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Abstract

In a poisoning attack against a learning algorithm, an adversary tampers with a fraction of the training
data T with the goal of increasing the classification error of the constructed hypothesis/model over the
final test distribution. In the distributed setting, T might be gathered gradually from m data providers
P1, . . . , Pm who generate and submit their shares of T in an online way.

In this work, we initiate a formal study of (k, p)-poisoning attacks in which an adversary controls
k ∈ [n] of the parties, and even for each corrupted party Pi, the adversary submits some poisoned data
T ′
i on behalf of Pi that is still “(1 − p)-close” to the correct data Ti (e.g., 1 − p fraction of T ′

i is still
honestly generated). For k = m, this model becomes the traditional notion of poisoning, and for p = 1
it coincides with the standard notion of corruption in multi-party computation.

We prove that if there is an initial constant error ε for the generated hypothesis h, there is always a
(k, p)-poisoning attacker who can decrease the confidence of h (to have a small error), or alternatively
increase the error of h, by Ω(p·k/m). Our attacks can be implemented in polynomial time given samples
from the correct data, and they use no wrong labels if the original distributions are not noisy.

At a technical level, we prove a general lemma about biasing bounded functions f(x1, . . . , xn) ∈
[0, 1] through an attack model in which each block xi might be controlled by an adversary with marginal
probability p in an online way. When the probabilities are independent, this coincides with the model
of p-tampering attacks [ACM+17, MM17, MDM18], thus we call our model generalized p-tampering.
We prove the power of such attacks by incorporating ideas from the context of coin-flipping attacks
from [BOL89, HO14] into the p-tampering model and generalize the results in both of these areas.
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1 Introduction

Learning from a set T = {d1, . . . , dn} of training examples in a way that the predictions generalize to
instances beyond T is a fundamental problem in learning theory. The goal here is to produce a hypothesis
(also called a model) h in such a way that h(a), with high probability, predicts the “correct” label b, where
the pair (a, b) = d is sampled from the target (test) distribution d. In the most natural setting, the examples
in the training data set T are also generated from the same distribution d, however this is not always the
case. For example, the examples in T could be gathered under noisy conditions. Even more, the difference
between the distribution producing T and the test distribution d could be adversarial. Indeed, in his seminal
work Valiant [Val85] initiated a formal study of this phenomenon by defining the framework of learning
under malicious noise, that is a model in which an all-powerful adversary is allowed to change each of the
generated training examples d ∈ T with independent probability p, in an online way. Subsequently, it was
shown [KL93, BEK02] that PAC learning of even simple problems in this model could be impossible, at
least for specific pathological distributions.

Poisoning attacks. A more modern interpretation for the problem of learning under adversarial noise is the
framework of so-called poisoning (aka causative) attacks (e.g., see [ABL14, XBB+15, STS16, PMSW16]),
in which the adversary’s goal is not necessarily to completely prevent the learning, but perhaps it simply
wants to increase the risk of the hypothesis produced by the learning process. A poisoning attack could be
defined also in settings that are not at all covered by the malicious noise model; for example a poisoning
attacker might even have a particular test example in mind while doing the whole attack, making the final
attack a targeted one [STS16]. Mahloujifar, Mahmoody and Diochnos [MM17, MDM18] initiated a study
of poisoning attacks in a model that closely follows Valiant’s malicious noise model and showed that such
attacks can indeed increase the error of any classifiers for any learning problem by a constant probability,
even without using wrong labels, so long as there is an initial constant error probability. The attack model
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used in [MM17,MDM18], called p-tampering, was a generalization of a similar model introduced in Austrin
et al. [ACM+14] in the bitwise setting in cryptographic contexts.

Multi-party poisoning. In a distributed learning procedure [MR17, MMR+16, BIK+17, KMY+16], the
training data T might be coming from various sources; e.g., it can be generated by m data providers
P1, . . . , Pm in an online way, while at the end a fixed algorithm, called the aggregator G, generates the
hypothesis h based on T . The goal of P1, . . . , Pm is to eventually help G construct a hypothesis h that
does well in predicting the label b of a given instance a, where (a, b) ← d is sampled from the final test
distribution. The data provided by each party Pi might even be of “different type”, so we cannot simply
assume that the data provided by Pi is necessarily sampled from the same distribution d. Rather, we let di
model the distribution from which the training data Ti (of Pi) is sampled. Poisoning attacks can naturally be
defined in the distributed setting as well (e.g., see [FYB18, BVH+18, BGS+17]) to model adversaries who
partially control the training data T with the goal of decreasing the quality of the generated hypothesis. The
central question of our work is then as follows.

What is the inherent power of poisoning attacks in the multi-party setting? How much can they
increase the risk of the final trained hypothesis, if they only have a “limited” power?

Using multi-party coin-tossing attacks? The question above could be studied in various settings, but the
most natural way to model it from a cryptographic perspective is to allow the adversary to control k out of
the m parties. So, a natural idea here is to use techniques from attacks in the context of multi-party coin-
tossing protocols [BOL89, HO14]. Indeed, the adversary in that context wants to change the outcome of a
random bit generated by m parties by corrupting k of them. So, at a high level, if we interpret the output bit
b = 1 to be the case that h makes a mistake on its test and interpret b = 0 to be the other case, we might be
able to use such attacks to increase the risk of h by increasing the probability of b = 1. At a high level, the
issues with using this idea are that: (1) the attacks in the multi-party coin tossing are not polynomial time,
while we need polynomial-time attacks, (2) they only apply to Boolean output, while here we might want to
increase the loss function of h that is potentially real-valued, and finally (3) coin-tossing attacks, like other
cryptographic attacks in the multi-party setting, completely change the messages of the corrupted parties,
while here we might want to keep the corrupted distributions “close” to the original ones, perhaps with the
goal of not alarming a suspicious behavior, or simply because the attack only gets partial control over the
process by which Pi generates its data. Indeed, we would like to model such milder forms of attacks as well.

Using p-tampering attacks? Now, let us try a different approach assuming that the adversary’s corrupted
parties have a randomized pattern. In particular, let us assume that the adversary gets to corrupt and control k
randomly selected parties. In this case, it is easy to see that, at the end every single message in the protocol Π
between the parties P1, . . . , Pm is controlled with exactly probability p = k/m by the adversary Adv (even
though these probabilities are correlated). Thus, at a high level it seems that we should be able to use the
p-tampering attacks of [MM17, MDM18] to degrade the quality of the produced hypothesis. However, the
catch is that the proof of p-tampering attacks of [MM17, MDM18] (and the bitwise version of [ACM+17])
crucially rely on the assumption that each message (which in our context corresponds to a training example)
is tamperable with independent probability p, while by corrupting k random parties, the set of messages
controlled by the adversary are highly correlated.
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A new attack model: (k, p)-poisoning attacks. To get the best of p-tampering attacks and the coin-
tossing attacks with k corrupted parties, we combine these models and define a new model, called (k, p)-
poisoning, that generalizes the corruption pattern in both of these settings. A (k, p)-poisoning attacker Adv
can first choose to corrupt k of the parties, but then even after doing so, Adv has a limited control over
the training examples generated by a corrupted party. More formally, if a corrupted P̃i is supposed to send
the next message, then the adversary will sample d ← d̃ for a maliciously chosen distribution d̃ that is
guaranteed to be “close” to the original distribution di, while their distance is controlled by a parameter
p ∈ [0, 1]. In particular, we require that the statistical distance between d̃ and di is at most p. It is easy
to see that (k, p)-poisoning attacks include p-tampering attacks where k = m (m is the number of parties).
Moreover, (k, p)-attacks trivially include k-corrupting attacks by letting p = 1. Our main result in this
works is to prove the following general theorem about the inherent power of (k, p)-poisoning attacks.

