
Identity-based Encryption Tightly Secure under
Chosen-ciphertext Attacks

Dennis Hofheinz1, Dingding Jia2,3,4, and Jiaxin Pan1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{Dennis.Hofheinz, Jiaxin.Pan}@kit.edu

2 State Key Laboratory of Information Security, Institute of Information Engineering,
CAS, Beijing, China

jiadingding@iie.ac.cn
3 Data Assurance and Communication Security Research Center, IIE, CAS, Beijing,

China
4 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract We propose the first identity-based encryption (IBE) scheme
that is (almost) tightly secure against chosen-ciphertext attacks. Our
scheme is efficient, in the sense that its ciphertext overhead is only seven
group elements, three group elements more than that of the state-of-the-
art passively (almost) tightly secure IBE scheme. Our scheme is secure in
a multi-challenge setting, i.e., in face of an arbitrary number of challenge
ciphertexts. The security of our scheme is based upon the standard sym-
metric external Diffie-Hellman assumption in pairing-friendly groups, but
we also consider (less efficient) generalizations under weaker assumptions.

Keywords. identity-based encryption, chosen-ciphertext security, tight
security reductions.

1 Introduction

Tight security. Usually, security reductions are used to argue the security of a
cryptographic scheme S. A reduction reduces any attack on S to an attack on a
suitable computational problem P . More specifically, a reduction constructs a
successful P -solver AP out of any given successful adversary AS on S. Intuitively,
a reduction thus shows that S is at least as hard to break/solve as P .

Ideally, we would like a reduction to be tight, in the sense that the constructed
AP has the same complexity and success probability as the given AS . A tight
security reduction implies that the security of S is tightly coupled with the
hardness of P . From a more practical perspective, a tight security reduction
allows for more efficient parameter choices for S, when deriving those parameters
from the best known attacks on P .

Current state of the art. Tight reductions have been studied for a variety of
cryptographic primitives, such as public-key encryption [6,29,37,38,27,17,28],
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signature schemes [10,13,29,1,12,8,37,27,2,4,43,18,32], identity-based encryption
(IBE) [12,8,31,3,21,22,11], non-interactive zero-knowledge proofs [29,37,17], and
key exchange [5,26].

Existing tight reductions and corresponding schemes differ in the type and
quality of tightness, and in the incurred cost of tightness. For instance, most of
the referenced works provide only what is usually called “almost tight” reductions.
In an almost tight reduction, the success probability of AP may be smaller than
AS , but only by a factor depends only on the security parameter (but not, e.g.,
on the size of AS). Furthermore, some reductions consider the scheme only in a
somewhat restricted setting, such as an IBE setting in which only one challenge
ciphertext is considered.

Our goal: (almost) tightly CCA-secure IBE schemes in the multi-challenge setting.
In this work, we are interested in (almost) tight reductions for IBE schemes.
As remarked above, there already exist a variety of (almost) tightly secure IBE
schemes. However, most of these schemes only provide security of one challenge
ciphertext, and none of them provide security against chosen-ciphertext attacks.
Security of many challenge ciphertexts is of course a more realistic notion;
and while this notion is polynomially equivalent to the one-challenge notion,
the corresponding reduction is far from tight, and defeats the purpose of tight
security of the overall scheme in a realistic setting. Furthermore, chosen-ciphertext
security guarantees security even against active adversaries [42].

On the difficulty of achieving our goal. Achieving many-challenge IBE security and
chosen-ciphertext security appears to be technically challenging. First, with the
exception of [21,22], all known IBE constructions that achieve (almost) tight many-
challenge security rely on composite-order groups, and are thus comparatively
inefficient. The exception [22] (like its predecessor [21]) constructs an efficient
(almost) tightly secure IBE scheme in the many-challenge setting by adapting
and implementing the “(extended) nested dual system groups” framework [12,31]
in prime-order groups. Since this work is closest to ours, we will take a closer
look at it after we have described our technical contribution. We stress, however,
that also [22] does not achieve chosen-ciphertext security.

Second, canonical approaches to obtain chosen-ciphertext security do not
appear to apply to existing tightly secure IBE schemes. For instance, it is known
that hierarchical identity-based encryption (HIBE) implies chosen-ciphertext
secure IBE [9]. However, currently no tightly secure HIBE schemes are known,
and in fact there are lower bounds on the quality of (a large class of) security
reductions for HIBE schemes [36].

Another natural approach to achieve chosen-ciphertext security is to equip
ciphertexts with a non-interactive zero-knowledge (NIZK) proof of knowledge
of the corresponding plaintext. Intuitively, a security reduction can use this
NIZK proof to extract the plaintext message from any adversarially generated
decryption query. Highly optimized variants of this outline are responsible for
highly efficient public-key encryption schemes (e.g., [41,14,35]).
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It is plausible that this approach can be used to turn, e.g., the tightly secure
schemes of [21,22] into chosen-ciphertext secure schemes. However, this requires
a NIZK proof system which is tightly secure and sound even in the presence of
many simulated proofs. While such proof systems are constructible by combining
Groth-Sahai proofs [24] with a tightly secure structure-preserving signature
scheme [18] (see also [23,29]), the resulting NIZK and IBE schemes would not be
very efficient. In fact, efficient suitable NIZK schemes are only known for simple
languages [17], which do not appear compatible with the complex IBE schemes
of [21,22].

Our results. We provide a tightly chosen-ciphertext secure IBE scheme in the
multi-challenge setting. Our scheme builds upon a new tightly chosen-plaintext
secure IBE scheme whose efficiency is comparable with that of the state-of-the-art
scheme of [22]. However, unlike [22], our scheme is compatible with the highly
efficient NIZK proof system of [17]. This allows to upgrade our scheme to chosen-
ciphertext security by adding an efficient consistency proof (that consists of
only three group elements) to ciphertexts. We briefly remark that, similar to
previous schemes [8,3,21,22], our scheme also achieves a (somewhat weak) form of
anonymity. We compare the efficiency of our scheme with existing state-of-the-art
schemes in Table 1.

Scheme |pk| |C| MC CCA Loss Assump.
Gen06 [19] 5|G1|+ |H| |G|+ 2|GT | –

√
O(1) q-ABDHE

CW13 [12] 2k2(2λ+ 1)|G1|+ k|GT | 4k|G1| – – O(λ) k-LIN
BKP14 [8] (2λk2 + 2k)|G1| (2k + 1)|G1| – – O(λ) k-LIN
AHY15 [3] (16λ+ 8)|G1|+ 2|GT | 8|G1|

√
– O(λ) k-LIN

GCD+16 [21] (6λk2 + 3k2)|G1|+ k|GT | 6k|G1|
√

– O(λ) k-LIN
GCD+16 [21] (4λk2 + 2k2)|G1|+ k|GT | 4k|G1|

√
– O(λ) k-LINAI

GDCC16 [22] (2λk2 + 3k2)|G1|+ k|GT | 4k|G1|
√

– O(λ) k-LIN
HLQG18 [25] (4λk2 + k2 + 2k)|G1|+ |CH| (2k + 1)|G1|+ |R| –

√
O(λ) k-LIN

Ours ((5 + 4λ)k2 + (2 + 2λ)k)|G1| (6k + 1)|G1|
√ √

O(λ) k-LIN
+(2λk2 + 4k2 + k)|G2|

Table 1. Comparison between known (almost) tightly and adaptively secure IBEs in
prime-order groups from standard assumptions. We count the number of group elements
in G (for symmetric pairings), G1,G2, and GT . |pk| denotes the size of the (master)
public key, and |C| denotes the ciphertext overhead (on top of the message size).‘MC’
denotes many-challenge security, and ‘CCA’ chosen-ciphertext security. ‘Loss’ denotes
the reduction loss, and ‘Assump.’ the assumption reduced to. H : G×GT ×GT → Zq is
a universal one-way hash function and |H| denotes the size of the representation of H.
|CH| is the size of the hash key of a chameleon hash CH : Gk+1

1 → {0, 1}L and |R| is
the size of its randomness.

1.1 Technical overview

The approach of Blazy, Kiltz, and Pan (BKP). Our starting point is the
MAC→IBE transformation of Blazy, Kiltz, and Pan (BKP) [8], which in turn
abstracts the IBE construction of Chen and Wee [12], and generalizes the
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PRF→signatures transformation of Bellare and Goldwasser [7]. The BKP trans-
formation assumes an “affine message authentication code” (affine MAC), i.e., a
MAC in which verification consists in checking a system of affine equations. The
variables in these affine equations comprise the MAC secret key, and the (public)
coefficients are derived from the message to be signed.

This affine MAC is turned into an IBE scheme as follows: the IBE master
public key pk = Com(K) consists of a commitment to the MAC secret key K. An
IBE user secret key usk[id] for an identity id consists of a MAC tag τid on the
message id, along with a NIZK proof that τid indeed verifies correctly relative
to pk. The key observation of BKP is now that we can implement commitments
and NIZK proof using the Groth-Sahai proof system [24]. Since the used MAC is
affine, the corresponding verification involves only linear equations, which makes
the corresponding proofs rerandomizable.

Now an IBE ciphertext C essentially contains a rerandomized version of
the public, say, left-hand side of the NIZK equations for verifying the validity
of τid. The corresponding right-hand side can be computed either from the
randomization information (known to the sender), or using the NIZK proof for
τid (known to the receiver through usk[id]). Of course, this technique relies on
subtleties of the Groth-Sahai proof system that our high-level overview cannot
cover.

Advantages and limitations of the BKP approach. The BKP approach has the
nice property that the (one-challenge, chosen-plaintext) security of the resulting
IBE scheme can be tightly reduced to the (one-challenge) security of the MAC
scheme. In particular, BKP also gave a MAC scheme which is tightly secure in a
one-challenge setting under a standard computational assumption. At the same
time, BKP only consider one IBE challenge ciphertext, and chosen-plaintext
security. In particular in large-scale scenarios with huge amounts of ciphertexts
and active adversaries, this again defeats the purpose of a tight reduction.

First modification: achieving many-challenge security. We will first show that the
BKP reduction can be easily extended to the many-challenge case, assuming of
course that the underlying MAC scheme is secure in the many-challenge setting.
In this, the actual difficulty lies in constructing a suitable MAC scheme. We do
so by adapting the affine MAC MACBKP of BKP, using ideas from the recent
(almost) tightly secure PKE scheme of Gay et al. [17].

