F[X1, . . . , Xm] of individual degree d and H is a subset of F. In this
protocol, the verifier runs in time poly(m, d, log |F|) and accesses f at a single (random) location. The
sumcheck protocol plays a fundamental role in computational complexity (it underlies celebrated results such
as IP = PSPACE [Sha92] and MIP = NEXP [BFL91]) and in efficient proof protocols [GKR15; CMT12;
TRMP12; Tha13; Tha15; WHGSW16; WJBSTWW17; ZGKPP17b; ZGKPP17a; WTSTW17].

We work with univariate polynomials instead, and need a univariate analogue of the sumcheck protocol
(see previous subsection): how can a prover convince the verifier that “

∑
a∈H f(a) = 0” for a given polyno-

mial f ∈ F[X] of degree d and subset H ⊆ F? Designing a “univariate sumcheck” is not straightforward
because univariate polynomials (the Reed–Solomon code) do not have the tensor structure used by the
sumcheck protocol for multivariate polynomials (the Reed–Muller code). In particular, the sumcheck protocol
has m rounds, each of which reduces a sumcheck problem to a simpler sumcheck problem with one variable
fewer. When there is only one variable, however, it is not clear to what simpler problems one can reduce.

Using different ideas, we design a natural protocol for univariate sumcheck in the cases where H is an
additive or multiplicative coset in F (i.e., a coset of an additive or multiplicative subgroup of F).

Theorem (informal). The univariate sumcheck protocol over additive or multiplicative cosets has a O(log d)-
round IOP with proof complexity O(d) over alphabet F and query complexity O(log d). The IOP prover uses
O(d log |H|) field operations and the IOP verifier uses O(log d+ log2 |H|) field operations.

We now provide the main ideas behind the protocol, when H is an additive coset in F.
Suppose for a moment that the degree d of f is less than |H| (we remove this restriction later). A theorem

of Byott and Chapman [BC99] states that the sum of f over (an additive coset) H is zero if and only if the
coefficient of X |H|−1 in f is zero. In particular,

∑
a∈H f(a) is zero if and only if f has degree less than

|H| − 1. Thus, the univariate sumcheck problem over H when d < |H| is equivalent to low-degree testing.

10

The foregoing suggests a natural approach: test that f has degree less than |H| − 1. Without any help
from the prover, the verifier would need at least |H| queries to f to conduct such a test, which is as expensive
as querying all of H . However, the prover can help by engaging with the verifier in an IOP of Proximity for
the Reed–Solomon code. For this we rely on the recent construction of Ben-Sasson et al. [BBHR18b], which
has proof length O(d) and query complexity O(log d).

In our setting, however, we need to also handle the case where the degree d of f is larger than |H|.
For this case, we observe that we can split any polynomial f into two polynomials g and h such that
f(x) ≡ g(x) +

∏
α∈H(x − α) · h(x) with deg(g) < |H| and deg(h) < d − |H|; in particular, f and g

agree on H , and thus so do their sums on H . This observation suggests the following extension to the prior
approach: the prover sends g (as an oracle) to the verifier, and then the verifier performs the prior protocol
with g in place of f . Of course, a cheating prover may send a polynomial g that has nothing to do with f , and
so the verifier must also ensure that g is consistent with f . To facilitate this, we actually have the prover send
h rather than g; the verifier can then “query” g(x) as f(x)−

∏
α∈H(x− α) · h(x); the prover then shows

that f, g, h are all of the correct degrees.
A similar reasoning works when H is a multiplicative coset in F (see Remark 5.6). It remains an

interesting open problem to establish whether the foregoing can be extended to any subset H in F.

Remark 2.2 (vanishing vs. summing). The following are both linear subcodes of the Reed–Solomon code:

VanishRS[F, L,H, d] :={f : L→ F | f has degree less than d and is zero everywhere on H} ,
SumRS[F, L,H, d] :={f : L→ F | f has degree less than d and sums to zero on H} .

Our univariate sumcheck protocol is an IOP of Proximity for SumRS, and is reminiscent of IOPs of Proximity
for VanishRS (e.g., see [BBHR18a]). Nevertheless, there are also intriguing differences between the two
cases. For example, while it is known how to test proximity to VanishRS for general H , we only know how
to test proximity to SumRS when H is a coset. Additionally, our IOP protocol for R1CS from Section 2.1 can
be viewed as a reduction from checking satisfaction of R1CS to testing proximity to SumRS; we do not know
how to carry out a similar reduction to VanishRS. Indeed, there is an interactive reduction from VanishRS to
SumRS, but no reduction in the other direction is known.

2.3 Efficient zero knowledge from algebraic techniques

The ideas discussed thus far yield an IOP protocol for R1CS with linear proof length and logarithmic query
complexity. However these by themselves do not provide zero knowledge.

We achieve zero knowledge by leveraging recent algebraic techniques [BCGV16]. Informally, we adapt
these techniques to achieve efficient zero knowledge variants of key sub-protocols, including the univariate
sumcheck protocol (see Section 5.1) and low-degree testing (see Section 9.1), and combine these to achieve a
zero knowledge IOP protocol for R1CS (see Sections 8.1 and 10).

We summarize the basic intuition for how we achieve zero knowledge in our protocols.
First, we use bounded independence. Informally, rather than encoding a vector z ∈ FH by the unique

polynomial of degree |H| − 1 that matches z on H , we instead sample uniformly at random a polynomial
of degree, say, |H|+ 9 conditioned on matching z on H . Any set of 10 evaluations of such a polynomial
are independently and uniformly distributed in F (and thus reveal no information about z), provided these
evaluations are outside of H . To ensure this latter condition, we choose the evaluation domain L of
Reed–Solomon codewords to be disjoint from H . Thus, for example, if H is a linear space (an additive
subgroup of F) then we choose L to be an affine subspace (a coset of some additive subgroup), since the

11

underlying machinery for low-degree testing (e.g., [BBHR18b]) requires codewords to be evaluated over
algebraically-structured domains. All of our protocols are robust to these variations.

Bounded independence alone does not suffice, though. For example, in the sumcheck protocol, consider
the case where the input vector z ∈ FH is all zeroes. The prover samples a random polynomial f̂ of degree
|H|+ 9, such that f̂(a) = 0 for all a ∈ H , and sends its evaluation f over L disjoint from H to the verifier.
As discussed, any ten queries to f result in ten independent and uniformly random elements in F. Observe,
however, that when we run the sumcheck protocol on f , the polynomial g (the remainder of f̂ when divided
by
∏
α∈H(x− α)) is the zero polynomial: all randomness is removed by the division.

To remedy this, we use self-reducibility to reduce a sumcheck claim about the polynomial f to a sumcheck
claim about a random polynomial. The prover first sends a random Reed–Solomon codeword r, along with
the value β :=

∑
a∈H r(a). The verifier sends a random challenge ρ ∈ F. Then the prover and verifier

engage in the univariate sumcheck protocol with respect to the new claim “
∑

a∈H ρf(a) + r(a) = β”. Since
r is uniformly random, ρf + r is uniformly random for any ρ, and thus the sumcheck protocol is performed
on a random polynomial, which ensures zero knowledge. Soundness is ensured by the fact that if f does not
sum to 0 on H then the new claim is true with probability 1/|F| over the choice of ρ.

2.4 Perspective on our techniques

A linear-length logarithmic-query IOP for a “circuit-like” NP-complete relation like R1CS (Theorem 1.1)
may come as a surprise. We wish to shed some light on our IOP construction by connecting the ideas behind it
to prior ideas in the probabilistic checking literature, and use these connections to motivate our construction.

A significant cost in all known PCP constructions with good proof length is using routing networks to
reduce combinatorial objects (circuits, machines, and so on) to structured algebraic ones;5 routing also plays
a major role in many IOPs [BCGV16; BCFGRS17; BBCGGHPRSTV17; BBHR18a]. While it is plausible
that one could adapt routing techniques to route the constraints of an R1CS instance (similarly to [PS94]),
such an approach would likely incur logarithmic-factor overheads, precluding linear-size IOPs.

A recent work [BCGRS17] achieves linear-length constant-query IOPs for boolean circuit satisfaction
without routing the input circuit. Unfortunately, [BCGRS17] relies on other expensive tools, such as algebraic-
geometry (AG) codes and quasilinear-size PCPs of proximity [BS08]; moreover, it is not zero knowledge.
Informally, [BCGRS17] tests arbitrary (unstructured) constraints by invoking a sumcheck protocol [LFKN92]
on a O(1)-wise tensor product of AG codes; this latter is then locally tested via tools in [BS06; BS08].

One may conjecture that, to achieve an IOP for R1CS like ours, it would suffice to merely replace the AG
codes in [BCGRS17] with the Reed–Solomon code, since both codes have constant rate. But taking a tensor
product exponentially deteriorates rate, and testing proximity to that tensor product would be expensive.

An alternative approach is to solve a sumcheck problem directly on the Reed–Solomon code. Existing
protocols are not of much use here: the multivariate sumcheck protocol relies on a tensor structure that is not
available in the Reed–Solomon code, and recent IOP implementations either use routing [BBCGGHPRSTV17;
BBHR18a] or achieve only sublinear query complexity [AHIV17].

Instead, we design a completely new IOP for a sumcheck problem on the Reed–Solomon code. We then
combine this solution with ideas from [BCGRS17] (to avoid routing) and from [BCGV16] (to achieve zero
knowledge) to obtain our linear-length logarithmic-query IOP for R1CS. Along the way, we rely on recent
efficient proximity tests for the Reed–Solomon code [BBHR18b].

5Polishchuk and Spielman [PS94] reduce boolean circuit satisfaction to a trivariate algebraic coloring problem with “low-degree”
neighbor relations, by routing the circuit’s wires over an arithmetized routing network. Ben-Sasson and Sudan [BS08] reduce
nondeterministic machine computations to a univariate algebraic satisfaction problem by routing the machine’s memory accesses over
another arithmetized routing network. Routing is again a crucial component in the linear-size sublinear-query PCPs of [BKKMS13].

12

3 Roadmap

In Section 4 we provide necessary definitions about codes, proof systems, and other notions. Subsequent
sections describe subprotocols, presented as Reed–Solomon encoded IOPs, which are IOPs for which
soundness only holds against provers whose messages are Reed–Solomon codewords of specified rates, that
are later compiled into standard IOPs. Specifically: the sumcheck protocol is in Section 5, the rowcheck
protocol in Section 7, and the lincheck protocol in Section 6; the latter two are interactive reductions to
univariate sumcheck. In Section 8 we combine the rowcheck and lincheck protocols to obtain an RS-encoded
IOP for R1CS. In Section 9 we explain how to transform RS-encoded IOPs to standard IOPs, and in Section 10
we apply this transformation to our RS-encoded IOP for R1CS. Fig. 3 summarizes the structure of our IOP for
R1CS. Finally, in Section 11 we describe our implementation and in Section 12 we report on its evaluation.

Throughout, we focus on the case where all relevant domains are additive cosets (affine subspaces) in F;
the case where domains are multiplicative cosets is similar, with only minor modifications (see Remark 5.6).

R1CS

Rowcheck
(Section 7)

Lincheck
(Section 6)

Sumcheck
(Section 5)

IOP of Proximity for
Reed–Solomon code

(e.g. [BBHR18b])

RS-encoded IOP for R1CS (Section 8)

IOP for R1CS (Section 10)

(Section 9)

Figure 3: Structure of our IOP for R1CS in terms of key sub-protocols.

13

4 Definitions

Given a relation R ⊆ S × T , we denote by L(R) ⊆ S the set of s ∈ S such that there exists t ∈ T with
(s, t) ∈ R; for s ∈ S, we denote byR|s ⊆ T the set {t ∈ T : (s, t) ∈ R}. Given a set S and strings v, w ∈
Sn for some n ∈ N, the fractional Hamming distance ∆(v, w) ∈ [0, 1] is ∆(v, w) := 1

n |{i : vi 6= wi}|.

4.1 Codes

Interleaved codes. Given linear codes C1, . . . , Cm ⊆ Fn with alphabet F, we denote by
∏m
i=1Ci ⊆

(Fm)n ≡ Fm×n the linear “interleaved” code with alphabet Fm that equals the set of all m × n matrices
whose i-th row is inCi. IfC1 = · · · = Cm, we writeCm for

∏m
i=1Ci. Since the alphabet is Fm, the Hamming

distance is taken column-wise: for A,A′ ∈ Fm×n, ∆(A,A′) := 1
n |{j ∈ [n] : ∃ i ∈ [m] s.t. Ai,j 6= A′i,j}|.

The Reed–Solomon code. Given a subset L of a field F and ρ ∈ (0, 1], we denote by RS [L, ρ] ⊆ FL all
evaluations over L of univariate polynomials of degree less than ρ|L|. That is, a word c ∈ FL is in RS [L, ρ]
if there exists a polynomial p of degree less than ρ|L| such that ca = p(a) for every a ∈ L. We denote by
RS [L, (ρ1, . . . , ρn)] :=

∏n
i=1 RS [L, ρi] the interleaving of Reed–Solomon codes with rates ρ1, . . . , ρn.

4.2 Representations of polynomials

We frequently move from univariate polynomials over F to their evaluations on chosen subsets of F, and
back. We use plain letters like f, g, h, π to denote evaluations of polynomials, and “hatted letters” f̂ , ĝ, ĥ, π̂
to denote corresponding polynomials. This bijection is well-defined only if the size of the evaluation domain
is larger than the degree. Formally, if f ∈ RS [L, ρ] for L ⊆ F, ρ ∈ (0, 1], then f̂ is the unique polynomial
of degree less than ρ|L| whose evaluation on L equals f . Likewise, if f̂ ∈ F[X] with deg(f) < ρ|L|, then
fL := f̂ |L ∈ RS [L, ρ] (but we will drop the subscript when the choice of subset is clear from context).

4.3 The fast Fourier transform

We often rely on polynomial arithmetic, which can be efficiently performed via fast Fourier transforms and
their inverses. In particular, polynomial evaluation and interpolation over an (affine) subspace of size n of a
finite field can be performed in O(n log n) field operations via an additive FFT [LCH14]. Because in practice
the number of FFTs we perform is important, when discussing complexities we use the notation FFT(F,m)
for the cost of a single additive FFT (or IFFT) on a subspace of F of size m.

Remark 4.1. Strictly, an additive FFT evaluates a polynomial of degree d on a subspace of size d+ 1. To
evaluate on a larger subspace (of size n), one can run an FFT over each coset of the smaller space inside the
larger one at a cost of nd ·O(d log d) = O(n log d). We will suppress this technicality when it appears, and
upper bound the cost of such an evaluation by an FFT on a subspace of size n.

4.4 Subspace polynomials

Let F be an extension field of a prime field Fp, and H be a subset of F. We denote by ZH the unique nonzero
polynomial of degree at most |H| that is zero on H . If H is an (affine) subspace of F, then ZH is called an
(affine) subspace polynomial. In this case, there exist c1, . . . , ck, d ∈ F, where k is the dimension of H , such
that ZH(X) ≡

∑k
i=0 ciX

pi + d (and, furthermore, if H is linear, then d = 0). See [LN97, Chapter 3.4] and
[BCGT13, Remark C.8] for how to find the coefficients ci, d in O((dimH)2) field operations. Polynomials

14

of this type are called linearized because they are Fp-affine maps: if H = H0 + β for a subspace H0 ⊆ F
and shift β ∈ F, then ZH(X) ≡ ZH0(X)− ZH0(β), and ZH0 is an Fp-linear map.

4.5 Interactive oracle proofs

The information-theoretic protocols in this paper are Interactive Oracle Proofs (IOPs) [BCS16; RRR16],
which combine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs
[BFLS91; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08].

A k-round public-coin IOP has k rounds of interaction. In the i-th round of interaction, the verifier sends
a uniformly random message mi to the prover; then the prover replies with a message πi to the verifier. After
k rounds of interaction, the verifier makes some queries to the oracles it received and either accepts or rejects.

An IOP system for a relationR with round complexity k and soundness error ε is a pair (P, V), where
P, V are probabilistic algorithms, that satisfies the following properties. (See [BCS16; RRR16] for details.)

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w), V (x)) is a k(n)-round
interactive oracle protocol with accepting probability 1.

Soundness: For every instance x /∈ L(R) and unbounded malicious prover P̃ , (P̃ , V (x)) is a k(n)-round
interactive oracle protocol with accepting probability at most ε(n).

Like the IP model, a fundamental measure of efficiency is the round complexity k. Like the PCP model,
two additional fundamental measures of efficiency are the proof length p, which is the total number of
alphabet symbols in all of the prover’s messages, and the query complexity q, which is the total number of
locations queried by the verifier across all of the prover’s messages.

We say that an IOP system is non-adaptive if the verifier queries are non-adaptive, namely, the queried
locations depend only on the verifier’s inputs and its randomness. All of our IOP systems will be non-adaptive.

Since the verifier is public coin, its behavior in the interactive part of the protocol is easy to describe. We
can therefore think of V as a randomized algorithm which, given its prior random messages and oracle access
to the prover’s messages, makes queries to the prover’s messages and either accepts or rejects.

The foregoing division allows us to separately consider the randomness and soundness error for these
two phases, which is useful for a more fine-grained soundness-error reduction. Letting ri and rq be the
randomness complexities of interaction and query phases respectively, the quantities εi and εq satisfy the
following relation (for all instances x /∈ L(R) and malicious provers P̃):

Pr

[
Pr

r←{0,1}rq
[V π1,...,πk(x,m1, . . . ,mk; r) = 1] ≥ εq

∣∣∣∣ (m1, . . . ,mk)← {0, 1}ri
π1, . . . , πk ← (P̃ , (m1, . . . ,mk))

]
≤ εi .

That is, the probability that random messages make V accept with probability at least εq (over internal
randomness) is at most εi. In particular, the overall soundness error is at most εi + εq. Note that an IOP with
εi = 0 is a PCP, an IOP with εq = 0 is an IP, and an IOP with both εi = εq = 0 is a deterministic (NP) proof.

Given the above, consider a “semi-black-box” example of soundness-error reduction: the interactive
phase is run once, and then we repeat the query phase ` times with fresh randomness. This yields an IOP with
query complexity ` · q, randomness complexity ri + ` · rq, and soundness error εi + ε`q, but with the same
proof length and number of rounds. The running time of the prover is unchanged, and the verifier runs in
time O(` · tV). By comparison, repetition of the entire protocol yields proof length ` · p and ` · k rounds, for
soundness error (εi + εq)`; the prover runs in time O(` · tP) and the verifier in time O(` · tV).

15

4.5.1 IOPs of proximity

An IOP of Proximity extends an IOP the same way that PCPs of Proximity extend PCPs. An IOPP system
for a relationR with round complexity k, soundness error ε, and proximity parameter δ is a pair (P, V) that
satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relationR, (P (x,w), V w(x)) is a k(n)-round
interactive oracle protocol with accepting probability 1.

Soundness: For every instance-witness pair (x,w) with ∆(w,R|x) ≥ δ(n) and unbounded malicious prover
P̃ , (P̃ , V w(x)) is a k(n)-round interactive oracle protocol with accepting probability at most ε(n).

Efficiency measures for IOPPs are as for IOPs, except that we also count queries to the witness. Namely, if V
makes at most qw queries to w and at most qπ queries across all prover messages, the query complexity is
q := qw + qπ. Like with IOPs, we divide public-coin IOPPs into an interaction phase and a query phase.

Low-degree testing. For the purposes of this paper, a low-degree test is an IOPP for the Reed–Solomon
relationRRS := {((L, ρ), p) : L ⊆ F, ρ ∈ (0, 1], p ∈ RS [L, ρ]}. In this case ε and δ are functions of ρ.

4.6 Zero knowledge

The definitions of unconditional (perfect) zero knowledge that we use for IOPs and for IOPPs follow those in
[GIMS10; IW14; BCFGRS17]. We first define the notion of a view and of straightline access; after that we
define zero knowledge for IOPs and for IOPPs in a way that suffices for our purposes.

Definition 4.2. Let A,B be algorithms and x, y strings. We denote by View (B(y), A(x)) the view of A(x)
in an interactive oracle protocol with B(y), i.e., the random variable (x, r, a1, . . . , an) where x is A’s input,
r is A’s randomness, and a1, . . . , an are the answers to A’s queries into B’s messages.

Definition 4.3. An algorithm B has straightline access to an algorithm A if B interacts with A, without
rewinding, by exchanging messages with A and answering any oracle queries along the way.

We denote by BA the concatenation of A’s random tape and B’s output when it has straightline access to
A. (Since A’s random tape could be super-polynomially large, B cannot sample it for A and then output it;
instead, we restrict B to not see it, and we prepend it to B’s output.)

For IOPs, we consider unconditional (perfect) zero knowledge against bounded-query verifiers.

Definition 4.4. An IOP system (P, V) for a relationR is (perfect) zero knowledge against query bound
b if there exists a simulator algorithm S such that for every b-query algorithm Ṽ and instance-witness pair
(x,w) ∈ R, SṼ (x) and View (P (x,w), Ṽ (x)) are identically distributed. (An algorithm is b-query if, on
input x, it makes at most b(|x|) queries to any oracles it has access to.) Moreover, S must run in time
poly(|x|+ qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

For zero knowledge against arbitrary polynomial-time adversaries, it suffices for b to be superpolynomial.
Note that S’s running time is required to be polynomial in the input size |x| and the actual number of queries
Ṽ makes (as a random variable) and, in particular, may be polynomial even if b is not. We do not restrict Ṽ
to make queries only at the end of the interaction; all of our protocols will be zero knowledge against the
more general class of verifier that can, at any time, make queries to any oracle it has already received.