Theorem 1.1 (Power of (k, p)-poisoning attacks–informal). Let Π = (P1, . . . , Pm) be anm-party learning
protocol for anm-party learning problem. There is a polynomial time (k, p)-poisoning attack Adv such that,
given oracle access to the data distribution of the parties, Adv can decrease the confidence of the learning
process by Ω(p · km), where the confidence parameter is

1− Pr[the risk of the generated hypothesis is > α]

for a fixed parameter α.1 Alternatively, for any target example d, there is a similar polynomial time (k, p)-
poisoning attack that can increase the average error of final hypothesis on d by Ω(p · km), where this average
is also over the generated hypothesis h.

(For the formal version of Theorem 1.1 above, see Theorem 2.4.)
We prove the above theorem by first proving a general result about the power of “biasing” adversaries

whose goal is to increase the expected value of a random process by controlling each block of the random
process with probability q (think of q as≈ p ·k/m). As these biasing attacks generalize p-tampering attacks,
we simply call them generalized p-tampering attacks. We now describe this attack model and clarify how it
can be used to achieve our goals stated in Theorem 1.1.

Generalized p-tampering biasing attacks. Generalized p-tampering attacks could be defined for any
random process x ≡ (x1, . . . ,xn) and a function f(x) ∈ [0, 1] defined over this process. In order to explain
the attack model, first consider the setting where there is no attacker. Now, given a prefix x1, . . . , xi−1 of the
blocks, the next block xi is simply sampled from its conditional probability distribution (xi | x1, . . . , xi−1).
(Looking ahead, think of xi as the i’th training example provided by one of the parties in the interactive
learning protocol.) Now, imagine an adversary who enters the game and whose goal is to increase the
expected value of a function f(x1, . . . ,xn) defined over the random process x by tampering with the block-
by-block sampling process of x described above. Before the attack starts, there will be a a list S ⊆ [n] of
“tamperable” blocks that is not necessarily known to the Adv in advance, but will become clear to him as
the game goes on. Indeed, this set S itself will be first sampled according to some fixed distribution S, and
the crucial condition we require is that Pr[i ∈ S] = p holds for all i ∈ [n]. After S ← S is sampled, the
sequence of blocks (x1, . . . , xn) will be sampled block-by-block as follows. Assuming (inductively) that
x1, . . . , xi−1 are already sampled so far, if i ∈ S, then Adv gets to fully control xi and determine its value,
but if i 6∈ S, then xi is simply sampled from its original conditional distribution (xi | x1, . . . , xi−1). At the
end, the function f is computed over the (adversarially) sampled sequence.

1The confidence parameter here is what is usually known as 1− δ in (ε, δ)-PAC learning, where ε takes the role of our α.
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We now explain the intuitive connection between generalized p-tampering attacks and (k, p)-poisoning
attacks. The main idea is that we will use a generalized q-tampering attack for q = p · k/m over the
random process that lists the sequence of training data provided by the parties during the protocol. Let S
be the distribution over [n] that picks its members through the following algorithm. First choose a set of
random parties {Q1, . . . , Qk} ⊆ {P1, . . . , Pm}, and then for each message xj that belongs to Qi, include
the corresponding index j in the final sampled S ← S with independent probability p. It is easy to see
that S eventually picks every message with (marginal) probability q = p · k/m, but it is also the case that
these inclusions are not independent events. Finally, to use the power of generalized p-tampering attacks
over the described S and the random process of messages coming from the parties to get the results of
Theorem 1.1, roughly speaking, we let a function f model the loss function applied over the produced
hypothesis. Therefore, to prove Theorem 1.1 it is sufficient to prove Theorem 1.2 below which focuses on
the power of generalized p-tampering biasing attacks.

Theorem 1.2 (Power of generalized p-tampering attacks–informal). Suppose x ≡ (x1, . . . ,xn) is a joint
distribution such that, given any prefix, the remaining blocks could be efficiently sampled in polynomial time.
Also let f : Supp(x) 7→ [0, 1], and let µ, ν in order be the expected value and variance of f(x). Then, for
any set distribution S for which Pr[i ∈ S] = p for all i, there is a polynomial-time generalized p-tampering
attack (over tampered blocks in S) that increases the average of f over its input from µ to µ′ ≈ µ+ p · ν/2.

(The formal statement of Theorem 1.2 above follows from Theorem 3.6 and Lemma 3.7.)

Remark 1.3. It is easy to see that in the definition of generalized p-tampering attacks, it does not matter
whether we define the attack bit-by-bit or block-by-block. The reason is that, even if we break down each
block into smaller bits, then still each bit shall eventually fall into the set of tamperable bits, and the model
allows correlation between the inclusion and exclusion of each block/bit into the final tamperable set. This
is in contrast to the p-tampering model for which this equivalence is not true. In fact, optimal bounds
achievable by bitwise p-tampering as proved in [ACM+17] are impossible to achieve in the blockwise p-
tampering setting [MM17]. Despite this simplification, we still prefer to use a blockwise presentation of
the random process, as this way of modeling the problem allows better tracking measures for the attacker’s
sample complexity.

Before describing ideas behind the proof of Theorem 1.2 above and its formalization through Theo-
rem 3.6 and Lemma 3.7, we discuss some related work.

Related previous work. Any biasing attack can also be interpreted as some form of impossibility result
for a set of imperfect sources that started with [SV86] and expanded to more complicated models (e.g.,
see [SV86, RVW04, DOPS04, CG88, Dod01, DR06, BEG17, DY15, BBEG18]), and in that regard, our work
is no exception. In particular, the work of Beigi, Etesami, and Gohari [BEG17] defined the notion of
generalized SV sources that generalized SV sources but, due to the correlated nature of tamperable blocks
in our model, the two models are incomparable.

