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Abstract

We provide generic and black box transformations from any chosen plaintext secure Attribute-Based
Encryption (ABE) or One-sided Predicate Encryption system into a chosen ciphertext secure system.
Our transformation requires only the IND-CPA security of the original ABE scheme coupled with a
pseudorandom generator (PRG) with a special security property.

In particular, we consider a PRG with an n bit input s ∈ {0, 1}n and n · ` bit output y1, . . . , yn
where each yi is an ` bit string. Then for a randomly chosen s the following two distributions should
be computationally indistinguishable. In the first distribution ri,si = yi and ri,s̄i is chosen randomly for
i ∈ [n]. In the second distribution all ri,b are chosen randomly for i ∈ [n], b ∈ {0, 1}.

1 Introduction

In Attribute-Based Encryption [SW05] (ABE) every ciphertext CT that encrypts a message m is associated
with an attribute string x, while each secret, as issued by an authority, will be associated with a predicate
function C. A user with a secret key sk that is associated with function C will be able to decrypt a ciphertext
associated with x and recover the message if and only if C(x) = 1. Additionally, security of ABE systems
guarantees that an attacker with access to several keys cannot learn the contents of an encrypted message
so long as none of them are so authorized.

Since the introduction of Attribute-Based Encryption and early constructions [GPSW06] over a decade
ago, there have been many advances in the field ranging from supporting expressive functionality [GVW13,
BGG+14], to techniques for adaptive security[Wat09, LOS+10, OT10, LW12, Att14, Wee14, CGW15], short
sized ciphertexts[ALdP11], multi-authority [Cha07, CC09, LW11] and partially hiding attributes [GVW15,
GKW17, WZ17] to name just a few. In almost all of these cases and in most other papers, the treatment
of ABE focused on the chosen plaintext (IND-CPA) definition of ABE. This is despite the fact that chosen
ciphertext security [NY90, RS91, DDN91] — where the attacker can make oracle decryption queries to keys
it does not have — is arguably the right definition of security for the same reasons it is the right definition
for standard public key cryptography[Sho98]. Likely, most of these works target IND-CPA security since the
authors already have their hands full with putting forth new concepts and techniques in manuscripts that
often run for many pages. In these circumstances it seems reasonable for such works to initially target chosen
plaintext definitions and then for later works to circle back and build toward chosen ciphertext security.

Unfortunately, closing the loop to chosen ciphertext security can be tricky in practice. First, there
are a rather large and growing number of ABE constructions. Writing papers to address moving each of
these to chosen ciphertext security seems burdensome to authors and program committees alike. One line
of work [GPSW06, YAHK11] to mediate this problem is to identify features in ABE constructions, which
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if present mean that CPA security implies chosen ciphertext security. Yamada et. al [YAHK11] showed
that certain delegability or verifiability properties in ABE systems imply chosen ciphertext security by the
Canetti-Halevi-Katz[CHK04] transformation.

Their generality, however, is limited by the need to manually inspect and prove that each construction has
such a property. In fact, many schemes might not have these properties. Recent trends for both functionality
and proofs techniques might actually work against these properties. For example, an ABE scheme has the
verification property roughly if it is possible to inspect a ciphertext and determine if it is well formed and
what keys can decrypt it. This property emerged naturally in many of the pairing-based schemes prominent
at the time, but is less obvious to prove in LWE-based constructions and actually can runs contrary to the
predicate encryption goal of hiding an attribute string x from users that cannot decrypt. See for example
the one-sided predicate encryption constructions of [GVW15, GKW17, WZ17].

If we desire a truly generic transformation to chosen ciphertext security, then there are essentially two
pathways available. The first option is to apply some variant of the Fujisaki-Okamoto [FO99] transformation
(first given for transforming from IND-CPA to IND-CCA security in public key encryption). Roughly, the
encryption algorithm will encrypt as its message the true message m appended with a random bitstring r
using the random coins H(r) where H is a hash function modeled as a random oracle. The CCA-secure
decryption algorithm will apply the original decryption algorithm to a ciphertext CT and recover m′|r′. Next,
it re-encrypts the ciphertext under H(r′) to get a ciphertext CT′ and outputs the message if CT = CT′;
otherwise it rejects. The upside of this approach is that the added overhead is fairly low as it just adds one
additional call to encryption as part of the decryption routine. On the downside the security analysis of this
technique appears intrinsically tied to the random oracle model [BR93].

The second option is to augment encryption by appending a non-interactive zero knowledge proof [BFM88]
that a ciphertext was well formed. This approach has been well studied and explored in the context of stan-
dard public key encryption [NY90] and should translate to the ABE context. Additionally, there are standard
model NIZK proof assumptions under factoring and pairing-based assumptions. The first drawback is that
applying any generic gate by gate NIZK to an encryption system will be quite expensive in terms of compu-
tational overhead— this will be needed for any generic conversion. Second, despite considerable interest from
the community, there are no known NIZK proof systems from the Learning with Errors assumption. Thus,
adding on a NIZK would go against the grain of any efforts to build ABE solely from LWE or lattice-based
assumptions.

Our Contribution We provide a black box transformation for chosen ciphertext security of any ABE or
one-sided predicate encryption system.1

Our transformation requires only the existence of a IND-CPA secure ABE system as well as a pseudo-
random generator (PRG) with a special security property which we call the hinting property. This special
security property can either be assumed for an “ordinary” (e.g., AES-based) PRG or provably obtained
from either the Computational Diffie-Hellman assumption or the Learning with Errors assumption. Our
transformation increases ciphertext size by roughly a factor of the security parameter — it requires 2 · n
sub-ciphertexts for a parameter n. Additionally, it requires about 2n additional encryptions of the original
system for both the new encryption and decryption routines. While this overhead is an increase over the
original CPA system and will likely incur more overhead than hand-tailored CCA systems, it is a significant
performance improvement over NIZKs that operate gate by gate over the original encryption circuit.

At a very high level we build a partial trapdoor where the decryption algorithm will recovers some of the
coins used for encryption. These are then used to partially re-encrypt the ciphertext and test for validity.
The encryption algorithm will begin by choosing a PRG seed s ∈ {0, 1}n that generates a random string
r1, . . . , rn where each ri ∈ {0, 1}`. For each i ∈ {0, 1}n the encryptor transmits the i-th bit of s by encrypting
a “signal” to indicate whether si equals 0 or 1. This signal is created at position (i, si) under randomness

1The original definition of predicate encryption [BW07, KSW08] required hiding whether an attribute string of a challenge
ciphertext was x0 or x1 from an attacker that had a key C where C(x0) = C(x1). A weaker form of predicate encryption is
where this guarantee is given only if C(x0) = C(x1) = 0, but not when C(x0) = C(x1) = 1. This weaker form has been called
predicate encryption with one-sided security and anonymous Attribute-Based Encryption. For this paper we will use the term
one-sided predicate encryption.
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ri, while an encryption of the all 0’s string is given at position (i, s̄i). The decryption algorithm will recover
s bit and then test whether the string is valid. Given a candidate string d it does this by computing
PRG(d) = r̃1, . . . , r̃n and uses these values to re-encrypt the appropriate ciphertext components and test
against the original. For each i only the position (i, di) will be checked with re-encryption.

Influenced by Garg and Hajiabadi[GH18], we will prove security not by removing the signals for each bit
position, but by adding misinformation that drowns out the original signal. Our original cryptosystem will
have the property that with very high probability for each index i it is only possible to transmit a signal that
si = 0 or that si = 1, but not both simultaneously. To achieve this, we use a standard (that is, non-special)
PRG. For setting a signal that si = 0, we encrypt a random string vi under the predicate encryption scheme,
and output PRG(vi); to set a signal that si = 1, we encrypt vi using a PKE scheme and output PRG(vi)
added to some additional components (derived from the public parameters).

Proof of Security : In our proof our security we will first change the parameters so that creating such
contradictory signals is possible, but only under a ciphertext signed by the signature verification key ss.vk∗ of
the challenge ciphertext. For example, if our original challenge ciphertext signals that bit si = 0 at position
(i, 0) our proof will also add an additional signal that si = 1 at position (i, 1).

When this is done for all indices, all information about s will be lost from the message space and we are
almost done; however, one loose end remains. Each ciphertext at position (i, si) will be encrypted under
randomness ri which came from running the pseudorandom generator on s; whereas each ciphertext at
position (i, s̄i) will be encrypted under fresh random coins. To complete the proof we need a computational
assumption that will allow us to change all the encryption coins to being chosen freshly at random. We
need our PRG to have the property that these two different distributions of coins are indistinguishable.
One possibility is that we could simply assume this property of a particular pseudo random generator.
Indeed, this seems rather plausible that ordinary types of PRGs would have it. Alternately, we show
how to construct PRGs that provably have this property under either the Computational Diffie-Hellman
assumption or the LWE assumption. Our constructions of these PRGs use techniques that closely follow
previous works [DG17a, DG17b, BLSV18, DGHM18, GH18] for a related group of primitives going under
a variety of names: Chameleon Encryption, One-Time Signature with Encryption, Batch Encryption, One
Way Function with Encryption. We note that while the technical innards for the CDH and LWE realizations
of our PRG are similar to the above works, (unlike the above examples) our definition itself does not attach
on any new functionality requirements to PRG; it simply demands a stronger security property.

We conclude by remarking that while this work focuses on Attribute-Based Encryption and One-sided
Predicate Encryption, we believe our transformation could apply to other specialized forms of encryption.
For example, we believe it should immediately translate to any secure broadcast encryption [FN94] system.
As another example, we believe our technique should also apply to ABE systems that are IND-CPA secure
under a bounded number of key generation queries. Our technique, however, does not appear to apply to
standard predicate encryption as defined in [BW07, KSW08] (notions very similar to full blown functional
encryption). The core issue is that to test the validity of a ciphertext our decryption algorithm needs to
obtain the attribute string x to perform re-encryption. In one-sided predicate encryption, if a user has a
secret key for C and C(x) = 1 we essentially give up on hiding x and allow this to be recovered; whereas for
full hiding we might want to still hide information about x even if C(x) = 1.

Finally, we note that even if we cast the notions of ABE aside our work might provide another path
to exploring the longstanding open problem of achieving chosen ciphertext security from chosen plaintext
security. The primary barrier is in how to achieve a PRG with this hinting security.

1.1 Additional Comparisons

It is instructive to take a closer look at how our work relates to and builds upon the trapdoor function
construction of Garg and Hajiabadi[GH18]. Briefly and in our terminology, Garg and Hajiabadi gave a
framework where the evaluation algorithm chooses an input s ∈ {0, 1}n and use this to first produces a value
y that produces part of the output. Next, for each position (i, si) the evaluation algorithm produces a signal
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using s and the public parameters of the TDF using a primitive called “one way function with encryption”.
At the opposite position (i, s̄i) the evaluation algorithm outputs a random string ri of sufficient length. With
very high probability the random string zi will not correspond to the valid signal for y at position (i, s̄i).
The inversion algorithm will use knowledge of the TDF secret key plus y to go recover the input s bit by
bit. At each position i if a signal is present at (i, 0) it records si = 0 and sets si = 1 if the signal is at (i, 1).
If the signal is at both 0 and 1, then recovery fails. One can observe that for almost all choices of public
parameters there exist some valid inputs that will cause failure on inversion. To prove security the reduction
algorithm at each position change the string zi from random to a signal under y. The security properties of
the one way function with encryption make this undetectable. Once, this is done the only information about
s will be contained in y. Since many choices of s will map to y, inverting to the chosen s at this point will
be statistically infeasible.