For IOPPs, we consider unconditional (perfect) zero knowledge against unbounded-query verifiers.

16

Definition 4.5. An IOPP system (P, V) for a relationR is (perfect) zero knowledge against unbounded
queries if there exists a simulator algorithm S such that for every algorithm Ṽ and instance-witness pair
(x,w) ∈ R, the following two random variables are identically distributed:(

SṼ ,w(x) , qS

)
and

(
View (P (x,w), Ṽ w(x)) , qṼ

)
,

where qS is the number of queries tow made by S, and qṼ is the number of queries tow or to prover messages
made by Ṽ . Moreover, S must run in time poly(|x|+ qṼ (|x|)), where qṼ (·) is Ṽ ’s query complexity.

4.7 Reed–Solomon encoded IOP

We typically first describe IOPs for which soundness only holds against provers whose messages are Reed–
Solomon codewords of specified rates and on which certain rational constraints hold, and later “compile”
them into standard IOPs.6 This facilitates focusing on a protocol’s key ideas, and leaves handling provers that
do not respect this restriction to generic tools. We first define what we mean by a polynomial relation.

Definition 4.6. A rational constraint is a pair (C, σ) where C = (N,D), N : F1+` → F, D : F → F are
arithmetic circuits and σ ∈ (0, 1] is a rate parameter. A rational constraint (C, σ) and an interleaved word
f ∈ (L→ F)` jointly define a codeword C[f] : L→ F, given by C[f](α) := N(α,f1(α),...,f`(α))

D(α) for all α ∈ L.
A rational constraint (C, σ) is satisfied by f if C[f] ∈ RS [L, σ].7

An Reed–Solomon encoded IOP (RS-encoded IOP) for a relationR is a tuple (P, V, (~ρi)
k
i=1), where P

and V are probabilistic algorithms and ~ρ1 ∈ (0, 1]`1 , . . . , ~ρk ∈ (0, 1]`k , that satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w), V (x)) is a k(n)-round
interactive oracle protocol, where the i-th message of P is a codeword of RS [L, ~ρi], and V outputs a
set of rational constraints that are satisfied with respect to the prover’s messages with probability 1.

Soundness: For every instance x /∈ L(R) and unbounded malicious prover P̃ whose i-th message is a
codeword of RS [L, ~ρi], (P̃ , V (x)) is a k(n)-round interactive oracle protocol wherein the set of
rational constraints output by V are satisfied with respect to the prover’s messages with probability at
most ε(n).

The maximum rate ρmax of a Reed–Solomon encoded IOP is the maximum over the rates of the codewords
to be sent by the prover and those induced by the verifier’s rational constraints. To formally define it, we
first introduce the notion of degree function for an arithmetic circuit C : F`+1 → F. Given d1, . . . , d` ∈ N,
define DC(d1, . . . , d`) to be the smallest integer e such that for all pi ∈ F≤di [X] there exists a polynomial
q ∈ F≤e[X] such that C(X, p1(X), . . . , p`(X)) ≡ q(X). Given L ⊆ F and ~ρ ∈ (0, 1]`, we abuse
notation and write DC(~ρ) for DC(ρ1|L|, . . . , ρ`|L|)/|L| (L will typically be clear from context). Given this
notation, and letting ~ρ := (~ρ1, . . . , ~ρk), the maximum rate ρmax equals the maximum rate in both ~ρ and
{σ + deg(D), DN (~ρ)}C∈V , (C,σ)∈C.8

6Rational constraints enable us to capture useful optimizations that involve testing “virtual oracles” implicitly derived from oracles
sent by the prover. Such optimizations ultimately reduce proof length in the resulting SNARGs as discussed, e.g., in [BBHR18a].

7For α ∈ L, if D(α) = 0 then we define C[f](α) := ⊥. Note that if this holds for some α ∈ L then, for any word f and rate
parameter σ, the rational constraint (C, σ) is not satisfied by f ; in particular, the completeness condition does not hold.

8This definition may appear mysterious, but it is naturally motivated by the proof of Theorem 9.1.

17

Remark 4.7. The model of RS-encoded IOPs does not forbid the verifier from making queries to messages.
However, in all of our protocols to achieve soundness it suffices for the rational constraints output by the
verifier to be satisfied (and so the verifier does not make any queries). For this reason, we do not consider
query complexity when discussing RS-encoded IOPs. Naturally, after we “compile” an RS-encoded IOP into
a corresponding (regular) IOP, the resulting verifier will make queries to the proof; for details, see Section 9.

4.7.1 Proximity

In an RS-encoded IOP of Proximity (RS-encoded IOPP), soundness must hold only if prover messages
are Reed–Solomon codewords and the witness is a tuple of Reed–Solomon codewords. Formally, a Reed–
Solomon IOPP system for a relationR ⊆ {0, 1}n ×RS [L, ~ρw] is a tuple (P, V, (~ρi)

k
i=1), where P and V are

probabilistic algorithms, that satisfies the properties below. Note that the rational constraints output by the
verifier may now also take the witness as input; the definition of maximum rate is modified accordingly.

Completeness: For every instance-witness pair (x,w) in the relationR, (P (x,w), V w(x)) is a k(n)-round
interactive oracle protocol with accepting probability 1, where the i-th message of P is a codeword of
RS [L, ~ρi], and V outputs a set of rational constraints that are satisfied with respect to the witness and
the prover’s messages with probability 1.

Soundness: For every instance-witness pair (x,w) with w ∈
(
RS [L, ~ρw] \ R|x

)
and unbounded malicious

prover P̃ whose i-th message is a codeword of RS [L, ~ρi], (P̃ , V w(x)) is a k(n)-round interactive
oracle protocol wherein the set of rational constraints output by V are satisfied with respect to the
witness and the prover’s messages with probability at most ε(n).

While the soundness condition does not consider “distance” of candidate witnesses to R|x (as in Sec-
tion 4.5.1), we think of the notion above as an IOPP because soundness holds with respect to a particular
witness provided as an oracle to the verifier. (This is analogous to “exact” PCPPs in [IW14].)

4.7.2 Zero knowledge

The definition of zero knowledge for RS-encoded IOPs (resp., RS-encoded IOPPs) equals that for IOPs (resp.,
IOPPs). This is because the definitions of RS-encoded IOPs and (standard) IOPs differ only in the soundness
condition. Note that while the honest verifiers that we consider never make queries, a malicious verifier
may do so. Indeed, we must allow malicious verifiers to make queries in order to “lift” zero knowledge
guarantees from an RS-encoded IOP to a corresponding (regular) IOP, and thereby achieve the notion of
zero knowledge against a given query bound b stated in Section 4.6. We further note that the structure of
the compiler that performs this lifting (see Section 9) motivates a definition of query bound b that can lead
to more efficient constructions. Namely, since all of the prover messages and witnesses are over the same
domain L, we merely count the number of distinct queries to this common domain, i.e., if a malicious verifier
queries multiple prover messages (or witnesses) at the same position α ∈ L, we consider it a single query.

18

5 Univariate sumcheck

We describe UNIVARIATE SUMCHECK, an RS-encoded IOPP for testing whether a low-degree univariate
polynomial f̂ sums to zero on a given subspace H ⊆ F. This protocol is a univariate analogue of the
multi-variate sumcheck protocol [LFKN92].

If f̂ has degree less than d, then f̂ can be uniquely decomposed into polynomials ĝ, ĥ of degrees less
than |H| and d − |H| (respectively) such that f̂ ≡ ĝ + ZH · ĥ, where ZH is the vanishing polynomial of
H (see Section 4.4). This implies that

∑
a∈H f̂(a) =

∑
a∈H(ĝ(a) + ZH(a) · ĥ(a)) =

∑
a∈H ĝ(a). By

Lemma 5.4 below, this latter expression is equal to β
∑

a∈H a
|H|−1, where β is the coefficient of X |H|−1 in

ĝ(X). Note that
∑

a∈H a
|H|−1 6= 0 since otherwise this would imply that all functions sum to zero on H .

Thus,
∑

a∈H f̂(a) = 0 if and only if β = 0.
This suggests the following RS-encoded IOPP (actually an RS-encoded PCPP). The prover sends g, h

(the evaluations of ĝ, ĥ). The verifier now must check that (a) f̂ ≡ ĝ + ZH · ĥ, and (b) the coefficient of
X |H|−1 in ĝ is zero. For both conditions we use the definition of an RS-encoded IOPP: the verifier outputs a
rational constraint specifying that the polynomial f̂−ZH · ĥ is of degree less than |H|−1, which corresponds
to forcing the coefficient of X |H|−1 to be zero. In the final (non-encoded) IOPP protocol this will correspond
to testing proximity of f̂ − ZH · ĥ to a Reed–Solomon code with rate parameter (|H| − 1)/|L|.

Below we consider the more general case of testing that the sum equals a given µ ∈ F (rather than zero).

Definition 5.1 (sumcheck relation). The relationRSUM is the set of all pairs
(

(F, L,H, ρ, µ) , f
)

where F is
a finite field, L,H are affine subspaces of F, ρ ∈ (0, 1), µ ∈ F, f ∈ RS [L, ρ], and

∑
a∈H f̂(a) = µ.

Theorem 5.2. There exists an RS-encoded IOPP (Protocol 5.3) for the sumcheck relation RSUM with the
following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = 2|L|
randomness r = 0
soundness error ε = 0
prover time tP = O(|L| log |H|) + 3 · FFT(F, |L|)
verifier time tV = O(log2 |H|)
maximum rate ρmax = ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Protocol 5.3 (UNIVARIATE SUMCHECK). Let w = f ∈ RS [L, ρ] be the witness oracle, and let f̂ be the
unique polynomial of degree at most ρ|L| that agrees with f . The RS-encoded IOP protocol (P, V) forRSUM

proceeds as follows.
1. P computes the unique polynomials ĝ and ĥ and unique element β ∈ F such that deg(ĝ) < |H| − 1,

deg(ĥ) < ρ|L| − |H|, and f̂(X) ≡ ĝ(X) + βX |H|−1 + ZH(X)ĥ(X).
2. P sends h := ĥ|L ∈ RS

[
L, ρ− |H||L|

]
to V .

3. V computes ξ :=
∑

a∈H a
|H|−1 (this can be done efficiently as explained below), and accepts if and only

if p ∈ RS
[
L, |H|−1

|L|

]
where p̂(X) := ξ · f̂(X) − µ · X |H|−1 − ξ · ZH(X)ĥ(X). In the formalism of

RS-encoded IOPs (see Section 4.7), this corresponds to the rational constraint (C, σ) := ((N,D), |H|−1
|L|)

where N(X,Z1, Z2) := ξ · Z1 − µ ·X |H|−1 − ξ · ZH(X) · Z2 and D(X) := 1.

Proof. Completeness and soundness rely on the following lemma:

19

Lemma 5.4 ([BC99, Theorem 1], restated). Let H be an affine subspace of F, and let ĝ(x) be a univariate
polynomial over F of degree (strictly) less than |H| − 1. Then∑

a∈H
ĝ(a) = 0.

We provide a self-contained proof of this statement in Appendix A, when F is an extension field of F2.

Completeness. Consider f ∈ RS [L, ρ] with
∑

a∈H f̂(a) = µ. Then, by definition of g, h and Lemma 5.4,

µ =
∑
a∈H

(
ĝ(a) + β · a|H|−1 + ZH(a)ĥ(a)

)
= βξ .

Therefore,

ξ · f̂(X)− µ ·X |H|−1 − ξ · ZH(X)ĥ(X)

≡ ξ ·
(
ĝ(X) + βX |H|−1 + ZH(X)ĥ(X)

)
− µ ·X |H|−1 − ξ · ZH(X)ĥ(X)

≡ ξ · ĝ(X) + ξβX |H|−1 − µ ·X |H|−1 ≡ ξ · ĝ(X) .

Hence p̂(X) ≡ ξ · ĝ(X), and so p ∈ RS[L, |H|−1
|L|].

Soundness. Consider f ∈ RS [L, ρ] with
∑

a∈H f̂(a) = µ′ 6= µ. We show that for any h ∈ RS[L, ρ− |H||L|],
p /∈ RS[L, |H|−1

|L|]. Suppose towards contradiction that p ∈ RS[L, |H|−1
|L|]. Then, by Lemma 5.4, we have that∑

a∈H p̂(a) = 0. But also
∑

a∈H p̂(a) =
∑

a∈H(ξ · f̂(a)− µ · a|H|−1) = ξ(µ′ − µ) 6= 0, since ξ 6= 0; this
is a contradiction.

Efficiency. For computational efficiency of the verifier, we use an additional lemma due to [BC99].

Lemma 5.5 ([BC99], implicit in the proof of Theorem 1). If H is an affine subspace of F, then
∑

a∈H a
|H|−1

equals the linear term of ZH .

The verifier runs in time O(log2 |H|): its work consists of finding the linear term of ZH , which can
be achieved via a divide-and-conquer algorithm, and evaluating ZH at a single point. The prover runs in
time O(|L| log |H|) + 3 · FFT(F, |L|): the polynomial division can be performed by interpolating (one
IFFT) over L to obtain the coefficients of f , running a divide-and-conquer algorithm to obtain the O(log |H|)
coefficients of ZH , and then performing standard symbolic polynomial division. Given the coefficients of ĥ
and ĝ, the evaluations h and g can be computed using two FFTs.

Remark 5.6. The univariate sumcheck relation states that H,L are affine subspaces of F (Definition 5.1).
One can define a similar relation where H,L are multiplicative cosets in F, in which case Theorem 5.2
holds essentially unchanged. The protocol is similar to Protocol 5.3, except that ĝ and ĥ are such that
f̂(X) = X · ĝ(X) + β + ZH(X)ĥ(X). The rational constraint becomes (C, σ) := ((N,D), |H|−1

|L|) where
N(X,Z1, Z2) := |H| · Z1 − µ− |H| · ZH(X) · Z2, D(X) := X . Correctness of this protocol follows from
the fact that, ifH is a multiplicative coset,

∑
α∈H p̂(α) = p̂(0) · |H| for all polynomials p̂ with deg(p̂) < |H|.

20

5.1 Zero knowledge

We describe how to modify Protocol 5.3 to achieve zero knowledge; the modification is an adaptation
of algebraic techniques from [BCGV16; BCFGRS17]. The prover first sends a random Reed–Solomon
codeword q ∈ RS [L, ρ]. The verifier then replies with a random “challenge” element c ∈ F. Finally, the
prover and verifier engage in Protocol 5.3 with respect to the “virtual” oracle p := c · f + r, and new target
value c · µ +

∑
a∈H q̂(a). Since p is an (almost) uniformly random Reed–Solomon codeword, one can

efficiently simulate the sumcheck prover with input p. We obtain the following theorem.

Theorem 5.7. There exists an RS-encoded IOPP (Protocol 5.8) for the sumcheck relation RSUM (Defini-
tion 5.1), which is zero knowledge against unbounded queries, with the following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = 3|L|
randomness r = log |F|
soundness error ε = 1/|F|
prover time tP = O(|L| log |H|) + 4 · FFT(F, |L|)
verifier time tV = O(log2 |H|)
maximum rate ρmax = ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Protocol 5.8. Let f ∈ RS [L, ρ] be the witness oracle. Let (PSUM, VSUM) be the RS-encoded IOP for
univariate sumcheck (Protocol 5.3). The zero knowledge RS-encoded IOP (P, V) for univariate sumcheck
proceeds as follows.
1. P samples q ∈ RS [L, ρ] uniformly at random and sends it to V , along with β :=

∑
a∈H q(a).

2. V samples c ∈ F uniformly at random, and sends it to P .
3. P and V invoke

(
PSUM(x′, c · f + q), V c·f+q

SUM (x′)
)
, where x′ := (F, L,H, ρ, c · µ+ β).

Proof.

Completeness. Follows from the completeness of univariate sumcheck.

Soundness. Suppose that
∑

a∈H f̂(a) = α 6= µ. Let β′ :=
∑

a∈H q
′(a), where q′ is sent by P̃ in the first

round. Then
∑

a∈H(c · f̂ + q′)(a) = c · α+ β′, which is equal to c · µ+ β if and only if c = β−β′
α−µ , which

happens with probability 1/|F| for any fixed β, β′. Hence with probability 1− 1/|F|, (x′, c · µ+ β) /∈ RSUM,
and soundness follows by the soundness of the standard protocol.

Zero knowledge. We describe a simulator S that, given straightline access to a (malicious) verifier Ṽ and
oracle access to a witness oracle f ∈ RS [L, ρ], perfectly simulates Ṽ ’s view in the real protocol.

1. Sample qsim ∈ RS [L, ρ] uniformly at random and start simulating Ṽ .
2. Answer any query to f by querying f , and answer any query to q by querying qsim. Let Qsim ⊆ L be
Ṽ ’s queries to q from the beginning of the simulation until the next step.

3. Send βsim :=
∑

a∈H q̂sim(a) to Ṽ .
4. Receive c̃sim ∈ F from Ṽ .
5. Sample psim ∈ RS [L, ρ] uniformly at random such that, for every q ∈ Qsim, psim(q) = c̃sim ·
f(q) + qsim(q) and

∑
a∈H psim(a) = c̃sim · µ+ βsim; this requires |Qsim| queries to f . (Note that if

|Qsim| > ρ|L| then psim ≡ f̂ + rsim.)
6. Answer any query to f by querying f (as before), and answer any query to q by querying psim−c̃sim ·f .

21

7. Simulate the interaction of PSUM(x′, psim) and Ṽ .

Note that S runs in polynomial time, and the number of queries it makes to f is exactly the number of
queries that Ṽ makes to f and q.

To see that Ṽ ’s view is perfectly simulated, we consider a hybrid experiment in which the “hybrid prover”
reads all of f (like the honest prover in the real world) but can modify messages after they are sent (like the
simulator in the ideal world).

1. Sample q ∈ RS [L, ρ] uniformly at random and start simulating Ṽ .
2. Send q to Ṽ , along with β :=

∑
a∈H q(a). Let Q ⊆ L be Ṽ ’s queries to q from the beginning of the

simulation until the next step.
3. Receive c̃ ∈ F from Ṽ .
4. Sample p ∈ RS [L, ρ] uniformly at random such that, for every q ∈ Q, p(q) = c̃ · f(q) + q(q) and∑

a∈H p(a) = c̃ · µ+ β.
5. Replace q with p− c̃ · f .
6. Simulate the interaction of PSUM(x′, p) and Ṽ .

The distribution of Ṽ ’s view in the real protocol is identical to the distribution of Ṽ ’s view in the above
experiment. In particular, all of Ṽ ’s queries to q after its replacement by p− c · f have the correct distribution.
Moreover, it is not hard to see that Ṽ ’s view in the above experiment and S’s output are identically distributed.
Efficiency. Most of the parameters are seen from the protocol description. We require the prover to send
r ∈ RS [L, ρ] uniformly at random, which can be done by choosing ρ|L| coefficients uniformly at random
and performing one FFT to evaluate that polynomial over L.

5.2 Amortization

Given ` instance-witness pairs for univariate sumcheck
(
(F, L,H, ρi, µi), fi

)
i∈[`]

, we want to test that all of
them are inRSUM. This is achieved with an `-fold increase in complexity, but we want to do this much more
efficiently. This will be crucial in our final protocol. We first state formally the relation we will test.

Definition 5.9 (`-sumcheck relation). The relationR`SUM is the set of all `-tuples
(
(x1, . . . , x`), (f1, . . . , f`)

)
such that for all i = 1, . . . , `, xi = (F, L,H, ρi, µi), and (xi, fi) ∈ RSUM.

The idea is to have the verifier choose z1, . . . , z` ∈ F uniformly at random and send them to the prover,
and then to test that

∑
a∈H

∑`
i=1 zifi(a) =

∑`
i=1 ziµi. Completeness is easy to see, and soundness follows

from properties of random linear combinations. The verifier runtime is increased only by an additive ` term,
which corresponds to sending z1, . . . , z` and querying each fi in one position. Crucially, the proof length is
unchanged, and the prover still only performs three FFTs. We obtain the following lemma.

Lemma 5.10. There is an RS-encoded IOPP for the univariate `-sumcheck relation (Definition 5.9) with the
following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = 2|L|
randomness r = ` log |F|
soundness error ε = 1/|F|
prover time tP = O(|L| log |H|+ ` · |L|) + 3 · FFT(F, |L|)
verifier time tV = O(log2 |H|+ `)
maximum rate ρmax = ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

22

for any instance ~x = (x1, . . . , x`) =
(

(F, L,H, ρi, µi)
)`
i=1

, where ρ := maxi ρi.

Protocol 5.11. Let ρ := maxi ρi, and let f1, . . . , f` ∈ RS [L, ρ] be the witness oracles. Let (PSUM, VSUM) be
the standard RS-encoded IOP for univariate sumcheck (Protocol 5.3). The RS-encoded IOP protocol for
univariate `-sumcheck proceeds as follows.
1. V chooses z1, . . . , z` ∈ F uniformly at random, and sends them to P .
2. P and V invoke

(
PSUM(x∗,w∗), V w

∗
SUM(x∗)

)
, where x∗ := (F, L,H, ρ,

∑`
i=1 ziµi), w∗ :=

∑`
i=1 zifi.

Proof.

Completeness. Suppose that, for all i ∈ [`], (xi, fi) ∈ RSUM. Then for any choice of z1, . . . , z` ∈ F,∑
a∈H

∑`
i=1 zifi(a) =

∑`
i=1 ziµi, so (x∗,w∗) ∈ RSUM.