In addition, as explained above in more detail, our work is related to the area of attacks on coin-tossing
protocols (e.g., see [LLS89, CI93, GKP15, MPS10, CI93, BHT14, HO14, BHLT17, BHT18]), however in the
following we discuss some of these works in more depth. Perhaps, the most relevant is the model posed in
the open questions section of Lichtenstein, Linial, and Saks [LLS89]. They ask about the power of biasing
attackers in coin flipping protocols in which the adversary has a bounded budget b, and after using this
budget on any party/message, the corruption will indeed happen with probability p. The main difference to
our model is that the adversary does not get to pick the exact tampering locations in our model (which makes
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our results stronger). Moreover, in their model each party sends exactly one message, and the attacker can
corrupt the parties in an adaptive way. Despite the similarities, the difference in the two models makes our
results not tight for their setting. Finally, the work of Dodis [Dod01] also defines a tampering model that
bears similarities to the generalized p-tampering model. In the model of [Dod01] again an adversary has
a bounded budget b to use in its corruption, but even when he does not use his budget, he can still try to
tamper the parties/messages and still succeed with probability p. The latter makes the model of [Dod01]
quite different from ours.

1.1 Ideas Behind Our Generalized p-Tampering Attack

Since generalized p-tampering already bears similarities to the model of p-tampering attacks, our starting
point is the blockwise p-tampering attack of [MM17]. It was shown in [MM17] that, by using a so-called
“one-rejection sampling” (1RS) attack, the adversary can achieve the desired bias of Ω(p · ν). So, here we
recall the 1RS attack of [MM17].

• In the 1RS attack, for any prefix of already sampled blocks (x1, . . . , xi−1), suppose the adversary is
given the chance of controlling the next i’th block. In that case, the 1RS adversary first samples a full
random continuation x′i, . . . , x

′
n from the marginal distribution of the remaining blocks conditioned

on (x1, . . . , xi−1). Let s = f(x1, . . . , xi−1, x
′
i, . . . , x

′
n). Then, the 1RS attack keeps the sample x′i

with probability s, and changes that into a new fresh sample x′′i with probability 1− s.

The great thing about the 1RS attack is that it is already polynomial time assuming that we give access
to a sampling oracle that provides the adversary with a random continuation for any prefix. However, the
problem with the above attack is that its inductive analysis of [MM17] crucially depends on the tampering
probabilities of each block to be independent of each other.

The next idea is to modify the 1RS attack of [MM17] based on attacks in the context of coin-tossing
protocols and, in particular, the two works of Ben-Or and Linial [BOL89] and Haitner and Omri [HO14].
Indeed, in [BOL89] it was shown that, if the adversary corrupts k parties in an interactive coin-flipping
protocol, then it is indeed able to increase the probability of obtaining 1 as follows. Let µ = Pr[output bit =
1], and for a subset S ⊆ [m] of size |S| = k of the parties, let µS be the probability of output being 1, if
the parties in S use their “optimal” strategy (which is not polynomial-time computable). Then, the result
of [BOL89] could be interpreted as follows:

GMean{µS | S ⊆ [m], |S| = k} ≥ µ1−k/m (1)

where GMean denotes the geometric mean (of the elements in the multi-set). Then, by an averaging argu-
ment one can show that there is at least one set S ⊆ [m] of size |S| = k such that corrupting players in
S and using their optimal strategy can achieve expected value at least µ1−k/m, and the bias µ1−k/m − µ
is indeed Ω(k · µ · (1 − µ)/m), which is large enough. However, the proof of [BOL89] does not give a
polynomial time attack and uses a rather complicated induction. So, to make it polynomial time and to even
make it handle generalized p-tampering attacks, we use one more idea from the follow up work of [HO14].
In [HO14], it was shown that for the case of two parties, the biasing bound proved in [BOL89] could be
achieved by the following simple (repeated) rejection sampling (RRS) strategy.

• In the RRS attack, for any prefix of already sampled blocks (x1, . . . , xi−1), suppose the adversary is
given the chance of controlling the next i’th block. The good thing about the RRS attack is that it
achieves the bounds of the [BOL89] while it could also can be made polynomial time in any model
where random continuation can be done efficiently. The RRS tampering then works as follows:
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1. Let x′i, . . . , x
′
n be a random continuation of the random process.

2. If s = f(x1, . . . , xi−1, x
′
i, . . . , x

′
n), then with probability s output yi , and with probability 1− s

go to Step 1 and repeat the sampling process again.

Indeed, we shall point out that for the Boolean case of [BOL89, HO14], the probability s is either zero
or one, and the above RRS attack is the adaptation of rejection sampling to the real-output case, as done in
the context of p-tampering.

Putting things together, our main contributions are taking the following steps to prove Theorem 1.2.

1. We show that the RRS attack of [HO14] does indeed extend to the multi-party case. Interestingly, to
prove this, we avoid the inductive proofs of both [BOL89,HO14] and give a direct proof based on the
arithmetic-mean vs. geometric-mean inequality (Lemma A.1). However, our proof has a down side:
we only get a lower bound on the arithmetic mean of {µS | S ⊆ [m], |S| = k} in Inequality 1. But
that is good enough for us, as we indeed want to lower bound the bias achieved when we corrupt a
randomly selected set of k parties, and the arithmetic mean gives exactly that.

2. We show that the above argument extends even to the case of generalized p-tampering when the
weights in the arithmetic mean are proportional to the probabilities of choosing each set S. For doing
this, we use an idea from [HO14] that analyzes an imaginary attack in which the adversary does the
tampering effort over each block, and then we compare this to the arithmetic mean of actual attacks.

3. We show that our proof extends to the real-output case, and achieve a bound that generalizes the
bound µ1−p of the Boolean case. As pointed out above, the inductive proofs of [BOL89,HO14] seem
to be tightly tailored to the Boolean case, but our direct proof based on the AM-GM inequality scales
nicely for the real-output RRS attack described above.

The lower bound, proved only for the arithmetic mean of {µS | S ⊆ [m], |S| = k}, is equal to
µ′ = µ−p ·E[f(x)1+p] (see Theorem 3.6). However, it is not clear that the bound µ′ is any better than
the original µ! Yet, it can be observed that µ′ ≥ µ always holds due to Jensen’s inequality. Therefore,
a natural tool for lower bounding µ′ − µ is to use lower bounds on the “gap” of Jensen’s inequality.
Indeed, we use one such result due to [LB17] (see Lemma A.2) and obtain the desired lower bound
of µ′ − µ ≥ Ω(p · ν) by simple optimization calculations.

2 Multi-party Poisoning Attacks: Definitions and Main Results

Basic probabilistic notation. We use bold font (e.g., x,S,α) to represent random variables, and usually
use same non-bold letters for denoting samples from these distributions. We use d← d to denote the process
of sampling d from the random variable d. By E[α] we mean the expected value of α over the randomness
of α, and by V[α] we denote the variance of random variable α. We might use a “processed” version of
α, and use E[f(α)] and V[f(α)] to denote the expected value and variance, respectively, of f(α) over the
randomness of α.