Our work as described above follows a similar approach in that a seed s is signaled bit by bit. And
that a step of proving security is to add misinformation in by adding a counter signal in at positions (i, s̄i).
An important distinction is that in the work of Garg and Hajiabadi the signaling and inversion process is
very tightly coupled in the one way function with encryption primitive. One could imagine trying to build
an Attribute-Based version of one way function with encryption and then try to yield a CCA encryption
from the resulting trapdoor. This runs into two problems. First, it would require a tailored construction
for each type of ABE scheme that we want and then we are back to hacking CCA into each type of ABE
variant. Second, since the GH scheme allows for ambiguous inputs, it can be difficult for mapping into
chosen ciphertext secure schemes. In particular, this issue caused GH to need an adaptive version of one way
function with encryption to bridge from TDFs to CCA security and this adaptive version was not realizable
from the CDH assumption.

In our work the signaling strategy is decoupled from the recovery of the signals. In particular, the
form of the signals comes from our computation of the (non-hinting) PRG, while recovery is realized from
simply invoking the ABE decryption algorithm. We also get perfect correctness since a non-signal will be an
encryption of the all 0’s string. Also, with high probability our setup algorithm will choose parameters for
which it is (information theoretically) impossible to create ambiguous signals. So once the ABE parameters
are setup by an honest party (and with overwhelming probability, land in a good spot), there will be no
further opportunity to take advantage of conflicting signals by an attacker via a decryption query.

We also believe that it might be interesting to swing some of our techniques back to the trapdoor function
regime. For example, consider the GH TDF, but where we added values a1, . . . , an to the public parameters.
We could modify the evaluation algorithm such that at position i, the algorithm gives the one-way function
with encryption output ei if si = 0 and gives ei ⊕ ai if si = 1. This modification would allow us to drop the
additional zi values from the GH construction and make the output of the TDF shorter. In addition, while
there would still be a negligible correctness error, it could be possible to rest this error solely in the choice
of public parameters and for a “good” choice of parameters there would be no further error from evaluation.
This last claim would require making sure that the ai values were sufficiently long relative to y. We believe
the techniques from [RS10] can be used here to achieve CCA security.

We finally remark again that our realizations of our hinting PRG largely follow in line with recent
works [DG17a, DG17b, BLSV18, DGHM18, GH18]. In particular, our CDH realization follows closely to
[DG17a] and our LWE realization to [BLSV18, DGHM18]. It may have been possible to build our hinting
PRG from one of the previous abstractions, but we chose to provide direct number theoretic realizations.
We believe that one important distinction is that our hinting PRG is simply a PRG with stronger security
properties; unlike the above abstractions our definition in of itself does not ask for expanded functionality.
An intriguing open question is if this can be leveraged to obtain further instances with provable security.

1.2 Toward Bridging Chosen Ciphertext Security in PKE

One classical open problem in cryptography is whether chosen plaintext security implies chosen ciphertext
security in standard public key encryption. From a cursory glance one can see that it is easy to swap out the
ABE system from our construction for a plain old public key encryption system and the same proof will go
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through — this time for obtaining chosen ciphertext secure public key encryption. Thus the “only” barrier
for moving from IND-CPA to IND-CCA security is in the hinting PRG.

An interesting open question is just how strong this barrier is. From our viewpoint, the hinting security
is something that most natural PRGs would likely have. In trying to understand whether it or something
similar could be built from general assumptions (e.g. PKE or one way functions) it could be useful to first
try to build a separation from our hinting PRG and a standard one. Do there exist PRGs that do not meet
the security definition of hinting PRG?

As a first stab at the problem, one might consider PRGs where there is an initial trusted setup algorithm
that produces a set of public parameters, which are then used for every subsequent evaluation. In this setting
one could imagine a counterexample where the public parameters produced by the setup algorithm include
an obfuscated program which will assist in breaking the hinting security, but not be helpful enough to break
standard security. Using obfuscation in a similar manner has been useful for achieving other separation
results. If we consider PRGs that do not allow for such setup, the task appears to be more challenging. One
could try to embed such an obfuscated program in the first block of the PRG output, but this block would
need to still look random for standard PRG security.

However, as it turns out there is a much simpler way to achieve a separation. Consider the case where
` = 1 then the identity function on the seed will be a pseudorandom function for the trivial reason that it
does not expand. However, this function will not be hinting secure. To get a separation with expansion one
can build on this to consider a PRG where the seed is split into two parts; where in one part of the seed
has each of its bits given out in the clear exactly once. And where the rest of the bits of the output are
generated pseudorandomly from the rest of the seed.

Altogether we believe that our work opens up a new avenue for exploring the connection of chosen
plaintext and ciphertext security.

2 One-sided Predicate Encryption

A predicate encryption (PE) scheme PE , for set of attribute spaces X = {Xλ}λ∈N, predicate classes C =
{Cλ}λ∈N and message spacesM = {Mλ}λ∈N, consists of four polytime algorithms (Setup,Enc,KeyGen,Dec)
with the following syntax.

Setup(1λ) → (pp,msk). The setup algorithm takes as input the security parameter λ and a description of
attribute space Xλ, predicate class Cλ and message space Mλ, and outputs the public parameters pp
and the master secret key msk.

Enc(pp,m, x) → ct. The encryption algorithm takes as input public parameters pp, a message m ∈ Mλ

and an attribute x ∈ Xλ. It outputs a ciphertext ct.

KeyGen(msk, C)→ skC . The key generation algorithm takes as input master secret key msk and a predicate
C ∈ Cλ. It outputs a secret key skC .

Dec(skC , ct) → m or ⊥. The decryption algorithm takes as input a secret key skC and a ciphertext ct. It
outputs either a message m ∈Mλ or a special symbol ⊥.

Correctness. A key-policy predicate encryption scheme is said to be correct if for all λ ∈ N, (pp,msk)←
Setup(1λ), for all x ∈ Xλ, C ∈ Cλ, m ∈Mλ, skC ← KeyGen(msk, C), ct← Enc(pp,m, x), the following holds

Correctness for decryptable ciphertexts : C(x) = 1⇒ Pr [Dec(skC , ct) = m] = 1,

Correctness for non-decryptable ciphertexts : C(x) = 0⇒ Pr [Dec(skC , ct) = ⊥] ≥ 1− negl(λ), 2

where negl(·) are negligible functions, and the probabilities are taken over the random coins used during key
generation and encryption procedures.
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Recovery from Randomness Property. A key-policy predicate encryption scheme is said to have recov-
ery from randomness property if there is an additional algorithm Recover that takes as input public param-
eters pp, ciphertext ct, string r and outputs y ∈ (Mλ ×Xλ) ∪ {⊥} and satisfies the following condition: for
all λ ∈ N, (pp,msk)← Setup(1λ), for all x ∈ Xλ, m ∈ Mλ, ct = Enc(pp,m, x; r), Recover(pp, ct, r) = (m,x).
If there is no (m,x, r) tuple such that ct = Enc(pp,m, x; r), then Recover(pp, ct, r) =⊥.

Security. In this work, we will be considering predicate encryption systems with one-sided security. One
can consider both security against chosen plaintext attacks and chosen ciphertext attacks. First, we will
present one-sided security against chosen plaintext attacks.

Definition 2.1 (One-Sided Security against Chosen Plaintext Attacks). A predicate encryption scheme
PE = (Setup,Enc,KeyGen,Dec) is said to be one-sided secure against chosen plaintext attacks if for every
stateful PPT adversary A, there exists a negligible function negl(·), such that the following holds:∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :
(pp,msk)← Setup(1λ)

((m0, x0), (m1, x1))← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp,mb, xb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x0) = C(x1) = 0.

The notion of one-sided security against chosen plaintext attacks could alternatively be captured by a
simulation based definition [GVW15]. Goyal et al. [GKW17] showed that if a PE scheme satisfies Defini-
tion 2.1, then it also satisfies the simulation based definition of [GVW15].

Next, we present the definition for capturing chosen ciphertext attacks on predicate encryption schemes.
Here, we will assume that the key generation algorithm is deterministic.

Definition 2.2 (one-Sided Security against Chosen Ciphertext Attacks). A predicate encryption scheme
PE = (Setup,Enc,KeyGen,Dec) with deterministic key generation is said to be one-sided secure against
chosen ciphertext attacks if for every stateful PPT adversary A, there exists a negligible function negl(·),
such that the following quantity∣∣∣∣∣∣Pr

AKeyGen(msk,·),ODec(msk,·,·)(ct∗) = b :
(pp,msk)← Setup(1λ)

((m0, x0), (m1, x1))← AKeyGen(msk,·),ODec(msk,·,·)(pp)
b← {0, 1}; ct∗ ← Enc(pp,mb, xb)

− 1

2

∣∣∣∣∣∣
is at most negl(λ), where

• the oracleODec(msk, ·, ·) takes as input a ciphertext ct and a circuit C. It computes skC = KeyGen(msk, C)
and outputs Dec(skC , ct).

• every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x0) = C(x1) = 0.

• every post-challenge query (C, ct) made by the adversary A to ODec must satisfy the condition that
either ct 6= ct∗ or if ct = ct∗, then C(x0) = C(x1) = 0.

Remark 2.1. Note that the above definition addresses chosen ciphertext attacks against systems with
deterministic key generation. An analogous definition for general schemes (that is, with randomized key
generation) would involve maintaining key handles and allowing the adversary to choose the key to be used
for the decryption queries. We choose the simpler definition since any scheme’s key generation can be made
deterministic by using a pseudorandom function. In particular, the setup algorithm chooses a PRF key K
which is included as part of the master secret key. To derive a key for circuit C, the algorithm first computes
r = PRF(K,C) and then uses r as randomness for the randomized key generation algorithm.
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2.1 ABE schemes with ‘recovery from randomness’ property

Any ABE scheme satisfying one-sided CPA security can be transformed into another ABE scheme that is
also one-sided CPA secure, and has the ‘recovery from randomness’ property. The encryption algorithm
simply uses part of the randomness to compute a symmetric key encryption of the message and attribute,
with part of the randomness as the encryption key.

More formally, let E = (Setup,Enc,KeyGen,Dec) be an ABE scheme that satisfies one-sided CPA security
(see Definition 2.1), and let (SKE.Setup,SKE.Enc,SKE.Dec) be a symmetric key CPA secure encryption
schceme. consider the following scheme E′ = (Setup′,Enc′,KeyGen′,Dec′,Recover), where Setup′ = Setup
and KeyGen′ = KeyGen.

Enc′(pk,m, x): The encryption algorithm first samples three random strings r1, r2, r3. It computes ct1 =
Enc(pk,m, x; r1). Next, it computes ske.sk = SKE.Setup(1λ; r2). Finally, it computes ct2 = SKE.Enc(ske.sk,
(m,x); r3) and outputs (ct1, ct2).

Dec′(sk, (ct1, ct2)): The decryption algorithm simply decrypts ct1 using sk, and ignores ct2. It outputs
Dec(sk, ct1).