Soundness. Suppose that, for some i ∈ [`], (xi, fi) /∈ RSUM. Then since z1, . . . , z` ∈ F are uniformly
random,

∑
a∈H

∑`
i=1 zifi(a) =

∑`
i=1 ziµi (i.e., (x∗,w∗) ∈ RSUM) with probability at most 1/|F|.

Efficiency. The efficiency of the system corresponds to a single invocation of univariate sumcheck. The
prover, in addition to the cost of running PSUM, pays O(` · |L|) to construct w∗. The verifier pays only an
additive O(`) to pick z1, . . . , z` and construct x∗.

23

6 Univariate lincheck

We describe UNIVARIATE LINCHECK, an RS-encoded IOPP for verifying linear relations on Reed–Solomon
codewords. Given H1, H2 ⊆ F, f1, f2 ∈ RS [L, ρ], and a coefficient matrix M ∈ FH1×H2 , we want to check
that f̂1|H1 = M · f̂2|H2 , where · is standard matrix multiplication over F. The next definition captures this.

Definition 6.1 (lincheck relation). The relationRLIN is the set of all pairs
(

(F, L,H1, H2, ρ,M) , (f1, f2)
)

where F is a finite field, L,H1, H2 are affine subspaces of F, ρ ∈ (0, 1), f1, f2 ∈ RS [L, ρ], M ∈ FH1×H2 ,
and ∀ a ∈ H1 f̂1(a) =

∑
b∈H2

Ma,b · f̂2(b).

To build intuition, consider that, given vectors x ∈ Fm, y ∈ Fn and a matrix M ∈ Fm×n, a simple
probabilistic test for the claim “x = My” is to check that 〈r, x−My〉 = 0 for a random r ∈ Fm. Indeed, if
x 6= My then Prr[〈r, x−My〉 = 0] = 1/|F|. However, this approach would require the verifier to sample
m random field elements, and send these to the prover. A straightforward modification (used also, e.g., in
[BFLS91, §5.2]) requires only a single random field element and incurs only a modest increase in soundness
error. Namely, letting h(X) := 〈 ~X, x −My〉 where ~X := (1, X, . . . ,Xm−1), if x 6= My then h(X) is a
non-zero polynomial of degree less than m over F, and thus Prα∈F[h(α) = 0] ≤ m/|F|. The verifier now
merely has to sample and send α ∈ F, and the prover must then prove the claim “h(α) = 0” to the verifier.
This latter claim is in fact a claim about sums: one can rewrite h(X) as 〈 ~X, x〉 − 〈MT ~X, y〉 and, expanding
the inner products, we obtain the two-sum expression h(α) =

∑m
i=1 α

i−1xi −
∑n

j=1(
∑m

i=1Mi,jα
i−1)yj .

We now return to the RS-encoded version of the problem (defined above), and explain how the prover
can handle the claim “h(α) = 0” via the univariate sumcheck protocol.

We can think of f̂1 and f̂2 as the low-degree extensions of some x ∈ FH1 and y ∈ FH2 with m := |H1|
and n := |H2|. The verifier samples and sends α ∈ F to the prover; the prover and verifier each compute the
low-degree extension p̂(1)

α of ~α := (1, α, . . . , αm−1), and the low-degree extension p̂(2)
α of MT ~α. We can

then write h(α) =
∑

a∈H1
p̂

(1)
α (a)f̂1(a)−

∑
b∈H2

p̂
(2)
α (b)f̂2(b). In sum, we reduced the claim “h(α) = 0” to

a sumcheck instance of the polynomial p̂(1)
α (·)f̂1(·) over H1 and one of the polynomial p̂(2)

α (·)f̂2(·) over H2.
While h(α) equals zero in the honest case, the value of each summation may reveal information.

Therefore, to ensure zero knowledge, we combine these two summations into a single summation over the
affine space H1 �H2, defined to be the smallest affine space that contains both H1 and H2 (and note that if
H1, H2 are linear subspaces then H1 �H2 = H1 +H2). Since the precise choice of H1, H2 is not important,
for efficiency we will typically choose H1 ⊆ H2 or H2 ⊆ H1 in order to minimize |H1 �H2|.

Theorem 6.2. Protocol 6.3 below is an RS-encoded IOPP forRLIN (Definition 6.1) with parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = 2|L|
randomness r = log |F|
soundness error ε = |H1|/|F|
prover time tP = O(‖M‖+ |L| log s) + 2 · FFT(F, s) + 2 · FFT(F, |L|) + t(PSUM;F, |L|, s)
verifier time tV = O(‖M‖+ s) + t(VSUM;F, |L|, s)
maximum rate ρmax = ρ+ s/|L|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where s := |H1 �H2| and ‖M‖ is the number of nonzero entries of M .

Protocol 6.3 (UNIVARIATE LINCHECK). Denote by (PSUM, VSUM) the RS-encoded IOPP for univariate
sumcheck (Protocol 5.3). The RS-encoded IOPP (P, V) for univariate lincheck works as follows.

24

1. P and V agree in advance on an ordering γ : H1 → {0, . . . , |H1| − 1} of H1.
2. V draws a uniformly random α ∈ F and sends it to P .

The element α and the witness codewords f1, f2 ∈ RS [L, ρ] jointly define several polynomials:
• p̂(1)

α is the unique polynomial of degree less than s s.t. p̂(1)
α (a) = αγ(a) for all a ∈ H1, and p̂(1)

α (b) = 0
for all b ∈ H1 �H2 \H1;
• p̂(2)

α is the unique polynomial of degree less than s s.t. p̂(2)
α (b) =

∑
a∈H1

Ma,b · αγ(a) for all b ∈ H2,

and p̂(2)
α (a) = 0 for all a ∈ H1 �H2 \H2;

• q̂α(X) := f̂1(X)p̂
(1)
α (X)− f̂2(X)p̂

(2)
α (X).

Observe that qα = q̂α|L ∈ RS [L, ρ′] where ρ′ := ρ+ s
|L| .

3. P and V run (PSUM(x′, qα), V qα
SUM(x′)) where x′ := (F, L,H1 �H2, ρ

′, µ = 0). Note that V can use its
oracles f1, f2 to simulate access to the oracle qα.

4. V accepts if and only if VSUM accepts.

Proof. Completeness and soundness rely on the fact that, by rearranging terms, for every α ∈ F it holds that:

h(α) :=
∑

b∈H1�H2

q̂α(b) =
∑
a∈H1

f̂1(a)αγ(a) −
∑
b∈H2

∑
a∈H1

Ma,bf̂2(b)αγ(a)

=
∑
a∈H1

f̂1(a)−
∑
b∈H2

Ma,b · f̂2(b)

 · αγ(a) .

Completeness. Suppose that, for all a ∈ H1, f̂1(a) =
∑

b∈H2
Ma,b · f̂2(b). For every α ∈ F, h(α) = 0

and thus
∑

b∈H2
q̂α(b) = 0. Completeness of the univariate sumcheck implies that VSUM always accepts.

Soundness. Suppose that there exists a ∈ H1 such that f̂1(a) 6=
∑

b∈H2
Ma,b · f̂2(b). This implies that h

is a nonzero polynomial of degree less than |H1|, and so Prα∈F[h(α) = 0] < |H1|/|F|. If h(α) 6= 0, then∑
b∈H2

q̂α(b) 6= 0 and in this case VSUM rejects.

Efficiency. Both parties run the univariate sumcheck as a subroutine. In addition, the prover needs to
compute qα = q̂α|L (the evaluation of q̂α over L), for example as follows: (i) evaluate p̂(1)

α over L in time
O(s)+FFT(F, s)+FFT(F, |L|); (ii) evaluate p̂(2)

α over L in timeO(‖M‖+s)+FFT(F, s)+FFT(F, |L|);
(iii) compute qα from these components in time O(|L|). The verifier only needs to access qα at a single point
r ∈ L, which can be done in time O(‖M‖+ s).

25

7 Univariate rowcheck

We describe UNIVARIATE ROWCHECK, an RS-encoded IOPP for simultaneously testing satisfaction of a
given arithmetic constraint on a large number of inputs. The next definition captures this.

Definition 7.1 (rowcheck relation). The relationRROW is the set of all pairs
(

(F, L,H, ρ,w, c) , (f1, . . . , fw)
)

where F is a finite field, L,H are affine subspaces of F, ρ ∈ (0, 1), w ∈ N, c : Fw → F is an arithmetic
circuit, f1, . . . , fw ∈ RS [L, ρ], and ∀ a ∈ H c(f̂1(a), . . . , f̂w(a)) = 0.

Standard techniques for testing membership in the vanishing subcode of the Reed–Solomon code directly
imply a 1-message RS-encoded IOPP for the above problem [BS08]. Namely, the system of equations
{c(f̂1(a), . . . , f̂w(a)) = 0}a∈H is equivalent to the statement “there exists g ∈ RS[L, ρdeg(c)− |H||L|] such

that ĝ(X) ·
∏
α∈H(X − α) ≡ c(f̂1(X), . . . , f̂w(X))”. Therefore, the prover can send g to the verifier, who

can probabilistically check the identity at a random point of L, with a soundness error of ρdeg(c).
We do not take the above approach, and instead probabilistically reduce the system of equations to a

sumcheck instance, via a standard method [BFLS91, §5.2]. The reason is that, in our protocol for R1CS (see
Section 8) we already “pay” for one sumcheck protocol execution inside the lincheck protocol (see Section 6),
and additional sumcheck instances come essentially for free. We now explain the reduction.

The polynomial h(X) :=
∑

a∈H c(f̂1(a), . . . , f̂w(a))Xγ(a) (where γ is an ordering of H starting at
zero) is a polynomial of degree less than |H| that is the zero polynomial if and only if all equations are
satisfied. In particular, if even one equation is not satisfied, h(α) 6= 0 with probability at least 1− |H|/|F|
over a random choice of α ∈ F. Also note that h(α) is of the form

∑
a∈H gα(a) where H is a subspace and,

given f1, . . . , fw, it is easy to evaluate gα at any point in L. This suggests a protocol: the verifier sends a
random α ∈ F to the prover, and then the two run univariate sumcheck on the claim “

∑
a∈H gα(a) = 0”.

One issue, however, is that gα is not a low-degree polynomial.
We resolve this as in [BFLS91, §5.2] by summing a different function: q̂α(X) := c(f̂1(X), . . . , f̂w(X)) ·

pα(X), where pα is the unique polynomial of degree less than |H| such that pα(a) = αγ(a) for all a ∈ H;
note that q̂α has degree less than ρ|L| · deg(c) + |H|. Clearly q̂α 6≡ gα (in particular, q̂α is low-degree) but it
is easy to see that q̂α agrees with gα on all points in H . Thus h(α) =

∑
a∈H q̂α(a) and, since q̂α is also easy

to evaluate, we can run univariate sumcheck on this sum instead.

Theorem 7.2. Protocol 7.3 below is an RS-encoded IOPP forRROW (Definition 7.1) with parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = 2|L|
randomness r = log |F|
soundness error ε = |H|/|F|
prover time tP = O(|L| · |c|) + FFT(F, |H|) + FFT(F, |L|) + t(PSUM;F, |L|, |H|)
verifier time tV = O(|H|+ |c|) + t(VSUM;F, |L|, |H|)
maximum rate ρmax = ρ deg(c) + |H|/|L|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Protocol 7.3 (UNIVARIATE ROWCHECK). Denote by (PSUM, VSUM) the RS-encoded IOPP for univariate
sumcheck (Protocol 5.3). The RS-encoded IOPP (P, V) for univariate rowcheck works as follows.
1. P and V agree in advance on an ordering γ : H → {0, . . . , |H| − 1} of H .
2. V draws a uniformly random α ∈ F and sends it to P .

The element α and witness codewords f1, . . . , fw ∈ RS [L, ρ] define two polynomials:
• p̂α is the unique polynomial of degree less than |H| s.t. p̂α(a) = αγ(a) for all a ∈ H;

26

• q̂α is the polynomial q̂α(X) := c
(
f̂1(X), . . . , f̂w(X)

)
· p̂α(X).

Observe that qα := q̂α|L ∈ RS [L, ρ′] where ρ′ := ρdeg(c) + |H|
|L| .

3. P and V run (PSUM(x′, qα), V qα
SUM(x′)) where x′ := (F, L,H, ρ′, µ = 0). Note that V can use its oracles

f1, . . . , fw to simulate access to the oracle qα.
4. V accepts if and only if VSUM accepts.

Proof. Completeness and soundness rely on the fact that for every α ∈ F it holds that:

h(α) :=
∑
a∈H

q̂α(a) =
∑
a∈H

c(f̂0(a), . . . , f̂w(a)) · p̂α(a) =
∑
a∈H

c(f̂0(a), . . . , f̂w(a)) · αγ(a) .

Completeness. Suppose that, for all a ∈ H , c(f̂0(a), . . . , f̂w(a)) = 0. For every α ∈ F, h(α) = 0 and thus∑
a∈H q̂α(a) = 0. Completeness of the univariate sumcheck implies that VSUM always accepts.

Soundness. Suppose there exists a ∈ H such that c(f̂0(a), . . . , f̂w(a)) 6= 0. This implies that h is a nonzero
polynomial of degree less than |H|, and so Prα←F

[∑
a∈H q̂α(a) = 0

]
= Prα←F [h(α) = 0] < |H|/|F|. If

h(α) 6= 0, then
∑

a∈H q̂α(a) 6= 0 and in this case VSUM rejects with probability 1.

Efficiency. Both parties run the univariate sumcheck as a subroutine. In addition, the prover needs to
compute qα = q̂α|L (the evaluation of q̂α over L), for example as follows: (i) compute pα = p̂α|L (the
evaluation of p̂α over L) in time O(|H|) + FFT(F, |H|) + FFT(F, |L|); (ii) follow the definition of q̂α to
compute qα from pα, the arithmetic circuit c, and witnesses f1, . . . , fw, in time O(|L| · |c|). The verifier only
needs to access qα at a single point r ∈ L, which can be done by accessing each of f1, . . . , fw at r, evaluating
c on the result, and multiplying this latter with p̂α(r), all of which takes time O(|H|+ |c|).

27

8 An RS-encoded IOP for rank-one constraint satisfaction

We describe an RS-encoded IOP for rank-one constraint satisfaction (R1CS). An R1CS instance consists of
matrices A,B,C ∈ Fm×(n+1) and explicit input v ∈ Fk, and it is satisfiable if there exists w ∈ Fn−k such
that Az ◦Bz = Cz where z = (1, v, w) ∈ Fn+1 and ◦ denotes entry-wise (Hadamard) product.

Definition 8.1 (R1CS relation). The relation RR1CS is the set of all pairs
(
(F, k, n,m,A,B,C, v), w

)
where F is a finite field, k, n,m ∈ N denote the number of inputs, variables and constraints respectively
(k ≤ n), A,B,C are m × (1 + n) matrices over F, v ∈ Fk, and w ∈ Fn−k, such that for all i ∈ [m](∑n

j=0Ai,jzj
)
·
(∑n

j=0Bi,jzj
)

=
(∑n

j=0Ci,jzj
)
, where z := (1, v, w) ∈ Fn+1.

We describe how to obtain an RS-encoded IOP for R1CS by using RS-encoded IOPPs for rowcheck and
lincheck (which we obtained in Sections 6 and 7 respectively).

Let H1, H2 be subspaces of F such that |H1| = m and |H2| = n+ 1, and view A,B,C as matrices in
FH1×H2 . The prover first sends four oracles: fz that (purportedly) is the low-degree extension of z : H2 → F;
and fAz, fBz, fCz that (purportedly) are the low-degree extensions of Az,Bz,Cz : H1 → F. The verifier
uses the lincheck protocol to test that, indeed, fAz is a low-degree extension of Az, and likewise for fBz, fCz .
Then the verifier uses the rowcheck protocol to test that fAz(a) · fBz(a) = fCz(a) for all a ∈ H1.

The above protocol almost works, with the one problem being that the prover could cheat by sending
fz that is inconsistent with the explicit input v. We remedy this by (roughly) having the prover send the
low-degree extension fw of w instead of fz . The verifier only needs to query one point of fz , which it can do
by making one query to fw and evaluating the low-degree extension of v at one point.

The above protocol uses three linchecks and one rowcheck, each of which is a probabilistic reduction
to sumcheck; this means running the sumcheck protocol four times (in parallel). The sumcheck protocol is
relatively expensive, so we use the optimization of bundling these four sumcheck instances (see Section 5.2).
We also save computation by choosing the same challenge α for each of the linchecks and the rowcheck.

Below we provide details about the foregoing intuition. After that we provide additional subsections that
explain how to modify the “basic” protocol to achieve additional goals: in Section 8.1 we describe how to
achieve zero knowledge; in Section 8.2 we describe how to amortize the cost of verifying the satisfaction of
multiple R1CS instances (sharing the same matrices) at the same time.

Theorem 8.2. Protocol 8.3 below is an RS-encoded IOP forRR1CS (Definition 8.1) with parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 2
proof length p = 6|L|
randomness r = 8 log |F|
soundness error ε = m+1

|F|
prover time tP = O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+ 7 · FFT(F,max(n,m)) + 10 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m)

maximum rate ρmax = 2max(m,n+1)+m
|L|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for any instance x = (F, k, n,m,A,B,C, v) and any affine subspace L of F.

Protocol 8.3. The prover P and verifier V both receive as input an R1CS instance (F, k, n,m,A,B,C, v),
and the prover P also receives as input a corresponding R1CS witness w; as above, z := (1, v, w) ∈ Fn+1.

Below, (PLIN, VLIN) denotes the RS-encoded IOPP for univariate lincheck (Protocol 6.3) and (PROW, VROW)
the RS-encoded IOPP for univariate rowcheck (Protocol 7.3).

28

Let H1, H2 be two affine subspaces of F with |H1| = m and |H2| = n + 1 such that H1 ⊆ H2 or
H2 ⊆ H1; this implies that H1 �H2 = H1 ∪H2. (We assume without loss of generality that m, n+ 1, and
k + 1 are powers of char(F).) Let γ : H1 ∪H2 → {0, . . . , |H1 ∪H2| − 1} be an ordering on H1 ∪H2 such
that γ(Hi) = {0, . . . , |Hi| − 1} for i ∈ {1, 2}. We view A,B,C as matrices in FH1×H2 via this ordering.

1. Compute LDE of the input. Letting H≤k2 := {b ∈ H2 : 0 ≤ γ(b) ≤ k}, P and V construct f̂(1,v)(X),
the unique polynomial of degree less than |H≤k2 | = k + 1 such that, for all b ∈ H≤k2 ,

f̂(1,v)(b) =

{
1 if γ(b) = 0,
vi if γ(b) = i and i ∈ {1, . . . , k}.

2. Witness and auxiliary oracles. P sends to V the oracle codewords fw ∈ RS[L, n−k|L|] and fAz, fBz, fCz ∈
RS[L, m|L|] defined as follows.

• fw := f̂w|L where f̂w is the unique polynomial of degree less than n− k such that

∀ b ∈ H2 with k < γ(b) ≤ n, f̂w(b) =
wγ(b)−k − f̂(1,v)(b)

Z
H≤k2

(b)
.

• fAz := f̂Az|L where f̂Az is the unique polynomial of degree less than m such that, for all a ∈ H1,
f̂Az(a) =

∑
b∈H2

Aa,b · zγ(b) = (Az)a. The other codewords, fBz and fCz , are defined similarly.
The above implicitly define the “virtual oracle” fz := f̂z|L where f̂z(X) := f̂w(X) · Z

H≤k2
(X) +

f̂(1,v)(X). Note that f̂z(b) = zγ(b) for all b ∈ H2, and fz ∈ RS[L, n+1
|L|].

3. Run subprotocols. Letting ρ := max(m,n+ 1)/|L|, P and V run the following in parallel:
(a) (PLIN(xALIN, (fAz, fz)), V

fAz ,fz
LIN (xALIN)) with xALIN := (F, L,H1, H2, ρ, A).

(b) (PLIN(xBLIN, (fBz, fz)), V
fBz ,fz
LIN (xBLIN)) with xBLIN := (F, L,H1, H2, ρ, B).

(c) (PLIN(xCLIN, (fCz, fz)), V
fCz ,fz
LIN (xCLIN)) with xCLIN := (F, L,H1, H2, ρ, C).

(d) (PROW(xROW, (fAz, fBz, fCz)), V
(fAz ,fBz ,fCz)
ROW (xROW)) with xROW := (F, L,H1, ρ

′, 3, c), ρ′ := m
|L| ,

c(X,Y, Z) := XY − Z.
4. V accepts if and only if all of the above subverifiers accept.

Proof.

Completeness. Suppose that w ∈ Fn−k is a valid witness for the instance (F, k, n,m,A,B,C, v), and
define z := (1, v, w) ∈ Fn+1. By construction, f̂z is a low-degree extension of z over H2 (i.e., f̂z(b) = zγ(b)

for all b ∈ H2). Therefore, for all a ∈ H1 it holds that f̂A(a) =
∑

b∈H2
Aa,bzγ(b) =

∑
b∈H2

Aa,bf̂z(b), and
so Step 3a (lincheck on (fAz, fz)) always accepts. By the same argument, Steps 3b and 3c always accept.
Finally, the fact that w is a valid witness implies that, for all a ∈ H1, it holds that f̂A(a) · f̂B(a)− f̂C(a) =
(
∑

b∈H2
Aa,bzγ(b)) · (

∑n
j=0Ba,bzγ(b))− (

∑n
j=0Ca,bzγ(b)) = 0, which means that Step 3d always accepts.