Notation for learning problems. A learning problem (A,B,d,H, Loss) is specified by the following
components. The set A is the set of possible instances, B is the set of possible labels, d is distribution
over A × B.2 The set H ⊆ BA is called the hypothesis space or hypothesis class. We consider loss

2By using joint distributions over A × B, we jointly model a set of distributions over A and a concept class mapping A to B
(perhaps with noise and uncertainty).
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functions Loss : B×B 7→ R+ where Loss(b′, b) measures how different the ‘prediction’ y′ (of some possible
hypothesis h(a) = y′) is from the true outcome y. We call a loss function bounded if it always takes
values in [0, 1]. A natural loss function for classification tasks is to use Loss(b′, b) = 0 if y = y′ and
Loss(b′, b) = 1 otherwise. The risk of a hypothesis h ∈ C is the expected loss of h with respect to d, namely
Risk(h) = E(a,b)←d[Loss(h(a), b)]. An example s is a pair s = (a, b) where x ∈ A and y ∈ B. An example
is usually sampled from a distribution d. A sample set (or sequence) T of size n is a set (or sequence) of n
examples. We assume that instances, labels, and hypotheses are encoded as strings over some alphabet such
that given a hypothesis h and an instance x, h(a) is computable in polynomial time.

2.1 Basic Definitions for Multi-party Learning and Poisoning

Multi-party learning problems. An m-party learning problem (D,H, Loss) is defined similarly to the
(single-party) learning problem (without the sets A,B denoted explicitly for a reason to be clear shortly),
with the following difference. This time, D = (d1, . . . ,dm,d) consists of m + 1 distributions (possibly
all the same) such that party Pi gets samples from di, and they jointly want to learn the distribution d. So,
each distribution di might have its own instance space Ai and label space Bi. The loss function Loss is still
defined for the specific target test distribution d. Also, even though, D is an actual sequence, for simplicity
we sometimes treat it as a set and write statements like di ∈ D.

Definition 2.1 (Multi-party learning protocols). An m-party learning protocol Π for the m-party learn-
ing problem (D,H, Loss) consists of an aggregator function G and m (interactive) data providers P =
{P1, . . . , Pm}. For each data provider Pi, there is a distribution di ∈ D that models the (honest) distri-
bution of labeled samples generated by Pi, and there is a final (test) distribution d that P, G want to learn
jointly. The protocol runs in r rounds and at each round, based on the protocol Π, one particular data owner
Pi broadcasts a single labeled example (a, b) ← di.3 In the last round, the aggregator function G maps
the transcript of the messages to an output hypothesis h ∈ H. For a protocol Π designed for a multi-party
problem (D,H, Loss), we define the following functions.

• The confidence function for a given error threshold α ∈ [0, 1] is defined as

Conf(α,d) = Pr
h←Π

[Risk(h,d) ≤ α].

• The average error (or average loss) for a specific example d = (a, b)← d is defined as

Err(d) = Pr
h←Π

[Loss(h(a), b)],

based on which the total error of the protocol is defined as Err(d) = Ed←d[Err(d)].

Now, we define poisoning attackers that target multi-party protocols. We formalize a more general
notion that covers both p-tampering attackers as well as attackers who (statically) corrupt k parties.

Definition 2.2 (Multi-party (k, p)-poisoning attacks). A (k, p)-poisoning attack against anm-party learning
protocol Π is defined by an adversary Adv who can control a subset C ⊆ [m] of the parties where |C| = k.
The attacker Adv shall pick the set C at the beginning. At each round j of the protocol, if a data provider
Pi ∈ C is supposed to broadcast the next example from its distribution di, the adversary can partially

3We can directly model settings where more data is exchanged in one round, however, we stick to the simpler definition as it
loses no generality.
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control this sample use tampered distribution d̃ such that |d̃ − di| ≤ p in statistical distance. Note that the
distribution d̃ can depend on the history of examples broadcast so far, but the requirement is that, conditioned
on this history, the malicious message of adversary modeled by distribution d̃, is at most p-statistically far
from di. We use ΠAdv to denote the protocol in presence of Adv. We also define the following notions.

• We call Adv a plausible adversary, if it always holds that Supp(d̃) ⊆ Supp(di).

• Adv is efficient if it runs in polynomial time in the total length of the messages exchanged during the
protocol (from the beginning till end).

• The confidence function in presence of Adv is defined as

ConfAdv(α,d) = Pr
h←ΠAdv

[Risk(h,d) ≤ α]

and Conf(α,d) is the confidence of the learning protocol without any attacks which can be formally
defined using an attacker I who does not change any of the distributions.

• The average error for a specific example d = (a, b)← d in presence of Adv is defined as

ErrAdv(d) = Pr
h←Π

[Loss(h(a), b)],

based on which the total error of the protocol is defined as ErrAdv(d) = Ed←d[Err(d)].

Note that standard (non-adversarial) confidence and average error functions could be also defined as
adversarial ones using a trivial adversary I who simply outputs its input.

Remark 2.3 (Static vs. adaptive corruption). Definition 2.2 focuses on corrupting k parties statically. A
natural extension of this definition in which the set C is chosen adaptively [CFGN96] while the protocol is
being executed can also be defined naturally. In this work, however, we focus on static corruption, and leave
the possibility of improving our results in the adaptive case for future work.

2.2 Power of Multy-party Poisoning Attacks

We now formally state our result about the power of (k, p)-poisoning attacks.

Theorem 2.4 (Power of efficient multi-party poisoning). In any m-party protocol Π for parties P =
{P1, . . . , Pm}, for any p ∈ [0, 1] and k ∈ [m], the following hold where M is the total length of the
messages exchanged during the protocol.

1. For any α, ε ∈ [0, 1], there is a plausible, (k, p)-poisoning attack Adv that runs in time poly(M/ε)
and decreases the confidence of the protocol as follows

ConfAdv(α,d) ≤
(

1− p · k
m

)
· Conf(α,d) + ε.

2. If the (normalized) loss function is bounded (i.e., it outputs in [0, 1]), then there is a plausible, (k, p)-
poisoning Adv that runs in time poly(M/ε) and increases the average error of the protocol as

ErrAdv(d) ≥ Err(d) +
p · k
2m
· ν − ε

where ν = Vh←Π[Risk(h,d)] (and V[·] denotes the variance).
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3. If Loss is a Boolean function (e.g. as in classification problems), for any final test example d ← d,
there is a plausible, (k, p)-poisoning attack Adv that runs in time poly(M/ε) and increases the
average error of the test example d as follows,

ErrAdv(d) ≥ Err(d) + p · k
m
· (1− Err(d))− ε.

Before proving Theorem 2.4, we need to develop our main result about the power of generalized p-
tampering attacks; in Section 3, we develop such tools, and then in Section 4.1 we prove Theorem 2.4.

Remark 2.5 (Allowing different distributions in different rounds). In Definition 2.2, we restrict the adver-
sary to remain “close” to di for each message sent out by one of the corrupted parties. A natural question is:
what happens if we allow the parties distributions to be different in different rounds. For example, in a round
j, a party Pi might send multiple training examples D(j) =

(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
, and we want to limit the

total statistical distance between the distribution of the larger messageD(j) from dki (i.e., k iid samples from
di).4 We emphasize that, our results extend to this more general setting as well. In particular, the proof of
Theorem 2.4 directly extends to a more general setting where we can allow the honest distribution di of each
party i to also depend on the round j in which these messages are sent. Thus, we can use a round-specific
distribution d

(j)
i to model the joint distribution of multiple samples D(j) =

(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
that are

sent out in the j’th round by the party Pi. This way, we can obtain the stronger form of attacks that remain
statistically close to the joint (correct) distribution of the (multi-sample) messages sent in a round. In fact,
as we will discuss shortly D(j) might be of completely different type, e.g., just some shared random bits.

