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Abstract. Leakage-resilient encryption is a powerful tool to protect data confidentiality
against side channel attacks. In this work, we introduce a new and strong leakage setting to
counter backdoor (or trojan horse) plus covert channel attack, by relaxing the restrictions
on leakage. We allow bounded leakage (e.g. 10000 bits) at anytime and anywhere and over
anything. Our leakage threshold could be much larger than typical secret key (e.g. AES key or
RSA private key) size. Under such a strong leakage setting, we propose an efficient encryption
scheme which is semantic secure in standard setting (i.e. without leakage) and can tolerate
strong continuous leakage. We manage to construct such a secure scheme under strong leakage
setting, by hiding partial (e.g. 1%) ciphertext as secure as we hide the secret key using a
small amount of more secure hardware resource, so that it is almost equally difficult for any
adversary to steal information regarding this well-protected partial ciphertext or the secret
key. We remark that, the size of such well-protected small portion of ciphertext is chosen to be
much larger than the leakage threshold. We provide concrete and practical examples of such
more secure hardware resource for data communication and data storage. We also introduce
a new notion of computational entropy, as a sort of computational version of Kolmogorov
complexity. Our quantitative analysis shows that, hiding partial ciphertext is a powerful
countermeasure, which enables us to achieve higher security level than existing approaches in
case of backdoor plus covert channel attacks. We also show the relationship between our new
notion of computational entropy and existing relevant concepts, including Shannon-Entropy,
Yao-Entropy, Hill-Entropy, All-or-Nothing Transform, and Exposure Resilient Function. This
new computation entropy formulation may have independent interests.

Keywords: Leakage Resillient Encryption, Steal Resillient Encryption, Secret Sharing, In-
formation Dispersal Algorithm, Information-theoretic security, Side Channel Attack, Covert
Channel Attack, Subliminal channel, Kolmogorov complexity

1 Introduction

Leakage resilient cryptography has been studied for over a decade, aiming to counter side chan-
nel attacks, among other goals. Existing works on leakage resilient cryptography typically impose
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some restrictions on when, where, or what can be leaked. Some work assumes that there exits a
leakage-free setup phase. Some works assume there exists a secure hardware device, such that any
computation inside this secure device is leakage-free. If some secret key is stored in such secure
device and never leaves from it, then such secret key is assumed to be leakage-free. Some works
only allow leakage on secret key. Furthermore, some works consider bounded leakage with a very
small upper bound—O(Poly(log λ)) where λ is the security parameter.

1.1 Existing Leakage Models or Notion

1.1.1 Bounded Retrieve Model The bounded retrieve model [3,11,13] assumes the total
amount of leaked information during the lifetime of the attacked system, is upper bounded by
a constant `, which could be as large as gigabytes. An existing approach [3,11] is to purposely make
the shared secret key size significantly larger than the leakage upper bound—` (e.g. ≥ 2`+λ where
λ is the security parameter). In order to make the computation as fast as the case of short secret
key, this approach assumes a leakage-free phase, during which, one party (say, Alice) can randomly
sample a short session key from the large shared secret key using a random seed. The other party
(say, Bob) of communication can re-generate the same short session key from the same shared large
secret key after receiving the same random seed.

It is easy to see, under continuous bounded leakage setting, any static secret key can be leaked
one bit by one bit, and pseudorandomness technique cannot be applied directly since short seed
could be (partially) leaked. Furthermore, we allow O(λ) bits leakage such that leakage threshold
could be larger than secret key size, thus the whole block cipher key (e.g. 128 bits AES key) could
be leaked. Therefore, bounded retrieve model does not satisfy our goal.

1.1.2 A leakage-free time period during the computation process of cryptography
primitive Alwen, Dodis and Wichs [2] proposed several leakage resilient cryptography primitives
with flexible (and possibly very large) key size. A key idea in their authenticated key agreement
scheme, is: (1) Generate many keys in the setup; (2) and during a leakage-free time period, the
sender and receiver will randomly sample a subset of keys, and use them to authenticate each
other; and then establish a short shared session key. As long as a constant fraction of all keys are
unknown to the adversary after bounded leakage, a random subset of keys contains at least one
unknown key with very high probability. After that, standard cryptography primitives are applied
with the short secure session key (e.g. AES).

In our leakage setting, there will be no leakage-free time period and any short value (e.g. AES
key) could be leaked. So we have to seek new approaches.

1.1.3 Secret Key never leaves from Secure Hardware Device The computation power of
secure hardware devices (e.g. Trusted Platform Module) may not be able to match the power of
desktop Intel/AMD CPU. Furthermore, there seems no evidence to show that the vendors of secure
hardware device are more trusted than vendors of other component (e.g. CPU, GPU, RAM, hard
disk, OS, web browser, virtual machine software, etc) in a computer system.

1.1.4 Randomness Extractor One may consider to extract a short block cipher (e.g. AES) key
from a long secret key and then encrypt the message using the short block cipher directly. Assuming
leakage is only allowed over the long secret key rather than the extracted short key (e.g. as the
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setting of [3,11]), this method will work. But in our setting, we do not make such assumption, and
instead we allow bounded leakage over any short (secret) value.

1.2 Our Contributions

The main contributions of this work can be summarized as below.

1.2.1 New Leakage Setting Since existing leakage settings does not fit for our goal, we present
a new strong leakage model, to capture the threat of backdoor or Trojan horse and covert channels
in computer hardware/software systems. We allow bounded leakage (e.g. 10000 bits) at anytime
and anywhere and over anything, with only two restrictions on the adversary: (1) the adversary
algorithms are efficient; (2) the bandwidth of the covert channel is bounded from the above. By our
knowledge, the existing works designed for leakage settings in Section 1.1 is trivially broken under
our leakage setting, since the Trojan horse could observe every step of computation of the victim
algorithm (e.g. an encryption program) and then steal the entire short private key 3.

In addition, unlike in existing works, an adversary is assumed to obtain full information of
ciphertext easily (e.g. via eavesdropping), in this paper, we assume that a small portion (e.g. 1%) of
ciphertext is strongly protected, so that the adversary has to resort to more advanced method (e.g.
backdoor or Trojan horse and covert channel attack) to obtain this portion of ciphertext, rather
than eavesdropping. The size of this small portion of ciphertext would be considerably larger than
the size of the underlying private key. Later, in Section 2.3, we will support this assumption with
real world examples.

1.2.2 Notion of Steal-Entropy We propose a new notion called “steal-entropy”, as a sort
of computational version of Kolmogorov complexity. With this “steal-entropy”, we quantitatively
analyse the advantage of our approach over existing works. Our formulation is non-trivial and has
to resolve several important issues: (1) Unlike Shannon-Entropy, Yao-Entropy and Hill-Entropy are
defined over distribution of random variable, and Kolmogorov complexity is defined over string, our
steal-entropy will be defined over an algorithm which converts the distribution of input random vari-
able to the distribution of output random variable. (2) Kolmogorov complexity is uncomputable in
general, but in our formulation, we should avoid to define any uncomputable function. (3) Statistical
or computational indistinguishability notion (e.g. semantic security under CPA/CPA2/CCA/CCA2
attack mode) is inappropriate in our formulation, since a single bit of arbitrary leakage will help
an adversary to win the guess-game trivially. (4) Unlike existing variant formulations of entropy,
it is hard to define our steal-entropy as a single scalar value (We will discuss the reason in next
section). Instead, we will give an upper bound and a lower bound for the steal-entropy of a given
algorithm. To show a program has poor steal-entropy, we need provide a small upper bound on the
steal-entropy of this program; to show a program has high steal-entropy, we need provide a large
lower bound on the steal-entropy of this program.

3 We emphasize that, the white box cryptography [5,16] using program obfuscation, which claims to protect
secret key from attackers with direct control of the encryption device, is prohibitively impractical, even
for a simple function [10].
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1.2.3 Construction We propose an efficient encryption scheme and demonstrate that hiding
partial ciphertext could be a powerful tool to defeat strong leakage attack. We construct our en-
cryption scheme using Vandermonde matrix and evaluate the steal-entropy of the proposed scheme
without relying on any hard problem assumption. Informally speaking, our encryption scheme will
ensure that, without complete ciphertext, the attacker obtains little information about the plain-
text, even if the attacker has stolen a bounded amount of message (e.g. the entire short private
key) of his/her choice. We will compare our solution with some related approaches, including All-
or-Nothing Transform and White-Box Cryptography, both of which could not satisfy our goal.

