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Abstract. We construct the first (almost) tightly-secure unbounded-
simulation-sound quasi-adaptive non-interactive zero- knowledge argu-
ments (USS-QA-NIZK) for linear-subspace languages with compact (num-
ber of group elements independent of the security parameter) common
reference string (CRS) and compact proofs under standard assumptions
in bilinear-pairings groups. Specifically, our construction has O(logQ)
reduction to the SXDH, DLIN and matrix-DDH assumptions, where Q
is the number of simulated proofs given out. In addition, our core con-
struction is structure-preserving, which means the public key and proofs
are all group elements and the verification is entirely by checking pairing
product equations. The USS-QA-NIZK primitive has many applications,
including structure-preserving signatures (SPS), CCA2-secure publicly-
verifiable public-key encryption (PKE), which in turn have applications
to CCA-anonymous group signatures, blind signatures and unbounded
simulation-sound Groth-Sahai NIZK proofs. We show that the almost
tight security of our USS-QA-NIZK translates into constructions of all
of the above applications with (almost) tight-security to standard as-
sumptions such as SXDH and, more generally, Dk-MDDH. Thus, we
get the first publicly-verifiable (almost) tightly-secure multi-user/multi-
challenge CCA2-secure PKE with practical efficiency under standard bi-
linear assumptions. Our (almost) tight SPS construction is also improved
in the signature size over previously known constructions.

Keywords: QA-NIZK, simulation-soundness, tight security, public-key
encryption, CCA, Structure-preserving signatures.

1 Introduction

Over the last decade, pairing-based cryptography has facilitated many new cryp-
tographic protocols and applications that are provably-secure under static as-
sumptions. Some of these static assumptions (SXDH, DLIN, MDDH) are now
considered standard, as they generalize decisional-Diffie-Hellman (DDH) as-
sumption to pairings-based groups. Some of the ground-breaking ideas include
the Groth-Sahai (GS) non-interactive zero-knowledge (NIZK) proofs [GS12],



fully-secure identity-based-encryption (IBE) [Wat09], structure-preserving sig-
natures (SPS) [AFG+10], quasi-adaptive NIZK arguments (QA-NIZK) [JR13],
and tightly-secure IBE [CW13]. In particular, structure-preserving signatures use
Groth-Sahai NIZK proof structure to enable a wide-range of privacy-preserving
applications, such as, group signatures [AHO10], blind signatures [AO09a,AFG+10],
group encryption [CLY09], among others. Recent works [JR17,JOR18] have
employed QA-NIZK to get more efficient SPS, and tightly-secure unbounded-
simulation-sound QA-NIZK (USS-QA-NIZK [LPJY14,KW15]) to get tightly-
secure CCA2-secure public-key encryption (PKE) in the multi-user and multi-
challenge setting [LPJY15].

In this work we focus on the basic primitive of USS-QA-NIZK for linear-
subspaces of vector spaces of bilinear groups, which has important implications
as a structure-preserving version of it directly implies structure-preserving signa-
tures. Further, it is already known to imply CCA2-secure PKE [LPJY15], which
in turn leads to several new applications such as CCA-anonymous group sig-
natures [AHO10], and UC-commitments [FLM11]. Further, an (almost) tightly-
secure USS-QA-NIZK implies (almost) tightly-secure version of all the above ap-
plications. While an (almost) tightly-secure USS-QA-NIZK was given in [LPJY15]
it required a large common reference string (CRS), which was of the order of
the security parameter λ. In this work, we give the first (almost) tightly-secure
USS-QA-NIZK for linear-subspaces with compact (number of group elements
independent of λ) CRS and compact proofs. Moreover, the earlier construction
only worked under the DLIN assumption in symmetric groups, and required
non-standard assumptions in the asymmetric pairing-group setting, whereas we
give a construction which is tightly-secure under the SXDH assumption in asym-
metric groups. Asymmetric groups usually allow leaner constructions, which we
validate below. At the same time, we make the CRS compact. Our construction
of USS-QA-NIZK is also structure-preserving.

Related Techniques. In [KW15], Kiltz and Wee observed that QA-NIZK can be
seen as a generalization of hash proof systems [CS98] to public-verifiability by
publishing a “partial commitment” to the secret hash-key k in the second group
G2 of a pairings-based groups (G1,G2,GT , e). Simulation of proofs of statements
then just requires hash computation using the secret hash-key k. Computational-
soundness is slightly more tricky to prove than in the hash-proof setting, but
essentially an adversary cannot generate hash proofs of false statements given
only the “partial commitment” to k and the projection-key (of the hash-proof
system). In the simulation-soundness setting, the simulation of fake proofs would
give additional information to the adversary about secret-hash key k, and hence
to obtain a USS-QA-NIZK, [KW15] encrypt the hash-proofs and employ a dual-
system [Wat09] technique to achieve soundness. This methodology should be
contrasted with the “OR” proof methodology of [LPJY15] (for USS-QA-NIZK)
and [CCS09] (for unbounded simulation-sound GS-NIZK).

While the USS-QA-NIZK of [KW15] leads to compact proofs (of size only
(2k + 2) under the k-linear assumption), the security reduction to the underly-
ing hardness assumption is not tight. The reason behind this being that the
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dual-system approach is itself not tight as at its heart it employs one-time
simulation-soundness along with two-universal hash-proof systems [JR15], simi-
lar to Cramer-Shoup CCA2-encryption [CS98]. A nested-version of dual-system
approach does lead to (almost) tight IBE [CW13], but then requires non-compact
(master) public keys.

However, the concept of identity-space partitioning introduced in [CW13]
is also applicable to signature schemes, and this technique repeatedly splits the
message space into two based on the message or a tag. This idea was further
enhanced in [Hof17] to adaptive partitioning in which the partitioning is decided
dynamically based on an encrypted partitioning-bit. [AHN+17] refined this tech-
nique by introducing new ideas using “OR” GS-NIZK systems and made the
scheme structure-preserving. Since signature schemes, especially the ones con-
sidered in the above works, usually encrypt a secret and prove in zero-knowledge
that such a secret is encrypted in the signature, the question arises if this re-
fined adaptive-partitioning methodology can be employed to the USS-QA-NIZK
of [KW15] discussed above that encrypted the hash-proofs. One main difference
between NIZK proofs embedded in signature schemes is that they need only
be “designated-prover” NIZK proofs. In other words, such NIZK proofs while
still providing public verifiability, need only give the proving capability to a
designated party, namely the CRS (or public-key) generator itself. Hence, such
designated-prover NIZK proofs are much easier to devise and it is not immedi-
ately clear if such restricted NIZK proofs can be extended to usual NIZK proofs
(especially in the tight USS-NIZK setting).

Finally, we argue that the recent constructions of tight CCA2-secure PKE
[GHK17,Hof17] (along with [CCS09]) also do not easily imply tight USS-NIZK.
[CCS09] requires proving an OR-statement where one of the disjuncts is that a
CCA2-PKE ciphertext is well-formed. For [GHK17], this statement is not Groth-
Sahai friendly as its own “qualified”-OR proof in the ciphertexts employs a map-
ping that maps group elements to Zq elements. This should be contrasted with
Cramer-Shoup CCA2-PKE, which also has such a tag, but that is publicly com-
putable from other elements in the ciphertext. This is not the case for [GHK17]
as the mapping is from private elements. As for [Hof17], it uses disjunctive hash-
proofs from [ABP15] which require the hash proof to be in the target group;
GS-proofs of such statements are only possible in the Witness-Indistinguishable
setting.

Our Contributions. We show that a different “OR” system than considered in
[AHN+17] (or later works such as [JOR18]) does allow one to give (almost) tight
(structure-preserving) USS-QA-NIZK for linear-subspaces with compact proof
sizes and compact CRS-es. This “OR” system can be proved in the generic
framework of [Ràf15], allowing us to obtain USS-QA-NIZKs under the SXDH
assumption in asymmetric pairings groups, which was not previously known
even for non-compact CRS. Our USS-QA-NIZK construction loses a factor of
O(logQ) in the security reduction, where Q is the number of adversarial requests
for simulated proofs, and is structure preserving. We also give a labeled version,
which employs tags (and hence is not structure-preserving). We also develop
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optimized “designated prover” and “designated verifier” versions with a tighter
reduction as well, i.e., with only a O(logQ) factor loss.

As a first application, we show that the labeled version of our tight USS-
QA-NIZK construction gives us a tight CCA2-secure publicly-verifiable labeled
PKE in the multi-user multi-challenge setting5. In Table 1, we compare our
scheme with the state of the art schemes in [GHKW16,Hof17,GHK17] with the
smallest possible assumption for each. While being practical by itself, our scheme
is not the best one in terms of efficiency. What separates our scheme from other
tightly secure schemes is the public verifiability, which allows anyone, without
knowing the secret key, to check if a ciphertext decrypts to some plaintext.
Feasibility results for publicly-verifiable tight CCA-PKE can be found in [HJ16]
and [ADKNO13], but their ciphertext overhead is hundreds or even more than a
thousand of group elements. Ours is the first practical publicly-verifiable scheme
having only 19 elements of ciphertext overhead. Our scheme is also secure under
the SXDH assumption with only a O(logQ) loss in security reduction, where Q
is the total number of (multi-challenge, multi-user) encryption-oracle requests by
the adversary. CCA2-secure PKE and its variants that encrypt long messages
have further applications, such as UC commitments, and we refer the reader
to [LPJY15] for a good introduction.

Table 1. Comparison of tightly-secure public-key encryption schemes when the un-
derlying assumptions are set to minimum ones, SXDH or DDH. Sizes count the
number of group elements and (n1, n2) denotes n1 and n2 elements in G1 and G2,
respectively. Column ‘Pairings?’ shows necessity of pairing groups. SAE stands for
symmetric authenticated encryption.

|pk| |ct| − |m| Verifiabilty Pairings? Sec. Loss Assumption
[GHKW16] O(λ) 3 private no O(λ) DDH
[Hof17] 28 6 private yes O(λ) DLIN
[GHK17] 6 3 private no O(λ) DDH+SAE
Ours §5.1 (19, 4) (16, 6) public yes O(logQ) SXDH

As a second application, we show that our designated-prover variant of
structure-preserving USS-QA-NIZK from Section 5.2 yields an SPS scheme with
the shortest signature size in the literature. Recall that unbounded simulation-
soundness guarantees that it is hard to create a valid proof for any no-instances
taken out of the legitimate subspace even after seeing simulated proofs for (also
no-) instances of one’s choice. If we look at the simulation trapdoor as a secret-
key and the simulated proofs as signatures, the USS-QA-NIZK can be considered
as a signature scheme for message space consisting of no-instances, and the notion
of unbounded simulation-soundness is exactly the same as existential unforge-
ability against adaptive chosen-message attacks. As formally proven in [AAO18],
for bringing this idea to reality, we need an efficient mapping from desired mes-

5 This requires adapting our USS-QA-NIZK to the multi-language USS-QA-NIZK
described in [LPJY15], but our scheme readily adapts to that.
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sage space to these no-instances. Since our USS-QA-NIZK allows simulation
of fake proofs and we present a simple and efficient construction of injective
mapping from a sequence of group elements to no-instances, this construction
suffers no overhead for unilateral messages. This, along with the more efficient
(designated-prover) USS-QA-NIZK gives us the shortest SPS known under the
SXDH assumption, and with only a O(logQ) factor loss in security-reduction
(see Table 2).

Table 2. Comparison with existing SPS schemes for unilateral messages when as-
sumptions are set to minimal ones. Columns labeled as |M |, |σ|, and |pk| show num-
ber of group elements in a message, a signature and a public key. For [HJ12], the
parameter d limits number of signing queries to 2d.

|M | |σ| |pk| Sec. Loss Assumption
[HJ12] 1 10d+ 6 13 8 DLIN

[ACD+12] (n1, 0) (7, 4) ( 5, n1 + 12) O(Q) SXDH, XDLIN
[LPY15] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLIN

[KPW15] (n1, 0) (6, 1) ( 0, n1 + 6) O(Q2) SXDH
[JR17] (n1, 0) (5, 1) ( 0, n1 + 6) O(Q logQ) SXDH

[AHN+17] (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH
[JOR18] (n1, 0) (11, 6) ( 7, n1 + 16) O(λ) SXDH
[GHKP18] (n1, 0) (8, 6) ( 2, n1 + 9) O(logQ) SXDH
Ours (§5.2) (n1, 0) (6, 6) (10, n1 + 10) O(logQ) SXDH

Next, combining the above two applications, we give the first (almost) tightly-
secure CCA-anonymous dynamic group signature scheme with compact signa-
ture sizes and compact public keys under standard assumptions. Our schemes can
be given in both asymmetric pairings groups and symmetric pairing groups un-
der the Dk-mddh assumption. We also instantiate a generic structure-preserving
blind signature scheme of [Fis06] using our SPS to get an (almost) tight round-
optimal scheme under Dk-mddh with compact signature size, whereas previous
schemes in standard model were based on non-static assumptions [Fuc09,AO09b].
Finally, our (almost) tight CCA2-secure PKE scheme along with the generic con-
struction of [CCS09], leads to a first (almost) tightly-secure unbounded simulation-
sound Groth-Sahai NIZK proof system with compact CRS and proofs.

Acknowledgments and updates. We are indebted to Jiaxin Pan, who dis-
covered an attack on an earlier version of this paper which appears in the pro-
ceedings of Asiacrypt 2018 [AJOR18]. This version fixes the protocol and the
proof.

We thank the anonymous reviewers for detailed and insightful feedback on
the paper. We especially thank Carla Ràfols for her significant effort in helping
us revise the paper.

2 Preliminaries

We will consider cyclic groups G1,G2 and GT of prime order q, with an efficient
bilinear map e : G1×G2 → GT . Group elements g1 and g2 will typically denote
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generators of the group G1 and G2 respectively. Following [EHK+13], we will use
the notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively
and use additive notations for group operations. When talking about a general
group G with generator g, we will just use the notation [a] to denote ag. The
notation generalizes to vectors and matrices in a natural component-wise way.

For two vector or matrices A and B, we will denote the product A>B as
A ·B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
in the target group with pairing as multiplication and target group operation as
addition.

2.1 Matrix-DDH Assumptions and Boosting

We recall the Matrix Decisional Diffie-Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Zl×kq which is full-ranked with overwhelming
probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Zkq and s′ ← Zlq, the tuple ([A], [As]) is computationally indis-
tinguishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by
Dk.

It was shown in [JR16] that a Dk-MDDH assumption can be boosted to
generate additional (computationally) independently random elements.

For an l× k matrix A, we denote Ā to be the top k× k square sub-matrix of
A and A to be the bottom (l − k)× k sub-matrix of A.

