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Abstract. We present hash functions that are almost optimally one-way
in the quantum setting. Our hash functions are based on the Merkle-
Damg̊ard construction iterating a Davies-Meyer compression function,
which is built from a block cipher. The quantum setting that we use
is a natural extention of the classical ideal cipher model. Recent work
has revealed that symmetric-key schemes using a block cipher or a pub-
lic permutation, such as CBC-MAC or the Even-Mansour cipher, can
get completely broken with quantum superposition attacks, in polyno-
mial time of the block size. Since many of the popular schemes are built
from a block cipher or a permutation, the recent findings motivate us
to study such schemes that are provably secure in the quantum setting.
Unfortunately, no such schemes are known, unless one relies on certain
algebraic assumptions. In this paper we present hash constructions that
are provably one-way in the quantum setting without algebraic assump-
tions, solely based on the assumption that the underlying block cipher is
ideal. To do this, we reduce one-wayness to a problem of finding a fixed
point and then bound its success probability with a distinguishing advan-
tage. We develop a generic tool that helps us prove indistinguishability
of two quantum oracle distributions.

keywords symmetric key cryptography, provable security, Merkle-Damg̊ard,
Davies-Meyer, one-wayness, non-invertibility, preimage-resistance, derange-
ment, fixed point, indistinguishability, quantum ideal cipher model

1 Introduction

The epoch-making work by Shor [27] revealed that widely used cryptographic
schemes such as RSA, DSA and ECDSA would become insecure when a practical
quantum computer becomes available. Since then, researchers have become in-
creasingly interested in so-called post-quantum cryptography. Today there exist
several schemes that claim to provide post-quantum security. Some of them are
based on computational problems that are seemingly hard to solve even with
quantum computers, like the lattice-based cryptography based on the shortest
vector problem or its variants. Others are based on the assumption that there ex-
ist post-quantum-secure symmetric-key primitives, e.g. digital signatures based
on one-way hash functions.



Two Levels of Post-Quantum Security. There are two notions of security
against adversaries with quantum computers: standard security and quantum se-
curity [35]. In this paper we focus on the quantum security, because it is stronger.
In the standard-security setting we assume that adversaries have quantum com-
puters but can make only classical queries to the oracles. On the other hand,
in the quantum-security setting, adversaries are allowed to make quantum su-
perposition queries. In other words, that a scheme provides quantum security
means that it will remain secure even in the far future when all computations
and communications are done in quantum superposition states.

Post-Quantum Insecurity of Symmetric-Key Constructions. On the
negative side, it has turned out that a number of symmetric-key constructions as
well as many public-key schemes can be broken in polynomial time (of the block
size) if adversaries are allowed to make quantum superposition queries. For ex-
ample, such adversaries can distinguish 3-round Feistel ciphers from random [19],
recover keys of Even-Mansour ciphers [20], forge various message authentication
codes like CBC-MAC [17], by making only polynomially many queries. These
attacks tell us that in general there is no guarantee that the classical security of
a symmetric-key scheme implies its quantum security.

Quantum-Secure Schemes based on One-Way Functions. On the posi-
tive side, previous work [35,8,28] has shown that, if we assume the existence of
one-way functions that are hard to invert even with quantum computers, then
we can come up with a wide range of quantum-secure schemes. These include
pseudo-random functions, message authentication codes, universal one-way hash
functions, one-time signatures, and EU-CMA signature schemes. Thus, the exis-
tence of quantum-secure one-way functions is fundamental, just as in the classical
setting, and the cryptographic hash functions in use like SHA-3 [24] and SHA-
2 [23] are considered to be possible candidates also for the instantiation of these
quantum-secure one-way functions.

Cryptographic Hash Functions Revisited. Recall that cryptographic hash
functions are normally constructed only with public, “keyless” primitives, either
from a public permutation or a block cipher having no secret keys (i.e. key in-
puts are public). For example, SHA-3 is constructed from a public permutation,
and SHA-2 is essentially based on a public block cipher. The generic security
(indifferentiability) of the sponge construction used in SHA-3 is proven in the
random permutation model, and the security (one-wayness and collision resis-
tance) of Davies-Meyer construction adopted by the SHA-2 compression function
is proven in the ideal cipher model.

However, as mentioned above, we should carefully note that the classical
provable security of these hash functions may not carry over to the quantum
setting. For example, recently Carstens et al. [10] gave an evidence that SHA-3
is not indifferentiable in the quantum setting, based on a conjecture. There-
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fore, here we would like to pose a fundamental question: do we have a provably
quantum-secure construction of one-way hash functions?

1.1 Our Contributions

Our answer is positive; in this paper we show that the Merkle-Damg̊ard iteration
with the Davies-Meyer compression function is a quantum-secure one-way hash
function. This has been a popular design used in MD5, SHA-1 and SHA-2.
Indeed, our construction is essentially identical to the modes of operation used
in these traditional hash functions, except for minor differences in padding rules,
initialization vectors, and input-size restrictions on the underlying block cipher.

Our contributions come in three steps. First, we fix a security model in which
we prove our main result. Second, we develop a generic tool for bounding quan-
tum oracle indistinguishability. Finally, we use the tool to prove our main result.

1. Introducing the Quantum Ideal Cipher Model. As the first step we
introduce the quantum ideal cipher model, which, as the name suggests,
naturally extends the ideal cipher model in the classical setting. Similarly to
the classical case, we treat the underlying block cipher as an ideal cipher E,
i.e., Ek is a random permutation for each key k. We then allow quantum
adversaries to make both forward and backward queries to the cipher. In
our model, a table of all values for the ideal cipher E is determined at the
beginning of each game, and the oracle that computes E(·)(·) and E−1

(·) (·) are

given to the adversary. Following the style of previous work in the classical
setting, we consider (quantum) information-theoretic adversaries that have
no limitation on computational resources, such as time or the number of
available qubits. We only bound the number q of queries that the adversary
makes to its oracles.

2. A Generic Tool for Quantum Indistinguishability. The second step is
to develop a proof tool to upper-bound quantum oracle distinguishing ad-
vantages. The tool can be applied to any pair (D1, D2) of distributions on an
arbitrary (finite) set of functions (Proposition 3.1.) The tool enables us to
obtain an upper bound by mere combinatorial enumeration and associated
probability computations. There is a simplified version of the tool corre-
sponding to the special case when D1 and D2 are distributions on a set of
boolean functions (having some fixed domain size) with D2 being a degener-
ate distribution at the zero function (Proposition 3.2.) In fact this simplified
version suffices to prove our main result. Our tool is developed by generaliz-
ing and integrating several existing techniques [6,29,2,16] corresponding to
some limited cases of the simplified version. However, previous work treats
only the case that D1 is some specific distributions, and no previous work
seems suitable to our situation. We developed our tool so that it looks fa-
miliar to researchers on symmetric-key provable security (like coefficient-H
technique).

3. One-Wayness of Merkle-Damg̊ard with Davies-Meyer. The final but
main contribution of this paper is to give almost optimal security bound for
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quantum one-wayness of the Merkle-Damg̊ard construction with a Davies-
Meyer compression function. That is, any quantum query adversary needs to
make about 2n/2 queries to invert the function with n-bit output. This bound
is almost optimal since the Grover search can find a preimage of random
functions with O(2n/2) quantum queries, and it is proven that the Grover
search is optimal strategy to find a preimage of random functions [16]. In our
proof, the input length of functions can be exponentially long but must be
fixed. We stress that this is the first proof for quantum security on symmetric
key schemes based on public block ciphers.

Technical Details. In this paper we give exact security bounds without any
asymptotic notation, because security parameters of symmetric-key schemes are
usually fixed to some constant.

This paper considers two security notions: non-invertibility and one-wayness.
When we say h : {0, 1}s → {0, 1}n has one-wayness, we mean that any adversary
cannot find a preimage of y = h(x), where x is randomly chosen from {0, 1}s.
1 On the other hand, when we say h has non-invertibility, we mean that any
adversary cannot find a preimage of y, where y is randomly chosen from {0, 1}n.
These are similar but independent notions.

We firstly show non-invertibility of permutation with feedforward in the
quantum ideal permutation model, secondly show both non-invertibility and one-
wayness of Davies-Meyer constructions, and finally show both non-invertibility
and one-wayness of Merkle-Damg̊ard constructions. It might be unexpected that
permutation with feedforward is non-invertible in the quantum setting although
it uses only public permutation and XOR operation, which seems similar to the
Even-Mansour ciphers that are broken by quantum superposition attacks.

Due to a technical reason, we need some restriction on usage of keys in Davies-
Meyer construction. Similarly, we need a padding function for Merkle-Damg̊ard
construction. However, these do not mean restriction on available block ciphers.
As a subsidiary result, we also show that any quantum query adversary needs to
make about 2n/2 queries to find a fixed point of a public random permutation
(which allow adversaries to make both forward and backward quantum queries).
This is the first result on quantum query lower bound for a property related to
public random permutations.

Our proof strategy is to reduce the problem of breaking security notions
to the problem of distinguishing oracle distributions on boolean functions. A
similar strategy can be found in [16]. Then indistinguishability between quantum
oracle distributions is shown using our new proof tool described above. To reduce
problems on public random permutations to problems on boolean functions,
we try to approximate the uniform distribution on random permutations by
combining distributions on boolean functions with the uniform distribution on
derangements (permutations without fixed points).

1 This security notion is also called preimage resistance (see [26] for example).

4



1.2 Related Work

There already exist powerful tools that aim to give quantum security bounds
for cryptographic schemes. These tools include “one-way to hiding” lemma and
quantum random oracle programming by Unruh [31,30], the rank method and
oracle indistinguishability frameworks by Zhandry [35,36,8]. These tools do not
seem to consider the situation where adversaries can make both forward and
backward queries to public permutations or block ciphers. There exists previous
work [1] that proves quantum security of Even-Mansour ciphers in a model where
adversaries make both forward and backward queries to the underlying permuta-
tion, but it should be noted that the proof [1] requires a quantum computational
hardness assumption (the hidden shift problem.)

A quantum version of the random oracle model is proposed by Boneh et
al, [7], and many schemes are proven to be secure in this model ([36,30], for
example). Regarding symmetric key schemes, several papers on quantum secu-
rity already exist. They include work on quantum security of Carter-Wegman
MACs [8], quantum PRP-PRF switching lemma [37], quantum security of the
CBC, OFB, CTR, and XTS modes of operation [4], quantum generic security
of random hash functions [16], and quantum security of NMAC [29]. With a
computational assumption that hidden shift problem is hard to solve even with
quantum computers, it is shown that Even-Mansour ciphers and CBC-MAC,
which are broken in polynomial time with quantum queries, can be modified
to have quantum security [1]. For standard security, i.e., with the assumption
that adversaries have quantum computers but can make only classical queries,
XOR of PRPs are proven to be secure [21]. Unruh introduced a security no-
tion named collapsing, which is a generalized notion of collision-resistant in the
quantum setting [33]. Unruh showed that Merkle-Damg̊ard constructions are col-
lapsing if underlying constructions are collapsing [32]. Czajkowski et al. showed
that sponge constructions are also collapsing [11] (Note that they assume build-
ing permutations are one-way permutations or functions, and do not treat the
usual sponge functions that are constructed from public permutations). Recently
Zhandry [34] showed indifferentiability of the Merkle-Damg̊ard construction in
the quantum random oracle model (compression functions are assumed to be
random functions).

2 Preliminaries

In this section we describe notation and definitions. For readers who are not
familiar with quantum terminology, we give a brief explanation on quantum
computation in Appendix C.

Notation. Let [i, . . . , j] denote the set of integers {i, i+ 1, . . . , j} for i < j, and
[N ] denote the set [1, . . . , N ]. For sets X and Y , let Func(X,Y ) be the set of
functions from X to Y . For a set X, let Perm(X) be the set of permutations
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on X. Let Ciph(m,n) denote the set

{E ∈ Func({0, 1}m × {0, 1}n, {0, 1}n) | E(k, ·) ∈ Perm({0, 1}n) for each k} ,

where “·” means arbitrary inputs.
We call an element of Ciph(m,n) an n-bit block cipher with an m-bit key. For

each E ∈ Ciph(m,n) and k ∈ {0, 1}m, let Ek denote the permutation E(k, ·).
For a distribution D, let Prx∼D[event] denote the probability that event occurs
when x is sampled according to the distribution D. For two distributions D1 and
D2, let ∆(D1, D2) denote the total variation distance D1 and D2. Let td(ρ1, ρ2)
denote the trace distance between density matrices ρ1 and ρ2. For a random
variable V that takes values in a set X, define a distribution DV : X → [0, 1]
by DV (x) = Pr[V = x] for each x ∈ X. We call DV the distribution of V . If we

write x
D←− X, then it means to sample x according to the distribution D on X.

Derangements. A permutation P0 ∈ Perm(X) is called a derangement if P0

has no fixed point, i.e. if there is no element x ∈ X such that P0(x) = x. The set
of derangements on a set X is denoted as Der(X). The number of derangements
on a set of size N is written as !N . The following formula is well-known [15]:

Lemma 2.1. We have !N = N ! ·
∑N
i=0

(−1)i

i! =
⌊
N !
e + 1

2

⌋
, where b·c is the floor

function.

For completeness, we give a proof in Appendix B.

Davies-Meyer and Merkle-Damg̊ard Constructions. For an n-bit block
cipher E with an m-bit key, we define a function DME ∈ Func({0, 1}m ×
{0, 1}n, {0, 1}n) by DME(z, x) = Ez(x) ⊕ x. We call DME the Davies-Meyer
construction made from E ∈ Ciph(m,n). For a permutation P ∈ Perm({0, 1}n),
we define a function FFP ∈ Func({0, 1}n) by FFP (x) := P (x) ⊕ x. We call the
function FFP as permutation P with feedforward. The function FF can be re-
garded as a “fixed-key” version of DM.

For a function h : {0, 1}m × {0, 1}n → {0, 1}n and an integer ` > 0, the
Merkle-Damg̊ard construction MDh` : {0, 1}n × {0, 1}m` → {0, 1}n is defined by

MDh` (x, z1, . . . , z`) := h(z`, h(z`−1, · · · , h(z2, h(z1, x)) · · · ), (1)

where zi ∈ {0, 1}m for each i. We consider the special case when h is the Davies-
Meyer compression function, i.e., h(z, x) = DME(z, x) for an n-bit block cipher

E ∈ Ciph(m,n). Fig. 1 illustrates MDDME

` , the combination of a Davies-Meyer
compression function with the Merkle-Damg̊ard iteration.

Quantum oracles and quantum adversaries. For a function f ∈ Func({0, 1}a,
{0, 1}b), quantum oracle of f is defined as the unitary operator Of such that
Of |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for arbitrary x ∈ {0, 1}a, y ∈ {0, 1}b. By an abuse of
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Fig. 1. The Merkle-Damg̊ard construction with a Davies-Meyer compression function

notation, let Of also denote the (a+ b+ c)-qubit unitary operator Of ⊗ Ic that
maps |x〉 |y〉 |z〉 to |x〉 |y ⊕ f(x)〉 |z〉 for any c.

This paper discusses on information theoretic quantum query adversary. That
is, we fix a constant q and assume that a quantum adversary A can make at most
q quantum queries, but we assume no other limitation for A about quantum com-
putational resources such as time or the number of available qubits. Following
the previous works that treat quantum oracle query adversary ([5,7,36,35,8,29],
for example), we model A as a sequence of unitary operators UqOfUq−1 · · ·OfU0.
We write AO(x) = y for the event that a quantum adversary A takes x as input,
makes quantum queries to O, and finally outputs y.

If quantum oracle O is dependent on some distribution, then the state of a
quantum query algorithm A is described as a density operator. Suppose O = Of
for a function f , which is sampled according to a distribution D1 on Func({0, 1}a,
{0, 1}b). Then, the state of A with input x after the i-th query becomes |φif 〉 :=

UiOfUi−1Of · · ·OfU0 |0, x, 0〉 with probability pf1 := PrF∼D1
[F = f ]. This

mixed state is described as

ρi1 =
∑
f

pf1 |φif 〉 〈φif | . (2)

Quantum oracle distinguishing advantage. Following previous works (see [35],
for example), we define quantum oracle distinguishing advantage as follows. Let
D1, D2 be two distributions on a set of functions. Assume that a quantum al-
gorithm A is allowed to access the quantum oracle of a function that is chosen
according to either D1 or D2. Suppose A can make at most q queries, and finally
outputs the result 1 or 0. Then, we define the distinguishing advantage of A by

AdvdistD1,D2
(A) :=

∣∣∣∣ Pr
f∼D1

[AOf () = 1]− Pr
g∼D2

[AOg () = 1]

∣∣∣∣ .
In addition, we define

AdvdistD1,D2
(q) := max

A

{
AdvdistD1,D2

(A)
}
,

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.
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Distinguishing advantages can be bounded by the trace distance and total
variational distance. Let ρi1 be the density operator defined by (2), and ρi2 be
the density operator that is similarly defined according to the distribution D2.
Then we can show the following lemma:

Lemma 2.2. For any quantum algorithm A that makes at most q queries,

AdvdistD1,D2
(A) ≤ td(ρq1, ρ

q
2) (3)

and
td(ρq1, ρ

q
2) ≤ ∆(D1, D2) (4)

hold.

The inequality (4) trivially follows from definitions and the proof of inequality (3)
is also straightforward, but we give a proof in Appendix C.1 for readers who are
not used to quantum computation.

2.1 Modeling Public Random Permutations and Block Ciphers in
the Quantum Setting

To model public ideal permutations and block ciphers, here we introduce quan-
tum ideal permutation model and quantum ideal cipher model, which are quan-
tum versions of the classical ideal permutation model and ideal cipher model,
respectively. There already exist works on quantum provable security [1] in the
models that are essentially same to our quantum random permutation model.
However, this is the first paper on provable security that treats ideal cipher model
in the quantum setting. We begin with formalizing quantum oracles of public
permutations and block ciphers, and then introduce quantum ideal permutation
model and quantum ideal cipher model.