Recover((ct1, ct2), r = (r1, r2, r3)): The recovery algorithm first computes ske.sk = SKE.Setup(1λ; r2). It
outputs y ← SKE.Dec(ske.sk, ct2).

Assuming the symmetric key encryption scheme satisfies perfect correctness, this ABE scheme has perfect
recovery from randomness property. To argue CPA security, we can first use the security of the SKE scheme
to switch ct2 to an encryption of 0|m|+|x|. Then, we can use the one-sided CPA security.

3 Hinting PRGs

A hinting PRG scheme is a PRG with a stronger security guarantee than standard PRGs. A hinting PRG
takes n bits as input, and outputs n · ` output bits. In this security game, the challenger outputs 2n strings,
each of ` bits. In one scenario, all these 2n strings are uniformly random. In the other case, half the strings
are obtained from the PRG evaluation, and the remaining half are uniformly random. Moreover, these 2n
strings are output as a 2× n matrix, where in the ith column, the top entry is pseudorandom if the ith bit
of the seed is 0, else the bottom entry is pseudorandom. As a result, these 2n strings give a ‘hint’ about
the seed, and hence this property is stronger than regular PRGs. Note, if this hint is removed and the top
entries in each column were pseudorandom (and the rest uniformly random), then this can be achieved using
regular PRGs.

Below, we define this primitive formally. The informal description above had two simplifications. First,
the definition below considers PRGs with setup (although one can analogously define such a primitive without
setup). Second, we assume the PRG outputs (n+ 1) · ` bits, where the first ` bits do not contain any extra
hint about the seed. Finally, for our CCA application, we introduce some notation in order to represent the
n+ 1 blocks of the PRG output. Instead of describing the PRG as a function that outputs (n+ 1) · ` bits,
we have an evaluation algorithm that takes as input an index i ∈ {0, 1, . . . , n}, and outputs the ith block of
the PRG output.

Let n(·, ·) be a polynomial. A n-hinting PRG scheme consists of two PPT algorithms Setup,Eval with
the following syntax.

Setup(1λ, 1`): The setup algorithm takes as input the security parameter λ, and length parameter `, and
outputs public parameters pp and input length n = n(λ, `).

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the public parameters pp, an n
bit string s, an index i ∈ [n] ∪ {0} and outputs an ` bit string y.
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Definition 3.1. A hinting PRG scheme (Setup,Eval) is said to be secure if for any PPT adverasry A,
polynomial `(·) there exists a negligible function negl(·) such that for all λ ∈ N, the following holds:∣∣∣∣∣∣∣∣Pr

1← A

(
pp,

(
yβ0 ,
{
yβi,b

}
i∈[n],b∈{0,1}

))
:

(pp, n)← Setup(1λ, 1`(λ)), s← {0, 1}n,
β ← {0, 1}, y00 ← {0, 1}`, y10 = Eval(pp, s, 0),

y0i,b ← {0, 1}` ∀ i ∈ [n], b ∈ {0, 1},
y1i,si = Eval(pp, s, i), y1i,si ← {0, 1}

` ∀ i ∈ [n]

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(·)

4 Our Construction

Let PredE = (PredE.Setup, PredE.Enc, PredE.KeyGen, PredE.Dec) be a predicate encryption scheme with
randomness-decryptable ciphertexts and one-sided security against chosen plaintext attacks, PKE = (PKE.Setup,
PKE.Enc, PKE.Dec) an IND-CPA secure public key encryption scheme with randomness-decryptable ci-
phertexts, S = (ss.Setup, ss.Sign, ss.Verify) a strongly unforgeable one time signature scheme and HPRG =
(HPRG.Setup,HPRG.Eval) a hinting PRG scheme. We will assume both our encryption schemes have mes-
sage space {0, 1}λ+1. Let `PredE(·) be a polynomial repesenting the number of bits of randomness used by
PredE.Enc, `PKE(·) the number of random bits used by PKE.Enc, and `vk(·) the size of verification keys output
by ss.Setup. For simplicity of notation, we will assume `(·) = `PredE(·) = `PKE(·),3 `out(λ) = `vk(λ) + 3λ and
PRGλ : {0, 1}λ → {0, 1}`out(λ) a family of secure pseudorandom generators.

We will now describe our CCA-one-sided secure predicate encryption scheme PredECCA = (PredECCA.Setup,
PredECCA.Enc, PredECCA.KeyGen, PredECCA.Dec) with message space Mλ = {0, 1}`(λ). For simplicity of no-
tation, we will skip the dependence of ` and `out on λ.

PredECCA.Setup(1λ): The setup algorithm first chooses (HPRG.pp, 1n) ← HPRG.Setup(1λ, 1`). Next it
chooses n different PredE keys and PKE keys. Let (pred.mski, pred.pki)← PredE.Setup(1λ), (pke.ski, pke.pki)←
PKE.Setup(1λ) for each i ∈ [n]. It then chooses ai ← {0, 1}`out for each i ∈ [n] and B ← {0, 1}`out . It

sets pe.cca.pk =
(
HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
and pe.cca.msk = (pred.mski, pke.ski)i∈[n].

PredECCA.Enc(pe.cca.pk,m, x): Let pe.cca.pk =
(
HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
. The encryption

algorithm first chooses s ← {0, 1}n. It sets c0 = HPRG.Eval(HPRG.pp, s, 0) ⊕ m. Next, it chooses
signature keys (ss.sk, ss.vk)← ss.Setup(1λ). For each i ∈ [n], it chooses vi ← {0, 1}λ and ri ← {0, 1}`,
sets r̃i = HPRG.Eval(HPRG.pp, s, i) and does the following:

• If si = 0, it sets ci = PredE.Enc(pred.pki, 1|vi, x; r̃i), ui = PKE.Enc(pke.pki, 0
λ+1; ri) and ti =

PRG(vi).

• If si = 1, it sets ci = PredE.Enc(pred.pki, 0
λ+1, x; ri), ui = PKE.Enc(pke.pki, 1|vi; r̃i) and ti =

PRG(vi) + ai +B · ss.vk.4.

Finally, it sets M =
(
c0, (ci, ui, ti)i∈[n]

)
, computes σ ← ss.Sign(ss.sk,M) and outputs (ss.vk,M, σ) as

the ciphertext.

PredECCA.KeyGen(pe.cca.msk, C): Let pe.cca.msk = (pred.mski, pke.ski)i∈[n]. The key generation algorithm

computes pred.ski ← PredE.KeyGen(pred.mski, C) and outputs pe.cca.sk =
(
C, (pred.ski)i∈[n]

)
.

PredECCA.Dec(pe.cca.sk, pe.cca.pk, pe.cca.ct): Let pe.cca.ct =
(
ss.vk,

(
c0,M = (ci, ui, ti)i∈[n]

)
, σ
)

and pe.cca.sk

=
(
C, (pred.ski)i∈[n]

)
. The decryption algorithm first verifies the signature σ. It checks if ss.Verify(ss.vk,M, σ) =

1, else it outputs ⊥.

3Alternatively, we could set ` to be max of these two polynomials.
4Here, we assume the verification key is embedded in F2`out , and the addition and multiplication are performed in F2`out .
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Next, the decryption algorithm computes d = Find(pe.cca.pk, pe.cca.sk, pe.cca.ct) (where Find is defined
in Figure 1), and outputs Check(pe.cca.pk, pe.cca.ct, C, d) (where Check is defined in Figure 2).

Find(pe.cca.pk, pe.cca.sk, pe.cca.ct)

Inputs: Public Key pe.cca.pk =
(

HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
Secret Key pe.cca.sk = (pred.ski)i∈[n]

Ciphertext pe.cca.ct =
(

ss.vk,
(
c0,M = (ci, ui, ti)i∈[n]

)
, σ
)

Output: d ∈ {0, 1}n

• For each i ∈ [n], do the following:

1. Let mi = PredE.Dec(pred.ski, ci).

2. If mi = 1|vi and PRG(vi) = ti, set di = 0. Else set di = 1.

• Output d = d1d2 . . . dn.

Figure 1: Routine Find

Check(pe.cca.pk, pe.cca.ct, C, d)

Inputs: Public Key pe.cca.pk =
(

HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
Ciphertext pe.cca.ct =

(
ss.vk,

(
c0,M = (ci, ui, ti)i∈[n]

)
, σ
)

Circuit C ∈ Cλ
d ∈ {0, 1}n

Output: msg ∈ {0, 1}`

• Let flag = true. For i = 1 to n, do the following:

1. Let r̃i = HPRG.Eval(HPRG.pp, d, i).

2. If di = 0, let y ← PredE.Recover(pred.pki, ci, r̃i). Perform the following checks. If any of the
checks fail, set flag = false and exit loop.

– y = (m,x) 6=⊥.

– C(x) = 1.

– PredE.Enc(pred.pki,m, x; r̃i) = ci.

– m = 1|v and PRG(v) = ti.

3. If di = 1, let m ← PKE.Recover(pke.pki, ui, r̃i). Perform the following checks. If any of the
checks fail, set flag = false and exit loop.

– m 6=⊥.

– PKE.Enc(pke.pki,m; r̃i) = ui.

– m = 1|v and ti = PRG(v) + ai +B · ss.vk.

• If flag = true, output c0 ⊕ HPRG.Eval(HPRG.pp, d, 0). Else output ⊥.

Figure 2: Routine Check
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4.1 Discussion

We will now make a few observations about our construction and then proceed to give a brief overview our
proof that appears in the next subsection.

For each i ∈ [n] if si = 0 the encryption algorithm will choose a random vi and signal that this bit is a
0 by encrypting 1|vi to the position (i, 0) and giving ti = PRG(vi) in the clear. In the opposite position of
(i, 1) it will encrypt the all 0’s string. Likewise, if si = 1 it will signal a 1 by encrypting 1|vi to the position
(i, 1) and giving ti = PRG(vi) + ai +B · ss.vk in the clear. With all but negligible probability it is impossible
to signal both 0 and 1 simultaneously for an index i. This follows from the fact that ai is chosen randomly
and that the space of verification keys is much smaller than 2`out(λ). Second, we observe that even though
one is supposed to encrypt the all 0’s string to position (i, s̄i) the Find routine will not immediately quit if
discovers something else. Instead it simply sets di = 0 if decryption outputs 1|vi and ti = PRG(vi); otherwise
it sets di = 1. Thus, the decryption routine may refrain from immediately aborting even though when it
“knows” the ciphertext was not formed entirely correctly. This will be critical to a proof step.

Our proof of security will be organized as a sequence of security games which we show to be indistin-
guishable. In the first proof step we apply a standard argument using strongly unforgeable signatures to
change the decryption oracle to reject all ciphertexts signed by ss.vk∗ where ss.vk∗ is the verification key
used by the challenge ciphertext.

Next, for each i we choose the public parameter values ai such that is possible for one to signal both
0 and 1 at index i, but that this ambiguity is only possible for a ciphertext signed by ss.vk∗. To do this
it chooses uniformly random wi ← {0, 1}λ, and sets ai = PRG(v∗i ) − PRG(wi) − ss.vk∗ · B if s∗i = 0,
else ai = PRG(wi) − PRG(v∗i ) − ss.vk∗ · B. This change can be shown to be undetectable by a standard
pseudorandom generator argument. The effect of this change is that it allows the possibility of ambiguous
signaling at both 0 and 1 in the challenge ciphertext. However, for all possible decryption queries where
ss.vk 6= ss.vk∗ this remains impossible.