1.3 Organizations

The rest of this paper is organized in this way: Section 2 gives an overview of our work, including our
leakage setting, formulation of steal-entropy, and our proposed construction of leakage/steal-resilient
encryption scheme. We present our formal formulation of steal-entropy in Section 3, propose and
analyse our encryption scheme in Section 4. Before we conclude this paper in Section 6, Section 5
discusses more related works which are not covered in previous sections. Due to page limit, our
proofs are given in the appendix.

2 Overview of Our Work

2.1 Our Leakage Setting

2.1.1 Motivation of New Leakage Setting In this paper, we aim to counter not only side
channel attack but also covert channel attack. Nowadays, computer systems become so complex
and consist of a lot of software/hardware components which are designed, manufactured and sold
by various companies from various countries. It is definitely not a trivial task for PC users to check
whether some backdoor program or malware (e.g. Trojan horse) has been planted inside his/her
PC hardware/software system. The well-known “Dual Elliptic Curve Deterministic Random Bit
Generator” (Dual EC DRBG) backdoor 4 demonstrates that the potential threat from backdoor is
not that far away from every computer user. Another serious threat is software Trojans horse or
even hardware Trojan horse 5. The backdoor or Trojan horse malware may observe the victim’s
computer system to gather information and send collected (possibly compressed) information out
via a covert channel or subliminal channel.

Facing such threats from backdoor and Trojan horse, in this work, we have to revise the existing
leakage setting: (1) Theoretically, backdoor or Trojan horse programs could be planted by some

4 Quotation from https://en.wikipedia.org/wiki/Kleptography: “The Dual EC DRBG cryptographic
pseudo-random number generator from the NIST SP 800-90A is thought to contain a kleptographic back-
door. Dual EC DRBG utilizes elliptic curve cryptography, and NSA is thought to hold a private key which,
together with bias flaws in Dual EC DRBG, allows NSA to decrypt SSL traffic between computers using
Dual EC DRBG for example.” Quotation from https://en.wikipedia.org/wiki/Dual_EC_DRBG: “The
alleged NSA backdoor would allow the attacker to determine the internal state of the random number
generator from looking at the output from a single round (32 bytes); all future output of the random
number generator can then easily be calculated, until the CSPRNG is reseeded with an external source of
randomness. This makes for example SSL/TLS vulnerable, since the setup of a TLS connection includes
the sending of a randomly generated cryptographic nonce in the clear.”

5 http://spectrum.ieee.org/semiconductors/design/stopping-hardware-Trojans-in-their-tracks
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software/hardware vendor and they exist in victim’s computer from the very beginning. So it might
not be appropriate to assume a leakage-free time period. (2) Possibly, the backdoor program might
be planted by vendors of the secure hardware device and the assumption of leakage-free secure
hardware device is hard to validate. (3) The backdoor or Trojan horse malware may have their own
storage buffers, so history data can be buffered and then leaked 1 bit by 1 bit via the covert channel
(thus Pereira, Standaert and Vivek [21] would be broken trivially).

2.1.2 New Leakage Setting In general, we allow efficient leakage with bounded bandwidth at
anytime and anywhere and over anything. The only two restrictions on leakage are: (1) The leakage
amount of each encryption (i.e. the bandwidth of covert channel) is bounded (e.g. O(λ)). In this
paper, we are interested in medium value of leakage threshold, e.g. tens of thousands bits, which is
much larger than typical private key size (e.g. AES key and RSA private key). (2) The backdoor or
Trojan horse program (i.e. the leakage function) is computationally bounded (e.g. polynomial time
algorithm). Our setting is closer to study of memory leakage resilient cryptography, and does not
follow the assumption that only computation leaks information.

Recall that, in most, if not all, leakage-resilient cryptography research works, an adversary has
two different methods to obtain desired information:

• A cheap method to obtain large size weakly protected information, for example, eavesdropping
ciphertext on communication link.

• An expensive method to obtain small size strongly protected information, for example, using
side channel attack or Trojan horse malware plus covert channel attack to obtain partial or full
information of the short secret key.

Typically in existing works, an adversary is assumed to obtain full information of ciphertext us-
ing the cheap method (e.g. eavesdropping), meanwhile subject to several restrictions on obtaining
information of short secret key (e.g. assumed leakage-free time period or hardware device). Unlike
existing works, in this paper, we impose minimum restrictions on information leakage, and assume
that a small part (e.g. 1% or 0.1%) of ciphertext 6 is as strongly protected as the short secret key,
so that the adversary has to resort to the expensive method (e.g. Trojan horse and covert channel)
to obtain this part of ciphertext. Next, we will support this assumption with real world examples.

Secure Storage Device. For data storage, we assume there are two categories of storage: one with
small capacity is relatively more expensive, in term of unit price, but much more secure; the other
with large capacity is cheaper but insecure. In case that a user wish to backup large size sensitive
historical data in cloud storage server, but did not trust the cloud in data confidentiality. Then
this user’s local offline storage device, which is physically disconnected from any computers and
Internet, could be an example of the former, and the cloud storage 7 could be an example of the
latter.

6 The encryption scheme is length-preserving, and the size of ciphertext is equal to the size of plaintext.
7 Note: (1) Many cloud storage servers provide a certain amount (e.g. 15GB) of free cloud storage for

individual users; (2) the cost of offline local storage should include not only hardware purchase cost but
also hardware maintenance and storage cost (i.e. keep the harddisk drive in a proper physical environment
for a long time).
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Secure Communication Link. For data transmission, we assume there exist two categories of com-
munication channels, one with small bandwidth is very expensive but much more secure, such that
an adversary cannot obtain the transmitted data with low cost (e.g. eavesdropping); the other with
large bandwidth is cheap but insecure, such that an adversary can obtain all transmitted data with
low cost. A typical example is “virtually isolated network”, recently proposed by Xu and Zhou [27],
which is a hybrid network with two communication channels: one is a physically isolated network
with small bandwidth, and the other is Internet with large bandwidth. Their work [27] combines
these two channels with unidirectional network links (a.k.a data diode or air gap), so that the
isolated network will be still always physically isolated from Internet.

Our strategy is to enhance security level of the large amount of cheap but insecure hardware
resource by leveraging on small amount of expensive but more secure hardware resource, essentially
creating a hybrid effects in security. We aim to prevent the adversary from eavesdropping full
information of our ciphertext.

2.2 Notion of Steal-Entropy

Unlike previous leakage formulation, we attempt to formalize security in leakage setting from a
different angle. We try to answer a very important question:
“At least how many bits should the adversary steal in order to obtain the desired
secret information?”

In this work, we are concerning how many bits the adversary has to obtain using the expensive
method, in order to obtain full or partial information of the plaintext. Informally, we may call this
“minimum but sufficient number of leaked/stolen bits” which will lead to compromise of secret
plaintext, as the steal-entropy of the encryption algorithm.

Let P (e.g encryption algorithm/program) denote the victim algorithm or program. In our
formulation, an adversary chooses two algorithms, denoted with steal algorithm S and recovery
algorithm R. The steal algorithm S is given oracle access to the whole computation process of P,
including any internal states (e.g. secret keys, random seeds, input and any computation steps).
Then the steal algorithm S is allowed to pass a short message, which is at most ` bits, to the recovery
algorithm R, which attempts to output desired secret information. If the recovery algorithm R is
able to output the desired secret information with probability close to 1, with value of ` much
smaller than the size of desired secret information, then we say the victim algorithm P has very
low steal-entropy rate. In this work, we are interested in medium value of leakage threshold ` (e.g.
tens of thousands), which is larger than typical secret key length, but could be much smaller than
typical ciphertext length. Figure 1 illustrates our formulation setting. Our notion of “steal-entropy”
could be treated as a computation version of Kolmogorov complexity.