Quantum oracles of public permutations and ciphers. Here we describe
how to formalize quantum oracles of public permutations and block ciphers. For
an n-bit public permutation P , we define a function P± : {0, 1} × {0, 1}n →
{0, 1}n by

P±(b, x) =

{
P (x) if b = 0,

P−1(x) if b = 1.

For a distribution D on Perm({0, 1}n), let D± be the associated distribution
on Func({0, 1} × {0, 1}n, {0, 1}n) defined by D±(f) = PrP∼D[P± = f ]. For any
public permutation P , we assume that the quantum oracle OP± is available.
This models the situation that both of forward and backward quantum queries
to the public permutation P are allowed.

Similarly, if E is an n-bit block cipher with m-bit key, then we define a
function E± : {0, 1} × {0, 1}m × {0, 1}n → {0, 1}n by

E±(b, k, x) =

{
Ek(x) if b = 0,

E−1
k (x) if b = 1.
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For a distribution D on Ciph(m,n), let D± be the associated distribution on
Func({0, 1}×{0, 1}m×{0, 1}n, {0, 1}n) defined by D±(f) = PrE∼D[E± = f ]. For
any public block cipher E, we assume that the quantum oracle OE± is available.
This models the situation that both of forward and backward quantum queries
to a block cipher E are allowed.

Quantum ideal permutation model. Assume that P is a public permuta-
tion which is chosen from Perm({0, 1}n) uniformly at random, and an adversary
A is allowed to make at most q quantum queries to P±, for some fixed num-
ber q. We call this model as quantum ideal permutation model. We say that a
scheme constructed from a public permutation is secure (with regard to some
quantum security notion) up to q quantum queries if no such quantum informa-
tion theoretic adversary can break the security notion. We say that P is an ideal
permutation if we assume the situation that quantum adversaries can access
quantum oracle of P , and P is chosen from Perm({0, 1}n) uniformly at random.

Quantum ideal cipher model. Assume that E is a public block cipher which
is chosen from Ciph(m,n) uniformly at random, and an adversary A is allowed
to make at most q quantum queries to E±, for some fixed number q. We call this
model as quantum ideal cipher model. Security in this model is defined similarly
as in the quantum ideal permutation model. Similarly, we say that E is an ideal
cipher if we assume the situation that quantum adversaries can access quantum
oracle of E, and E is chosen from Ciph(m,n) uniformly at random.

2.2 Two Security Notions of : Non-Invertibility and One-Wayness.

This paper considers two security notions: non-invertibility and one-wayness.
These are similar but independent notions (we give a separation proof in Ap-
pendix D for completeness). Let hF : {0, 1}s → {0, 1}n be a function that is
constructed from a function (or permutation) F , and O be a quantum oracle
that is defined depending on F . We assume F is chosen from a set of functions
SF uniformly at random. The set SF and how the oracle O is related to F depend
on security models.

If we consider the quantum ideal permutation model, then SF = Perm({0, 1}n),
and O is defined as the oracle of P±. We will consider the case that hF is a per-
mutation with feedforward. Similarly, if we consider the quantum ideal cipher
model, then SF = Ciph(m,n), and O is defined as the oracle of E±. We will
consider the case that hF is the Davies-Meyer constructions or Merkle-Damg̊ard
constructions.

Non-invertibility. For any quantum oracle query adversary A, define the advan-
tage of A to invert the function hF by

AdvinvhF (A) := Pr
F,y

[AO(y) = x ∧ hF (x) = y], (5)
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where F ∈ SF and y ∈ {0, 1}n are chosen uniformly at random. In addition, we
define

AdvinvhF (q) := max
A
{AdvinvhF (A)}, (6)

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

One-wayness. Similarly, define the advantage of A to break the one-wayness of
the function hF by

AdvowhF (A) := Pr
F,x′

[AO(hF (x′)) = x ∧ hF (x) = hF (x′)], (7)

where F ∈ SF and x′ ∈ {0, 1}s are chosen uniformly at random. In addition, we
define

AdvowhF (q) := max
A
{AdvowhF (A)}, (8)

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

Trivial upper bounds. We note here that there are trivial upper bounds of quan-
tum query complexity for non-invertibility and one-wayness, if hF is sufficiently
random. The bound is given by simple application of the Grover search or its
generalizations [14,9]. Given y, let consider to find x such that hF (x) = y.
Then, if 2s/|(hF )−1(y)| ≈ 2n, (which is the case when hF is a truly random
function and message space {0, 1}s is much larger than range {0, 1}n) then we
can find x such that hF (x) = y with about

√
2n quantum queries to hF . We

say hF is almost optimally non-invertible or one-way if AdvinvhF (q) = Õ(q/
√

2n)
or AdvowhF (q) = Õ(q/

√
2n), respectively, since these imply that there is no way

which is significantly better than the generic attack (the Grover search) to break
one-wayness of hF .

3 A Tool for Quantum Oracle Indistinguishability

Here we give a tool to upper bound quantum oracle distinguishing advantages
AdvdistD1,D2

with only classical probability calculation and purely combinatorial
enumeration (Proposition 3.1). Our tool can be applied to any distributions
D1, D2 on any (finite) set of functions Func({0, 1}n, {0, 1}c). In later sections,
to show non-invertibility and one-wayness of functions, we treat only the cases
that c = 1 and D2 is the degenerate distribution with support on the zero
function. Our tool can be somewhat simplified in those cases, and thus we give a
simplified version of our tool (Proposition 3.2) for later use. We believe that the
generalized version (Proposition 3.1) itself is also useful to give some quantum
security bound for other schemes or other security notions. To show that the
generalized version is also useful, an application is given in Appendix F.

There already exist techniques to bound quantum oracle distinguishing ad-
vantages in the situations which are similar to our simplified version (c = 1 and
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D2 is the degenerate distribution with support on the zero function), but exist-
ing works treat only the case that D1 is some specific distributions. (See proof
of Lemma 37 in [3], proof of Lemma C.1 in [29], for example. Theorem 1 in [16]
gives similar result as Lemma 37 in [3], but uses different analyzing technique by
Zhandry [35].) On the other hand, our simplified tool (Proposition 3.2) enables
us to treat any distribution D1 on a (finite) set of boolean functions.

This section is organized as follows. First, we explain our motivations to
develop quantum proof tools. Second, we describe our main tool. Third, we
briefly explain how to apply them to give quantum security bounds in later
sections.

3.1 Motivations: the coefficient H technique

In the classical setting, there exist several proof tools to prove oracle indistin-
guishability of symmetric key schemes. The coefficient-H technique developed by
Patarin [25] is one of the most powerful tools. Below we explain essence of the
technique.

Suppose we want to upper bound AdvdistD1,D2
(A) for a (classical) information

theoretic adversary A, and distributions D1, D2. The technique allows A to
obtain transcripts including all input-output pairs defined by queries. Let T1,
T2 be the transcripts that correspond to the oracle distributions D1 and D2,
respectively. Then, T1,T2 define distributions on a set of transcript T . The
coefficient-H technique divides T into a good set good and bad set bad. Roughly
speaking, the technique gives a bound AdvdistD1,D2

(A) ≤ ε + Pr[T2 ∈ bad]. The
parameter ε is a small number that satisfies Pr[T1 = τ ]/Pr[T2 = τ ] ≥ 1 − ε for
any good transcript τ ∈ good. How good bound we can achieve depends on how
well we define the set of transcripts T , good sets good, and bad sets bad.

3.2 Our Main tool

Following the classical coefficient-H technique, we aim to develop a quantum
proof tool so that: 1. It uses some good and bad sets, and 2. It gives an upper
bound as a sum of an amount related to good events (like ε in the coefficient-H
technique), and a bad probability. In addition, we make our tool so that we can
obtain an upper bound with only classical probability calculation and purely
combinatorial enumeration. We first describe a generalized version that D1 and
D2 can be any distributions, and then explain how it is simplified in the case
c = 1 and D2 is the degenerate distribution.

Generalized version. Let D1, D2 be any distributions on any (finite) set of
functions Func({0, 1}n, {0, 1}c). In addition, let D̄ be an arbitrary distribution
on the product space Func({0, 1}n, {0, 1}c)× Func({0, 1}n, {0, 1}c) that satisfies

D1(f) =
∑
g

D̄(f, g) for any f ∧D2(g) =
∑
f

D̄(f, g) for any g. (9)

11



(In applications, even though D1 and D2 are given as indipendent distributions,
we try to find a convenient distribution D̄, just like we do so in the (classical)
game-playing proof technique. See Appendix F for a concrete example.)

For each f, g ∈ Func({0, 1}n, {0, 1}c), let pf1 , p
g
2, p

f,g denote PrF∼D1
[F = f ],

PrG∼D1
[G = g], and Pr(F,G)∼D̄[(F,G) = (f, g)], respectively. In addition, define

a boolean function δ(f, g) : {0, 1}n → {0, 1} by δ(f, g)(x) = 1 if and only
if f(x) 6= g(x) for each pair (f, g). Let 0 ∈ Func({0, 1}n, {0, 1}) be the zero
function that maps x to 0 for any x. For each g ∈ Func({0, 1}n, {0, 1}c), let δD|g
be the conditional distribution on Func({0, 1}n, {0, 1}) defined by (δD|g)(γ) =
Pr(F,G)∼D̄[δ(F,G) = γ|G = g] for any γ ∈ Func({0, 1}n, {0, 1}).

For each g ∈ Func({0, 1}n, {0, 1}c), take a “bad” set badg ⊂ Func({0, 1}n,
{0, 1}) \ {0} arbitrarily (actually we select badg such that PrΓ∼δD|g [Γ ∈ badg]
is small), and define “good” set by goodg := Func({0, 1}n, {0, 1}) \ ({0} ∪ badg).
Furthermore, decompose the good set goodg into smaller subsets {goodgα}α∈Ag
( i.e. goodg =

⋃
α good

g
α and goodgα ∩ goodgβ = ∅ for α 6= β) such that the

conditional probability PrΓ∼δD|g [Γ = γ|Γ ∈ goodgα] is independent of γ (in
other words, for each α ∈ Ag, PrΓ∼δD|g [Γ = γ] = PrΓ∼δD|g [Γ = γ′] holds for
γ, γ′ ∈ goodgα). In addition, define badall ⊂ (Func({0, 1}n, {0, 1}c))2 by badall :=
{(f, g)|δ(f, g) ∈ badg}. For each g, α ∈ Ag and γ ∈ Func({0, 1}n, {0, 1}), let

p
goodgα
δD|g := PrΓ∼δD|g [Γ ∈ goodgα] and p

γ|goodgα
δD|g := PrΓ∼δD|g [Γ = γ|Γ ∈ goodgα] (by

assumption, p
γ|goodgα
δD|g is independent of γ). Then the following proposition holds.

Proposition 3.1 (Generalized version). Let D1, D2 be any distributions on
Func({0, 1}n, {0, 1}c), and D̄ be any distribution that satisfies (9). Let badall,
badg, goodg, and {goodgα}α∈Ag be the sets as stated above. Then, for any quan-

tum algorithm A that makes at most q quantum queries, AdvdistD1,D2
(A) is upper

bounded by

2q ·EG∼D2

[ ∑
α∈AG

p
goodGα
δD|G

√
p
γ|goodGα
δD|G ·max

x

∣∣∣{γ ∈ goodGα | γ(x) = 1}
∣∣∣]

+ 2q · Pr
(F,G)∼D̄

[(F,G) ∈ badall]. (10)

A proof of this proposition is given in Appendix E.
In later sections, we apply our tool only to the cases that c = 1 and D2 is the

degenerate distribution with support on the zero function 0. Description of our
tool can be somewhat simplified in such cases, and below we give the simplified
version for later use. To show that the generalized version itself is also useful,
an application of Proposition 3.1 is given in Appendix F.

Simplified version. Now we describe a simplified version of our tool. Let
D1, D2 be distributions on a set of boolean functions Func({0, 1}n, {0, 1}), and
D2 be the degenerate distribution with support on the zero function 0. D1 can
be any distribution.

12



Take a “bad” set bad ⊂ Func({0, 1}n, {0, 1}) \ {0} arbitrarily (actually we
select bad such that PrF∼D1

[F ∈ bad] will be small), and define “good” set by
good := Func({0, 1}n, {0, 1}) \ ({0} ∪ bad). Furthermore, decompose the good
set good into smaller subsets {goodα}α ( i.e. good =

⋃
α goodα and goodα ∩

goodβ = ∅ for α 6= β) such that the conditional probability PrF∼D1
[F = f |F ∈

goodα] is independent of f (in other words, for each α, PrF∼D1
[F = f ] =

PrF∼D1 [F = f ′] holds for f, f ′ ∈ goodα). Let p
goodα
1 := PrF∼D1 [F ∈ goodα] and

p
f |goodα
1 := PrF∼D1 [F = f |F ∈ goodα] (by assumption, p

f |goodα
1 is independent of

f). Then, the following proposition holds, which enables us to bound advantages
of quantum adversaries with only classical probability calculations and purely
combinatorial enumeration, without any quantum arguments.

Proposition 3.2 (Simplified version). Let D1 be any distribution on the set
of boolean functions Func({0, 1}n, {0, 1}), and D2 be the degenerate distribution
with support on the zero function. Let bad, good, and {goodα}α be the subsets of
Func({0, 1}n, {0, 1}) as stated above. Then, for any quantum algorithm A that
makes at most q quantum queries, AdvdistD1,D2

(A) is upper bounded by

2q
∑
α

p
goodα
1

√
p
f |goodα
1 ·max

x
|{f ∈ goodα | f(x) = 1}|+ 2q Pr

F∼D1

[F ∈ bad].

(11)

This proposition follows as an immediate corollary of the generalized version
Proposition 3.1 as below.

Proof (of Proposition 3.2). Now, D1 and D2 are distributions on a set of boolean
functions Func({0, 1}n, {0, 1}), and D2 is the degenerate distribution with sup-
port on the zero function 0. Let bad, good, and {goodα}α be the sets in Propo-
sition 3.2.

We translate notations in Proposition 3.2 to those in Proposition 3.1. Let
D̄ be the product distribution D1 ×D2. Let badg := ∅, goodgα := Func({0, 1}n,
{0, 1}) \ {0} for g 6= 0, and bad0 := bad, good0α := goodα.

Then, δ(f,0) = f holds for any boolean function f , PrG∼D2
[G = g] =

1 holds if and only if g = 0, and δD|0 = D1 holds. In addition, we have

p
good0α
δD|0 = p

goodα
1 , and p

f |good0α
δD|0 = p

f |goodα
1 for any boolean function f . More-

over, badall = {(f,0)|f ∈ bad0} holds, which implies that Pr(F,G)∼D̄[(F,G) ∈
badall] = PrF∼D1 [F ∈ bad]. Therefore Proposition 3.2 follows from Proposi-
tion 3.1. ut

Remark 3.1. We do not claim that our tool is all-around. Actually the condition

that the probability p
γ|goodgα
δD|g is independent of γ (in the generalized version) and

p
f |goodα
1 is independent of f (in the simplified version) implicitly means that D1

must have some “uniform” structure to obtain a good bound with our tool. See
proofs of Lemma 4.3 and Lemma 5.1 for concrete examples.
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3.3 How to give quantum security bound with our tool

Next, we describe how we apply Proposition 3.2 in later sections to give quantum
security bounds, in a high-level fashion. Roughly speaking, we try to reduce a
target problem to a problem of bounding distinguishing advantage between two
distributions on a set of boolean functions, and then apply Proposition 3.2. This
strategy itself is not new, but we believe our tool enables us to take the strategy
for wider applications.

Let A be a quantum query algorithm, and suppose that a problem to give
a security proof is reduced to a problem to upper bound some distinguishing
advantage AdvdistGreal,Gideal

(A). We introduce intermediate distributions (i.e. inter-

mediate games) G1 = Gideal, G2, . . . , Gt = Greal such that AdvdistGi,Gi+1
(A) can

be bounded using other techniques for 1 ≤ i ≤ t − 2. In addition, we assume
AdvdistGt−1,Gt(A) can be bounded by AdvdistD1,D2

(B) for some distributions D1, D2

on Func({0, 1}n, {0, 1}), and another quantum query algorithm B. Then we have

AdvdistGreal,Gideal
(A) ≤ AdvdistGt−1,Gt(A) +

t−2∑
i=1

AdvdistGi,Gi+1
(A)

≤ AdvdistD1,D2
(B) +

t−2∑
i=1

AdvdistGi,Gi+1
(A) (12)

Hence, if AdvdistGi,Gi+1
(A) can be upper bounded by other approaches for 1 ≤ i ≤

t−2, then the remaining term can be bounded without any quantum argument,
by using our tool. In later sections, we will upper bound AdvdistGi,Gi+1

(A) by total

variation distance ∆(Gi, Gi+1). (Remember that AdvdistD,D′(A) ≤ ∆(D,D′) holds
for any distributions D and D′ from Lemma 2.2.) Thus we upper bound the
advantage AdvdistGreal,Gideal

(A) by purely combinatorial enumerating arguments.

4 Non-invertibility of Permutation with Feedforward in
the Quantum Ideal Permutation Model

Now we apply the technique of Section 3 to show that permutation with feed-
forward is optimally non-invertible in the ideal permutation model. As one step
in our proof, we also prove the difficulty to find a fixed point of random per-
mutations (Proposition 4.1). We stress that this is the first results on quantum
query lower bound for some property of random permutation P or some scheme
constructed from P , in the model that both of forward and backward queries
to permutation P are allowed. The goal of this section is to prove the following
theorem.

Theorem 4.1. Let n ≥ 32. For any quantum algorithm A that makes at most
q forward or backward queries to a public permutation P ,

AdvinvFFP (A) ≤ 4(e+ 1)(q + 1)

2n/2
+ ε(n) (13)
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holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot invert FFP

with constant probability for q � 2n/2.