Our next goal will be to use the IND-CPA security of the underlying PKE and one-sided predicate
encryption schemes to introduce signals on the opposite path s∗. To do this, however, for all i where s∗i = 1
we must first change the decryption routine to use pke.ski to decrypt the subciphertext at position (i, 1)
instead of using pred.ski at position (i, 0). Consider a particular ciphertext query and let di be the bit
reported by the original find algorithm on that ciphertext query and d′i be the bit reported by a the new
decryption procedure on that same ciphertext. We want to argue that if di 6= d′i then the Check procedure
will abort and output ⊥ on both encryptions. The first possibility is that di = 0 and d′i = 1; however,
should be information theoretically impossible as it would entail signaling both a 0 and 1 for a query with
ss.vk 6= ss.vk∗. The other possibility is that di = 1 and d′i = 0. I.e. that there is not a signal present at
either side. In this case the first decryption routine will have di = 1, but then when running Check it will
fail to find a signal at position (i, 1) and abort. Likewise, the second decryption routine will have d′i = 0,
but then fail to find a signal at position (i, 0), so both routines will behave identically in this case as well.
To wrap up we must deal with one subtle issue though. It is possible that there is a valid signal at position
(i, 0) for a ciphertext encrypting to attribute string x, but decryption is for a key associated with C where
C(x) = 0. In this case the first routine will set di = 1 not because the signal wasn’t there, but because it
wasn’t able to decrypt the ciphertext to reach it. This case is handled by the fact that the Check routine
when it recovers x will reject automatically if C(x) = 0. Therefore, both decryptions reject in this case.

Once the oracle decryption is set to follow the seed s we can straightforwardly use predicate encryption
security to introduce ambiguous signals in the messages for all positions (i, s̄i). Once this change is made
we can change the oracle decryption routine again. This time it will only decrypt at positions (i, 1) for all
i ∈ [n] and only use pke.ski. A similar argument to before can be applied to make this change.

All information about s is gone except to the lingering amount in the random coins used to encrypt r∗i,b.
We can immediately apply the hinting PRG to change to a game where these values can be moved to be
uniformly at random. At this point the message will be hidden and one last application of the one-sided
predicate encryption’s security property will hide the attribute string x∗.
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4.2 Security Proof

We will now show that the above construction satisfies Definition 2.2. Our proof proceeds via a sequence
of hybrids. First, we will describe all hybrids, and then show that the hybrids are computationally indistin-
guishable.

4.2.1 Hybrids

Hybrid H0 : This corresponds to the original security game (as described in Definition 2.2).

• Setup Phase

1. The challenger first chooses (HPRG.pp, 1n)← HPRG.Setup(1λ, 1`).
2. Next it chooses n different PredE keys and PKE keys. Let (pred.mski, pred.pki)← PredE.Setup(1λ),

(pke.ski, pke.pki)← PKE.Setup(1λ) for each i ∈ [n].
3. The challenger chooses s∗ ← {0, 1}n, v∗i ← {0, 1}λ for each i ∈ [n], and (ss.sk∗, ss.vk∗) ←

ss.Setup(1λ). It sets r̃i
∗ = HPRG.Eval(HPRG.pp, s∗, i). (These components will be used during

the challenge phase.)
4. It then chooses ai ← {0, 1}`out for each i ∈ [n] and B ← {0, 1}`out .
5. It sends pe.cca.pk =

(
HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
to A, and sets the master secret key

pe.cca.msk = (pred.mski, pke.ski)i∈[n].

• Pre-challenge Query Phase

– Decryption Queries

1. For each query (ct = (ss.vk,M = (c0, (ci, ui, ti)i) , σ) , C), the challenger first checks the sig-
nature σ.

2. Next, it computes pe.cca.skC ← PredECCA.KeyGen(msk, C). Let skC = (skC,i)i∈[n].

3. The challenger first computes d = Find (pe.cca.pk, pe.cca.skC , pe.cca.ct).
4. Next, it outputs Check (pe.cca.pk, pe.cca.ct, C, d).

– Key Generation Queries: For each query C, the challenger outputs the secret key pe.cca.skC =
PredECCA.KeyGen(pe.cca.msk, C).

• Challenge Phase

1. The adversary sends two tuples (x∗0,m
∗
0), (x∗1,m

∗
1) such that for all key queries C in the pre-

challenge query phase, C(x∗0) = C(x∗1) = 0.
2. The challenger chooses a bit β ∈ {0, 1}.
3. It sets c∗0 = HPRG.Eval(HPRG.pp, s, 0)⊕m∗β .
4. It sets (c∗i , u

∗
i , t
∗
i ) as follows.

– If s∗i = 0, it sets c∗i = PredE.Enc(pred.pki, 1|v∗i , x∗β ; r̃i
∗), u∗i ← PKE.Enc(pke.pki, 0

λ+1) and
t∗i = PRG(v∗i ).

– If s∗i = 1, it sets c∗i ← PredE.Enc(pred.pki, 0
λ+1, x∗β), u∗i = PKE.Enc(pke.pki, 1|v∗i ; r̃i

∗) and
t∗i = PRG(v∗i ) + ai +B · ss.vk∗.

5. Finally, it computes a signature σ∗ on M∗ = (c∗0, (c
∗
i , u
∗
i , t
∗
i )) using ss.sk∗ and sends (ss.vk∗,M, σ∗)

to A.

• Post-challenge Query Phase

– Decryption Queries These are handled as in the pre-challenge phase, with the restriction that all
queries (ct, C) must satisfy that ct 6= ct∗ or C(x∗0) = C(x∗1) = 0.

– Key Generation Queries These are handled as in the pre-challenge phase, with the restriction
that all queries C must satisfy C(x∗0) = C(x∗1) = 0.

• Finally, the adversary sends its guess b.
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Hybrid H1 : This hybrid is similar to the previous one, except that during the decryption queries, the
challenger checks if ss.vk = ss.vk∗. If so, it rejects.

Hybrid H2 : In this hybrid, the challenger changes Step 4 of the setup phase. It chooses uniformly random
wi ← {0, 1}λ, and sets ai = PRG(v∗i )−PRG(wi)−ss.vk∗ ·B if s∗i = 0, else ai = PRG(wi)−PRG(v∗i )−ss.vk∗ ·B.

Hybrid H3 : This hybrid is similar to the previous one, except that the challenger modifies the way
decryption queries are handled. Instead of using Find, the challenger uses Find-1 (defined in Figure 3). The
Find routine decrypts only the ci values. If decryption works, it sets si = 0, else it sets si = 1. The Find-1
routine decrypts either ci or ui, depending on the ith bit of s∗. Note that the Check routine is identical in
both experiments.

Find-1(pe.cca.pk, (pred.ski, pke.ski)i∈[n] , pe.cca.ct, s∗)

Inputs: Public Key pe.cca.pk =
(

HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
Secret Keys (pred.ski, pke.ski)i∈[n]

Ciphertext pe.cca.ct =
(

ss.vk,
(
c0,M = (ci, ui, ti)i∈[n]

)
, σ
)

String s∗ ∈ {0, 1}n

Output: d ∈ {0, 1}n

• For each i ∈ [n], do the following:

– If s∗i = 0,

1. Let mi = PredE.Dec(pred.ski, ci).

2. If mi = 1|vi and PRG(vi) = ti, set di = 0. Else set di = 1.

– Else if s∗i = 1,

1. Let mi = PKE.Dec(pke.ski, ui).

2. If mi = 1|vi and PRG(vi) + ai +B · ss.vk∗ = ti, set di = 1. Else set di = 0.

• Output d = d1d2 . . . dn.

Figure 3: Routine Find-1

Hybrid H4 : In this step, the challenger modifies the challenge ciphertext. For all i ∈ [n] such that s∗i = 0,
the challenger sets u∗i ← PKE.Enc(pke.pk, 1|wi).

Hybrid H5 : In this step, the challenger modifies the challenge ciphertext. For all i ∈ [n] such that s∗i = 1,
the challenger sets c∗i ← PredE.Enc(pred.pk, 1|wi, x∗β).

Hybrid H6 : This step is similar to the previous one, except for the decryption queries in the pre-
challenge/post-challenge phase. Instead of using Find-1, the challenger uses Find-2 (defined in Figure 4).
Note that this routine does not require any of the predicate encryption secret keys.

Hybrid H7 : This hybrid is identical to the previous one, and the only difference here is change of variable
names. In particular, we will swap the variable names v∗i and wi if s∗i = 1. This change affects the setup
phase (where the ai values are set), and the challenge phase (where we set c∗i and u∗i ). Also, we rename the
r̃i
∗ and r∗i variables to r∗i,0 and r∗i,1, depending on s∗i . For clarity, we will present the entire setup phase and

challenge phase below. Note that with this change, the challenger only uses s∗ to set r̃i
∗.
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Find-2(pe.cca.pk, (pke.ski)i∈[n] , pe.cca.ct)

Inputs: Public Key pe.cca.pk =
(

HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
Secret Keys (pke.ski)i∈[n]

Ciphertext pe.cca.ct =
(

ss.vk,
(
c0,M = (ci, ui, ti)i∈[n]

)
, σ
)

Output: d ∈ {0, 1}n

• For each i ∈ [n], do the following:

1. Let mi = PKE.Dec(pke.ski, ui).

2. If mi = 1|vi and PRG(vi) + ai +B · ss.vk∗ = ti, set di = 1. Else set di = 0.

• Output d = d1d2 . . . dn.

Figure 4: Routine Find-2

• Setup Phase

1. The challenger first chooses (HPRG.pp, 1n)← HPRG.Setup(1λ, 1`).
2. Next it chooses n different PredE keys and PKE keys. Let (pred.mski, pred.pki)← PredE.Setup(1λ),

(pke.ski, pke.pki)← PKE.Setup(1λ) for each i ∈ [n].
3. The challenger chooses s∗ ← {0, 1}n, v∗i ← {0, 1}λ, wi ← {0, 1}λ for each i ∈ [n], and (ss.sk∗, ss.vk∗)←

ss.Setup(1λ). It sets r∗i,s∗i = HPRG.Eval(HPRG.pp, s∗, i) and r∗
i,s∗i
← {0, 1}`. (These components

will be used during the challenge phase.)
4. It then chooses B ← {0, 1}`out and sets ai = PRG(v∗i )− PRG(wi)−B · ss.vk∗ for each i ∈ [n].

5. It sends pe.cca.pk =
(
HPRG.pp, B, (ai, pred.pki, pke.pki)i∈[n]

)
to A, and sets the master secret key

pe.cca.msk = (pred.mski, pke.ski)i∈[n].

• Challenge Phase

1. The adversary sends two tuples (x∗0,m
∗
0), (x∗1,m

∗
1) such that for all key queries C in the pre-

challenge query phase, C(x∗0) = C(x∗1) = 0.
2. The challenger chooses a bit β ∈ {0, 1}.
3. It sets c∗0 = HPRG.Eval(HPRG.pp, s, 0)⊕m∗β .
4. It sets (c∗i , u

∗
i , t
∗
i ) as follows.