Soundness. Suppose that the instance (F, k, n,m,A,B,C, v) is not satisfiable, i.e., for all w ∈ Fn−k,
letting z := (1, v, w), there exists i ∈ [m] such that (

∑n
j=0Ai,jzj) · (

∑n
j=0Bi,jzj) 6= (

∑n
j=0Ci,jzj). Let

the oracles sent by a malicious prover be f ′w, f
′
A, f

′
B, f

′
C , and let f ′z := f̂ ′z|H where f̂ ′z(X) := f̂ ′w(X) ·

Z
H≤k2

(X) + f̂(1,v)(X). We distinguish between multiple cases.

(i) There exists a ∈ H1 for which f̂ ′A(a) 6=
∑

b∈H2
Aa,bf̂

′
z(b). Then, by soundness of the lincheck

protocol, Step 3a accepts with probability |H1|
|F| .

29

(ii) If analogous statements hold for f ′B or f ′C , then analogous conclusions hold for Step 3b or Step 3c.
(iii) For all a ∈ H1 it holds that f̂ ′A(a) =

∑
b∈H2

Aa,bf̂
′
z(b), and likewise for f̂ ′B, f̂

′
C . Then by assumption

there exists a ∈ H1 such that c(f ′A(a), f ′B(a), f ′C(a)) = f ′A(a) · f ′B(a) − f ′C(a) 6= 0. We conclude
that, by soundness of the rowcheck protocol, Step 3d accepts with probability |H1|

|F| .
The soundness error is given by maximizing over the above cases.

Optimization: one sumcheck suffices. We can view both the rowcheck and lincheck protocols as proba-
bilistic interactive reductions to sumcheck. In particular:
• Given an instance-witness pair

(
(F, L,H, ρ,w, c) , (f1, . . . , fw)

)
, the rowcheck protocol outputs an

instance-witness pair
(
(F, L,H, ρdeg(c) + |H|

|L| , 0), qα
)

for sumcheck.
• Given an instance-witness pair

(
(F, L,H1, H2, ρ,M) , (f1, f2)

)
, the lincheck protocol outputs an instance-

witness pair
(
(F, L,H1 ∪H2, ρ+ |H1∪H2|

|L| , 0), qα
)

for sumcheck.
We can save costs across these four sumcheck instances by via one execution of our amortized sumcheck
protocol (see Lemma 5.10 in Section 5.2), which yields the parameters in the theorem statement. Note that
the amortized sumcheck protocol relies on all summations being taken over the same space; the reductions
yield sumchecks over H1 and H1 ∪H2. If H2 ⊆ H1, then these are already the same; if H1 (H2, then we
can define p̂α in the rowcheck protocol so that it is zero on H2 \H1, and sum over H1 ∪H2.

Optimization: re-use α. The rowcheck and lincheck protocols instruct the verifier to sample a uniformly
random α ∈ F and send it to the prover. Naively, the verifier would choose α1, . . . , α4 ∈ F uniformly and
independently, and send (α1, . . . , α4) to the prover. However, this means that the verifier must compute p̂αi
for each i. We observe that choosing α1 = . . . = α4 ∈ F uniformly at random does not affect our soundness
analysis, which means that the verifier only has to compute p̂α for one α. This will become more important
later in Section 8.2 when we consider amortizing multiple instances.

Efficiency. The prover computes Az, Bz, Cz and their low-degree extensions, along with the low-degree
extensions of w and z, in time O(‖A‖+ ‖B‖+ ‖C‖+ n+m) + 5 · FFT(F, |L|). The verifier evaluates fz
at a single point in L, which costs O(n+m). Summing over the costs of the subprotocols and amortizing
the sumcheck cost across the four instances yields the stated expressions.

8.1 Zero knowledge

We describe how to modify Protocol 8.3 to achieve zero knowledge against bounded-query malicious verifiers;
the modification is an adaptation of algebraic techniques from [BCGV16; BCFGRS17]. Essentially, instead
of providing the unique low-degree extensions of w,Az,Bz,Cz, the prover provides randomized low-degree
extensions that are over a domain L ⊆ F chosen such that (H1 ∪H2) ∩ L = ∅ (in particular, L will be affine
so that 0F /∈ L). This ensures that a bounded number of queries to the witness and auxiliary oracles does not
reveal any information about w. Then, both prover and verifier use our zero knowledge sumcheck protocol
(see Protocol 5.8 in Section 5.1) instead of the “plain” sumcheck protocol used above.

Theorem 8.4. For any b : N→ N, Protocol 8.5 below is an RS-encoded IOP forRR1CS (Definition 8.1) that

30

is zero knowledge against query bound b with parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 2
proof length p = 7|L|
randomness r = 8 log |F|
soundness error ε = m+1

|F|
prover time tP = O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+ 7 · FFT(F,max(n,m)) + 11 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m)

maximum rate ρmax =
2max(m,n+1)+m+b

|L|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for any instance x = (F, k, n,m,A,B,C, v).

Protocol 8.5 (ZK variant of Protocol 8.3). We use the same notation as in Protocol 8.3, with the only
additional constraint that (H1 ∪H2) ∩ L = ∅.

1. Compute LDE of the input. Same as Step 1 in Protocol 8.3.

2. Witness and auxiliary oracles. P sends to V the oracle codewords fw ∈ RS[L, n−k+b
|L|] and fAz, fBz, fCz ∈

RS[L, m+b
|L|] defined as follows.

• fw := f̄w|L where f̄w is a random polynomial of degree less than n− k + b such that

∀ b ∈ H2 with k < γ(b) ≤ n, f̄w(b) =
wγ(b)−k − f̂(1,v)(b)

Z
H≤k2

(b)
.

• fAz := f̄Az|L where f̄Az is a random polynomial of degree less than m+ b such that, for all a ∈ H1,
f̄Az(a) =

∑
b∈H2

Aa,b · zγ(b) = (Az)a. The other codewords, fBz and fCz , are defined similarly.
As before, the above implicitly define the “virtual oracle” fz := f̂z|L where f̂z(X) := f̂w(X) · Z

H≤k2
(X)+

f̂(1,v)(X). Again f̂z(b) = zγ(b) for all b ∈ H2, but now fz ∈ RS[L, n+1+b
|L|] since f̄w has higher degree.

3. Run subprotocols. The same as Step 3 in Protocol 8.3, except that P and V run the (amortized) zero
knowledge sumcheck protocol (see Protocol 5.8 in Section 5.1).

4. V accepts if and only if all of the above subverifiers accept.

Proof. Completeness and soundness follow almost directly from the proof of Theorem 8.2, so we do not
discuss them. Before discussing zero knowledge, we note that the round complexity can be reduced to
2 by running the first round of the zero knowledge sumcheck protocol (Protocol 5.8) in parallel with the
first round of Protocol 8.5. We now argue the zero knowledge guarantee (see Definition 4.4): we need to
construct a probabilistic simulator S that, given as input a satisfiable R1CS instance (F, k, n,m,A,B,C, v)
and straightline access to a b-query malicious verifier Ṽ , outputs a view that is identically distributed as Ṽ ’s
view when interacting with an honest prover.

At a high level, S simulates the oracles fw, fAz, fBz, fCz by answering each query with uniformly random
field elements. Given these, it runs the simulator for the amortized zero knowledge sumcheck, answering
the subsimulator’s queries to the virtual oracle by “querying” the appropriate locations of fw, fAz, fBz, fCz .
More precisely, on input x, the simulator operates as follows.
1. Prepare a table T for (fAz, fBz, fCz, fw) which is initially empty. Whenever we “query” an oracle fx at

a point a ∈ L, where x is one of Az,Bz,Cz, w, if (a, bAz, bBz, bCz, bw) ∈ T then output bx; otherwise,
choose bAz, bBz, bCz, bw ∈ F uniformly at random, add (a, bAz, bBz, bCz, bw) to T and output bx.

31

2. “Send” the oracles fAz, fBz, fCz, fw to Ṽ . In parallel, “send” the first prover message r in the univariate
ZK sumcheck protocol (Protocol 5.8), and use the simulator for that protocol to answer queries to r.

3. Run the prover for each subprotocol in Step 3, except that we do not explicitly construct any witness (we
think of them as arithmetic circuits with oracle gates), and we do not run the sumcheck protocol.

4. Pass the instances constructed in the previous step to the simulator for the zero knowledge 4-sumcheck
protocol. When the subsimulator queries one of the oracles, evaluate the corresponding circuit and use T
to look up the necessary values of fAz, fBz, fCz, fw.

The subsimulator makes the same number of queries to the “amortized” virtual oracle as the verifier makes
to the sumcheck proof oracle; in particular, this is at most b. By inspecting the virtual oracle, we see that
the answer to a query a ∈ F depends only on fAz(a), fBz(a), fCz(a), fw(a) (and fv(a), which is known).
Hence |T | ≤ b. It remains to show that T is consistent with the real view.

We look at fw; the other cases are essentially identical. We can write f̄w as

f̄w := f̂w(X) + ZH>k
2

(X) ·R(X) ,

where R(X) is a uniformly random polynomial of degree less than b and H>k
2 := H2 \H≤k2 . Since ZH>k

2

is nonzero outside of H>k
2 , any vector

(
f̄w(a)

)
a∈Q is distributed uniformly in FQ for any Q ⊆ F such that

Q ∩H2 = ∅ and |Q| ≤ b. In particular, this holds for the set of query positions asked by the subsimulator,
even if they are chosen adaptively based on the answers to previous queries.

8.2 Amortization

We describe efficiency savings that can be made when one considers multiple R1CS instances with the same
constraints (but different inputs). More precisely, we seek an RS-encoded IOP for the following relation:

Definition 8.6 (`-wise R1CS relation). The relationR`R1CS is the set of all pairs
(
(x1, . . . , x`), (w1, . . . , w`)

)
such that, for every i ∈ {1, . . . , `}, xi = (F, k, n,m,A,B,C, v(i)) and (xi, wi) ∈ RR1CS.

We have already obtained an RS-encoded IOP forRR1CS (Protocol 8.3), so we can obtain an RS-encoded
IOP for R`R1CS by running this IOP in parallel ` times. Note, however, that the running time of both the
prover and the verifier increases by a multiplicative factor of `.

We modify this strategy to ensure that the verifier’s running time increases by only an additive factor in `,
for a total of O(‖A‖+ ‖B‖+ ‖C‖+ n+m+ `). This is significant because, as ` increases, the amortized
per-instance cost becomes constant. The modification follows from an observation used in the proof of
Theorem 8.2: we choose the same random α ∈ F for all rowcheck and lincheck instances that result from the
` parallel executions, and then amortize all of the resulting sumcheck instances (see Section 5.2). The verifier
then only has to evaluate the auxiliary lincheck and rowcheck polynomials once.

Corollary 8.7. For every ` ∈ N there exists an RS-encoded IOP forR`R1CS (Definition 8.6) with parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 2
proof length p = ` · 6|L|
randomness r = (`+ 1) · log |F|
soundness error ε = m+1

|F|
prover time tP = ` ·O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+ 7 · FFT(F,max(n,m)) + 10 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m+ `)

maximum rate ρmax = 2max(m,n+1)+m
|L|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

32

9 From RS-encoded provers to arbitrary provers

In prior sections we have designed IOP protocols based on the simplifying assumption that a malicious prover
is restricted to sending Reed–Solomon codewords of prescribed rates. In this section we describe how to
transform any IOP protocol that is sound under this assumption into one that is sound against all provers.

This by itself should not be surprising: the probabilistic checking literature is rich with such transforma-
tions, which are enabled by the tools of low-degree testing and self-correction. However, our goal here is to
obtain a transformation that is particularly efficient for the setting of this paper, as we now explain.

There is a straightforward approach to using low-degree testing, which we now spell out since it serves
as a comparison point. Suppose that we have a low-degree test for RS [L, ρ] with soundness error εLDT

and proximity parameter δLDT, and we wish to transform a given RS-encoded IOP (P, V, (~ρi)
k
i=1) into a

corresponding IOP that is sound against all provers. Let us assume for simplicity that ~ρ1 = · · · = ~ρk = (ρ)
for some ρ ∈ (0, 1], that is, each prover message consists of one codeword in RS [L, ρ].

The naive approach is to individually run the low-degree test on each prover message. If all tests pass
with probability greater than εLDT, then every message π̃i is δLDT-close to some codeword πi ∈ RS [L, ρ]. If
the verifier makes q uniform queries, the probability that any one of these queries does not “see” (πi)

k
i=1 is at

most q · δLDT. Conditioned on the verifier “seeing” (πi)
k
i=1, the verifier’s acceptance probability is exactly

the same as in the RS-encoded protocol.
While the foregoing approach “works”, it has two inefficiencies. First, it runs one low-degree test for each

purported codeword, which is undesirable because low-degree tests are expensive. Second, the soundness
error of the RS-encoded IOP typically decreases by increasing q, which creates a trade-off with the soundness
error q · δLDT of the transformation.

We address the first problem by testing a random linear combination of the πi, following an idea
introduced in [RVW13] (in the context of interactive proofs of proximity) and applied in [AHIV17] (in the
context of interactive PCPs of proximity). The verifier samples a1, . . . , ak ∈ F uniformly and independently
at random, and sends these to the prover; the prover and verifier then engage in a low-degree test for the
“virtual oracle” π̃ :=

∑k
i=1 aiπ̃i. If π̃i ∈ RS [L, ρ] for all i, then π̃ ∈ RS [L, ρ]. If instead π̃i is δ-far from

RS [L, ρ] for some i (and δ small enough), then one can show that π̃ is also δ-far with high probability. Thus,
a single low-degree test is run, regardless of the number of oracles k.

We address the second problem by using an observation due to [BBHR18a] about testing rational
constraints (see Section 4.7). In the encoded protocols in this work (and in [BBHR18a]), soundness entails
testing both that the prover’s messages are low-degree and that they satisfy some existentially-quantified
polynomial equations; for example, “message f is low-degree and there is a low-degree g such that f ≡ g·ZH”.
The standard way to test this property is for the prover to send g; the verifier can then check the relation
by querying at a uniformly random point in the domain, but this creates the aforementioned trade-off.
However, [BBHR18a] observe that the verifier can simulate queries to g itself, given query access to f , since
g(α) = f(α)/ZH(α) (when ZH(α) 6= 0). Thus the prover does not have to send g, but only has to show that
g is low-degree. In all of our protocols, this observation results in RS-encoded IOPs with q = 0, and we will
assume that this is the case in the transformation described in this section.

In this exposition we have made the simplifying assumption that the desired rate for each codeword in
each proof is the same. In our protocols (in particular, the sumcheck protocol) this will not be the case, and
so we must also handle differing rates. In some settings it suffices to test for proximity to RS [L,maxi ρi]

k,
but not in our setting. This is because the soundness of univariate sumcheck relies on g being close to
RS [L, (|H| − 1)/|L|]; soundness breaks if g is merely close to (say) RS [L, |H|/|L|] (or RS codes with
bigger rates). Following [BS08], we instead multiply each π̃i by an appropriately-chosen random polynomial

33

and then take a linear combination. We show that if Π̃ is δ-far from RS [L, (ρ1, . . . , ρk)] then with high
probability π̃ is far from RS [L,maxi ρi], which suffices for soundness. We obtain the following theorem.

Theorem 9.1. Suppose that we are given:
• an RS-encoded IOP (PR, VR, (~ρi)

kR
i=1) for a relationR;

• an IOPP (PLDT, VLDT) for the RS code RS [L, ρ] for ρ := ρRmax.
Then we can combine these two ingredients to obtain an IOP (P, V) forR with the following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = ΣR

number of rounds k = kR + kLDT

proof length p = pR + pLDT

query complexity qπ = qLDT
π + qLDT

w
·
∑k
i=1 `

R
i

randomness (ri, rq) =
(
rRi + rLDT

i + (
∑k
i=1 `

R
i + c) log |F|, rLDT

q

)
soundness error (εi, εq) =

(
εR + εLDT

i + δLDT|L|+1
|F| , εLDT

q

)
prover time tP = O(tRP + tLDT

P)
verifier time tV = O(tRV + tLDT

V)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

provided δLDT < min(1−2ρ
2 , 1−ρ

4), and where c is the maximum size of a constraint set output by VR. (Pa-
rameters with superscript “R” and “LDT” denote parameters for (PR, VR) and (PLDT, VLDT) respectively.)

Recall that `Ri is the height of the i-th prover message, i.e., the i-th prover message has alphabet F`Ri .

Protocol 9.2. Letting (PR, VR) and (PLDT, VLDT) be as in the theorem statement, we need to construct an
IOP (P, V) for R. The prover P and verifier V both receive as input an instance x, and the prover P also
receives as input a corresponding witness w.

1. RS-encoded IOP for R. P and V simulate (PR(x,w), VR(x)). During this protocol, the prover sends
oracle codewords π1 ∈ RS [L, ~ρ1] , . . . , πkR ∈ RS [L, ~ρkR], and the verifier outputs a set of rational
constraints C. Let ` :=

∑kR

i=1 `i + |C|, ~ρ = (~ρ1, . . . , ~ρkR), ~ρC := (σ)(C,σ)∈C, and ~σ := (~ρ, ~ρC) ∈ (0, 1]`.

2. Random linear combination. V samples ~z ∈ F2` uniformly at random and sends it to P .

3. Low-degree test. P and V simulate (PLDT(~zTΠ), V ~z
TΠ

LDT) where Π :=
[
Π0

Π1

]
∈ F2`×L is as follows:

• Π′0 ∈ F`×L is the matrix obtained by “stacking” vertically the matrices π1, . . . , πkR , and Π0 is obtained
by stacking Π′0 with (C[Π′0])(C,σ)∈C.

• Π1 ∈ F`×L is the matrix whose entries are (Π1)i,a := a(ρ−σi)|L| · (Π0)i,a for all i ∈ {1, . . . , `}, a ∈ L.

4. V accepts if and only if VLDT accepts.

Proof.

Completeness. If πi ∈ RS [L, ~ρi] for all i, then ~zTΠ ∈ RS [L, ρ] and thus PLDT makes VLDT accept.
Completeness then follows immediately from the completeness of the RS-encoded IOP (PR, VR).

Soundness. Suppose that x /∈ L(R) and fix a malicious prover; let δ := δLDT. During the protocol, the

prover sends oracles π̃1, . . . , π̃kR ; let Π̃ :=
[Π̃0

Π̃1

]
be as in the protocol description but with respect to the

messages π̃i. We argue that the verifier accepts with probability at most max(εR, εLDT
i + δ|L|

|F|). To do this, we

first show that it must hold that ∆(Π̃0,RS [L,~σ]) > δ; then we show that given this, the verifier’s acceptance
probability is bounded as required.

34

Let E be the event that the verifier accepts in the query phase with probability greater than εLDT
q , given

the transcript of the interactive phase. Observe that

Pr[E] = Pr[E | ∆(Π̃0,RS [L,~σ]) > δ] · Pr[∆(Π̃0,RS [L,~σ]) > δ]

+ Pr[E | ∆(Π̃0,RS [L,~σ]) ≤ δ] · Pr[∆(Π̃0,RS [L,~σ]) ≤ δ]
≤ Pr[E | ∆(Π̃0,RS [L,~σ]) > δ] + Pr[∆(Π̃0,RS [L,~σ]) ≤ δ] .

We bound each of these terms individually.

• The probability of E when ∆(Π̃0,RS [L,~σ]) > δ. First we argue that if ∆(Π̃0,RS [L,~σ]) > δ then
∆(Π̃,RS [L, ρ]2`) > δ; then we cite a claim stating that, given this, a random linear combination of Π̃ is
δ-far from RS [L, ρ] with high probability; finally we derive the bound of the aforementioned probability.

Claim 9.3. For any δ < (1− 2ρ)/2, if ∆(Π̃0,RS [L,~σ]) > δ then ∆(Π̃,RS [L, ρ]2`) > δ.

Proof. Suppose by way of contradiction that ∆(Π̃,RS [L, ρ]2`) ≤ δ, and let Π̂ =:
[Π̂0

Π̂1

]
∈ RS [L, ρ]` be

such that ∆(Π̃, Π̂) ≤ δ. For each i, let pi, p′i ∈ RS [L, ρ] be the i-th rows of Π̂0, Π̂1 respectively. We argue
that pi ∈ RS [L, σi] for every i, which implies Π̂0 ∈ RS [L,~σ], so ∆(Π̃0,RS [L,~σ]) ≤ ∆(Π̃0, Π̂0) ≤
∆(Π̃, Π̂) ≤ δ, which is a contradiction.

Suppose towards contradiction that there exists i such that pi ∈ RS [L, ρ] \ RS [L, σi]. Then q :=
pi · X(ρ−σi)|L| ∈ RS [L, 2ρ− σi] \ RS [L, ρ]; in particular, q 6= p′i, which implies that ∆(q, p′i) ≥
1 − (2ρ − σi). However, because ∆(Π̃,RS [L, ρ]2`) ≤ δ, we have that, letting p̃i be the i-th row of Π̃0,
∆(p̃i ·X(ρ−σi)|L|, q) = ∆(p̃i, pi) ≤ δ and ∆(p̃i ·X(ρ−σi)|L|, p′i) ≤ δ. By the triangle inequality we have
that ∆(q, p′i) ≤ 2δ < 1− (2ρ− σi), which is a contradiction.

Claim 9.4 ([AHIV17, Lemma 4.2]). For all δ < (1− ρ)/4, if ∆(Π̃,RS [L, ρ]2`) > δ then

Pr
~z←F2`

[
∆(~zT Π̃,RS [L, ρ]) > δ

]
> 1− (δ|L|+ 1)/|F| .

(For some choices of rate parameter ρ, a recent result of [BKS18] yields a stronger statement.)