Remark 4.1. We need the condition n ≥ 32 for technical reasons. This assump-
tion is reasonable since block lengths of block ciphers usually satisfiy it.

To show the above theorem, we begin with reducing the problem of finding
a preimage of permutation with feedforward in the ideal permutation model to
the problem of finding a fixed point of an ideal permutation. Let us define the
advantage of a quantum algorithm A to find a fixed point of an ideal permutation
by

AdvfixptP (A) := Pr
P

[AOP± () = x ∧ P (x) = x],

here P is chosen uniformly at random, and

AdvfixptP (q) := max
A

{
AdvfixptP (A)

}
,

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

Lemma 4.1. For a quantum algorithm A that makes at most q quantum queries
to OP± , there exists a quantum algorithm B that makes at most q quantum
queries to OP± such that AdvinvFFP (A) = AdvfixptP (B).

Proof. Given such algorithm A, we construct B with the desired properties.
Firstly, before making queries, B chooses y ∈ {0, 1}n uniformly at random. B
is given the oracle OP± of the permutation P . Define another permutation P ′

by P ′(x) = P (x)⊕ y. Then, the pair (P ′, y) follows the uniform distribution. If
x satisfies FFP ′(x) = y, then P (x) = x holds. In addition, B can simulate the
quantum oracle OP ′± using OP± with no simulation overhead.

Then B runs A, giving y as the target image. If A makes queries, then B
answers using the oracle OP ′± . Finally B outputs the final output of A. This
algorithm B obviously satisfies the desired property. ut

From the above lemma, it suffices to upper bound AdvfixptP to prove Theo-
rem 4.1. Below we show the following proposition.

Proposition 4.1. Let n ≥ 32. For any quantum algorithm A that makes at
most q forward or backward queries to a public permutation P ,

AdvfixptP (A) ≤ 4(e+ 1)(q + 1)

2n/2
+ ε(n) (14)

holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot find a fixed

point of P with constant probability for q � 2n/2.

Next, we reduce the problem of finding a fixed point of permutations to
the problem of distinguishing two oracle distributions: random permutations
and random derangements (permutations without fixed point). Let U be the
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uniform distribution on Perm({0, 1}n), and U0 be the uniform distribution on
Der({0, 1}n) ⊆ Perm({0, 1}n). Then

AdvfixptP (q) ≤ Advdist
U±,U±0

(q + 1) (15)

holds, since we can distinguish a permutation from derangements if we find its
fixed point.

To upper bound Advdist
U±,U±0

(q+ 1), we apply the technique introduced in Sec-

tion 3. That is, we reduce the problem of distinguishing U± and U±0 to the
problem of distinguishing two distributions Λ and Λ0 on Func({0, 1}n, {0, 1}),
introducing intermediate distributions (or games). Λ is the distribution which
is defined according to the distribution of fixed points of random permutations,
and Λ0 is the degenerate distribution with support on the zero-function. To
this end, in addition to Λ,Λ0, below we define functions Φ : Der({0, 1}n) ×
Func({0, 1}n, {0, 1})→ Perm({0, 1}n), Φ′ : Der({0, 1}n)×Func({0, 1}n, {0, 1})→
Func({0, 1}n, {0, 1}n), and distributionsDnum on [0, . . . , 2n], U ′1 on Perm({0, 1}n),
and U ′2 on Func({0, 1} × {0, 1}n, {0, 1}n). In the notation of Section 3, G1 =
Gideal = U±, G2 = U ′1

±
, G3 = U ′2, and G4 = Greal = U±0 , and D1 = Λ,D2 = Λ0.

Here we briefly explain motivations to introduce U ′1, U
′
2 and Φ,Φ′. Our goal

is to reduce the problem of distinguishing U± from U±0 to the problem of dis-
tinguishing Λ from Λ0. That is, we want a technique to simulate the oracle
that follows the distribution U± or U±0 on Func({0, 1} × {0, 1}n, {0, 1}n), given
the oracle that follows the distribution Λ or Λ0 on Func({0, 1}n, {0, 1}), respec-
tively, without any knowledge that which of Λ and Λ0 is given. However, it is
difficult to directly construct such a technique. Thus, we define an intermediate
distribution U ′1 that is close to U , and so that we can construct such a tech-
nique between U ′1

±
and U±0 . The technique is as follows. Firstly, we define a

map Φ : Der({0, 1}n)× Func({0, 1}n, {0, 1})→ Perm({0, 1}n) such that Φ(P0, f)
follows U ′1 if (P0, f) follows (U0, Λ), and Φ(P0, f) follows U0 if (P0, f) follows
(U0, Λ0), respectively (actually Φ is firstly defined and then U ′1 is defined using
Φ). Secondly, given an oracle f that follows Λ or Λ0, we choose P0 ∈ Der({0, 1}n)
uniformly at random, and simulate the oracle of (Φ(P0, f))±. Then, we can sim-
ulate the distributions U ′1

±
or U±0 according to which of Λ or Λ0 is given. How-

ever, there is a problem: simulation cost of U ′1
±

might become very high. Thus
we introduce another distribution U ′2 and map Φ′, to overcome the problem of
simulation overhead. Details on simulation overhead will be explained later.

Now we give formal description of intermediate distributions and maps Φ,Φ′.
In what follows, we identify a function F ∈ Func({0, 1}n, {0, 1}n) with the asso-
ciated graph GF of which vertexes are n-bit strings. In the graph GF , there is
an edge from a vertex x to another vertex y if and only if F (x) = y. If F is a
permutation P , then each connected component of GP is a cycle, and isolated
points correspond to fixed points of P .

Distribution Dnum. Distribution Dnum on [0, . . . , 2n] is the distribution of
the number of fixed points of random permutations. Dnum is formally defined
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by Dnum(λ) := PrP∼U [λ = |{x|P (x) = x}|]. In other words, Dnum is the distri-
bution of the random variable that takes values in [0, . . . , 2n] which is defined
according to the following sampling.

1. P
$←− Perm({0, 1}n)

2. λ← |{x|P (x) = x}|
3. Return λ.

Distribution Λ. Distribution Λ on Func({0, 1}n, {0, 1}) is defined according to
the distribution of fixed points of random permutations. For P ∈ Perm({0, 1}n),
define fP ∈ Func({0, 1}n, {0, 1}) by fP (x) = 1 if and only if P (x) = x. Then, Λ is
formally defined by Λ(f) := PrP∼U [f = fP ]. In other words, Λ is the distribution
of the random variable that takes values in Func({0, 1}n, {0, 1}), which is defined
according to the following sampling:

1. P
$←− Perm({0, 1}n)

2. f ← fP
3. Return f .

Distribution Λ0. Distribution Λ0 on Func({0, 1}n, {0, 1}) is the degenerate
distribution with support on the zero-function 0, which maps x to 0 for any x.
Formally, Λ0 is defined by Λ0(g) := 1 if and only if g = 0.

Function Φ. Taking P0 ∈ Der({0, 1}n) and f ∈ Func({0, 1}n, {0, 1}) as inputs,
we want to construct another permutation P = Φ(P0, f) which has, informally
speaking, the following properties:

1. P (x) = x if and only if f(x) = 1 holds with high probability when P0 and f
are chosen uniformly at random.

2. If f(x) = 0, then P (x) = P0(x) for almost all x.

This function Φ is used later to approximate U by using U0 and Λ.
Formally, function Φ : Der({0, 1}n)×Func({0, 1}n, {0, 1})→ Perm({0, 1}n) is

defined by the following process.

1. Take P0 ∈ Perm({0, 1}n), f ∈ Func({0, 1}n) as inputs.
2. For each x ∈ {0, 1}n, define P (x) by:
3. If f(x) = 1
4. P (x)← x
5. Else
6. Calculate min{i | f(P i0(x)) = 0}, cnt← min{i | f(P i0(x)) = 0}
7. P (x)← P cnt

0 (x)
8. End If
9. Φ(P0, f)← P

Figure 2 illustrates how P = Φ(P0, f) is generated from P0 and f . Each element
x such that f(x) = 1 is converted to isolated points, and the edges y → x, x→ z
are converted to new edges y → z, x→ x. By definition, images of Φ are certainly
in Perm({0, 1}n). Note that Φ(P0, f)−1 = Φ(P−1

0 , f) holds.
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𝑃0 𝑃 = Φ(𝑃0, 𝑓)

𝑥

𝑦

𝑧 𝑧

𝑦

𝑥

Fig. 2. How P = Φ(P0, f) is generated. White circle are the preimages of 1 by f .

Function Φ′ Φ′ is a function which is defined to approximate U using U0 and Λ
similarly as Φ, but the approximation of Φ′ is more rough than that of Φ. While
outputs of Φ are always permutations, outputs of Φ′ might not be permutations
(although Φ(P0, f) = Φ′(P0, f) holds with high probability when P0 and f are
sampled following U0 and Λ, as shown in Appendix H.)

Formally, function Φ′ : Der({0, 1}n) × Func({0, 1}n, {0, 1}) → Func({0, 1}n,
{0, 1}n) is defined by the following process.

1. Take P0 ∈ Perm({0, 1}n), f ∈ Func({0, 1}n) as inputs.

2. For each x ∈ {0, 1}n, define P (x) by:

3. If f(x) = 1

4. P (x)← x

5. Else If f(P0(x)) = 1

6. P (x)← P 2
0 (x)

7. Else

8. P (x)← P0(x)

9. End If

10. Φ′(P0, f)← P

We defined not only Φ but also Φ′ to achieve low simulation overhead:
Suppose we are given the oracle of f ∈ Func({0, 1}n, {0, 1}). Then, for any
P0 ∈ Der({0, 1}n) which we choose ourselves, we can operate one evaluation of
the function Φ′(P0, f) with only two queries to f . On the other hand, we might
need a lot of queries to f to evaluate Φ(P0, f) in Step 6 of the definition of Φ (we
need about 2n queries in the worst case). This is the reason why we introduced
Φ′.

For fixed P0 and f , we define P ′±2 : {0, 1} × {0, 1}n → {0, 1}n by

P ′±2 (b, x) :=

{
Φ′(P0, f)(x) if b = 0,

Φ′(P−1
0 , f)(x) if b = 1.

P ′±2 can be regarded as an approximation of the function Φ±(P0, f) ∈ Func({0, 1}×
{0, 1}n, {0, 1}n), which is defined by Φ±(P0, f)(0, x) = Φ(P0, f)(x) and Φ±(P0, f)
(1, x) = Φ(P−1

0 , f)(x).
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Distribution U ′
1 Distribution U ′1 on Perm({0, 1}n) is an approximation of the

uniform distribution U that combines U0 with Λ. Formally, U ′1 is defined by
U ′1(P ) = PrP0∼U0,f∼Λ[P = Φ(P0, f)]. In other words, U ′1 is the distribution of
the random variable that takes values in Perm({0, 1}n) which is defined according
to the following sampling:

1. P0
U0←−− Perm({0, 1}n), f

Λ←− Func({0, 1}n, {0, 1})
2. P ← Φ(P0, f)

Note that if P is sampled following U ′1, we assume that a quantum adversary A
is given a quantum oracle of P± : {0, 1} × {0, 1}n → {0, 1}n (see Section 2.1).

Distribution U ′
2 Distribution U ′2 on Func({0, 1} × {0, 1}n, {0, 1}n) is another

approximation of U , which is more “rough” than U ′1. Below, for F ∈ Func({0, 1}×
{0, 1}n, {0, 1}n), the n-bit functions F (0, ·), F (1, ·) are denoted by F+ and F−.
Then, formally, U ′2 is defined by U ′2(F ) = PrP0∼U0,f∼Λ[F+ = Φ′(P0, f) ∧ F− =
Φ′(P−1

0 , f)]. In other words, U ′2 is the distribution of the random variable that
takes values in Func({0, 1} × {0, 1}n, {0, 1}n) which is defined according to the
following sampling:

1. P0
U0←−− Perm({0, 1}n), f

Λ←− Func({0, 1}n, {0, 1})
2. F+ ← Φ′(P0, f), F− ← Φ′(P−1

0 , f)

Now the preparation to use the technique in Section 3 is completed. We
reduce the problem of distinguishing U from U0 to the problem of distinguishing
Λ and Λ0. Now we have the following inequalities.

Advdist
U±,U±0

(A) ≤ AdvdistU±,U ′1
±(A) + AdvdistU ′1

±,U ′2
(A) + Advdist

U ′2,U
±
0

(A)

≤ ∆(U±, U ′1
±

) +∆(U ′1
±
, U ′2) + AdvdistU ′2,U0

±(A). (16)

Next, we show the following lemma.

Lemma 4.2. For a quantum algorithm A to distinguish U ′2 from U±0 that makes
at most q quantum queries, we can construct a quantum algorithm B to distin-
guish Λ from Λ0 that makes at most 2q queries and satisfies

Advdist
U ′2,U

±
0

(A) = AdvdistΛ,Λ0
(B).

Proof. We give a quantum algorithm B that satisfies the desired properties. B
is given a quantum oracle Of , where f is sampled according to Λ or Λ0. Before
making queries, B chooses a derangement P0 uniformly at random. Then, B
runs A. B answers to queries of A by calculating Φ′(P0, f) and Φ′(P−1

0 , f). By
definition of Φ′, B can calculate one evaluation of Φ′(P0, f) (and Φ′(P−1

0 , f))
with two queries to Of . Finally, B outputs what A outputs.

Since A makes at most q queries, B makes at most 2q queries. B perfectly
simulates the distributions U ′2 and U0

± according to which of Λ and Λ0 is given.
Thus Advdist

U ′2,U
±
0

(A) = AdvdistΛ,Λ0
(B) holds. ut
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From the above lemma and the inequalities (16), we have

Advdist
U±,U±0

(q) ≤ ∆(U±, U ′1
±

) +∆(U ′1
±
, U ′2) + AdvdistΛ,Λ0

(2q). (17)

The three terms in the right hand side are upper bounded as in the following
lemmas.

Lemma 4.3. AdvdistΛ,Λ0
(q) ≤ 2(e+1)q

2n/2

Lemma 4.4. ∆(U±, U ′1
±

) ≤ 8n3

2n−2n+1 + 16n3

2n + e+1
n! for n ≥ 32.

Lemma 4.5. ∆(U ′1
±
, U ′2) ≤ 32n3

2n + 2(e+1)
n! for n ≥ 32.

Thus we have

Advdist
U±,U±0

(q) ≤ 4(e+ 1)q

2n/2
+

8n3

2n − 2n+ 1
+

48n3

2n
+

3(e+ 1)

n!
.

Combining this inequality and inequality (15), we obtain the desired bound (14)
in Theorem 4.1.

To complete the proof, we give a proof of Lemma 4.3. Proofs of Lemma 4.4
and 4.5 will be given in Appendix G and Appendix H.

Proof of Lemma 4.3. To prove the Lemma 4.3, we use Proposition 3.2.
Let us define a set of functions good, bad ⊂ Func({0, 1}n, {0, 1}) by good :=
Func({0, 1}n, {0, 1})\{0}, and bad := ∅. In addition, for each integer λ > 0, define
goodλ ⊂ good by f ∈ goodλ if and only if |f−1(1)| = λ. Then,

⋃
λ goodλ = good

and goodλ1
∩ goodλ2

= ∅ for λ1 6= λ2. Moreover, the conditional probability
PrF∼Λ[F = f |F ∈ goodλ] is independent on f due to the symmetry of the
distribution Λ. Therefore we can apply Proposition 3.2.

Let p
goodλ
1 := PrF∼Λ [F ∈ goodλ] and p

f |goodλ
1 := PrF∼Λ [F = f | F ∈ goodλ].

For each fixed x, the number of boolean function f such that f(x) = 1 ∧
|f−1(1)| = λ is exactly

(
2n−1
λ−1

)
. Hence we have

max
x
|{f ∈ goodλ | f(x) = 1}| =

(
2n − 1

λ− 1

)
. (18)

In addition,

p
f |goodλ
1 =

1(
2n

λ

) . (19)

hold.
Next, we upper bound p

goodλ
1 = Prf∼Λ[f ∈ goodλ] = Pra∼Dnum [a = λ]. For

any fixed λ, we have

Pr
a∼Dnum

[a = λ] =

(
2n

λ

)
·!(2n − λ)

2n!
=

!(2n − λ)

(2n − λ)!
· 1

λ!
≤ (2n − λ)!/e+ 1

(2n − λ)!
· 1

λ!

=

(
1 +

e

(2n − λ)!

)
· 1

e
· 1

λ!
≤ 1 + e

e
· 1

λ!
(20)
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(Remember that !N denotes the number of derangements on a set of size N and
!N =

⌊
N !
e + 1

2

⌋
holds. see Section 2.) Thus we have

p
goodλ
1 = Pr

f∼Λ
[f ∈ goodλ] ≤ 1 + e

e
· 1

λ!
. (21)

From Proposition 3.2, equality (18), (19), and inequality (21), since Prf∼Λ[f ∈
bad] = 0 we have

AdvdistΛ,Λ0
(q) ≤ 2q ·

∑
0<λ

p
goodλ
1

√
p
f |goodλ
1 ·max

x
{|{f | f(x) = 1 ∧ f ∈ goodλ}|}

≤ 2q ·
∑
0<λ

1 + e

e
· 1

λ!

√√√√(2n−1
λ−1

)(
2n

λ

) ≤ 2q(1 + e)

e
·
∑
0<λ

1

λ!

√
λ

2n

=
2q(1 + e)

e
·
∑
0<λ

1√
λ(λ− 1)!

√
1

2n

≤ 2q(1 + e)

e
·
∑
0≤λ

1

λ!