Theorem 1 (Boosting [JR16]). Let Dk be a matrix distribution on Z(k+1)×k
q .

Define another matrix distribution Dl,k on Zl×kq as follows: First sample matri-

ces A ← Dk and R ← Z(l−k)×k
q and then output

(
Ā
R

)
. Then the Dk-MDDH

assumption implies the Dl,k-MDDH assumption with an (l − k) security reduc-
tion.

They called boosting to be the process of stretching Dk to Dl,k as above. In
our construction we will need to boost Dk to D2k,k.

2.2 Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Each witness relation R defines a corresponding
language L which is the set of all words x for which there exists a witness w,
such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.

For our USS-QA-NIZK construction we will also need a property called true-
simulation-soundness. We recall the definitions of these concepts below.
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Definition 1 (QA-NIZK [JR13]). We call a tuple of efficient algorithms
(pargen, crsgen, prover, ver) a quasi-adaptive non-interactive zero- knowledge (QA-
NIZK) proof system for witness-relations Rη = {Rρ} with parameters sampled
from a distribution D over associated parameter language Lpar, if there exist sim-
ulators crssim and sim such that for all non-uniform PPT adversaries A1,A2,A3,
we have (in all of the following probabilistic experiments, the experiment starts
by setting η as η ← pargen(1λ), and choosing ρ as ρ← Dη):

Quasi-Adaptive Completeness:

Pr

crs← crsgen(η, ρ)
(x,w)← A1(crs, ρ)
π ← prover(crs, x, w)

:
ver(crs, x, π) = 1 if

Rρ(x,w)

 = 1

Quasi-Adaptive Soundness:

Pr

[
crs← crsgen(η, ρ)
(x, π)← A2(crs, ρ)

:
x /∈ Lρ and

ver(crs, x, π) = 1]

]
≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
crs← crsgen(η, ρ) : Aprover(crs,·,·)3 (crs, ρ) = 1

]
≈

Pr
[
(crs, trap)← crssim(η, ρ) : Asim

∗
(crs,trap,·,·)

3 (crs, ρ) = 1
]
,

where sim∗(crs, trap, x, w) = sim(crs, trap, x) for (x,w) ∈ Rρ and both oracles
(i.e. prover and sim∗) output failure if (x,w) 6∈ Rρ.

Definition 2 (True-Simulation-Sound [Har11]). A QA-NIZK is called true
-simulation-sound if soundness holds even when an adaptive adversary has ac-
cess to simulated proofs on language members. More precisely, for all PPT A,

Pr

[
(crs, trap)← crssim(η, ρ)

(x, π)← Asim(crs,trap,·,·)(crs, ρ)
:

x 6∈ Lρ and
ver(crs, x, π) = 1

]
≈ 0,

where the experiment aborts if the oracle is called with some x 6∈ Lρ.

The construction of [JR14] yielded k element proofs of any linear subspace
language membership and [KW15] generalized it to any Dk-mddh assumption.
Both constructions are true-simulation-sound.

We now define the unbounded simulation-soundness (USS) property, which
we seek to achieve in this paper. The prover and verifier can additionally accept
a label which is bound to the proof.

Definition 3 (Unbounded Simulation-Soundness). A QA-NIZK is called
(labeled) unbounded simulation sound if soundness holds even when an adap-
tive adversary has access to simulated proofs on arbitrary words of its choice.
More precisely, for all PPT A,

Pr

[
(crs, trap)← crssim(η, ρ)

(x, lbl, π)← Asim(crs,trap,·,·)(crs, ρ)
:
x 6∈ Lρ ∧ (x, lbl) /∈ Q
ver(crs, x, π, lbl) = 1

]
≈ 0,
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where the set Q records (word, label) tuples queried to the simulator.

A stronger notion called Enhanced Unbounded Simulation-Soundness in the
multi-CRS setting was formalized by [LPJY15], where soundness holds even if
the discrete logs of the language are given to the adversary and the adversary
has access to multiple CRS-es and corresponding oracles. We note that our
construction satisfies this property as well.

Our main construction is also Structure-Preserving as the CRS and proof
elements are all in the base groups of the bilinear map and verification consists
only of pairing product equations.

2.3 Public-Key Encryption Schemes

Let GEN be an algortihm that, on input security parameter λ, outputs par that
includes parameters of pairing groups.

Definition 4 (Public-key encryption). A Public-Key Encryption (PKE) scheme
consists of probabilistic polynomial-time algorithms PKE := (KeyGen,Enc,Dec):

– Key generation algorithm KeyGen(par) takes par← GEN(1λ) as input and gen-
erates a pair of public and secret keys (pk, sk). Message spaceM is determined
by pk.

– Encryption algorithm Enc(pk,M) returns a ciphertext ct.
– Decryption algorithm Dec(sk, ct) is deterministic and returns a message M.

For correctness, it must hold that, for all par← GEN(1λ), (pk, sk)← KeyGen(par),
messages M ∈M, and ct← Enc(pk,M), Dec(sk, ct) = M.

Definition 5 (IND-mCPA Security [BBM00]). A PKE scheme PKE is indis-
tinguishable against multi-instance chosen-plaintext attack (IND-mCPA-secure)
if for any qe ≥ 0 and for all ppt adversaries A with access to oracle Oe at most
qe times the following advantage function Advmcpa

PKE (A) is negligible,

Advmcpa
PKE (A) :=

∣∣∣∣Pr

[
b′ = b

∣∣∣∣par← GEN(1λ); (pk, sk)← KeyGen(par);
b← {0, 1}; b′ ← AOe(·,·)(pk)

]
− 1

2

∣∣∣∣ ,
where Oe(M0,M1) runs ct∗ ← Enc(pk,Mb), and returns ct∗ to A.

There exist public-key encryption schemes that are structure-preserving,
IND-mCPA secure, and have tight reductions based on compact assumptions. Ex-
amples are ElGamal encryption [ElG84] and Linear encryption [BBS04] based
on the DDH assumption and the Decision Linear assumption, respectively. In
particular, we will use the scheme of [EHK+13], which is based on the Dk-mddh
assumption. We will use the linear homomorphic property of this PKE in the
construction - adding the ciphertexts implicitly adds the underlying plaintexts.

We now recall the definition of IND-CCA2 secure public key encryption
scheme in the multi-challenge multi-user setting [BBM00], where the par are
shared by multiple users while generating their own keys using KeyGen.
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Definition 6 (Multi-CCA [BBM00] (or see [LPJY15])).
A public-key encryption scheme is (µ, qe)-IND-CCA secure, for integers µ, qe ∈

poly(λ), if no PPT adversary has non-negligible adavantage in the following
game:

1. The challenger first generates par ← GEN(1λ) and runs (sk(i), pk(i)) ←
KeyGen(par) for i = 1 to µ. It gives {pk(i)}µi=1 to the adversary A and

retains {sk(i)}µi=1. In addition, the challenger initializes a set D ← φ and a
counter jq ← 0. Finally, it chooses a random bit d← {0, 1}.

2. The adversary A adaptively makes queries to the following oracles on mul-
tiple occasions:
– Encryption query: A chooses an index i ∈ [1..µ] and a pair (M0,M1)

of equal length messages. If jq = qe, the oracle returns ⊥. Otherwise, it

computes C ← Enc(pk(i),Md) and returns C. In addition, it sets D :=
D ∪ {(i, C)} and jq := jq + 1.

– Decryption query: A can also invoke the decryption oracle on arbitrary
chiphertexts C and indices i ∈ [1..µ]. If (i, C) ∈ D, the oracle returns ⊥.

Otherwise, the oracle returns M ← Dec(sk(i), C), which may be ⊥ if C is
an invalid ciphertext.

3. The adversary A outputs a bit d′ and is deemed successful if d′ = d. As usual,
A’s advantage is measured as the distance Advmcca(A) = |2 Pr[d′ = d]− 1|.

2.4 Structure-Preserving Signatures

Let GEN be a common parameter generation algorithm that outputs par for
given security parameter λ.

Definition 7 (Structure-Preserving Signature). A structure-preserving sig-
nature scheme SPS is a triple of probabilistic polynomial time (PPT) algorithms
SPS = (KeyGen,Sign,Verify):

– Key generation algorithm KeyGen(par) takes common parameter par and re-
turns a public/secret key, (pk, sk), where pk ∈ Gnpk for some npk ∈ poly(λ).
It is assumed that pk implicitly defines a message space M := Gn for some
n ∈ poly(λ).

– Signing algorithm Sign(sk,M) takes secret key sk and a message M ∈ M as
input and returns a signature σ ∈ Gnσ for nσ ∈ poly(λ).

– Verification algorithm Verify(pk,M, σ) takes public key pk, message M ∈M,
and signature σ and outputs 1 or 0. It only evaluates group membership op-
erations and pairing product equations.

Perfect correctness holds if for all (pk, sk) ← KeyGen(par) and all messages
M ∈M and all σ ← Sign(sk,M) we have Verify(pk,M, σ) = 1.

Definition 8 (Existential Unforgeability against Chosen Message At-
tack). To an adversary A and scheme SPS we associate the advantage function:

Advcma
SPS(A) := Pr

par← GEN(1λ)
(pk, sk)← KeyGen(par)
(M∗, σ∗)← ASignO(·)(pk)

:
M∗ /∈ Qmsg and

Verify(pk,M∗, σ∗) = 1
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where SignO(M) runs σ ← Sign(sk,M), adds M to Qmsg (initialized with ∅)
and returns σ to A. An SPS is said to be (unbounded) EUF-CMA-secure if for
all PPT adversaries A, Advcma

SPS(A) is negligible.

3 The New (Almost) Tightly-Secure USS-QA-NIZK

The new USS-QA-NIZK scheme is formally described in Figure 1, with the CRS
and proof simulators described in Figure 2. While a brief overview of the new
scheme was given in the introduction, we now describe it in more detail.

We essentially combine techniques from the USS-QA-NIZK scheme of Kiltz
and Wee [KW15] and the tightly secure SPS scheme of Jutla, Ohkubo and
Roy [JOR18]. Following [KW15], we encrypt a basic QA-NIZK proof of the
given word y = [Mx]1 using an augmented ElGamal encryption scheme:

ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := x>[p1]1 + r>[p2]1

Notice that unlike [KW15], we did not use an integer tag in the encryption.
This helps us keep the construction structure preserving. Now we extend this
tuple with elements which enable adaptive partitioning as in [JOR18]. This in-
cludes a double ElGamal encryption of a bit z, along with a QA-NIZK proof of
equality of plaintexts. In addition, there is an OR-NIZK proof Π0 that proves
either (ρ, ρ̂) is consistent, or that z is same as a bit x which is given encrypted
in the public key. Intuitively, in several games in the proof, the OR proof enables
us to randomize the ciphertexts in the partitions where the disjunct z = x holds,
while restricting the adversary to attempt a win only in the other partitions. In
addition to the blueprint of [JOR18], we also need an encryption of a random
element w in the CRS. The secret w will only be given to the simulator in some
of the security games where it can provide an alternative (real) proof to another
OR-NIZK Π3 which proves that the given word is in the language, or that it can
give another encryption ctv of w. Intuitively, these extra elements are provided
to introduce a seed randomness into γ in one of the hybrids. While in [JOR18],
the seed randomness could be held private in the signing key, in a NIZK we
need to hide it in the public CRS. Finally, we also include a QA-NIZK Π2 certi-
fying that (ρ, ρ̂, γ, ctv) is well-formed. Instantiations of OR-NIZKs are given in
Section 4.

The (almost) tight security of this scheme is proved in the next section. We
prove that this construction has an O(logQ) reduction to Dk-mddh, where Q
is the number of simulated proofs given out. To prove O(logQ) reduction, we
follow the partitioning strategy of [GHKP18], where the partition is done on the
bits of the query index i, instead of a random function applied to the argument.
In Section 3.2, we provide another construction which builds upon this one and
additionally takes a label as an input, which is useful for some applications like
CCA-secure PKE. Finally, in Section 3.3, we describe some optimizations which
reduce the size of the proofs even further.
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crsgen (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ) :

Boost the given distribution Dk+1,k to D2k,k.
Sample B← D2k,k-mddh and (k1, k2, k3)← Zn

q × Zk
q×Zn

q .

Set p1 := M>k1 , p3 := M>k3 and p2 := B̄
>
k2.

Sample (crsip,crs
i
v) ← Πi.crsgen(q,G1,G2,GT , e, [1]1, [1]2, ·) for i ∈ [0-3], with

parameters described below.

Sample (pki, ski)← PKE.KeyGen(G1) for i ∈ [3].
Sample rx ← Zk

q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).
Sample (k0, rw)← Zq × Zk

q . Set w := k0 and ctw := PKE.Enc(pk3, w; rw).
Let crh be a collision resistant hash from {0, 1}∗ to Zq.

Set crsp := (crs
[0−3]
p , [B]1, [p[1..3]]1, pk[1..3], ctx, ctw).

Set crsv := (crs
[0−3]
v , [B]1, [p[1..3]1, pk[1..3], ctx, ctw).

Return (crsp,crsv).

prover (crsp, y = [Mx]1, x):
Sample (r, r1z, r

2
z, rv)← Zk

q × Zk
q × Zk

q × Zk
q .

Set ρ := [B̄r]>1 , ρ̂ := [Br]>1 , .

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set v := 0, ctv := PKE.Enc(pk3, v; rv).

Set π0 := Π0.prover(crs
0
p, (ρ, ρ̂, ct1z, ctx), (r, 0, 0, 0)).

Set π1 := Π1.prover(crs
1
p, (ct1z, ct

2
z), (0, r1z, r

2
z)).

Set π3 := Π3.prover(crs
3
p, (y, ctw, ctv), (x, 0, 0, 0)).

Set τ = crh(ρ, ρ̂, ct1z, ct
2
z, ctv, π0, π1, π3).

Set γ := x>[p1 + τp3]1 + r>[p2]1
Set π2 := Π2.prover(crs

2
p, (y,ρ, ρ̂, γ, ctv, tag = τ), (x, r, 0, rv)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, ctv, π0, π1, π2, π3).

ver (crsv, y, π) :
Set τ = crh(ρ, ρ̂, ct1z, ct

2
z, ctv, π0, π1, π3, lbl).

Check all the NIZK proofs:
Π0.ver(crs

0
v, (ρ, ρ̂, ct1z, ctx), π0) and Π1.ver(crs

1
v, (ct1z, ct

2
z), π1)

and Π2.ver(crs
2
v, (y,ρ, ρ̂, γ, ctv, tag = τ), π2) and Π3.ver(crs

3
v, (y, ctw, ctv), π3).