2.2.1 Steal-Entropy in Input or Output Pseudorandom number generators, pseudorandom
function and encryption are important cryptography primitives applied to protect data confiden-
tiality. For an algorithm P similar to pseudorandom number generator and pseudorandom function,
we are interested to ask a question: Assuming a Trojan horse malware is observing the computation
process of algorithm P upon a randomly chosen input x, at least how many bits should the Trojan
horse malware steal and send out, in order to allow a remote attacker to recover the output P(x)
of the algorithm P? To address this question, we define a notion called “Steal-Entropy of an
algorithm in Output”.
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Fig. 1. Setting of Steal-Entropy and Steal Resilient Encryption. A Trojan horse malware can observe all
(secret) information during the execution of algorithm P(·), including input x = x0‖x1‖x2‖ . . . (xi ∈ {0, 1})
, secret keys, random seeds, IV values, ciphertext ( Ctx0 and Ctx1), and all step-by-step work transcript,
but is only able to deliver at most ` (here we assume ` < |x|) bits message to the remote attacker via
some unidirectional covert channel. With these ` bits stolen-message and whatever he could eavesdrop over
Internet, the remote attacker attempts to output ` + ∆ bits values among xi’s. This paper proposes to
“encode” the output of P as two parts: a smaller part Ctx0 and a large part Ctx1, and transfer or store the
small part Ctx0 (|Ctx0| > `+λ where λ is the security parameter) using more secure manner, such that the
adversary has to resort to advanced technique to steal information about Ctx0 (e.g. using the Trogan horse
virus and the covert channel), rather than eavesdropping. We remark that, (1) we are only interested in
length-preserving encryption, such that the bit length of ciphertext (i.e. |Ctx0|+ |Ctx1|) is equal to the bit
length of plaintext; (2) since |Ctx0| > `+ λ, so that the attacker could not steal full knowledge of Ctx0 via
the covert channel; (3) typically, ` ≥ SecretKeySize, so the Trojan horse malware may steal the entire
secret key. For example, ` = 10000 and SecretKeySize= 128 or 256 AES, or SecretKeySize ≤ 4096 for
typical RSA private key.

For algorithm P similar to encryption scheme, we are interested to ask another question: Assum-
ing a Trojan horse malware is observing the computation process of algorithm P upon a randomly
chosen input x, at least how many bits should this Trojan horse malware steal and send out, in
order to allow a remote attacker to recover the input x, where this remote attacker has access to the
output 8 P(x)? To address this question, we define a notion called “Steal-Entropy of an algorithm in
Input”. In addition, to deal with partial information protection, we define a notion called “Strong
Steal-Entropy of an algorithm”.

2.2.2 A Plausible Formulation of Steal-Entropy Recall the definition of Shannon-Entropy:
The self-information of a string x (sampled from a distribution X ), which denotes an event with
probability px, is defined as − log px. The Shannon-Entropy of the distribution X is defined as
the weighted average (or expectation value)

∑
x∼X px × (− log px) of self-information of x for all x

sampled from X .
A plausible formulation for our steal-entropy could be like this: (1) For each input x, we define a

function L(x) as the minimum length of leakage message derived by the Trojan horse malware such
that the remote attacker is able to recover the output P(x) from this L(x) bits of leakage-message.

8 Usually, it is assumed that the adversary has access to the ciphertext.
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(2) Take the expected value (or the average)
∑
x L(x) Pr[X = x] as the steal entropy of algorithm

P in output.
However, there are several major issues here. (1) Averaging L(x) does not make sense, since we

want to introduce an upper bound on L(x), instead of average value of L(x), across different x. An
alternative way is that, our steal-entropy could be a range of scalars with upper and lower bound,
instead of a single scalar. We remark that we may not simply take the maximum and minimum
value of L(x) across all x’s. Instead, we introduce a system parameter ε (e.g. ε = 0.05). We could
say the steal-entropy of algorithm P is within range [a, b] with respect to parameter ε, if L(x) ∈ [a, b]
for at least (1− ε)× 100% fraction of all possible inputs x. (2) Recall that Kolmogorov complexity
is uncomputable in general. Similarly, the function L(x) is likely to be uncomputable, too. So in
our real formulation, we need find a way to avoid computing exact value of L(x). Furthermore,
just like the formulation of Yao-Entropy and HILL-Entropy, we will provide precise definition for
inequality statement “Algorithm P has at least (or at most, respectively) ` bits steal-entropy in
input (or output, respectively)”, rather than defining and computing the exact unique value 9 of
steal-entropy.

2.2.3 Relation with Existing Similar Notions We also formally analyze the differences be-
tween our notion of steal-entropy with existing similar notions, including Yao-Entropy [28], Hill-
Entropy [17], Information Dispersal Algorithm [22], All-or-Nothing Transform [24], and Exposure
Resilient Function [8]. We manage to separate our proposed steal-entropy from all of these existing
formulations.

2.3 Our Approach

When the leakage threshold ` is larger than typical secret key size, most existing encryption schemes
and leakage resilient encryption schemes (which only tolerates leakage upto O(poly log λ) < λ
bits, where λ is the security parameter) would fail to protect data confidentiality, since in typical
setting, an adversary could obtain all ciphertext with low cost (e.g. eavesdropping), and the secret
decryption key could be stolen by trogan horse malware and delivered to the remote adversary via
covert channel.

Facing such stringent threat of medium size of arbitrary information leakage, two possible di-
rections are: (1) Construct novel encryption scheme with larger flexible key size, say the encryp-
tion/decryption key size could be a user-tunable parameter, and range from hundreds bits to hun-
dreds of thousands bits or even more. We will report our work in this direction in a separate paper.
We remark that Alwen, Dodis and Wichs [2] does not satisfy our purpose, since this work [2]
eventually extracted a short session key from arbitrary large size long term secret key, where this
extracted short session key could be stolen under our leakage setting. (2) Break the assumption
that the adversary could easily obtain all ciphertext. Indeed, this work will attempt to hide a small
portion of ciphertext using more secure hardware resource, so that the adversary has to resort to
the expensive method to steal information about this small portion of ciphertext.

2.3.1 Randomness Source Any static secret information might be stolen one bit by one bit, if
backdoor or Trojan horse exists. To defeat continuous leakage/steal with buffer storage, we have to

9 This unique value could be defined as the integer interval with minimum length satisfying some desired
property.
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keep investing more and more randomness. However, it is expensive to generate cryptographically
secure randomness. In our solution, we will exploit the fact that plaintext itself is naturally a
sort of random source to the view of adversary, saving the cost to generate true randomness. We
protect a small portion of the ciphertext using more secure hardware resource, so that this portion
of ciphertext actually acts as another “secret key”, which is derived from the plaintext and will
change naturally with plaintext, to the view of adversary.

2.3.2 Our Construction Our leakage setting provides much more freedom and power to ad-
versary, compared to existing works on leakage-resilient cryptography. Consequently, the two very
important classical tools, namely computational indistinguishability and (statistical or computa-
tional) randomness extractor, are hardly to be applied under our formulation. In this work, we have
to resort to information theory techniques.

Definition 1 (Blockwise Uniform Distribution) Let y = (y1,y2, · · · ,yn), where yi ∈ {0, 1}ρ
for each i ∈ [1, n]. We say y follows (ζ, ρ)-Blockwise-Uniform Distribution, if for any subset S =
{i1, i2, · · · , iζ} ⊂ [1, n] with |S| = ζ and i1 < i2 < i3 < · · · < iζ , we have the joint Shannon-entropy

HShannon(yi1 ,yi2 , · · · ,yiζ ) = ρζ. (1)

That is, any subset of ζ distinct blocks yi will have joint Shannon entropy equal to their total
bit-length (i.e. entropy rate equal to 1).

Remark 1. When ρ = 1 sand ζ = n, then (ζ, ρ)-Blockwise-Uniform Distribution is identical with
uniform distribution.

In this work, we will construct an invertible algorithm P using Vandermonde matrix, such that
its inverse algorithm P−1, satisfies this property:

Property 1 Let Ctx0 and Ctx1 be as in Figure 1, and assume the bit-length |Ctx1| = τ · |Ctx0| =
τρζ. If Ctx0 is independently and uniformly randomly distributed over {0, 1}ρζ , then the output
x = P−1(Ctx0, Ctx1) follows (ζ, ρ)-Blockwise-Uniform Distribution, regardless of value of Ctx1 (e.g.
this value could be fixed to any given bit-string from its domain).

Suppose somehow an attacker in Figure 1 is able to output ζ bits among xi’s, say xij , j ∈ [1, ζ].
Then these ζ bits xij ’s will reside in at most ζ distinct ρ-bit blocks in bit-string x. Since any subset
of ζ blocks of x will have Shannon entropy rate equal to 1 (i.e. entropy equal to the bit-length), the
collection of these ζ bits xij ’s will have exactly ζ bits Shannon entropy. Therefore, the adversary
has to steal at least ζ bits message via the covert channel, as desired.