Combining the two claims: if ∆(Π̃0,RS [L,~σ]) > δ then, with probability at least 1 − (δ|L| + 1)/|F|,
∆(~zT Π̃,RS [L, ρ]) > δ = δLDT. Since ε′q ≥ εLDT

q , Pr[E | ∆(Π̃0,RS [L,~σ]) > δ] ≤ εLDT
i + δ|L|+1

|F| .

• The probability that ∆(Π̃0,RS [L,~σ]) ≤ δ. Let π1 ∈ RS [L, ~ρ1] , . . . , πkR ∈ RS [L, ~ρkR] be the closest
codewords to the prover’s messages π̃1, . . . , π̃kR . We can construct a prover P̂ for the encoded IOP, which
sends messages π1, . . . , πkR . We show that if ∆(Π̃0,RS [L,~σ]) ≤ δ, then for all (C, σ) ∈ C it holds that
C[Π̂′0] ∈ RS [L, σ]. By the soundness of the encoded IOP, this occurs with probability at most εR.

Take some (C, σ) ∈ C, and let πC ∈ RS [L, σ] be the (unique) closest codeword to C[Π̃′0]. By assumption,
we have that ∆(πC , C[Π̂′0]) ≤ δ. Let (N,D) := C; then ∆(πC · D,N [Π̂′0]) ≤ δ. Since πC · D[Π̂′0] ∈
RS [L, σ + deg(D)] and N [Π̂′0] ∈ RS [L,DN (~ρ)], we have that πC ·D ≡ N [Π̂′0] since δ < 1− ρRmax ≤
1−max(σ + deg(D), DN (~ρ)). In particular, this implies that D divides N [Π̂′0] as a polynomial, and so
C[Π̂′0] ∈ RS [L,DN (~ρ)− deg(D)];9 thus C[Π̂′0] = πC ∈ RS [L, σ].
9Note that ⊥ /∈ C[Π̂′0] because otherwise the completeness condition of the RS-encoded IOP would fail to hold.

35

9.1 Zero knowledge

We describe how to modify the transformation above to preserve zero knowledge, thereby showing how to
efficiently convert an RS-encoded IOP with a zero knowledge guarantee into a corresponding IOP with the
same zero knowledge guarantee. The transformation uses the random self-reducibility of Reed–Solomon
proximity testing, which implies that the low-degree test used in the transformation need not be zero
knowledge (the only requirement is that its honest prover must run in polynomial time). In particular, the
honest prover in the new protocol will send, in addition to the messages of the underlying RS-encoded IOP, a
random codeword r, which is added to the linear combination of messages that are tested for proximity to RS.

Theorem 9.5. Suppose that we are given:
• an RS-encoded IOP (PR, VR, (~ρi)

kR
i=1) for a relationR that is zero knowledge against b queries;

• an IOPP (PLDT, VLDT) for the RS code RS [L, ρ] with ρ := ρRmax and a polynomial-time honest prover (not
necessarily zero knowledge).

Then we can combine these two ingredients to obtain an IOP (P, V) forR, also zero knowledge against b
queries, with the following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = ΣR

number of rounds k = kR + kLDT + 1
proof length p = pR + pLDT + |L|
query complexity qπ = qLDT

π + qLDT
w
·
∑k
i=1 `

R
i

randomness (ri, rq) =
(
rRi + rLDT

i + (
∑k
i=1 `

R
i + c) log |F|, rLDT

q

)
soundness error (εi, εq) =

(
εR + εLDT

i + δLDT|L|+1
|F| , εLDT

q

)
prover time tP = O(tRP + tLDT

P)
verifier time tV = O(tRV + tLDT

V)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
provided δLDT < min(1−2ρ

2 , 1−ρ
4), and where c is the maximum size of a constraint set output by VR.

(Parameters with superscript “R” and “LDT” denote parameters for (PR, VR) and (PLDT, VLDT) respectively;
highlights denote parameter differences with Theorem 9.1.)

Protocol 9.6. Letting (PR, VR) and (PLDT, VLDT) be as in the theorem statement, we need to construct an
IOP (P, V) for R. The prover P and verifier V both receive as input an instance x, and the prover P also
receives as input a corresponding witness w.

1. RS-encoded IOP for R. P and V simulate (PR(x,w), VR(x)). In the course of this protocol, the
prover sends oracle codewords π1 ∈ RS [L, ~ρ1] , . . . , πkR ∈ RS [L, ~ρkR], and the verifier specifies a set of
rational constraints C. Let ` :=

∑kR

i=1 `i + |C|.
2. Random linear combination. V samples ~z ∈ F2` uniformly at random and sends it to P .

3. Low-degree test. P and V simulate (PLDT(~zTΠ + r), V ~z
TΠ+r

LDT) where Π :=
[
Π0

Π1

]
∈ F2`×L is defined

as in Protocol 9.2.
4. V accepts if only if VLDT accepts.

Proof. Completeness and soundness follow almost immediately from those of Protocol 9.2. Indeed, we can
view Protocol 9.6 as Protocol 9.2 modified so that (PR, VR) begins with an additional “dummy” round where
the prover just sends a random codeword. (Note that we can fix ~z’s random coefficient for r to be 1 almost
without loss of generality since distance to Reed–Solomon codewords is preserved under multiplication by a
nonzero constant.) We now focus on arguing the zero knowledge property.

36

Let SR be the simulator for (PR, VR), witnessing zero knowledge against b queries. The simulation guar-
antee for SR is that, for any ṼR that makes at most b distinct queries across all oracles, View(PR(x,w), ṼR)

and the output of SṼRR (x) are identically distributed.
Consider the simulator S for (P, V) that, given a malicious verifier Ṽ , constructs a new malicious verifier

ṼR (defined below), then runs SR on ṼR, and finally outputs what ṼR outputs given its simulated view.

1. Start running Ṽ .
2. Sample rsim ∈ RS [L, ρ] uniformly at random, and answer Ṽ ’s queries to r with rsim; let Qsim be the

verifier’s queries to r in this phase.
3. For kR rounds, forward Ṽ ’s messages to the prover. Answer all of Ṽ ’s queries to the received oracles

honestly. Receive a set of rational constraints C̃ from Ṽ .
4. Receive z̃ ∈ F2` from Ṽ .
5. For every q ∈ Qsim, query every oracle received at q. For each oracle defined by a rational constraint

(C̃, σ̃) ∈ C̃, evaluate C̃ at q.
6. Let p(q)

0 ∈ F` be the value of each oracle at point q, p(q)
1 be given by (p

(q)
1)i = qρ−σi(p

(q)
0)i for i ∈ [`],

and p(q) ∈ F2` be the concatenation of p(q)
0 , p

(q)
1 .

7. Sample psim ∈ RS [L, ρ] uniformly at random such that, for every q ∈ Qsim, psim(q) = z̃T p(q) +
rsim(q).

8. Now when Ṽ queries r at q, query every oracle received at q and answer with psim(q)− z̃T p(q).
9. Simulate the interaction of PLDT(p) and Ṽ .

10. Output the view of the simulated Ṽ .

For every query that Ṽ makes to r, ṼR makes a query to every oracle it has received in the same location.
Similarly, for each query Ṽ makes to any other oracle, ṼR makes at most one query to some received oracle.
Hence ṼR makes at most b distinct queries across all oracles, and so the simulation guarantee holds.

To show zero knowledge, we exhibit the following hybrid experiment, in which the view of Ṽ is identically
distributed to the output of the simulator.

1. Run the honest prover PR(x, f); let Π be as in the protocol.
2. Sample r ∈ RS [L, ρ] uniformly at random and send it to Ṽ . Let Q ⊆ L be the verifier’s queries to r

in this phase.
3. Receive z̃ ∈ F2` from Ṽ .
4. Sample p ∈ RS [L, ρ] uniformly at random such that, for every q ∈ Q, p(q) = (z̃TΠ)q + r(q).
5. Replace r with p− z̃TΠ.
6. Simulate the interaction of PLDT(p) and Ṽ .

One can verify that the view of Ṽ in this hybrid is also identically distributed to the view of Ṽ in the real
protocol. In particular, all answers to Ṽ ’s queries to r after its replacement by p are correctly distributed.

37

10 Aurora: an IOP for rank-one constraint satisfaction (R1CS)

We describe the IOP for R1CS (Definition 8.1) that comprises the main technical contribution of this paper,
and also underlies the SNARG for R1CS that we have designed and built (more about this in Section 11).

For the discussions below, we introduce notation about the low-degree test in [BBHR18b], known as
“Fast Reed–Solomon IOPP” (FRI): given a subspace L of a binary field F and rate ρ ∈ (0, 1), we denote by
εFRI
i (F, L) and εFRI

q (L, ρ) the soundness error of the interactive and query phases in FRI (respectively) when
testing proximity to RS [L, ρ]. In [BBHR18b], it is proved that εFRI

i (F, L) ≤ 3|L|/|F| and εFRI
q (L, ρ) ≤

1− (1− 3ρ− 4|L|−1/2)/4; much better values for both are conjectured to hold (see Appendix C.1).
We first provide a “barebones” statement with constant soundness error and no zero knowledge.

Theorem 10.1. There is an IOP forRR1CS (Definition 8.1) over binary fields F that, given an R1CS instance
having n variables and m constraints, letting ρ ∈ (0, 1) be a constant and L be any subspace of F such that
2 max(m,n+ 1) +m ≤ ρ|L|, has the following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = O(log |L|)
proof length p = (6 + 1

3)|L|
query complexity qπ = O(log |L|)
randomness (ri, rq) = (O(log |L| · log |F|), O(log |L|))
soundness error (εi, εq) =

(
m+1
|F| + εFRI

i (F, L) + |L|
|F| , ε

FRI
q (L, ρ)

)
prover time tP = O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+ 7 · FFT(F,max(n,m)) + 10 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m+ log |L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Apply the transformation in Section 9 (see Theorem 9.1) to two ingredients: (a) the RS-encoded IOP
for R1CS in Section 8 (see Theorem 8.2); and (b) the FRI low-degree test. The resulting protocol is sound
against all malicious provers (and not just provers that send oracles that are Reed–Solomon codewords).

Next, we provide a statement that additionally has parameters for controlling the soundness error, is zero
knowledge, and includes other (whitebox) optimizations; the proof is analogous except that we use zero
knowledge components (the RS-encoded IOP of Theorem 8.4 and the transformation of Theorem 9.5). The
resulting IOP protocol, fully specified in Fig. 5, underlies our SNARG for R1CS (see Section 11).

Theorem 10.2. There is an IOP forRR1CS (Definition 8.1) over binary fields F that, given an R1CS instance
having n variables and m constraints, letting ρ ∈ (0, 1) be a constant and L be any subspace of F such that
2(max(m,n+ 1) + b) +m ≤ ρ|L|, is zero knowledge against b queries and has the following parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = O(log |L|)
proof length p = (4 + 2λi + λLDT

i /3)|L|
query complexity qπ = O(λiλ

LDT

i λLDT
q log |L|)

randomness (ri, rq) =
(
O((λi + λLDT

i log |L|) log |F|), O(λLDT

i λLDT
q log |L|)

)
soundness error (εi, εq) =

((
m+1
|F|

)λi

+
(
εFRI

i (F, L) + |L|
|F|

)λLDT
i

, εFRI
q (L, ρ)λ

LDT
q

)
prover time tP = λi · (O(|L| · (log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+ 7 · FFT(F,max(n,m))
+ 11 · FFT(F, |L|)) +O(λLDT

i · |L|)
verifier time tV = λi ·O(‖A‖+ ‖B‖+ ‖C‖

+ n+m+ log |L|) +O(λLDT

i λLDT
q log |L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
38

Setting b ≥ qπ ensures honest-verifier zero knowledge.

Given an R1CS instance (F, k, n,m,A,B,C, v), we fix subspaces H1, H2 ⊆ F such that |H1| = m and
|H2| = n+ 1 (padding to the nearest power of 2 if necessary) with H1 ⊆ H2 or H2 ⊆ H1, and a sufficiently
large affine subspace L ⊆ F such that L ∩ (H1 ∪H2) = ∅. Fig. 4 below gives polynomials and codewords
used in the protocol figure (Fig. 5). We also define ξ :=

∑
a∈H1∪H2

a|H1∪H2|−1.

polynomial degree values that define the polynomial
pα m− 1 p̂α(a) = αγ(a) for a ∈ H1

p′α max(m− 1, n) p̂′α(a) =

{
αγ(a) for a ∈ H1

0 for a ∈ (H1 ∪H2) \H1

p
(M)
α max(m− 1, n) p̂

(M)
α (b) =

{∑
a∈H1

Ma,b · αγ(a) for b ∈ H2

0 for b ∈ (H1 ∪H2) \H2

codeword code polynomial that defines the codeword
fw RS

[
L, n−k+b

|L|

]
random polynomial f̄w of degree less than n− k + b such that,

for all b ∈ H2 with k < γ(b) ≤ n, f̄w(b) =
wγ(b)−k − f̂(1,v)(b)

Z
H

≤k
2

(b)

fMz RS
[
L, m+b
|L|

]
random polynomial f̄Az of degree less than m+ b such that,
for all a ∈ H1, f̄Az(a) =

∑
b∈H2

Ma,b · zγ(b) = (Mz)a

Figure 4: Polynomials and codewords used in the IOP protocol given in Fig. 5.

39

P ((F, k, n,m,A,B,C, v), w) V (F, k, n,m,A,B,C, v)

Sample (as in Fig. 4):
• fw ∈ RS

[
L, n−k+b

|L|

]
• fAz, fBz, fCz ∈ RS

[
L, m+b
|L|

]

Sample ri ← RS
[
L, t
|L|

]
for univariate sumcheck below,
and compute
µi :=

∑
a∈H1∪H2

ri(a)

repeat for i = 1, . . . , λi in parallel:

fz := fw · ZH≤k
2

+ f(1,v)

αi ← F, ~si ← F4

virtual oracle
for rowcheck

qi,1 := pαi · (fAz · fBz − fCz)

qi,2 := fAz · p′αi
− fz · p(A)

αi

virtual oracles
for lincheck

qi,3 := fBz · p′αi
− fz · p(B)

αi

qi,4 := fCz · p′αi
− fz · p(C)

αi

reduction from R1CS to sumcheck

rowcheck/lincheck

amortized zero knowledge univariate sumcheck

low-degree test

Compute:

gi ∈ RS

[
L,
m− 1

|L|

]
, hi ∈ RS

[
L,
t−m
|L|

]
s.t. r̂i(X) +

4∑
j=1

si,j q̂i,j(X)

= ĝi(X) + ξ−1µi ·X |H1∪H2|−1

+ ZH1∪H2
(X) · ĥi(X)

r
(1)
LDT, . . . , r

(λLDT
i)

LDT ← RS
[
L, t
|L|

]

Π :=

fw
fAz
fBz
fCz

r1; . . . ; rλi

h1; . . . ;hλi

g1; . . . ; gλi

(Xt−n+1gi)
λi
i=1

~y1, . . . , ~yλLDT

i
← F4+4λi

RS proximity test:
FRI(~yTi Π + r

(i)
LDT)

For all a ∈ L, gi(a) :=

ri(a) +

4∑
j=1

si,jqi,j(a)

− ξ−1µi · a|H1∪H2|−1

− ZH1∪H2
(a) · hi(a)

fw, fAz, fBz, fCz

ri, µi

αi, ~si

hi

r
(1)
LDT, . . . , r

(λLDT
i)

LDT

~y1, . . . , ~yλLDT
i

i = 1, . . . , λLDT

i

Figure 5: Diagram of the zero knowledge IOP for R1CS that proves Theorem 10.2.

40

11 libiop: a library for IOP-based non-interactive arguments

We provide libiop, a codebase that enables the design and implementation of IOP-based non-interactive
arguments. The codebase uses the C++ language and has three main components: (1) a library for writing
IOP protocols; (2) a realization of the [BCS16] transformation, mapping any IOP written with our library to a
corresponding non-interactive argument; (3) a portfolio of IOP protocols, including our new IOP protocol for
R1CS and IOP protocols from [AHIV17] and [BBHR18a]. We discuss each of these components in turn.

11.1 Library for IOP protocols

We provide a library that enables a programmer to write IOP protocols. Informally, the programmer provides
a blueprint of the IOP by specifying, for each round, the number and sizes of oracle messages (and non-oracle
messages) sent by the prover, as well as the number of random bytes subsequently sent by the verifier. For
the prover, the programmer specifies how each message is to be computed. For the verifier, the programmer
specifies how oracle queries are generated and, also, how the verifier’s decision is computed based on its
random choices and information received from the prover. Notable features of our library include:

• Support for writing new IOPs by using other IOPs as sub-protocols. This includes juxtaposing or inter-
leaving selected rounds of these sub-protocols. This latter feature not only facilitates reducing round
complexity in complex IOP constructions but also makes it possible to take advantage of optimizations
such as column hashing (discussed in Section 11.2) when constructing a non-interactive argument.

• A realization of the transformation described in Section 9, which constructs an IOP by combining an
encoded IOP (as defined in Section 4.7) and a low-degree test (as defined in Section 4.5.1). This is a
powerful paradigm (it applies to essentially all published IOP protocols) that reduces the task of writing an
IOP to merely providing suitable choices of these two simpler ingredients.

11.2 BCS transformation

We realize the transformation of [BCS16], by providing code that maps any IOP written in our library into a
corresponding non-interactive argument (which consists of a prover algorithm and a verifier algorithm).

We use BLAKE2b [ANWOW13] to instantiate the random oracle in the [BCS16] transformation (our
code allows to conveniently specify alternative instantiations). This hash function is an improvement to
BLAKE (a finalist in the SHA-3 competition) [AMPH14], and its performance on all recent x86 platforms is
competitive with the most performant (and often hardware-accelerated) hash functions [CS17]. Moreover,
BLAKE2b can be configured to output digests of any length between 1 and 64 bytes (between 8 and 512
bits in multiples of 8). When aiming for a security level of λ bits, we only need the hash function to output
digests of 2λ bits, and our code automatically sets this length.

Our code incorporates additional optimizations that, while simple, are generic and effective.
One is column hashing, which informally works as follows. In many IOP protocols (essentially all

published ones, including Ligero [AHIV17] and Stark [BBHR18a]), the prover sends multiple oracles over
the same domain in the same round, and the verifier accesses all of them at the same index in the domain. The
prover can then build a Merkle tree over columns consisting of corresponding entries of the oracles, rather
than building separate Merkle trees for each or a single Merkle tree over their concatenation. This reduces
a non-interactive proof’s length, because the proof only has to contain a single authentication path for the
desired column, rather than authentication paths corresponding to the indices across all the oracles.

41

Another optimization is path pruning. When providing multiple authentication paths relative to the same
root (in the non-interactive argument), some digests become redundant and can thus be omitted. For example,
if one considers the authentication paths for all leaves in a particular sub-tree, then one can simple provide
the authentication path for the root of the sub-tree. A simple way to view this optimization is to provide the
smallest number of digests to authenticate a set of leaves.

11.3 Portfolio of IOP protocols and sub-components

We use our library to realize several IOP protocols:

• Aurora: our IOP protocol for R1CS (specifically, the one provided in Fig. 5 in Section 10).

• Ligero: an adaptation of the IOP protocol in [AHIV17] to R1CS. While the protocol(s) in [AHIV17]
are designed for (boolean or arithmetic) circuit satisfiability, the same ideas can be adapted to support
R1CS at no extra cost. This simplifies comparisons with R1CS-based arguments, and confers additional
expressivity. For convenience, we provide the foregoing adaptation in Appendix B.

• Stark: the IOP protocol in [BBHR18a] for Algebraic Placement and Routing (APR), a language that is a
“succinct” analogue of algebraic satisfaction problems such as R1CS. (See [BBHR18a] for details.)

Each of the above IOPs is obtained by specifying an encoded IOP and a low-degree test. As explained in
Sections 11.1 and 11.2, our library compiles these into an IOP protocol, and the latter into a non-interactive
argument. This toolchain enables specifying protocols with few lines of code (see Fig. 6), and also enhances
code auditability.

The IOP protocols above benefit from several algebraic components that our library also provides.

• Finite field arithmetic. We support prime and binary fields. Our prime field arithmetic uses Montgomery
representation [Mon85]. Our binary field arithmetic uses the carryless multiplication instructions [Gue11];
these are ubiquitous in x86 CPUs and, being used in AES-GCM computations, are highly optimized.

• FFT algorithms. The choice of FFT algorithm depends on whether the R1CS instance (and thus the rest of
the protocol) is defined over a prime or binary field. In the former case, we use the radix-2 FFT (whose
evaluation domain is a multiplicative coset of order 2a for some a) [CT65]. In the latter case, we use an
additive FFT (whose evaluation domain is an affine subspace of the binary field) [Can89; GM10; BC14;
LCH14; LAH16]. We also provide the respective inverse FFTs, and variants for cosets of the base domains.

Remark 11.1. Known techniques can be used to reduce given programs or general machine computations to
low-level representations such as R1CS and APR (see, e.g., [BCTV14b; WSRBW15; BBHR18a]). Such
techniques have been compared in prior work, and our library does not focus on these.

encoded IOP lines of low-degree lines of
protocol code test code

Stark 321 FRI 416
Ligero 1281 direct 212
Aurora 1165

Figure 6: Lines of code to express various sub-components in our library.

42

12 Evaluation

In Section 12.1 we evaluate the performance of Aurora. Then, in Section 12.2 we compare Aurora with Ligero
[AHIV17] and Stark [BBHR18a], two other IOP-based SNARGs. Our experiments not only demonstrate
that Aurora’s performance matches the theoretical predictions implied by the protocol but also that Aurora
achieves the smallest proof length of any IOP-based SNARG, more than an order of magnitude.