√
1

2n
=

2(e+ 1)q√
2n

, (22)

which is the desired bound. Hence Lemma 4.3 follows. ut

Remark 4.2. In this section we showed the non-invertibility of FFP but did not
show the one-wayness, because it seems difficult to reduce the one-wayness to
the non-invertibility for the case of a permutation with feedforward. For Davies-
Meyer construction, on the other hand, we can reduce its one-wayness to the
non-invertibility by upper-bounding the total variation distance between the
distribution of the game to break the one-wayness and that of the game to
break the non-invertibility. Unfortunately, for permutations with feedforward,
this strategy cannot be applied since the total variation distance between the
two corresponding distributions would become very large.

5 Security of Davies-Meyer Constructions in the
Quantum Ideal Cipher Model

This section gives proofs for security of Davies-Meyer constructions in the quan-
tum ideal cipher model. We begin with showing non-invertibility, and then prove
one-wayness. Our result in this section is the first proof for quantum security of
functions based on public block ciphers.

5.1 Non-Invertibility of Davies-Meyer

Non-invertibility in the ideal cipher model is shown in the similar way as in
the proof for non-invertibility of permutation with feedforward in Section 4. We
show the following theorem.
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Theorem 5.1 (Non-invertibility of Davies-Meyer). Let n ≥ 32. For any
quantum algorithm A that makes at most q queries to a block cipher E,

AdvinvDME (A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2m(e+ 1)

n!

)
+ 2mε(n) (23)

holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot invert

DME with constant probability if 2m

2n � 1 and q � 2n/2/n1/2.

Remark 5.1. In the above theorem, security bound is valid only for the case that
key length m is less than block length n. (We do not know if there exist any
attacks that exploit long key lengths. The condition that key length should be
shorter than the block length comes from limitation of our proof technique.)
However, even if m ≥ n, then we can achieve the same bound if we restrict key
space. That is, if we are given n-bit block ciphers with m-bit key and m ≥ n, we
use only the keys of which all bits are 0 except for the first n/2-bits, for example.
Then we can construct non-invertible functions with 3n/2-bit input and n-bit
output.

We cannot get rid of this restriction on usage of key space since there are
terms of order O(n3 ·2m−n) in our bound (23), which come from Lemma 4.4 and
4.5. The bound of Lemma 4.4 cannot be essentially improved, since ∆(U,U ′1) ≥

1
4e·2n holds (see Appendix J for more details). Thus, if we want to get rid of the
restriction, then we have to use other proof strategies.

Let UE be the uniform distribution on Ciph(m,n), and UE,0 be the distri-
bution on Ciph(m,n) defined by UE0

(E) =
∏
k U0(Ek) (i.e., when E is sampled

according to UE,0, then Ek is sampled according to U0 for each key k.) We say
that a pair (z, x) is a fixed point of a block cipher E if Ez(x) = x. Let us define
the advantage of a quantum algorithm A to find a fixed point of an ideal block
cipher E by

AdvfixptE (A) := Pr
E∼UE

[AOE± () = (z, x) ∧ Ez(x) = x],

and

AdvfixptE (q) := max
A

{
AdvfixptE (A)

}
,

where the maximum is taken over all quantum-query algorithms, each making
at most q quantum queries.

Then, similarly as in the proof for permutation with feedforward, we have

AdvinvDME (q) ≤ AdvfixptE (q) ≤ Advdist
U±E ,U

±
E,0

(q + 1). (24)

To upper bound Advdist
U±E ,U

±
E,0

, we introduce distributions DE,num, ΛE , ΛE,0, U
′
E,1,

U ′E,2, which are essentially product distributions of Dnum, Λ, Λ0, U
′
1, U

′
2, respec-

tively.
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Distribution DE,num. Distribution DE,num on ([0, . . . , 2n])×2m is the product
distribution Dnum×· · ·×Dnum, i.e. DE,num is defined by DE,num(λ0, . . . , λ2m−1)
:= Dnum(λ0)× · · · ×Dnum(λ2m−1). DE,num can be regarded as the distribution
of the number of fixed points of ideal ciphers.

Distribution ΛE. Distribution ΛE on the set Func({0, 1}m × {0, 1}n, {0, 1})
= (Func({0, 1}n, {0, 1}))2m is defined as the product distribution Λ×· · ·×Λ, i.e.
ΛE is defined by ΛE(F ) := ΛE(F (0, ·)) × ΛE(F (1, ·)) × · · · × ΛE(F (2m − 1, ·)).
ΛE can be regarded as the distribution of fixed points of ideal ciphers.

Distribution ΛE,0. Distribution ΛE,0 on Func({0, 1}m × {0, 1}n, {0, 1}) is the
degenerate distribution with support on the zero-function 0.

Distribution U ′
E,1 Distribution U ′E,1 on Ciph(m,n) is defined by U ′E,1(E) :=∏

k∈{0,1}m U
′
1(Ek). That is, when E is sampled according to U ′E,1, then Ek is

chosen according to U ′1 independently for each key k. Similarly as U ′1 is an
approximation of U , U ′E,1 can be regarded as an approximation of UE .

Distribution U ′
E,2 Distribution U ′E,2 on Func({0, 1}×{0, 1}m×{0, 1}n, {0, 1}n)

is defined by U ′E,2(F ) =
∏
k∈{0,1}m U

′
2(F (·, k, ·)). That is, U ′E,2 is the distribution

of the random variable that is defined by the following sampling.

1. For each z ∈ {0, 1}m, do:

2. Gz
U ′2←−− Func({0, 1} × {0, 1}n, {0, 1}n)

3. F (b, z, x)← Gz(b, x) for each b ∈ {0, 1}, z ∈ {0, 1}m, x ∈ {0, 1}n.
4. Return F

Similarly as U ′2 is a rough approximation of U±, U ′E,2 can be regarded as a rough

approximation of U±E .
Now we apply the technique introduced in Section 3. Similarly as inequal-

ity (17), we can show that

Advdist
U±E ,U

±
E,0

(q) ≤ ∆(U±E , U
′±
E,1) +∆(U

′±
E,1, U

′
E,2) + AdvdistΛE ,ΛE,0(2q),

holds. In addition, since U,U ′E,1, U
′
E,2 are essentially the product distributions

of U,U ′1, U
′
2, from Lemma 4.4 and Lemma 4.5 we have

Advdist
U±E ,U

±
E,0

(q) ≤ 2m∆(U±, U ′1
±

) + 2m∆(U ′1
±
, U ′2) + AdvdistΛE ,ΛE,0(2q)

≤ 2m
(

8n3

2n − 2n+ 1
+

48n3

2n
+

3(e+ 1)

n!

)
+ AdvdistΛE ,ΛE,0(2q).

(25)

Thus, to prove Theorem 5.1, it suffices to show the following lemma.
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Lemma 5.1.

AdvdistΛE ,ΛE,0(q) ≤ 2q

(
n1/2

2n/2
+

2m(e+ 1)

n!

)
Proof. To prove the Lemma 5.1, again we use our tool in Section 3. Let us define
a set of functions good ⊂ Func({0, 1}m×{0, 1}n, {0, 1}) by f ∈ good if and only
if f 6= 0 and λz = |f−1

z (1)| < n for all z ∈ {0, 1}m, where fz(·) = f(z, ·). Let
bad := Func({0, 1}m×{0, 1}n, {0, 1})\(good∪{0}). In addition, for each sequence
of integers λS = (λ0, λ1, . . . , λ2m−1), define goodλS ⊂ good by f ∈ goodλS if and
only if f−1

z (1) = λz for all 0 ≤ z ≤ 2m − 1. For simplicity, we write λS < n
if and only if λz < n for all 0 ≤ z ≤ 2m − 1. Similarly, we write 0 < λS if
and only if λz > 0 for all 0 ≤ z ≤ 2m − 1. Then,

⋃
0<λS<n

goodλS = good and
goodλS ∩ goodλS′ = ∅ for λS 6= λS′ . The conditional probability PrF∼ΛE [F =
f |f ∈ goodλS ] is independent on f due to the symmetry of the distribution ΛE .
Therefore we can apply Proposition 3.2 with D1 = ΛE and D2 = ΛE,0.

Define
p
goodλS
1 := Pr

f∼ΛE

[
f ∈ goodλS

]
(26)

and

p
f |goodλS
1 := Pr

F∼ΛE

[
F = f | F ∈ goodλS

]
. (27)

Now we upper bound Prf∼ΛE [f ∈ bad]. Note that Prf∼ΛE [f ∈ bad] ≤
2m Prf∼Λ[|f−1(1)| ≥ n] holds since ΛE is product distribution of Λ. In addi-
tion, from inequality (21) we have

Pr
f∼Λ

[|f−1(1)| ≥ λ0] ≤ e+ 1

e

∑
λ≥λ0

1

λ!
≤ e+ 1

e

e

λ0!
=
e+ 1

λ0!
, (28)

where we used the fact
∑
λ≥λ0

1
λ! ≤

e
λ0! (see Lemma A.1). Thus we have

Pr
f∼ΛE

[f ∈ bad] ≤ 2m(1 + e)

n!
. (29)

Next, we upper bound p
f |goodλS
1 ·max(z,x)

∣∣{f ∈ goodλS | f(z, x) = fz(x) = 1
}∣∣.

For each fixed w ∈ {0, 1}m, x ∈ {0, 1}n and λS = (λ0, . . . , λ2m−1), the number
of boolean function f ∈ goodλS such that fw(x) = 1 is equal to(

2n − 1

λw − 1

)
·

∏
z 6=w∈{0,1}m

(
2n

λz

)
=
λw
2n
·

∏
z∈{0,1}m

(
2n

λz

)
. (30)

Thus for each sequence λS < n we have

max
(z,x)

∣∣{f ∈ goodλS | f(z, x) = fz(x) = 1
}∣∣ = max

(z,x)

λz2n
·

∏
z∈{0,1}m

(
2n

λz

)
≤ n

2n
·

∏
z∈{0,1}m

(
2n

λz

)
(31)
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Hence, for each sequence λS < n we have

p
f |goodλS
∆ ·max

(z,x)

∣∣{f ∈ goodλS | f(z, x) = fz(x) = 1
}∣∣

≤ 1∏
z∈{0,1}m

(
2n

λz

) · n
2n
·

∏
z∈{0,1}m

(
2n

λz

)
=

n

2n
. (32)

From Proposition 3.2, and inequalities (29) and (32), AdvdistΛ,Λ0
(q) is upper

bounded by

2q ·
∑
λS<n

p
goodλS
1

√
p
f |goodλS
1 ·max

(z,x)

∣∣{f ∈ goodλS | fz(x) = 1
}∣∣

+ 2q · Pr
f∼ΛE

[f ∈ bad]

≤ 2q ·
∑
λS<n

p
goodλS
1

√
n

2n
+ 2q · 2m(e+ 1)

n!
≤ 2q

(√
n

2n
+

2m(e+ 1)

n!

)
, (33)

which completes the proof. ut

5.2 One-Wayness of Davies-Meyer

Next, we show that Davies-Meyer constructions are also quantum one-way in
the quantum ideal cipher model.

Theorem 5.2 (One-wayness of Davies-Meyer). Let n ≥ 32 and m ≤ n2.
For any quantum algorithm A that makes at most q queries to a block cipher E,

AdvowDME (A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2m(e+ 1)

n!

)
+ 2mε(n) +

2n+ 1

2m/3+1
+

n2

2m−2
(34)

holds, where ε(n) = 8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n! . In particular, A cannot find a

preimage of DME with constant probability if 2m

2n � 1 and q � 2n/2/n1/2.

Remark 5.2. Here we need an additional condition m ≤ n2 for technical reasons.
This assumption is reasonable since usual block ciphers satisfy it.

Proof. Let Un be the uniform distribution on {0, 1}n and V be the distribution
on Ciph(m,n) × {0, 1}n which is defined by V (E, y) = Pre∼UE ,(z,x)∼Um+n

[e =

E ∧DME(z, x) = y]. That is, V is the distribution of the random variable which
is defined by the following sampling:

1. E
UE←−− Ciph(m,n), z

$←− {0, 1}m, x $←− {0, 1}n
2. y ← DME(z, x)
3. Return (E, y)
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Then AdvowDME (A) = Pr(E,y)∼V [AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y] is upper
bounded by

Pr
E∼UE ,y∼Un

[AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y]

+
∣∣∣ Pr

(E,y)∼V
[AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y]

− Pr
E∼UE ,y∼Un

[AOE± (y) = (z′, x′) ∧ DME(z′, x′) = y]
∣∣∣

≤ AdvinvDME (A) +∆(V, (UE , Un)). (35)

Hence Theorem 5.2 follows from Theorem 5.1 and the following lemma.

Lemma 5.2. ∆(V, (UE , Un)) ≤ 2n+1
2m/3+1 + n2

2m−2 for n ≥ 32 and m ≤ n2.

A proof of this lemma is given in Appendix I. ut

6 Security of Merkle-Damg̊ard with Davies-Meyer
Constructions

This section shows that the combination of Davies-Meyer constructions with the
Merkle-Damg̊ard constructions are optimally non-invertible and one-way in the
quantum ideal cipher model.

Merkle-Damg̊ard construction is the most basic construction to convert com-
pression functions, which have fixed input length, to a function with (variable)
long input lengths. In particular, lots of popular hash functions like SHA-2 [23]
are based on the Merkle-Damg̊ard constructions, and use Davies-Meyer con-
structions as compression functions. Merkle-Damg̊ard construction with MD-
compliant padding is proven to be collision resistant hash function when under-
lying compression function is collision-resistant [13]. However, there is no guaran-
tee that Merkle-Damg̊ard constructions (with MD-compliant padding) become
one-way (preimage resistant) or second preimage resistant hash functions even
if underlying compression functions are one-way (preimage resistant) or second
preimage resistant. Actually there is an attack that finds a second preimage with
complexity less than 2n [18].

Since usual Merkle-Damg̊ard constructions do not guarantee one-wayness
even in classical settings, in this paper we fix input length. Input length can
be very long (actually we will construct functions of which input bit length are
exponential of n), but must be fixed.

This section assumes that we are given an ideal block cipher E ∈ Ciph(m,n)
with m ≤ n2. For a positive number r (r means “rate”) with 1 < r < n and
` ≥ 1, define a padding function padr,` : {0, 1}n ×{0, 1}nr ·` → {0, 1}n ×{0, 1}m`
by

padr,` : x‖z1‖ · · · ‖z` 7→ x‖z1‖0‖ · · · ‖zi‖(i− 1)‖ · · · z`‖(`− 1),

where zi ∈ {0, 1}
n
r and we assume that each integer i is expressed as an (m−n/r)-

bit string. Let us define a function HE
r,` : {0, 1}n+n

r ·` → {0, 1}n by

HE
r,`(M) := MDDME

` (padr,`(M)).
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The following theorem claims that HE
r,` has both non-invertibility and one-

wayness.

Theorem 6.1 (Security of Merkle-Damg̊ard with Davies-Meyer). Let
n ≥ 32 and m ≤ n2. Assume E ∈ Ciph(m,n) is an ideal cipher. For any quantum
adversary A that makes at most q queries to E,

AdvinvHEr,`
(A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2n/r(e+ 1)

n!

)
+ ε(r, n) (36)

and

AdvowHEr,`
(A) ≤ 4(q + 1)

(
n1/2

2n/2
+

2n/r(e+ 1)

n!

)
+ ε(r, n) + δ(r, `, n) (37)

holds, where ε(r, n) = 2n/r
(

8n3

2n−2n+1 + 48n3

2n + 3(e+1)
n!

)
and δ(r, `, n) = `·

(
2n+1

2n/3r+1

+ n2

2n/r−2

)
. In particular, if `� 2

n
3r , then A cannot find a preimage of HE

r,` with

constant probability for q � 2n/2/n1/2.

Remark 6.1. We need padding function padr,` to restrict key space for each
message block (see Remark 5.1). Our padding function pads different numbers
for different message blocks so that the i-th compression function and the j-th
compression function become essentially independent for i 6= j.

Proof. Firstly we show non-invertibility, i.e. inequality (36). Non-invertibility of
HE
r,` is reduced to non-invertibility of the Davies-Meyer construction of the last

block. By using an adversary A to invert HE
r,`, we construct an adversary B to

invert a Davies-Meyer construction DME′ , where E′ ∈ Ciph(n/r, n).
At the beginning of a game, B receives randomly chosen y ∈ {0, 1}n as an

input. In addition, B has oracle access to an ideal cipher E′ ∈ Ciph(n/r, n). B
simulates an oracle of ideal cipher E ∈ Ciph(m,n) as follows. B chooses Ẽ ∈
Ciph(m,n) uniformly at random, and define E ∈ Ciph(m,n) by

E(k, x) =

{
E′(z, x) if k = z‖` for some z ∈ Ciph(n/r, n),

Ẽ(k, x) otherwise.
(38)

The distribution of E equals to the uniform distribution. B runs A, giving y as
the target image. B answers queries of A by using E. After A outputs a message
M = x‖z1‖ · · · ‖z` ∈ {0, 1}n+n

r ·`, B calculates x`−1 := HE
r,`−1(x‖z1‖ · · · ‖z`−1)

and outputs (z`, x`−1). Note that calculation of x`−1 does not need any query

to E′. Since DME′(z`‖`,HE
r,`−1(x‖z1‖ · · · ‖z`−1)) = HE

r,`(M) = y holds, we have

AdvinvHEr,`
(A) = Advinv

DME
′ (B), and we obtain the desired bound (36) from Theo-

rem 5.1.
Next we show one-wayness, i.e. inequality (37). Similarly as in Section 5, we

reduce one-wayness to non-invertibility. Again, let Un be the uniform distribution
on {0, 1}n. Let V1 be the distribution of the random variable which takes values
in Ciph(m,n)× {0, 1}n and is defined by the following sampling:
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1. E
UE←−− Ciph(m,n), M

$←− {0, 1}n+n
r ·`

2. y ← HE
r,`(M)

3. return (E, y)

Then we have

AdvowHEr,`
(A) ≤ AdvinvHEr,`

(A) +∆(V1, (UE , Un)). (39)

Below we upper bound ∆(V1, (UE , Un)) by using intermediate distributions V2,
. . . , V`. For 2 ≤ i ≤ `, let Vi be the distribution of the random variable which
takes values in {0, 1}n and is defined by the following sampling:

1. x‖zi‖ · · · ‖z`
$←− {0, 1}n+n

r (`−i+1)

2. hi−1 ← x
3. For j = i, . . . , `, do:
4. hj ← DME((zi‖i), hj−1)
5. y ← h`

Note that the above definition is valid even for i = 1, and the resulting dis-
tribution is equal to V1. By definition of our padding function pad, function
distributions of the compression functions which process the i-th block and j-th
block are essentially independent for i 6= j. Thus, by Lemma 5.2 we have

∆(Vi, Vi+1), ∆(V`, (UE , Un)) ≤ 2n+ 1

2n/3r+1
+

n2

2n/r−2
(40)

for 1 ≤ i ≤ `− 1. Hence ∆(V1, (UE , Un)) is upper bounded by

`−1∑
i=1

∆(Vi, Vi+1) +∆(V`, (UE , Un)) ≤ ` ·
(

2n+ 1

2n/3r+1
+

n

2n/r−2

)
. (41)

Thus inequality (37) follows from inequality (39) and (41). ut
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A Approximation of Napier’s Constant e and 1/e.