3 Steal-Entropy: How many bits should be stolen to recover the secrete
information?

In this section, we propose the notion of “Steal-Entropy”. Unlike traditional entropy concepts (e.g.
Shannon-Entropy, Yao-Entropy 10, Hill-Entropy, etc) which are defined over random variable with a
certain distributions, “steal-entropy” will be defined over algorithms which convert input distribu-
tion to output distribution. Our notion of “steal-entropy” could be considered as a computational
version of Kolmogorov Complexity [4].

10 Shannon-Entropy is information-theoretical. Both Yao-Entropy and Hill-Entropy are computational vari-
ants.
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3.1 Background

Definition 2 (Yao-Entropy [28,6,18]) A distribution X has Yao-Entropy at least ξ, denoted
by HYao

ε,t (X ) ≥ ξ, if for every pair of algorithms c and d (called “compressor” and “decompressor”)

with running time at most t, and c(·) ∈ {0, 1}`,

Pr
x←X

[d(c(x)) = x] ≤ 2`−ξ + ε. (2)

Definition 3 (Hill-Entropy [17,6,18]) A distribution X has Hill-Entropy at least ξ, denoted
by HHill

ε,t (X ) ≥ ξ, if there exists a distribution Y such that Y has at least ξ bits min-entropy and
D(X ,Y) ≤ ε for any distinguisher program running D in time t.

Definition 4 (Kolmogorov Complexity [4]) Kolmogorov Complexity of a string is the length
of the shortest possible description of the string in some fixed universal description language (e.g.
a program, written in a well-defined programming language, which outputs this string).

3.2 Steal-Entropy of an Algorithm in Output

Definition 5 (Steal-Entropy of an Algorithm in Output) Let P : {0, 1}n → {0, 1}m be a
deterministic 11 single-input algorithm. Let ε ∈ [0, 14 ). Let A be a t-adversary associated with a pair
of algorithms (S, R), such that

• both the steal (or stealage) algorithm S and the recovery algorithm R are probabilistic algorithms
within time t, and

• for any non-negative integer `, the steal algorithm

SO(P(x))(`) ∈ {0, 1}≤` \ {EmptyString}

with oracle access to P, is allowed to observe all internal states during computation process of
algorithm P upon an input x, and outputs at most ` bits non-empty steal-message, and

• the recovery algorithm R takes as input the steal-message generated by S(`), and attempts to
guess the value P(x).

We make the following definitions.

• We define the advantage of A against P w.r.t. input x ∈ {0, 1}n as below (before any leakage
occurs, x is unknown to A)

AdvoutA(`),P(x) = Pr

[
R

(
SO
(
y←P(x)

)
(`)

)
= y

]
(3)

where the probability is taken over all random coins of algorithms S and R.
• We say the infimum of Steal-Entropy in Output of algorithm P is at least ξ, denoted as

inf Soutε,t (P) ≥ ξ, if for any t-adversary A, for any non-negative integer ` ≤ ξ,

Pr
x
R←{0,1}n

[
AdvoutA(`),P(x) ≤ 1

2ξ−`
+ ε

]
≥ 1− ε. (4)

11 When all random coins are treated as a part of input, any probabilistic algorithm will become determin-
istic.
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• We say the supremum of Steal-Entropy in Output of algorithm P is at most ξ, denoted
as supSoutε,t (P) ≤ ξ, if for some t-adversary A,

Pr
x
R←{0,1}n

[
AdvoutA(ξ),P(x) ≥ 1− ε

]
≥ 1− ε. (5)

• We say Soutε,t (P0) ≥ Soutε,t (P1) (or equivalently Soutε,t (P1) ≤ Soutε,t (P0)), if the following two equations
hold

inf Soutε,t (P0) ≥ inf Soutε,t (P1) (6)

supSoutε,t (P0) ≥ supSoutε,t (P1). (7)

• We say Soutε,t (P0) � Soutε,t (P1) (or equivalently, Soutε,t (P1) � Soutε,t (P0)), if the following equation
holds

inf Soutε,t (P0) ≥ supSoutε,t (P1). (8)

Proposition 1 Let P : {0, 1}n → {0, 1}m be a deterministic algorithm and ` ≤ m be a non-negative
integer. We have

• 0 ≤ inf Soutε,t (P) ≤ supSoutε,t (P) ≤ min{n,m}
• ∀0 < ε0 ≤ ε1, Soutε1,t(P) ≤ Soutε0,t(P)
• ∀0 < t0 ≤ t1, Soutε,t1(P) ≤ Soutε,t0(P)

Claim 1 Let P : {0, 1}n → {0, 1}n be an identity algorithm such that P(x) = x for each x ∈ {0, 1}n.
then

• when 0 ≤ ε < 2−(n−1), supSoutε,t (P) = n;

• when 2−(n−1) ≤ ε < 1
4 , supSoutε,t (P) = n− 1;

(Proof is given in Appendix B.1 on page 22)

3.2.1 Yao-Entropy and Hill-Entropy

Lemma 1 (Steal-Entropy implies Yao-Entropy) Let P : {0, 1}n → {0, 1}m be a deterministic
algorithm and ξ ≤ m be a non-negative integer. Let X be a uniform random variable over {0, 1}n.
If inf Soutε,t (P) ≥ ξ, then HYao

2ε,t(P(X )) ≥ ξ. (Proof is given in Appendix B.2 on page 22)

Lemma 2 (Separation between Yao-Entropy and Steal-Entropy) Let X be a uniform ran-
dom variable over {0, 1}n. For any polynomial poly(·), there exists a deterministic algorithm P :
{0, 1}n → {0, 1}m, such that

supSoutε,t (P) ≤ n; and HYao
ε,t (P(X )) ≥ poly(n). (9)

(Proof is given in Appendix B.3 on page 23)

Example 1 A common practice in cryptography application is that, given a long weak random
source (say, x), we apply randomness extractor with seed k to obtain a short almost-uniform random
key RE(k;x). Then, we apply pseudorandom function to expand this short high quality secret key
into a long pseudorandom string, which could be longer than x.

P (k;x) = PRFRE(k;x)(0)‖PRFRE(k;x)(1)‖ . . . ‖PRFRE(k;x)(`) (10)

The Steal-Entropy of this algorithm P will be at most equal to the length of RE(k;x), and much
shorter than both input and output sizes of P.

11



Lemma 3 (Separation between Hill-Entropy and Steal-Entropy) Let X be a uniform ran-
dom variable over {0, 1}n. For any positive valued polynomial poly(·), there exists a deterministic
algorithm P : {0, 1}n → {0, 1}m, such that

supSoutε,t (P) ≤ n; and HHill
ε,t (P(X )) ≥ poly(n). (11)

(Proof is given in Appendix B.4 on page 23)

3.2.2 Exposure Resilient Function and Computational All-or-Nothing Transform Canetti
el al. [8] proposed a concept called “Exposure Resilient Function” (ERF for short), and used it to
construct computational All-or-Nothing Transforms. Informally, a function f : {0, 1}n → {0, 1}k
is called a perfect (or statistical or computational) `-ERF, if all except ` bits of the input x of f
is exposed to the adversary, the output f(x) is still informationally (or statistically or computa-
tionally) random over {0, 1}k. Technically, an exposure resilient function can be considered as a
deterministic randomness extractor for bit-fixing random source [15]. We quote the Lemma 4.6 in
Canetti el al. [8] as below.

Lemma 4 (Lemma 4.6 in Canetti el al. [8]) Let n, `,m be any polynomially related quantities.
Let f be any statistical `-ERF (i.e. exposure resilient function) mapping {0, 1}n to {0, 1}k with
negligible statistical deviation ε, for some k polynomially related to m. Let G be a pseudorandom
generator stretching {0, 1}k to {0, 1}m. Then the function g(x) = G(f(x)) : {0, 1}n → {0, 1}m is a
computational `-ERF.

Intuitively, in the above lemma, the statistical exposure resilient function f extracts a short
high quality randomness f(x) ∈ {0, 1}k from a long but low quality random input x, and then
extends the length of output using a standard cryptographical pseudorandom generator, such that
the result function g will output longer pseudorandomness than the input length, even if all but `
bits of the input x is exposed.