Languages:

Π0 is an OR-NIZK for L0
def
= {(ρ, ρ̂, ct1, ct2) | ∃(r,m, r1, r2) : (ρ = [B̄r]>1 and ρ̂ =

[Br]>1 ) or (ct1 = PKE.Enc(pk1,m; r1) and ct2 = PKE.Enc(pk1,m; r2))}. Instanti-
ation is given in Fig. 5.

Π1 is a QA-NIZK for L1
def
= {(ct1, ct2) | ∃(m, r1, r2) : ct1z =

PKE.Enc(pk1,m; r1) and ct2 = PKE.Enc(pk2,m; r2)}, with parameters (pk1, pk2).
Instantiations as in [JR14,KW15].

Π2 is a QA-NIZK for L2
def
= {(y,ρ, ρ̂, γ, ct, tag = τ) | ∃(x, r, v, rv) : y =

[Mx]1 and ρ = [B̄r]>1 and ρ̂ = [Br]>1 and γ = x>[p1 + τp3]1 + r>[p2]1 +
[v]1 and ct = PKE.Enc(pk3, v, rv)}, with parameters ([M]1, [B]1, [p[1−2]]1, pk3).
Instantiations as in [JR14,KW15].

Π3 is an OR-NIZK for L3
def
= {(y, ct1, ct2) | ∃(x,m, r1, r2) : y = [Mx]1 or (ct1 =

PKE.Enc(pk3,m; r1) and ct2 = PKE.Enc(pk3,m; r2))}. Instantiation is given in
Fig. 5.

Fig. 1. Tightly-secure USS-QA-NIZK Π.



crssim (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ) :

Boost the given distribution Dk+1,k to D2k,k.
Sample B← D2k,k-mddh and (k1, k2)← Zn

q × Zk
q .

Set p1 := M>k1 and p2 := B̄
>
k2.

Sample (crsip,crs
i
v)← Πi.crsgen(q,G1,G2,GT , e, [1]1, [1]2, ·) for i ∈ [0-1].

Sample (crsip,crs
i
v, trap

i)← Πi.crssim(q,G1,G2,GT , e, [1]1, [1]2, ·) for i ∈ [2-3].

Sample (pki, ski)← PKE.KeyGen(G1) for i ∈ [3].
Sample rx ← Zk

q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).
Sample (k0, rw)← Zq × Zk

q . Set w := k0 and ctw := PKE.Enc(pk3, w; rw).

Set crsp := (crs
[0−3]
p , [B]1, [p[1−2]]1, pk[1−3], ctx, ctw).

Set crsv := (crs
[0−3]
v , [B]1, [p[1−2]]1, pk[1−3], ctx, ctw).

Set trap := (k1, trap
[2−3])

Return (crsp,crsv, trap).

sim (crsp, trap, y):
Sample (r, r1z, r

2
z, rv)← Zk

q × Zk
q × Zk

q × Zk
q .

Set ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := y>k1 + r>[p2]1.

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set v := 0, ctv := PKE.Enc(pk3, v; rv).

Set π0 := Π0.prover(crs
0
p, (ρ, ρ̂, ct1z, ctx), (r, 0, 0, 0)).

Set π1 := Π1.prover(crs
1
p, (ct1z, ct

2
z), (0, r1z, r

2
z)).

Set π2 := Π2.sim(crs2p, trap2, (y,ρ, ρ̂, γ, ctv)).
Set π3 := Π3.sim(crs3p, trap3, (y, ctw, ctv)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, ctv, π0, π1, π2, π3).

Fig. 2. CRS and Proof simulators for Π.
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3.1 Security of the USS-QA-NIZK Scheme

In this section we state and prove the security of the USS-QA-NIZK scheme Π
described in Figure 1, with simulators described in Figure 2.

Theorem 2. For any efficient adversary A, which makes at most Q simulator
queries before attempting a forged proof, its probability of success (advussΠ (Q))
in the USS game against the scheme Π is at most

advtssΠ2
+ 2 · advzkΠ3

+ 12L · advtssΠ1
+ (12L+ 1)advzkΠ0

+(4L+ 2) · advmcpa
PKE + 8L · advD2k,k-mddh +

6L+Q

q

Here L is the least integer greater than the bit size of Q and hence is O(logQ).

Remark 1. advtssΠi of a QA-NIZK Πi reduces to Dk-mddh by a factor of (n− t)
where the (affine) linear subspace language is of dimension t within a full space

of dimension n. Also, advzkΠi of an OR-NIZK Πi reduces to Dk-mddh by a factor
of 1. Finally, D2k,k-mddh reduces to Dk-mddh by a factor of k by boosting (See
Section 2.1). Thus the overall reduction in Theorem 2 to Dk-mddh is O(logQ).

Proof Intuition. At the highest level, we go through a sequence of games (0-4),
starting from Game 0 which is the NIZK simulator of Figure 2 playing against
a USS adversary and ending with Game 4, where the adversary has information
theoretically negligible chance of winning. We start off with introducing a ran-
dom mask k0 into the γ components of the simulated proofs in Game 1. Then
in going from Game 2 to Game 3, the γ component is masked with an inde-
pendently random element which depends on the query number. Then finally
in Game 4, the quantity k1 is shifted by a random vector in the kernel of the
language matrix M. This still keeps the CRS unchanged and since the simulated
proofs have been masked by independently random elements, they are also inde-
pendent of this random kernel vector. However, the random kernel vector shows
up in the winning condition of Game 4 and makes it statistically hard for the
adversary to satisfy verification with a non-member word.

Going from Game 2 to 3 requires another set of hybrid games in which we
independently randomize the mask elements going into the γ’s, starting from
the same mask k0 for all the simulated proofs. The games proceed based on the
bits of the query number i. In every hybrid j, which runs from 0 to L(= logQ),
the mask depends on the first j bits of the bit-string representation of i. The
mask function is inductively defined as follows:

rfj(i|j)
def
=

{
rfj−1(i|j−1), if (ij = β)
rf′j−1(i|j−1), if (ij 6= β)

}
,

where rfj is a random function from {0, 1}j to Zq, and β is a bit which is freshly
sampled in each hybrid. rf′j−1 is another independently random function from

{0, 1}j−1 to Zq. The 0-th hybrids start as Game 2 with the k0 mask, which is
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the value of rf0(ε). The L-th hybrids end in Game 3 with the mask depending
on all the bits of i, hence independently random for each query.

The adaptive partitioning technique of [Hof17,GHKP18] helps us switching
from rfj−1 to rfj with a constant number of MDDH reductions. Essentially, in
the j-th hybrid, the j-th bit of i induces two partitions of the message space: (1)
where the bit is β, soundness is enforced to hold in the winning condition and
(2) where the bit is 1 − β, all such simulated proofs can be switched in one go
with a constant number of MDDH transitions. Formal details follow.

Proof. We go through a sequence of Games G0 to G3 which are described below
and summarized in Figure 3. In the following, Pri[X] will denote probability
of predicate X holding in probability space defined in game Gi and WINi will
denote the winning condition for the adversary in game Gi.

Game G0: This game exactly replicates the simulator construction to the ad-
versary. So the adversary’s advantage in G0 (defined as WIN0 below) is the USS
advantage we seek to bound.

WIN0
4
= (y∗ 6∈ {yi}i ∪ span([M]1)) and ver(crsv, y

∗, π∗)

Game G0.2: In this game, the challenger first moves to simulation mode for
Π0, so that r is not explicitly required for computing π0. Next it uses IND-CPA
security to change v in each of the simulated-proof-queries from 0 to k0. Note,
there is no decryption going on at this point, i.e., p2 and sk3 are not being used,
and hence CPA-security suffices.

Game G0.3: In this game, the challenger moves to binding mode for Π3 and
uses witness (rw, rv) for the second disjunct in each simulated-proof-query.

Game G1: The challenge-response in this game is the same as G0. The winning
condition is now defined as:

WIN1
4
= WIN0 and π∗ = (ρ∗, ρ̂∗, γ∗, · · · ) :

∃θ :

{
γ∗ = y∗>(k1+τk3) + [θ]1 + ρ∗k2

and (θ ∈ Z or y∗ ∈ span([M]1))

}
and (ρ∗‖ρ̂∗)> ∈ span([B]1),

where Z is the singleton set {k0} . Hence, the difference in advantages of the
adversary is upper bounded by the unbounded true-simulation-soundness of Π2

(and the soundness of Π3). Here, we use the crucial fact, that if a QA-NIZK is
defined for a language L, i.e. is sound for a language L, then it is true-simulation
sound for any language L′ which is a superset of L, as long as all simulated proofs
are for elements from L′. Thus, consider the language L′ defined as follows:

L′ def
=


(y,ρ, ρ̂, γ, ct) | ∃(m, r, rv, v) :

y = [Mm]1 and ρ> = [B̄r]1 and ρ̂> = [Br]1
and γ = [(Mm)>(k1 + τk3) + v + r>k2]1

and ct = PKE.enc(pk, v; rv)

 ,
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crssim() : · · ·

Games 0, 0.3-1.1 crs0 ← Π0.crsgen()

Games 0.2, 2-4 (crs0, trap0)← Π0.crssim()

Game 0-0.3 crs1 ← Π1.crsgen()

Games 1-4 (crs1, trap1)← Π1.crssim()

Game 0.3-1 crs3 ← Π3.crsgen()

Games 0-0.2, 1.1-4 (crs3, trap3)← Π3.crssim()

Sample (k′1, u)← Zn
q × Zn−t

q

Games 0-3 Set k1 := k′1

Game 4 Set k1 := k′1 + M⊥u

Games 0-1 Set w := k0

Game 1.1-4 Set w := 0

· · ·

sim(yi ∈ Gn
1 ) : · · ·

Set (v,ρi, ρ̂i, γi) :=

Game 0 (0, [B̄ri]>1 , [Bri]>1 , yi>k1 + ρik2)

Games 0.2-2 (k0, [B̄r
i]>1 , [Bri]>1 , yi>k1 + [k0]1 + ρik2)

Game 3 (k0, [B̄r
i]>1 , [Bri]>1 , yi>k1 + [rfL(i)]1 + ρik2)

Game 4 (k0, [B̄r
i]>1 , [Bri]>1 , yi>k′1 + yi>M⊥u + [rfL(i)]1 + ρik2)

· · ·

WIN
def
= π∗ = (ρ∗, ρ̂∗, γ∗, ct1∗z , ct

2∗
z , ct

∗
v, π
∗
0 , π
∗
1 , π
∗
2 , π
∗
3) :

(y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y∗, π∗)

Games 1-3 and ∃θ ∈ Z : γ∗ = y∗>k1 + [θ]1 + ρ∗k2

Game 4 and ∃θ ∈ Z : γ∗ = y∗>k′1 + y∗>M⊥u + [θ]1 + ρ∗k2

Games 1-4 and (ρ∗‖ρ̂∗)> ∈ span([B]1)

Fig. 3. Top level games and winning conditions
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with parameters ([B]1, [k1]1, [k2]1, pk). We therefore have:

|Pr1[WIN1]− Pr0[WIN0]| ≤ advtssΠ2
(1)

Since the condition WIN0 has a conjunct that y∗ is not in span of [M]1, we
can equivalently state the winning condition as:

WIN1
4
= WIN0 and π∗ = (ρ∗, ρ̂∗, γ∗, · · · ) :

∃θ ∈ Z : γ∗ = y∗>(k1 + τk3) + [θ]1 + ρ∗k2

and (ρ∗‖ρ̂∗)> ∈ span([B]1).

Game G1.1: In this game the Challenger moves to hiding CRS forΠ3. The proofs
for Π3 in each of the simulated-proof queries are generated without witness now.
Next, using IND-CPA security of PKE.enc it sets w = 0 in cw. Note, v in each
of the simulated proofs still remains k0.

The indistinguishablity of the games follows by IND-CPA of PKE and ZK of
Π3.

Game G2: In this game, Π0 is switched from real mode to simulation mode.
The winning condition WIN2 remains the same as WIN1. Indistinguishability

follows by the ZK property of Π0:

|Pr2[WIN2]− Pr1[WIN1]| ≤ advzkΠ0
(2)

Game G3: In this game, the challenger also lazily maintains a function rfL
mapping (L = logQ)-bit strings to Zq. The function rfL has the property that
it is a random and independent function from L-bit strings to Zq. In G3, each
signature component γi is generated as yi>k1 + [rfL(i)]1 + ρik2, instead of
yi>k1 + [k0]1 + ρik2 The winning condition WIN3 remains the same as WIN2.
The set Z is now defined as

Z = {rfL(i)}i∈[Q].

To be precise, the WIN condition is now

WIN1
4
= WIN0 and π∗ = (ρ∗, ρ̂∗, γ∗, · · · ) :

∃θ ∈ Z : γ∗ = y∗>(k1 + τk3) + [θ]1 + ρ∗k2

and (ρ∗‖ρ̂∗)> ∈ span([B]1),

where Z is {rfL(i)}i∈[Q].

Lemma 1. Pr2[WIN2] ≤ Pr3[WIN3]+

12L · advtssΠ1
+ 8L · advD2k,k-mddh

+12L · advzkΠ0
+ 4L · advmcpa

PKE +
6L

q
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We will prove this lemma in Appendix A.

Game G4: In this game, the challenger samples (k′1,u)← Znq × Zn−tq ,(k′3, v)←
Znq ×Zn−tq and generates k1 ( and k3) differently as k′1 +M⊥u (k′3 +M⊥v resp.,

where M⊥ is a Zt×(n−t)
q matrix such that M>M⊥ = 0t×(n−t). Observe that the

public key component [p]1 becomes [M>k1]1 = [M>k′1]1. So u does not show up
in the public key. Similarly, v does not show up in the public key.

Consequently, the computations of γi’s are changed to yi>(k′1+τk′3)+ yi>M⊥(u+
τv) + [rfL(i)]1 + ρik2. Also, the winning condition check on γ∗ is modified ac-
cordingly to

∃θ ∈ Z : γ∗ = y∗>(k′1 + τ∗k′3) + y∗>M⊥(u + τ∗v) + [θ]1 + ρ∗k2.

We now claim that Pr3[WIN3] ≤ Q/q. We prove this claim by employing the
union bound, and prove that for each simulated-proof-query j, the probability of
WIN3 holding with θ = rfL(j) is at most 1/q. Now, observe that each entry in
Z is absent from the public key as well as from all the simulated proofs, except
at most one response by the property of rfL. For all queries i 6= j, we observe
that rfL(i) is uniformly random and independent of both k0 and rfL(j). So all
the γi-s, for i 6= j, might as well be sampled independently and randomly.