– It sets c∗i = PredE.Enc(pred.pki, 1|v∗i , x∗β ; r∗i,0), u∗i = PKE.Enc(pke.pki, 1|wi; r∗i,1) and t∗i =
PRG(v∗i ) = PRG(wi) + ai +B · ss.vk∗.

5. Finally, it computes a signature σ∗ on M∗ = (c∗0, (c
∗
i , u
∗
i , t
∗
i )) using ss.sk∗ and sends (ss.vk∗,M, σ∗)

to A.

Hybrid H8 : In this hybrid, the challenger chooses both r∗i,b uniformly at random from {0, 1}`.

Hybrid H9 : In this hybrid, the challenger computes {c∗i } as encryptions for attribute x∗0. As a result, the
ciphertext contains no information about the bit β chosen by the challenger.

4.2.2 Analysis

Let advxA denote the advantage of an adversary A in Hybrid Hx.
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Lemma 4.1. Assuming ss is a strongly unforgeable one-time signature scheme, for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, |adv0A − adv1A| ≤ negl(λ).

Proof. This proof follows from the security of ss. The only difference between these two hybrids is that
the challenger, on receiving a decryption query, rejects if it contains ss.vk∗. Suppose there exists a PPT
adversary A such that |adv0A − adv1A| is non-negligible. We can use A to break the security of ss. The
reduction algorithm B receives a verification key vk∗ from the signature scheme’s challenger. The reduction
algorithm chooses all other components by itself. Next, during the pre-challenge decryption queries, if any
decryption query has vk∗ in it and the signature verification passes, then the reduction algorithm outputs
this as a forgery.

During the challenge phase, the reduction algorithm receives (x∗0,m
∗
0) and (x∗1,m

∗
1). It chooses β, and

computes M∗ = (c∗0, (c
∗
i , u
∗
i , t
∗
i )) as in H0. Finally, it sends M∗ to the challenger, and receives signature σ∗.

It sends (vk∗,M∗, σ∗) to A.
The adversary then makes polynomially many decryption/key generation queries. If there exists some de-

cryption query with verification key vk∗ that verifies, then the reduction algorithm outputs the corresponding
message and signature as a forgery.

Clearly, B′s advantage is at least adv1A − adv2A.

Lemma 4.2. Assuming PRG is a secure pseudorandom generator, for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, |adv1A − adv2A| ≤ negl(λ).

Proof. The proof of this lemma follows from the security of PRG. The only difference between the two
hybrids is the choice of ai. In H1, all ai are chosen uniformly at random. In H2, the challenger chooses
wi ← {0, 1}λ for each i, and sets ai as either PRG(v∗i )−PRG(wi)−ss.vk∗ ·B or PRG(wi)−PRG(v∗i )−ss.vk∗ ·B,
depending on si. Since wi is not used anywhere else in both these hybrid experiments, we can use PRG
security to argue that any PPT adversary has nearly identical advantage in H1 and H2.

Lemma 4.3. Assuming correctness for decryptable ciphertexts for PredE and PKE schemes, for any adver-
sary A, there exists a negligible function negl(·) such that for all λ ∈ N, |adv2A − adv3A| ≤ negl(λ).

Proof. This is an information-theoretic step, and holds for all adversaries (not necessarily polynomial time).
The only difference between these two hybrids is with respect to the decryption queries. In H2, the challenger
uses the routine Find to get a string d, and then checks if d is valid (using Check). In H3, the challenger uses
Find-1 to compute the string d. In fact, one can prove a more general statement: note that Find corresponds
to Find-1 with last input set to be 0n. We can show that for any two strings s∗ and s′, decryption using
Find-1(·, ·, ·, s∗) is statistically indistinguishable from decryption using Find-1(·, ·, ·, s′). For simplicity, we will
present indistinguishability of H2 and H3, where in H2, the challenger uses Find for decryption queries.

We will argue that with overwhelming probability, for any decryption query (ct, C), either Find and Find-1
output the same d, or they output d and d′ respectively but Check rejects both. In particular, it suffices to
show that there exists a negligible function negl(·) such that for all λ ∈ N, s∗ ∈ [n] and ss.vk∗, the following
probability (parameterized by s∗ and ss.vk∗) is at most negl(λ):

p = Pr

∃(ct, C) s.t.

ct = (ss.vk, (c0, (ci, ui, ti)) , σ)
ss.vk 6= ss.vk∗

Find(pk, sk, ct) = d
Find-1(pk, sk, ct, s∗) = d′

Check(pk, ct, C, d) 6= Check(pk, ct, C, d′)

HPRG.pp← HPRG.Setup(1λ, 1`), B ← {0, 1}`out
v∗i , wi ← {0, 1}λ,

ai = (PRG(v∗i )− PRG(wi)) · (−1)s
∗
i −B · ss.vk∗,

(pred.pki, pred.mski)← PredE.Enc(1λ)
(pke.pki, pke.ski)← PKE.Enc(1λ)

sk = (PredECCA.KeyGen(pred.mski, C))i


where the probability is over the random coins used in PredECCA.Setup. Now, p ≤ p0 +p1, where pb is defined
below:
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pb = Pr

∃(ct, C) s.t.

ct = (ss.vk, (c0, (ci, ui, ti)) , σ)
ss.vk 6= ss.vk∗

Find(pk, sk, ct) = d
Find-1(pk, sk, ct, s∗) = d′

i : first index s.t. s∗i = 1, di = b, d′i = b
Check(pk, ct, C, d) 6= Check(pk, ct, C, d′)

HPRG.pp← HPRG.Setup(1λ, 1`), B ← {0, 1}`out
v∗i , wi ← {0, 1}λ,

ai = (PRG(v∗i )− PRG(wi)) · (−1)s
∗
i −B · ss.vk∗,

(pred.pki, pred.mski)← PredE.Enc(1λ)
(pke.pki, pke.ski)← PKE.Enc(1λ)

sk = (PredECCA.KeyGen(pred.mski, C))i


We will show that pb ≤ negl(·) for both b ∈ {0, 1}. To prove this, let us first consider the following event:

pPRG = Pr
[
∃ α1, α2 ∈ {0, 1}λ, i ∈ [n], ss.vk s.t. PRG(α1) = PRG(α2) + ai +B · ss.vk

]
where the probability is over the choice of B ← {0, 1}`out and v∗i , wi ← {0, 1}λ. Then pb ≤ pPRG + p′b, where
p′b is like p′b, except for an additional condition that ∀γ, δ,PRG(γ) 6= PRG(δ) + ai + B · ss.vk. It is formally
defined below:

p′b = Pr


∃(ct, C) s.t.

ct = (ss.vk, (c0, (ci, ui, ti)) , σ)
ss.vk 6= ss.vk∗

Find(pk, sk, ct) = d
Find-1(pk, sk, ct, s∗) = d′

i : first index s.t. s∗i = 1, di = b, d′i = b
∀γ, δ,PRG(γ) 6= PRG(δ) + ai +B · ss.vk
Check(pk, ct, C, d) 6= Check(pk, ct, C, d′)

HPRG.pp← HPRG.Setup(1λ, 1`), B ← {0, 1}`out
v∗i , wi ← {0, 1}λ,

ai = (PRG(v∗i )− PRG(wi)) · (−1)s
∗
i −B · ss.vk∗,

(pred.pki, pred.mski)← PredE.Enc(1λ)
(pke.pki, pke.ski)← PKE.Enc(1λ)

sk = (PredECCA.KeyGen(pred.mski, C))i


Hence, it suffices to show that pPRG ≤ negl(λ), p′0 ≤ negl(λ) and p′1 ≤ negl(λ).

Claim 4.1. pPRG ≤ negl(λ).

Proof. We will prove a stronger statement: for all ss.vk∗, s∗ and {vi, wi}i∈[n], the following probability is at

most n · 2−λ:

Pr
[
∃ γ, δ ∈ {0, 1}λ, i ∈ [n], ss.vk 6= ss.vk∗ s.t. PRG(γ) = PRG(δ) + (PRG(vi)− PRG(wi)) · (−1)s

∗
i +B · ss.vk

]
where the probability is over the choice of B. Fix any integer i ∈ [n]. Consider the following sets.

S =
{
PRG(x) : x ∈ {0, 1}λ

}
S− =

{
PRG(x)− PRG(y)− (PRG(vi)− PRG(wi)) · (−1)s

∗
i : x, y ∈ {0, 1}λ

}
S−vk = {

(
PRG(x)− PRG(y)− (PRG(vi)− PRG(wi)) · (−1)s

∗
i

)
/(ss.vk− ss.vk∗) : x, y ∈ {0, 1}λ, ss.vk ∈ {0, 1}`vk}

The set S has size at most 2λ. As a result, the set S− has size at most 22λ. Finally, the set S−vk has size at
most 22λ+`vk . If we choose a uniformly random element from {0, 1}`out ≡ {0, 1}3λ+`vk , then this element falls
in S−vk with probability at most 2−λ. This concludes our proof.

Claim 4.2. p′0 = 0.

Proof. This follows from the definitions of Find, Find-1 and p′0. Note that Find sets di = 0 only if the
decrypted value 1|vi satisfies PRG(vi) = ti, and Find-1 sets di = 1 only if the decrypted value 1|wi satisfies
PRG(wi) + ai + B · ss.vk = ti. This, together with the requirement in p′0 that ∀ γ, δ, PRG(γ) 6= PRG(δ) +
ai +B · ss.vk, implies that p′0 = 0.

Claim 4.3. Assuming correctness for decryptable ciphertexts , p′1 = 0.
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Proof Intuition. We will first present an overview of the proof, and discuss a subtle but important point
in the construction/proof. The routine Check, in Step 2, checks if C(x) = 1, and this check is crucial for
arguing that p′1 = 0.

Let E′1 denote the event corresponding to p′1. For this event to happen, there exists an index i such
that s∗i = 1, and the ith iteration of both Find and Find-1 fail to find a signal (that is, either the decryption
fails, or the PRG check fails). Let d be the string output by Find, and d′ the string output by Find-1
(therefore di = d′i = 1). We need to show that Check outputs ⊥ for both d and d′. Suppose Check does
not output ⊥ for d. Then, this means that there exists a v such that ui is a PKE encryption of 1|v and
PRG(v)+ai+B ·ss.vk = ti. In this case, the ith iteration of Find-1 should set d′i = 1, which is a contradiction.

The other case, where Check does not output ⊥ for d′, is similar. This means there exists v, x such that
ci is an encryption of 1|v for attribute x, C(x) = 1 and PRG(v) = ti. Using perfect correctness of the ABE
scheme, we can argue that Find should have set di = 0, which is a contradiction. Note that if we did not
check that C(x) = 1, then it is possible that ci is an encryption of 1|v for attribute x, PRG(v) = ti, but
decryption using the secret key fails (causing Find to set di = 1).

Proof. Suppose s∗i = 1, di = 1, d′i = 0, and Check outputs different value for both d and d′. Let r̃i =
HPRG.Eval(HPRG.pp, d, i), r̃i

′ = HPRG.Eval(HPRG.pp, d′, i), m ← PredE.Recover(pke.pki, ui, r̃i), (m′, x′) ←
PredE.Recover(pred.pki, ci, r̃i

′). Since Check outputs different values for d and d′, it does not output ⊥ for at
least one of them in the ith iteration. We will consider two cases.