More specifically, MACBKP operates in a group G = 〈g〉 of order q. We use the
implicit notation [x] := gx for group elements. MACBKP assumes a public matrix
[B] ∈ Gn×n of a dimension n that depends on the underlying computational
assumption. Its secret key is of the form

skMAC = ((xi,b)i,b, x′0) ∈ (Znq )`·2 × Zq,

and a tag for a message m ∈ {0, 1}` is of the form

τ = ([t], [u]) ∈ Gn ×G with
t = Bs ∈ Znq for s $← Zn

′

q

u =
∑

i
x>i,mi

t + x′0 ∈ Zq
. (1)
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Verification checks that u is of the form from (1).
We sketch now a bit more specifically how MACBKP’s security proof proceeds,

assuming an adversary A in the EUF-CMA security game. The overall strategy
is to gradually randomize all u values issued in A’s tag queries. This is equivalent
to using different and independent “virtual” secret keys for each message. Hence,
once this is done, A cannot be successful by an information-theoretic argument.

The main difficulty in randomizing all u is that a reduction must be able to
still evaluate A’s success in forging a tag for fresh message. In particular, the
reduction must be able to compute u∗ =

∑
x>i,m∗

i
t∗ + x′0 for a message m∗ and

value t∗ adaptively selected by A. The solution chosen by BKP, following Chen
and Wee [12], is to iterate over all bit indices i. For each i, the reduction guesses
the i-th bit m∗i of A’s forgery message, and embeds a computational challenge
into xi,1−m∗

i
. This allows to randomize all u in issued tags with mi 6= m∗i , and still

be able to evaluate u∗. The corresponding reduction loses a multiplicative factor
of only O(`). However, note that this strategy would not work with multiple
challenges (i.e., potential forgeries (m∗, τ∗)) from A. For instance, the simulation
above is always only able to verify a given τ∗ for exactly one of the two messages
m∗0 = 0` and m∗1 = 1`.

Our solution here is to instead employ the randomization strategy used
by Gay et al. [17] in the context of public-key encryption. Namely, we first
increase the dimension of x. This allows us to essentially randomize both tags
for messages with mi = 0 and mi = 1 simultaneously, using different parts of
the xi,b independently. In particular, we will embed computational challenges in
different parts of both xi,0 and xi,1. This allows to adapt the argument of Gay
et al. to the case of MACs, and hence to prove a slight variant of the BKP MAC
secure even under many-challenge attacks.

Second modification: achieving chosen-ciphertext security. So far, we could almost
completely follow the BKP approach, with only a slight twist to the BKP MAC,
and by adapting the proof strategy of Gay et al. However, the resulting scheme
is still not chosen-ciphertext secure. To achieve chosen-ciphertext security, we
will follow one of the generic approaches outlined above. In this, the modular
structure of the BKP IBE, and the simplicity of the used MAC will pay off.

More concretely, following Naor and Yung [41], we will add a NIZK proof to
each ciphertext. Unlike in the generic paradigm of achieving chosen-ciphertext se-
curity via NIZK proofs, we do not explicitly prove knowledge of the corresponding
plaintext. Instead, following Cramer and Shoup [14], we prove only consistency
of the ciphertext, in the sense that the ciphertext is a possible output of the
encryption algorithm. Compared to a NIZK proof of knowledge (of plaintext),
this yields a much more efficient scheme, but also requires more subtle proof of
security.

Our security argument is reminiscent of that of Cramer and Shoup, but of
course adapted to the IBE setting. Our reduction will be able to generate user
decryption keys for all identities. These decryption keys will function perfectly
well on consistent (in the above sense) ciphertexts at all times in the proof, but
their action on inconsistent ciphertexts will be gradually randomized. Hence,
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adversarial decryption queries, whose consistency is guaranteed by the attached
NIZK proof, will be decrypted correctly at all times. On the other hand, all
generated challenge ciphertexts will be made inconsistent and will be equipped
with simulated NIZK proofs early on.

Unlike Cramer and Shoup, who considered only one challenge ciphertext (for
a PKE scheme), we need a very powerful NIZK scheme which enjoys (almost)
tight unbounded simulation-soundness. Fortunately, the language for which we
require this scheme is linear (due to the restriction to affine MACs), and hence
we can use (a slight variant of) the highly efficient NIZK scheme from [17].

We stress that this proof blueprint is compatible with the proof of the BKP
transformation, even when adapted to many challenges as explained above. In
particular, we are able to extend the BKP transformation not only to many
challenges, but also (and additionally) to chosen-ciphertext security. The resulting
transformation is black-box and works for any given affine MAC that is secure in
a many-challenge setting.

1.2 More on related work

We are not aware of any (almost) tightly chosen-ciphertext secure IBE scheme in
the many-challenge setting. A natural idea is of course to adapt existing (almost)
tightly chosen-plaintext secure schemes to chosen-ciphertext security. As we have
explained in Section 1 above, straightforward generic approaches fail. However,
another natural approach is to look at concrete state-of-the-art IBE schemes,
and try to use their specific properties. Since we are interested in schemes in
prime-order groups for efficiency reasons, the scheme to consider here is that of
Gong et al. [22] (cf. also Table 1).

Remark about and comparison to the work of Gong et al. Interestingly, Gong
et al. also take the BKP scheme as a basis, and extend it to (chosen-plaintext)
many-challenge security, even in a setting with many instances of the IBE scheme
itself. However, they first interpret and then extend the BKP scheme in the
framework of (extended) nested dual system groups [12,31]. Remarkably, the
resulting IBE scheme looks similar to the chosen-plaintext secure, many-challenge
scheme that we use as a stepping stone towards many-challenge chosen-ciphertext
security. In particular, the efficiency characteristics of those two schemes are
comparable.

Still, for the express purpose of achieving chosen-ciphertext security, we
found it easier to stick to (an extension of) the original BKP transformation
and strategy, for two reasons. First, the modularity of BKP allows us to give
an abstract MAC→IBE transformation that achieves chosen-ciphertext security.
This allows to isolate the intricate many-challenge security argument for the MAC
from the orthogonal argument to achieve chosen-ciphertext security. Since the
argument for tight security is directly woven into the notion of (extended) nested
dual systems groups, it does not seem clear how to similarly isolate arguments
(and proof complexity) for the scheme and strategy of Gong et al.
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Second, as hinted above, our strategy to obtain chosen-ciphertext security
requires a NIZK proof to show consistency of a ciphertext. With the BKP
construction, consistency translates to a statement from a linear language, which
allows to employ very efficient NIZK proof systems. For the construction of Gong
et al., it is not clear how exactly such a consistency language would look like. In
particular, it is not clear at all if highly efficient NIZK proofs for linear languages
can be used.5

2 Basic preliminaries

2.1 Notations

We use x $← S to denote the process of sampling an element x from S uniformly
at random if S is a set. For positive integers k > 1, η ∈ Z+ and a matrix
A ∈ Z(k+η)×k

q , we denote the upper square matrix of A by A ∈ Zk×kq and the
lower η rows of A by A ∈ Zη×kq . Similarly, for a column vector v ∈ Zk+η

q , we
denote the upper k elements by v ∈ Zkq and the lower η elements of v by v ∈ Zηq .
For a bit string m ∈ {0, 1}n, mi denotes the ith bit of m (i ≤ n) and m|i denotes
the first i bits of m.

All our algorithms are probabilistic polynomial time unless we stated otherwise.
If A is an algorithm, then we write a $← A(b) to denote the random variable that
outputted by A on input b.
Games. We follow [8] to use code-based games for defining and proving security. A
game G contains procedures Init and Finalize, and some additional procedures
P1, . . . ,Pn, which are defined in pseudo-code. Initially all variables in a game are
undefined (denoted by ⊥), and all sets are empty (denote by ∅). An adversary A
is executed in game G (denote by GA) if it first calls Init, obtaining its output.
Next, it may make arbitrary queries to Pi (according to their specification), again
obtaining their output. Finally, it makes one single call to Finalize(·) and stops.
We use GA ⇒ d to denote that G outputs d after interacting with A, and d is
the output of Finalize.

2.2 Collision resistant hash functions

Let H be a family of hash functions H : {0, 1}∗ → {0, 1}λ. We assume that it is
efficient to sample a function from H, which is denoted by H $← H.

Definition 1 (Collision resistance). We say a family of hash functions H is
(t, ε)-collision-resistant (CR) if for all adversaries A that run in time t,

Pr[x 6= x′ ∧H(x) = H(x′) | H $← H, (x, x′) $← A(1λ, H)] ≤ ε.
5 To be clear: we do not claim that the scheme of Gong et al. cannot be upgraded to
chosen-ciphertext security. However, it seems that such an upgrade would require a
more complex restructuring of their proof strategy.
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2.3 Pairing groups and matrix Diffie-Hellman assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ
returns a description G := (G1,G2,GT , q, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, P1 and P2 are
generators of G1 and G2, respectively, and e : G1 ×G2 is an efficient computable
(non-degenerated) bilinear map. Define PT := e(P1, P2), which is a generator in
GT . In this paper, we only consider Type III pairings, where G1 6= G2 and there
is no efficient homomorphism between them. All our constructions can be easily
instantiated with Type I pairings by setting G1 = G2 and defining the dimension
k to be greater than 1.

We use implicit representation of group elements as in [16]. For s ∈ {1, 2, T}
and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (aij) ∈ Zn×mq we define [A]s as the implicit
representation of A in Gs. Span(A) := {Ar|r ∈ Zmq } ⊂ Znq denotes the linear
span of A, and similarly Span([A]s) := {[Ar]s|r ∈ Zmq } ⊂ Gns . Note that it is
efficient to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions.
We define [A]1◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the matrix Diffie-Hellman (MDDH) and related
assumptions [16].
Definition 2 (Matrix distribution). Let k, ` ∈ N with ` > k. We call D`,k a
matrix distribution if it outputs matrices in Z`×kq of full rank k in polynomial
time. Let Dk := Dk+1,k.
Without loss of generality, we assume the first k rows of A $← D`,k form an
invertible matrix. The D`,k-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A $← D`,k, w $← Zkq and
u $← Z`q.

Definition 3 (D`,k-Matrix Diffie-Hellman assumption). Let D`,k be a ma-
trix distribution and s ∈ {1, 2, T}. We say that the D`,k-Matrix Diffie-Hellman
(D`,k-MDDH) is (t, ε)-hard relative to GGen in group Gs if for all adversaries A
with running time t, it holds that

|Pr[A(G, [A]s, [Aw]s) = 1]− Pr[A(G, [A]s, [u]s) = 1]| ≤ ε,

where the probability is taken over G $← GGen(1λ), A $← D`,k,w $← Zkq and
u $← Z`q.