Coming back to the j-th query, let k∗ = rfL(j). Now either y∗ − yj 6∈
span([M]1), in which case [k∗]1 +y∗>M⊥u is uniformly random and independent
of [k∗]1yj>M

⊥u, or else y∗ − yj ∈ span([M]1). In the latter case, because of the
collision-resistance property of crh, we can assume that τ∗ 6= τ j . Then, given that
y∗ 6∈ span([M]1), the quantity (τ∗−τ j)y∗>M⊥v is random and independent of all
other quantities. Thus, In either caee, the probability of the adversary producing
γ∗−ρ∗k2 = y∗>(k′1 + τ∗k′3)+ y∗>M⊥(u+ τ∗v) + [k∗]1 is bounded in probability
by 1/q:

Pr3[WIN3] ≤ Q/q.

3.2 Labeled USS-QA-NIZK Scheme

We now consider an extension of our scheme which additionally takes a label as
an input. The construction is given in Figure 4 and since this it is very similar
to the one given earlier, we only point out the essential points of difference. The
scheme uses a similar augmented ElGamal encryption of a basic QA-NIZK proof:

ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := x>[p1]1 + r>[p2 + τp3]1

The additional part is a tagged component reminiscent of the Cramer-Shoup
CCA2 encryption scheme [CS02], where τ is a collision resistant hash on the rest
of the proof components. Rest of it is fairly similar to the earlier construction.
Unfortunately, this construction is no longer structure-preserving due to the tag
computation.
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Theorem 3. For any efficient adversary A, which makes at most Q simulator
queries before attempting a forged proof, its probability of success (advussΠ′ (Q))
in the USS game against the scheme Π ′ is at most (Here L is logQ):

advtssΠ2
+ 2 · advzkΠ3

+ 12L · advtssΠ1
+ (12L+ 1)advzkΠ0

+(4L+ 2) · advmcpa
PKE + 8L · advD2k,k-mddh +

6L+Q

q

3.3 Optimizations

In this section, we describe two optimizations which reduce the size of the proofs
further by 2k elements under the Dk-mddh assumption.

ElGamal Encryption with Common Randomness. As described in [AHN+17],
the randomnesses r1z and r2z of ciphertexts ct1z and ct2z can be shared and merged
into a single k-element rz. In more details, let’s say ct1z = ([Ā1r1z]1, [z + A1r

1
z]1)

and ct2z = ([Ā2r2z]1, [z + A2r
2
z]1), which are encryptions of z under public keys

[A1]1 and [A2]1. Then instead of computing the ciphertexts independently, we
can merge them into ([Ā1rz]1, [z+A1rz]1), [z+A2rz]1). This saves us k elements.
Importantly, we can still enable transitions where we can expose the decryption
key of one system, while switching the plaintext of the other.

Merge QA-NIZKs in the Same Group. The reason we did not combine Π1 and
Π2 is that we needed to use the true-simulation-soundness of one system, while
producing proofs over fake instances with the other. However, we show in Ap-
pendix C, that we can still merge the proofs into one proof over the combined lin-
ear system, and still be independently able to use the true-simulation-soundness
of its parts. This saves us k elements from Π.

In more details, let the combined language be defined by the matrix M =(
Mn1×t

1

Mn2×t
2

)
, where both n1 and n2 are greater than t. What we show is, pro-

vided the words corresponding to [M1]1 are not faked then even if the words
corresponding to [M2]1 are faked, true-simulation-soundness holds for the [M1]1
components.

4 NIZK for Disjunction of Linear Subspaces

We have critically used an “OR”-NIZK in our USS-QA-NIZK construction. In
this section we describe three flavors of OR-NIZKs. The first one is a standard
NIZK where both the prover and verifier are public algorithms. The second one
is a designated prover system where only the verifier is public - this flavor is use-
ful for signature schemes where the signing key is held private. The final one is a
designated verifier system where the prover is public, but the verifier is private -
this is useful in public-key encryption schemes where the public encryption algo-
rithm is required to prove consistency, but only the private decryption algorithm
needs to check a proof.
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crsgen (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ) :

Boost the given distribution Dk+1,k to D2k,k.
Sample B← D2k,k-mddh and (k1, k2, k3)← Zn

q × Zk
q × Zk

q .

Set p1 := M>k1, p2 := B̄
>
k2 and p3 = B̄

>
k3.

Sample (crsip,crs
i
v)← Πi.crsgen(q,G1,G2,GT , e, [1]1, [1]2, ·) for i ∈ [0-3].

Sample (pki, ski)← PKE.KeyGen(G1) for i ∈ [3].
Sample rx ← Zk

q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).
Sample (k0, rw)← Zq × Zk

q . Set w := k0 and ctw := PKE.Enc(pk3, w; rw).
Let crh be a collision resistant hash from {0, 1}∗ to Zq.

Set crsp := (crs
[0−3]
p , [B]1, [p[1−3]]1, pk[1−3], ctx, ctw, crh).

Set crsv := (crs
[0−3]
v , [B]1, [p[1−3]]1, pk[1−3], ctx, ctw, crh).

Return (crsp,crsv).

prover (crsp, y = [Mx]1, x, label lbl):
Sample (r, r1z, r

2
z, rv)← Zk

q × Zk
q × Zk

q × Zk
q .

Set ρ := [B̄r]>1 , ρ̂ := [Br]>1 .

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set v := 0, ctv := PKE.Enc(pk3, v; rv).

Set π0 := Π0.prover(crs
0
p, (ρ, ρ̂, ct1z, ctx), (r, 0, 0, 0)).

Set π1 := Π1.prover(crs
1
p, (ct1z, ct

2
z), (0, r1z, r

2
z)).

Set π3 := Π3.prover(crs
3
p, (y, ctw, ctv), (x, 0, 0, 0)).

Set τ = crh(ρ, ρ̂, ct1z, ct
2
z, ctv, π0, π1, π3, lbl).

Set γ := x>[p1]1 + r>[p2 + τp3]1.
Set π2 := Π2.prover(crs

2
p, (y,ρ, ρ̂, γ, ctv, tag = τ), (x, r, 0, rv)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, ctv, π0, π1, π2, π3).

ver (crsv, y, π, label lbl) :
Set τ = crh(ρ, ρ̂, ct1z, ct

2
z, ctv, π0, π1, π3, lbl).

Check all the NIZK proofs:
Π0.ver(crs

0
v, (ρ, ρ̂, ct1z, ctx), π0) and Π1.ver(crs

1
v, (ct1z, ct

2
z), π1)

and Π2.ver(crs
2
v, (y,ρ, ρ̂, γ, ctv, tag = τ), π2)

and Π3.ver(crs
3
v, (y, ctw, ctv), π3).

Languages:

Π0 is an OR-NIZK for L0
def
= {(ρ, ρ̂, ct1, ct2) | ∃(r,m, r1, r2) : (ρ = [B̄r]>1 and ρ̂ =

[Br]>1 ) or (ct1 = PKE.Enc(pk1,m; r1) and ct2 = PKE.Enc(pk1,m; r2))}.

Π1 is a QA-NIZK for L1
def
= {(ct1, ct2) | ∃(m, r1, r2) : ct1z =

PKE.Enc(pk1,m; r1) and ct2 = PKE.Enc(pk2,m; r2)}, with parameters (pk1, pk2).

Π2 is a QA-NIZK for L2
def
= {(y,ρ, ρ̂, γ, ct, tag = τ) | ∃(x, r, v, rv) : y =

[Mx]1 and ρ = [B̄r]>1 and ρ̂ = [Br]>1 and γ = x>[p1]1 + r>[p2 + τp3]1 +
[v]1 and ct = PKE.Enc(pk3, v, rv)}, with parameters ([M]1, [B]1, [p[1−3]]1, pk3).

Π3 is an OR-NIZK for L3
def
= {(y, ct1, ct2) | ∃(x,m, r1, r2) : y = [Mx]1 or (ct1 =

PKE.Enc(pk3,m; r1) and ct2 = PKE.Enc(pk3,m; r2))}.

Fig. 4. Tightly-secure labeled USS-QA-NIZK Π ′.



4.1 Public CRS Setting

In this section we describe a NIZK proof system for languages of the following
type:

L∨
def
=

{
([x0]1, [x1]1) ∈ Gn0

1 ×Gn1
1 |

∃r0 ∈ Zt0q : [x0]1 = [A0]1r0 or ∃r1 ∈ Zt1q : [x1]1 = [A1]1r1

}
The system is described in Figure 5 and is based on [Ràf15] with syntax

based on [GHKP18]. The proofs of completeness, zero-knowledge and soundness
are similar to these papers. We only give a sketch below.

The completeness of the system is straightforward. Zero-knowledge is proved
by transitioning to a different way of generating the CRS along with a trapdoor.
The transition is enabled by the Dk-mddh assumption on ([D]1, [z]1) and the
resulting CRS and proof simulators are also given in the same figure.

We now prove perfect soundness. Since z0 + z1 = z /∈ span(D), at least one
of z0 and z1 should be outside the span of D. WLOG, let this be z0. Therefore,
there should be a vector d⊥ ∈ Zk+1

q , such that D>d⊥ = 0 and z>0 d
⊥ = 1. Right

multiplying this vector to the verification equation A0C0 = P0D
> + x0z>0 gives

us A0C0d
⊥ = x0. This means r0

def
= C0d

⊥ satisfies the disjunct x0 = A0r0.

4.2 Designated Prover Setting

In Figure 5 we saw an efficient NIZK proof for the “OR” languages of Figure 1,
where one of the disjuncts was a predicate on group elements in the CRS of the
USS-QA-NIZK, namely that ctx (and ctw) was a binding commitment to x using
randomness rx (resp. w using randomess rw). The quantity rx cannot be made
public in this general setting as proving simulation-soundness requires us to hide
x from the public. However, in the application of USS-QA-NIZK to build SPS,
the quantity rx can indeed be given to a “designated” prover, i.e. the signer,
and the quantity still remains private. In particular, in a forgery attempt, the
adversary does not have access to rx, as the signer is an honest party. In such
a situation, i.e. where rx in the commitment to x is available to the designated
prover, we can give an even more efficient NIZK. For ease of exposition, we will
restrict ourselves to the SXDH asymmetric pairings-group setting in this section.
The results can easily be generalized to Dk-mddh setting.

There is another optimization that can be achieved in the designated prover
setting, namely that the OR-NIZK Π3 is not required at all. The main purpose
of this OR-NIZK in the general setting was to introduce a random affine element
v = k0 in the expression for γ. However in the designated prover setting, the
designated prover can be given w0 in the clear and hence it can generate γ in
the real world with v set to k0 (as opposed to v = 0 in the general setting).
So, we are left with only one OR-NIZK, i.e. Π0, which we next show can be
further optimized in the designated prover setting. These optimizations and the
resulting SPS scheme is described in detail in Figure 8.
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OR Languages :

Let L∨
def
=

{
([x0]1, [x1]1) ∈ Gn0

1 ×Gn1
1 |

∃r0 ∈ Zt0
q : x0 = [A0r0]1 or ∃r1 ∈ Zt1

q : [x1]1 = [A1r1]1

}
.

crsgen (q,G1,G2,GT , e, [1]1, [1]2) :
Sample D← Dk-mddh and z← Zk+1

q \ span(D).
Return crs := ([D]2, [z]2).

prover (crs, ([x0]1, [x1]1), (j, rj)):
Sample (v, S0,S1)← Zk

q × Zt0×k
q × Zt1×k

q .

Set [z1−j ]2 := [D]2v and [zj ]2 := [z]2 − [z1−j ]2.

Set [Cj ]2 := Sj [D]>2 + rj [zj ]
>
2 and [Pj ]1 := [Aj ]1Sj .

Set [C1−j ]2 := S1−j [D]>2 and [P1−j ]1 := [A1−j ]1S1−j − [x1−j ]1v
>.

Return π := ([z0]2, [C0]2, [P0]1, [C1]2, [P1]1) ∈ G(n0+n1)k
1 ×G(t0+t1+1)(k+1)

2 .

ver (crs, ([x0]1, [x1]1), π) :
Set [z1]2 := [z]2 − [z0]2.
Check the following equations for all j ∈ {0, 1}:

e([Aj ]1, [Cj ]2) = e([Pj ]1, [D]>2 ) · e([xj ]1, [zj ]>2 ).

crssim (q,G1,G2,GT , e, [1]1, [1]2) :
Sample D← Dk-mddh and u← Zk

q .
Set z := Du
Return crs := ([D]2, [z]2) and trap := u.

sim (crs, trap, ([x0]1, [x1]1)):
Sample (v, S0,S1)← Zk

q × Zt0×k
q × Zt1×k

q .

Set [z0]2 := [D]2v and [z1]2 := [z]2 − [z0]2.

Set [C0]2 := S0[D]>2 and [P0]1 := [A0]1S0 − [x0]1v
>.

Set [C1]2 := S1[D]>2 and [P1]1 := [A1]1S1 − [x1]1(u− v)>.

Return π := ([z0]2, [C0]2, [P0]1, [C1]2, [P1]1).

Fig. 5. NIZK for OR languages based on [Ràf15].

Consider the “OR” language,

L =

{
α, α̂,x | ∃r, rx ∈ Zq :

(α = r[1]1 and α̂ = r[b]1) or x = com(0; rx)

}
where com(x; rx) is a binding commitment to x using randomness rx (e.g. a
GS-commitment or ElGamal encryption), and [b]1 is public.
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It is not difficult to see that the above is implied by the following (i.e. L1 ⊆ L)

L1 =

{
α, α̂,x | ∃x, rx, x̂ ∈ Zq :

α̂ · x− [b]1 · x̂ = 0 and [1]1 · x̂−α · x = 0 and x = com(x; rx)

}
since if x 6= 0 in L1, one can take r = x̂/x, and otherwise x is commitment to
zero with rx. Thus soundness of NIZK proof of L1 implies the tuple is in L.

Now, consider another language L2,

L2 =

{
α, α̂,x | ∃r, x, rx ∈ Zq :

((α = r[1]1 and α̂ = r[b]1) or (x = 0)) and x = com(x; rx)

}
Thus, in the language the value x is always a commitment to x under rx. First
note that L2 implies L1, i.e. L2 ⊆ L1. This is so because if x = 0 in L2, then we
just set x̂ = 0 as well, and if there is a good r, then we set x̂ = r · x.

Since the “designated” prover always knows x and rx in the commitment x,
then if it has an (r, x) which satisfies the “or” part of L2, it can generate the
witnesses required to satisfy membership in L1 and hence give a valid NIZK
proof.