Case 1: Check does not output ⊥ for d in the ith iteration: As a result, m = 1|v, ui = PKE.Enc(pke.pki,
m; r̃i) and PRG(v) + ai + B · ss.vk = ti. This means that PKE.Dec(ski, ui) = 1|v (by perfect correctness of
the PKE decryption algorithm). However, this means d′i = 1 (by definition of Find-1). Hence Case 1 cannot
occur.

Case 2: Check does not output ⊥ for d′ in the ith iteration: As a result, m = 1|v, ci = PredE.Enc(pred.pki,
m, x; r̃i), C(x) = 1 and PRG(v) = ti. This means that PredE.Dec(pred.ski, ci) = 1|v (since C(x) = 1 and we
have perfect correctness for PredE decryption).However, by definition of Find, di = 0. Hence Case 2 cannot
occur.

Lemma 4.4. Assuming PKE is IND-CPA secure, for any PPT adversary A, there exists a negligible function
negl(·) such that for all λ ∈ N, |adv3A − adv4A| ≤ negl(λ).

Proof. The only difference in the two hybrids is with respect to the challenge ciphertext. In H3, the challenger
sets u∗i to be encryption of 0λ+1 for all i ∈ [n] such that s∗i = 0. In H4, the challenger sets u∗i to be encryption
of 1|wi. Note that the decryption queries require pke.ski only if s∗i = 1. As a result, using the IND-CPA
security of PKE, it follows that the two hybrids are computationally indistinguishable.

Lemma 4.5. Assuming PredE satisfies Definition 2.1, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, |adv4A − adv5A| ≤ negl(λ).

Proof. The proof of this lemma is similar to the proof of the previous lemma (Lemma 4.4). Note that in
hybrids H3, H4 and H5, the challenger does not use the PredE secret key pred.skC,i for decryption if s∗i = 1.
As a result, we can use the IND-CPA security of PredE (as defined in Definition 2.1).Strictly speaking, this
proof does not require the 1-sided attribute hiding. It suffices if the scheme PredE satisfies ABE security.

To prove this lemma, we will define n+ 1 hybrid experiments H4,i for i ∈ [n] ∪ {0}. In hybrid H4,i∗ , all
ciphertext components {ci}i≤i∗ are prepared as in H5, while all the remaining ones are prepared as in H4.
Note that H4,0 corresponds to H4, while H4,n corresponds to H5. Also, the string s∗ is common for all these
intermediate hybrids, and therefore if s∗i = 0, then the experiments H4,i−1 and H4,i are identical.

Suppose there exists a PPT adversary A that can distinguish between H4,i∗−1 and H4,i∗ with advan-
tage ε. We will use A to break the security of the underlying predicate encryption system. The reduc-
tion algorithm receives public key pk∗ from the PE challenger. It sets pred.pki∗ = pk∗, and it chooses
(pred.pki, pred.mski)i 6=i∗ . Next, it receives key generation and decryption queries. For any key generation
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query C, it receives skC from the challenger; it sets pred.ski∗ = skC , and chooses the remaining by itself.
For any decryption query (ct, C), note that the reduction algorithm does not need to query the challenger
for a secret key corresponding to C. If s∗i∗ = 1, then the reduction algorithm uses the PKE secret key
at the i∗ index (and if s∗i∗ = 0, then H4,i∗−1 and H4,i∗ are identical). On receiving the challenge tuples
(m∗0, x

∗
0), (m∗1, x

∗
1), the reduction algorithm chooses β ← {0, 1}. It sends (0λ+1, 1|wi) as the challenge mes-

sages, and x∗β as the challenge attribute, and receives c∗i∗ . It computes the remaining challenge ciphertext
by itself, and sends it to the adversary. The post challenge queries are handled similar to the pre-challenge
ones. Finally, the adversary sends its guess, which is forwarded to the challenger.

Lemma 4.6. Assuming correctness for decryptable ciphertexts for PredE and PKE schemes, for any adver-
sary A, there exists a negligible function negl(·) such that for all λ ∈ N, |adv5A − adv6A| ≤ negl(λ).

Proof. This proof is similar to the proof of Lemma 4.3. In particular, recall that the proof of Lemma 4.3
works for any s∗, s′, and note that Find-2 simply corresponds to Find-1(·, ·, ·, 1n).

Lemma 4.7. adv6A = adv7A.

Proof. This follows from the definition of the two hybrids. The only difference between H6 and H7 is that
the variable names v∗i and wi are swapped if s∗i = 1. As a result, any adversary has identical advantage in
both hybrids.

Lemma 4.8. Assuming HPRG satisfies Definition 3.1, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, |adv7A − adv8A| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |adv6A− adv7A| = ε. We will use A to build a PPT
reduction algorithm B that breaks the security of HPRG.

The reduction algorithm first receives HPRG.pp and

(
r∗0 ,
(
r∗i,b

)
i∈[n],b∈{0,1}

)
from the challenger. It

chooses {v∗i , wi}, (ss.sk∗, ss.vk∗), sets {ai}, choosesB ← {0, 1}`out ,
{

(pred.pki, pred.mski)← PredE.Setup(1λ)
}

,{
(pke.pki, pke.ski)← PKE.Setup(1λ)

}
and sends (HPRG.pp, B, (ai, pred.pki, pke.pki)) to A. Next, it receives

either decryption queries or key generation queries. Key generation and decryption queries can be han-
dled using {pred.mski} and {pke.ski} (as in H6/H7). For the challenge ciphertext, it chooses β ← {0, 1},
sets c∗0 = m∗b ⊕ r∗0 , computes c∗i = PredE.Enc(pred.pki, 1|v∗i , xβ ; r∗i,0), u∗i = PKE.Enc(pke.pki, 1|wi; r∗i,1),
t∗i = PRG(v∗i ) = PRG(w∗i ) + ai +B · ss.vk∗ and finally computes a signature on (c∗0, (c

∗
i , u
∗
i , t
∗
i )). It sends the

ciphertext to the adversary. The post-challenge queries are handled as the pre-challenge queries. Finally, the
adversary sends its guess β′. If β 6= β′, the reduction algorithm guesses that all r∗i,b are uniformly random.
This reduction algorithm has advantage ε in the hinting PRG security game.

Lemma 4.9. Assuming PredE satisfies Definition 2.1, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, |adv8A − adv9A| ≤ negl(λ).

Proof. Using the security of PredE, we can argue that any PPT adversary has nearly same advantage in H8

and H9.

Lemma 4.10. For any adversary A, adv9A = 0.

Proof. Note that in hybrid H9, there is no information about mβ in the challenge ciphertext, since c∗0 is
uniformly random and the {c∗i } components are encryptions to attribute x∗0. Hence, there is no information
about β in the challenge ciphertext, and any adversary has zero advantage in H9.
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4.3 Proving Security of Attribute-Based Encryption Systems

We remark that our above proof technique will apply to an Attribute-Based Encryption system that does
not guarantee hiding of the attribute string x (i.e. is not a one-sided predicate encryption system.) Recall,
that the IND-CPA and IND-CCA functionality and security definitions of ABE correspond exactly to those
of one-sided PE of Section 2 with the exception that in the challenge ciphertext attributes given by the
attacker we have x∗0 = x∗1.

We observe none of the steps in the above proof use the fact that the scheme is one-sided PE, except for
the last step that changes the ci ciphertext from encrypting under the attribute x∗β to x∗0. In an ABE chosen
ciphertext security game, this last step in unnecessary since we already have x∗β = x∗0 by fiat.
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[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New constructions of
identity-based and key-dependent message secure encryption schemes. In Public-Key Cryptog-
raphy - PKC 2018 - 21st IACR International Conference on Practice and Theory of Public-Key
Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part I, pages 3–31, 2018.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Proceedings of the 13th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, CRYPTO ’93, pages 480–491, 1994.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. In CRYPTO ’99, volume 1666 of LNCS, pages 537–554. Springer, 1999.

[GH18] Sanjam Garg and Mohammad Hajiabadi. Trapdoor functions from the computational diffie-
hellman assumption. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II,
pages 362–391, 2018.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, pages 612–621, 2017.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, CCS ’06, 2006.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from lwe. In Annual Cryptology Conference, 2015.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Proceedings of the theory and applications of
cryptographic techniques 27th annual international conference on Advances in cryptology, EU-
ROCRYPT’08, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

19



[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EURO-
CRYPT, pages 568–588, 2011.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings, pages 180–198, 2012.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 427–437, 1990.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings, pages
433–444, 1991.

[RS10] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. SIAM J. Com-
put., 39(7):3058–3088, 2010.

[Sho98] Victor Shoup. Why chosen ciphertext security matters, 1998.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple as-
sumptions. In CRYPTO, pages 619–636, 2009.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 616–637, 2014.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
600–611, 2017.

[YAHK11] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru Kunihiro. Generic con-
structions for chosen-ciphertext secure attribute based encryption. In Public Key Cryptography -
PKC 2011 - 14th International Conference on Practice and Theory in Public Key Cryptography,
Taormina, Italy, March 6-9, 2011. Proceedings, pages 71–89, 2011.

A Constructions of Hinting PRG

A.1 Construction Based on the CDH Assumption

A.1.1 Computational Diffie Hellman Assumption

Assumption 1. Let G be any group of prime order p. The Computational Diffie-Hellman (CDH) assumption
holds on G if for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the
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following probability is at most negl(λ):

Pr[gab ← A(g, ga, gb) : g ← G, a, b← Zp]

A.1.2 Construction

We will now describe our CDH based hinting PRG scheme.

Setup(1λ, 1`): The setup algorithm chooses a prime p of λ bits. Next, it sets n = log p+ 2λ. It then chooses
a group G of size p. Next, it chooses 2 · n uniformly random group elements {gi,b ← G}i∈[n],b∈{0,1},
2 · (n+ 1) · ` uniformly random integers {ρi,j,b ← Zp}i∈[n]∪{0},j∈[`],b∈{0,1}. For each i ∈ [n], j ∈ [`], b ∈
{0, 1}, it sets a 2× n matrix Hi,j,b as follows:

∀(β, k) ∈ {0, 1} × [n], Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

Similarly, for each j ∈ [`], it sets H0,j as follows:

∀(β, k) ∈ {0, 1} × [n], H0,j [β, k] = g
ρ0,j,0
k,β

Finally, it chooses the randomness for hardcore bit extraction. It chooses
{
r0,j ← {0, 1}`hcb

}
j∈[`] and{

ri,j,b ← {0, 1}`hcb
}
i∈[n],j∈[`],b∈{0,1}. The setup algorithm sets pp =

(
{H0,j , r0,j}j∈[`] , {Hi,j,b, ri,j,b}i∈[n],j∈[`],b∈{0,1}

)
.

Eval(pp, s, i): Let pp =
(
{H0,j , r0,j}j∈[`] , {Hi,j,b, ri,j,b}i∈[n],j∈[`],b∈{0,1}

)
. If i 6= 0, the evaluation algorithm

does the following: For each j ∈ [`], the evaluation algorithm sets zj = hcb (
∏n
k=1 Hi,j,si [sk, k]; ri,j,si)

and outputs z = z1z2 . . . z`.

If i = 0, the evaluation algorithm does the following: For each j ∈ [`], it sets zj = hcb (
∏n
k=1 H0,j [sk, k]; r0,j)

and outputs z = z1z2 . . . z`.