For convenience, we give approximation bounds for Napier’s constant e and its
inverse 1/e as the following lemma.

Lemma A.1. For any non-negative constant λ0,

∞∑
i=λ0

1

i!
=

∣∣∣∣∣e−
λ0−1∑
i=0

1

i!

∣∣∣∣∣ ≤ e

λ0!
(42)

and ∣∣∣∣∣
∞∑
i=λ0

(−1)i

i!

∣∣∣∣∣ =

∣∣∣∣∣1e −
λ0−1∑
i=0

(−1)i

i!

∣∣∣∣∣ ≤ 1

λ0!
(43)

hold.

Proof. For the Napier’s constant e, we have

∞∑
i=λ0

1

i!
≤ 1

λ0!

∞∑
i=0

1

i!
≤ 1

λ0!
· e.

For the inverse of Napier’s constant 1/e, we have∣∣∣∣∣
∞∑
i=λ0

(−1)i

i!

∣∣∣∣∣ =
1

λ0!

∣∣∣∣1− 1

λ0 + 1
+

1

(λ0 + 2)(λ0 + 1)
− · · ·

∣∣∣∣ ≤ 1

λ0!
,

which completes the proof. ut

B Proof of Lemma 2.1

Proof (of Lemma 2.1). First, we show that

!N = (N − 1) (!(N − 1)+!(N − 2)) (44)

holds. This equation holds since

Der([N ]) =

N∐
i=2

(
{P0 ∈ Der([N ]) | P0(1) = i ∧ P0(i) = 1}

∐
{P0 ∈ Der([N ]) | P0(1) = i ∧ P0(i) 6= 1}

)
∼=

N∐
i=2

(
Der([N − 2])

∐
Der([N − 1])

)
(45)
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holds, where A ∼= B means that A and B are isomorphic as sets.
Next, we show

!N = N ! ·
N∑
i=0

(−1)i

i!
(46)

by induction. If N = 1 or N = 2, then (46) holds since |Der([1])| = 0 and
|Der([2])| = 1. Suppose (46) holds for 1 ≤ N ≤ k − 1. Then, from equation (44)
we have

!k = (k − 1) (!(k − 1)+!(k − 2))

= (k − 1) ·

(
(k − 1)! ·

k−1∑
i=0

(−1)i

i!
+ (k − 2)! ·

k−2∑
i=0

(−1)i

i!

)

= k! · k − 1

k

(
k∑
i=0

(−1)i

i!
− (−1)k

k!

)

+ k! · 1

k

(
k∑
i=0

(−1)i

i!
− (−1)k−1

(k − 1)!
− (−1)k

k!

)

= k! ·
k∑
i=0

(−1)i

i!
− (k − 1)(−1)k

k
− (−1)k−1 − (−1)k

k

= k! ·
k∑
i=0

(−1)i

i!
. (47)

Thus equation (46) holds.
Finally, we show

N ! ·
N∑
i=0

(−1)i

i!
=

⌊
N !

e
+

1

2

⌋
(48)

holds. Equation (48) is equivalent to the following inequalities:

N ! ·
N∑
i=0

(−1)i

i!
− 1

2
≤ N !

e
< N ! ·

N∑
i=0

(−1)i

i!
+

1

2
. (49)

Furthermore, (49) holds if the inequality∣∣∣∣∣1e −
N∑
i=0

(−1)i

i!

∣∣∣∣∣ < 1

2N !
(50)

holds. In fact inequality (50) follows from Lemma A.1 for N ≥ 1. ut

C Notes on Quantum Computation

Below we briefly explain basics on quantum computation. See textbooks ([22],
for example) on quantum computation for more details. A quantum system
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is a complex Hilbert space H of dimension 2d for some integer d > 0. The
inner product and norm of the Hilbert spaces are denoted as 〈·|·〉 and ‖ · ‖,
respectively. Each quantum state of the system is described as a unit vector |φ〉
(i.e., ‖ |φ〉 ‖ = 1), which we call d-qubit quantum state. An orthonormal basis of
H is fixed, and each vector of the basis is labeled as |x〉, x ∈ {0, 1}d. This basis
{|x〉}x∈{0,1}d is called as computational basis of H. Each |x〉 corresponds to a
classical d-bit string x. The hybrid quantum system that are composed of two
quantum subsystems HA and HB is described as the tensor product HA ⊗HB .
For quantum states |φA〉 ∈ HA and |φB〉 ∈ HB , the joined state corresponds to
the state |φA〉 |φB〉 := |φA〉 ⊗ |φB〉.

The map |x〉 7→ |x1〉 |x2〉 · · · |xd〉 determines an isomorphism of Hilbert spaces
between H and (C2)⊗d = C2 ⊗ · · · ⊗ C2, where x = x1x2 · · ·xd and xi ∈ {0, 1}
for each i. Here we assume the inner product of C2 is the usual Hermitian
inner product defined by 〈

(
a
b

)
|
(
c
d

)
〉 = āc + b̄d, where ā is the conjugate of a.

Computational basis {|0〉 , |1〉} of C2 is set as |0〉 :=
(

1
0

)
and |1〉 :=

(
0
1

)
. We

identify H with C2 ⊗ · · · ⊗ C2 through this isomorphism. We regard |x〉 as a
column vector, and 〈x| as the conjugate row vector that corresponds to |x〉.

For each orthonormal basis S = {|s0〉 , . . . , |s2d−1〉}, we can perform mea-
surement of a quantum state |φ〉 according to the basis S, and obtain the result

|si〉 with probability pi = |〈si|φ〉|2. (Actually measurements are generalized to
positive-operator valued measurement (POVM). However, here we treat only the
measurement using some fixed basis, for simplicity. See [22] for more details.)
After the measurement, the state collapses into |si〉.

Quantum algorithms are described as unitary operators that act on some
quantum systems. We consider that a quantum algorithm A acts on a product
spaceHwork⊗Hin⊗Hout. Here,Hwork,Hin,Hout correspond to working register,
input register, output register, respectively. Given input |ψ〉 ∈ Hin, the final
state of A before the measurement is |φlast〉 = A |0〉 |ψ〉 |0〉. If classical data y is
given as an input, then it is converted to qubits |y〉 ∈ Hin and then given to A.
When we measure |φlast〉, we obtain (w, y, x) with probability |〈w, y, x|φlast〉|2,
and the output of A is x. In particular, output becomes x with probability∑
w,y|〈w, y, x|φlast〉|2. If A can access to a quantum oracle of a function Of , then

we consider that Of acts on (a subspace of) Hwork. Quantum query algorithm
and its states are modeled and described as in Section 2.

Suppose that the quantum system H becomes the state |φi〉 with probability
pi (

∑
i pi = 1). This state is called mixed state, whereas a state which occurs

with probability 1 is called pure state. The mixed state of H is described as an
Hermitian operator ρ called density operator defined as

ρ :=
∑
i

pi |φi〉 〈φi| . (51)

For example, the state of H after measuring |φ〉 according to the basis S becomes
the state |si〉 with probability |〈si|φ〉|2, which is described as the density operator∑
i|〈si|φ〉|2 |si〉 〈si|. If the system is initially in the state |φi〉 with probability pi,

then the state after an evolution described by an operator U becomes U |φi〉 with
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probability pi. In particular, the evolution of the mixed state by U is described
as ρ 7→ UρU†.

Generally, the probability that we obtain |sj〉 when we measure the mixed
state ρ =

∑
i pi |φi〉 〈φi| with the basis S is equal to 〈sj | ρ |sj〉. In fact, if we

measure (with the basis S) the mixed state that becomes the state |φi〉 with
probability pi, then we obtain the result |sj〉 with probability∑

i

pi |〈sj |φi〉|2 =
∑
i

pi 〈sj |φi〉 〈φi|sj〉

= 〈sj |

(∑
i

pi |φi〉 〈φi|

)
|sj〉 = 〈sj | ρ |sj〉 . (52)

For two mixed states ρ1 and ρ2 of a quantum system H, trace distance be-
tween ρ1 and ρ2 is defined by

td(ρ1, ρ2) :=
1

2
‖ρ1 − ρ2‖tr =

1

2
Tr

[√
(ρ1 − ρ2)†(ρ1 − ρ2)

]
=

1

2

∑
i

|λi|, (53)

where ‖ · ‖tr is the trace norm, and λi are the eigenvalues of the Hermitian
operator (ρ1 − ρ2). Trace distance td satisfies axioms of distance function. For
pure state |ψ〉, we write td(|ψ〉 , ρ2) instead of td(|ψ〉 〈ψ| , ρ2), for simplicity. This
paper uses two properties of trace distance. The first one is unitary invariance.
That is, td(Uρ1U

†, Uρ2U
†) = td(ρ1, ρ2) holds for any unitary operation U . The

second one is joint convexity. For sets of density matrices {ρi}i∈I , {σi}i∈I and
non-negative integers {αi}i∈I such that

∑
i αi = 1,

td(
∑
i

αiρi,
∑
i

αiσi) ≤
∑
i

αitd(ρi, σi) (54)

holds (see Theorem 9.3 and equality (9.50) in [22]). In addition, we use the
following lemma by Unruh [3].

Lemma C.1 ([3], Lemma 36). For pure states |φ〉 and |ψ〉, td(|φ〉 , |ψ〉) ≤
‖ |φ〉 − |ψ〉 ‖ holds.

Trace distance td is a generalization of classical total variation distance ∆.
For example, let D1, D2 be distributions on the basis S = {|s0〉 , . . . , |s2d−1〉},
and let pi1 = Prv∼D1

[v = |si〉], pi2 = Prv∼D1
[v = |si〉]. Let ρ1 be the density

operator which corresponds to the state that becomes |si〉 with probability pi1.
Similarly, let ρ2 be the density operator which corresponds to {|si〉 , pi2}. Then
ρ1 − ρ2 is equal to

∑
i(p

i
1 − pi2) |si〉 〈si|, of which eigenvalues are (pi1 − pi2). Thus

we have td(ρ1, ρ2) = 1
2

∑
i|pi1 − pi2| = ∆(D1, D2), which implies that the trace

distance td is a generalization of the classical statistical distance ∆.

C.1 Proof of Lemma 2.2

This section shows Lemma 2.2. Before give a proof of Lemma 2.2, we show the
following lemma.
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Lemma C.2. For any Hermitian matrix A and vector |φ〉,

|〈φ|A |φ〉| ≤ 〈φ|
√
A†A |φ〉

holds.

Proof (of Lemma C.2). Let {λi} be eigenvalues of A and {|vi〉} be the corre-
sponding orthonormal eigenvector basis such that A |vi〉 = λi |vi〉. Then we have√
A†A |vi〉 = |λi| |vi〉. Let {αi} be the set of complex numbers that satisfies |φ〉 =∑
i αi |vi〉. Then we have |〈φ|A |φ〉| =

∣∣∣∑i,j α
†
jαi 〈vj |A |vi〉

∣∣∣ =
∣∣∑

i |αi|2λi
∣∣ ≤∑

i |αi|2|λi| = 〈φ|
√
A†A |φ〉, which completes the proof. ut

Next, we show Lemma 2.2. That is, we show

AdvdistD1,D2
(A) ≤ td(ρq1, ρ

q
2) ≤ ∆(D1, D2) (55)

holds for any quantum algorithm A that makes at most q quantum queries,
where ρq1 is the density operator defined by (2), and ρq2 is the density operator
that is similarly defined according to the distribution D2.

Remember that a quantum algorithm A acts on a product space Hwork ⊗
Hin ⊗Hout, and quantum oracle Of acts on (a subspace of) Hwork. Since now
we consider the adversaries that output 0 or 1, and take no input, below Hout
corresponds to a 1-qubit quantum system, and we omit Hin for simplicity. (That
is, we consider that A acts on a space Hwork ⊗ C2.) The probability that A
outputs a result b when f is chosen according to the distribution Di is equal to∑
w 〈w, b| ρ

q
i |w, b〉.
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Proof (of Lemma 2.2). First, we show AdvdistD1,D2
(A) ≤ td(ρq1, ρ

q
2). We have

AdvdistD1,D2
(A) =

∣∣∣∣ Pr
f∼D1

[AOf () = 1]− Pr
g∼D2

[AOg () = 1]

∣∣∣∣
=

1

2

∣∣∣∣ Pr
f∼D1

[AOf () = 1]− Pr
g∼D2

[AOg () = 1]

∣∣∣∣
+

1

2

∣∣∣∣(1− Pr
f∼D1

[AOf () = 1]

)
−
(

1− Pr
g∼D2

[AOg () = 1]

)∣∣∣∣
=

1

2

∣∣∣∣ Pr
f∼D1

[AOf () = 1]− Pr
g∼D2

[AOg () = 1]

∣∣∣∣
+

1

2

∣∣∣∣ Pr
f∼D1

[AOf () = 0]− Pr
g∼D2

[AOg () = 0]

∣∣∣∣
=

1

2

∣∣∣∣∣∑
w

〈w, 1| ρq1 |w, 1〉 −
∑
w

〈w, 1| ρq2 |w, 1〉

∣∣∣∣∣
+

1

2

∣∣∣∣∣∑
w

〈w, 0| ρq1 |w, 0〉 −
∑
w

〈w, 0| ρq2 |w, 0〉

∣∣∣∣∣
=

1

2

∑
b=0,1

∣∣∣∣∣∑
w

〈w, b| ρq1 |w, b〉 −
∑
w

〈w, b| ρq2 |w, b〉

∣∣∣∣∣
≤ 1

2

∑
w,b

|〈w, b| (ρq1 − ρ
q
2) |w, b〉| (56)

If we let Ax,y to denote the (x, y)-component of a matrix A, then Ax,y =
〈x|A |y〉 holds, and thus Tr[A] =

∑
xAx,x =

∑
x 〈x|A |x〉 holds. Therefore,

from Lemma C.2 we have

AdvdistD1,D2
(A) ≤ 1

2

∑
w,b

|〈w, b| (ρq1 − ρ
q
2) |w, b〉|

≤ 1

2

∑
w,b

〈w, b|
√

(ρq1 − ρ
q
2)†(ρq1 − ρ

q
2) |w, b〉

=
1

2
Tr

[√
(ρ1 − ρ2)†(ρ1 − ρ2)

]
= td(ρ1, ρ2). (57)

Hence AdvdistD1,D2
(A) ≤ td(ρq1, ρ

q
2) holds.

Next, we show td(ρq1, ρ
q
2) ≤ ∆(D1, D2). By definition of ρq1, ρq2, and td, we

have

td(ρq1, ρ
q
2) =

1

2

∥∥∥∥∥∥
∑
f

pf1 |φ
q
f 〉 〈φ

q
f | −

∑
g

pg2 |φqg〉 〈φqg|

∥∥∥∥∥∥
tr

=
1

2

∥∥∥∥∥∥
∑
f

(pf1 − p
f
2 ) |φqf 〉 〈φ

q
f |

∥∥∥∥∥∥
tr

, (58)
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where ‖ · ‖tr denotes the trace norm. From subadditivity of trace norm we have

1

2

∥∥∥∥∥∥
∑
f

(pf1 − p
f
2 ) |φqf 〉 〈φ

q
f |

∥∥∥∥∥∥
tr

≤ 1

2

∑
f

(pf1 − p
f
2 )
∥∥∥|φqf 〉 〈φqf |∥∥∥

tr

=
1

2

∑
f

(pf1 − p
f
2 ) = ∆(D1, D2). (59)

Hence td(ρq1, ρ
q
2) ≤ ∆(D1, D2) holds, and Lemma 2.2 follows. ut

D Separation of Non-Invertibility and One-Wayness

This section roughly explains that non-invertibility and one-wayness are separate
notions.

Non-invertible 6⇒ One-way. Assume that there exists a function h : {0, 1}n →
{0, 1}n that is non-invertible. Define another function h′ : {0, 1}n × {0, 1} →
{0, 1}n by h′(x, 0) = 0n and h′(x, 1) = h(x) for x ∈ {0, 1}n. Then h′ is obviously
non-invertible. However, h′ does not have one-wayness since Prx,b[h

′(x, b) =
0n] ≥ 1/2 holds, and we can easily find a preimage of h′ with high probability.

One-way 6⇒ Non-Invertible. Assume that there exists a function h : {0, 1}n×
{0, 1}n → {0, 1}n that is one-way. Define another function h′ : {0, 1}n×{0, 1}n →
{0, 1}n × {0, 1} by h′(a, 0n) = (a, 0) and h′(a, b) = (h(a, b), 1) for a ∈ {0, 1}n
and b ∈ {0, 1}n \ {0n}. Then h′ is obviously one-way. However, h′ does not have
non-invertibility since Pry,β [β = 0] = 1/2 holds, and we can easily invert h′ with
high probability.