Lemma 5 For any positive-valued polynomial poly(·) and any positive integer k , there exits a
polynomial time computable function P : {0, 1}n → {0, 1}m, such that

• P can be resilient to as large as poly(k) bits leakage under the formulation of exposure resilient
function, precisely, P is a computational `-ERF with ` = n− poly(k);

• P can be only resilient to as small as k bits leakage under the formulation of this paper, precisely,
the steal-entropy in output is supSoutε,t (P) ≤ k

(Proof is given in Appendix B.5 on page 23)

3.3 Steal-Entropy of an Algorithm in Input

Definition 6 (Steal-Entropy of an Algorithm in Input ) Let P : {0, 1}n → {0, 1}m be a de-
terministic 12 single-input algorithm. Let ε ∈ [0, 14 ). Let A be a t-adversary associated with a pair
of algorithms (S, R), such that

12 When all random coins are treated as a part of input, any probabilistic algorithm will become determin-
istic.
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• both the steal (or stealage) algorithm S and the recovery algorithm R are probabilistic algorithms
within time t, and
• for any non-negative integer `, the steal algorithm

SO(P(x))(`) ∈ {0, 1}≤` \ {EmptyString}

with oracle access to P, is allowed to observe all internal states during computation process of
algorithm P upon an input x and outputs at most ` bits steal-message, and
• the recovery algorithm R takes as input the value P(x) and the steal-message generated by S(`),

and attempts to guess the value x.

We make the following definitions.

• We define the advantage of A against P w.r.t. input x ∈ {0, 1}n as below

AdvinA(`),P(x) = Pr

[
R

(
SO
(
y←P(x)

)
(`), y

)
= x

]
(12)

where the probability is taken over all random coins of algorithms S and R.
• We say the infimum of Steal-Entropy in Input of algorithm P is at least ξ, denoted as

inf Sinε,t(P) ≥ ξ, if for any t-adversary A, for any non-negative integer ` ≤ ξ,

Pr
x
R←{0,1}n

[
AdvinA(`),P(x) ≤ 1

2ξ−`
+ ε

]
≥ 1− ε. (13)

• We say the supremum of Steal-Entropy in Input of algorithm P is at most ξ, denoted
as supSinε,t(P) ≤ ξ, if for some t-adversary A,

Pr
x
R←{0,1}n

[
AdvinA(ξ),P(x) ≥ 1− ε

]
≥ 1− ε. (14)

• We say Sinε,t(P0) ≥ Sinε,t(P1) (or equivalently Sinε,t(P1) ≤ Sinε,t(P0)), if the following two equations
hold

inf Sinε,t(P0) ≥ inf Sinε,t(P1); sup Sinε,t(P0) ≥ supSinε,t(P1). (15)

• We say Sinε,t(P0)� Sinε,t(P1) (or equivalently, Sinε,t(P1)� Sinε,t(P0)), if the following equation holds

inf Sinε,t(P0) ≥ supSinε,t(P1). (16)

Proposition 2 If P is an invertible algorithm, and the inverse algorithm P−1 has running time
≤ t, then inf Sinε,t(P) = supSinε,t(P) = 0.

When the encryption/decryption key is fixed, an encryption algorithm Enc is an invertible
algorithm from plaintext to ciphertext. Before any information leakage, an adversary may have
knowledge of the whole family {Enck}k←KGen(1λ) and do not know which one is picked from this
family of permutation algorithms. By stealing the key k, an adversary is able to recover plaintext
from ciphertext. This simple fact is summarized as below.

Proposition 3 For any PPT encryption scheme (KGen,Enc,Dec) and for any key k generated by
KGen, we have

supSinε,t
(
Enck

)
≤ |k|, where ε = 0, and t = poly(·). (17)
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3.4 Discussion

An interesting question is to evaluate the steal-entropy for classical hard problems: factorization
problem and discrete log problem, where thousands (say 2048) bits long key provides roughly 80 bits
security level. PFact(p, q) = p× q where both p and q are primes with equal bit-length. PLog(x) = gx

mod p where both g and p are public constants, p is a prime and g is a generator modulo p. Will
the steal-entropy of these algorithm be closer to their key size (i.e. thousands) or security level (i.e.
80)? We leave it as an open problem.

3.5 Strong Steal-Entropy in Input

Informally, after stealing ` bits arbitrary message, the adversary should be unable to output `+ δ
bits information about the secret value, and there will be no leakage amplification.

Definition 7 (Strong Steal-Entropy of an Algorithm in Input) Let P : {0, 1}n → {0, 1}m
be a deterministic 13 single-input algorithm. Let ε ∈ [0, 14 ). Let A be a t-adversary associated with
a pair of algorithms (S, R), such that

• both the steal (or stealage) algorithm S and the recovery algorithm R are probabilistic algorithms
within time t, and

• for any non-negative integer `, the steal algorithm

SO(P(x))(`) ∈ {0, 1}≤` \ {EmptyString}

with oracle access to P, is allowed to observe all internal states during computation process of
algorithm P upon an input x and outputs at most ` bits steal-message, and

• the recovery algorithm R takes 2 inputs: (1) the steal-message generated by S(`), and (2) the
value P(x), and outputs two values: (1) x̄ ∈ {0, 1}n, which is a guess of x, and (2) a subset of
indices Ix ⊂ [1, n].

We introduce the following definitions.

• For any adversary A with steal algorithm S and recovery algorithm R, let us define the set Gmsg

of good steal-message as below

GR
msg(`,∆, x, β)

def
=

Msg ∈ {0, 1}≤` :
(x̄, I)← R(Msg,P(x));
|I| ≥ `+∆;
∀i ∈ I,Pr[x̄[i] = x[i]] ≥ β

 (18)

where the probability is taken over the random coins of R.
• Similarly, let us define the set Gx of good input x as below

GS,R
x (`,∆, α, β)

def
=
{
x ∈ {0, 1}n : Pr[SO(P(x))(·) ∈ GR

msg(`,∆, x, β)] ≥ α
}

(19)

where the probability is taken over the random coins of S.

13 When all random coins are treated as a part of input, any probabilistic algorithm will become determin-
istic.
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• We say the supremum of Strong Steal-Entropy in Input of algorithm P is at most ξ,
denoted as supSsinε,t (P) ≤ ξ, if for some t-adversary A = (S,R),

Pr
x∈R{0,1}n

[x ∈ GS,R
x (ξ, ς(ξ, ε) + 1− `, 1− ε, 1− ε)] ≥ 1− ε (20)

where function ς(·, ·) is defined as below 14

ς(`, ε)
def
=

{
`, if 0 ≤ ε < 2−(`−1)

`+ 1, if 2−(`−1) ≤ ε < 1
4 .

(21)

• Let ε ≥ λ−c where c could be any positive integer. We say the infimum of Strong Steal-
Entropy in Input of algorithm P is at least ξ, denoted as inf Ssinε,t (P) ≥ ξ, if for any t-
adversary A = (S,R), for any ` with ς(`, ε) = `+ 1 < ξ,

Pr
x∈R{0,1}n

[x ∈ GS,R
x (`, ς(`, ε) + 1− `, 0.5 + ε, 0.5 + ε)] ≤ 0.5 + negl(λ), (22)

where λ is the security parameter, and negl(·) denotes some negligible function.

• We say Ssinε,t (P0) ≥ Ssinε,t (P1) (or equivalently Ssinε,t (P1) ≤ Ssinε,t (P0)), if the following two equations
hold

inf Ssinε,t (P0) ≥ inf Ssinε,t (P1) (23)

supSsinε,t (P0) ≥ supSsinε,t (P1). (24)

• We say Ssinε,t (P0) � Ssinε,t (P1) (or equivalently, Ssinε,t (P1) � Ssinε,t (P0)), if the following equation
holds

inf Ssinε,t (P0) ≥ supSsinε,t (P1). (25)

Lemma 6 (Amplification) If there exists some t-adversary A0 = (S0,R0), such that for any
positive integer c, and for any ε ≥ λ−c, we have

Pr
x∈R{0,1}n

[x ∈ GS0,R0
x (`, ς(`, ε) + 1− `, 0.5 + ε, 0.5 + ε)] ≥ µ (26)

then there exists some t ·Θ(1/ε)-adversary A1 = (S1,R1), such that

Pr
x∈R{0,1}n

[x ∈ GS1,R1
x (`, ς(`, ε) + 1− `, 1− negl(λ), 1− negl(λ))] ≥ µ (27)

where λ is the security parameter and negl(·) denotes some negligible function (The proof is given
in Appendix B.6 on page 24).