Remark 2.6 (Allowing randomized aggregation). The aggregator G is a simple function that maps the
transcript of the exchanged messages to a hypothesis h. A natural question is: what happens if we generalize
this to the setting where G is allowed to be randomized. We note that in Theorem 2.4, Part 2 can allow G
to be randomized, but Parts 1 and 3 need deterministic aggregation. The reason is that for those parts,
we need the transcript to determine the confidence and average error functions. One general way to make
up for randomized aggregation is to allow the parties to inject randomness into the transcript as they run
the protocol by sending messages that are not necessarily learning samples from their distribution di. As
described in Remark 2.5, our attacks extend to this more general setting as well. Otherwise, we will need
the adversary to be able to also depend on the randomness of G, but that is also a reasonable assumption if
the aggregation is used using public beacon that could be obtained by the adversary as well.

3 Generalized p-Tampering Biasing Attacks: Definitions and Main Results

In this section, we formally state our main result about the power of generalized p-tampering attacks. we
start by formalizing some notation and basic definitions.

3.1 Preliminary Notation and Basic Definitions for Tampering with Random Processes

Notation. By x ≡ y we denote that the random variables x and y have the same distributions. Unless
stated otherwise, by using a bar over a variable, we emphasize that it is a vector. By x ≡ (x1,x2, . . . ,xn)
we refer to a joint distribution over vectors with n components. For a joint distribution x ≡ (x1, . . . ,xn),
we use x≤i to denote the joint distribution of the first i variables x ≡ (x1, . . . ,xi). Also, for a vector

4Note that, even if each block in
(
d
(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
remains p-close to di, their joint distribution could be quite far from dk

i .
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x = (x1 . . . xn) we use x≤i to denote the prefix (x1, . . . , xi). For a randomized algorithmL(·), by y ← L(x)
we denote the randomized execution of L on input x outputting y. For a distribution (x,y), by (x | y) we
denote the conditional distribution (x | y = y). By Supp(d) = {d | Pr[d = d] > 0} we denote the support
set of d. By Td(·) we denote an algorithm T (·) with oracle access to a sampler for d that upon every query
returns fresh samples from d. By dn we denote the distribution that returns n iid samples from d.

Definition 3.1 (Valid prefixes). Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution. We call x≤i =
(x1, . . . , xi) a valid prefix for x if there exist xi+1, . . . , xn such that (x1, . . . , xn) ∈ Supp(x). ValPref(x)
denotes the set of all valid prefixes of x.

Definition 3.2 (Tampering with random processes). Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribu-
tion. We call a (potentially randomized and possibly computationally unbounded) algorithm T an (online)
tampering algorithm for x if given any valid prefix x≤i−1 ∈ ValPref(x), it holds that

Pr
xi←T(x≤i−1)

[x≤i ∈ ValPref(x)] = 1 .

Namely, T(x≤i−1) outputs xi such that x≤i is again a valid prefix. We call T an efficient tampering algorithm
for x if it runs in time poly(N) where N is maximum bit length to represent any x ∈ Supp(x).

Definition 3.3 (Online samplers). We call OnSam an online sampler for x ≡ (x1, . . . ,xn) if for all x≤i−1 ∈
ValPref(x), OnSam(n, x≤i−1) ≡ xi. Moreover, we call x ≡ (x1, . . . ,xn) online samplable if it has an
online sampler that runs in time poly(N) where N is maximum bit length of any x ∈ Supp(x).

Definition 3.4 (Notation for tampering distributions). Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution
and T a tampering algorithm for x. For any subset S ⊆ [n], we define y ≡ 〈x ‖T, S〉 to be the joint
distribution that is the result of online tampering of T over set S, where y ≡ (y1, . . . ,yn) is sampled
inductively as follows. For every i ∈ [n], suppose y≤i−1 is the previously sampled block. If i ∈ S, then
the ith block yi is generated by the tampering algorithm T(y≤i−1), and otherwise, yi is sampled from
(xi | xi−1 = y≤i−1). For any distribution S over subsets of [n], by 〈x ‖T,S〉 we denote the random
variable that can be sampled by first sampling S ← S and then sampling y ← 〈x ‖T, S〉.

3.2 Power of Generalized p-Tampering Attacks

Having the definitions above, we finally describe our main result about the power of generalized p-tampering
attacks. We first formalize the way tampering blocks are chosen in such attacks.

Definition 3.5 (p-covering). Let S be a distribution over the subsets of [n]. We call S a p-covering distribu-
tion on [n] (or simply p-covering, when n is clear from the context), if for all i ∈ [n],PrS←S[i ∈ S] = p.

Theorem 3.6 (Biasing of bounded functions through generalizing p-tampering). Let S be a p-covering
distribution on [n], x ≡ (x1, . . . ,xn) be a joint distribution, f : Supp(x) 7→ [0, 1], and µ = E[f(x)]. Then,

1. Computationally unbounded attack. There is a (computationally unbounded) tampering algorithm
T such that if we let y ≡ 〈x ‖T,S〉 be the tampering distribution of T over S ← S, then

E[f(y)] ≥ µ−p · E
[
f(x)1+p

]
.

2. Polynomial-time attack. For any ε ∈ [0, 1], there exists a tampering algorithm Tε that, given oracle
access to f and any online sampler OnSam for x, it runs in time poly(N/ε), whereN is the bit length
of any x← x, and for yε ≡ 〈x ‖T

f,OnSam
ε ,S〉, it holds that

E [f(yε)] ≥ µ−p · E
[
f(x)1+p

]
− ε .
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Special case of Boolean functions. When the function f is Boolean, we get µ−p · E[f(x)1+p] = µ1−p ≥
µ(1 + Ωµ(p)), which matches the bound proved in [BOL89] for the special case of p = k/n for integer
k ∈ [n] and for S that is uniformly random subset of [n] of size k. (The same bound for the case of 2 parties
was proved in [HO14] with extra properties). Even for this case, compared to [BOL89, HO14] our result is
more general, as we can allow S with arbitrary p ∈ [0, 1] and achieve a polynomial time attack given oracle
access to an online sampler for x. The work of [HO14] also deals with polynomial time attackers for the
special case of 2 parties, but their efficient attackers use a different oracle (i.e., OWF inverter), and it is not
clear whether or not their attack extend to the case of more then 2 parties. Finally, both [BOL89, HO14]
prove their bound for the geometric mean of the averages for different S ← S, while we do so for their
arithmetic mean, but we emphasize that this is enough for all of our applications.