E Proof of Proposition 3.1

This section gives a proof of Proposition 3.1. In our proof, D1 and D2 can be any
distributions, which generalize existing analyses (see proof of Lemma 37 in [3],
proof of Lemma C.1 in [29], for example) that usually treat only some specific
distributions. Theorem 1 in [16] gives similar result as Lemma 37 in [3], but uses
different analyzing technique (Theorem 7.2 in [35] by Zhandry).

Remember that pf1 , p
g
2, p

f,g denote PrF∼D1
[F = g], PrG∼D1

[G = f ], and
Pr(F,G)∼D̄[(F,G) = (f, g)], respectively. Boolean function δ(f, g) : {0, 1}n →
{0, 1} is defined by δ(f, g)(x) = 1 if and only if f(x) 6= g(x) for each pair
(f, g). If the oracle Of is chosen according to the distribution D1, the state

of A after the i-th query is denoted as ρi1 =
∑
f p

f
1 |φif 〉 〈φif |, where |φif 〉 =

UiOfUi−1Of · · ·OfU0 |0〉. Similarly, ρi2 denotes the state of A that corresponds
to the distribution D2.
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Let Πγ denote the projection
∑
z:γ(z)=1 |z〉 〈z| ⊗ I for a function γ ∈ Func(

{0, 1}n, {0, 1}). If γ is the zero-function 0 such that γ(x) = 0 for any x, then
we define Πγ as the zero operator. Before showing Proposition 3.1, we prove the
following proposition.

Proposition E.1 (General bound). For any distributions D1 and D2,

AdvdistD1,D2
(A) ≤ 2

∑
f,g,0≤i≤q−1

pf,g‖Πδ(f,g) |φig〉 ‖

holds.

Proof (of Proposition E.1). For f, g ∈ Func({0, 1}n, {0, 1}c), define

|ψi1,f,g〉 := |φif 〉 , |ψi2,f,g〉 := |φig〉 . (60)

Due to joint convexity of trace distance (see inequality (54) ), we have

td(ρq1, ρ
q
2)

= td

∑
f

pf1 |φ
q
f 〉 〈φ

q
f | ,
∑
g

pg2 |φqg〉 〈φqg|


= td

∑
f

(∑
g

pf,g

)
|φqf 〉 〈φ

q
f | ,
∑
g

∑
f

pf,g

 |φqg〉 〈φqg|


= td

∑
f,g

pf,g |ψq1,f,g〉 〈ψ
q
1,f,g| ,

∑
f,g

pf,g |ψq2,f,g〉 〈ψ
q
2,f,g|


≤
∑
f,g

pf,gtd
(
|ψq1,f,g〉 〈ψ

q
1,f,g| , |ψ

q
2,f,g〉 〈ψ

q
2,f,g|

)
=
∑
f,g

pf,gtd(|φqf 〉 〈φ
q
f | , |φ

q
g〉 〈φqg|). (61)

For f, g ∈ Func({0, 1}n, {0, 1}c), define f ⊕ g ∈ Func({0, 1}n, {0, 1}c) by (f ⊕
g)(x) = f(x)⊕ g(x). Then OgOf = Of⊕g holds since

OgOf |x〉 |y〉 = Og |x〉 |y ⊕ f(x)〉 = |x〉 |y ⊕ g(x)⊕ f(x)〉 = Of⊕g |x〉 |y〉 (62)

holds for any x ∈ {0, 1}n, y ∈ {0, 1}c. Thus, due to invariance of trace distance
under unitary operations, we have

td(|φi+1
f 〉 , |φ

i+1
g 〉) = td(Ui+1Of |φif 〉 , Ui+1Og |φig〉)

= td(Of |φif 〉 , Og |φig〉)
≤ td(Of |φif 〉 , Of |φig〉) + td(Of |φig〉 , Og |φig〉)
= td(|φif 〉 , |φig〉) + td(OgOf |φig〉 , OgOg |φig〉)
= td(|φif 〉 , |φig〉) + td(Of⊕g |φig〉 , |φig〉) (63)
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for any i. Therefore, by induction on i we have

td(|φqf 〉 , |φ
q
g〉) ≤

q−1∑
i=0

td(Of⊕g |φig〉 , |φig〉). (64)

Here, from Lemma C.1 we have

td(Of⊕g |φig〉 , |φig〉) = td(Of⊕gΠδ(f,g) |φig〉+Of⊕g(I −Πδ(f,g)) |φig〉 ,
Πδ(f,g) |φig〉+ (I −Πδ(f,g)) |φig〉)

≤ ‖(Of⊕gΠδ(f,g) |φig〉+Of⊕g(I −Πδ(f,g)) |φig〉)
− (Πδ(f,g) |φig〉+ (I −Πδ(f,g)) |φig〉)‖.

(65)

In addition,
Of⊕g(I −Πδ(f,g)) = I −Πδ(f,g) (66)

holds since, if f(x) 6= g(x), then (I−Πδ(f,g)) |x〉 |y〉 = |x〉 |y〉−|x〉 |y〉 = 0 for any
y ∈ {0, 1}c, and if f(x) = g(x) then Of⊕g(I −Πδ(f,g)) |x〉 |y〉 = Of⊕g(|x〉 |y〉 −
0) = |x〉 |y ⊕ f(x)⊕ g(x)〉 = |x〉 |y〉 = (I − Πδ(f,g)) |x〉 |y〉 for any y ∈ {0, 1}c.
Therefore we have

‖(Of⊕gΠδ(f,g) |φig〉+Of⊕g(I −Πδ(f,g)) |φig〉)− (Πδ(f,g) |φig〉+ (I −Πδ(f,g)) |φig〉)‖
=
∥∥Of⊕gΠδ(f,g) |φig〉 −Πδ(f,g) |φig〉

∥∥
≤
∥∥Of⊕gΠδ(f,g) |φig〉

∥∥+
∥∥Πδ(f,g) |φig〉

∥∥
= 2

∥∥Πδ(f,g) |φig〉
∥∥ . (67)

From inequality (64), (65), and (67) we have

td(|φqf 〉 , |φ
q
g〉) ≤ 2

∑
0≤i≤q−1

∥∥Πδ(f,g) |φig〉
∥∥ . (68)

Eventually,

td(ρq1, ρ
q
2) ≤ 2

∑
f,g,0≤i≤q−1

pf,g‖Πδ(f,g) |φig〉 ‖ (69)

follows from inequality (61) and (68). Since AdvdistD1,D2
(q) ≤ td(ρq1, ρ

q
2) holds from

Lemma 2.2, Proposition E.1 follows. ut

Next, we give a proof of Proposition 3.1. Remember that p
γ|goodgα
δD|g is indepen-

dent of γ, by assumption.

Proof (of Proposition 3.1).
Let pf |g := Pr(F,G)∼D̄[F = f |G = g]. From Proposition E.1 we have

AdvdistD1,D2
(A) ≤ 2

∑
0≤i≤q−1,f,g

pf,g‖Πδ(f,g) |φig〉 ‖

≤ 2
∑

0≤i≤q−1

∑
g

pg2
∑
f

pf |g‖Πδ(f,g) |φig〉 ‖. (70)
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Now we upper bound
∑
f p

f |g‖Πδ(f,g) |φig〉 ‖ for fixed g. Note that∑
f :δ(f,g)=γ

pf |g =
∑

f :δ(f,g)=γ

Pr
(F,G)∼D̄

[F = f |G = g]

= Pr
(F,G)∼D̄

[δ(F,G) = γ|G = g] = Pr
Γ∼δD|g

[Γ = γ] (71)

hold for any γ ∈ Func({0, 1}n, {0, 1}). Thus we have∑
f

pf |g‖Πδ(f,g) |φig〉 ‖

=
∑

f :δ(f,g)∈goodg
pf |g‖Πδ(f,g) |φig〉 ‖+

∑
f :δ(f,g)∈badg

pf |g‖Πδ(f,g) |φig〉 ‖

+
∑

f :δ(f,g)=0

pf |g‖Πδ(f,g) |φig〉 ‖

≤
∑
α∈Ag

∑
f :δ(f,g)∈goodgα

pf |g‖Πδ(f,g) |φig〉 ‖+
∑

f :δ(f,g)∈badg
pf |g · 1

+
∑

f :δ(f,g)=0

pf |g · 0

=
∑
α∈Ag

∑
γ∈goodgα

 ∑
f :δ(f,g)=γ

pf |g

 ‖Πγ |φig〉 ‖+
∑

γ∈badg

 ∑
f :δ(f,g)=γ

pf |g


=
∑
α∈Ag

∑
γ∈goodgα

Pr
Γ∼δD|g

[Γ = γ]‖Πγ |φig〉 ‖

+
∑

γ∈badg
Pr

(F,G)∼D̄
[δ(F,G) = γ|G = g]

=
∑
α∈Ag

∑
γ∈goodgα

Pr
Γ∼δD|g

[Γ ∈ goodgα] · Pr
Γ∼δD|g

[Γ = γ|Γ ∈ goodgα]‖Πγ |φig〉 ‖

+ Pr
(F,G)∼D̄

[δ(F,G) ∈ badg|G = g]

=
∑
α∈Ag

p
goodgα
δD|g

∑
γ∈goodgα

p
γ|goodgα
δD|g ‖Πγ |φig〉 ‖

+ Pr
(F,G)∼D̄

[δ(F,G) ∈ badg|G = g]. (72)

Moreover, since p
γ|goodgα
δD|g does not depend on γ, from Jensen’s inequality we have

∑
γ∈goodgα

p
γ|goodgα
δD|g ‖Πγ |φig〉 ‖ ≤

√ ∑
γ∈goodgα

p
γ|goodgα
δD|g ‖Πγ |φig〉 ‖2

=

√
p
γ|goodgα
δD|g

∑
γ∈goodgα

‖Πγ |φig〉 ‖2. (73)
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For each x ∈ {0, 1}n, define the projector Πx by Πx := |x〉 〈x| ⊗ I. Then we
have

‖Πγ |φig〉 ‖2 = 〈φig|Π†γΠγ |φig〉 = 〈φig|Πγ |φig〉 = 〈φig|

 ∑
x:γ(x)=1

|x〉 〈x| ⊗ I

 |φig〉
=

 ∑
x:γ(x)=1

〈φig| |x〉 〈x| ⊗ I |φig〉

 =
∑

x:γ(x)=1

‖Πx |φig〉 ‖2, (74)

and

∑
x

‖Πx |φig〉 ‖2 =
∑
x

〈φig|Πx |φig〉 = 〈φig|
∑
x

Πx |φig〉 = 〈φig|φig〉 = 1. (75)

Hence

∑
γ∈goodgα

‖Πγ |φig〉 ‖2 =
∑

γ∈goodgα

∑
x:γ(x)=1

‖Πx |φig〉 ‖2 =
∑
x

∑
γ(x)=1∧γ∈goodgα

‖Πx |φig〉 ‖2

=
∑
x

|{γ ∈ goodgα | γ(x) = 1}| ‖Πx |φig〉 ‖2

≤ max
x
|{γ ∈ goodgα | γ(x) = 1}|

∑
x

‖Πx |φig〉 ‖2

= max
x
|{γ ∈ goodgα | γ(x) = 1}| (76)

holds. Thus, from inequality (73), (76) we have

∑
γ∈goodgα

p
γ|goodgα
δD|g ‖Πγ |φig〉 ‖ ≤

√
p
γ|goodgα
δD|g ·max

x
|{γ ∈ goodgα | γ(x) = 1}| (77)

Therefore, from inequalities (77) and (72), inequality

∑
f

pf |g‖Πδ(f,g) |φig〉 ‖ ≤
∑
α∈Ag

p
goodgα
δD|g

√
p
γ|goodgα
δD|g ·max

x
|{γ ∈ goodgα | γ(x) = 1}|

+ Pr
(F,G)∼D̄

[δ(F,G) ∈ badg|G = g] (78)

follows for each g ∈ Func({0, 1}n, {0, 1}c).
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From inequality (70) and (78), we have

AdvdistD1,D2
(A)

≤ 2
∑

0≤i≤q−1

∑
g

pg2
∑
α∈Ag

p
goodgα
δD|g

√
p
γ|goodgα
δD|g ·max

x
|{γ ∈ goodgα | γ(x) = 1}|

+ 2
∑

0≤i≤q−1

∑
g

pg2 Pr
(F,G)∼D̄

[δ(F,G) ∈ badg|G = g]

≤ 2q
∑
g

pg2
∑
α∈Ag

p
goodgα
δD|g

√
p
γ|goodgα
δD|g ·max

x
|{γ ∈ goodgα | γ(x) = 1}|

+ 2q
∑
g

Pr
(F,G)∼D̄

[
δ(F,G) ∈ badG ∧G = g

]
≤ 2q ·EG∼D2

[ ∑
α∈AG

p
goodGα
δD|G

√
p
γ|goodGα
δD|G ·max

x
|{γ ∈ goodgα | γ(x) = 1}|

]
+ 2q · Pr

(F,G)∼D̄
[(F,G) ∈ badall] , (79)

which completes the proof of Proposition 3.1. ut

F An Application of Our Generalized Tool

Here we give an application to demonstrate usefulness of our generalized tool
(Proposition 3.1). For an integer i, define the distribution Dc

i as the uniform
distribution on {f ∈ Func({0, 1}n, {0, 1}) | |f−1(1)| = i}. Fix parameters s, t
such that 0 ≤ s < 2n and 0 < t ≤ 2n − s. We consider how difficult it is to solve
the following problem:

Problem F.1. Suppose that f is chosen according to Dc
s+t or Dc

s, and we are
given the oracle of f . Then, judge according to which distribution f is chosen.

Note that, if s = 0, then this problem matches the famous database search
problem (of decision version). In this case, the tight bound of the number of
query to solve Problem F.1 is known as Θ(

√
2n/t) [9] (upper bound is given by

Grover’s algorithm). Moreover, if s = t = 2n−1, then Problem F.1 can be solved
with only one query by the Deutsch-Jozsa algorithm [12].

Below, firstly we show that our simplified tool (Proposition 3.2) gives an
almost tight bound for the number of queries to solve Problem F.1 in the case
s = 0. Secondly we explain the limitation of the simplified tool with the case
s > 0 as an example. Finally we show usefulness of our generalized tool, by
showing that the generalized case gives a meaningful upper bound of oracle
distinguishing advantage for Problem F.1, even if s is large.

Application of the simplified tool to the case s = 0. If s = 0, then Dc
s

becomes the degenerate distribution with support on the zero function, and thus
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we can apply our simplified tool to upper bound oracle distinguishing advantages
between Dc

t and Dc
0. We show the following claim.

Claim. If s = 0, then oracle distinguishing advantage for Problem F.1 is upper
bounded as

AdvdistDct ,D
c
0
(q) ≤ 2q

√
t

2n
. (80)

In particular, an adversary has to make Ω(
√

2n/t) queries to distinguish Dc
t

from Dc
0 with constant probability.

Proof. Define good = goodt :=
{
f | |f−1(1)| = t

}
, goodα := ∅ for α 6= t, and

bad := Func({0, 1}n, {0, 1}) \ (good ∪ {0}). Then PrF∼D1 [F = f |F ∈ goodf ] =(
2n

t

)−1
is independent on f , and we can apply Proposition 3.2.

Now we have PrF∼D1
[F ∈ bad] = 0, p

goodt
1 = PrF∼D1

[F ∈ goodt] = 1,

p
goodα
1 = PrF∼D1

[F ∈ goodα] = 0 for α 6= t, and p
f |goodt
1 = PrF∼D1

[F = f |F ∈
goodt] =

(
2n

t

)−1
for f ∈ goodt. In addition, |{f ∈ goodt | f(x) = 1}| =

(
2n−1
t−1

)
holds for any x ∈ {0, 1}n. Thus, from Proposition 3.2, we have

AdvdistDct ,D
c
0
(A)

≤ 2q ·
∑
α

p
goodα
1

√
p
f |goodα
1 ·max

x
|{f ∈ goodα | f(x) = 1}|

+ 2q · Pr
f∼D1

[f ∈ bad]

≤ 2q · 1 ·
√
p
f |goodt
1 ·max

x
|{f ∈ goodt | f(x) = 1}|+ 2q · 0

≤ 2q ·

√(
2n

t

)−1

·
(

2n − 1

t− 1

)
= 2q ·

√
t

2n
(81)

for any quantum adversary A that makes at most q quantum queries. ut

Limitation of the simplified tool. Next, we explain the limitation of the
simplified tool. If we want to upper bound AdvdistDcs+t,D

c
s

for the case s > 0 only

with the simplified tool, then we have to additionally introduce the degenerate
distribution Dc

0 with support on the zero function, since the simplified tool can
only be applied to the case that one of the two distributions is Dc

0. Thus, from
inequality (80), the upper bound which we can obtain only with the simplified
tool becomes

AdvdistDcs+t,D
c
s
(q) ≤ AdvdistDcs+t,D

c
0
(q) + AdvdistDc0,D

c
s
(q)

≤ 2q

√
s+ t

2n
+ 2q

√
s

2n
= O

(
q

√
s+ t

2n

)
. (82)
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However, this bound (82) does not reflect the intuition that Problem F.1 will be
hard to solve if t is small, even if s is large. For example, if s = 2n−1 and t = 1,
then the right hand side of inequality (82) becomes O(q), which is a meaningless
bound.

Usefulness of the generalized tool. Next, we show that the generalized tool
gives a better upper bound than (82). We show the following claim.

Claim. Oracle distinguishing advantage for Problem F.1 is upper bounded as

AdvdistDcs+t,D
c
s
(q) ≤ 2q

√
t

2n − s
. (83)

In particular, an adversary has to make Ω(
√

(2n − s)/t) queries to distinguish
Dc
s+t from Dc

s with constant probability.