We define the Dk-Kernel Diffie-Hellman (Dk-KerMDH) assumption [39] which
is a natural search variant of the Dk-MDDH assumption.

Definition 4 (Dk-Kernel Diffie-Hellman assumption). Let Dk be a matrix
distribution and s ∈ {1, 2}. We say that the Dk-kernel Matrix Diffie-Hellman
(Dk-KerMDH) is (t, ε)-hard relative to GGen in group Gs if for all adversaries A
that runs in time t, it holds that

Pr[c>A = 0 ∧ c 6= 0|[c]3−s $← A(G, [A]s)] ≤ ε,
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where the probability is taken over G $← GGen(1λ), A $← Dk.

The following lemma shows that the Dk-KerMDH assumption is a relaxation
of the Dk-MDDH assumption since one can use a non-zero vector in the kernel of
A to test membership in the column space of A.

Lemma 1 (Dk-MDDH ⇒ Dk-KerMDH [39]). For any matrix distribution Dk,
if Dk-MDDH is (t, ε)-hard in Gs, then Dk-KerMDH is (t′, ε)-hard in Gs, where
t′ ≈ t.

The uniform distribution is a particular matrix distribution that deserves special
attention, as an adversary breaking the U`,k assumption can also distinguish
between real MDDH tuples and random tuples for all other possible matrix
distributions. For uniform distributions, they stated in [17] that Uk-MDDH and
U`,k-MDDH assumptions are equivalent.

Definition 5 (Uniform distribution). Let k, ` ∈ N with ` > k. We call U`,k
a uniform distribution if it outputs uniformly random matrices in Z`×kq of rank k
in polynomial time.

Lemma 2 (D`,k-MDDH ⇒ U`,k-MDDH ⇔ Uk-MDDH [16,17]). For ` > k, let
D`,k be a matrix distribution, then if D`,k-MDDH is (t, ε)-hard in Gs, U`,k-MDDH
is (t′, ε)-hard in Gs, where t′ ≈ t. If Uk-MDDH is (t, ε)-hard in Gs, U`,k-MDDH
is (t′, ε)-hard in Gs, where t′ ≈ t, vice versa.

For Q ∈ N, W $← Zk×Qq ,U $← Z`×Qq , consider the Q-fold D`,k-MDDH problem
which is distinguishing the distributions ([A], [AW]) and ([A], [U]). That is, the
Q-fold D`,k-MDDH problem contains Q independent instances of the D`,k-MDDH
problem (with the same A but different wi). The following lemma shows that the
two problems are tightly equivalent. The reduction quality is tighter for uniform
distribution.

Lemma 3 (Random self-reducibility [16]). For ` > k and any matrix distri-
bution D`,k, D`,k-MDDH is random self-reducible. In particular, for any Q ≥ 1, if
D`,k-MDDH is (t, ε)-hard relative to GGen in group Gs, then Q-fold D`,k-MDDH
is (t′, ε′)-hard relative to GGen in group Gs, where t ≈ t′ + Q · poly(λ), ε′ ≤
(`− k)ε+ 1

q−1 , and for D`,k = U`,k, ε′ ≤ ε+ 1
q−1 .

3 Affine MACs in the Multi-Challenge Setting

3.1 Definition

We recall the definition of affine MACs from [8] and extend its security require-
ments of pseudorandomness to the multi-challenge setting.

Definition 6 (Affine MACs). Let par be system parameters which contain a
pairing group description G = (G1,G2,GT , q, P1, P2, e) of prime order q, and let
n be a positive integer, MAC = (GenMAC,Tag,VerMAC) is an affine MAC over Znq
if the following conditions hold:
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Init:
skMAC

$← GenMAC(par)
Return ε

Eval(m): // at most Qe queries
QM = QM ∪ {m}
If (tm,um) = (⊥,⊥) then

([tm]2, [um]2) $← Tag(skMAC,m)
Return ([tm]2, [um]2)

Chal(m∗): // at most Qc queries
CM = CM ∪ {m∗}
h $← Zηq ;
h0 =

∑
fi(m∗)Xi

>h ∈ Znq
h1 =

∑
f ′i(m∗)x′i

>h ∈ Zq
h0

$← Znq , h1
$← Zq

Return ([h]1, [h0]1, [h1]T )

Finalize(d ∈ {0, 1}):
Return d ∧ (QM ∩ CM = ∅)

Figure 1. Games mPR-CMA0 and mPR-CMA1 for defining mPR-CMA security.

1. skMAC
$← GenMAC(par), where skMAC = (B,X0, ...,X`,x′0, ...,x′`′) ∈ Zn×n′q ×

(Zη×nq )`+1 × (Zηq )`
′+1, n′, `, `′ and η are positive integers and the rank of B

is at least 1.
2. τ $← Tag(skMAC,m), where τ := ([t]2, [u]2) ∈ Gn2 ×Gη2 is computed as

t := Bs ∈ Znq for s $← Zn
′

q (2)

u :=
∑̀
i=0

fi(m)Xit +
`′∑
i=0

f ′i(m)x′i ∈ Zηq (3)

for some public defining functions fi :M→ Zq and f ′i :M→ Zq. Note that
only u is the message dependent part.

3. VerMAC(skMAC,m, τ = ([t]2, [u]2)) output 1 iff (3) holds, 0 otherwise.

Definition 7. An affine MAC over Znq is (Qe, Qc, t, ε)-mPR-CMA (pseudorandom
against chosen-message and multi-challenge attacks) if for all A that runs in
time t, makes at most Qe queries to the evaluation oracle, Eval, and at most
Qc queries to the challenge oracle, Chal, the following holds

|Pr[mPR-CMAA0 ⇒ 1]− Pr[mPR-CMAA1 ⇒ 1]| ≤ ε,

where experiments mPR-CMA0 and mPR-CMA1 are defined in Figure 1.

Our notion is a generalization of the PR-CMA security in [8]. In [8] an adversary
A can only query the challenge oracle Chal at most once, while here A can ask
multiple times.

3.2 Instantiation

We extend the tightly secure affine MAC MACNR[Dk] from [8] to the multi-
challenge setting. Instead of choosing random vectors xi,b ∈ Zkq as the MAC
secret keys in the original, here we choose random matrices Xi,b ∈ Z2k×k

q such
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that in the security proof we can randomize all the tags and at the same time
answer multiple challenge queries in a tight way.

Let G := (G1,G2,GT , q, P1, P2, e) be an asymmetric pairing group and par :=
G. Our affine MAC MACmc

NR := (GenMAC,Tag,VerMAC) for message space {0, 1}L
is defined as follows.

GenMAC(par):
A $← U2k,k
B := A ∈ Zk×kq

For 1 ≤ i ≤ L and b = 0, 1:
Xi,b

$← Z2k×k
q

x′ $← Z2k
q

skMAC := (B,X1,0, . . . ,XL,1,x′)
Return skMAC

Tag(skMAC,m ∈ {0, 1}L):
s $← Zkq , t := Bs ∈ Zkq
Xm :=

∑L

i=1 Xi,mi

u := Xmt + x′ ∈ Z2k
q

Return τ = ([t]2, [u]2)

VerMAC(skMAC, τ,m):
Parse τ := ([t]2, [u]2)
Xm :=

∑L

i=1 Xi,mi

If [u]2 = [Xmt + x′]2
then
return 1

Else return 0.

Our scheme can be present by using any D2k,k distribution and some of them
have compact representation and give more efficient scheme. For simplicity of
presentation, we present our scheme based on the U2k,k distribution.

Theorem 1. If the U2k,k-MDDH problem is (t1, ε1)-hard in G1 and (t2, ε2)-hard
in G2, the U2k-MDDH problem is (t3, ε3)-hard in G1, then MACmc

NR is (Qe, Qc,
tA, ε)-mPR-CMA-secure with t1 ≈ t2 ≈ t3 ≈ tA + (Qe + Qc)poly(λ), and ε ≤
4Lε1 + 3Lε2 + 3ε3 + 2−Ω(λ), where poly(λ) is independent of tA.

Proof. We prove the theorem via a sequence of games as shown in Figure 2.

Init:
A $← U2k,k, B := A
For j = 1, . . . , L : Xj,0,Xj,1

$← Z2k×k
q

x′ $← Z2k
q

Return ε

Chal(m∗): //G0, G1,i , G2,G3

CM := CM ∪ {m∗}; x′m∗ := x′

h $← Z2k
q ; x′m∗ := RFi(m∗|i)

h0 := (
∑L

j=1 Xj,m∗
j
)>h; h0

$← Zkq

h1 := x′m∗
>h ∈ Zq; h1

$← Zq
Return ([h]1, [h0]1, [h1]T )

Eval(m): // G0, G3, G1,i , G2

QM := QM ∪ {m}
If ([tm]2, [um]2) = (⊥,⊥) then

sm
$← Zkq ; tm := Bsm

x′m := x′

x′m := RFi(m|i)

x′m $← Z2k
q

um :=
∑L

j=1 Xj,mj tm + x′m
Return ([tm]2, [um]2)

Finalize(d ∈ {0, 1}):
Return d ∧ (QM ∩ CM = ∅)

Figure 2. Games G0, G1,i (0 ≤ i ≤ L), G2, G3 for the proof of Theorem 1. RFi :
{0, 1}i → Z2k

q is a random function. Boxed codes are only executed in the games marked
in the same box style at the top right of every procedure. Non-boxed codes are always
run.

Lemma 4 (G0 to G1,0). Pr[mPR-CMAA0 ⇒ 1] = Pr[GA0 ⇒ 1] = Pr[GA1,0 ⇒ 1].
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Init: //G1,i, Hi,1, Hi,2 , Hi,3 , Hi,4 ,�� ��Hi,5,G1,i+1

A $← U2k,k; B := A
For j = 1, . . . , L : Xj,0,Xj,1

$← Z2k×k
q

A0,A1
$← U2k,k

Compute A⊥0 ,A⊥1 ∈ Z2k×k
q s.t.