That said, there is still a sizable gap between the proof sizes of IOP-based SNARGs and other SNARGs
that use public-key cryptographic assumptions vulnerable to quantum adversaries; see Fig. 2 for how proof
sizes vary across these. It remains an exciting open problem to close this gap.

Experiments ran on a machine with an Intel Xeon W-2155 3.30GHz 10-core processor and 64GB of RAM.

12.1 Performance of Aurora

We consider Aurora at the standard security level of 128 bits, over the binary field F2192 . We report data on
key efficiency measures of a SNARG: the time to generate a proof (running time of the prover), the length of
a proof, and the time to check a proof (running time of the verifier). We also indicate how much of each cost
is due to the IOP protocol, and how much is due to the BCS transformation [BCS16].

In Aurora, all of these quantities depend on the number of constraints m in an R1CS instance.10 Our
experiments report how these quantities change as we vary m over the range {210, 211, . . . , 220}.
Prover running time. In Fig. 7 we plot the running time of the prover, as absolute cost (top graph) and
as relative cost when compared to native execution (bottom graph). In the case of R1CS, native execution
means the time that it takes to check that an assignment satisfies the constraint system. The plot confirms
the quasilinear complexity of the prover; proving times range from fractions of a second to several minutes.
Proving time is dominated by the cost of running the underlying IOP prover.

Proof size. In Fig. 8 we plot proof size, as absolute cost (top graph) and as relative cost when compared
to native witness size (bottom graph). In the case of R1CS, native witness size means the number of bytes
required to represent an assignment to the constraint system. The plot shows that compression (proof size
is smaller than native witness size) occurs for m ≥ 4000. The plot also shows that proof size ranges from
50 kB to 250 kB, and that proof size is dominated by the cryptographic digests to authenticate query answers.

Verifier running time. In Fig. 9 we plot the running time of the verifier, as absolute cost (top graph) and
as relative cost when compared to native execution (bottom graph). The plot shows that verification times
range from milliseconds to seconds, and confirms that our implementation incurs a constant multiplicative
overhead over native execution.

12.2 Comparison of Ligero, Stark, and Aurora

In Figs. 10 to 12 we compare costs (proving time, proof length, and verification time) on R1CS instances for
three IOP-based SNARGs: Ligero [AHIV17], Stark [BBHR18a], and Aurora (this work). As in Section 12.1,
we plot costs as the number of constraintsm increases (and with n ≈ m variables as explained in Footnote 10);
we also set security to the standard level of 128 bits and use the binary field F2192 .

Comparison of Ligero and Aurora. Ligero natively supports R1CS so a comparison with Aurora is
straightforward. Fig. 11 shows that proof size in Aurora is much smaller than in Ligero, even for a relatively

10The number of variables n also affects performance, but it is usually close to m and so we take n ≈ m in our experiments. The
number of inputs k in an R1CS instance is at most n, and in typical applications it is much smaller than n, so we do not focus on it.

43

small number of constraints. The gap between the two only grows bigger as the number of constraints
increases, as Aurora’s proof size is polylogarithmic while Ligero’s is only sublinear (an exponential gap).

Comparison of Stark and Aurora. Stark does not natively support the NP-complete relation R1CS but
instead natively supports an NEXP-complete relation known as Algebraic Placement and Routing (APR).
These two relations are quite different,11 and so to achieve a meaningful comparison, we consider an APR
instance that simulates a given R1CS instance. We thus plot the costs of Stark on a hand-optimized APR
instance that simulates R1CS instances. Relying on the reductions described in [BBHR18a], we wrote an
APR instance that realizes a simple abstract computer that checks that a variable assignment satisfies each
one of the rank-1 constraints in a given R1CS instance.

Fig. 11 shows that proof size in Aurora is much smaller than in Stark, even if both share the same
asymptotic growth. This is due to the fact that R1CS and APR target different computation models (explicit
circuits vs. uniform computations), so Stark incurs significant overheads when used for R1CS. Fig. 12 shows
that verification time in Stark grows linearly with the number of constraints (like Ligero and Aurora); indeed,
the verifier must read the description of the statement being proved, which is the entire constraint system.

11Using notation for APR introduced in Appendix C.2, one can think of APR as a succinctly-represented system of |H| · |C|
equations over |H| · |R| variables, in which equations have total degree at most D := maxc∈C deg c. When D = 2, one could be
led to view APR as “comparable” to R1CS with m = |H| · |C| constraints over n = |H| · |R| variables. This comparison, however,
is misleading in that one is simply comparing the total number of constraints and variables, ignoring what they actually represent.

44

10-2

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

pr
ov

er
 ti

m
e

(s
)

number of constraints

Aurora
IOP

BCS

103

104

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f p

ro
ve

r t
im

e
ov

er
 n

at
iv

e
ex

ec
ut

io
n

number of constraints

time(prover)/time(native)

Figure 7: Proving time in Aurora.

104

105

106

107

108

210 211 212 213 214 215 216 217 218 219 220

pr
oo

f s
iz

e
(b

yt
es

)

number of constraints

native
Aurora

IOP
BCS

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f p

ro
of

 s
iz

e
to

 w
itn

es
s

si
ze

number of constraints

size(proof)/size(witness)

Figure 8: Proof length in Aurora.

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ve
ri

fi
er

 ti
m

e
(s

)

number of constraints

Aurora
IOP

BCS

101

102

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f v

er
if

ie
r t

im
e

ov
er

 n
at

iv
e

ex
ec

ut
io

n

number of constraints

time(verifier)/time(native)

Figure 9: Verification time in Aurora.

10-2

10-1

100

101

102

103

104

210 211 212 213 214 215 216 217 218 219 220

pr
ov

er
 ti

m
e

(s
)

number of constraints

Aurora
Ligero

Stark

Figure 10: Proving time in Aurora,
Ligero, Stark.

104

105

106

107

210 211 212 213 214 215 216 217 218 219 220

pr
oo

f s
iz

e
(b

yt
es

)

number of constraints

Aurora
Ligero

Stark

Figure 11: Proof length in Aurora,
Ligero, Stark.

10-3

10-2

10-1

100

101

102

210 211 212 213 214 215 216 217 218 219 220

ve
ri

fi
er

 ti
m

e
(s

)

number of constraints

Aurora
Ligero

Stark

Figure 12: Verification time in Aurora,
Ligero, Stark.

45

A Proof of Lemma 5.4

Definition A.1. For any field F, the derivative of a function f : F → F in a direction a ∈ F is the
function ∆a(f)(X) := f(a + X) − f(X). Given a1, . . . , ak ∈ F, we inductively define ∆a1,...,ak(f) :=
∆a1 (∆a2,...,ak(f)).

Let F be an extension field of F2. For a1, . . . , ak a basis of H0,

∆a1,...,ak(f)(X) =
∑
a∈H0

f(X + a).

An alternative statement of the above is that ∆a1,...,ak(f)(a0) is equal to the sum of f over H := a0 +H0:

∆a1,...,ak(f)(a0) =
∑
a∈H

f(a). (1)

For a natural number c written in base 2 as
∑d

i=0 ci ·2i let supp(c) = {i : ci 6= 0} and wt(c) = |supp(c)|.
For a polynomial P (X) =

∑
j>0 αjX

j we define wt(P) = max{wt(j) : αj 6= 0}.
The following claim is implied by [AKKLR05; KS08].

Claim A.2. For any polynomial P ∈ F[X] of positive degree, and any a ∈ F,

wt (∆a(P)) < wt(P)

Proof. By linearity of the operator ∆a(·), it suffices to prove the claim for a single monomial, namely, for
P (X) = Xc for some positive integer c > 0. Write c in binary as

∑d
i=0 ci · 2i for some integer d. The

Frobenius automorphism X 7→ X2i is F2-linear, meaning that (X + Y)2i = X2i + Y 2i . Thus,

∆a (Xc) = (X + a)
∑d
i=0 ci2

i

−Xc =
d∏
i=0

(
Xci2

i
+ aci2

i
)
−Xc

=
∑

I(supp(c)

∏
i∈I

(
Xci2

i
)
·
∏

j∈[d]\I

(
acj2

j
)

=
∑

I(supp(c)

aI ·X
∑
i∈I ci2

i

Since all the exponents in the last expression are integers whose support is strictly contained in supp(c), the
claim follows for the case of P (X) = Xc, and hence for all P ∈ F[X] by linearity.

Lemma A.3. If P (X) ∈ F[X] satisfies deg(P) < 2k − 1, then for any a1, . . . , ak that are linearly
independent over F2 we have ∆a1,...,ak(P (X)) = 0.

Proof. We have wt(P) < k. By Claim A.2, wt(∆a2,...,ak(P)) = 0, and so ∆a2,...,ak(P) is a constant
function. By definition, the derivative of a constant function is 0, and the claim follows.

Proof of Lemma 5.4. For some a0, a1, . . . , ak ∈ F, H = a0 +H0 where H0 is the linear subspace with basis
a1, . . . , ak. By Eq. (1) and Lemma A.3 we conclude

∑
a∈H g(a) = ∆a1,...,ak(g)(a0) = 0.

46

B Adaptation of Ligero to the R1CS relation

We describe R1CS-Ligero, an adaptation of the Ligero protocol for the R1CS relation (Definition 8.1).
This adaptation captures as a special case, and at no additional cost, the arithmetic circuits considered in
[AHIV17]. The high-level structure of the protocol is analogous to that described in Section 2.1. Namely,
given a satisfying assignment z to an R1CS instance with matrices A,B,C, the prover computes yA := Az,
yB := Bz, yC := Cz, and sends to the verifier certain encodings of z, yA, yB, yC . After that, the prover
convinces the verifier that “yM = Mz” for M ∈ {A,B,C} via three suitable lincheck protocols, and that
“yA ◦ yB = yC” via a suitable rowcheck protocol. A key aspect is that the encoding of N field elements
consists of O(

√
N) Reed–Solomon codewords of block length O(

√
N) rather than a single Reed–Solomon

codeword of length O(N) — this aspect is what determines the design of the aforementioned sub-protocols.
As in [AHIV17], the final protocol is an IPCP, i.e., an IOP wherein only the first prover message is an oracle.

The rest of this section is structured as follows. In Appendix B.1 and Appendix B.2 we describe lincheck
and rowcheck protocols for information encoded via the interleaved Reed–Solomon code. In Appendix B.3
we show how to combine these to obtain an RS-encoded IPCP for the R1CS relation; this protocol also takes
care of additional goals such as zero knowledge and input consistency. In Appendix B.4 we explain how how
generic tools can augment this latter protocol to a standard IPCP (that is sound against all provers).

Unlike in an RS-encoded IOP, in an RS-encoded IPCP we count queries to the first (oracle) message only.
All other messages are read in full by the verifier, and we charge their length to communication complexity.

B.1 Interleaved lincheck

Let F be a field and L,H subsets of F of sizes l, h respectively (with l ≥ h). Let M be a m1h×m2h matrix
over F, for two positive integers m1,m2. Below we describe an RS-encoded IPCP protocol for testing that
two given oracles Fx ∈ RS [L, h/l]m1 and Fy ∈ RS [L, h/l]m2 encode messages x ∈ Fm1h and y ∈ Fm2h

such that x = My. This can be viewed as the interleaved analogue of the RS-encoded IOP in Section 6, and
is a modification of the “Test-Linear-Constraints-IRS” protocol in [AHIV17] in which the result of the linear
transformation is encoded by an oracle rather than being known to the verifier.

The protocol below is summarized in Fig. 13, and implicitly assumes an ordering γH : H → {1, . . . , h}
on H . The parameter λq controls the number of query repetitions in the verifier.

1. The verifier V samples random vectors r1, . . . , rm1 ∈ Fh and sends these to P .

2. The verifier V and prover P compute:

• (s1, . . . , sm2) := (r1, . . . , rm1)>M ;
• for i ∈ [m1], the polynomial r̂i of degree less than h that evaluates to ri ∈ Fh on H;
• for i ∈ [m2], the polynomial ŝi of degree less than h that evaluates to si ∈ Fh on H .

3. The prover P sends the 2h− 1 coefficients of the polynomial p̂ =
∑m1

i=1 r̂i · f̂x,i −
∑m2

i=1 ŝi · f̂y,i, where
f̂x,i, f̂y,i are the polynomials of degree less than h corresponding to the i-th row of Fx, Fy.

4. The verifier V samples random indices α1, . . . , αλq ← L, queries Fx, Fy at αk for k ∈ [λq], and checks
that: (a)

∑
α∈H p̂(α) = 0; (b) p̂(αk) =

∑m1
i=1 r̂i(αk) ·Fx[i, αk]−

∑m2
i=1 ŝi(αk) ·Fy[i, αk] for all k ∈ [λq].

47

Completeness. If x = My and P sends the correct p̂ then, letting r = (r1, . . . , rm1) and s = (s1, . . . , sm2),

∑
α∈H

p̂(α) =
∑
α∈H

(
m1∑
i=1

r̂i(α) · f̂x,i(α)−
m2∑
i=1

ŝi(α) · f̂y,i(α)

)

=

m1∑
i=1

r>i xi −
m2∑
i=1

s>i yi

= r>x− s>y
= r>(My)− (r>M)y

= 0 ,

so the verifier’s first test passes. Correctness of the second test follows directly from the definition of p̂.

Soundness. If x 6= My, there is a 1/F probability over the choice of r1, . . . , rm1 that (r1, . . . , rm1)>x =
(r1, . . . , rm1)>My. Letting p̂ be the polynomial to be sent by an honest prover, if (r1, . . . , rm1)>x 6=
(r1, . . . , rm1)>My then p̂ does not sum to 0 over H . If the polynomial p̂′ actually sent by the prover is equal
to p̂, then V rejects (always). Otherwise, as both are polynomials of degree less than 2h− 1, p̂ and p̂′ agree
on at most 2h− 2 points. The verifier accepts only if all of its queries lie in this set.

Efficiency. The prover and the verifier perform matrix multiplication by M , whose cost depends on the
number of nonzero entries in M . Each also performs interpolations to find the polynomials ŝi and r̂i.
Additionally, the prover finds p̂ by evaluating ŝi and r̂i over L, suitably combining these with evaluations of
f̂x,i and f̂y,i, and interpolating the result. The verifier also evaluates p̂ on H for its first test, and performs
simple arithmetic to check the answer of each of its queries.

Summary. The aforementioned protocol is an RS-encoded IOP with the following parameters.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
communication c = 2h− 1
query complexity q = (m1 +m2)λq
randomness (ri, rq) = (m1h log |F|, λq log l)

soundness error (εi, εq) =
(

1
|F| ,
(
2h−2
l

)λq
)

prover time tP = O(‖M‖) + (m1 +m2)FFT(F, h) + (m1 +m2 + 1)FFT(F, l) +O((m1 +m2)h)
verifier time tV = O(‖M‖) + (m1 +m2)FFT(F, h) + FFT(F, 2h) +O(λq(m1 +m2)h)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

B.2 Interleaved rowcheck

Let F be a field; L,H subsets of F of sizes l, h respectively (with l ≥ h). Below we describe an RS-encoded
IOP protocol for testing that three given oracles Fx, Fy, Fz ∈ RS [L, h/l]m encode messages x, y, z ∈ Fmh
such that x ◦ y = z. This can be viewed as the interleaved analogue of the RS-encoded IOP in Section 7, and
is a straightforward modification of the “Test-Quadratic-Constraints-IRS” protocol in [AHIV17].

The protocol below is summarized in Fig. 14, and implicitly assumes an ordering γH : H → {1, . . . , h}
on H . The parameter λq controls the number of query repetitions in the verifier.

1. The verifier V samples random t ∈ Fm and sends t to P .
2. The prover P sends the 2h − 1 coefficients of the polynomial p̂ =

∑m
i=1 ti · (f̂x,i · f̂y,i − f̂z,i) where

f̂x,i, f̂y,i, f̂z,i are the polynomials of degree less than h corresponding to the i-th row of Fx, Fy, Fz .

48

3. The verifier V samples indices α1, . . . , αλq ← L, queries Fx, Fy, Fz at αk for every k ∈ [λq], and checks
that: (a) p̂(H) = {0}; (b) p̂(αk) =

∑m
i=1 ti · (Fx[i, αk] · Fy[i, αk]− Fz[i, αk]) for every k ∈ [λq].

Completeness. If x ◦ y = z and P sends the correct p̂ then, for every α ∈ H ,

p̂(α) =
m∑
i=1

ti ·
(
f̂x,i(α) · f̂y,i(α)− f̂z,i(α)

)
=

m∑
i=1

ti · (xi,γH(α) · yi,γH(α) − zi,γH(α)) =
m∑
i=1

ti · 0 = 0 ,

so the verifier’s first test passes. Correctness of the second test follows directly from the definition of p̂.

Soundness. If x◦y 6= z, there is a 1/F probability over the choice of t that t>(x◦y− z) = 0, where x, y, z
are viewed asm×hmatrices. Letting p̂ be the polynomial to be sent by an honest prover, if t>(x◦y−z) 6= 0
then p̂ does not vanish on H . If the polynomial p̂′ actually sent by the prover is equal to p̂, then V rejects
(always). Otherwise, as both are polynomials of degree less than 2h− 1, p̂ and p̂′ agree on at most 2h− 2
points. The verifier accepts only if all of its queries lie in this set.

Efficiency. The prover obtains p̂ by suitably combining evaluations of f̂x,i, f̂y,i, f̂z,i and then interpolating.
The verifier evaluates p̂ on H for its first test, and performs simple arithmetic to check answers to its queries.

Summary. The aforementioned protocol is an RS-encoded IOP with the following parameters.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
communication c = 2h− 1
query complexity q = 3mλq
randomness (ri, rq) = (mh log |F|, λq log l)

soundness error (εi, εq) =
(

1
|F| ,
(
2h−2
l

)λq
)

prover time tP = FFT(F, l) +O(ml)
verifier time tV = FFT(F, 2h) +O(λqm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

B.3 Interleaved ZKIPCP for R1CS

We describe an RS-encoded IPCP protocol for the R1CS relation (see Definition 8.1). This can be viewed as
an interleaved analogue of the RS-encoded IOP for R1CS in Section 8, and is a modification of the IPCP for
arithmetic circuits in [AHIV17] to work for R1CS.

Let (F, k, n,m,A,B,C, v) be an R1CS instance and w a witness for it. The prover and verifier receive
the instance as input, and the prover additionally receives the witness as input. Define z := (1, v, w) ∈ Fn+1.

Let L,H be disjoint subsets of F of sizes l, h respectively (with l ≥ h) and let m2,m1 be integers such
that m1h = m and m2h = 1 + n. Let b be the query bound for zero knowledge.

The protocol below is summarized in Fig. 15, and implicitly assumes an ordering γH : H → {1, . . . , h}
on H . The parameter λi controls the number of repetitions of the sub-protocols, and λq controls the number
of query repetitions in the verifier.

• Oracle: The prover P sends an oracle F ∈ RS [L, ~ρ]m2+3m1+4λi that is computed as follows.

Extend the witness w ∈ Fn−k to w := (01+k, w) ∈ F1+n, and sample a random codeword Fw ∈
RS
[
L, h+b

l

]m2 such that the evaluation over H of the interpolation of the i-th row of Fw is the i-th block
of h entries inw (note that 1+n = m2h). Compute vectors a := Az, b := Bz, c := Cz ∈ Fm, and sample
random codewords Fa, Fb, Fc ∈ RS

[
L, h+b

l

]m1 such that the evaluation over H of the interpolation of
the i-th row of Fa, Fb, Fc is the i-th block of h entries in a, b, c respectively (note that m = m1h). For

49

every ι ∈ [λi], sample random codewords qaι , q
b
ι , q

c
ι ∈ RS

[
L, 2h+b−1

l

]
such that each of q̂aι , q̂

b
ι , q̂

c
ι sums

to zero on H , and random codeword qROW
ι ∈ RS

[
L, 2h+2b−1

l

]
such that q̂ROW

ι vanishes everywhere on
H . The oracle F is the vertical juxtaposition of Fw, Fa, Fb, Fc as well as qaι , q

b
ι , q

c
ι , q

ROW
ι . Note that each

codeword in Fw, Fa, Fb, Fc is b-wise independent (because of the way they are sampled), and thus any set
of b evaluations are uniformly distributed (in particular, they reveal no information about w, a, b, c).

• The interactive protocol:

1. The prover P and verifier V extend the public input v to v := (1, v, 0n−k), and compute the codeword
Fv ∈ RS

[
L, hl

]m2 such that the evaluation over H of the interpolation of the i-th row of Fv is the i-th
block of h entries in v (note that 1 + n = m2h). By linearity, Fv + Fw encodes z = (1, v, w) ∈ Fn+1.

2. For every ι ∈ [λi], V samples vectors rι,1, . . . , rι,m1 ← Fh (for lincheck) and tι ∈ Fm1 (for rowcheck).

3. For every ι ∈ [λi], the prover P and verifier V compute several vectors:

(saι,1, . . . , s
a
ι,m2

) := (rι,1, . . . , rι,m1)>A ,

(sbι,1, . . . , s
b
ι,m2

) := (rι,1, . . . , rι,m1)>B ,

(scι,1, . . . , s
c
ι,m2

) := (rι,1, . . . , rι,m1)>C .

They also find the polynomial r̂ι,i of degree less than h that evaluates to rι,i on H (for i ∈ [m1]), and
the polynomials ŝaι,i, ŝ

b
ι,i, ŝ

c
ι,i of degree less than h that evaluate to saι,i, s

b
ι,i, s

c
ι,i on H (for i ∈ [m2]).