Under the SXDH assumption, L1 can be proved by using two group elements
and in addition two elements for commitment to x̂ (and not counting the two for
x which is commitment to x) using the technique by Escala and Groth in [EG14].
Namely, the size of π0 is (2, 2). For this to work, we also need to sample public
keys pk1 of ElGamal encryption (i.e. com) from G2. Furthermore, pk1 is taken
from crs1 (see Figure 1). We note that this dependency of pk1 to crs1 does not
affect the security proof since we can use ciphertext with respect to pk2 when
crs1 is set to the simulation mode. We further optimize ct1z and ct2z by applying
the common randomness technique from Section 3.3. With these modifications,
ct1z and ct2z together consist of (0, 3) elements, and proof π1 is a single element
in G2 (rather than in G1 in the original construction). Other components, ρ,
ρ̂, γ, and π2 are unchanged; each of them is represented by a single element in
G1. In total, the proof size will be (6, 6). Under general Dk-mddh assumption
[EHK+13], the optimized proof will consist of (5k + 1, 4k + 2) elements.

4.3 Designated Verifier Setting

As the most expensive part (from the size of USS-QA-NIZK perspective and
applications) is the size of the “OR”-proof considered in our general construc-
tion, we now consider the designated-verifier setting [ES02]. In the designated-
verifier setting of a NIZK, the CRS is split into two parts, crsp and crsv,
and only a designated-verifier gets access to crsv and the public information is
only crsp (required by the prover). Alternatively, one can think of designated-
verifier NIZKs as hash-proof systems, as the crsv is just the secret hash-key,
and crsp is the projection hash-key – by the fact that hash-proofs can be gen-
erated without the witness (but using the secret hash-key), zero-knowledge is
automatic; further, soundness is information-theoretic. Since hash-proofs for lin-
ear subspace languages are well known [CS98], and we even have hash-proofs for
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“OR”-languages [ABP15], so we have designated-verifier NIZK proofs for our
“OR”-language used in the USS-QA-NIZK construction. Consequently, we have
smaller sized (almost) tightly-secure designated-verifier USS-QA-NIZKs.

For this idea to work, we instantiate PKE in G2 in our construction so that
the OR-language consists of relations from both G1 and G2. This allows us to
use the hash proof system of [ABP15]. The downside of such a construction is
that we have more G2 elements in the proof and the USS-QA-NIZK is itself in
the target group GT , as the construction of [ABP15] generates hashes in the
target group. Since these elements require much longer representation we give
a more precise estimation. In the original construction of our USS-QA-NIZK
with optimizations in Section 3.3, a proof consists of (11, 6) elements in the
SXDH setting, of which (3, 6) are for proof π0. In remaining (8, 0) elements,
(4, 0) are the ciphertext of PKE and proof π1. Moving the (4, 0) elements to
G2 and replacing (3, 6) of π0 with a target group element, the proof size of
our designated-verifier USS-QA-NIZK will be (4, 4) source group elements and
1 target group element. Thus it saves (7, 2) elements in exchange of having an
extra target group element. Since the target group element is computed from a
product of four pairings, it can also be represented by randomized (4, 4) group
elements by using the PPE randomization technique of [AFG+16]. However,
either representation requires larger space than original (7, 2) elements. Thus,
the known approach with [ABP15] does not seem to yield shorter proofs than
our original construction in the designated verifier setting.

5 Applications

In this section, we demonstrate that our tightly secure USS-QA-NIZK can be
used to develop CCA2-secure public key encryption and structure-preserving
signatures (SPS). Besides being (almost) tightly secure under standard matrix
assumptions in bilinear groups, these applications have particular advantage over
previous constructions. Our CCA2-secure public-key encryption is publicly veri-
fiable and our SPS scheme yields the shortest signatures. By plugging our CCA2-
secure public key encryption and SPS into the generic frameworks of blind sig-
natures [Fis06], group signatures [Gro07], and simulation-sound NIZKs [CCS09]
we have blind SPS, group SPS, and simulation-sound Groth-Sahai proofs, all of
which have (almost) tight reduction to standard matrix assumptions in bilinear
groups and efficiency improvements over known schemes.

5.1 (Almost) Tight CCA2-Secure PKE Scheme

In this section we show that the labeled (enhanced) USS-QANIZK for linear-
subspaces can be used to build a publicly verifiable labeled CCA-secure public-
key encryption (PKE) scheme (described in Fig. 6) which is (almost) tightly-
secure in the multi-user, multi-challenge setting. The security reduction to USS-
QA-NIZK is tight and is independent of the number of decryption-oracle requests
of the CCA2 adversary.
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KeyGen (q,G1,G2,GT , e, [1]1, [1]2) :
[Boost distribution Dk+1,k to D2k,k.]
Sample B← D2k,k-MDDH and k← Zk

q ,
Sample (crsp,crsv)← Π ′.crsgen(〈q,G1,G2,GT , e, [1]1, [1]2〉, [B]1),

Set p := B̄
>
k, pk := (crsp, [B]1, [p]1), sk := (crsv, k).

Return (pk, sk).

Enc (pk = (crsp, [B], [p]1), M ∈ G1, lbl):
Sample r← Zk

q , and set ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := M + r>[p]1,
π := Π ′.prover(crsp, 〈ρ, ρ̂〉, r, 〈γ, lbl〉).

Return ctxt := (ρ, ρ̂, γ, π).

Dec (sk = (crsv, k), ctxt = (ρ, ρ̂, γ, π), lbl) :
If the NIZK proof verification

Π ′.ver(crsv, 〈ρ, ρ̂〉, 〈γ, lbl〉, π)
returns true then return γ − ρk else return ⊥.

Language for Π ′:

L
def
= {(ρ, ρ̂) | ∃r : ρ = [B̄r]>1 and ρ̂ = [Br]>1 } with parameters ([B]1).

Fig. 6. CCA2 Public-Key Encryption using labeled (strong) USS-QA-NIZK.

Theorem 4. Under the Dk-mddh assumption, and using the labeled USS-QA-
NIZK Π ′ of Fig. 4, the public-key encryption scheme described in Fig 6 is (µ, qe)
IND-CCA secure with Adversary’s advantage A upper-bounded by

2 · advtssΠ′ + 6k · advDk-mddh + 2 · advussΠ′ (qe) +O(1/q).

The proof of this theorem can be found in Appendix D.

Remark. The public-key encryption construction in Fig. 6, during encryption,
uses randomness r to construct ρ. Then, it calls USS-QA-NIZK prover in a black-
box manner to obtain π. The USS-QA-NIZK construction itself picks another
s and constructs its own ρ. We remark that in a non-black box construction of
tight CCA2-secure public key encryption scheme, i.e., by utilizing the USS-QA-
NIZK construction in a non-black fashion, one can use the same B̄ matrix in
the PKE construction above and the USS-QA-NIZK construction, while keeping
B matrices sampled ranomly and independently. This leads to a savings of k
group elements. The proof of the (almost) tight security of this scheme combines
the proof given in Appendix D with the labeled USS-QA-NIZK tight-security
(Theorem 3).
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5.2 Direct Construction of Tight SPS from Tight USS-QA-NIZK

Recall that unbounded simulation-soundness assures that, after having simulated
proofs for chosen instances, it is hard for the adversary to find a valid proof for
any fresh no-instances. In [AAO18], it is pointed out that simulation-soundness
of a NIZK system corresponds to unforgeability against adaptive chosen message
attacks of a signature scheme where no adversary can find a valid signature for
any fresh messages after seeing signatures for any chosen messages. Syntactically,
an unbounded simulation-sound NIZK system can be seen as a signature scheme
whose key generation, signature generation, and signature verification functions
correspond to CRS simulation, proof simulation, and proof verification functions
of the NIZK system, respectively. This observation is proven formally in a more
general setting (allowing errors in correctness, etc) in [AAO18], but we use the
simplest form of their result with adjustment to the syntax of USS-QA-NIZK.
Concretely, our construction relies on a property of our USS-QA-NIZK that its
simulation algorithm works for any no-instance in a certain set. What remains to
do is to construct a collision resistant mapping from the desired message space
for the signature scheme to the set of no-instances of our USS-QA-NIZK.

Let Π := (pargen, crsgen, prover, ver, crssim, sim) be a designated prover USS-
QA-NIZK system for L := span([M]1) ⊂ Gn1 with soundness advantage AdvussΠ (A).
We assume that Π is perfectly no-instance simulation correct with respect to
C := Gn1 \ span([M]1) which means that, for any crsv and trap generated by
Π .crssim, y ∈ C, π ← Π .sim(trap, y), 1← Π .ver(crsv, y , π) holds with probabil-
ity 1.

Let [M]1 ← Gn×t1 denote a sampling where matrix M is chosen uniformly
with constraint that its upper square sub-matrix is full rank. For message space
M := Gt1 and n ≥ 2t+1, we construct a function H :M→ C as follows. Choose
c uniformly from Gn−t1 . Then define H(M ) for M ∈ Gt1 as M ||c. For any M and
M ∈ Gt1, with probability at least 1 − 1/q over the choice of c, there exists no
x that satisfies (M ||c)> = [Mx]1. Thus H is an efficiently computable injection
from M to C. Following this idea, we construct a signature scheme as shown in
Figure 7.

Theorem 5. With the above USS-QA-NIZK system Π , SIG in Figure 7 is a
signature scheme for message space M := Gt1. It is tightly unforgeable against
adaptive chosen message attacks, i.e., for every ppt adversary A breaking the
unforgeability of SIG with a chosen message attack with advantage Advcma

SIG (A),
there exists a ppt algorithm B that breaks unbounded simulation soundness of
Π with advantage AdvussΠ (B) ≥ Advcma

SIG (A) − 1/q and almost the same running
time as A. Furthermore, if Π is structure preserving, so is SIG.

Proof. To show unforgeability, we construct B using A as black-box as follows.
Given crs, [M]1, B picks c← Gn−t1 and sends pk := (crs, c) toA. For message M
queried from A, B sends y := M ||c to its oracle, receives a simulated proof π, and
returns σ := π toA. Given a forgery (M ∗, σ∗) fromA, B outputs y∗ := M ∗||c and
π∗ := σ∗. Since H(M ) := M ||c is an injection to Gn1 \span([M]1) with probability
at least 1− 1/q, y∗ is a fresh instance not in span([M]1), and (y∗, π∗) passes the
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verification whenever A succeeds. Hence we have AdvussΠ (B) ≥ Advcma
SIG (A)− 1/q.

Running time of B is the same as A except for performing concatenation and
parsing. Structure-preserving property is obvious from the construction.

We remark that we can remove 1/q term in the above bound in an enhanced
model [LPJY15,JR13] where M is given to the adversary playing the simulation
soundness game.

In Figure 8 we present an instantiation of SIG in Figure 7 using our opti-
mized designated prover USS-QA-NIZK from Section 4.2 under the SXDH as-
sumption. Designated prover is sufficient in this application as the signing key is
private. The signature size is exactly the same as the proof size of the underlying
USS-QA-NIZK and it retains structure preserving property. Hence the signature
scheme in Figure 8 is an SPS scheme having signatures consisting of (6, 6) ele-
ments for unilateral messages. (Under Dk-mddh assumption, the signature size
will be (5k + 1, 4k + 2)). For bilateral messages (M1,M2) ∈ Gt11 × Gt22 where
t1 = t − 1 and t2 is arbitrary, we follow a generic construction in [ACD+16,
Sec. 6.3] that combines partially one-time signature for a part of messages in
G2. It requires extra (0, t2) public-key elements, and the signature size increases
by (1, 2) elements sacrificing one group element in the message space Gt11 . A
signature thus consists of (7, 8) elements for a bilateral message.

Common parameters: par := (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ).

KeyGen(1m) :
λ := (q,G1,G2,GT , e, [1]1, [1]2)← Π .pargen(1m)
[M]1 ← Gn×t

1

c← Gn−t
1

(crs, trap)← Π .crssim(λ, [M]1)
pk := (crs, c), sk := (trap, c)
return(pk, sk)

Sign(sk,M ) :
(trap, c)← sk
y := M ||c
σ ← Π .sim(trap, y)
return(σ)

Verify(pk,M , σ) :
(crs, c)← pk
y := M ||c
b← Π .ver(crs, y , σ)
return(b)

Fig. 7. Signature scheme SIG for unilateral messages in Gt
1 based on USS-QA-NIZK Π

for a linear subspace language.
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Common parameters: par := (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t1 ).

KeyGen(par):
Sample crs0 ← Π0.crsgen(q,G1,G2,GT , e, [1]1, [1]2),

(crs1p, crs
1
v)← Π1.crsgen(par), and (crs2p, crs

2
v, trap

2)← Π2.crssim(par).

Let ([u1]2, [u2]2, [u3]2) denote elements of G2 in crs0.
Set pk1 := [u3]2 and sk1 := u3.
Sample sk2 ← Zq and set pk2 := [sk2]2.
Sample B← D2,1-mddh and (k0, k1, k2)← Zq × Znq × Zq .
Set p1 := M>k1 and p2 := B̄>k2

Sample rx ← Zq . Set x := 0, Rx := [rx]2, and Ex := [x]2 + rx pk1.

Set crsp := (crs0, crs1p, crs
2
p, [B]1, [p1]1, [p2]1, pk1, pk2, Ex, Rx).

Set crsv := (crs0, crs1v, crs
2
v, [B]1, [p1]1, [p2]1, pk1, pk2, Ex, Rx).

Set trap := (k1, trap
2).

Set c← Gn−t1 .

Set pk := (crsv, c), sk := (crsp, trap, c, [k0]1).

Return (pk, sk).

Sign(sk,M ∈ Gt1):
Parse (crsp, trap, c)← sk, and set y := M ||c.

Sample (r, rz)← Zq × Zq .
Set ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := [k0]1 + y>k1 + r>[p2]1.

Set z := 0. Compute Rz := [rz ]2.

Compute Eiz := [z]2 + rz pki for i = 1, 2.

Set Eδ := E1
z − Ex, Rδ := Rz − Rx, rδ := rx − rz .

Set π0 := Π0.prover(crs
0, (ρ, ρ̂, Eδ, Rδ), (x, rδ, x̂)).

Set π1 := Π1.prover(crs
1
p, (E1

z , E
2
z , Rz), (0, rz)).

Set π2 := Π2.sim(crs2p, trap2, (y, ρ, ρ̂, γ)).

Return σ := (ρ, ρ̂, γ, E1
z , E

2
z , Rz, π0, π1, π2).

Verify(pk,M , σ):
Parse (crsv, c)← pk, and set y := M ||c.
Parse (ρ, ρ̂, γ, E1

z , E
2
z , Rz, π0, π1, π2)← σ.

Check all the NIZK proofs:
Π0.ver(crs

0, (ρ, ρ̂, Eδ, Rδ), π0)
and Π1.ver(crs

1
v, (E1

z , E
2
z , Rz), π1)

and Π2.ver(crs
2
v, (y, ρ, ρ̂, γ), π2).