A>0 A⊥0 = A>1 A⊥1 = 0
For all m ∈ {0, 1}L:

Xm :=
∑L

j=1 Xj,mj

x′m := RFi(m|i)
x′m := A⊥0 ZFi(m|i) + A⊥1 OFi(m|i)

x′m := A⊥0 ZFi+1(m|i+1) + A⊥1 OFi(m|i)

x′m := A⊥0 ZFi+1(m|i+1) + A⊥1 OFi+1(m|i+1)�� ��x′m := RFi+1(m|i+1)
Return ε

Chal(m∗): // G1,i,G1,i+1 , Hi,1-Hi,5
CM := CM ∪ {m∗}
h $← Z2k

q

r $← Zkq ,h := Am∗
i+1

r

h0 := X>m∗h; h1 = x′>m∗h
Return ([h]1, [h0]1, [h1]T )

Eval(m): // G1,i,G1,i+1,Hi,1-Hi,5
QM := QM ∪ {m}
If ([tm]2, [um]2) = (⊥,⊥) then

sm
$← Zkq ; tm := Bsm

um := Xmtm + x′m
Return ([tm]2, [um]2)

Finalize(d ∈ {0, 1}):
Return d ∧ (QM ∩ CM = ∅)

Figure 3. Games G1,i, G1,i+1, Hi,1,..., Hi,5 (0 ≤ i ≤ L) for the proof of Lemma 5.
RFi : {0, 1}i → Z2k

q , ZFi,OFi : {0, 1}i → Zkq are three independent random functions.

Proof. G0 is the original game and it is the same as mPR-CMA0. In G1,0, we
define RF0(ε) as a fix random vector x′ $← Z2k

q and then have Lemma 4. ut

Lemma 5 (G1,i to G1,i+1). If the U2k,k-MDDH problem is (t1, ε1)-hard in G1
and (t2, ε2)-hard in G2, then |Pr[GA1,i ⇒ 1]−Pr[GA1,i+1 ⇒ 1]| ≤ 4ε1 +2ε2 +2−Ω(λ)

and t1 ≈ t2 ≈ tA + (Qe +Qc)poly(λ), where poly(λ) is independent of tA.

Proof (of Lemma 5). To bound the difference between G1,i and G1,i+1, we
introduce a series of intermediate games Hi,1 to Hi,5 as in Figure 3. An overview
of the transitions is given in Figure 4.

# h in Chal x′m in Chal and Eval game knows remark
G1,i random RFi(m|i) - -
Hi,1 Am∗

i+1
r RFi(m|i) - U2k,k-MDDH in G1

Hi,2 Am∗
i+1

r A⊥0 ZFi(m|i) + A⊥1 OFi(m|i) A⊥0 ,A⊥1 -

Hi,3 Am∗
i+1

r A⊥0 ZFi+1(m|i+1) + A⊥1 OFi(m|i) A⊥0 ,A⊥1 U2k,k-MDDH in G2

Hi,4 Am∗
i+1

r A⊥0 ZFi+1(m|i+1) + A⊥1 OFi+1(m|i+1) A⊥0 ,A⊥1 U2k,k-MDDH in G2

Hi,5 Am∗
i+1

r RFi+1(m|i+1) A⊥0 ,A⊥1 -
G1,i+1 random RFi+1(m|i+1) - U2k,k-MDDH in G1

Figure 4. Overview of the transitions in the proof of Lemma 5. We highlight the
respective changes between the games in gray . RFi : {0, 1}i → Z2k

q , and ZFi,OFi :
{0, 1}i → Zkq are three independent random functions.
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Lemma 6 (G1,i to Hi,1). If the U2k,k-MDDH problem is (t1, ε1)-hard in G1, then
|Pr[GA1,i ⇒ 1]− Pr[HAi,1 ⇒ 1]| ≤ 2ε1 + 2/(q − 1) and t1 ≈ tA + (Qe +Qc)poly(λ),
where poly(λ) is independent of tA.

Proof. Let A0,A1
$← U2k,k. We define an intermediate game H′i,1 which is the

same as G1,i except for Chal: precisely, if m∗i+1 = 0 then we pick h uniformly
random from Span(A0); otherwise, h $← Z2k

q . Oracles Init,Eval and Finalize
are simulated as in G1,i.

The difference between G1,i and H′i,1 is bounded by a straightforward reduction
to break the Qc-fold U2k,k-MDDH problem in G1 with [A0]1 as the challenge
matrix. Thus, by Lemma 3 we have

|Pr[GA1,i ⇒ 1]− Pr[H
′A
i,1 ⇒ 1]| ≤ ε1 + 1

q − 1 .

Similarly, we can bound H′i,1 and Hi,1 with the U2k,k-MDDH assumption in G1,
namely,

|Pr[H
′A
i,1 ⇒ 1]− Pr[HAi,1 ⇒ 1]| ≤ ε1 + 1

q − 1 .

Here we have t1 ≈ tA+ (Qe +Qc)poly(λ), where poly(λ) is independent of tA. ut
After switching [h]1 in Chal to the right span, the following reductions can

have A0 and A1 over Zq. Since the rank of A0 and that of A1 are both k, we
can efficiently compute the kernel matrix A⊥0 ∈ Z2k×k

q (resp. A⊥1 ) of A0 (resp.
A1). We note that A>0 A⊥0 = 0 = A>1 A⊥1 and (A⊥0 | A⊥1 ) ∈ Z2k×2k

q is a full-rank
matrix with overwhelming probability 1 − 2−Ω(λ), since A0 and A1 are two
random matrices.

Let ZFi and OFi be two independent random functions mapping from {0, 1}i
to Zkq .

Lemma 7 (Hi,1 to Hi,2). |Pr[HAi,1 ⇒ 1]− Pr[HAi,2 ⇒ 1]| ≤ 2−Ω(λ).

Proof. The difference between these two games is statistically bounded. In Hi,2,
we just rewrite RFi(m|i) as

RFi(m|i) := (A⊥0 | A⊥1 )
(

ZFi(m|i)
OFi(m|i)

)
(4)

Since (A⊥0 | A⊥1 ) is a full-rank matrix with overwhelming probability 1− kq and ZFi,
OFi : {0, 1}i → Zkq are two independent random functions, RFi : {0, 1}i → Z2k

q

in (4) is a random function as well. Thus, Hi,1 and Hi,2 are distributed the same
except with probability 2−Ω(λ). ut

The following step is a main difference to MACNR[Dk] in the original BKP
framework [8]. Here our reduction can randomize Eval queries with the MDDH
assumption and at the same time it can answer multiple Chal queries, while the
original MACNR[Dk] can not. Precisely, to be able to go from RFi to RFi+1, the
security reduction of MACNR[Dk] (cf. Lemma 3.6 in [8]) guesses b $← {0, 1} which
stands for the (i+ 1)-th bit of m∗ and implicitly embeds TD := DD−1 in the
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secret key xi+1,1−b. Note that the reduction does not know xi+1,1−b, but, since
the adversary A only has at most one query to Chal and b is hidden from A, the
reduction can hope m∗i+1 6= 1− b (with probability 1/2) and it can simulate the
experiment. However, this proof strategy does not work in the multi-challenge
setting, since A can ask two challenge queries with one query which has b in the
(i+ 1)-th position and 1− b in the other.

By increasing the dimension of Xj,β , our strategy is first embedding A⊥0 TD
in Xi+1,0 such that we can add entropy to x′m in the span of A⊥0 and at the same
time upon Chal queries with 0 in the (i+ 1)-th position TD will be canceled
out, and then add entropy to x′m in the span of A⊥1 in the similar way.

Lemma 8 (Hi,2 to Hi,3). If the U2k,k-MDDH problem is (t2, ε2)-hard in G2,
then |Pr[HAi,2 ⇒ 1]−Pr[HAi,3 ⇒ 1]| ≤ ε2 + 2−Ω(λ) and t2 ≈ tA+ (Qe +Qc)poly(λ),
where poly(λ) is independent of tA.

Proof. We bound the difference between Hi,2 and Hi,3 by the Qe-fold U2k,k-MDDH
assumption in G2. Formally, on receiving a Qe-fold U2k,k-MDDH challenge
([D]2, [F]2 := ([f1, · · · , fQe ]2)) ∈ G2k×k

2 ×G2k×Qe
2 , where Qe denotes the number

of evaluation queries, we construct a reduction B2 as in Figure 5. Let ZFi,ZF′i be
two independent random functions, we define ZFi+1 as

ZFi+1(m|i+1) :=
{

ZFi(m|i) + ZF′i(m|i) if mi+1 = 0
ZFi(m|i) if mi+1 = 1

Note that ZFi+1 is a random function, given ZFi and ZF′i are two independent
random functions. If an adversary A queries messages m with mi+1 = 1 to Eval
and Chal, then A’s view in Hi,2 is the same as that in Hi,3. Thus, we only focus
on messages with mi+1 = 0.

For queries with Chal, if m∗i+1 = 0, B2 does not have Xi+1,0 = X̂+A⊥0 DD−1,
since B2 does not know DD−1 either over Zq or G2, but, since h ∈ Span(A0) for
such m∗, (A⊥0 DD−1)>h = 0 and thus B2 computes

h0 = (Xm\i+1 + X̂ + A⊥0 DD−1)>h = (Xm\i+1 + X̂)>h.

For queries with Eval, if mi+1 = 0, we write fc :=
(

Dwc

Dwc + rc

)
for some

wc ∈ Zkq , where rc ∈ Zkq is 0 if [F]2 is from the real U2k,k-MDDH distribution, or
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Init:
A0,A1

$← U2k,k
Compute A⊥0 ,A⊥1 ∈ Z2k×k

q s.t.
A>0 A⊥0 = A>1 A⊥1 = 0
For j = 1, ..., L and β = 0, 1:
If j 6= i+ 1 or β 6= 0 then

Xj,β
$← Z2k×k

q

X̂ $← Z2k×k
q

//TD := DD−1

// implicitly Xi+1,0 := X̂ + A⊥0 TD
For all m ∈ {0, 1}L:

Xm :=
∑L

j=1 Xj,mj

Xm\(i+1) :=
∑L

j=1,j 6=i+1 Xj,mj

x′m := A⊥0 ZFi(m|i) + A⊥1 OFi(m|i)
Return ε

Finalize(d ∈ {0, 1}):
Return d ∧ (QM ∩ CM = ∅).