Proof (of Claim). Let D̄ be the distribution on Func({0, 1}n, {0, 1}) × Func(
{0, 1}n, {0, 1}) which is defined by the following sampling:

1. g
Dcs←−− Func({0, 1}n, {0, 1}). Let xg1, . . . , x

g
s be the preimages of 1 by g.

2. Choose y1, . . . , yt, which are different from each other, from {0, 1}n\{xg1, . . . ,
xgs} uniformly at random.

3. Define f by f(x) = 1 if and only if x = xgi or x = yj for some i, j.
4. Return (f, g).

Then obviously Dc
s+t(f) =

∑
g D̄(f, g) for any f and Dc

s(g) =
∑
f D̄(f, g) for

any g hold.
For each fixed g, define Ag := {t} and

goodgt := {γ ∈ Func({0, 1}n, {0, 1}) | |γ−1(1)| = t ∧ γ−1(1) ∩ g−1(1) = ∅},
goodg := goodgt ,

badg := Func({0, 1}n, {0, 1}) \ (goodg ∪ {0}).

Then we have

max
x
|{γ ∈ goodgt | γ(x) = 1}| =

(
2n − s− 1

t− 1

)
. (84)

In addition, by straightforward calculations it can be shown that

p
γ|goodgt
δD|g =

(
2n − s
t

)−1

, p
goodgt
δD|g = 1, Pr

(F,G)∼D̄
[(F,G) ∈ badall] = 0. (85)

Thus, from Proposition 3.1 we have

AdvdistDcs+t,D
c
s
(q) ≤ 2qEg∼D2

1 ·

√(
2n − s− 1

t− 1

)
·
(

2n − s
t

)−1


= 2q

√
t

2n − s
, (86)

which is the desired bound. ut
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Now, the new bound (83) reflects the intuition that problem will be hard to solve
if t is small. For example, if s = 2n−1, then the right hand side of inequality (83)

becomes O( q
√
t

2(n−1)/2 ). In the case t = 2n−1, then O( q
√
t

2(n−1)/2 ) = O(q) matches the

bound by the Deutsch-Jozsa algorithm, and O( q
√
t

2(n−1)/2 ) decreases as t decreases,
which reflects our intuition. Thus the bound (83) can be regarded as a meaningful
bound.

Remark F.1. Our bound (83) is asymmetric: The situation (s, t) and (2n−s−t, t)
are the same up to complementing the functions, but our bound for the situation
(2n − s− t, t) differs from the bound (83) for (s, t). This means that our bound
is not tight.

G Proof of Lemma 4.4

Proof (of Lemma 4.4). Since ∆(U±, U ′1
±

) = ∆(U,U ′1) holds, below we upper
bound ∆(U,U ′1). In this proof, let good ⊂ Perm({0, 1}n) denote the subset de-
fined by P ∈ good if and only if the number of fixed points of P is less than 2n.
In addition, define a set bad by bad := Perm({0, 1}n) \ good.

Then we have

∆(U,U ′1) =
1

2

∑
P∈good

| Pr
σ∼U

[σ = P ]− Pr
σ∼U ′1

[σ = P ]|

+
1

2

∑
P∈bad

| Pr
σ∼U

[σ = P ]− Pr
σ∼U ′1

[σ = P ]|

≤ 1

2

∣∣∣∣∣∣
∑

P∈good

Pr
σ∼U ′1

[σ = P ]− 1

2n!

∣∣∣∣∣∣+
1

2
Pr
P∼U

[P ∈ bad] +
1

2
Pr

P∼U ′1
[P ∈ bad].

(87)

Next, we upper bound 1
2 PrP∼U [P ∈ bad]+ 1

2 PrP∼U ′1 [P ∈ bad]. By definition
of U ′1,

Pr
P∼U ′1

[P ∈ bad] = Pr
P0∼U0,f∼Λ

[Φ(P0, f) ∈ bad]

holds. In addition, by definition of Φ, the number of fixed points of Φ(P0, f)
is less than or equal to 2 · |f−1(1)|. Therefore PrP0∼U0,f∼Λ[Φ(P0, f) ∈ bad] ≤
Prf∼Λ[|f−1(1)| ≥ n] = Prλ∼Dnum [λ ≥ n]. Thus, from inequality (20), we have

1

2
Pr
P∼U

[P ∈ bad] +
1

2
Pr

P∼U ′1
[P ∈ bad] ≤ 1

2
Pr

λ∼Dnum
[λ ≥ 2n] +

1

2
Pr

λ∼Dnum
[λ ≥ n]

≤ Pr
λ∼Dnum

[λ ≥ n] ≤
∑
λ≥n

e+ 1

e

1

λ!

≤ 1 + e

n!
, (88)
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where we used the fact
∑
λ≥n 1/λ! ≤ e/n! (see Lemma A.1).

Next, we upper bound 1
2

∣∣∣∑P∈good Prσ∼U ′1 [σ = P ]− 1
2n!

∣∣∣. Define subsets irr1,

irr2, irr ∈ Der({0, 1}n)× Func({0, 1}n, {0, 1}) as follows:

irr1 :=
{

(P0, f) | P0(x) = y for some x, y ∈ f−1(1)
}
, (89)

irr2 :=
{

(P0, f) | P 2
0 (x) = x for some x ∈ f−1(1)

}
. (90)

In addition, let irr := irr1∪ irr2 and reg := Der({0, 1}n)×Func({0, 1}n, {0, 1})\ irr
(irr and reg means irregular and regular, respectively).

Intuitively, irr1 is an irregular event that “Φ does not matches Φ′”. That
is, Φ(P0, f) = Φ′(P0, f) holds if (P0, f) 6∈ irr1 by definition of Φ and Φ′. In
addition, irr2 is an irregular event that “Φ(P0, f) have unexpected fixed points”2.
That is, the number of fixed points of Φ(P0, f) becomes larger than |f−1(1)| if
(P0, f) ∈ irr2. If (P0, f) 6∈ irr1 ∨ irr2, which is equivalent to (P0, f) ∈ reg, then
the number of fixed points of Φ(P0, f) (and Φ′(P0, f)) matches |f−1(1)|.

Now we have

1

2

∑
P∈good

∣∣∣∣ Pr
σ∼U ′1

[σ = P ]− 1

2n!

∣∣∣∣
=

1

2

∑
P∈good

∣∣∣∣ Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ]− 1

2n!

∣∣∣∣
≤ 1

2

∑
P∈good

∣∣∣∣ Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg]− 1

2n!

∣∣∣∣
+

1

2

∑
P∈good

Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ irr]

=
1

2

∑
P∈good

∣∣∣∣ Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg]− 1

2n!

∣∣∣∣
+

1

2
Pr

P0∼U0,f∼Λ
[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr]. (91)

From inequality (87), (88), and (91) we have,

∆(U,U ′1) ≤ 1

2

∑
P∈good

∣∣∣∣ Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg]− 1

2n!

∣∣∣∣
+

1

2
Pr

P0∼U0,f∼Λ
[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr] +

1 + e

n!
. (92)

Next, we upper bound the term 1
2

∑
P∈good |PrP0∼U0,f∼Λ[Φ(P0, f) = P ∧

(P0, f) ∈ reg]− 1
2n! |. We use the following claim.

2 In fact irr2 is just the event that P0 have 2-cycles, though, it holds that there is no
unexpected fixed point if the event ¬(irr1 ∨ irr2) occurs.
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Claim. For each fixed P ∈ Perm({0, 1}n),

Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg] =
(2n − λ)!·!(2n − λ)

2n!·!2n · (2n − 2λ)!
(93)

holds, where λ is the number of fixed points of P .

Proof (of Claim). If (P0, f) ∈ reg, then the set of fixed points of Φ(P0, f) matches
the set f−1(1), by definition of reg and Φ. Thus, for each fixed permutation P ,
there exists unique function fP that satisfies Φ(P0, fP ) = P ∧ (P0, fP ) ∈ reg for
some derangement P0.

Now we count the number of derangement P0 that satisfies Φ(P0, fP ) =
P ∧ (P0, fP ) ∈ reg. Let x1, . . . , xλ be the fixed points of P . In the graph GP
which is associated to P , let us choose an ordered sequence of λ edges S =
(y1 → y′1, . . . , yλ → y′λ) which are not self loops. Then, modify the graph GP
as follows: for each 1 ≤ i ≤ λ, remove the edges xi → xi, yi → y′i and add new
edges yi → xi, xi → y′i. Then the new graph has no self loop and corresponds
to a derangement P0,S , and this derangement P0,S satisfies Φ(P0,S , fP ) = P ∧
(P0,S , fP ) ∈ reg. This mapping S 7→ P0,S gives a one-to-one correspondence
between ordered sequence S of λ edges which are not self loops, and derangement
P0 that satisfies Φ(P0, fP ) = P ∧ (P0, fP ) ∈ reg. Therefore, the number of
derangement P0 that satisfies Φ(P0, fP ) = P ∧ (P0, fP ) ∈ reg is

(
2n − λ
λ

)
· λ!. (94)

Hence we have

Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg] =
∑

(P0,f):Φ(P0,f)=P
∧(P0,f)∈reg

Pr
σ∼U0
F∼Λ

[σ = P0 ∧ F = f ]

=
∑

P0:Φ(P0,fP )=P
∧(P0,fP )∈reg

Pr
σ∼U0
F∼Λ

[σ = P0 ∧ F = fP ]

=

(
2n − λ
λ

)
· λ! · 1

!2n
!(2n − λ)

2n!

=
(2n − λ)!·!(2n − λ)

2n!·!2n · (2n − 2λ)!
,

which completes the proof of the claim. ut
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Note that the number of permutations that has exactly λ fixed points is
(

2n

λ

)
·!(2n

− λ). From the above claim, now we have

1

2

∑
P∈good

∣∣∣∣ Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg]− 1

2n!

∣∣∣∣
=

1

2

∑
λ<2n

 ∑
P :λ fixed points

∣∣∣∣ Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg]− 1

2n!

∣∣∣∣


=
1

2

∑
λ<2n

∣∣∣∣ (2n − λ)!·!(2n − λ)

2n!·!2n · (2n − 2λ)!
− 1

2n!

∣∣∣∣ · (2n

λ

)
·!(2n − λ)

=
1

2

∑
λ<2n

(
2n

λ

)
·!(2n − λ)

2n!

∣∣∣∣1− (2n − λ)!·!(2n − λ)

!2n · (2n − 2λ)!

∣∣∣∣
=

1

2

∑
λ<2n

!(2n − λ)

λ! · (2n − λ)!

∣∣∣∣1− 2n!

!2n
· !(2n − λ)

(2n − λ)!
· (2n − λ)! · (2n − λ)!

2n! · (2n − 2λ)!

∣∣∣∣ (95)

Note that

1− 2n!

!2n
· !(2n − λ)

(2n − λ)!
· (2n − λ)! · (2n − λ)!

2n! · (2n − 2λ)!
≥ 0 (96)

holds for λ < 2n and n ≥ 32, since

2n!

!2n
· !(2n − λ)

(2n − λ)!
· (2n − λ)! · (2n − λ)!

2n! · (2n − 2λ)!

=
2n!

!2n
· !(2n − λ)

(2n − λ)!
· (2n − λ)(2n − λ− 1) · · · (2n − 2λ+ 1)

2n(2n − 1) · · · (2n − λ+ 1)

=
2n!

b2n!/e+ 1/2c
· b(2

n − λ)!/e+ 1/2c
(2n − λ)!

·
λ−1∏
i=0

(
1− λ

2n − i

)
≤ 2n!

2n!/e
· (2n − λ)!/e+ 1

(2n − λ)!
·
(

1− λ

2n

)
=

(
1 +

e

(2n − λ)!

)
·
(

1− λ

2n

)
≤ 1− λ

2n
+

e

(2n − λ)!

≤ 1− 1

2n
+

e

(2n − 2n)!
≤ 1. (97)
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Furthermore, for λ < 2n and n ≥ 32 we have

2n!

!2n
· !(2n − λ)

(2n − λ)!
· (2n − λ)! · (2n − λ)!

2n! · (2n − 2λ)!

=
2n!

b2n!/e+ 1/2c
· b(2

n − λ)!/e+ 1/2c
(2n − λ)!

·
λ−1∏
i=0

(
1− λ

2n − i

)

≥ 2n!

2n!/e+ 1
· (2n − λ)!/e− 1

(2n − λ)!
·
(

1− λ

2n − λ+ 1

)λ
≥ (2n − λ)!

(2n − λ)!/e+ 1
· (2n − λ)!/e− 1

(2n − λ)!
·
(

1− λ2

2n − λ+ 1

)
≥
(

1− 2e

(2n − λ)! + e

)
·
(

1− λ2

2n − λ+ 1

)
≥ 1− 2e

(2n − λ)! + e
− λ2

2n − λ+ 1
,

which implies that

1− 2n!

!2n
· !(2n − λ)

(2n − λ)!
· (2n − λ)! · (2n − λ)!

2n! · (2n − 2λ)!
≤ 2e

(2n − λ)! + e
+

λ2

2n − λ+ 1
. (98)

From inequalities (95), (96), and (98), we have

1

2

∑
P∈good

∣∣∣∣ Pr
P0∼U0,f∼Λ

[Φ(P0, f) = P ∧ (P0, f) ∈ reg]− 1

2n!

∣∣∣∣
≤ 1

2

∑
λ<2n

!(2n − λ)

λ! · (2n − λ)!
·
(

2e

(2n − λ)! + e
+

λ2

2n − λ+ 1

)
≤ 1

2

∑
λ<2n

(2n − λ)!/e+ 1

(2n − λ)!
·
(

2e

(2n − λ)! + e
+

λ2

2n − λ+ 1

)
=

1

2

∑
λ<2n

(
1

e
+

1

(2n − λ)!

)
· λ2

2n − λ+ 1
·
(

2e

(2n − λ)! + e
· 2n − λ+ 1

λ2
+ 1

)
≤ 1

2

∑
λ<2n

2λ2

2n − λ+ 1
≤ 2n · (2n)2

2n − 2n+ 1
=

8n3

2n − 2n+ 1
. (99)

From inequalities (92) and (99), now we have

∆(U,U ′1) ≤ 8n3

2n − 2n+ 1
+

1

2
Pr

P0∼U0,f∼Λ
[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr] +

1 + e

n!
.

(100)

Next, we upper bound 1
2 PrP0∼U0,f∼Λ[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr]. Note

that

Pr
P0∼U0,f∼Λ

[Φ(P0, f) ∈ good∧(P0, f) ∈ irr] ≤ Pr
P0∼U0,f∼Λ

[|f−1(1)| < 2n∧(P0, f) ∈ irr]
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holds, since the number of fixed points of Φ(P0, f) is always greater than or equal
to |f−1(1)|. Thus we have

1

2
Pr

P0∼U0,f∼Λ
[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr]

≤ 1

2

∑
λ<2n

Pr
P0∼U0,f∼Λ

[|f−1(1)| = λ ∧ (P0, f) ∈ irr].

Moreover, for a fixed λ, we have

Pr
P0∼U0,f∼Λ

[|f−1(1)| = λ ∧ (P0, f) ∈ irr]

≤
∑

f :|f−1(1)=λ|

Pr
P0∼U0,F∼Λ

[F = f ∧ (P0, f) ∈ irr]

=
∑

f :|f−1(1)=λ|

Pr
P0∼U0

[(P0, f) ∈ irr] Pr
F∼Λ

[F = f ].

Hence

1

2
Pr

P0∼U0,f∼Λ
[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr]

≤
∑
λ<2n

∑
f :|f−1(1)=λ|

Pr
P0∼U0

[(P0, f) ∈ irr] Pr
F∼Λ

[F = f ] (101)

holds. For a fixed f , let x1, . . . , xλ be the preimages of 1 by f . Then we have

Pr
P0∼U0

[(P0, f) ∈ irr] ≤ Pr
P0∼U0

[(P0, f) ∈ irr1] + Pr
P0∼U0

[(P0, f) ∈ irr2]

≤
∑
i 6=j

Pr
P0∼U0

[P0(xi) = xj ] +
∑
i

Pr
P0∼U0

[P 2
0 (xi) = xi]

≤
∑
i 6=j

Pr
P0∼U0

[P0(xi) = xj ]

+
∑
i

∑
y 6=xi

Pr
P0∼U0

[P0(xi) = y ∧ P0(y) = xi]

≤
∑
i 6=j

!(2n − 1)

!2n
+
∑
i

∑
y 6=xi

!(2n − 2)

!2n

≤ λ2 · (2n − 1)!/e+ 1

2n!/e− 1
+ λ · (2n − 1) · (2n − 2)!/e+ 1

2n!/e− 1

=
λ2

2n
· 1 + e/(2n − 1)!

1− e/2n!
+

λ

2n
· 1 + e/(2n − 2)!

1− e/2n!

=
2λ2

2n
+

2λ

2n
≤ 4λ2

2n
≤ 16n2

2n
(102)
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for n ≥ 32. From inequality (101) and (102), we have

1

2
Pr

P0∼U0,f∼Λ
[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr]

≤ 1

2

∑
λ<2n

∑
f :|f−1(1)=λ|

16n2

2n
Pr
F∼Λ

[F = f ]

≤ 16n3

2n
. (103)

Then, from inequality (100) and (103), we have

∆(U,U ′1) ≤ 8n3

2n − 2n+ 1
+

16n3

2n
+

1 + e

n!
,

which completes the proof of Lemma 4.4. ut

H Proof of Lemma 4.5

Proof (of Lemma 4.5). In this proof, we define subsets good, bad ⊂ Func({0, 1}n,
{0, 1}n) by F ∈ good if and only if the number of fixed points of F is less than
2n, and bad := Func({0, 1}n, {0, 1}n) \ good. Let irr1 be the same set defined
in the proof of Lemma 4.4 (see (89)), and define reg1 by reg1 = Der({0, 1}n) ×
Func({0, 1}n, {0, 1}) \ irr1. By definition of Φ and Φ′, Φ(P0, f) = Φ′(P0, f) holds

51



for any (P0, f) ∈ reg1. Thus we have

∆(U ′1
±
, U ′2) =

1

2

∑
F

∣∣∣∣∣∣ Pr
P0∼U0,
f∼Λ

[Φ(P0, f) = F ]− Pr
P0∼U0,
f∼Λ

[Φ′(P0, f) = F ]

∣∣∣∣∣∣
≤ 1

2

∑
F∈good

∣∣∣∣∣∣ Pr
P0∼U0,
f∼Λ

[Φ(P0, f) = F ]− Pr
P0∼U0,
f∼Λ

[Φ′(P0, f) = F ]

∣∣∣∣∣∣
+

1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ bad] +
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ bad].