4. For every ι ∈ [λi], P responds with (the coefficients of) several polynomials:

– For every � ∈ {a, b, c}, a lincheck polynomial p̂�ι of degree less than 2h+ b− 1 defined as

p̂�ι := q̂�ι +

m1∑
i=1

r̂ι,i · f̂�,i −
m2∑
i=1

ŝ�ι,i · (f̂v,i + f̂w,i)

where
∗ f̂�,i is the polynomial of degree less than h+ b that interpolate the i-th row of F� (for i ∈ [m1]);

∗ f̂v,i is the polynomial of degree less than h+ b that interpolates the i-th row of Fv (for i ∈ [m2]);

∗ f̂w,i is the polynomial of degree less than h+ b the interpolates the i-th row of Fw (for i ∈ [m2]).
– A rowcheck polynomial p̂ROW

ι of degree less than 2h+ 2b− 1 defined as

p̂ROW
ι := q̂ROW

ι +

m1∑
i=1

tι,i · (f̂a,i · f̂b,i − f̂c,i)

where {f̂a,i, f̂b,i, f̂c,i} are the polynomials of degree less than h+ b that interpolate the i-th row of
{Fa, Fb, Fc} respectively.

5. The verifier V samples random indices α1, . . . , αλq ← L and, for every k ∈ [λq], queries F at αk
thereby obtaining

F[αk] = (Fw[αk], Fa[αk], Fb[αk], Fc[αk], q
a
ι [αk], q

b
ι [αk], q

c
ι [αk], q

ROW
ι [αk]) .

The verifier V accepts if and only if for every ι ∈ [λi] the following tests pass.

50

– Lincheck tests. For every � ∈ {a, b, c},
∑

α∈H p̂
�
ι (α) = 0 and for every k ∈ [λq] it holds that

p̂�ι (αk) = q�ι [αk] +

m1∑
i=1

r̂ι,i(αk) · F�[i, αk]−
m2∑
i=1

ŝ�ι,i(αk) · (Fv[i, αk] + Fw[i, αk]) .

– Rowcheck test. p̂ROW
ι (H) = {0} and for every k ∈ [λq] it holds that

p̂ROW
ι (αk) = qROW

ι [αk] +

m1∑
i=1

tι,i · (Fa[i, αk] · Fb[i, αk]− Fc[i, αk]) .

Completeness. If w is in fact a satisfying witness for the R1CS instance, and the prover is honest, then the
rowcheck and lincheck correctness tests pass, by arguments analogous to those made for the previous two
protocols. The masking codewords {qaι , qbι , qcι , qROW

ι }ι∈[λi] are chosen so that completeness is unaffected.

Soundness. Assume that the R1CS instance is not satisfiable. Let F̃ be the codeword sent by the prover.
Let w̃ be the candidate witness encoded in F̃ ; note that Az̃ ◦ Bz̃ 6= Cz̃ where z̃ = (1, v, w̃). Let ã, b̃, c̃
be the alleged linear transformations of z̃ encoded in F̃ . One of the following equations cannot hold:
ã = Az̃, b̃ = Bz̃, c̃ = Cz̃, ã ◦ b̃ = c̃. If one of the first three equations fails to hold, the corresponding
lincheck sub-protocol will reject with high probability; if the last equation fails to hold, the rowcheck
sub-protocol will reject with high probability. The interactive phase of each of these sub-protocols is repeated
λi times, bringing the corresponding soundness error down from 1/|F| to 1/|F|λi ; the subsequent query phase
is repeated λq times, bringing the corresponding soundness error down from 2h+2b−2

l to (2h+2b−2
l)λq .

Note that the masking codewords qaι , q
b
ι , q

c
ι , q

ROW
ι do not affect soundness, as we now explain. In the

“no” case for the lincheck protocol, the summation
∑

α∈H p̂(α) is uniform over F. In the “no” case for the
rowcheck protocol, there exists some α ∈ H such that p̂(α) is uniform over F. Thus in both cases, regardless
of the (possibly malicious) choice of mask the probability that the verifier accepts remains 1/|F|.
Zero knowledge. We construct a probabilistic simulator S that, given as input a satisfiable R1CS instance
(F, k, n,m,A,B,C, v) and straightline access to a b-query malicious verifier Ṽ , outputs a view that is
identically distributed as Ṽ ’s view when interacting with an honest prover.

1. Use the public input v to compute Fv ∈ RS
[
L, hl

]m2 like the honest prover does.
2. Sample Fw ∈ (FL)m2 and Fa, Fb, Fc ∈ (FL)m1 uniformly at random. For every ι ∈ [λi], sample
qaι , q

b
ι , q

c
ι ∈ RS

[
L, 2h+b−1

l

]
uniformly at random given that the interpolation of qaι , q

b
ι , q

c
ι sums to

zero on H . For every ι ∈ [λi], sample qROW
ι ∈ RS

[
L, 2h+2b−1

l

]
uniformly at random given that

its interpolation vanishes everywhere on H . Set F = (Fw, Fa, Fb, Fc, q
a
ι , q

b
ι , q

c
ι , q

ROW
ι), and start

simulating Ṽ .
3. Use F to answer any queries by Ṽ . Let Q ⊆ L be the queries asked by Ṽ until the next step.
4. Receive a challenge {rι,1, . . . , rι,m1 , tι}ι∈[λi] from Ṽ .
5. For every ι ∈ [λi], sample p̂aι , p̂

b
ι , p̂

c
ι ∈ RS

[
L, 2h+b−1

l

]
uniformly at random such that each of

p̂aι , p̂
b
ι , p̂

c
ι sums to 0 on H and, for every α ∈ Q, the following hold:

• p̂aι (α) =
∑m1

i=1 r̂ι,i(α) · Fa[i, α] +
∑m2

i=1 ŝ
a
ι,i(α) · (Fv[i, α] + Fw[i, α])− qaι [α],

• p̂bι(α) =
∑m1

i=1 r̂ι,i(α) · Fb[i, α] +
∑m2

i=1 ŝ
b
ι,i(α) · (Fv[i, α] + Fw[i, α])− qbι [α],

• p̂cι(α) =
∑m1

i=1 r̂ι,i(α) · Fc[i, α] +
∑m2

i=1 ŝ
c
ι,i(α) · (Fv[i, α] + Fw[i, α])− qcι [α].

6. For every ι ∈ [λi], sample p̂ROW
ι ∈ RS

[
L, 2h+2b−1

l

]
uniformly at random such that p̂ROW

ι evaluates
to 0 everywhere on H , and, for every α ∈ Q, the following holds:

51

• p̂ROW
ι (α) =

∑m1
i=1 tι,i · (Fa[i, α] · Fb[i, α]− Fc[i, α])− qROW

ι [α].

7. Send {p̂aι , p̂bι , p̂cι , p̂ROW
ι }ι∈[λi] to Ṽ .

8. Answer any query α ∈ L by Ṽ by using Fw, Fa, Fb, Fc (as before) but for qaι , q
b
ι , q

c
ι , q

ROW
ι use:

• qaι [α] = p̂aι (α)−
∑m1

i=1 r̂ι,i(α) · Fa[i, α] +
∑m2

i=1 ŝ
a
ι,i(α) · (Fv[i, α] + Fw[i, α]),

• qbι [α] = p̂bι(α)−
∑m1

i=1 r̂ι,i(α) · Fb[i, α] +
∑m2

i=1 ŝ
b
ι,i(α) · (Fv[i, α] + Fw[i, α]),

• qcι [α] = p̂cι(α)−
∑m1

i=1 r̂ι,i(α) · Fc[i, α] +
∑m2

i=1 ŝ
c
ι,i(α) · (Fv[i, α] + Fw[i, α]),

• qROW
ι [α] = p̂ROW

ι (α)−
∑m1

i=1 tι,i · (Fa[i, α] · Fb[i, α]− Fc[i, α]).

To see that the view of Ṽ is perfectly simulated, we consider a hybrid experiment in which a “hybrid
prover” sends actual codewords for the blinding vectors (like the honest prover in the real world) but can
modify messages after they are sent (like the simulator in the ideal world).

1. Use the public input v to compute Fv ∈ RS
[
L, hl

]m2 like the honest prover does.
2. Sample Fw ∈ (FL)m2 and Fa, Fb, Fc ∈ (FL)m1 uniformly at random. For every ι ∈ [λi], sample
qaι , q

b
ι , q

c
ι ∈ RS

[
L, 2h+b−1

l

]
uniformly at random given that the interpolation of qaι , q

b
ι , q

c
ι sums to

zero on H . For every ι ∈ [λi], sample qROW
ι ∈ RS

[
L, 2h+2b−1

l

]
uniformly at random given that

its interpolation vanishes everywhere on H . Set F = (Fw, Fa, Fb, Fc, q
a
ι , q

b
ι , q

c
ι , q

ROW
ι), and start

simulating Ṽ .
3. Use F to answer any queries by Ṽ . Let Q ⊆ L be the queries asked by Ṽ until the next step.
4. Receive a challenge {rι,1, . . . , rι,m1 , tι}ι∈[λi] from Ṽ .
5. For every ι ∈ [λi], sample p̂aι , p̂

b
ι , p̂

c
ι ∈ RS

[
L, 2h+b−1

l

]
uniformly at random such that each of

p̂aι , p̂
b
ι , p̂

c
ι sums to 0 on H and, for every α ∈ Q, the following hold:

• p̂aι (α) =
∑m1

i=1 r̂ι,i(α) · Fa[i, α] +
∑m2

i=1 ŝ
a
ι,i(α) · (Fv[i, α] + Fw[i, α])− qaι [α],

• p̂bι(α) =
∑m1

i=1 r̂ι,i(α) · Fb[i, α] +
∑m2

i=1 ŝ
b
ι,i(α) · (Fv[i, α] + Fw[i, α])− qbι [α],

• p̂cι(α) =
∑m1

i=1 r̂ι,i(α) · Fc[i, α] +
∑m2

i=1 ŝ
c
ι,i(α) · (Fv[i, α] + Fw[i, α])− qcι [α].

6. For every ι ∈ [λi], sample p̂ROW
ι ∈ RS

[
L, 2h+2b−1

l

]
uniformly at random such that p̂ROW

ι evaluates
to 0 everywhere on H , and, for every α ∈ Q, the following hold:

• p̂ROW
ι (α) =

∑m1
i=1 tι,i · (Fa[i, α] · Fb[i, α]− Fc[i, α])− qROW

ι [α].

7. Send {p̂aι , p̂bι , p̂cι , p̂ROW
ι }ι∈[λi] to Ṽ .

8. For every ι ∈ [λi], replace qaι , q
b
ι , q

c
ι , q

ROW
ι with the following codewords respectively:

• {p̂aι (α)−
∑m1

i=1 r̂ι,i(α) · Fa[i, α] +
∑m2

i=1 ŝ
a
ι,i(α) · (Fv[i, α] + Fw[i, α])}α∈L;

• {p̂bι(α)−
∑m1

i=1 r̂ι,i(α) · Fb[i, α] +
∑m2

i=1 ŝ
b
ι,i(α) · (Fv[i, α] + Fw[i, α])}α∈L;

• {p̂cι(α)−
∑m1

i=1 r̂ι,i(α) · Fc[i, α] +
∑m2

i=1 ŝ
c
ι,i(α) · (Fv[i, α] + Fw[i, α])}α∈L;

• {p̂ROW
ι (α)−

∑m1
i=1 tι,i · (Fa[i, α] · Fb[i, α]− Fc[i, α])}α∈L.

9. Finish simulating the interaction with Ṽ .

The distribution of Ṽ ’s view in the real protocol is identical to the distribution of Ṽ ’s view in the above
experiment. In particular, since Ṽ makes at most b queries, the answers to its queries to Fa, Fb, Fc, Fw are
uniformly random in the real world, and hence are perfectly simulated, and it is easy to check that its queries
to qaι , q

b
ι , q

c
ι , q

ROW
ι after their replacement by the new values have the correct distribution. Moreover, it is not

hard to see that Ṽ ’s view in the above experiment and S’s output are identically distributed.
Efficiency. Both the prover and the verifier perform matrix multiplications, which take time proportional
to the number of non-zero elements of the matrices. The prover also performs O(m2 + m1 + λi) FFTs

52

over the systematic subspace H (of size h ≤ l) and the codeword subspace L (of size l) to construct the
codewords in F and, later, also to construct the response polynomials. The verifier performs FFTs to evaluate
the four response polynomials over H; then, after interpolating its challenges, the verifier also performs
O((m2 +m1)h) field operations for each interactive repetition and each query.

Summary. The aforementioned protocol is an RS-encoded IOP with the following parameters. One should
think of m1,m2, h as on the order of square root of the number of constraints/variables in the R1CS instance.
To achieve soundness 2−λ, we can set λi := bλ/ log |F|c+ 1 and λq := bλ/ log(l

2h+2b−2)c+ 1 for example.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 2
oracle length p = (m2 + 3m1 + 4λi)l
communication c = 4λi(8h+ 5b− 4)
query complexity q = (m2 + 3m1 + 4λi)λq
randomness (ri, rq) = ((m1 + 1)hλi log |F|, λq log l)

soundness error (εi, εq) =
(

(1
|F|)

λi , (2h+2b−2
l)λq

)
prover time tP = O(‖A‖+ ‖B‖+ ‖C‖) +O(m2 +m1 + λi)FFT(F, l)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖) +O(m2 +m1 + λi)FFT(F, l) +O(λiλq(m2 +m1)h)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

B.4 From encoded IPCP to regular IPCP

The IPCP for R1CS described in the prior section is RS-encoded because soundness assumes that the oracle
sent by the prover is an interleaved Reed–Solomon codeword (a list of Reed–Solomon codewords over the
same domain). Such a protocol can be transformed into a (regular) IPCP for R1CS by generically combining
it with any low-degree test, as described in Section 9 for example. Informally, the verifier tests that a suitable
linear combination of words in the oracle is close to the Reed–Solomon code. The low-degree test that we
use here is the direct one, namely, the prover sends, as a message, the coefficients of the polynomial that
interpolates the linear combination, and the verifier probabilistically checks that this polynomial is consistent
with the oracle; this subroutine corresponds to the “Test-Interleaved” protocol in [AHIV17].

This compilation has an impact on several parameters, which we now sketch. Let λLDT
i denote the number

of linear combinations that the verifier considers, and let λLDT
q denote the number of times that the verifier

repeats the consistency check. Let ` := m2 + 3m1 + 4λi be the number of words in the oracle.
Randomness complexity in the interactive phase increases by λLDT

i ` log |F| and in the query phase by
λLDT
q log l; query complexity increases by `λLDT

q ; communication complexity increases by the maximum
degree (plus 1) across all words. Soundness error in the interactive phase increases by (l

|F|)
λLDT
i (this is a

fairly coarse bound) and soundness error in the query phase becomes (εq + δLDT)λq + (1− δLDT)λ
LDT
q for

any proximity parameter δLDT < 1−ρ
4 (where ρ := 2h+2b−1

l is the maximum codeword rate). The choice of
δLDT balances the probability of a non-codeword oracle being caught by the low-degree test with its ability to
cheat on the protocol’s tests; an optimal value, to minimize overall soundness error, can be found numerically
for given choices of the other parameters.

53

P (F, L,H,m1,m2,M)

oracles: Fx ∈ RS [L, h/l]
m2

Fy ∈ RS [L, h/l]
m1 V (F, L,H,m1,m2,M, λq)

r1, . . . , rm1 ← Fhr1, . . . , rm1

Both prover and verifier compute:
• (s1, . . . , sm2

) := (r1, . . . , rm1
)>M

• ∀i ∈ [m1], r̂i s.t. r̂i|H = ri
• ∀i ∈ [m2], ŝi s.t. ŝi|H = si

Compute the polynomial
p̂ =

∑m1

i=1 r̂i · f̂x,i −
∑m2

i=1 ŝi · f̂y,i p̂

Sample α1, . . . , αλq ← L and
check that

∑
α∈H p̂(α) = 0 and ∀k ∈ [λq]

p̂(αk) =
∑m1

i=1 r̂i(αk) · Fx[i, αk]−
∑m2

i=1 ŝi(αk) · Fy[i, αk]

Figure 13: Diagram of the interleaved lincheck protocol.

P (F, L,H,m) oracles: Fx, Fy, Fz ∈ RS [L, h/l]
m V (F, L,H,m, λq)

t t← Fm

Compute the polynomial
p̂ =

∑m
i=1 ti · (f̂x,i · f̂y,i − f̂z,i) p̂

Sample α1, . . . , αλq ← L and
check that p̂(H) = {0} and ∀k ∈ [λq]
p̂(αk) =

∑m
i=1 ti · (Fx[i, αk] · Fy[i, αk]− Fz[i, αk])

Figure 14: Diagram of the interleaved rowcheck protocol.

P ((F, k, n,m,A,B,C, v), w, λi) V ((F, k, n,m,A,B,C, v), λi, λq)

Compute vectors
• a := Az
• b := Bz
• c := Cz

Sample codewords
• Fw, Fa, Fb, Fc
• {qaι , qbι , qcι , qROW

ι }ι∈[λi]

F := Fw, Fa, Fb, Fc, {qaι , qbι , qcι , qROW
ι }ι∈[λi] {

rι,1, . . . , rι,m1 ← Fh
tι ← Fm1

}
ι∈[λi]{rι,1, . . . , rι,m1 , tι}ι∈[λi]

Compute polynomials
• {p̂aι , p̂bι , p̂cι , p̂ROW

ι }ι∈[λi]
{p̂aι , p̂bι , p̂cι , p̂ROW

ι }ι∈[λi]

Sample α1, . . . , αλq ← L and ∀ι ∈ [λi] check that
• ∀� ∈ {a, b, c},

∑
α∈H p̂

�
ι (α) = 0 and, ∀k ∈ [λq], p̂�ι (αk) = q�ι [αk]+∑m1

i=1 r̂ι,i(αk) · F�[i, αk]−
∑m2

i=1 ŝ
�
ι,i(αk) · (Fv[i, αk] + Fw[i, αk])

• p̂ROW
ι (H) = {0} and, ∀k ∈ [λq],

p̂ROW
ι (αk) = qROW

ι [αk] +
∑m1

i=1 tι,i · (Fa[i, αk] · Fb[i, αk]− Fc[i, αk])

Figure 15: Diagram of the interleaved R1CS protocol.

54

C Additional comparisons

We provide additional comparisons across Ligero, Stark, and Aurora: in Appendix C.1 we compare the
low-degree tests that they rely on, and in Appendix C.2 we compare their underlying IOP protocols.

C.1 Comparison of the LDTs in Ligero, Stark, and Aurora

A key ingredient in Ligero [AHIV17], Stark [BBHR18a], and Aurora (this work) are low-degree tests (LDTs).
Formally, each of these systems relies on an IOPP for the Reed–Solomon relation (see Section 4.5.1). The
LDT is then generically “lifted” to an LDT for the interleaved Reed–Solomon code (see Section 4.1), by
taking a random linear combination as in Section 9. Below (and in Fig. 16) we discuss aspects of the LDTs
underlying these systems that are important in the comparison in Appendix C.2.

Direct LDT. Ligero uses a direct LDT: the verifier is given oracle access to a function f : L→ F, receives
from the prover a0, . . . , aρ|L|−1 ∈ F (allegedly, coefficients of the polynomial f̂ obtained by interpolating f),

and checks that f and
∑ρ|L|−1

i=0 aiX
i agree at a random point of |L|. If f is δ-far from RS [L, ρ] then the

verifier accepts with probability at most 1− δ. This probability can be reduced to (1− δ)t via t independent
checks. Overall, the verifier queries f at t points, and reads ρ|L| field elements sent by the prover. One should
think of t as much less than ρ|L|, which facilitates lifting to an LDT for the interleaved Reed–Solomon code.

FRI LDT. Stark and Aurora use FRI [BBHR18b], a LDT in which the verifier is given oracle access to
a function f : L → F and, in each of a sequence of rounds, sends a random field element to the prover,
who replies with an oracle; at the end of the interaction, the verifier makes a certain number of queries to
f and the oracles, and then either accepts or rejects. (The domain L here is an additive or multiplicative
coset in F whose order is a power of 2.) In more detail, given a localization parameter η ∈ N, the number
of rounds is log ρ|L|

η , and in the i-th round the prover sends an oracle over a domain of size |L|/2iη; thus,
the total number of elements sent across all oracles is less than

∑∞
i=1 |L|/2iη = |L|/(2η + 1). After the

interaction, the verifier queries f at a point, and every other oracle at 2η − 1 points; given the corresponding
answers, the verifier performs O(2η log ρ|L|) arithmetic operations, and then accepts or rejects. If f is
δ-far from RS [L, ρ] then the verifier accepts with probability at most ε(δ) := εi + (1 −min{δρ, δ})t for
certain values of εi and δρ. In [BBHR18b] it is proved that εi = 3|L|/|F| and δρ = (1− 3ρ− 2η|L|−1/2)/4;
in [BKS18] this was improved to εi = 2 log |L|/ε3|F| and δρ = Jε(Jε(1 − ρ)) − ε log |L| for any ε > 0,
where Jε(x) := 1 −

√
1− x(1− ε). In [BBHR18b] it is conjectured that the best possible values are

εi = 2η log2(|L|)/εη2|F| with δρ = 1− (1− ε)ρ for any ε > 0.

C.2 Comparison of the IOPs in Ligero, Stark, and Aurora

Each of Ligero [AHIV17], Stark [BBHR18a], and Aurora (this work) is a (zero knowledge) IOP that is
compiled into a (zero knowledge) SNARG via a transformation of Ben-Sasson et al. [BCS16]. Comparing
these SNARGs (essentially) reduces to comparing the underlying IOPs, which we do below.