Eval(m): // c-th m|i
QM := QM ∪ {m}
If ([tm]2, [um]2) = (⊥,⊥) then

s $← Zkq , [tm]2 := [Ds]2 + [fc]2
If mi+1 = 0 then

[δ]2 := [A⊥0 fc]2 ∈ Z2k
q

[um]2 := [x′m + (Xm\(i+1) + X̂)tm + A⊥0 Ds + δ]2

If mi+1 = 1 then
[um]2 := [x′m + Xmtm]2

Return ([tm]2, [um]2)

Chal(m∗):
CM := CM ∪ {m∗}
r $← Zkq ; h := Am∗

i+1
r;

If m∗i+1 = 0 then h0 := (Xm∗\(i+1) + X̂)>h
If m∗i+1 = 1 then h0 := X>m∗h
h1 := x′m∗

>h
Return ([h]1, [h0]1, [h1]T )

Figure 5. Description of B2(par, ([D]2, [F]2)) for proving Lemma 8.

rc is random otherwise. Then, we have

um := x′m + Xm\(i+1)tm + X̂tm + A⊥0 Ds + A⊥0 fc
= x′m + Xm\(i+1)tm + X̂tm + A⊥0 Ds + A⊥0 (Dwc + rc)
= x′m + Xm\(i+1)tm + X̂tm + A⊥0 D(s + wc) + A⊥0 rc
= x′m + Xm\(i+1)tm + X̂tm + A⊥0 DD−1 D(s + wc)︸ ︷︷ ︸

tm

+A⊥0 rc

= Xmtm + A⊥1 OFi(m|i) + A⊥0 ZFi(m|i)︸ ︷︷ ︸
x′m

+A⊥0 rc

Now it is clear that if rc = 0 then um is distributed as in Hi,2; if rc is random,
then we define ZF′i(m|i) := rc and um is distributed as in Hi,3. ut

The proof of Lemma 9 is very similar to that of Lemma 8 except that it
handles cases with mi+1 = 1. More precisely, we define

OFi+1(m|i+1) :=
{

OFi(m|i) if mi+1 = 0
OFi(m|i) + OF′i(m|i) if mi+1 = 1

,

where OFi,OF′i are two independent random functions mapping from {0, 1}i to
Zkq . By the similar arguments of Lemma 8, we have the following lemma.

Lemma 9 (Hi,3 to Hi,4). If the U2k,k-MDDH problem is (t2, ε2)-hard in G2,
then |Pr[HAi,3 ⇒ 1]− Pr[HAi,4 ⇒ 1]| ≤ ε2 + 2−Ω(λ) and t2 ≈ tA.
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Lemmata 10 and 11 are the reverse of Lemmata 6 and 7, and we omit the
detailed proofs.

Lemma 10 (Hi,4 to Hi,5). |Pr[HAi,4 ⇒ 1]− Pr[HAi,5 ⇒ 1]| ≤ 2−Ω(λ).

Lemma 11 (Hi,5 to G1,i+1). If the U2k,k-MDDH problem is (t1, ε1)-hard in
G1, then |Pr[HAi,5 ⇒ 1] − Pr[GA1,i+1 ⇒ 1]| ≤ 2ε1 + 2−Ω(λ) and t2 ≈ tA + (Qe +
Qc)poly(λ), where poly(λ) is independent of tA.

Lemma 12 (G1,L to G2). If the U2k-MDDH problem is (t3, ε3)-hard in G1, then

|Pr[GA1,L ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ 3ε3 + 2−Ω(λ) and t3 ≈ tA + (Qe +Qc)poly(λ),

where poly(λ) is independent of tA.

Proof. Firstly we bound the difference between G1,L and G2′ by the Qc-fold
U2k-MDDH assumption in G1, where G′2 is the same as G1,L except that on a
challenge query, we pick a random h1

$← Zq for each query in G′2.
Formally, on receiving a Qc-fold U2k-MDDH challenge ([D]1, [F]1 := ([f1, · · · ,

fQc ]1)) ∈ G(2k+1)×2k
1 × G(2k+1)×Qc

1 , where Qc denotes the number of challenge
queries, we construct a reduction B2 as in Figure 6.

Init:
A $← U2k,k; B := A
For (j, β) ∈ ([L], {0, 1}) :

Xj,β
$← Z2k×k

q

For all m ∈ {0, 1}L:
Xm :=

∑L

j=1 Xj,mj

Return ε

Eval(m):
QM := QM ∪ {m}
If ([tm]2, [um]2) = (⊥,⊥) then

tm
$← Zkq ; um

$← Z2k
q

Return ([tm]2, [um]2)

Chal(m∗): // c-th query
CM := CM ∪ {m∗}
If RF′(m∗) = ⊥, then

RF′(m∗) $← Z2k
q

RL := RL ∪ {(m∗,RF′(m∗))}
[h]1 := [fc]1; [h0]1 := [X>m∗h]1;
[h1]1 := [RF′(m∗)>fc + fc]1;
// implicitly set RF(m∗) := RF′(m∗) + (DD−1)>
Return ([h]1, [h0]1, [h1]T )

Finalize(d ∈ {0, 1}):
Return d ∧ (QM ∩ CM = ∅).

Figure 6. Description of B′(G1, ([D]1, [F]1) interpolating between G
′
2 and G1,L.

For Eval queries, since um is information-theoretically hidden by RF(m),
we can just pick um uniformly random. For Chal queries, we write fc :=(

Dwc

Dwc + rc

)
for some wc ∈ Z2k

q , where rc ∈ Zq is 0 if [F]2 is from the real

U2k-MDDH distribution, and rc is random otherwise. Then, we have

h1 := RF′(m∗)>fc + fc = RF′(m∗)>fc + Dwc + rc

= RF′(m∗)>fc + DD−1fc + rc = (RF′(m∗)> + DD−1)︸ ︷︷ ︸
RF(m∗)>

fc + rc.
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Init:
for (j, β) 6= (1, 0) :
Xj,β

$← Z2k×k
q

For all m ∈ {0, 1}L:
Xm :=

∑m

j=1 Xj,mj

Xm\1 :=
∑m

j=2 Xj,mj

Return ε

Eval(m):
QM := QM ∪ {m}
If ([tm]2, [um]2) = (⊥,⊥) then

tm
$← Zkq , um

$← Z2k
q

Return ([tm]2, [um]2)

Chal(m∗): // c-th query
CM := CM ∪ {m∗};
[h]1 := [fc]1;
If m∗1 = 1 then [h0]1 := [X>m∗h]1
If m∗1 = 0 then [h0]1 := [X>m∗\1h]1 + [fc]1;
h1

$← Zq;
// here we implicitly set X1,0 := (DD−1)>;
Return ([h]1, [h0]1, [h1]T )

Finalize(d ∈ {0, 1}):
Return d ∧ (QM ∩ CM = ∅)

Figure 7. Description of B′(G1, ([D]1, [F]1) interpolating between G
′′
2 and G

′
2.

If rc = 0 then h1 is distributed as in G1,L; if rc is random then h1 is distributed
as in G′2.

Next we bound the difference between G′2 and G′′2 by the Qc-fold U3k,2k-MDDH
assumption in G1, where G′′2 is the same as G′2 except that when answering
Chal with m∗1 = 0, one picks a random h0

$← Zkq for each query. And the
difference between G′2 and G′′2 can be bounded by the Qc-fold U3k,2k-MDDH
assumption in G1. Formally, on receiving a Qc-fold U3k,2k-MDDH challenge
([D]1, [F]1 := ([f1, · · · , fQc ]1)) ∈ G3k×2k

1 ×G3k×Qc
1 , where Qc denotes the number

of challenge queries, we construct a reduction B2 as in Figure 7.
For Eval(m) queries, since um is information-theoretically hidden by RF(m),

here we just pick um uniformly random.
For Chal(m∗) queries, if m∗1 = 1, G′′2 and G′2 are the same, if m∗1 = 0, we

write fc :=
(

Dwc

Dwc + rc

)
for some wc ∈ Z2k

q , where rc ∈ Zkq is 0 if [F]2 is from

the real U3k,2k-MDDH distribution, and rc is random otherwise. Then, we have

h0 := X>m∗\1h + fc = X>m∗\1h + Dwc + rc = X>m∗\1h + DD−1fc + rc

= (X>m∗\1 + DD−1)︸ ︷︷ ︸
X>m∗

fc + rc.

If rc = 0 then h0 is distributed as in G′2; if rc is random then h0 is distributed
as in G′′2 . The difference between G′′2 and G2 can be bounded by the Qc-fold
U3k,2k-MDDH assumption in a similar way. ut

ut
We perform all the previous changes of Figure 2 in a reverse order without
changing the simulation of Chal. Then we have the following lemma.

Lemma 13 (G2 to G3). If the U3k,k-MDDH problem is (t2, ε2)-hard in G2,
then |Pr[GA2 ⇒ 1] − Pr[mPR-CMAA1 ⇒ 1]| ≤ Lε2 + 2−Ω(λ) and t1 ≈ t2 ≈
tA + (Qe +Qc)poly(λ), where poly(λ) is independent of tA.
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By observing G3 is the same as mPR-CMA1, we sum up Lemmata 4 to 13 and
conclude Theorem 1. ut

4 Quasi-adaptive Zero-knowledge Arguments for Linear
Subspaces

4.1 Definition
The notion of quasi-adaptive non-interactive zero-knowledge arguments (QANIZK)
is proposed by Jutla and Roy [33], where the common reference string CRS
depends on the specific language for which proofs are generated. In the following
we define a tag-based variant of QANIZK [34,17]. For simplicity, we only consider
arguments for linear subspaces.

Let par be the public parameters for QANIZK and Dpar be a probability
distribution over a collection of relations R = {R[M]1} parametrized by a ma-
trix [M]1 ∈ Gn×t1 (n > t) with associated language L[M]1 = {[c0]1 : ∃r ∈
Ztq, s.t. [c0]1 = [Mr]1}. We consider witness sampleable distributions [33] where
there is an efficiently sampleable distribution D′par outputs M′ ∈ Zn×tq such that
[M′]1 distributes the same as [M]1. We note that the matrix distribution in
Definition 2 is sampleable.
Definition 8 (Tag-based QANIZK). A tag-based quasi-adaptive non-interactive
zero-knowledge argument (QANIZK) for a language distribution Dpar consists of
four PPT algorithms Π = (GenNIZK,Prove,VerNIZK,Sim).
– The key generation algorithm GenNIZK(par, [M]1) returns a common reference

string crs and the trapdoor td, where crs defines a tag space T .
– The proving algorithm Prove(crs, tag, [c0]1, r) returns a proof π.
– The deterministic verification algorithm VerNIZK(crs, tag, [c0]1, π) returns 1

or 0, where 1 indicates that π is a valid proof for [c0]1 ∈ L[M]1 .
– The simulation algorithm Sim(crs, td, tag, [c0]1) returns a proof π for [c0]1 ∈
L[M]1 .