Languages:

Π0 is a NIZK proof for OR-language L0
def
= {(ρ, ρ̂, Eδ, Rδ) | ∃x, rδ, x̂ ∈ Zq : x ρ̂ − x̂ [B]1 =

[0]1 and x̂ [1]1 − x ρ = [0]1 and (Eδ, Rδ) = com2(x; rδ)} by Escala-Groth proof system for
multi scalar multiplication equations.

Π1 is a QA-NIZK for linear language L1
def
= {(E1

z , E
2
z , Rz) | ∃(z, rz) : E1

z := [z]2 +

rz pk1 and E2
z := [z]2 + rz pk2} with parameters (pk1, pk2).

Π2 is a split-CRS QA-NIZK for affine language L2
def
= {(y, ρ, ρ̂, γ) | ∃(x, r) : y =

[Mx]1 and ρ = [B̄r]>1 and ρ̂ = [Br]>1 and γ = [k0]1 + x>[p1]1 + r>[p2]1} with parameters
([M]1, [B]1, [p1]1, [p2]1, [k0]1).

Fig. 8. An SPS constructed directly by using the customized USS-QA-NIZK with
designated prover (in Section 4.2) with optimizations from Section 3.3.
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5.3 Tightly-secure Blind Structure-Preserving Signature Scheme
Based on the Tight-SPS

A generic construction of blind signature scheme is presented in [Fis06]. It is a
simple commit-sign-nizk style construction summarized as follows. A user com-
mits to a message m by c and the signer signs c. Given a signature σ, the user
computes a NIZK proof π of a correct signature σ with respect to message c and
correctness of m as an opening of commitment c without revealing c and σ. Given
m and π, a verifier accepts if all proofs are verified. This yields a round-optimal
structure-preserving blind signature scheme with tight security in the common
reference string model provided that every component is structure-preserving
and tightly secure with respect to its underlying assumptions.

We instantiate the generic construction using ElGamal encryption scheme
as a commitment scheme COM := {Key,Com}, the signature scheme SIG :=
{Gen,Sign,Verify} from Section 5.2, and the Groth-Sahai proof system GS :=
{pargen, crsgen, prover, ver} from [GS12] where GS.pargen outputs common pa-
rameter λ in the SXDH setting that is compatible with other building blocks.

– In the setup, given common parameters λ, COM.Key generates a commitment
key f ∈ G1 and GS.crsgen generates common reference string crsgs for the GS
proof system. Then crs := (λ, f, crsgs) is published as the common reference
string for the blind signature scheme.

– The signer generates a key pair by (vk, sk)← SIG.Gen(λ).
– In the signature issuing protocol, a user commits to message m ∈ G1 by

computing (c, d, z) ← COM.Com(f,m; y) where (c, d, z) := (mfy, gy, g̃y) ∈
G2

1 × G2. The signer signs to (c, d) by σ ← SIG.Sign(sk, (c, d)) where σ :=
(ρ, ρ̂, γ, ct1z, ct

2
z, π0, π1, π2) ∈ G6

1 ×G6
2.

– Given σ, the user computes GS-proofs as follows:
• For correctness of commitment, prove pairing product equations

e(c/m, g̃) = e(f, z), and e(d, g̃) = e(g, z)

where (c, d, z) is a witness. It yields GS-commitments and proofs consisting
of (4, 2) and (8, 8) elements, respectively.
• For correctness of σ, prove the equation for verifying π0 with (π0,ρ, ρ̂, ct

1
z−

ctx) as a witness. Since it consists of four non-linear equations that verify
the first two relations in L1 of Section 4.2, the proof consists of 4 × (4, 4)
elements. Also prove a linear equation for verifying π1 with (π1, ct

1
z, ct

2
z)

as a witness. (The equation is obtained by applying the optimization on
the ElGamal encryption in L1 in Figure 4.) This part yields a GS-proof
consisting of (2, 0) elements. Further prove equations for verifying π2 with
(ρ, ρ̂, γ, c, d) as a witness. This part yields a GS-proof consisting of (0, 2)
elements. The GS-commitments of the witnesses for these proofs require
(12, 12) elements. (Note that c and d are already counted in the previous
step.)

Summing up, the resulting blind signature σbs consists of |σbs| = (4, 2) +
(8, 8) + 4× (4, 4) + (2, 0) + (0, 2) + (12, 12) = (42, 40) elements.
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– Given (σbs,m), a verifier verifies all proofs in σbs.

In the literature, there are round optimal blind signature schemes in the com-
mon reference string model without random oracles or generic groups [FHS15]
or complexity leveraging [GRS+11,GG14] whose signatures consist of about 30
elements [Fuc09,AO09b]. However, they rely on so-called q-type assumptions.

5.4 Tightly-secure Group Signature Scheme with Concurrent Join

In [KY05], a generic construction of CPA-anonymous group signature scheme us-
ing a signature scheme and a NIZK proof is shown. CCA-anonymity is achieved in
[Gro07] by additionally using selective-tag CCA-secure encryption and a strongly
unforgeable one-time signature scheme. In [AFG+16], a scheme that allows con-
current joining of members is constructed by using structure-preserving signa-
tures. The latest work in [LPY15] enjoys compact signature size using QA-NIZK
and structure-preserving signatures but the security reduction is not tight.

We instantiate a generic construction of CCA-anonymous group signature
scheme in [Gro07,AFG+16] using tightly secure structure-preserving signature
scheme SIG from Section 5.2, tagged CCA-secure public-key encrypiton scheme
TBE from Section 5.1, the Groth-Sahai proof system GS from [GS12], and a one-
time signature scheme OTS from [ACIK10] all in the SXDH setting. This results
in the first tightly CCA-secure group signature scheme. Note that our goal is not
structure-preserving one. Indeed, the tag-based encryption allows binary strings
as a tag (yet it is compatible with the Groth-Sahai proof system for correctness
proof), and we use OTS in combination with a collision resistant hash function to
deal with long messages. Let us briefly review OTS. One-time secret key consists
of k1, k2, s1, s2 in Zq and one-time verification key is ([s1]1, [s2]1, [s1k1 + s2k2]1).
For a (hashed) messagem ∈ Zq, a one-time signature is (z1, z2) ∈ Zq that satisfies
s1k1 +s2k2 = m+s1z1 +s2z2. The signature is valid if m[1]1 +z1[s1]1 +z2[s2]1 =
[s1k1 + s2k2]1. In [ACIK10], it is shown that the scheme is one-time chosen
message unforgeable under the discrete logarithm assumption in G1 and the
security reduction is tight (by factor of 2). Due to the random self-reducibility
of the discrete logarithm problem in G1, the tightness of the reduction retains
in multi-challenge setting where multiple one-time keys are challenged.

We sketch the construction as follows.

– The group manager generates a key pair (vc , sc) of SIG and crs of GS. The
parameter is set so that it can sign bilateral messages consisting of (9, 12)
elements.

– The opening manager generates a key pair (e, d) of TBE.
– To join the group, a member generates a key pair (vu , su) of SIG so that it can

sign messages consisting of two elements in G1. This results in vu consisting
of (9, 12) elements. He then asks the group manager to certify vu . The group
manager rejects if vu is not unique among all keys registered so far. Otherwise,
the manager signs to vu with vc and return the certificate σc to the user. The
certificate consists of (7, 8) elements.
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– To sign message m, the member first generates a one-time key pair (vo , so) of
OTS and signs on one-timekey vo . The resulting signature σu consists of two
elements in G1 by using SIG with su . Next he encrypts σu and vu by using
TBE with encryption key e and vo as a tag obtaining a ciphertext ψ. He then
creates a proof π for his possession of correct certificate σc and signature σu,
and correctness of the encryption without revealing σc, vu , and σu. Finally,
he uses OTS with so to obtain one-time signature σm on message (m, vo , π, ψ)
and outputs σg := (vo , π, ψ) as a group signature.

– A verifier receiving m and σg accepts if π is verified.

– To open a signature, the opening manager decrypts ψ with d and verifies
obtained σu and vu with respect to message m.

The opening manager may also convince a verifier, known as a judge, by using
standard means such as issuing a Groth-Sahai NIZK proof of correct decryption
using other independent crs.

For formal security notions, we refer to [Gro07]. Tightness of CCA-anonymity
holds directly from tightness of CCA-security of TBE under the multi-user
and multi-challenge setting. Tightness in terms of traceability is due to multi-
challenge tight security of OTS and SIG.

With the above mentioned building blocks, a group signature will consist
of more than seven hundreds of group elements. A large part of the signature
elements comes from encryption of public-key vu and signature σu to the one-
time key and related proofs. They can be reduced by encrypting an element in vu

instead of encrypting whole vu and consider the element as a fingerprint of vu by
letting the group manager verify its uniqueness at the time of registration. This
will save several hundreds of elements in a group signature. Yet the signature
size will be far larger than non-tight schemes and we have to look this result as
a feasibility proof.

5.5 (Almost) Tight Simulation-Sound Groth-Sahai NIZK

Camenisch, Chandran and Shoup [CCS09] gave a generic scheme for unbounded
simulation-sound Gorth-Sahai NIZK proofs based on a strong one-time signature
scheme and a labeled CCA2-secure public-key encryption scheme. The construc-
tion also needs a NIZK system for algebraic “OR” statements, which can itself
be proved using (standard) Groth-Sahai NIZK proofs. Finally, the security proof
is also based on the CDH assumption in one of the groups of the bilinear pair-
ing group (which is implied tightly by Dk-mddh). The security reduction to
the hardness of CDH, the one-time signature scheme, and the multi-challenge
CCA2-security of the public key encryption scheme are tight. Thus, using the (al-
most) tightly-secure multi-challenge CCA2-secure public-key encryption scheme
of Section 5.1, and the tightly-secure one-time signature scheme of [ACD+16],
we get an (almost) tightly-secure USS-NIZK for algebraic languages considered
in [GS12].
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A Proof of Lemma 1

To prove Lemma 1, we go through a series of L games, each of which has several
sub-games. Without loss of generality, we will assume that the total number of
queries is a power of two (≤ 2L). We will identify G2 with G2,1,0 and G3 with
G2,L,10. These games are summarized in Figure 9 with a table of transitions
given in Figure 11.

In the following games, we will consider a sequence of functions rfj , for
j ∈ [0, L], where rfj maps {0, 1}j to Zq. Define rf0(ε) = k0, where ε denotes
the empty string.

Game G2,j,0: The challenger also lazily defines a function rfj−1 which is random
everywhere and independent for each input. For all simulator responses i, let
i|j−1 be the (j− 1)-length prefix of i. We generate γi as yi>k1 + [rfj−1(i|j−1)]1
+ ρik2. Further, the set Z is defined to be

⋃
i{rfj−1(i|j−1)}, where i ranges

over the query indices.
In the base case, i.e., when j = 1, G2,j,0 is indeed the same as G2 by definition

of rf0(ε) and definition of Z in G2. For the inductive case, we defer the proof
of equivalence of G2,j,0 and G2,j−1,10 till the description of the latter game.

We will maintain the induction hypothesis (over j ∈ [1, L]) that the func-
tion rfj−1 is a random function from {0, 1}j−1 to Zq. Clearly, the induction
hypothesis holds for the base case.

Game G2,j,1: We also sample (k2, k
′
2) ← Zkq × Zkq and substitute p2 = B̄

>
k2

with B̄
>
k2 + B>k′2, which has the same distribution U(Zkq ). Consequently, we

change the winning condition’s γ∗-test conjunct to γ∗ = y∗>k1 + ρ∗k2 + ρ̂∗k′2,
which is same as the earlier winning condition as that condition also has the
conjunct (ρ∗‖ρ̂∗)> ∈ span([B]1). Also set zi equal to ij .

The difference in advantage is the IND-mCPA security of the PKE scheme, in
switching all the zi plaintexts. Rest of the changes are information theoretic as
x is committed with a simulated CRS and p2 has the same distribution.

Game G2,j,2: In this game, the challenger samples β ← {0, 1}. In the winning
condition we introduce a predicate called ChkAbort which behaves as follows: it
returns true and forces the adversary to lose outright if the decryption of ct2∗z is
zero or one and equals β. In the case that decryption of ct2∗z is not zero or one,
then it still forces the adversary to lose at random with probability half. If the
ChkAbort predicate does not force a loss for the adversary, then the rest of the
winning condition remains the same as the previous game.

Since β is information theoretically hidden from the adversary, the adver-
sary’s advantage goes down by exactly a factor of 2.

Game G2,j,3: The challenger sets x = 1 − β. It goes back to the binding-
CRS for Π0. Thus, zi as set above is used in the encryption ct1iz to zi. Since
(ρi‖ρ̂i)> ∈ span([B]1) for all i, a correct proof can be generated by Π0.
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crssim() : · · ·

Games (2,j,3-7) crs
0 ← Π0.crsgen()

Games (2,j,0-2,8-10) (crs
0
, trap0)← Π0.crssim()

Sample β ← {0, 1} and rx ← Zkq
Games (2,j,0-2,10) Set x := 0

Games (2,j,3-9) Set x := 1− β
Games (2,j,3-7) ctx = PKE.Enc(pk1, x; rx)

Games (2,j,0-2,8-10) ctx = PKE.Enc(pk1, 0; rx)

Games (2,j,0,7-10) Sample k2 ← Zkq
Games (2,j,1-6) Sample (k2, k′2)← Zkq × Zkq

· · ·

sim(yi ∈ Gn1 ) : · · ·

Game (2,j,0,10) Set z
i

:= 0

Games (2,j,1-9) Set z
i

:= ij

Games (2,j,3-7) Set ct1iz := PKE.Enc(pk1, z
i
; riz)

Games (2,j,0-2,8-10) Set ct1iz := PKE.Enc(pk1, 0; riz)

Set (ρ̂
i>
, γ
i
) :=

Games (2,j,0) ([Bri]1, yi>k1 + [rfj−1(i|j−1)]1 + ρ
ik2)

Games (2,j,1-4)
(

[Bri]1, yi>k1 + [rfj−1(i|j−1)]1 + ρ
ik2 + ρ̂

ik′2

)
Games (2,j,5-6)

(
[Bri]1, yi>k1 +

[
rfj−1(i|j−1), if (ij = β)
rf′j−1(i|j−1), if (ij 6= β)

]
1

+ ρ
ik2 + ρ̂

ik′2

)
Games (2,j,7-10) ([Bri]1, yi>k1 + [rfj(i|j)]1 + ρ

ik2)

· · ·

WIN
def
=

Games (2,j,2-8) if (ChkAbort) return false; else

π
∗

= (ρ
∗
, ρ̂
∗
, γ
∗
, ct1∗z , ct

2∗
z , ct

∗
v, π
∗
0 , π
∗
1 , π
∗
2 , π
∗
3 ) :

(y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y∗, π∗)

Games (2,j,0,7-10) and ∃θ ∈ Z : γ
∗

= y∗>k1 + [θ]1 + ρ
∗k2

Games (2,j,1-6) and ∃θ ∈ Z : γ
∗

= y∗>k1 + [θ]1 + ρ
∗k2 + ρ̂

∗k′2

Games (2,j,0-3,6-10) and (ρ
∗‖ρ̂∗)> ∈ span([B]1)

Fig. 9. Going from Game 2 to 3
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The difference in the adversary’s advantage is at most advzkΠ0
.