Construction blueprint. The IOPs in the aforementioned systems can all be viewed as combining an
encoded IOP (as defined in Section 4.7) and a low-degree test (as defined in Section 4.5.1), via the transforma-
tion described in Section 9. Informally, this transformation invokes the low-degree test on a suitable random
linear combination of the oracles sent by the encoded IOP prover (more generally, of “virtual” oracles implied
by these), thereby ensuring that the codeword obtained by stacking these oracles is close to the interleaved
Reed–Solomon code (more generally, a codeword obtained by applying a transformation to these oracles is
close to the interleaved Reed–Solomon code); one can then reduce to soundness of the encoded IOP.

55

number of queries
LDT to f to aux oracles soundness error
direct t ρ|L| (1− δ)t

FRI t t · (2η − 1) · log ρ|L|η
εi + (1−min{δρ, δ})t

Figure 16: Parameters of the direct low-degree test and FRI low-degree test when invoked on a function
f : L→ F that is δ-far from RS [L, ρ] ⊆ FL. Note that δ always lies in [0, 1− ρ].

IOP relation number of queries

Stark APR qFRI

(
|R|+ 1, 4(|H|+ b), ρ

)
+ qFRI

(
|N |+ 1, D(|H|+ b), ρ

)
Ligero R1CS qDIR

(
4(h+ 1), 2m/h, ρ

)
Aurora R1CS qFRI

(
6, 3m+ 2b, ρ

)
Figure 17: Aspects of the IOPs underlying Stark, Ligero, and Aurora.

For a given soundness error, the query complexity of an IOP constructed via the blueprint above is
determined by the query complexity of the underlying low-degree test, while (typically) the prover and
verifier complexities are dominated by the encoded IOP’s prover and verifier complexities.

The three IOPs. In light of the foregoing blueprint, we describe the differences across the three IOPs by
discussing the differences across the respective encoded IOPs and low-degree tests (see Fig. 17). Recall that
b denotes the query bound for zero knowledge (as defined in Section 4.6); the bound is later set to equal the
number of queries of the honest verifier. Moreover, for notational simplicity, below we use q

(
k, d, ρ

)
to

denote the query complexity of a low-degree test invoked on a function f∗ : L→ F derived entry-wise from
k oracles fi : L→ F sent by the encoded IOP prover, with each oracle (allegedly) having degree less than
d = ρ|L|; using a low-degree test in this way follows the general paradigm described in Section 4.1.

• The IOP in Aurora. The IOP in Aurora is obtained by combining an encoded IOP for R1CS (described in
Section 8) and the FRI low-degree test. Given an R1CS instance with m constraints, the IOP invokes the
low-degree test on 6 oracles having maximal degree 3m+ 2b, resulting in qFRI

(
6, 3m+ 2b, ρ

)
queries.

• The IOP in Ligero. The IOP in Ligero (adapted for R1CS) is obtained by combining an encoded IOP for
R1CS and a direct low-degree test (see Appendix C.1). Given an R1CS instance with m constraints and for
a parameter h ≈

√
m, the IOP invokes the low-degree test on 4(h+ 1) oracles of maximal degree 2m/h,

resulting in qDIR

(
4(h+ 1), 2m/h, ρ

)
queries.

• The IOP in Stark. The IOP in Stark natively supports Algebraic Placement and Routing (APR), which is
the following problem: given a finite field F, subset H ⊆ F, algebraic registersR, neighbors N , and set of
polynomial constraints C, are there functions w = (wi : H → F)i∈R such that for every element α ∈ H
and every constraint c ∈ C it holds that c

(
α, (wi(f(α)))(i,f)∈N

)
= 0? (See [BBHR18a] for details.)

The IOP in Stark is obtained by combining an encoded IOP for APR and the FRI low-degree test. The latter
is used twice: once on |R|+ 1 oracles of maximal degree 4(|H|+ b); once on |N |+ 1 oracles of maximal
degree D(|H|+b). This results in qFRI

(
|R|+1, 4(|H|+b), ρ

)
+ qFRI

(
|N |+1, D(|H|+b), ρ

)
queries.

56

Acknowledgments

We thank Alexander Chernyakhovsky and Tom Gur for helpful discussions, and Aleksejs Popovs for help in
implementing parts of libiop. This work was supported in part by: the Ethics and Governance of Artificial
Intelligence Fund; a Google Faculty Award; the Israel Science Foundation (grant 1501/14); the UC Berkeley
Center for Long-Term Cybersecurity; the US-Israel Binational Science Foundation (grant 2015780); and
donations from the Interchain Foundation and Qtum.

References
[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.

“Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”. In: Proceedings of
the 24th ACM Conference on Computer and Communications Security. CCS ’17. 2017,
pp. 2087–2104.

[AKKLR05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. “Testing
Reed–Muller codes”. In: IEEE Transactions on Information Theory 51.11 (2005), pp. 4032–
4039.

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and the hardness of approximation problems”. In: Journal of the ACM 45.3 (1998).
Preliminary version in FOCS ’92., pp. 501–555.

[AMPH14] Jean-Philippe Aumasson, Willi Meier, Raphael Phan, and Luca Henzen. The Hash Function
BLAKE. Springer-Verlag Berlin Heidelberg, 2014. ISBN: 9783662447567.

[ANWOW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein.
BLAKE2: simpler, smaller, fast as MD5. https://blake2.net/blake2.pdf. 2013.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization of
NP”. In: Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[BBBPWM17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Efficient Range Proofs for Confidential Transactions. Cryptology
ePrint Archive, Report 2017/1066. 2017.

[BBCGGHPRSTV17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars
Virza. “Computational integrity with a public random string from quasi-linear PCPs”. In:
Proceedings of the 36th Annual International Conference on Theory and Application of
Cryptographic Techniques. EUROCRYPT ’17. 2017, pp. 551–579.

[BBCPGL18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim
Lyubashevsky. “Sub-linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Cir-
cuits”. In: Proceedings of the 38th Annual International Cryptology Conference. CRYPTO ’18.
2018, pp. 669–699.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046.
2018.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. “Fast Reed–Solomon
Interactive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming. ICALP ’18. 2018, 14:1–14:17.

[BC14] Daniel J. Bernstein and Tung Chou. “Faster Binary-Field Multiplication and Faster Binary-
Field MACs”. In: Proceedings of the 21st International Conference on Selected Areas in
Cryptography. SAC ’14. 2014, pp. 92–111.

57

https://blake2.net/blake2.pdf

[BC99] Nigel P. Byott and Robin J. Chapman. “Power Sums over Finite Subspaces of a Field”. In:
Finite Fields and Their Applications 5.3 (July 1999), pp. 254–265.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum disclosure proofs of knowl-
edge”. In: Journal of Computer and System Sciences 37.2 (1988), pp. 156–189.

[BCCGP16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. “Efficient
Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”. In: Proceed-
ings of the 35th Annual International Conference on Theory and Application of Cryptographic
Techniques. EUROCRYPT ’16. 2016, pp. 327–357.

[BCFGRS17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev,
and Nicholas Spooner. “Zero Knowledge Protocols from Succinct Constraint Detection”. In:
Proceedings of the 15th Theory of Cryptography Conference. TCC ’17. 2017, pp. 172–206.

[BCGGMTV14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In:
Proceedings of the 2014 IEEE Symposium on Security and Privacy. SP ’14. 2014, pp. 459–474.

[BCGRS17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
“Interactive Oracle Proofs with Constant Rate and Query Complexity”. In: Proceedings of the
44th International Colloquium on Automata, Languages and Programming. ICALP ’17. 2017,
40:1–40:15.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. “Fast Reductions from
RAMs to Delegatable Succinct Constraint Satisfaction Problems”. In: Proceedings of the 4th
Innovations in Theoretical Computer Science Conference. ITCS ’13. 2013, pp. 401–414.

[BCGTV13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. “SNARKs
for C: Verifying Program Executions Succinctly and in Zero Knowledge”. In: Proceedings of
the 33rd Annual International Cryptology Conference. CRYPTO ’13. 2013, pp. 90–108.

[BCGTV15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. “Secure
Sampling of Public Parameters for Succinct Zero Knowledge Proofs”. In: Proceedings of the
36th IEEE Symposium on Security and Privacy. S&P ’15. 2015, pp. 287–304.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size Zero
Knowledge from Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryptography
Conference. TCC ’16-A. 2016, pp. 33–64.

[BCIOP13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. “Succinct
Non-Interactive Arguments via Linear Interactive Proofs”. In: Proceedings of the 10th Theory
of Cryptography Conference. TCC ’13. 2013, pp. 315–333.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero Knowl-
edge via Cycles of Elliptic Curves”. In: Proceedings of the 34th Annual International Cryp-
tology Conference. CRYPTO ’14. Extended version at http://eprint.iacr.org/
2014/595. 2014, pp. 276–294.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Succinct Non-Interactive
Zero Knowledge for a von Neumann Architecture”. In: Proceedings of the 23rd USENIX
Security Symposium. Security ’14. Extended version at http://eprint.iacr.org/
2013/879. 2014, pp. 781–796.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. “Non-Deterministic Exponential Time
has Two-Prover Interactive Protocols”. In: Computational Complexity 1 (1991). Preliminary
version appeared in FOCS ’90., pp. 3–40.

58

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879
http://eprint.iacr.org/2013/879

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations
in polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing. STOC ’91. 1991, pp. 21–32.

[BGG17] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report 2017/602.
2017.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computation for zk-SNARK
Parameters in the Random Beacon Model. Cryptology ePrint Archive, Report 2017/1050.
2017.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. “Lattice-Based SNARGs and Their
Application to More Efficient Obfuscation”. In: Proceedings of the 36th Annual International
Conference on Theory and Applications of Cryptographic Techniques. EUROCRYPT ’17.
2017, pp. 247–277.

[BKKMS13] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth. “Con-
stant Rate PCPs for Circuit-SAT with Sublinear Query Complexity”. In: Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computer Science. FOCS ’13. 2013,
pp. 320–329.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. “Worst-Case to Average Case
Reductions for the Distance to a Code”. In: Proceedings of the 33rd ACM Conference on
Computer and Communications Security. CCS ’18. 2018, 24:1–24:23.

[BS06] Eli Ben-Sasson and Madhu Sudan. “Robust locally testable codes and products of codes”. In:
Random Structures and Algorithms 28.4 (2006), pp. 387–402.

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM
Journal on Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–607.

[Bab85] László Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing. STOC ’85. 1985, pp. 421–429.

[CD98] Ronald Cramer and Ivan Damgård. “Zero-Knowledge Proofs for Finite Field Arithmetic;
or: Can Zero-Knowledge be for Free?” In: Proceedings of the 18th Annual International
Cryptology Conference. CRYPTO ’98. 1998, pp. 424–441.

[CFHKKNPZ15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. “Geppetto: Versatile Verifiable Computation”. In:
Proceedings of the 36th IEEE Symposium on Security and Privacy. S&P ’15. 2015, pp. 250–
273.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. “Practical Verified Computation
with Streaming Interactive Proofs”. In: Proceedings of the 4th Symposium on Innovations in
Theoretical Computer Science. ITCS ’12. 2012, pp. 90–112.

[CS17] eBACS: ECRYPT Benchmarking of Cryptographic Systems. Measurements of hash functions,
indexed by machine. 2017. URL: https://bench.cr.yp.to/results-hash.
html.

[CT65] James W. Cooley and John W. Tukey. “An algorithm for the machine calculation of complex
Fourier series”. In: Mathematics of Computation 19 (1965), pp. 297–301.

[Can89] David G. Cantor. “On arithmetical algorithms over finite fields”. In: Journal of Combinatorial
Theory, Series A 50.2 (1989), pp. 285–300.

[FGLSS96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. “Interactive
proofs and the hardness of approximating cliques”. In: Journal of the ACM 43.2 (1996).
Preliminary version in FOCS ’91., pp. 268–292.

59

https://bench.cr.yp.to/results-hash.html
https://bench.cr.yp.to/results-hash.html

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic Span Pro-
grams and Succinct NIZKs without PCPs”. In: Proceedings of the 32nd Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’13. 2013,
pp. 626–645.

[GH98] Oded Goldreich and Johan Håstad. “On the complexity of interactive proofs with bounded
communication”. In: Information Processing Letters 67.4 (1998), pp. 205–214.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. “Interactive locking,
zero-knowledge PCPs, and unconditional cryptography”. In: Proceedings of the 30th Annual
Conference on Advances in Cryptology. CRYPTO’10. 2010, pp. 173–190.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating Computation:
Interactive Proofs for Muggles”. In: Journal of the ACM 62.4 (2015), 27:1–27:64.

[GM10] Shuhong Gao and Todd Mateer. “Additive Fast Fourier Transforms Over Finite Fields”. In:
IEEE Transactions on Information Theory 56.12 (2010), pp. 6265–6272.

[GM17] Jens Groth and Mary Maller. “Snarky Signatures: Minimal Signatures of Knowledge from
Simulation-Extractable SNARKs”. In: Proceedings of the 37th Annual International Cryptol-
ogy Conference. CRYPTO ’17. 2017, pp. 581–612.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of in-
teractive proof systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary version
appeared in STOC ’85., pp. 186–208.

[GW11] Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive Arguments From All
Falsifiable Assumptions”. In: Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing. STOC ’11. 2011, pp. 99–108.

[Gro10] Jens Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In: Proceed-
ings of the 16th International Conference on the Theory and Application of Cryptology and
Information Security. ASIACRYPT ’10. 2010, pp. 321–340.

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Proceedings
of the 35th Annual International Conference on Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’16. 2016, pp. 305–326.

[Gue11] Shay Gueron. Intel Carry-Less Multiplication Instruction and its Usage for Computing the
GCM Mode. https://software.intel.com/en- us/articles/intel-
carry-less-multiplication-instruction-and-its-usage-for-computing-
the-gcm-mode. 2011.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. “Efficient Arguments without Short
PCPs”. In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity. CCC ’07. 2007, pp. 278–291.

[IMSX15] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On Zero-Knowledge PCPs:
Limitations, Simplifications, and Applications. Available at http://www.cs.virginia.
edu/˜mohammad/files/papers/ZKPCPs-Full.pdf. 2015.

[IW14] Yuval Ishai and Mor Weiss. “Probabilistically Checkable Proofs of Proximity with Zero-
Knowledge”. In: Proceedings of the 11th Theory of Cryptography Conference. TCC ’14. 2014,
pp. 121–145.

[KR08] Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International Collo-
quium on Automata, Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[KS08] Tali Kaufman and Madhu Sudan. “Algebraic property testing: the role of invariance”. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing. STOC ’08. 2008,
pp. 403–412.

60

https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of
the 24th Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732.

[LAH16] Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. “FFT Algorithm for Binary
Extension Finite Fields and Its Application to Reed–Solomon Codes”. In: IEEE Transactions
on Information Theory 62.10 (2016), pp. 5343–5358.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. “Novel Polynomial Basis and Its
Application to Reed–Solomon Erasure Codes”. In: Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science. FOCS ’14. 2014, pp. 316–325.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. “Algebraic Methods for
Interactive Proof Systems”. In: Journal of the ACM 39.4 (1992), pp. 859–868.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Second Edition. Cambridge University
Press, 1997.

[Lip13] Helger Lipmaa. “Succinct Non-interactive Zero Knowledge Arguments from Span Programs
and Linear Error-Correcting Codes”. In: Proceedings of the 19th International Conference on
the Theory and Application of Cryptology and Information Security. ASIACRYPT ’13. 2013,
pp. 41–60.

[Mei12] Or Meir. “Combinatorial PCPs with Short Proofs”. In: Proceedings of the 26th Annual IEEE
Conference on Computational Complexity. CCC ’12. 2012.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000).
Preliminary version appeared in FOCS ’94., pp. 1253–1298.

[Mon85] Peter L. Montgomery. “Modular Multiplication without Trial Division”. In: Mathematics of
Computation 44.170 (1985), pp. 519–521.

[NIS16] NIST. Post-Quantum Cryptography. 2016. URL: https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography.

[Nak09] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system. 2009. URL: http://www.
bitcoin.org/bitcoin.pdf.

[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. “Pinocchio: Nearly Practical
Verifiable Computation”. In: Proceedings of the 34th IEEE Symposium on Security and
Privacy. Oakland ’13. 2013, pp. 238–252.

[PS94] Alexander Polishchuk and Daniel A. Spielman. “Nearly-linear size holographic proofs”. In:
Proceedings of the 26th Annual ACM Symposium on Theory of Computing. STOC ’94. 1994,
pp. 194–203.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs for
Delegating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory of
Computing. STOC ’16. 2016, pp. 49–62.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. “Interactive proofs of proximity:
delegating computation in sublinear time”. In: Proceedings of the 45th ACM Symposium on
the Theory of Computing. STOC ’13. 2013, pp. 793–802.

[SBVBPW13] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael
Walfish. “Resolving the conflict between generality and plausibility in verified computation”.
In: Proceedings of the 8th EuoroSys Conference. EuroSys ’13. 2013, pp. 71–84.

[Sha92] Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869–877.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. “Verifiable Com-
putation with Massively Parallel Interactive Proofs”. In: CoRR abs/1202.1350 (2012).

61

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

[Tha13] Justin Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: Proceedings of
the 33rd Annual International Cryptology Conference. CRYPTO ’13. 2013, pp. 71–89.

[Tha15] Justin Thaler. A Note on the GKR Protocol. http://people.cs.georgetown.edu/
jthaler/GKRNote.pdf. 2015.

[The] The Zcash Ceremony. https://z.cash/blog/the-design-of-the-ceremony.
html. 2016.

[WB15] Michael Walfish and Andrew J. Blumberg. “Verifying Computations Without Reexecuting
Them”. In: Communications of the ACM 58.2 (Jan. 2015), pp. 74–84.

[WHGSW16] Riad S. Wahby, Max Howald, Siddharth J. Garg, Abhi Shelat, and Michael Walfish. “Verifiable
ASICs”. In: Proceedings of the 37th IEEE Symposium on Security and Privacy. S&P ’16.
2016, pp. 759–778.

[WJBSTWW17] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish, and
Thomas Wies. “Full Accounting for Verifiable Outsourcing”. In: Proceedings of the 24th ACM
Conference on Computer and Communications Security. CCS ’17. 2017, pp. 2071–2086.

[WSRBW15] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish.
“Efficient RAM and control flow in verifiable outsourced computation”. In: Proceedings of the
22nd Annual Network and Distributed System Security Symposium. NDSS ’15. 2015.

[WTSTW17] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-
efficient zkSNARKs without trusted setup. Cryptology ePrint Archive, Report 2017/1132.
2017.

[Wee05] Hoeteck Wee. “On Round-Efficient Argument Systems”. In: Proceedings of the 32nd Interna-
tional Colloquium on Automata, Languages and Programming. ICALP ’05. 2005, pp. 140–
152.

[ZGKPP17a] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Pa-
pamanthou. A Zero-Knowledge Version of vSQL. Cryptology ePrint Archive, Report 2017/1146.
2017.

[ZGKPP17b] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. “vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases”.
In: Proceedings of the 38th IEEE Symposium on Security and Privacy. S&P ’17. 2017, pp. 863–
880.

[Zca] ZCash Company. https://z.cash/. 2014.

[Zks] Zero Knowledge Proof Standardization. https://zkproof.org/. 2017.

[SCI] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs. URL: https://github.com/
scipr-lab/libsnark.

62

http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
https://z.cash/blog/the-design-of-the-ceremony.html
https://z.cash/blog/the-design-of-the-ceremony.html
https://z.cash/
https://zkproof.org/
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

	Abstract
	Contents
	1 Introduction
	1.1 The need for a transparent setup
	1.2 Our goal
	1.3 Our contributions
	1.4 Prior implementations of transparent SNARGs

	2 Techniques
	2.1 Our interactive oracle proof for R1CS
	2.2 A sumcheck protocol for univariate polynomials
	2.3 Efficient zero knowledge from algebraic techniques
	2.4 Perspective on our techniques

	3 Roadmap
	4 Definitions
	4.1 Codes
	4.2 Representations of polynomials
	4.3 The fast Fourier transform
	4.4 Subspace polynomials
	4.5 Interactive oracle proofs
	4.6 Zero knowledge
	4.7 Reed–Solomon encoded IOP

	5 Univariate sumcheck
	5.1 Zero knowledge
	5.2 Amortization

	6 Univariate lincheck
	7 Univariate rowcheck
	8 An RS-encoded IOP for rank-one constraint satisfaction
	8.1 Zero knowledge
	8.2 Amortization

	9 From RS-encoded provers to arbitrary provers
	9.1 Zero knowledge

	10 Aurora: an IOP for rank-one constraint satisfaction (R1CS)
	11 libiop: a library for IOP-based non-interactive arguments
	11.1 Library for IOP protocols
	11.2 BCS transformation
	11.3 Portfolio of IOP protocols and sub-components

	12 Evaluation
	12.1 Performance of Aurora
	12.2 Comparison of Ligero, Stark, and Aurora

	A Proof of lemma:sumcheck-fact
	B Adaptation of Ligero to the R1CS relation
	B.1 Interleaved lincheck
	B.2 Interleaved rowcheck
	B.3 Interleaved ZKIPCP for R1CS
	B.4 From encoded IPCP to regular IPCP

	C Additional comparisons
	C.1 Comparison of the LDTs in Ligero, Stark, and Aurora
	C.2 Comparison of the IOPs in Ligero, Stark, and Aurora

	Acknowledgments
	References