14 The reason behind the definition of ς(`, σ) (i.e. Equation 21) is in our proof of Claim 1. Informally
speaking, some steal algorithm S(`) is able to convey almost ` + 1 bits message to R algorithm. When
the error bound ε ≥ 2−(`−1), we do not care the difference between such “almost” `+ 1 bits message and
actual `+ 1 bits message.
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Definition 8 (Strong Steal-Entropy Rate in Input) Let P : {0, 1}n → {0, 1}m be a determin-
istic single-input algorithm. We define the infimum and supremum of steal-entropy rate of algorithm
P as

µ⊥
def
=

inf Ssinε,t (P)

n
; µ>

def
=

supSsinε,t (P)

n
(28)

Theorem 7 (Separation between Steal-Entropy and Strong Steal-Entropy) There exists
a constant c > 0, such that for any positive integer N , we can construct an algorithm P, such that
supSsinε,t (P) ≤ c and inf Sinε,t(P) ≥ N . (Proof is given in Appendix B.7)

3.5.1 All-or-Nothing Transform: Rivest’s Package Transform To be self-contained, we
quote the All-or-Nothing Transform, called “Package Transform”, proposed by Rivest [24] in Ap-
pendix A.1 on page 21.

Our approach is similar to All-or-Nothing Transform, in the sense that we also hide a small
portion of ciphertext. Without full knowledge of all ciphertext, it is hard to understand the plaintext.
However, an essential difference between our approach and All-or-Nothing Transform (e.g [24]) is
that our formulation allows leakage of any ≤ ` bits (possibly aggregated) message, and the value
of ` could be larger than secret key size. Under such strong leakage setting, the above Package
Transform method by Rivest [24] is simply vulnerable.

Lemma 8 Let PkgTr denote the Package Transform algorithm. Then

• supSsinε,t (PkgTr) ≤ |K ′|

• The strong steal-entropy rate in input of the Package Transform, defined as µ>
def
=

sup Ssinε,t(PkgTr)
n =

1/Θ(n) is approaching to zero, when the input size n approaching to infinity.

(Proof is given in Appendix B.8 on page 24)

4 Our Proposed Encryption Scheme

We will describe our proposed encryption scheme in two steps following a modular design.

4.1 Our Steal-Resilient Encryption Scheme

Definition 9 (Steal-Resilient Encryption) Let Φ = (KeyGen,Encrypt,Decrypt) be a length-
preserving encryption scheme. Let algorithm SuffixΦ be defined as below

SuffixΦ(k;x) = C1, where k := KeyGen(1λ)

and C0‖C1 := Encrypt(k;x) and |C1| = τ |C0|. (29)

Let n denote the length of plaintext. We say Φ is a δ(n)-steal-resilient encryption scheme with split-

factor τ , if the algorithm SuffixΦ has infimum of strong steal-entropy rate µ⊥ =
inf Ssinε,t(SuffixΦ)

n ≥
δ(n), where δ(n) ∈ [0, 1] with 1 meaning the best and 0 meaning the worst, t = O(poly(λ)), and
ε ≥ λ−c for some positive integer.
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We remark that, under our definition, most existing encryption schemes (including any existing
block cipher under any existing mode of operation, and All-or-Nothing Transform by Rivest [24],
and Leakage resilient encryption 15 [21,2,14,26,1,12,29]) are poorly δ(n)-steal resilient encryption
with δ(n) = 1/Θ(n) approaching to zero when n approaches to infinity.

We found that the linear transformation with Vandermonde matrix is a good steal-resilient
encryption scheme. Let ρ be some positive integer (e.g. 8 or 16 or 32) and GF (2ρ) be a finite field
with order 2ρ.

We construct an encryption scheme Φ0 = (KeyGen, Encrypt, Decrypt) as below.
Φ0.KeyGen(1λ)→M

1. Randomly choose a ζ · (1 + τ) by ζ · (1 + τ) Vandermonde matrix 16, and denote its transpose
matrix as M = (Mi,j)i,j∈[1,ζ·(1+τ)], where Mi,j = αij ∈ GF (2ρ) \ {0}. The inverse of matrix M

exists and is denoted as M−1.
2. Output M.

Φ0.Encrypt(M;x), where M is a ζ · (1 + τ) by ζ · (1 + τ) matrix and x ∈ GF (2ρ)ζ·(1+τ) is a row
vector of dimension ζ · (1 + τ) (equivalently, 1 by ζ · (1 + τ) matrix)

1. Compute product y := x×M−1 of two matrix x and M−1.
2. Treat y as a bit string with length (1+τ)ρζ bits, which is the concatenation of ζ(1+τ) number

of ordered ρ-bits finite field elements.
3. Let y0 be the prefix of y with length equal to ρζ bits.
4. Let y1 be the suffix of y with length equal to τρζ bits.
5. Output (y0,y1).

Φ0.Decrypt(M;y0,y1)

1. Let y be the concatenation of y0 and y1.
2. Parse bit-string y as a row vector of dimension ζ(1 + τ) where each vector element is from
GF (2ρ).

3. Compute matrix product x := y ×M.
4. Output x.

We remark that, any linear transformation with an invertible matrix could constitute an information
dispersal algorithm [22], but is unlikely a steal-resilient encryption.

Our experiments show that the encryption or decryption can be done in 0.037 seconds when
dimension of M is 12800 and ρ = 16, τ = 31; and in 0.149 seconds when dimension is 25600 and
ρ = 16, τ = 63.

Theorem 9 Let x := y ×M be as stated in the above scheme. Then x follows (ζ, ρ)-Blockwise-
Uniform distribution, as defined in Definition 1 on page 9. More precisely, parse x as a sequence of
elements (x1, x2, · · · , xi, · · · , xζ(1+τ)) with each element xi ∈ GF (2ρ). If the last τ · ζ elements of y

15 We remark that some of these cited leakage resilient cryptography works actually propose leakage re-
silient pseudorandom generator/functions, instead of an encryption scheme. These pseudorandom genera-
tor/functions can be converted into encryption scheme using classical methods. These resulting encryption
schemes will be a poor steal-resilient encryption.

16 The matrix row/column index starts with either zero or one, makes no essential difference to the property
of Vandermonde matrix.
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is given and fixed, and the first ζ elements of y uniformly distributes over {0, 1}ρζ , then any tuple of
ζ elements (· · · , xij , · · · )j∈[1,ζ], with distinct indices ij’s, will have exactly ρ·ζ bits Shannon-Entropy
(i.e. the Shannon-Entropy rate is 1).

Proof. Since x := y ×M, we have

xi = 〈y, M i〉 ∈ GF (2ρ),∀i ∈ [1, (1 + τ)ζ] (30)(
· · ·xij · · ·

)
j∈[1,ζ] = y ×

(
· · ·M ij · · ·

)
j∈[1,ζ] (31)

where M i denotes the column vector of the i-th column of matrix M. Furthermore, we can derive(
· · ·xij · · ·

)
j∈[1,ζ] =

Prefix(y, ζ)×
(
· · ·Prefix

(
M ij , ζ

)
· · ·
)
j∈[1,ζ] + z, (32)

where Prefix(y, ζ) (respectively,Prefix(M ij , ζ) ) denotes the vector of the first ζ elements from
y (respectively, M ij ), and z is some constant vector. Since M is the transpose of Vandermonde
matrix, the resulting matrix

(
· · ·Prefix

(
M ij , ζ

)
· · ·
)
j∈[1,ζ] will also be the transpose of another

Vandermonde matrix. Note that Prefix(y, ζ) is uniformly distributed over {0, 1}ρζ , due to property
of Vandermonde matrix, it is straightforward that the left hand side

(
· · ·xij · · ·

)
j∈[1,ζ] of Equation 32

is uniformly distributed over {0, 1}ρζ , as desired.

Corollary 10 The proposed scheme Φ0 is a δ(n)-steal-resilient encryption, with δ(n) = 1
ρ(τ+1)

independent on n, and inf Ssinε,t (SuffixΦ0
) ≥ ζ. (Proof is given in Appendix B.9 on page 25)

We observe that, in the proof of Theorem 9, we only require the first ζ rows of matrix M satisfy
the special Vandermonde matrix property. Therefore, we could simply tweak the rest rows of matrix
M, in order to speed up the decryption performance.

Corollary 11 In algorithm Φ0.KeyGen, change the last τζ rows of matrix M to a sparse matrix,
such that M is still invertible. Then the resulting variant version of Φ0 is still δ(n)-steal-resilient
encryption, with δ(n) = 1

ρ(τ+1) .