Game G2,j,4: The challenger removes the conjunct (ρ∗‖ρ̂∗)> ∈ span([B]1) from
the winning condition.

We first check that QA-NIZK Π1 is in true-simulation mode, i.e., the simula-
tor for this QA-NIZK is only issuing simulated proofs on true statements. This
is true since both the ciphertexts ct1iz and ct2iz encrypt the same zi. Now, since
dec(ct2∗z ) 6= x is in the scope of this removed conjunct, by true-simulation sound-
ness of Π2, z∗ 6= x is also in the scope of the removed conjunct. This implies by
the soundness of the NIZK that (ρ∗‖ρ̂∗)> ∈ span([B]1). Thus this conjunct is
indeed redundant and can be removed. The difference in advantage is at most
advtssΠ1

.

Game G2,j,5: We change the computation of γi from

yi>k1 + [rfj−1(i|j−1)]1 + ρ∗k2 + ρ̂∗k′2

to

yi>k1 +

[
rfj−1(i|j−1), if (ij = β)
rf′j−1(i|j−1), if (ij 6= β)

]
1

+ ρ∗k2 + ρ̂∗k′2.

Here rf′j−1 is another independent random function from (j − 1)-bit strings
to Zq.

Lemma 2. |Pr2,j,4[WIN2,j,4]− Pr2,j,5[WIN2,j,5]| ≤

4 · advtssΠ1
+ 4 · advD2k,k-mddh + 4 · advzkΠ0

+
3

q

We prove this lemma in Appendix B using another sequence of hybrid games.

Game G2,j,6: We now start rolling the games back. In this game we add back
the condition (ρ∗‖ρ̂∗)> ∈ span([B]1) into the winning condition.

Since z∗ 6= x in the scope of this clause, the difference in advantage is advtssΠ1

due to the true-simulation soundness of the QA-NIZK and the perfect soundness
of OR-NIZK Π0.

Game G2,j,7: The challenger (lazily) defines rfj as follows:

rfj(i|j)
def
=

{
rfj−1(i|j−1), if (ij = β)
rf′j−1(i|j−1), if (ij 6= β)

}
Since rf′ is random and independent of rf, the induction hypothesis related

to rf continues to hold.
The challenger also goes back to sampling p2 as B̄

>
k2, instead of as B̄

>
k2 +

Bk′2. γi is now computed as (yi>k1 + [rfj(i|j)]1 + ρik2). It also changes the
winning condition γ∗-conjunct to γ∗ = y∗>k1 +ρ∗k1, which holds as (ρ∗‖ρ̂∗)> ∈
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span([B]1). Further, instead of defining Z as union of rfj−1(i|j−1), the set Z is
now defined as

⋃
i{rfj(i|j)}.

Changes in this game are statistically indistinguishable from the previous,
except for the change in the definition of Z. Since we assumed w.l.o.g. that
the number of queries is a power of two, the set

⋃
i{i|j−1} is same as the set⋃

i{i|j−1 | ij = β}. Thus, by definition of rfj above, the new set Z is a superset
of the previous set Z. Hence, the adversary’s advantage in this game can only
be higher than its advantage in the previous game.

Game G2,j,8: The challenger goes back to generating the simulated CRS for the
OR-NIZK Π0 and the proofs are now generated using (ri, 0, 0, 0). Further, ctx
and ct1iz ’s are all set to encryptions of 0.

The difference in adversary’s advantage is at most advzkΠ0
+ advmcpa

PKE .

Game G2,j,9: In the winning condition, we remove the ChkAbort disjunct where
the adversary lost outright in the previous games, i.e., if the decryption of ct2∗z
was 0/1 and equaled β, or with probability half if the decryption was non-0/1.

Since β is information theoretically hidden from the adversary, the adver-
sary’s advantage goes up by exactly a factor of 2.

Game G2,j,10: The challenger sets zi = 0, and sets the two encryption of zi

correctly. It also sets x back to 1.
The difference in adversary’s advantage is the IND-mCPA security of the two

PKE’s, in switching all the zi plaintexts and x.
We now observe that game G2,j,10 is same as G2,j+1,0 for j < L and same

as G3 for j = L. This concludes our proof.

B Proof of Lemma 2

The various hybrid games to prove this lemma are depicted in Figure 10 with a
table of transitions given in Figure 12.

Game H0: Game H0 is same as the game G2,j,4.

Game H1: In this game, the challenger generates the OR-NIZK Π0 CRS as a
simulated CRS. Further, for each query i, if ij is not equal to β, then instead of
just picking ri, the challenger picks ri1 and ri2 at random, and sets ri = ri1 + ri2.
Further, it sets ρi = [B̄ri]>1 , ρ̂

i = [Bri]>1 , and a similar change in the generation
of γi.

By the zero-knowledge property of OR-NIZKΠ0, and since rest of the game is
statistically the same as the previous game, the adversary’s advantage of winning

is at most advzkΠ0
.

Game H2: In this game, the adversary also samples B′ ← Z1×k
q . Next, for each

query i, if ij is not equal to β, then the challenger picks ri1 and ri2 at random,
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and sets ri = ri1 + ri2. Then it sets ρi = [B̄ri]>1 , ρ̂
i = [Bri1 + B′ri2]>1 and a similar

change in generation of γi (see Figure 10).

We now prove that the absolute value of the difference of the advantage in
adversary’s winning probability in H2 and H1 is at most the maximum advantage
of winning in a D2k,k-mddh game. In other words,

|PrH2
(WINH2

)− PrH1
(WINH1

)| ≤ advD2k,k-mddh.

To this end, for each AdversaryA playing against the challenger in games H1 and
H2, we will build another adversary B that plays against the D2k,k-mddh chal-
lenge. Say, the adversary B receives an D2k,k-mddh challenge ([B]1, [B̄w]1, [v]1),
all elements in G1, where either v is a real D2k,k-mddh vector, i.e., v = Bw
or v is a fake D2k,k-mddh vector, i.e., is random and independent of the other
components. First we extend this to k independent D2k,k-mddh challenges by
random self-reducibility [EHK+13]: Sample (e,F) ← Zkq × Zk×kq and set W :=

we>+F and V := ve>+BF. Observe that W is uniformly distributed and that
([B]1, [B̄W]1, [V]1) provides k independent D2k,k-mddh challenges.

Adversary B next emulates the challenger C against A as follows. It starts
emulating C by letting the first element of the challenge being the group generator
for G1. Next, it emulates rest of C perfectly, except for queries i where ij is not
equal to β. In this case, it picks (ri1, r

i
2)← Zkq ×Zkq , and sets ρi = [B̄ri1 + B̄Wri2]>1

and ρ̂i = [Bri1 + Vri2]>1 . It does not need to set ri’s, as these quantities are only
needed in the OR-NIZK Π0 proof, but in game H1 we switched to the simulation
setting. The quantity γi is also generated using the just defined ρi and ρ̂i (as
well as k2 and k′2). Also, the public key includes B, which is just replicated from
the D2k,k-mddh challenge.

Now, it is easy to check that if the D2k,k-mddh challenge was real, then
B emulated game H1 to A, and if the D2k,k-mddh challenge was fake, then B
emulated H2 to A. Essentially, ri2 is simulated by Wri2 and B′ is simulated by
V>W−1 in Game H2. This proves the claim above.

Game H3: In this game, the Challenger goes back to generating the OR-NIZK
Π0 CRS using the binding CRS generator. It also generates all the proofs us-
ing real witnesses, i.e., (ri, 0, 0, 0) or (0, 1 − β, r1iz , rx). it also re-introduces the
conjunct (ρ∗‖ρ̂∗)> ∈ span([B]1) in the winning condition.

We now show that the adversary’s advantage in winning in H3 is different
from its advantage in winning in game H2 by

advtssΠ1
+ advzkΠ0

.

We first prove that the real witnesses satisfy the language L0. Indeed, if zij = ij

is equal to β = 1 − x, i.e., zij 6= x, then the challenger generated (ρi‖ρ̂i)> ∈
span([B]1), thus the disjunction holds. On the other hand, if zij = x then the
disjunction also holds. Thus, by zero-knowledge, the adversary’s advantage in

distinguishing between the two games is at most advzkΠ0
.
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Next, we prove that the other conjuncts in the winning condition already
imply (ρ∗‖ρ̂∗)> ∈ span([B]1). To ascertain this, we must first check that the
QA-NIZK Π1 is in true-simulation mode, which is true as the challenger does
encrypt zi in ct2iz . Then, by the true-simulation soundness of Π1, and the perfect
soundness of the OR-NIZK Π0 it follows that (ρ∗‖ρ̂∗)> ∈ span([B]1) is implied
by the other conjuncts in the winning condition – the argument is same as given
in proof of Lemma 1 in the indistinguishability of Game G2,j,4 and Game G2,j,3.

Game H4: In this game, instead of picking k2 and k′2 at random, the challenger
picks (k2, l2) ← Zkq × Zkq . Note k2 and k′2 are independent of B and B′. The
challenger changes the γ∗-test conjunct in the winning condition by replacing
ρ∗k2 + ρ̂∗k′2 by ρ∗k2. Further, in each signature query output it modifies the
computation of γi as follows: if ij = β then ρik2 + ρ̂ik′2 is replaced by ρik2.

Otherwise, it replaces (ρi1k2 + ρ̂i1k
′
2) + (ρi2k2 + [B′ri2]1k

′
2) by ρi1k2 + ρi2l2, where

ρi1 = [B̄ri1]>1 , ρ̂i1 = [Bri1]>1 , ρ
i
2 = [B̄ri2]>1 and l2 = k2 + B̄

−>
B′k′2.

First note that since (ρ∗‖ρ̂∗)> ∈ span([B]1) is a conjunct in the winning

condition, replacing k2ρ
∗+k′2ρ̂

∗ by k2ρ
∗ is equivalent if B̄

>
k2 +B>k′2 is replaced

by B̄
>
k2. It is easy to see (by pairwise independence) that the adversary’s view

in the two games H3 and H4 is statistically indistinguishable, except if B′ = B
which happens with probability at most 1/q.

Game H5: In this game the challenger again removes the conjunct (ρ∗‖ρ̂∗)> ∈
span([B]1) from the winning condition.

We again, first check that the QA-NIZK Π1 is in true-simulation mode.
Then by the same argument as given in H3 indistinguishability from H2, the
adversary’s advantage is different from advantage in game H4 by at most advtssΠ1

.

Game H6: In this game the challenger again generates the OR-NIZK Π0 CRS
using the hiding CRS generator and the OR proofs are simulated.

The adversary’s advantage in game H6 is different from its advantage in H5

by at most advzkΠ0
.

Game H7: In this game, the adversary need not pick B′. Next, for each query
i, if ij is not equal to β, then the challenger picks ri1 and ri2 at random, and sets

ri = ri1 + ri2. It also sets ρi = [B̄ri]>1 and ρ̂i = [Bri]1. Note that ri’s are not used
in the OR proofs. There is no change in the generation of γi as it uses k2 and
k′2.

By a reduction argument similar to that given for games H1 and H2, the ad-
versary’s advantage in distinguishing between H6 and H7 is at most advD2k,k-mddh.

Game H8: In this game the Challenger lazily defines another random and inde-
pendent function rf′j−1 from {0, 1}j−1 to Zq. Then, for all i such that ij is not

equal to β, it replaces in the computation of γi, the function rfj−1 by rf′j−1.

Since in each query i, ri1 and ri2 are chosen afresh randomly and independently,
and since all other terms (i.e., other that γi) use one linear combination of
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ri1 and ri2, namely ri1 + ri2, and γi uses a different linear combination, namely
k2ri1 + l2ri2, then conditioned on k2 6= l2, the transcripts in games H7 and H8 are
statistically identical. The probability of k2 = l2 is at most 1/q, and hence that
is the statistical distance between the distributions of the transcripts in H7 and
H8. Thus, this is also an upper bound on the difference in adversary’s advantage
in the two games.

Game H9: In this game, the adversary also picks B′ ← Z1×k
q . Next, for each

query i, if ij is not equal to β, then the challenger picks ri1 and ri2 at random,

and sets ri = (ri1 + ri2). It also sets ρi = [B̄ri]>1 and ρ̂i = [Bri1 +B′ri2]1. Note that
ri’s are not used in the OR proofs. There is no change in generation of γi (see
Figure 10).

Again, by a similar reduction argument to D2k,k-mddh assumption, the dif-
ference in adversary’s advantage in games H9 and H8 is at most advD2k,k-mddh.

Game H10: In this game, the challenger generates the OR-NIZK Π0 CRS using
the binding CRS generator. It also uses the real witnesses, i.e. (ri, 0, 0, 0) or
(0, 1 − β, riz, rx) in generating the OR proofs. In this game, the challenger also
re-introduces the conjunct (ρ∗‖ρ̂∗)> ∈ span([B]1).

First note that the witnesses do satisfy the language L0 for all queries i, by
an argument similar to that given for games H3 and H2. Then by repeating
the argument there, we also conclude that (ρ∗‖ρ̂∗)> ∈ span([B]1) is implied by
other conjuncts. Thus, the difference in adversary’s advantage is at most

advtssΠ1
+ advzkΠ0

.

Game H11: In this game, the challenger picks k2, k
′
2 randomly and indepen-

dently (instead of picking k2 and l2) and reverts back to the setting of Game
H3. The challenger also changes the γ∗-test in the winning condition by replac-
ing ρ∗k2 by ρ∗k2 + ρ̂∗k′2. Further, similar changes are made in the computation
of γi (see Figure 10).

With the conjunct (ρ∗‖ρ̂∗)> ∈ span([B]1) in place in the winning condition,
the new winning condition is equivalent to the previous winning condition. More-
over, conditioned on B′ 6= B, the distribution of k2 and k′2 remains same as in
game H10. Thus, the difference in adversary’s advantage is at most 1/q.

Game H12: In this game, the challenger drops the conjunct (ρ∗‖ρ̂∗)> ∈ span([B]1)
from the winning condition.

Again, by arguments similar to that given for games H2 and H3 the difference
in adversary’s advantage is at most advtssΠ1

.