(Perfect Completeness.) For all λ, all [M]1, all ([c0]1, r) with [c0]1 = [Mr]1,
all (crs, td) ∈ GenNIZK(par, [M]1), and all π ∈ Prove(crs, tag, [c0]1, r), we have
VerNIZK(crs, tag, [c0]1, π) = 1.
We require Π to have the following security. Here we require a stronger version
of unbounded simulation soundness than the usual one in [34,17], where an
adversary is allowed to submit a forgery with a reused tag.
Definition 9 (Perfect Zero-Knowledge). A tag-based QANIZK Π is perfectly
zero-knowledge if for all λ, all [M]1, all ([c0]1, r) with [c0]1 = [Mr]1, and all
(crs, td) ∈ GenNIZK(par, [M]1), the following two distributions are identical:

Prove(crs, tag, [c0]1, r) and Sim(crs, td, tag, [c0]1).

Definition 10 (Unbounded Simulation Soundness.). A tag-based QANIZK
Π is (Qs, t, ε)-unbounded simulation sound (USS) if for any adversary A that
runs in time t, it holds that Pr[USSA ⇒ 1] ≤ ε, where Game USS is defined in
Figure 8.



Identity-based Encryption Tightly Secure under Chosen-ciphertext Attacks 19

Init(M):
(crs, td) $← GenNIZK(par, [M]1)
Return crs.

Sim(tag, [c0]1): //Qs queries
π $← Sim(crs, td, tag, [c0]1);
P := P ∪ (tag, [c0]1, π);
Return π

Finalize(tag∗, [c∗0]1, π∗):
If VerNIZK(crs, tag∗, [c∗0]1, π∗) = 1 ∧ [c∗0]1 /∈
L[M]1 ∧ (tag∗, [c∗0]1, π∗) /∈ P then
return 1

Else return 0

Figure 8. USS security game for QANIZK

4.2 Construction: QANIZK with unbounded simulation soundness

We (slightly) modify the QANIZK scheme in [17] to achieve our stronger un-
bounded simulation soundness (as in Definition 10). Let par := (G1,G2,GT , q, P1,
P2, e,H) be the system parameter, where H : T × Gn+k

1 → {0, 1}λ is chosen
uniformly from a collision-resistant hash function family H. Our QANIZK scheme
Π is defined as in Figure 9.

GenNIZK(par, [M]1 ∈ Gn×t1 ):
A,B $← Dk,K $← Zn×(k+1)

q H $← H
For j = 1, .., λ and b = 0, 1:

Kj,b
$← Zk×(k+1)

q

crs := ([A]2, [KA]2, [B]1, [M>K]1,
([Kj,bA]2, [BKj,b]1)1≤j≤λ,0≤b≤1, H)
td := K
Return (crs, td)

Prove(crs, tag, [c0]1, r): // c0 = Mr ∈ Znq
s $← Zkq , [t]1 := [Bs]1 ∈ Gk1
τ := H(tag, [c0]1, [t]1)
[B>Kτ ]1 := [

∑λ

j=1 B>Kj,τj ]1
[u]1 := [r> ·M>K]1 + [s> · (B>Kτ )]1
Return π := ([t]1, [u]1) ∈ Gk1 ×G1×(k+1)

1

VerNIZK(crs, tag, [c0]1, π):
Parse π = ([t]1, [u]1)
τ := H(tag, [c0]1, [t]1)
Kτ :=

∑λ

j=1 Kj,τj

If [u]1 ◦ [A]2 = [c>0 ]1 ◦ [KA]2 + [t>]1 ◦
[KτA]2, then
return 1

Else return 0

Sim(crs, td, tag, [c0]1):
s $← Zkq , [t]1 := [Bs]1 ∈ Gk1
τ := H(tag, [c0]1, [t]1)
[B>Kτ ]1 := [

∑λ

j=1 B>Kj,τj ]1
[u]1 := [c>0 ·K]1 + [s>(B>Kτ )]1
Return π := ([t]1, [u]1) ∈ Gk1 ×G1×(k+1)

1

Figure 9. Construction of Πuss.

Theorem 2. The QANIZK system Πuss defined in Figure 9 has perfect com-
pleteness and perfect zero-knowledge. Suppose in addition that the distribution
of matrix M is witness sampleable, the Dk-MDDH is (t1, ε1)-hard in G1, the
Dk-KerMDH is (t2, ε2)-hard in G2, H is a (t3, ε3)-collision resistant hash func-
tion family, then Πuss is (t, ε)-USS, where t1 ≈ t2 ≈ t3 ≈ t + Qspoly(λ), and
ε ≤ ε2 + 4λε1 + ε3 + 2−Ω(λ), poly(λ) is a polynomial independent of t.

The proof is similar to that of [17] and we give the formal proof in the full version.
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5 Identity-based Key Encapsulation Mechanism

We give our generic construction of an identity-based key encapsulation mecha-
nism (IBKEM) from an affine MAC. Here we only focus on IBKEMs, since, even
in the multi-instance, multi-challenge setting, a constrained CCA (resp. CPA)
secure IBKEM can be transformed to a CCA (resp. CPA) secure identity-based
encryption (IBE) in an efficient and tightly secure way by using an authenti-
cated symmetric encryption scheme. One can prove this by adapting the known
techniques from [30,20] in a straightforward way.

5.1 Definition

Let par be a set of system parameters.

Definition 11 (Identity-based key encapsulation mechanism). An iden-
tity-based key encapsulation mechanism (IBKEM) has four algorithms IBKEM :=
(Setup,Ext,Enc,Dec) with the following properties:
– The key generation algorithm Setup(par) returns the (master) public/secret

key (pk, sk). We assume that pk implicitly defines an identity space ID, a
symmetric key space K, and a ciphertext space C.

– The user secret-key generation algorithm Ext(sk, id) returns a user secret key
usk[id] for an identity id ∈ ID.

– The encapsulation algorithm Enc(pk, id) returns a symmetric key K ∈ K
together with a ciphertext C ∈ C with respect to identity id.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns the de-
capsulated key K ∈ K or the rejection symbol ⊥.

(Perfect correctness) We require that for all pairs (pk, sk) $← Setup(par),
all identities id ∈ ID, all usk[id] $← Ext(sk, id) and all (K,C) $← Enc(pk, id),
Pr[Dec(usk[id], id,C) = K] = 1.

We define indistinguishability against constrained chosen-ciphertext and
chosen-identity attacks for IBKEM in the multi-challenge setting.

Definition 12 (mID-CCCA security). An identity-based key encapsulation sche-
me IBKEM is (Qext, Qenc, Qdec, t, ε)-mID-CCCA-secure if for all A with negligible
uncert(A) that runs in time t, makes at most Qext user secret-key queries, Qenc
encryption queries and Qdec decryption queries,

|Pr[mID-CCCAA0 ⇒ 1]− Pr[mID-CCCAA1 ⇒ 1]| ≤ ε,

where the security game is defined as in Figure 10, here predi : K → {0, 1} denotes
the predicate sent in the ith decryption query, the uncertainty of knowledge about
keys corresponding to decryption queries is defined as

uncert(A) := 1
Qdec

Qdec∑
i=1

Pr
K $←K

[predi(K) = 1].
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Init:
(pk, sk) $← Setup(par)
Return pk

Dec(idi,Ci, predi): // at most Qdec queries
usk[idi] $← Ext(sk, idi)
Ki ← Dec(usk[idi], idi,Ci)
If (idi,Ci) /∈ Cenc and predi(Ki) = 1 then
return Ki

Else return ⊥

Finalize(d):
Return d ∧ (Qusk ∩Qenc = ∅)

Enc(id∗): // at most Qenc queries
Qenc := Qenc ∪ {id∗}
(C,K) $← Enc(pk, id∗)
K $← K
Return (C,K)

Ext(id): // at most Qext queries
Qusk := Qusk ∪ {id}
If usk[id] = ⊥ then

usk[id] $← Ext(sk, id)
Return usk[id]

Figure 10. Games mID-CCCA0 and mID-CCCA1 for defining mID-CCCA-security.

If an adversary is not allowed to query Dec, then we get the security notion of
indistinguishability against chosen-plaintext and chosen-identity attacks.

Definition 13 (mID-CPA security). An identity-based key encapsulation sche-
me IBKEM is (Qext, Qenc, t, ε)-mID-CPA-secure if IBKEM is (Qext, Qenc, 0, t, ε)-
mID-CCCA-secure.

Remark 1 (Ext queries with the same identity). For simplicity, we assume that
an adversary can query Ext with the same identity at most once. This is without
loss of generality when assuming that the scheme is made deterministic, e.g.,
by generating the randomness in Ext with a (tightly secure) pseudorandom
function such as the Naor-Reingold PRF [40]. Thus the anonymity we achieve
here is usually called weak anonymity [22].

Remark 2 (On uncert(A)). When we prove the IND-CCA security of the hybrid
IBE scheme by combining an IND-CCCA secure ID-KEM together with an
unconditionally one-time secure authenticated encryption scheme AE, the term
(Qdec + Qenc)uncert(A) is related to the one-time integrity of AE and can be
made exponentially small (since it does not necessarily rely on any computational
assumption). Hence, in line with previous works (e.g., [17]), we still call our
reduction (almost) tight.

5.2 Two Transformations

We construct two generic transformations of IBKEM from affine MACs, IBKEM1
and IBKEM2. Let par := (G1,G2,GT , q, P1, P2, e), MAC := (GenMAC,Tag,VerMAC)
be an affine MAC and Π := (GenNIZK,Prove,VerNIZK,Sim) be a QANIZK system
for linear language L[M]1 := {[c0]1 : ∃r ∈ Zkq s.t. c0 = Mr}, where M ∈ Uk+η,k.
Our IBKEMs IBKEM1 and IBKEM2 are defined in Figure 11.

It is worth mentioning that if we instantiate our schemes with the SXDH
assumption then we have: 4 elements in user secret keys, 4 elements in ciphertexts,
and (2λ+ 4) elements in master public keys for IBKEM1 (which is denoted by
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(|usk|, |C|, |pk|) = (4, 4, 2λ+ 4)); and (|usk|, |C|, |pk|) = (4, 7, 8λ+ 12) for IBKEM2.
We give concrete instantiations in the full version based on the MDDH and SXDH
assumptions, respectively.