A.1.3 Proof of Security

To prove security, we will first present a sequence of hybrid experiments, and then show that the hybrid
experiments are computationally indistinguishable.

Hybrid H0 : This is the original security game. The challenger chooses a uniformly random string

s ← {0, 1}n, chooses {gi,b}i,b, {ρi,j,b}i,j,b, sets public parameters pp =
(
{H0,j}j , {Hi,j,b}i,j,b

)
as in the

construction. Next, it sets y0 = Eval(pp, s, 0), yi,si = Eval(pp, s, i) and yi,si ← {0, 1}`. It outputs pp,(
y0, (yi,0, yi,1)i

)
.

Next, we define n · ` hybrid experiments H1,i,j for i ∈ [n], j ∈ [`]. For any tuples (i, j) and (i′, j′), we say
that (i, j) � (i′, j′) if either i < i′ or (i = i′ and j ≤ j′). Also, let H0 ≡ H1,1,0 and H1,i,` ≡ H1,i+1,0.

Hybrid H1,i∗,j∗ : In this hybrid, the challenger does not choose all {yi,si}i uniformly at random. Instead,

for all (i, j) � (i∗, j∗), it sets the jth bit of yi,si to be hcb
(∏n

k=1 g
ρk,j,si
k,sk

; ri,j,si

)
. For all j > j∗, the jth bit

of yi∗,si∗ are chosen uniformly at random. For all i > i∗, the string yi,si is chosen uniformly at random from
{0, 1}`.

Hybrid H2 : This hybrid is identical to H1,n,`, except for syntactic changes. The challenger chooses
{gi,b ← G}i,b, {ρi,j,b}i,j,b and sets pp as in the previous hybrid. Next, it chooses s ← {0, 1}n and computes

h =
∏n
k=1 gi,si . It then uses h to compute y0 and {yi}i. It sets the jth bit of y0 as hcb (hρ0,j,0 ; r0,j), and the

jth bit of yi,b as hcb (hρi,j,b ; ri,j,b).
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Hybrid H3 : This hybrid is similar to the previous one, except that the challenger chooses h← G.

Next, we consider ` hybrid experiments H4,j∗ for j∗ ∈ [`], where we switch each bit of y0 to be uniformly
random. Let H4,0 ≡ H3.

Hybrid H4,j∗ : This hybrid is similar to H3, except that some bits of y0 are uniformly random. For j ≤ j∗,
the challenger chooses the jth bit of y0 uniformly at random. For all j > j∗, the jth bit of y0 is computed
as hcb (hρ0,j,0 ; r0,j).

Next, we define ` · n hybrid experiments H5,i∗,j∗ for each i∗ ∈ [n], j∗ ∈ [`]. For each (i, j) � (i∗, j∗), we
switch the jth bit of yi,0 and yi,1 to be uniformly random.

Hybrid H5,i∗,j∗ : In this experiment, for all (i, j) � (i∗, j∗), the challenger sets the jth bit of yi,0 and yi,1
to be a uniformly random bit. For all other (i, j), it sets the jth bit of yi,b to be hcb (hρi,j,b ; ri,j,b).

Analysis We need to show that the hybrids H0 and H5,n,` are computationally indistinguishable. Let

advAx denote the advantage of an adversary A in hybrid Hx.

First, we will show that the hybrids H1,i,j are computationally indistinguishable for all i ∈ [n], j ∈ [`].

Lemma A.1. Assuming CDH is hard on G, for any PPT adversary A and indices i∗ ∈ [n], j∗ ∈ [`], there
exists a negligible function negl(·) such that for all λ ∈ N, |advA1,i∗,j∗ − advA1,i∗,j∗−1| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |advA1,i∗,j∗ − advA1,i∗,j∗−1| ≥ ε. Using A, one can
build a PPT algorithm B that can distinguish between the following distributions with advantage ε:

Dist1 =
{

(g, ga, h, hcb(ha; r), r) : g, h← G, a← Zp, r ← {0, 1}`hcb
}

Dist2 =
{

(g, ga, h, β, r) : g, h← G, a← Zp, r ← {0, 1}`hcb , β ← {0, 1}
}

The algorithm B receives (g, g1, g2, b, r) from the challenger. It chooses s← {0, 1}n, {ai,b ← Zp}(i,b) 6=(i∗,si∗ )

and sets gi,b = gai,b for all (i, b) 6= (i∗, si∗). Next, it chooses ρi,j,b ← Zp and ri,j,b for all (i, j, b) 6= (i∗, j∗, si∗).

It sets ri∗,j∗,si∗ = r and sets gi∗,si∗ = g1/
(∏

k 6=i∗ gk,sk

)
. It implicitly sets ρi∗,j∗,si∗ to be the discrete log of

g2 with respect to g.
Using g, g1, g2, {ai,b}(i,b)6=(i∗,si∗ )

and {ρi,j,b}(i,j,b) 6=(i∗,j∗,si∗ )
, the reduction algorithm can compute g

ρi,j,b
k,β

for all (k, β, i, j, b) 6= (i∗, si∗ , i
∗, j∗, si∗). If (k, β) = (i∗, si∗), it sets gi,j,bk,β = g

ρi,j,b
1 . If (i, j, b) = (i∗, j∗, si∗),

it sets gi,j,bk,β = g
ak,β
2 . Since Hi∗,j∗,si∗ [si∗ , i

∗] =⊥, the reduction algorithm can compute the entire public
parameters. As a result, the reduction algorithm can also compute yk,sk (for all k) using pp. For (i, j) �
(i∗, j∗), B can compute the jth bit of yi,si using ρi,j,si . For the j∗ bit of yi∗,si∗ , B uses the challenge bit b.
All other bits of yi∗,si∗ are chosen uniformly at random, and for all i > i∗, it sets yi,si to be a uniformly
random ` bit string. Finally, it sends the yi,b strings to the adversary, and forwards the adversary’s guess to
the challenger.

Clearly, if b is a uniformly random bit, then the adversary’s view is same as in H1,i∗,j∗−1. If g1 = ga and
b = hcb(ha; r), then the j∗ bit of yi∗,si∗ is hcb ((

∏
k gk,sk)

ρi∗,j∗,si∗ ), which is equal to hcb (ha). Hence, the
adversary’s view is same as in H1,i∗,j∗ .

Finally, using the hardcore-bit’s property, if there exists a PPT algorithm B that can distinguish between
Dist1 and Dist2 with non-negligible advantage, then there exists another PPT algorithm B′ that can compute
ha with non-negligible probability. This algorithm B′ can be used to break the CDH assumption on G.
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Observation A.1. For any adversary A, advA1,n,` = advA2 .

Proof. The proof of this observation follows directly from the definition of the hybrid experiments.

Lemma A.2. For any adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
|advA2 − advA3 | ≤ negl(λ).

Proof. The proof of this lemma follows from the Leftover Hash Lemma. Since we set n = log p + 2λ, the
following distributions have statistical distance at most 2−λ:

Dist1 =

{
{ai}i∈[n] , a : ai ← Zp, a =

∑
i

ai

}
,Dist2 =

{
{ai}i∈[n] , a : ai ← Zp, a← Zp

}
Let g be any generator of G. Then, by setting gi,si = gai , h =

∏
i gi,si is statistically indistinguishable from

ga, even if g and {ai}i are given. This concludes our proof.

Lemma A.3. Assuming CDH is hard on G, for any PPT adversary A and indices j∗ ∈ [`], there exists a
negligible function negl(·) such that for all λ ∈ N, |advA4,j∗ − advA4,j∗−1| ≤ negl(λ).

Proof. As in the proof of Lemma A.1, we will use such a PPT adversary A to build a PPT algorithm B that
can distinguish between Dist1 and Dist2 (defined in proof of Lemma A.1). The reduction algorithm receives
challenge (g, g1, g2, b, r). It sets h = g1, implicitly sets ρ0,j∗,0 to be the discrete log of g2 with respect to g. It
chooses {ai,b}i,b, sets gi,b = gai,b for all i, b. Next, it chooses {ρi,j,b}(i,j,b)6=(0,j∗,0), and sets H0,j∗ [β, k] = g

ak,β
2

for all (k, β). For all j 6= j∗, it sets H0,j using g and {ai,b}i,b. Finally, the reduction algorithm sets r0,j∗ = r,
and all other components of the public parameters are chosen honestly. The j∗ bit of y0 is set to be b; for
j < j∗, the bits are computed using g1 and ρ0,j . The advantage of B in distinguishing Dist1 and Dist2 is
same as the difference of A′s advantage in H4,j∗ and H4,j∗−1. Once we have such a PPT algorithm B, it can
be used to break the CDH assumption, using the hardcore-bit property.

Lemma A.4. Assuming CDH is hard on G, for any PPT adversary A and indices i∗ ∈ [`], j∗ ∈ [`], there
exists a negligible function negl(·) such that for all λ ∈ N, |advA5,i∗,j∗ − advA5,i∗,j∗−1| ≤ negl(λ).

Proof. The proof of this lemma is similar to the proof of Lemma A.3.

A.2 Construction Based on the LWE Assumption

A.2.1 Learning with Errors Assumption

The Learning with Errors (LWE) problem was introduced by Regev [Reg05], who showed that solving LWE
on average is as hard as quantumly solving several standard lattice based problems in the worst case. The
LWE assumption states that no polynomial time adversary can distinguish between the following oracles. In
one case, the oracle chooses a uniformly random secret s, and for each query, it chooses a vector a uniformly
at random, scalar e from a noise distribution and outputs (a, sT ·a+e). In the second case, the oracle simply
outputs a uniformly random vector a together with a uniformly random scalar u. Regev showed that if there
exists a polynomial time adversary that can break the LWE assumption, then there exists a polynomial time
quantum algorithm that can solve some hard lattice problems in the worst case.

We will use a variant of the LWE assumption, where the challenger outputs some LWE samples, followed
by a challenge, which is either an LWE sample or a uniformly random element. This version is as hard as
the standard version.

Assumption 2 (Learning with Errors). Let n and q be positive integers and χ a noise distribution over Zq.
The Learning with Errors assumption LWEn,q,χ, parameterized by n, q, χ, states that for any polynomial N ,
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the following distributions are computationally indistinguishable:{(ai, s
T · ai + ei)

}
i
, (a, sT · a + e) :

ai ← Znq for each i ∈ [N ],
a, s← Znq ,
e, ei ← χ for each i ∈ [N ]


≈c{(ai, s

T · ai + ei)
}
i
, (a, r) :

ai ← Znq for each i ∈ [N ],
a, s← Znq , r ← Zq
e, ei ← χ for each i ∈ [N ]


A.2.2 Construction

We will now describe our LWE based hinting PRG scheme.

Setup(1λ, 1`): The setup algorithm chooses LWE dimension d, modulus p = 2d
ε

, noise parameter σ =
poly(λ), noise distribution χ = Dσ and n = d · log p + 2λ . It then chooses 2 · n uniformly random
vectors

{
ai,b ← Zdp

}
i∈[n],b∈{0,1}, 2·(n+1)·` uniformly random vectors

{
vi,j,b ← Zdp

}
i∈[n]∪{0},j∈[`],b∈{0,1}.