4.2 Combine Steal-Resilient Encryption and Semantic Secure Encryption

We wish to combine both of the advantage of Steal-Resilient Encryption in leakage setting, and
the advantage of semantic secure encryption in standard adaptive chosen message/plaintext attack
setting.

Let Φ0 be the steal-resilient encryption scheme defined above. Let Φ1 be a given semantic-
secure encryption scheme (precisely, CTR mode of a semantic secure block cipher). Eventually, our
encryption scheme Φ2 is defined as below

• Φ2.KeyGen(1λ)← (k, k0, k1):
1. Compute key M← Φ0.KeyGen(1λ).
2. Compute key k ← Φ1.KeyGen(1λ).
3. Output (k,M).
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• Φ2.Encrypt(k,M; Msg)→ (C0, C1)
1. Encrypt plaintext Msg using semantic secure encryption to obtain ciphertext Ctx← Φ1.Encrypt(k; Msg).
2. Split the ciphertext Ctx into two shares using steal-resilient encryption (C0, C1)← Φ0.Encrypt(M; Ctx).
3. Output (C0, C1).

• Φ2.Dec(k,M;C0, C1)
1. Merge the two shares C0 and C1 as ciphertext Ctx← Φ0.Decrypt(M;C0, C1).
2. Decrypt Ctx as Msg← Φ1.Decrypt(k; Ctx).
3. Output Msg.

We remark that, in our proposed scheme, for large input size, Φ1 can run in CTR mode and Φ0 can
run over every ρζ(1 + τ)-bit segment in ciphertext of Φ1 independently.

Theorem 12 Let Φ2 be the proposed encryption scheme by combining a steal-resilient encryption
Φ0 and a semantic secure encryption Φ1. Then Φ2 is semantic-secure in standard model, and is δ(n)-
steal-resilient encryption with split-factor τ in our leakage-model, where 1/δ(n) = ρ(τ + 1) +O(1).

Proof (Sketch Proof). The semantic security of Φ2 is simply implied by the semantic security of Φ1,
we omit the details. Since the result of blockwise uniform distribution XOR another independent
distribution (i.e. the pseudorandom bit-sequence generated using the CTR mode of block cipher
Φ1) is still blockwise uniform distribution, Φ0 is δ(n)-steal-resilient encryption implies that Φ2 is
δ(n)-steal-resilient encryption, too.

5 Related Works

Symmetric encryption scheme (e.g. AES, Blowfish 17, and Triple DES 18.) could be the most widely
adopted cryptographic primitive to protect data confidentiality, especially for large volume of data.
AES [9] is a typical example of symmetric encryption scheme, and has been actively adopted in
industry and research area due to its security and efficiency for more than one decade.

In additional to encryption techniques, another well-known cryptographic primitive that can be
used to protect data confidentiality is “secret-sharing” scheme invented by Shamir [25]. Compared to
encryption scheme (e.g. AES [9]) which can only achieve conditional security, secret-sharing scheme
may achieve unconditional security (also known as information-theoretic security), assuming the
adversary cannot collect sufficient number of shares.

Despite its strong security, Shamir’s secret sharing scheme has significant drawbacks when pro-
tecting data confidentiality: (1) for (t, n)-secret sharing scheme, the storage overhead is as large as
(n− 1) times of size of the secret (i.e. the plaintext to be protected); (2) the reconstruction [20] (or
decoding) process is not as efficient as DES or AES.

Rabin [23] proposed “information dispersal algorithm” with zero storage overhead, such that
the sum of sizes of all shares is equal to the size of secret message size. His solution is conceptually
simple: Let row vector m = (m0,m1, . . . ,mn) be the secret message. Choose an invertible n by
n matrix T with inverse matrix T−1. By multiplying row vector m with matrix T, we obtain
the n shares c = (c0, c1, . . . , cn−1) = m × T. Accordingly, the original secret message m can be

17 https://www.schneier.com/academic/blowfish/
18 http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
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recovered by matrix multiplication m = c × T−1. Othman and Mokdad [7] proposed to protect
communication confidentiality by sending each share of message in distinct network path from the
same sender to the same receiver.

Alternatively, Krawczyk [19] attempted to make each share shortened, by dividing ciphertext
of the long secret message into n pieces, and then apply Shamir’s secret sharing scheme over the
encryption key. Thus, the storage overhead is linear in short encryption key size and is a fraction
of secret message size.

6 Conclusion

In this work, we proposed a new and strong leakage setting, a novel notion of computational
entropy, and a construction to achieve higher security against strong leakage. We separated our new
notion from several relevant existing concepts, including Yao-Entropy, Hill-Entropy, All-or-Nothing
Transform, Exposure Resilient Function. Unlike most of previous leakage resilient cryptography
works which focused on defeating side-channel attacks, we opened a new direction to study how to
defend against backdoor (or trogan horse) and covert channel attacks.
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A Background

A.1 All-or-Nothing Transform: Rivest’s Package Transform

To be self-contained, we quote the All-or-Nothing Transform, called “Package Transform”, proposed
by Rivest [24] as below.

1. Let the input message be m1,m2, . . . ,ms.
2. Choose at random a key K ′ for the package transform block cipher E(·, ·).
3. Compute the output message m′1,m

′
2, . . . ,m

′
s+1 as below

• m′i = mi ⊕ E(K ′, i) for i = 1, 2, . . . , s;
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• m′s+1 = K ′ ⊕ h1 ⊕ h2 . . .⊕ hs where hi = E(K0,m
′
i ⊕ i) for i = 1, 2, . . . , s.

Informally, in the above All-or-Nothing Transform method, if a receiver with key K0 obtains all
but a few ciphertext blocks mi’s, then the receiver will not be able to recover the random nonce
key K ′ and thus can not decrypt any ciphertext block, i.e. know nothing about the plaintext.

B Our Proofs

B.1 Proof of Claim 1

Proof (Proof of Claim 1). For any non-negative integer `, a steal algorithm S(`) can output any
message in the set {0, 1}≤` \ {EmptyString}, i.e. non-empty bit-string with length at most `. The
size of this set is

∑̀
i=1

2i = 2`+1 − 2. (33)

Let X be a uniform random variable over {0, 1}n. Let a steal algorithm S(n− 1) output 2n − 2
distinct messages, such that each message can encode a unique value of P(X ), with two possible
values (denoted as x0 and x1) of P(X ) ignored. For any x ∈ {0, 1}n \ {x0, x1}, we have

AdvoutA(n−1),P(x) = Pr

[
R

(
SO
(
y←P(x)

)
(n− 1)

)
= y

]
= 1. (34)

Therefore,

Pr
x
R←{0,1}n

[
AdvoutA(n−1),P(x) = 1

]
= 1− 2

2n
. (35)

Therefore, Claim 1 is proved by combining the above equation and the definition of steal-entropy
in Eq (5).

B.2 Proof of Lemma 1

Proof (Proof of Lemma 1). Let c be any t-time compressor algorithm with output length ` ≤ ξ
and d be any t-time decompressor algorithm d. We construct a t-adversary A∗ with steal algorithm
S and recovery algorithm R such that: (1) S invokes the compressor algorithm c to compress the
output of P(x) into ` bits message. From this ` bits message, R invokes the decompressor algorithm
d to recover the value x. For adversary A∗, for every `, we define a subset G` ⊂ {0, 1}n as

G`
def
=

{
x ∈ {0, 1}n : AdvoutA∗(`),P(x) ≤ 1

2ξ−`
+ ε

}
(36)

From inf Soutε,t (P) ≥ ξ, we get Prx←X [x ∈ G`] ≥ 1− ε.
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We can calculate the success probability of the compressor and decompressor as below:

Pr
y←P(X )

[d(c(y)) = y]

= Pr
x←X

[d(c(P(x))) = P(x)]

= Pr
x←X

[
R

(
SO
(
y←P(x)

)
(`)

)
= y

]
= Pr
x←X

[
AdvoutA∗(`),P(x)

]
= Pr
x←X

[
AdvoutA∗(`),P(x)

∣∣∣ x ∈ G`

]
× Pr
x←X

[x ∈ G`] +

Pr
x←X

[
AdvoutA∗(`),P(x)

∣∣∣ x 6∈ G`

]
× Pr
x←X

[x 6∈ G`] (37)

≤
(

1

2ξ−`
+ ε

)
× Pr
x←X

[x ∈ G`] + 1× Pr
x←X

[x 6∈ G`] (38)

≤
(

1

2ξ−`
+ ε

)
× 1 + 1× Pr

x←X
[x 6∈ G`] (39)

≤
(

1

2ξ−`
+ ε

)
+ ε (40)

B.3 Proof of Lemma 2

Proof (Sketch Proof of Lemma 2). Let algorithm P be a cryptographically secure pseudorandom
number generator, with output length m = poly(n). If a pair of efficient algorithms c(·), d(·) can
compress and uncompress the output of P(X ), then these two algorithms c(·) and d(·) constitute
an efficient distinguisher which can distinguish output of P(X ) from true randomness, conflicting
with assumption that P is cryptographically secure pseudo random number generator.