Setup(par):
M $← Uk+η,k
skMAC

$← GenMAC(par)
Parse skMAC := (B,X0, . . . ,X`,x′0, . . . ,x′`′)
(crs, td) $← GenNIZK(par, [M]1)
For i = 0, . . . , `:

Yi
$← Zk×nq ; Zi = (Y>i | X>i ) ·M ∈ Zn×kq

For i = 0, . . . , `′:
y′i $← Zkq ; z′i = (y′i

> | x′>i ) ·M ∈ Z1×k
q

pk := ( crs ,[M]1, ([Zi]1)0≤i≤`, ([z′i]1)0≤i≤`′)
sk := (skMAC, (Yi)0≤i≤`, (y′i)0≤i≤`′)
Return (pk, sk)

Ext(sk, id):
([t]2, [u]2) $← Tag(skMAC, id)
//u =

∑`

i=0 fi(id)Xit +
∑`′

i=0 f
′
i(id)x′i

v =
∑`

i=0 fi(id)Yit +
∑`′

i=0 f
′
i(id)y′i ∈ Zkq

Return usk[id] := ([t]2, [u]2, [v]2) ∈ Gn+η+k
2

Enc(pk, id):
r $← Zkq ; c0 = Mr ∈ Zk+η

q

c1 = (
∑`

i=0 fi(id)Zi) · r ∈ Znq
π = Prove(crs, [c1]1, [c0]1, r)

K = (
∑`′

i=0 f
′
i(id)z′i) · r ∈ Zq

C := ([c0]1, [c1]1, π )
Return (C,K := [K]T ).

Dec(usk[id], id,C):
Parse usk[id] = ([t]2, [u]2, [v]2)
Parse C = ([c0]1, [c1]1, π )

If VerNIZK(crs, [c1]1, [c0]1, π) = 0 then
return ⊥

w> :=
(
v> | u>

)
K = [c>0 ]1 ◦ [w]2 − [c>1 ]1 ◦ [t]2
Return K ∈ GT

Figure 11. IBKEM1 and IBKEM2 . Gray instructions are only executed in IBKEM2 .

IBKEM1 is mID-CPA-secure and it follows the same idea as IBE[MAC,Dk] in
[8]. Since our underlying MAC is secure in the multi-challenge setting, IBKEM1
is ID-CPA-secure in the multi-challenge setting, and it can be also viewed as an
alternative abstraction of [22] in the BKP framework.

The difficulty for IBKEM1 to achieve mID-CCCA security is that decryption
answers may leak information about usk[id] for challenge id. We observe that
if ciphertexts satisfy that (c0 = Mr) ∧ (c1 = (

∑`
i=0 fi(id)Zi) · r) for some

r (we call such ciphertexts as “well-formed”), then the decrypted K reveals
no more information about usk[id] than pk. Since “c0 ∈ Span(M)” is a linear
statement, we can introduce the efficient unbounded simulation-sound QANIZK
from Section 4 to reject Dec queries with [c0]1 /∈ Span([M]1). Furthermore, due
to the randomness contained in usk[id], if c0 ∈ Span(M) but c1 is not “well-
formed”, the decrypted K will be randomly distributed and thus it will be rejected
by the decryption oracle. Note that [c1]1 works as the tag for QANIZK argument.
We refer the proof of Theorem 4 for technical details.

Theorem 3 (mID-CPA Security of IBKEM1). If the Uk-MDDH is (t1, ε1)-hard
in G1, and MAC is a (Qe, Qc, t2, ε2)-mPR-CMA-secure affine MAC, then IBKEM1
is (Qext, Qenc, t, ε)-mID-CPA-secure, where Qext ≤ Qe, Qenc ≤ Qc, t1 ≈ t2 ≈
t+ (Qext +Qenc)poly(λ) and ε ≤ 2(ε1 + ε2 + 2−Ω(λ)).



Identity-based Encryption Tightly Secure under Chosen-ciphertext Attacks 23

The proof of Theorem 3 is an extension of Theorem 4.3 in [8] in the multi-
challenge setting. We leave the proof in the full version.

Theorem 4 (mID-CCCA Security of IBKEM2). If the Uk-MDDH is (t1, ε1)-
hard in G1, MAC is a (Qe, Qc, t2, ε2)-mPR-CMA-secure affine MAC, Π is a
(Qs, t3, ε3)-USS QANIZK, then IBKEM2 is (Qext, Qenc, Qdec, t, ε)-mID-CCCA-sec-
ure, where Qext ≤ Qe, Qenc ≤ Qc ≈ Qs, t3 ≈ t1 ≈ t2 ≈ t + (Qdec + Qenc +
Qext)poly(λ) and ε ≤ 2(ε1 + ε2 + ε3 + 2Qdec · uncert(A) + 2−Ω(λ)).

It is easy to verify the correctness of IBKEM1 and IBKEM2.

Proof (of Theorem 4). We define a series of games in Figure 12 to prove the
mID-CCCA security of IBKEM2. A brief overview of game changes is described
as in Figure 13. For a simple presentation of Figure 12, we define Xid :=∑`
i=0 fi(id)Xi, Yid :=

∑`
i=0 fi(id)Yi, Zid :=

∑`
i=0 fi(id)Zi, x′id :=

∑`′

i=0 f
′
i(id)x′i,

y′id :=
∑`′

i=0 f
′
i(id)y′i, z′id :=

∑`′

i=0 f
′
i(id)z′i for an id ∈ {0, 1}L.

Lemma 14 (G0 to G1). Pr[mID-CCCAA0 ⇒ 1] = Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1]

Proof. G0 is the real attack game. In G1, we change the simulation of c1 and K
in Enc(id∗) by substituting Zi and z′i with their respective definitions:

c1 = Zid∗r = (Y>id∗ | X>id∗)Mr = (Y>id∗ | X>id∗)c0

and K = (y′>id∗ | x′>id∗)Mr = (y′id∗
> | x′id∗

>)c0. This change is only conceptual.
Moreover, we simulate the QANIZK proof π in Enc(id∗) by using Π’s zero-
knowledge simulator. By the perfect zero-knowledge property of Π, G1 is identical
to G0. ut

Lemma 15 (G1 to G2). If the Uk+η,k-MDDH problem is (t1, ε1)-hard in G1, then
|Pr[GA1 ⇒ 1]−Pr[GA2 ⇒ 1]| ≤ ε1+2−Ω(λ) and t1 ≈ tA+(Qdec+Qenc+Qext)poly(λ),
where poly is a polynomial independent of tA.

Lemma 15 can be proved by a straightforward reduction to the Qenc-fold
Uk+η,k-MDDH problem in G1 and we omit it here.

Lemma 16 (G2 to G3). If the tag-based QANIZK Π is (Qs, t3, ε3)-USS, then
|Pr[GA2 ⇒ 1] − Pr[GA3 ⇒ 1]| ≤ ε3 + Qdecuncert(A) and Qs ≥ Qenc, t3 ≈ tA +
(Qdec +Qext +Qenc)poly(λ), where poly is a polynomial independent of tA.

Proof. The difference between G2 and G3 happens when an adversary queries
the decryption oracle Dec with (id,C = ([c0]1, [c1]1, π), pred) where id /∈ Qusk ∧
pred(Dec(usk[id], id,C)) = 1 ∧ c0 /∈ Span(M) ∧ VerNIZK(crs, [c1]1, [c0]1, π) = 1.
That is bounded by the unbounded simulation soundness (USS) of Π. Formally,
we construct an algorithm B in Figure 14 to break the USS of Π and we highlight
the important steps with gray.

We analyze the success probability of B. For a Dec(id,C, predi) query, we
have the following two cases:
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Init:
M $← Uk+η,k, skMAC

$← GenMAC(par)
Parse skMAC := (B,X0, . . . ,X`,x′0, . . . ,x′`′)
(crs, td) $← GenNIZK(par, [M]1)
For i = 0, . . . , `:

Yi
$← Zk×nq ;

Zi = (Y>i | X>i ) ·M ∈ Zn×kq

For i = 0, . . . , `′:
y′i $← Zkq ; z′i = (y′i

> | x′>i ) ·M ∈ Z1×k
q

pk := (crs, [M]1, ([Zi]1)0≤i≤`, ([z′i]1)0≤i≤`′)
sk := (skMAC, (Yi)0≤i≤`, (y′i)0≤i≤`′)
Return pk

Dec(id,C, pred): //G0-7, G3, G4-6

If (id,C) ∈ Cenc then return ⊥
Parse C = ([c0]1, [c1]1, π)
If VerNIZK(crs, [c1]1, [c0]1, π) = 0 then
return ⊥
If id /∈ Qusk then
if c0 /∈ Span(M) then return ⊥

if (c1 6= ZidM−1c0) then
return ⊥

else
K := [(z′idM−1c0)]T
if pred(K) = 1 then return K
else return ⊥

usk[id] = ([t]2, [u]2, [v]2) $← Ext′(id)
w> :=

(
v> | u>

)
K = [c>0 ]1 ◦ [w]2 − [c>1 ]1 ◦ [t]2
If pred(K) = 1 then return K
Else return ⊥

Finalize(d):
Return d ∧ (Qenc ∩Qusk = ∅)

Enc(id∗): //G0, G1, G2-4 , G5,
�� ��G6

Qenc := Qenc ∪ {id∗}
r $← Zkq , c0 = Mr ∈ Zk+η

q

c0
$← Zk+η

q

h $← Zηq , h0 := X>id∗h, h1 := x>id∗h�� ��h $← Zηq ,h0
$← Zkq , h1

$← Zq;

c0
$← Zkq , c0 := h + MM−1c0

π = Prove(crs, [c1]1, [c0]1, r)
c1 = Zid∗ · r ∈ Znq ; K = z′id∗ · r ∈ Zq
c1 = (Y>id∗ | X>id∗)c0 ∈ Znq
K = (y′>id∗ | x′

>
id∗)c0 ∈ Zq

[c1]1 = [Zid∗M
−1c0]1 + [h0]1

K = [z′id∗M
−1c0]T + [h1]T

π = Sim(crs, td, [c1]1, [c0]1)
Cenc := Cenc ∪ {(id∗, ([c0]1, [c1]1, π))}
Return C = ([c0]1, [c1]1, π) ∈ Gn+k+η

1
and K = [K]T .

Ext(id)
Qusk := Qusk ∪ {id}
usk[id] := ([t]2, [u]2, [v]2) $← Ext′(id)
Return usk[id]

Ext′(id): //G0-4, G5-6

([t]2, [u]2) $← Tag(skMAC, id)
v := Yidt + y′id ∈ Zkq

v> := (t>Zid + z′id − u>M)M−1

usk[id] := ([t]2, [u]2, [v]2) ∈ Gn+η+k
2

Key := Key ∪ {(id, usk[id])}
Return usk[id] ∈ Gn+η+k

2

Figure 12. Games G0-G6 for the proof of Theorem 4.