The bounds of Theorem 3.6 for both cases rely on the quantity µ′ = µ−p ·E[f(x)1+p]. A natural question
is: how large is µ′ compared to µ? As discussed above, for the case of Boolean f , we already know that
µ′ ≥ µ, but that argument does not apply to the real-output f . A simple application of Jensen’s inequality
shows that µ ≤ µ′ in general, but that still does not mean that µ′ � µ (i.e., that there is a large enough gap).

General case of real-output functions: relating the bias to the variance. If V[f(x)] = 0, then no
tampering attack can achieve any bias, so any gap achieved between µ′ and µ shall somehow depend on the
variance of f(x). In the following, we show that this gap does exist and that µ′−µ ≥ Ω(p·V[f(x)]). similar
results (relating the bias the the variance of the original distribution) were previously proved [MDM18,
MM17, ACM+14] for the special case of p-tampering attacks (i.e., S chooses every i ∈ [n] independently
with probability p). Here we obtain a more general statement that holds for any p-covering set structure S.

Using Lemma 3.7 below for α ≡ f(x), we immediately get Ω(p · V[f(x)]) lower bounds for the bias
achieved by (both versions of) the attackers of Theorem 3.6 for the general case of real-valued functions and
arbitrary p-covering set distribution S.

Lemma 3.7. Let α be any real-valued random variable over Supp(α) ⊆ [0, 1], and p ∈ [0, 1]. Let µ = E[α]
be the expected value of α, ν = V[α] be the variance of α, and γ = µ−p · E[α1+p]− µ. Then, it holds that

γ ≥ p · (p+ 1)

2 · µp
· ν ≥ p

2
· ν . (2)

4 Proofs of the Main Results

In the following subsections, we will first prove Theorem 2.4 using Theorem 3.6 and Lemma 3.7, and
then we will prove Theorem 3.6 and Lemma 3.7.

4.1 Obtaining (k, p)-Poisoning Attacks: Proof of Theorem 2.4

In this subsection, we formally prove Theorem 2.4 using Theorems 3.6 and Lemma 3.7.
For a subset C ⊆ [m] let PC = {Pi; i ∈ C} and RC be the subset of rounds where one of the parties

in PC sends an example. Also for a subset S ⊆ [n], we define Bion(S, p) to be a distribution over all the
subsets of S, where each subset S′ ⊆ S hast the probability p|S

′| ·(1−p)|S|−|S′|. Now, consider the covering
S of the set [n] which is distributed equivalent to the following process. First sample a uniform subset C of
[m] of size k. Then sample and output a set S sampled from Bion(RC , p). S is clearly a (p · km)-covering.
We will use this covering to prove all the three statements of the theorem. Before proving the statement
we define several notions. For j ∈ [n] let w(j) be the index of the provider at round j and let dw(j) be
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the designated distribution of the jth round and let x = dw(1) × · · · × dw(n). Now we prove the first part
of the theorem. We define a function f1 : Supp(x) → {0, 1}, which is a Boolean function and is 0 if the
output of the protocol has risk less than or equal to ε and 1 otherwise (note that f is equivalent to 1−Conf).
Note that this function f1 can be approximated in polynomial time, however, here for simplicity, we are
assuming that it can be exactly computed in polynomial time. Now we use Theorem 3.6. We know that S
is a (p · km)-covering for [n]. Therefore by Part 2 of Theorem 3.6, there exist an poly(M/ε) time tampering
algorithm Tε that changes x to y ≡ 〈x ‖Tf1,OnSam

ε ,S〉 where

E[f(y)] ≥ µ−p·k/m1 · E[f(x)1+p·k/m]− ε = µ
1−p·k/m
1 − ε ≥ µ1 + p · k

m
· (1− µ)− ε.

By an averaging argument, we can conclude that there exist a set C ∈ [m] of size k for which the
distribution Bion(RC , p) produces a bias at least p · km · (1 − µ). Note that the measure of empty set in
Bion(RC , p) is exactly equal to 1 − p which means with probability 1 − p the adversary will not tamper
with any of the blocks, therefore, the statistical distance |x − 〈x ‖Tf1,OnSam

ε ,Bion(RC , p)〉| is at most p.
This concludes the proof of the first part.

Now we prove the second part. The second part is very similar to first part except that the function that
we define here is a real valued function. Consider the function f2 : Supp(x) → [0, 1] which is defined to
be the risk of the output hypotheses. Now by Theorem 3.6 and Lemma 3.7, we know that there is tampering
algorithm Tε that changes x to y ≡ 〈x ‖Tf2,OnSam

ε ,S〉 such that

E[f2(y)] ≥ µ2 +
p · k
2m
· ν.

By a similar averaging argument we can conclude the proof.
Now we prove Part 3. Again we define a Boolean function f3 : Supp(x) → {0, 1} which outputs the

loss of the final hypothesis on the example d. Note that f3 is Boolean since the loss function is Boolean.
f3 is also computable by the adversary because he knows the target example d. Again by a similar use of
Theorem 3.6 and averaging argument we can conclude the proof.

4.2 Computationally Unbounded Attacks: Proving Part 1 of Theorem 3.6

Construction 4.1 (Rejection-sampling tampering). Let x ≡ (x1, . . . ,xn) and f : Supp(x) 7→ [0, 1].
The rejection sampling tampering algorithm RejSamf works as follows. Given the valid prefix y≤i−1 ∈
ValPref(x), the tampering algorithm would do the following:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online sampler for f .

2. If s = f(y1, . . . , yn), then with probability s output yi, otherwise go to Step 1 and repeat the process.

We will first prove a property of the rejection sampling algorithm when applied on every block.

Definition 4.2 (Notation for partial expectations of functions). Suppose f : Supp(x) 7→ R is defined over
a joint distribution x ≡ (x1, . . . ,xn), i ∈ [n], and x≤i ∈ ValPref(x). Then, using a small hat, we define
the notation f̂(x≤i) = Ex←(x|x≤i)[f(x)]. (In particular, for x = x[n], we have f̂(x) = f(x).)

Claim 4.3. If 〈x ‖RejSamf , [n]〉 ≡ y[n] ≡ (y1, . . . ,yn). Then, for every valid prefix y≤i ∈ ValPref[x],

Pr[y≤i = y≤i]

Pr[x≤i = y≤i]
=
f̂(y≤i)

µ
.
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Proof. Based on the description of RejSamf , for any y≤i ∈ ValPref(x) the following equation holds for
the probability of sampling yi conditioned on prefix y≤i−1.

Pr[yi = yi | y≤i−1] = Pr[xi = yi | y≤i−1] · f̂(y≤i) + (1− f̂(y≤i−1)) · Pr[yi = yi | y≤i−1].

The first term in this equation corresponds to the probability of selecting and accepting in the first round of
sampling and the second term corresponds to the probability of selecting and accepting in any round except
the first round. Therefore we have

Pr[yi = yi | y≤i−1] =
f̂(y≤i)

f̂(y≤i−1)
· Pr[xi = yi | y≤i−1] ,

which implies that

Pr[y≤i = y≤i] =
∏
j∈[i]

(
f̂(y≤j)

f̂(y≤j−1)

)
· Pr[x≤i = y≤i] =

f̂(y≤i)

µ
· Pr[x≤i = y≤i] .