≤ 1

2

∑
F∈good

∣∣∣∣∣∣ Pr
P0∼U0,
f∼Λ

[Φ(P0, f) = F ∧ (P0, f) ∈ reg1]

− Pr
P0∼U0,
f∼Λ

[Φ′(P0, f) = F ∧ (P0, f) ∈ reg1]

∣∣∣∣∣∣
+

1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ bad] +
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ bad]

=
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ bad] +
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ bad]. (104)
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Note that the number of fixed points of Φ′(P0, f) is less than or equal to that
of Φ(P0, f) by definition of Φ and Φ′. Thus we have

∆(U ′1
±
, U ′2) ≤ 1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ bad] +
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ bad].

=
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+
1

2

(
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr1]

+ Pr
P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ good ∧ Φ(P0, f) ∈ bad ∧ (P0, f) ∈ irr1]
)

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ bad] +
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ bad].

≤ Pr
P0∼U0,
f∼Λ

[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr1] +
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ bad]

+
1

2
Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ bad] +
1

2
Pr

P0∼U0,
f∼Λ

[Φ′(P0, f) ∈ bad].

Note that the number of fixed points of Φ(P0, f) and Φ′(P0, f) are less than 2n
if |f−1(1)| < n. Thus, each of PrP0∼U0,f∼Λ[Φ(P0, f) ∈ bad] and PrP0∼U0,f∼Λ[
Φ′(P0, f) ∈ bad] is upper bounded by Prf∼Λ[|f−1(1)| ≥ n] = Prλ∼Dnum [λ ≥ n].
Therefore, from inequality (28) and (103) we have

∆(U ′1
±
, U ′2) ≤ Pr

P0∼U0,
f∼Λ

[Φ(P0, f) ∈ good ∧ (P0, f) ∈ irr1] + 2 Pr
λ∼Dnum

[λ ≥ n]

≤ 32n3

2n
+

2(e+ 1)

n!
,

which completes the proof of Lemma 4.5. ut

I Proof of Lemma 5.2

To prove Lemma 5.2, we need the following lemma.

Lemma I.1. Let NP := |{x|P (x) = x}| for P ∈ Perm({0, 1}n). Then, the
following inequalities hold.
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1. |EP∼U [NP ]− 1| ≤ e
n! + e2

(2n−n)! ,

2. VarP∼U [NP ] ≤ 2n.

Proof (of Lemma I.1). Note that NP follows the distribution Dnum. Now we
show the first inequality

|Eλ∼Dnum [λ]− 1| = |EP∼U [NP ]− 1| ≤ e

n!
+

e2

(2n − n)!
. (105)

We have

Eλ∼Dnum [λ] =

2n∑
λ=0

λ ·
(

2n

λ

)
·!(2n − λ)

2n!
=

2n∑
λ=1

1

(λ− 1)!

2n−λ∑
i=0

(−1)i

i!

=

2n−1∑
λ=0

1

λ!

2n−λ−1∑
i=0

(−1)i

i!
. (106)

Hence, from Lemma A.1 we have

Eλ∼Dnum [λ] =

2n−1∑
λ=0

1

λ!

2n−λ−1∑
i=0

(−1)i

i!

≤
n−1∑
λ=0

1

λ!

2n−λ−1∑
i=0

(−1)i

i!
+

2n−1∑
λ=n

1

λ!

2n−λ−1∑
i=0

(−1)i

i!

≤
n−1∑
λ=0

1

λ!

(
1

e
+

e

(2n − λ)!

)
+

2n−1∑
λ=n

1

λ!
· e

≤
n−1∑
λ=0

1

λ!

(
1

e
+

e

(2n − n+ 1)!

)
+

∞∑
λ=n

1

λ!
· e

≤ 1 +
e2

(2n − n+ 1)!
+

e

n!

≤ 1 +
e2

(2n − n)!
+

e

n!
(107)
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for n ≥ 32. In addition, since 1
e −

1
(2n−λ)! ≥ 0 holds for λ ≤ 2n − 5, we have

Eλ∼Dnum [λ] =

2n−1∑
λ=0

1

λ!

2n−λ−1∑
i=0

(−1)i

i!

=

2n−5∑
λ=0

1

λ!

2n−λ−1∑
i=0

(−1)i

i!

+
1

(2n − 1)!
· 1 +

1

(2n − 2)!
· 0 +

1

(2n − 3)!
· 1

2
+

1

(2n − 4)!
· 1

3

≥
2n−5∑
λ=0

1

λ!

2n−λ−1∑
i=0

(−1)i

i!

≥
2n−5∑
λ=0

1

λ!

(
1

e
− 1

(2n − λ)!

)
≥

n∑
λ=1

1

λ!

(
1

e
− 1

(2n − λ)!

)

≥
n∑
λ=0

1

λ!

(
1

e
− 1

(2n − n)!

)
≥
(
e− e

(n+ 1)!

)(
1

e
− 1

(2n − n)!

)
≥ 1− 1

(n+ 1)!
− e

(2n − n)!
≥ 1− e

n!
− e2

(2n − n)!
. (108)

From inequality (107) and (108), we obtain the first inequality (105).

Next, we show the second inequality

VarP∼U [NP ] = Varλ∼Dnum [λ] ≤ 2n. (109)
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For n ≥ 32, we have

Varλ∼Dnum [λ] = Eλ∼Dnum [λ2]− (Eλ∼Dnum [λ])2

≤ Eλ∼Dnum [λ2]

=

2n−1∑
λ=0

λ+ 1

λ!

2n−λ−1∑
i=0

(−1)i

i!

=

n−1∑
λ=0

λ+ 1

λ!

2n−λ−1∑
i=0

(−1)i

i!
+

2n−1∑
λ=n

λ+ 1

λ!

2n−λ−1∑
i=0

(−1)i

i!

≤
n−1∑
λ=0

n

λ!

(
1

e
+

1

(2n − λ)!

)
+

2n−1∑
λ=n

1 + 1
λ

(λ− 1)!

2n−λ−1∑
i=0

(−1)i

i!

≤
n−1∑
λ=0

n

λ!

(
1

e
+

1

(2n − n+ 1)!

)
+

2n−1∑
λ=n

1 + 1
e

(λ− 1)!
· e

≤ n
(

1 +
e2

(2n − n+ 1)!

)
+
e(e+ 1)

(n− 1)!

≤ 2n. (110)

Therefore the second inequality (109) holds, and Lemma I.1 follows. ut

Next, we prove Lemma 5.2.

Proof (of Lemma 5.2). First, we show that

∑
E∈Ciph(m,n)

∣∣∣∣∣∣ Pr
(e,y)∼V

[(e, y) = (E, Y )]− Pr
e∼UE ,
y∼Un

[(e, y) = (E, Y )]

∣∣∣∣∣∣ (111)

does not depend on Y ∈ {0, 1}n. Define φY : Ciph(m,n) → Ciph(m,n) by
φY (E)(z, x) := Ez(x)⊕ Y for each Y ∈ {0, 1}n. Then we have

Pr
(e,y)∼V

[(e, y) = (E, Y )] = Pr
(e,y)∼V

[(e, y) = (φY (E), 0)],

by definition of V . Therefore

∑
E∈Ciph(m,n)

∣∣∣∣∣∣ Pr
(e,y)∼V

[(e, y) = (E, Y )]− Pr
e∼UE ,
y∼Un

[(e, y) = (E, Y )]

∣∣∣∣∣∣
=

∑
E∈Ciph(m,n)

∣∣∣∣∣∣ Pr
(e,y)∼V

[(e, y) = (φY (E), 0)]− Pr
e∼UE ,
y∼Un

[(e, y) = (φY (E), 0)]

∣∣∣∣∣∣
=

∑
E∈Ciph(m,n)

∣∣∣∣∣∣ Pr
(e,y)∼V

[(e, y) = (E, 0)]− Pr
e∼UE ,
y∼Un

[(e, y) = (E, 0)]

∣∣∣∣∣∣ (112)
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holds for any Y . Hence (111) does not depend on Y . Now we have

∆(V, (UE , Un))

=
1

2
·
∑
Y

∑
E∈Ciph(m,n)

∣∣∣∣∣∣ Pr
(e,y)∼V

[(e, y) = (E, Y )]− Pr
e∼UE ,
y∼Un

[(e, y) = (E, Y )]

∣∣∣∣∣∣
=

2n

2
·

∑
E∈Ciph(m,n)

∣∣∣∣∣∣ Pr
(e,y)∼V

[(e, y) = (E, 0)]− Pr
e∼UE ,
y∼Un

[(e, y) = (E, 0)]

∣∣∣∣∣∣
=

2n

2
·

∑
E∈Ciph(m,n)

∣∣∣∣ Pr
(e,y)∼V

[(e, y) = (E, 0)|e = E]

− Pr
e∼UE ,
y∼Un

[(e, y) = (E, 0)|e = E]

∣∣∣∣∣∣ · Pr
e∼UE

[e = E]

=
2n

2
·

∑
E∈Ciph(m,n)

∣∣∣∣ NE2n+m
− 1

2n

∣∣∣∣ · Pr
e∼UE

[e = E]

=
1

2
·

∑
E∈Ciph(m,n)

∣∣∣∣NE2m
− 1

∣∣∣∣ · Pr
e∼UE

[e = E], (113)

where NE := |{(z, x)|Ez(x) = x}| for E ∈ Ciph(m,n).
Now, define the subsets bad0, bad1, . . . , badn, good ⊂ Ciph(m,n) by

bad0 :=

{
E

∣∣∣∣NE2m
< 1− 1

2(1−ε)m or 1 +
1

2(1−ε)m <
NE
2m
≤ 2

}
,

and

badi :=

{
E

∣∣∣∣1 + 2i−1 <
NE
2m
≤ 1 + 2i

}
for 1 ≤ i ≤ n, and

good := Ciph(m,n) \ (
⋃
i

badi) =

{
E

∣∣∣∣∣∣∣∣NE2m
− 1

∣∣∣∣ ≤ 1

2(1−ε)m

}
,

where ε is a parameter such that 1/m < ε < 1.
From Lemma I.1, now we have

VarE∼UE [NE ] = VarE∼UE

 ∑
z∈{0,1}m

NEz

 = 2mVarP∼U [NP ] ≤ 2m+1n,

(114)
since Ez are independently sampled according to the distribution U for each
z ∈ {0, 1}m. In addition, we have

|EE∼UE [NE ]− 2m| = |2mEP∼U [NP ]− 2m| ≤ 2me2

n!
+

2me2

(2n − n)!
< 1 (115)
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for n ≥ 32 and m ≤ n2. In particular, for any fixed cipher E and a parameter
1/m < ε < 1, |NE − 2m| > 2εm holds if and only if |NE −EE∼UE [NE ]| > 2εm

holds. Hence, by Chebyshev’s inequality we have

Pr
E∼UE

[E ∈ bad0]

= Pr
E∼UE

[
NE
2m

< 1− 1

2(1−ε)m or 1 +
1

2(1−ε)m <
NE
2m
≤ 2

]
≤ Pr
E∼UE

[∣∣∣∣NE2m
− 1

∣∣∣∣ > 1

2(1−ε)m

]
= Pr
E∼UE

[|NE − 2m| > 2εm]

= Pr
E∼UE

[|NE −EE∼UE [NE ]| > 2εm]

≤ VarE∼UE [NE ]

(2εm)2
≤ 2n

2(2ε−1)m
. (116)

In addition, for an integer i such that 1 ≤ i ≤ n, similarly we have

Pr
E∼UE

[E ∈ badi]

= Pr
E∼UE

[
1 + 2i−1 <

NE
2m
≤ 1 + 2i

]
≤ Pr
E∼UE

[∣∣∣∣NE2m
− 1

∣∣∣∣ > 2i−1

]
= Pr
E∼UE

[
|NE − 2m| > 2m+i−1

]
= Pr
E∼UE

[
|NE −EE∼UE [NE ]| > 2m+i−1

]
≤ VarE∼UE [NE ]

(2m+i−1)2
≤ 2n

2m+2i−2
, (117)

where we used inequality (114) again.
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Thus, from inequality (113), (116), and (117) we have

∆(V, (UE , Un)) ≤ 1

2

∑
E∈Ciph(m,n)

∣∣∣∣NE2m
− 1

∣∣∣∣ · Pr
e∼UE

[e = E]

=
1

2

∑
E∈good

∣∣∣∣NE2m
− 1

∣∣∣∣ · Pr
e∼UE

[e = E]

+
1

2

∑
E∈bad0

∣∣∣∣NE2m
− 1

∣∣∣∣ · Pr
e∼UE

[e = E]

+
1

2

∑
1≤i≤n

∑
E∈badi

(
NE
2m
− 1

)
Pr
e∼UE

[e = E]

≤ 1

2

∑
E∈good

1

2(1−ε)m · Pr
e∼UE

[e = E]

+
1

2
Pr

E∼UE
[E ∈ bad0]

+
1

2

∑
1≤i≤n

∑
E∈badi

2i Pr
e∼UE

[e = E]

≤ 1

2(1−ε)m+1
+

n

2(2ε−1)m
+

1

2

∑
1≤i≤n

2i Pr
e∼UE

[e ∈ badi]

≤ 1

2(1−ε)m+1
+

2n

2(2ε−1)m+1
+
∑

1≤i≤n

2i · n

2m+2i−2

≤ 1

2(1−ε)m+1
+

2n

2(2ε−1)m+1
+

n2

2m−2
.

Setting ε as ε = 2/3, we obtain the desired bound, and Lemma 5.2 follows. ut

J Lower Bound of ∆(U,U ′
1)

This section gives the lower bound of ∆(U,U ′1), i.e., we show the following claim:

Claim. ∆(U,U ′1) is lower bounded by 1/(4e · 2n). That is,

∆(U,U ′1) ≥ 1

4e · 2n
(118)

holds.
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Proof. Let Fix1 ⊂ Perm({0, 1}n) be the set of permutations with exactly one
fixed point. Then we have

∆(U,U ′1) =
1

2

∑
P∈Perm({0,1}n)

∣∣∣∣ Pr
σ∼U

[σ = P ]− Pr
σ∼U ′1

[σ = P ]

∣∣∣∣
≥ 1

2

∑
P∈Fix1

∣∣∣∣ Pr
σ∼U

[σ = P ]− Pr
σ∼U ′1

[σ = P ]

∣∣∣∣
≥ 1

2

∣∣∣∣∣ ∑
P∈Fix1

(
Pr
σ∼U

[σ = P ]− Pr
σ∼U ′1

[σ = P ]

)∣∣∣∣∣
≥ 1

2

∣∣∣∣ Pr
σ∼U

[σ ∈ Fix1]− Pr
σ∼U ′1

[σ ∈ Fix1]

∣∣∣∣ . (119)

Remember that irr2 is defined by (P0, f) ∈ irr2 if and only if P 2
0 (x) = x for

some x ∈ f−1(1) (see (90)). Define reg1 := Der({0, 1}n)× Func({0, 1}n, {0, 1}) \
irr1. Since Prσ∼U [σ ∈ Fix1] = Prf∼Λ[|f−1(1)| = 1] and Prσ∼U ′1 [σ ∈ Fix1] =

Prf∼Λ,P0∼U0
[|f−1(1)| = 1 ∧ (P0, f) ∈ reg2], we have

∆(U,U ′1) ≥ 1

2

∣∣∣∣ Pr
σ∼U

[σ ∈ Fix1]− Pr
σ∼U ′1

[σ ∈ Fix1].

∣∣∣∣
=

1

2

∣∣∣∣ Pr
f∼Λ

[|f−1(1)| = 1]− Pr
f∼Λ,P0∼U0

[|f−1(1)| = 1 ∧ (P0, f) ∈ reg2]

∣∣∣∣
=

1

2
Pr
f∼Λ

[|f−1(1)| = 1] ·
∣∣∣∣1− Pr

f∼Λ,P0∼U0

[(P0, f) ∈ reg2||f−1(1)| = 1]

∣∣∣∣
=

1

2
Pr
f∼Λ

[|f−1(1)| = 1] · Pr
f∼Λ,P0∼U0

[(P0, f) ∈ irr2||f−1(1)| = 1]

(120)

Now we have

Pr
f∼Λ

[|f−1(1)| = 1] =

(
2n

1

)
·!(2n − 1)

(2n)!
=

!(2n − 1)

(2n − 1)!
=

2n−1∑
i=1

(−1)i

i!
≥ 1

e
− e

2n!
, (121)

and

Pr
f∼Λ

[(P0, f) ∈ irr2||f−1(1)| = 1] = Pr
f∼Λ

[P 2
0 (f−1(1)) = f−1(1)||f−1(1)| = 1]

=
(2n − 1)·!(2n − 2)

!(2n)
≥ (2n − 1) · (2n − 2)!/e

(2n)!/e+ 1

=
(2n − 1)!

(2n)! + e
≥ 1

2

(2n − 1)!

(2n)!
=

1

2 · 2n
(122)

Therefore

∆(U,U ′1) ≥ (
1

e
− e

2n!
) · 1

2 · 2n!
≥ 1

4e · 2n
(123)

holds for n ≥ 32, which completes the proof of the claim. ut
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