For each i ∈ [n], j ∈ [`], b ∈ {0, 1}, it chooses ek,βi,j,b ← χ for each i, k ∈ [n], j ∈ [`], b, β ∈ {0, 1}, sets a
2× n matrix Hi,j,b as follows:

∀(β, k) ∈ {0, 1} × [n], Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

aTk,β · vi,j,b + ek,βi,j,b otherwise

Similarly, it chooses ek,βj ← χ for each j ∈ [`], k ∈ [n], b, β ∈ {0, 1}. For each j ∈ [`], it sets H0,j as
follows:

∀(β, k) ∈ {0, 1} × [n], H0,j [β, k] = aTk,β · v0,j,0 + ek,βj

The setup algorithm sets pp =
(
{H0,j}j∈[`] , {Hi,j,b}i∈[n],j∈[`],b∈{0,1}

)
.

Eval(pp, s, i): Let pp =
(
{H0,j}j∈[`] , {Hi,j,b}i∈[n],j∈[`],b∈{0,1}

)
. If i 6= 0, the evaluation algorithm does the

following: For each j ∈ [`], the evaluation algorithm sets zj = msb (
∑n
k=1 Hi,j,si [sk, k]) and outputs

z = z1z2 . . . z`.

If i = 0, the evaluation algorithm does the following: For each j ∈ [`], it sets zj = msb (
∑n
k=1 H0,j [sk, k])

and outputs z = z1z2 . . . z`.

A.2.3 Proof of Security

To prove security, we will first present a sequence of hybrid experiments, and then show that the hybrid
experiments are computationally indistinguishable.

Hybrid H0 : This is the original security game. The challenger chooses a uniformly random string

s ← {0, 1}n, chooses {ai,b}i,b, {vi,j,b}i,j,b, sets public parameters pp =
(
{H0,j}j , {Hi,j,b}i,j,b

)
as in the

construction. Next, it sets y0 = Eval(pp, s, 0), yi,si = Eval(pp, s, i) and yi,si ← {0, 1}`. It outputs pp,(
y0, (yi,0, yi,1)i

)
.

Next, we define n · ` hybrid experiments H1,i,j for i ∈ [n], j ∈ [`]. For any tuples (i, j) and (i′, j′), we say
that (i, j) � (i′, j′) if either i < i′ or (i = i′ and j ≤ j′). Also, let H0 ≡ H1,1,0 and H1,i,` ≡ H1,i+1,0.
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Hybrid H1,i∗,j∗ : In this hybrid, the challenger does not choose all {yi,si}i uniformly at random. Instead,

for all (i, j) � (i∗, j∗), it sets the jth bit of yi,si to be msb
(∑n

k=1

(
aTk,sk · vi,j,si + ek,ski,j,si

))
. For all j > j∗,

the jth bit of yi∗,si∗ are chosen uniformly at random. For all i > i∗, the string yi,si is chosen uniformly at
random from {0, 1}`.

Hybrid H2 : This hybrid is similar to H1,n,`, except for the manner in which the yi,b strings are computed.
Let χ′ be the distribution obtained by adding n samples from the χ distribution. The challenger chooses{
ai,b ← Zdp

}
i,b

, {vi,j,b}i,j,b and sets pp as in H1,n,`. Next, it chooses s ← {0, 1}n and computes a =∑n
k=1 ai,si . It then uses a to compute y0 and {yi,b}i. It sets the jth bit of y0 as msb

(
aT · v0,j,0 + e0,j

)
,

and the jth bit of yi,b as msb
(
aT · vi,j,b + ei,j,b

)
, where all the {e0,j}j and {ei,j,b}i,j,b are chosen from χ′

distribution.

Hybrid H3 : This hybrid is similar to the previous one, except that the challenger chooses a← Zdp.

Next, we consider ` hybrid experiments H4,j∗ for j∗ ∈ [`], where we switch each bit of y0 to be uniformly
random. Let H4,0 ≡ H0.

Hybrid H4,j∗ : This hybrid is similar to H3, except that some bits of y0 are uniformly random. For j ≤ j∗,
the challenger chooses the jth bit of y0 uniformly at random. For all j > j∗, the jth bit of y0 is computed
as msb

(
aT · v0,j,0 + e0,j

)
.

Next, we define ` · n hybrid experiments H5,i∗,j∗ for each i∗ ∈ [n], j∗ ∈ [`]. For each (i, j) � (i∗, j∗), we
switch the jth bit of yi,0 and yi,1 to be uniformly random.

Hybrid H5,i∗,j∗ : In this experiment, for all (i, j) � (i∗, j∗), the challenger sets the jth bit of yi,0 and yi,1
to be a uniformly random bit. For all other (i, j), it sets the jth bit of yi,b to be msb

(
aT · vi,j,b + ei,j,b

)
.

Analysis We need to show that the hybrids H0 and H5,n,` are computationally indistinguishable. Let

advAx denote the advantage of an adversary A in hybrid Hx, and let H1,1,0 ≡ H0, H1,i,0 ≡ H1,i−1,`.

First, we will show that the hybrids H1,i,j are computationally indistinguishable for all i ∈ [n], j ∈ [`].

Lemma A.5. Assuming LWEp,d,χ is hard, for any PPT adversary A and indices i∗ ∈ [n], j∗ ∈ [`], there

exists a negligible function negl(·) such that for all λ ∈ N, |advA1,i∗,j∗ − advA1,i∗,j∗−1| ≤ negl(λ).

Proof. Suppose there exists an adversary A such that advA1,i∗,j∗ − advA1,i∗,j∗−1 = ε. We will show a PPT
algorithm B that breaks LWEp,d,χ with advantage ε.

The reduction algorithm chooses s ← {0, 1}n and vectors {vi,j,b}(i,j,b) 6=(i∗,j∗,si∗ )
. It queries the LWE

challenger for 2n−1 queries and one challenge, and receives {(ak,β , hk,β)} where ai∗,si∗ , hi∗,si∗ is the challenge
tuple and the remaining are LWE samples. The reduction algorithm sets Hi∗,j∗,si∗ [β, k] = hk,β if (k, β) 6=
(i∗, si∗), and ⊥ otherwise. The remaining matrices {Hi,j,b}(i,j,b) 6=(i∗,j∗,si∗ )

and {H0,j}j are computed using

{ai,b} and {vi,j,b}(i,j,b)6=(i∗,j∗,si∗ )
. This completes the public parameters.

For the evaluations, the reduction algorithm computes y0, all {yi,b}(i,b) 6=(i∗,si∗ )
as in hybridsH1,i∗,j∗−1/H1,i∗,j∗ .

It also computes all bits of yi∗,si∗ , except the jth one. For the jth bit, the reduction algorithm computes

msb
(∑

k 6=i Hi∗,j∗,si∗ [sk, k] + hi∗,j∗,si∗

)
. The adversary A sends its guess b′, and B forwards the same to the

LWE challenger.
If (ai∗,j∗,si∗ , hi∗,j∗,si∗ ) form an LWE sample, then this hybrid corresponds to H1,i∗,j∗ . If hi∗,j∗,si∗ is truly

random, then this corresponds to H1,i∗,j∗−1. Therefore, B can break LWEp,d,χ with advantage ε.

25



Lemma A.6. For any adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
|advA1,n,` − advA2 | ≤ negl(λ).

Proof. In hybridH1,n,`, for each i ∈ [n], j ∈ [`], b ∈ {0, 1}, the jth bit of yi,si is set to be msb (
∑n
k=1 Hi,j,si [sk, k]),

and the jth bit of yi,si is msb
(∑n

k=1 aTk,sk · vi,j,b + ek,ski,j,b

)
. In hybrid H2, the jth bit of yi,b is set to be

msb
(
aT · vi,j,b + ei,j,b

)
for all (i, j, b) ∈ [n]× [`]× {0, 1} (where ei,j,b is chosen from χ′). Clearly, the distri-

butions are identical for {yi,si}i, even given pp.
To show that the two hybrids are statistically indistinguishable, it suffices to argue that the statistical

distance between the following distributions is negligible in λ:

Dist1 =


(
{Hi,j,b}i,j,b , {zi,j}i,j

)
:

ai,b,vi,j,b ← Zdp, e
k,β
i,j,b ← χ

Hi,j,b[β, k] = aTk,β · vi,j,b + ek,βi,j,b
zi,j = msb (

∑
k Hi,j,si [sk, k])


Dist2 =


(
{Hi,j,b}i,j,b , {zi,j}i,j

)
:

ai,b,vi,j,b ← Zdp, e
k,β
i,j,b ← χ, ei,j ← χ′

Hi,j,b[β, k] = aTk,β · vi,j,b + ek,βi,j,b

zi,j = msb
(

(
∑
k ak,sk)

T · vi,j,si + ei,j

)


Since ek,βi,j,b ← χ and ei,j ← χ′, with all but negligible probability, |ek,βi,j,b| ≤
√
d · σ, and |ei,j | ≤

√
d · σ · n.

With overwhelming probability (over the choice of {ai,b} and {vi,j,b}), all the |ak,β ·vi,j,b| values are at least√
d ·σ ·n and most p/2−

√
d ·σ ·n. This is because p is exponential in λ while σ is poly(λ). Hence, conditioned

on these two events,

msb

(∑
k

aTk,sk · vi,j,si + ek,ski,j,si

)
= msb

(∑
k

ak,sk

)T
· vi,j,si + ei,j



Lemma A.7. For any adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
|advA2 − advA3 | ≤ negl(λ).

Proof. The proof of this lemma follows from the Leftover Hash Lemma. Since we set n = d · log p+ 2λ, the
following distributions have statistical distance at most 2−λ:

Dist1 =

{
{ai}i∈[n] ,a : ai ← Zdp,a =

∑
i

ai

}
,Dist2 =

{
{ai}i∈[n] ,a : ai ← Zdp,a← Zdp

}

Lemma A.8. Assuming LWEp,d,χ′ , for any j∗ ∈ [`], for any PPT adversary A, there exists a negligible

function negl(·) such that for all λ ∈ N, |advA4,j∗ − advA4,j∗−1| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |advA4,j∗ − advA4,j∗−1| = ε. We will build a PPT
algorithm B that breaks LWEp,d,χ′ with advantage ε.

The reduction algorithm queries for n evaluations followed by a challenge, and receives {ai,b, hi,b}i,b as the

LWE evaluations, and (a, h) as the challenge. It sets H0,j∗ [β, k] = hk,β for all (k, β) ∈ [n]×{0, 1}. It chooses
v0,j,0 for all j 6= j∗ and sets H0,j for all j 6= j∗ as in H4,j∗/H4,j∗−1. It also chooses {vi,j,b}i>0, and sets
{Hi,j,b}i>0. The reduction algorithm computes {yi,b}i>0 as in H4,j∗/H4,j∗−1 using a and {vi,j,b} vectors.
For y0, it sets the j∗ bit as the LWE challenge h, and the other bits are computed as in H4,j∗/H4,j∗−1.
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Finally, the adversary sends its guess, which is forwarded to the LWE challenger. The reduction algorithm
B has advantage ε.

Lemma A.9. Assuming LWEp,d,χ′ , for any i∗ ∈ [n], j∗ ∈ [`], any PPT adversary A, there exists a negligible

function negl(·) such that for all λ ∈ N, |advA5,i∗,j∗ − advA5,i∗,j∗−1| ≤ negl(λ).

Proof. This proof is similar to the proof of Lemma A.8.
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