– ([c1]1, [c0]1, π) = ([c∗1]1, [c∗0]1, π∗) for some (id∗,C∗) ∈ Cenc with id 6= id∗. In
this case, B cannot break the USS property, but the adversary A can ask
such a query with predi(Dec(usk[id], id,C)) = 1 with probability uncert(A).
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# modification remarks
G0 the same as mID-CCCA0 -
G1 Enc : compute c1,K with sk,π with td ZK of Π
G2 Enc : c0

$← Zk+η
q Uk+η,k-MDDH in G1

G3 Dec: for id /∈ Qusk, reject C with c0 /∈
Span(M)

USS of Π

G4 Dec: for id /∈ Qusk, reject C with c1 6=
ZidM−1c0

entropy of t

G5 Ext,Enc : compute c1,K and v with pk
and skMAC

-

G6 Enc: c1
$← Zkq ,K $← Zq mPR-CMA of MAC

Figure 13. Overview of game changes for proof of Theorem 4

More precisely, we have

K = [c>0 ]1 ◦ [w]2 − [c>1 ]1 ◦ [t]2
= [c>0 ]1 ◦ [w]2 − [c>0 (Yid∗ | Xid∗)]1 ◦ [t]2
= [c>0 ]1 ◦ [(Yid | Xid)t]2 − [c>0 (Yid∗ | Xid∗)]1 ◦ [t]2
= [c>0 ]1 ◦ [(Y∆ | X∆)t]2,

where Y∆ := Yid−Yid∗ and X∆ := Xid−Xid∗ . By id /∈ Qusk, the correspond-
ing t is randomly distributed in the adversary’s view. Clearly, (Y∆ | X∆) 6= 0,
since id 6= id∗. Thus, K is randomly distributed and A can output a predi
such that predi(K) = 1 with probability uncert(A).

– ([c1]1, [c0]1, π) 6= ([c∗1]1, [c∗0]1, π∗) for all (id∗,C∗) ∈ Cenc. In this case, ([c1]1,
[c0]1, π) is a valid proof to break the USS of Π.

To sum up, the success probability of B is at least |Pr[GA2 ⇒ 1] − Pr[GA3 ⇒
1]| −Qdec · uncert(A). ut

Lemma 17 (G3 to G4). |Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]| ≤ Qdec · uncert(A).

Proof. An adversary A can distinguish G4 from G3 if A asks the decryption
oracle Dec with (id,C = ([c0]1, [c1]1, π), pred) where c1 6= ZidM−1 · c0 but
pred(Dec(usk[id], id,C)) = 1.

We show that, before an identity id is queried to Ext, for any (c0, c1), the

value K = c>0
(

vid
uid

)
− c>1 tid is uniformly random from the adversary’s view,

where ([tid]2, [uid]2, [vid]2) ∈ Ext(id):

K = c>0
(

vid
uid

)
− c>1 tid = c>0

(
((t>idZid + z′id − u>id ·M) ·M−1)>

uid

)
− c>1 tid

= c>0 (M−1)>z′id
> + (c>0 − (MM−1c0)>)︸ ︷︷ ︸

∆1

uid + ((Zid ·M
−1 · c0)> − c>1 )︸ ︷︷ ︸
∆2

tid

In G3 and G4, a Dec query with c0 /∈ Span(M) and id /∈ Qusk will be rejected,
and thus we have ∆1 = 0. As id has never been queried to Ext, tid is uniformly
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Init:
M $← Uk+η,k

Compute M⊥ ∈ Z(k+η)×η
q s.t.M>M⊥ = 0

skMAC
$← GenMAC(par)

Parse skMAC := (B,X0, . . . ,X`,x′0, . . . ,x′`′)
crs $← InitNIZK(M)
For i = 0, . . . , ` :

Yi
$← Zk×nq ;

[Zi]1 = [(Y>i | X>i ) ·M]1 ∈ Zn×kq

For i = 0, . . . , `′ :
y′i $← Zkq ,
[z′i]1 = [(y′i

> | x′>i ) ·M]1 ∈ Z1×k
q

pk := (crs, [M]1, ([Zi]1)0≤i≤`, ([z′i]1)0≤i≤`′)
sk := (skMAC, (Yi)0≤i≤`, (y′i)0≤i≤`′)
Return pk

Ext(id):
Qusk := Qusk ∪ {id}
([t]2, [u]2) $← Tag(skMAC, id)
v := Yidt + y′id ∈ Zkq
Return usk[id] := ([t]2, [u]2, [v]2) ∈ Gn+η+k

2

Finalize(d):
Return d ∧ (Qenc ∩Qusk = ∅)

Enc(id∗):
Qenc := Qenc ∪ {id∗}
c0

$← Zk+η
q

c1 = (Y>id∗ | X>id∗)c0 ∈ Znq
K = (y′>id∗ | x′

>
id∗)c0 ∈ Zq

π = Sim([c1]1, [c0]1)
P := P ∪ {([c1]1, [c0]1, π)}
Cenc := Cenc ∪ {(id∗, ([c0]1, [c1]1, π))}
C = ([c0]1, [c1]1, π) and K = [K]T .
Return (C,K)

Dec(id,C, pred):
If (id,C) ∈ Cenc then return ⊥
Parse C = ([c0]1, [c1]1, π)
If VerNIZK(crs, [c1]1, [c0]1, π) = 1 then
if id /∈ Qusk ∧ ([c1]1, [c0]1, π) /∈ P ∧

[c>0 M⊥]1 6= [0]1 then
Call FinalizeNIZK([c1]1, [c0]1, π)

usk[id] $← Ext(sk, id)
Parse usk[id] := ([t]2, [u]2, [v]2)
w> := (v> | u>)
K = [c>0 ]1 ◦ [w]2 − [c>1 ]1 ◦ [t]2
If pred(K) = 1 then return K

Else return ⊥.

Figure 14. Description of B with oracle access to InitNIZK,Sim,FinalizeNIZK of the
USS games of Figure 8 for the proof of Lemma 16.

random to the adversary. Thus, if c1 6= ZidM−1c0 (namely, ∆2 6= 0) then K
is random and a query of this form will be rejected except with probability
uncert(A). By the union bound, the difference between G3 and G4 is bounded by
Qdec · uncert(A). ut

Lemma 18 (G4 to G5). Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].

Proof. The change from G4 to G5 is only conceptual. By Zi = (Y>i | X>i )M, we
have Y>i = (Zi−X>i ·M)·(M)−1, and similarly we have y′>i = (z′i−x′>i ·M)·M−1.
For Ext(id), by substituting Y>i and y′>i , we obtain

v> =
(

t>(Zid −X>id ·M) + (z′id − x′id
> ·M)

)
M−1

=

t>Zid + z′id − (t>X>id + x′id
>)︸ ︷︷ ︸

u>

·M

 ·M−1

Note that we can compute [v]2 in G5, since A, z′i and Zi are known explicitly
over Zq and [t]2 and [u]2 are known.
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c0 from Enc(id∗) is uniformly random in G4 and G5. By h = c0−M ·M−1c0,
we have

c1 = Zid∗ ·M
−1c0 + X>id∗ · (c0 −M ·M−1c0)

= (Y>id∗M + X>id∗M) ·M−1c0 + X>id∗ · (c0 −M ·M−1c0)
= (Y>id∗ | X>id∗)c0

and c1 is distributed as in G4. The distribution of K can be proved by a similar
argument. ut
Lemma 19 (G5 to G6). If MAC is (Qe, Qc, t2, ε2)-mPR-CMA-secure, then
|Pr[GA5 ⇒ 1] − Pr[GA6 ⇒ 1]| ≤ ε2 with Qext ≤ Qe, Qenc ≤ Qc, t2 ≈ tA +
(Qdec +Qext +Qenc)poly(λ), where poly is a polynomial independent of tA.
Proof. In G6, we answer the Enc(id) query by choosing random K and ([c0]1,
[c1]1). We construct an adversary D in Figure 15 to bound the differences
between G5 and G6 with the mPR-CMA security of MAC. The decryption oracle
Dec is simulated as in G5 and G6. Now if D is in mPR-CMA1 then the simulated
distribution is identical to G6; otherwise, it is identical to G5. ut

Init:
M $← Uk+η,k

Compute M⊥ ∈ Z(k+η)×η
q s.t.M>M⊥ = 0

ε $← InitMAC
(crs, td) $← GenNIZK(par, [M]1)
For i = 0, . . . , `: Zi $← Zn×kq

For i = 0, . . . , `′: z′i $← Z1×k
q

pk := (crs, [M]1, ([Zi]1)0≤i≤`, ([z′i]1)0≤i≤`′)
Return pk

Ext(id):
Qusk := Qusk ∪ {id}
([t]2, [u]2) $← Eval(id)
v> := (t>Zid + z′id − u> ·M) · (M)−1

Return usk[id] := ([t]2, [u]2, [v]2) ∈ Gn+η+k
2

Enc(id∗):
Qenc := Qenc ∪ {id∗}
([h]1, [h0]1, [h1]T ) $← Chal(id∗)
c0

$← Zkq
c0 := h + M ·M−1c0 ∈ Zηq
c1 := Zid∗ ·M

−1c0 + h0
K := z′id∗ ·M

−1c0 + h1
π := Sim(crs, td, [c1]1, [c0]1)
Cenc := Cenc ∪ {(id, ([c0]1, [c1]1, π))}
C := ([c0]1, [c1]1, π) and K := [K]T .
Return (C,K)

Finalize(d):
Return FinalizeMAC(d)∧(Qenc∩Qusk =
∅)

Figure 15. Description of D (with access to oracles InitMAC,Eval,Chal,FinalizeMAC
of the mPR-CMA0/mPR-CMA1 games of Figure 1) for the proof of Lemma 19.

We observe that G6 is computationally indistinguishable from mID-CCCArand
by a reverse arguments of Lemmata 14 to 19 without changing the distribution
of K in Enc. More precisely, we can argue this by switching the ciphertexts from
random to real and removing all the additional rejection rules in Dec. Thus, we
conclude Theorem 4. ut
Remark 3 (Anonymity). In G6 all the challenge ciphertexts are independent of
the challenge identity id∗: [c1]1 is uniform and [c0]1 and π are independent of
id∗. Thus, our scheme is trivially anonymous.
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