Now, we prove two properties for any tampering algorithm (not just rejection sampling) over a p-
covering set distribution.

Lemma 4.4. Let S be p-covering for [n] and y ∈ Supp(x). For any S ∈ Supp(S) and an arbitrary
tampering algorithm T for x, let yS ≡ 〈x ‖T, S〉. Then,

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=

(
Pr[y[n] = y]

Pr[x = y]

)p
.

Proof. For every y≤i ∈ ValPref(y[n]) ⊆ ValPref(x) define ρ[y≤i] as

ρ[y≤i] =
Pr[y

[n]
i = xi | y[n]

≤i−1 = y≤i−1]

Pr[xi = xi | x≤i−1 = y≤i−1]
.

Then, for all y ∈ ValPref(yS) ⊆ ValPref(x) we have

Pr[yS = y] = Pr[x = y] ·
∏
i∈S

ρ[y≤i] .

Therefore,

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=
∏
S∈2[n]

(∏
i∈S

ρ[y≤i]

)Pr[S=S]

=
∏
i∈[n]

(
ρ[y≤i]

)Pr[i∈S]
=

∏
i∈[n]

ρ[y≤i]

p

.

Claim 4.5. Suppose S is p-covering on [n], yS ≡ 〈x ‖T, S〉 for any S ← S, and y ≡ 〈x ‖T,S〉 for an
arbitrary tampering algorithm T for x. Then, it holds that

E[f(y)] ≥
∑

y∈Supp(x)

Pr[x = y] · f(y) ·

(
Pr[y[n] = y]

Pr[x = y]

)p
.
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Proof. Note that Supp(yS) ⊆ Supp(x) for any S ⊆ [n]. Therefore,

E[f(y)] = E
S←S

E
y←yS

[f(y)] =
∑
S∈2[n]

Pr[S = S] ·
∑

y∈Supp(x)

Pr[yS = y] · f(y)

=
∑
S∈2[n]

Pr[S = S] ·
∑

y∈Supp(x)

Pr[yS = y]

Pr[x = y]
· Pr[x = y] · f(y)

=
∑

y∈Supp(x)

Pr[x = y] · f(y) ·
∑
S∈2[n]

Pr[S = S] ·
(

Pr[yS = y]

Pr[x = y]

)

(by AM-GM inequality of Lemma A.1) ≥
∑

y∈Supp(x)

Pr[x = y] · f(y) ·
∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

(by p-covering of S and Lemma 4.4) =
∑

y∈Supp(x)

Pr[x = y] · f(y) ·

(
Pr[y[n] = y]

Pr[x = y]

)p
.

We now prove the main result using the one-rejection sampling tampering algorithm and also relying on
the p-covering property of S. In particular, if y ≡ 〈x ‖RejSamf ,S〉, then by Claims 4.5 and 4.3 we have

E[f(y)] ≥
∑

y∈Supp(x)

(
Pr[y[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

(by Claim 4.3) =
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)

= µ−p ·
∑

y∈Supp(x)

Pr[x = y] · f(y)1+p = µ−p · E[f(x)1+p] .

4.3 Polynomial-time Attacks: Proving Part 2 of Theorem 3.6

In this section, we prove the second item of Theorem 3.6. Namely, we show an efficient tampering algorithm
whose average is ε-close to the average of RejSam. We define this attack as follows:

Construction 4.6 (k-rejection-sampling tampering). Let x = (x1, . . . ,xn) be a joint distribution and
f : Supp(x) 7→ [0, 1]. The k-rejection sampling tampering algorithm RejSamf

k works as follows. Given the
valid prefix y≤i−1 ∈ ValPref(x), the tampering algorithm would do the following for k times:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online sampler for f .

2. Let s = f(y1, . . . , yn); with probability s output yi, otherwise go to Step 1.

If no yi was output during any of the above k iterations then output a fresh sample yi ← (xi | y≤i−1).

The output distribution of RejSamk on any input, converges to the rejections sampling tampering algo-
rithm RejSam for sufficiently large k →∞.

15



Notation. Below, use the notation z = 〈x ‖RejSamf
k , S〉 and µk = E[f(z)].

We will prove the following claim which will directly completes the proof of second part of Theorem 3.6.

Claim 4.7. Let x = (x1, . . . ,xn) be a joint distribution and f : Supp(x) 7→ [0, 1]. For any ε ∈ [0, 1], let
k ≥ 16 ln(2n/ε)

ε2µ2
. Then RejSamk runs in time O(k) = poly(N/(ε · µ)), where N ≥ n is the total bit-length

of representing x, and for z ≡ 〈x ‖RejSamf,OnSam
k ,S〉 it holds that

E[f(z)] ≥ µ−p · E[f(x)1+p]− ε .

Proof. It is easy to see why RejSamk runs in time O(k) and thus we will focus on proving the expected
value of the output of the k-rejection sampling tampering algorithm. To that end, we start by providing some
definitions relevant to our analysis.

Definition 4.8. For δ ≥ 0, let

High(δ) = {x | x ∈ Supp(x) ∧ ∀i ∈ [n], f̂(x≤i−1) ≥ δ}, Low(δ) = Supp(x) \High(δ) ,

Big(δ) = {x | x ∈ Supp(x) ∧ f(x) ≥ δ}, and Small(δ) = Supp(x) \ Big(δ) .

Claim 4.9. For δ1 · δ2 = δ, it holds that

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ)] ≤ δ2 .

As a result, it holds that Prx←x[x ∈ Big(δ1) ∧ x ∈ Low(δ)] ≤ δ2, and so∑
x∈Big(δ1)∩Low(δ)

Pr[x = x] ≤ δ2 .

Proof. Let t : Low(δ) → ValPref(x) be such that t(x) is the smallest prefix x≤i such that f̂(x≤i) ≤ δ.
Now consider the set T = {t(x) | x ∈ Low(δ)}. For any w ∈ T we have

δ ≥ f̂(w) ≥ Pr
x←x

[x ∈ Big(δ1) | t(x) = w] · δ1 ,

which implies
Pr
x←x

[x ∈ Big(δ1) | t(x) = w] ≤ δ2 .

Thus, we have

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ)]

=
∑
w∈T

Pr
x←x

[x ∈ Big(δ1) ∧ t(x) = w | x ∈ Low(δ)]

=
∑
w∈T

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ) ∧ t(x) = w] · Pr
x←x

[t(x) = w | x ∈ Low(δ)]

≤
∑
w∈T

δ2 · Pr
x←x

[t(x) = w | x ∈ Low(δ)] ≤ δ2 .
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Claim 4.10. Let x ∈ High(δ), then we have

Pr[z = y] ≥ (1− (1− δ)k)n · f(y)

µ
· Pr[x = y] .

Proof. Consider Ek,y≤i
to be the event that RejSamk outputs one of its first k samples, when performed on

y≤i. Then, it holds that
Pr[Ek,y≤i

] = 1− (1− f̂(y≤i))
k ≥ 1− (1− δ)k .