Game H13: In this game, the adversary need not pick B′. Next, for each query
i, if ij is not equal to β, then the challenger picks ri1 and ri2 at random, and sets

ri = ri1 + ri2. It also sets ρi = [B̄ri]>1 , ρ̂
i = [Bri]>1 and a similar change in the

generation of γi (see Figure 10).
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This is essentially the rewind of going from game H1 to H2. Hence, by a
similar argument, the difference in adversary’s advantage in games H13 and H12

is at most advD2k,k-mddh.

Game H14: In this game, even for i such that ij is not equal to β, the challenger

just picks ri, and defines ρi = [B̄ri]>1 and ρ̂i = [Bri]>1 .
There is no statistical difference in the two games H14 and H13. Now, note

that game H14 is identical to game G2,j,5. This completes the proof.

43



crssim() : · · ·

Games H0,3−5,10−14 crs
0 ← Π0.crsgen()

Games H1−2,6−9 (crs
0
, trap0)← Π0.crssim()

sim(yi ∈ Gn1 ) : · · ·

Let (ρ̂
i>
, γ
i
) :=

Games (2,j,4)
(

[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρ
ik2 + ρ̂

ik′2

)
Game H0

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij = β)

[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij 6= β)

)
Game H1

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij = β)

[B(ri1 + ri2)]1, yi>k1 + [RFj−1(i|j−1)]1 + (ρi1k2 + ρ̂i1k
′
2) + (ρi2k2 + ρ̂i2k

′
2), if (ij 6= β)

)
Game H2, H3

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij = β)

[Bri1 + B′ri2]1, yi>k1 + [RFj−1(i|j−1)]1 + (ρi1k2 + ρ̂i1k
′
2) + (ρi2k2 + [B′ri2]>1 k′2), if (ij 6= β)

)
Game H4, H5, H6

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2, if (ij = β)

[Bri1 + B′ri2]1, yi>k1 + [RFj−1(i|j−1)]1 + ρi1k2 + ρi2l2, if (ij 6= β)

)
Game H7

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2, if (ij = β)

[B(ri1 + ri2)]1, yi>k1 + [RFj−1(i|j−1)]1 + ρi1k2 + ρi2l2, if (ij 6= β)

)
Game H8

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2, if (ij = β)

[B(ri1 + ri2)]1, yi>k1 + [RF ′j−1(i|j−1)]1 + ρi1k2 + ρi2l2, if (ij 6= β)

)
Game H9, H10

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2, if (ij = β)

[Bri1 + B′ri2]1, yi>k1 + [RF ′j−1(i|j−1)]1 + ρi1k2 + ρi2l2, if (ij 6= β)

)
Game H11, H12

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij = β)

[Bri1 + B′ri2]1, yi>k1 + [RF ′j−1(i|j−1)]1 + (ρi1k2 + ρ̂i1k
′
2) + (ρi2k2 + [B′ri2]>1 k′2), if (ij 6= β)

)
Game H13

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij = β)

[B(ri1 + ri2)]1, yi>k1 + [RF ′j−1(i|j−1)]1 + (ρi1k2 + ρ̂i1k
′
2) + (ρi2k2 + ρ̂i2k

′
2), if (ij 6= β)

)
Game H14

(
[Bri]1, yi>k1 + [RFj−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij = β)

[Bri]1, yi>k1 + [RF ′j−1(i|j−1)]1 + ρik2 + ρ̂ik′2, if (ij 6= β)

)
Games (2,j,5)

(
[Bri]1, yi>k1 +

[
RFj−1(i|j−1), if (ij = β)
RF ′j−1(i|j−1), if (ij 6= β)

]
1

+ ρ
ik2 + ρ̂

ik′2

)
· · ·

WIN
4
= if (ChkAbort) return false; else

π
∗

= (ρ
∗
, ρ̂
∗
, γ
∗
, ct1∗z , ct

2∗
z , ct

∗
v, π
∗
0 , π
∗
1 , π
∗
2 , π
∗
3 ) :

(y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y∗, π∗)

Games H0-H3, H11-H14 and ∃θ ∈ Z : γ
∗

= y∗>k1 + [θ]1 + ρ
∗k2 + ρ̂

∗k′2

Games H4-H10 and ∃θ ∈ Z : γ
∗

= y∗>k1 + [θ]1 + ρ
∗k2

Games H3-H4, H10-H11 and (ρ
∗‖ρ̂∗)> ∈ span([B]1)

Fig. 10. Going from Game (2,j,4) to (2,j,5).
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C Independently-TSS QA-NIZK

The construction is same as [KW15], which we reproduce below to explain the
proof.

crsgen: Let [M(n1+n2)×t]1 be the parameter supplied to crsgen. Let n = n1 + n2.
Sample a matrix K ← Zn×kq and a matrix A ← Dk. Let Ā be the top k × k
square matrix of A.

The common reference string (CRS) has two parts crsp and crsv which are
to be used by the prover and the verifier respectively.

crst×kp := ([P]1 = [M>K]1) crsv := ([C]n×k2 = [KĀ]2, [Ā]k×k2 )

prover: Given candidate y = [M]1x with witness vector xt×1, the prover generates
the following proof consisting of k elements in G1:

π := x>crsp

ver: Given crsv as above, candidate y ∈ Gn1 , and proof π, check:

e(y>, [KĀ]2) = e(π, [Ā]2).

crssim: This is exactly the algorithm crsgen, except additionally the following
trapdoor is given: trap := K

sim: Given candidate y, the proof simulator generates the following proof con-
sisting of k elements in G1:

π := y>K

Proof of Independent TSS. We prove Independent True-Simulation-Soundness
by transforming the system over a sequence of games. Game G0 just replicates
the construction, but samples A from a distribution Dk+n−t,k obtained by boost-
ing the given distribution Dk by boosting lemma. The construction only uses the
top k × k sub-matrix Ā of the sample which is distributed identically for both
Dk and Dk+n−t,k. Let A be the bottom (n− t)× k sub-matrix of A.

In Game G1, the challenger efficiently samples [M]1 according to distribution
D, along with witness M (sinceD is an efficiently witness samplable distribution).

Let M =

(
Mn1×t

1

Mn2×t
2

)
. Since M1 is an n1×t dimensional rank t matrix, there is a

rank n1−t matrix M⊥1 of dimension n1×(n1−t) whose columns form a complete
basis for the kernel of M>1 , which means M>1 M

⊥
1 = 0t×(n1−t). In this game, the

NIZK CRS is computed as follows: Generate matrix K
′n×k
1

def
=

(
K
′n1×k
1

K
′n2×k
2

)
and

48



let matrix T(n1−t)×k = AĀ
−1

. Implicitly set: K = K′ +

(
M⊥1 T

0

)
. Therefore we

have,

crst×kp = [M>K]1 =
[
M>1 (K′1 + M⊥1 T) + M>2 K

′
2

]
1

= [M>K′]1

[C]n×k2 =

[
(K′1 + M⊥1 T)Ā

K′2Ā

]
2

=

(
K′1[Ā]2 + M⊥1 [A]2

K′2[Ā]2

)
Now let’s say we are given a Dk+n1−t,k challenge which is either “real”:

([A]2, [Ās]2, [As]2) or “fake”: ([A]2, [s′]2, [s′′]2).
For an adversary supplied (y∗1‖ y∗2) ∈ Gn1

1 × Gn2
1 and proof π, such that

y∗1 /∈ span([M1]1), we have y∗>1 M⊥1 6= 01×(n1−t). If the proof verifies, that means:

y∗>1 (K′1Ā + M⊥1 A) + y∗>2 K′2Ā = πĀ =⇒ (y∗>1 M⊥1 )A = (π − y∗>1 K′1 − y∗>2 K′2)Ā

Since the LHS is nonzero, y∗>1 M⊥1 and π − y∗>1 K′1 − y∗>2 K′2 can be employed
to detect the real Dk+n1−t,k challenge by pairing.

D Proof of Tight Security of Multi-Challenge CCA2-PKE

Theorem 4. (re-stated) Under the Dk-mddh assumption, and using the labeled
USS-QA-NIZK Π ′ of Fig. 4, the public-key encryption scheme described in Fig 6
is (µ, qe) IND-CCA secure with Adversary’s advantage A upper-bounded by

2 · advtssΠ′ + 6k · advDk-mddh + 2 · advussΠ′ (qe) +O(1/q).

For ease of reading, we will consider only the the case µ = 1, i.e., a sin-
gle user and multi-challenges. The proof easily generalizes to multi-user setting
by considering the USS-QA-NIZK generalized to simultaneous multiple CRS-es
(and languages) as done in [LPJY15]. Alternatively, one may consider the same
CRS for all users by letting B being the same and generated as part of group
parameters par.

Proof. In the following we consider several games between a challenger C and
the adversary A, and Pri[X] will denote the probability of predicate X holding
in probability space defined in game Gi. We will first bound the advantage of
the adversary in terms of D2k,k-mddh. Then, using the boosting lemma (see
section 2.1, we can bound the advantage in terms of Dk-mddh.

Game G0: This is same as the game between the challenger and the adversary
in the definition 6. Recall, it boosts the distribution Dk+1,k to D2k,k by using
boosting (see Section 2.1). Also recall, the challenger picks a bit d at random.

Game G1: In this game, the challenger picks k differently: it picks two vectors

k1, k2, and sets k = k1 + B̄
−>

Bk2. Moreover, it decrypts as follows: instead of
computing (γ − ρk), it now computes (γ − (ρk1 + ρ̂k2)).
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Since, B̄ is invertible with high probability under the D2k,k-mddh assump-
tion, and by soundness of the USS-QA-NIZK it follows the the difference in the
adversary’s view between the games G0 and G1 is bounded by O(1/q)+advtssΠ′ .

Game G2: In this game, the challenger generates the (crsp,crsv, trap) using the
CRS simulator of Π ′. Moreover, it computes all proofs using the proof simulator
of Π ′ (using trap, and not requiring r).

By perfect zero-knowledge simulation of the USS-QA-NIZK, the Adversary’s
view is unchanged in going from game G1 to G2.

Game G3: In this game the simulator picks another B′ at random from Zk×kq ,
and serves Encryption queries (slightly differently) as follows: ρ̂ is now computed

as [B′>r]1 and γ is now computed as Md + r>B̄
>

(k1 + B̄
−>

(B′)>k2).

It is not difficult to show that the probability that A can distinguish its views
in the games G2 and G3 is at most advD2k,k-mddh. Note, the challenger can
simulate the games completely with only one instance of D2k,k-mddh.

Game G4: In this game, the challenger serves decryption queries by computing

(γ − (ρ(k1 + B̄
−>

B>k2)).

We now show that the probability of the adversary A distinguishing its views
in the games G3 and G4 is at most advussΠ′ (qe) + O(1/q). We prove this by
showing that if the Adversary A can distinguish between the two games with
probability p, then we can build an adversary B that can forge a false proof in the
unbounded simulation-soundness game of USS-QA-NIZK of Π ′ with probability
p−O(1/q).

First note that the view of the Adversary in the games G3 and G4 is iden-
tical unless for some (at least one) of its decryption requests ctxt∗ = (ρ∗, ρ̂∗,

γ∗, π∗) it is the case that ρ̂∗ 6= ρ∗B̄
−>

B, or in other words (ρ∗, ρ̂∗) is not
in language L of Π ′ (unless B̄ is singular, which happens with negligible prob-
ability). Moreover, since the challenger generated B (see Fig 6 and definition
of game G0), it can efficiently test if some ctxt∗ has its (ρ∗, ρ̂∗) not in L. It
can then use that pair (and the label γ∗, and proof π∗) to claim a false proof
that verifies (since the challenger already checked that Π ′.ver holds as a first
step in the decryption process). We also need to check that the tuple (ρ∗, ρ̂∗),
and label γ∗, and proof π∗ is not the same as in some simulated-proof oracle
request. But, that would imply that the decryption request ctxt∗ is same as one
in the set D that the challenger is maintaining, and hence the challenger never
actually decrypted that request. Finally, recall the (enhanced) USS-QA-NIZK
simulation-soundness game allows the (USS-QA-NIZK-) Adversary to be given
the discrete logarithms of the language defining parameters, which in this case
is [B]1. Thus the challenger, serving as adversary in the USS-QA-NIZK game,
can forge with probability at least p−O(1/q).

Game G5: In this game, instead of setting k = k1 + B̄
−>

B>k2, it picks k
directly at random from Zkq . It also picks a random and independent l2 from

Zkq . It continues by picking B′ at random from Zk×kq . Hence, it serves decryption
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queries by computing (γ−ρk). However, for encryption queries, it now computes
ρ̂ as [B′r]1 and γ as Md + r>l2.

We now claim that the view of the adversary in games G4 and G5 is identical
with high probability. this follows easily be noting that for any non-zero B′,B, k2

and (B′−B) non-singular, the k-vectors k1 +B̄
−>

B>k2 and k1 +B̄
−>

(B′)>k2 are
random and independent (and independent of B′, B). The statistical difference
between the views of the adversary is at most O(1/q).

Game G6: In this game, in the encryption queries, ρ̂ is computed as [Br]1.
The probability that adversary can distinguish between the two games is at

most advD2k,k-mddh.

Game G7: In this game, in the encryption queries, γ is set to Md + r>(B′)>l2,
where B′ is a random matrix from Zk×kq .

The view of the Adversary is statistically identical (with statistical difference
O(1/q)) in games G6 and G7, since l2 is random, and with high probability B′

is full-ranked.

Game G8: In this game, in all the encryption queries, γi is computed as M
(i)
d

+ r’>i (B′)>l2, where for each i, r’i is a random and independent vector from Zkq .
The probability that the Adversary can distinguish between games G7 and

G8 is at most advD2k,k-mddh, by the random self-reducibility of D2k,k-mddh
[EHK+13].

Game G9: In this game, in all the encryption queries, γi is computed as M
(i)
0

+ r’>i (B′)>l2, i.e. independent of the bit d.
The view of the adversary is identical in the games G8 and G9 with high

probability.
We now unwind the above games, going backwards to a game G10 which is

identical to game G0, except that M
(i)
0 is used instead of M

(i)
d in all encryption

oracle requests.
Now, note that since the view of the Adversary in game G10 is independent

of d, the probability that an adversary can guess d in game G10 (i.e. be deemed
successful) is at most 1/2. Thus, the probability that an adversary can guess d
in game G0 is at most

1/2 +O(1/q) + 2 · advtssΠ′ + 6 · advD2k,k-mddh + 2 · advussΠ′ .

The lemma follows, since advD2k,k-mddh ≤ k · advDk-mddh by boosting
lemma.
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