B.4 Proof of Lemma 3

Proof (Sketch Proof of Lemma 3). Let algorithm P be a cryptographically secure pseudorandom
number generator, with output length m = poly(n). This lemma can be easily proved by evaluating
the steal-entropy of algorithm P and Hill-Entropy of variable P(X ).

B.5 Proof of Lemma 5

Proof (Proof of Lemma 5). Let the algorithm P be an instance of exposure resilient function g(x) =
G(f(x)) as in Lemma 4.6 in Canetti el al. [8], which is quoted as Lemma 4 in this paper, such
that the parameters satisfy this condition: n = ` + poly(k). Clearly, the constructed function P is
a computational `-ERF. On the other hand, under our formulation, the attacker may simply steal
k bits value y = f(x) via backdoor and covert channel, and then compute and output all of m bits
output P(x) = g(x) = G(y). Thus, the steal-entropy of in output supSoutε,t (g) ≤ k.
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B.6 Proof of Lemma 6

Proof (Proof of Lemma 6). Construction of R1. We construct R1 by repeatedly invoking R0

in this way: Given input Msg and y = P(x), recovery algorithm R1 makes N number of independent
invocation on randomized algorithm R0(Msg, y) using independent random seeds, and obtains N
outputs , denoted as (x̄(j), I(j)), where j ∈ [1, N ]. For each bit position i ∈ [1, n], count how many
sets I(j), j ∈ [1, N ], contains element i and denote this count value as weight wi := |{I(j) : i ∈ I(j)}|.
Let I be the set of (`+∆) bit positions i’s from [1, n] with top (`+∆) largest weight wi. For each
i ∈ I, make a majority vote on set {x̄(j)[i] : i ∈ I(j)} of bit values, and denote the resulting bit as
x̄[i]. For each i 6∈ I, randomly choose a bit and denoted it as x̄[i]. R1 will output (x̄ = x̄[1]..x̄[n], I).

Claim 2 Let N = Θ(1/ε). If Msg ∈ GR0
msg(`,∆, x, 0.5 + ε), then Msg ∈ GR1

msg(`,∆, x, 1− negl(λ)). In

other words, GR0
msg(`,∆, x, 0.5 + ε) = GR1

msg(`,∆, x, 1− negl(λ))

Claim 2 could be proved easily using Hoeffdings Inequality and our definition of Gmsg.
Construction of S1. Make N ′ number of independent invocation of randomized algorithm
SO(P(x)) and obtains output Msgj , j ∈ [1, N ′]. Loop from j = 1 upto N ′, invoke algorithm

R1(Msgj ,P(x)) to obtain output (x̂(j), I(j)). Check if the following two conditions hold: (1) the

size of set I(j) is at least ` + ∆; (2) for each i ∈ I(j), x̂(j)[i] = x[i]. If both of the above two con-
ditions hold, then abort the loop and output Msgj . Otherwise, for any j, at least one of the above
condition does not hold, then fail.

Claim 3 Let N ′ = Θ(1/ε). GS0,R0
x (`,∆, 0.5 + ε, 0.5 + ε) = GS0,R1

x (`,∆, 0.5 + ε, 1− negl(λ)).

Claim 3 can be easily proved using the result of Claim 2 and the definition of Gx: More precisely,
just replace set GR0

msg(`,∆, x, 0.5 + ε) with GR1
msg(`,∆, x, 1− negl(λ)) in Equation 19.

Claim 4 Let N ′ = Θ(1/ε). GS0,R1
x (`,∆, 0.5+ε, 1−negl(λ)) = GS1,R1

x (`,∆, 1−negl(λ), 1−negl(λ)).

Claim 2 could be proved easily using Hoeffdings Inequality and our definition of Gmsg.

B.7 Proof of Theorem 7

Proof (Sketch Proof of Theorem 7). Let Enc be any semantic-secure bock cipher with block length
equal to 128, and Cipher Block Chaining (CBC) mode is chosen to encryption multi-blocks long
message. Let P(x) be the suffix of ciphertext Enck(LongMsg), by removing the first 128 bits from
Enck(LongMsg). It is easy to prove the above theorem by analyzing the Steal-Entropy and Strong
Steal-Entropy of algorithm P.

B.8 Proof of Lemma 8

Proof (Proof of Lemma 8). An adversary could obtain (e.g. via eavesdropping) almost all ciphertext
blocks mi’s with i ∈ S ⊂ [1, s+ 1] and the size of set S is close to s+ 1, e.g. |S| = s− 10 (assuming
total bit-length of 11 ciphertext blocks is much larger than bit length of key K ′ ). The adversary
could choose to steal the short secret key K ′ via backdoor algorithm S and the covert channel, and
decrypt all ciphertext block mi’s with i ∈ S using the key K’, although with 11 ciphertext blocks
missing. Therefore, by stealing a short key K ′, the adversary is about to obtain all most all message
blocks mi with i ∈ S except 10 or 11 missing message blocks. By definition of strong-steal entropy
(respectively, rate) in input, the above adversary is a witness that Lemma 8 holds.
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B.9 Proof of Corollary 10

Proof (Proof of Corollary 10). This Corollary can be proved by evaluating the infimum of strong
steal-entropy of Φ0 in input using Theorem 9. Note that inf Ssinε,t (SuffixΦ0

) ≥ ζ trivially implies that

Φ0 is a δ(n)-steal-resilient encryption, with δ(n) = 1
ρτ by Definition 9 and the equality n = ρζ(1+τ).

Next we will prove inf Ssinε,t (SuffixΦ0
) ≥ ζ using proof by contradiction. Our hypothesis is that:

inf Ssinε,t (SuffixΦ0
) ≥ ζ does not hold. By Definition 7 (more precisely, Equation (22)), there exists

a t-adversary A = (S,R), such that

∀ε ≥ λ−c, Pr
x∈R{0,1}n

[x ∈ GS,R
x (`, ς(`, ε) + 1− `, 0.5 + ε, 0.5 + ε)] ≥ 0.5 + 1/poly(λ) (41)

According to Lemma 6, there exists another t ·Θ(1/ε)-adversary A′ = (S′,R′) such that

Pr
x∈R{0,1}n

[x ∈ GS′,R′

x (`, ς(`, ε) + 1− `, 1− negl(λ), 1− negl(λ))] ≥ 0.5 + 1/poly(λ) (42)

For any x ∈ GS′,R′

x (`,∆, α, β), let (x̄, I) denotes the output of recovery algorithm R(Msg,P(x)),
we have

∀i ∈ I,Pr[x̄[i] = x[i]] = Pr
[
x̄[i] = x[i] | Msg ∈ GR

msg(`,∆, x, β)
]
× Pr

[
Msg ∈ GR

msg(`,∆, x, β)
]

≥ α · β = (1− negl(λ))× (1− negl(λ)) ≥ 1− 2× negl(λ). (43)

This means that, the polynomial time adversary A′ = (S′,R′) could steals at most ` ≤ ζ − 2 bits of
message and output ` + 2 ≤ ζ bits of information of x (i.e. x[i] for i ∈ I) with overwhelming high
probability 1− 2× negl(λ), with at least 0.5 + 1/poly(λ) fraction of input x in the domain {0, 1}n.

According to Theorem 9, and our argument after Property 1 on page 9, any ζ distinct bits x[j]
together will have ζ bits joint-Shannon entropy.

So any `+ 2 bits of x[i]’s for at least 0.5 + 1/poly(λ) fraction of input x in the domain {0, 1}n,
will have joint-Shannon entropy at least

So collection of x[i]’s in the output of R′ will have joint Shannon-entropy at least

log
(
2`+2 × (1− 2× negl(λ))×

(
0.5 + 1/poly(λ)

))
≥ `+ 1. (44)

However S′(`) could only encode
∑`
i=1 2i = 2`+1−2 distinct messages, it is a contradiction and the

hypothesis does not hold.
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