On the other hand, we know that Pr[zi+1 = yi+1 | y≤i ∧ Ek,y≤i
] = Pr[yi+1 = yi+1 | y≤i]. Thus, we have

Pr[zi+1 = yi+1 | y≤i] ≥ Pr[zi+1 = yi+1 | y≤i ∧ Ek,y≤i
] · Pr[Ek,y≤i

]

= Pr[yi+1 = yi+1 | y≤i] · Pr[Ek,y≤i
]

≥ Pr[yi+1 = yi+1 | y≤i] · (1− (1− δ)k)n.

By multiplying these inequalities for i ∈ [n] we get Pr[z = y] ≥ (1− (1− δ)k)n · Pr[y = x] .

Claim 4.11. For δ1 · δ2 = δ, it holds that

µk ≥
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ
− n · (1− δ)k .

Proof. Let

µ′ =
∑

y∈Low(δ)∩Small(δ1)

(
f(y)

µ

)p
· Pr[x = y] · f(y) ,

and µ′′ =
∑

y∈Low(δ)∩Big(δ1)

(
f(y)

µ

)p
· Pr[x = y] · f(y) .

By Claim, 4.5 we have

E[f(z)] ≥
∑

y∈Supp(x)

(
Pr[z[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

≥
∑

y∈High(δ)

(
Pr[z[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

(by Claim 4.10) ≥
∑

y∈High(δ)

(1− (1− δ)k)n·p ·
(
f(y)

µ

)p
· Pr[x = y] · f(y)

= (1− (1− δ)k)n·p ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− µ′ − µ′′

 .

We have µ′ ≤ δ1+p
1 /µp ≤ δ1/µ, because f(y) ≤ δ1 for all y ∈ Small(δ1). Also, by Claim 4.9, we get

µ′′ ≤
∑

y∈Low(δ)∩Big(δ1)

(
1

µ

)p
· Pr[x = y] ≤ δ2

µp
≤ δ2

µ
.
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Therefore, we have

E[f(z)] ≥ (1− (1− δ)k)n·p ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ


(by Bernoulli inequality) ≥ (1− n·(1− δ)k) ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ


≥

∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ
− n · (1− δ)k.

In order to conclude the proof of Claim 4.7, we can set δ1 = δ2 =
√
δ and let δ ≤ (εµ/4)2. Then, given

that we have k ≥ 16 ln(2n/ε)
ε2µ2

, we get

E[f(z)] ≥
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− ε

2
− ε

2
.

4.4 Relating the Bias to the Variance: Proving Lemma 3.7

We use Lemma A.2 by letting ϕ(x) = x1+p. Thus, we have to minimize the following function on x ∈ [0, 1],

gµ(x) =
(
x1+p − µ1+p − (1 + p) · µp · (x− µ)

)
/(x− µ)2 .

We now prove that the minimum happens on x = 1. Note that the function gµ(x) is continues on [0, µ) and
(µ, 0] and the limit exists at x = µ and is equal to 1/2 · p · (1 + p) · µ−1+p. Therefore if we show that g′µ is
negative for x ∈ [0, µ) ∪ (µ, 1] it implies that, ∀x ∈ [0, 1]g(x) ≥ g(1). We have

g′µ(x) =
(p− 1) · µp+1 − (p+ 1) · x · µp + (p+ 1) · µ · xp − (p− 1) · xp+1

(µ− x)3

(using c = x/µ) = µp−2 · (p− 1)− (p+ 1) · c+ (p+ 1) · cp − (p− 1) · cp+1

(1− c)3
.

We prove that the numerator q(c) = (p− 1)− (p+ 1) · c+ (p+ 1) · cp− (p− 1) · cp+1 is positive for c > 1
and negative for 0 < c < 1. For c > 0, we have

q′(c) = −(1 + p) + (p+ 1) · p · cp−1 + (1− p) · (p+ 1) · cp

= (1 + p) · (p · cp−1 + (1− p) · cp − 1)

(by AM-GM inequality of Lemma A.1) ≥ (1 + p) · (cp·(p−1) · c(1−p)·p − 1)

= 0 .

Therefore, q is increasing for c > 0 which implies ∀c ∈ [0, 1], q(c) < q(1) = 0 and ∀c > 1, q(c) > q(1) =
0. We have ∀x ∈ [0, µ) ∪ (µ, 1], g′(x) ≤ 0. Therefore we have

∀x ∈ [0, 1], gu(x) ≥ gu(1) . (3)
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Now we prove that gµ(1) ≥ p(1+p)
2 . Consider the following function,

w(µ) = gµ(1) =
(
1− µ1+p − (1 + p) · µp · (1− µ)

)
/(1− µ)2 .

We will show that q is a decreasing function for µ ∈ [0, 1]. We have

w′(µ) =
p · (1− µ2) · µp−1 + p2(1− µ)2 · µp−1 + 2 · (µp − 1))

(−1 + µ)3
.

We will show that the numerator s(µ) = p · (1− µ2) · µp−1 + p2(1− µ)2 · µp−1 + 2 · (µp − 1) is negative
for µ ∈ [0, 1] . We have s′(µ) = p(p2 − 1) · (1 − µ)2 · µp−2 which is negative for µ ∈ [0, 1]. This implies
that ∀µ ∈ [0, 1], s(µ) ≥ s(1) = 0. Therefore, w is a decreasing function, and we obtain

∀µ ∈ [0, 1], gµ(1) = w(µ) ≥ lim
u→1

w(u) =
p(1 + p)

2
. (4)

Now, we conclude that

µ−p · E[α1+p]− µ = µ−p
(
E[α1+p]− µ1+p

)
(by Lemma A.2) ≥ µ−p

(
inf

x∈[0,1]
{gµ(x)} · ν

)
(by Inequality 3) ≥ µ−p · gµ(1) · ν

(by Inequality 4) ≥ p · (1 + p)

2 · µp
· ν .

A Some Useful Inequalities

The following well-known variant of the inequality for the arithmetic mean and the geometric mean could
be derived from the Jensen’s inequality.

Lemma A.1 (Weighted AM-GM inequality). For any n ∈ N, let z1, ..., zn be a sequence of non-negative
real numbers and let w1, ..., wn be such that wi ≥ 0 for every i ∈ [n] and

∑n
i=1wi = 1. Then, it holds that

n∑
i=1

wizi ≥
n∏
i=1

zwi
i .

The following lemma provides a tool for lower bounding the gap between the two sides of Jensen’s
inequality, also known as the Jensen gap.

Lemma A.2 (Lower bound for Jensen gap [LB17]). Let α be a real-valued random variable, Supp(α) ⊆
[0, 1], and E[α] = µ. Let ϕ(·) be twice differentiable on [0, 1], and let hb(a) = ϕ(a)−ϕ(b)

(a−b)2 − ϕ′(a)
a−b . Then,

E[ϕ(α)]− ϕ(µ) ≥ V[α] · inf
a∈[0,1]

{hµ(a)} .
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