
Raptor: A Practical Lattice-Based (Linkable)
Ring Signature

Xingye Lu1, Man Ho Au1, and Zhenfei Zhang2

1 The Hong Kong Polytechnic Univerisity, Hong Kong
xingye.lu@connect.polyu.hk, mhaau@polyu.edu.hk
2 Onboard Security, Wilmington, Massachusetts, USA

zzhang@onboardsecurity.com

Abstract. We present (linkable) Raptor, the first lattice-based (link-
able) ring signature that is practical. Our scheme is as fast as classical
solutions; while the size of the signature is roughly 1.3 KB per user.
Our designs are based on a completely new generic construction that is
provable secure in random oracle model. Prior to our work, all existing
lattice-based solutions are analogues of their discrete-log or pairing-based
counterparts. We give instantiations to both standard lattice setting, as
a proof of concept, and NTRU lattice, as an efficient instantiation. Our
main building block is a so called Chameleon Hash Plus (CH+) function,
which may be of independent research interest.

Contents

Raptor: A Practical Lattice-Based (Linkable) Ring Signature 0
Xingye Lu, Man Ho Au, and Zhenfei Zhang

1 Introduction . 1
1.1 Related Work . 2
1.2 Our Contribution . 3
1.3 Overview of Our Construction . 5

2 Preliminary . 6
2.1 Notation . 6
2.2 Lattices and Hardness Assumptions . 7
2.3 Preimage Sampleable Functions and Falcon 8
2.4 Ring Signatures . 9
2.5 Linkable Ring Signatures . 11

3 Generic Construction . 13
3.1 Chameleon Hash Plus . 13
3.2 A new framework for ring signatures . 14
3.3 Linkable ring signatures . 15

4 Security Analysis . 16
4.1 Ring signature . 16
4.2 Linkable ring signature . 18

5 Instantiation . 23
5.1 Instantiation of CH+ from Standard Lattice 23
5.2 Instantiation of CH+ from NTRU . 23
5.3 Full description of Raptor . 25
5.4 Full description of the linkable Raptor . 26

6 Parameters and implementation . 27
7 Appendix . 32

7.1 Known attacks of Raptor . 32

1 Introduction

The notion of ring signatures was put forth by Rivest, Shamir and Tauman in
2001 [48]. It is a special type of group signature [16, 14] where

1. a signer is able to produce a signature on behalf of a group of potential
signers;

2. there does not exist a group manager (usually a trusted third party) that
manages the membership.

In a ring signature, the group can be quite ad hoc. Each user is associated with a
public key and a group can be created spontaneously by collecting users’ public
keys. It is a very attractive property as it enables anonymity: the signer hides
its identity within the group, and there is no trusted third party that is capable
of revocation.

A side affect of this strong anonymity is that signatures become unlinkable.
This is addressed by the notion of linkable ring signature by Liu, Wei and Wong
[37]. In such a scheme, the identity of the signer will remain anonymous; in the
meantime,

3. two signatures signed by the same signer can be linked.

The properties of linkability and signer anonymity are very desirable in various
real world applications, including, but not limited to, e-cash, e-voting, and ad-
hoc authentication. For example, in the e-commerce scenario, a linkable ring
signature allows the spender to remain anonymous, while making it possible for
the merchant/banker to identify double spenders. To date, linkable ring signature
has become a mainstream solution to privacy-preserving cryptocurrency.

A major drawback of widely deployed linkable ring signatures is their insecu-
rity against quantum computers [49]. Even though quantum computers are still
in their infancy, it is inevitable that general purpose quantum computers will
arrive, by when the exiting classical ring signatures will lose their anonymity
and/or unforgeability.

Lattice-based cryptography is one of the most promising families of candi-
dates [43] to the quantum apocalypse. It allows us to build cryptographic func-
tions in which breaking a random instance from the family is as hard as solv-
ing a worst-case instance in lattice. The connection between average-case and
worst-case hardness provides lattice-based cryptographic constructions stronger
provable security.

To date, there exist a number of lattice-based ring signature schemes and
one lattice-based linkable ring signature scheme, to the best of our knowledge.
All those solutions are theoretically sound. However, they are hardly practi-
cal and there is no known implementation. At a high level, those schemes are
instantiations of existing frameworks, where the underlying discrete-log/pairing-
based building blocks are replaced by lattice-based ones. It is highly likely that
a breakthrough requires a new framework.

1

1.1 Related Work

Classical ring signatures We recall the existing frameworks, or generic construc-
tions. For the families of schemes where the signature sizes are linear in the
number of group members, we have:

– The framework introduced by Rivest, Shamir and Tauman [48] in 2001. As
mentioned earlier, it is the first ring signature scheme. The scheme requires
the existence of one-way trapdoor permutations along with a block cipher.
This generic construction does not support discrete-log type keys.

– The framework by Abe, Ohkubo and Suzuku [1] in 2004. Their work supports
the use of RSA keys and discrete-log type keys. They also show how to
transform a hash-and-sign type signature scheme or a three-move sigma-
protocol based signature scheme into a ring signature scheme.

– The construction of Bender, Katz and Morselli [11]. It uses a public-key
encryption scheme, a signature scheme and a ZAP protocol [23] to construct
a ring signature scheme.

The first two schemes are secure in the random oracle model; while the last one
is in the standard model. Beyond linear constructions, we have

– The first ring signature with sub-linear signature size without random oracle
model proposed by Chandran, Groth and Sahai [15] using pairing-based non-
interactive zero knowledge proofs.

– The first ring signature scheme with signature size independent from ring
proposed by Dodis et al. in 2004 [18]. It is a generic construction relying on
any accumulator with one-way domain and the Fiat-Shamir heuristic.

For non-generic constructions,

– Nguyen [44] presented a identity-based constant-size ring signature scheme
in the random oracle model from accumulators, based on pairing-based cryp-
tography.

– Ring signatures introduced by Groth and Kohlweiss [27] in 2015 is instan-
tiated from a sigma-protocol with a sub-linear signature size and secure in
the random oracle model.

Lattice-based ring signatures For ring signatures in lattice setting, Brakerski and
Kalai [13] proposed a generic ring signature scheme in the standard model. This
generic construction is based on a new primitive called ring trapdoor functions.
They instantiated this function based on the inhomogeneous short integer solu-
tion problem (ISIS). However, this generic construction is only secure under a
weak definition; to achieve full security requires a quite inefficient transforma-
tion.

Melchor et al. [41] transforms Lyubashevsky’s lattice-based signature [39]
into a ring signature. As the authors pointed out themselves, this scheme is
“pretty unpractical”.

2

In 2016, Libert et al. [35] presented a lattice-based accumulator. With the
accumulator and a lattice-based zero-knowledge proof system, they build a ring
signature scheme that is with logarithmic size in the cardinality of the ring
and secure in the random oracle model. However, Stern type zero-knowledge
arguments applied in the accumulator is very inefficient and impractical.

Classical linkable ring signatures Ever since the first build of linkable ring sig-
nature [37], we have seen a sequence of work [54, 6, 36, 51] that provide different
features.

In 2005, Tsang and Wei [54] extends the genric ring siganture introduced
by Dodis et al. [18] to linkable revision, achieve a constant signature size and
security in the random oracle model.

Au et al. [6] presented a new security model for linkable ring signatures and
a new short linkable ring signature scheme that is secure in this new model.

In 2014, Liu et al. [36] presented the first linkable ring signature scheme
achieving unconditional anonymity. Sun et al. [51] proposed a new generic link-
able ring signature to construct RingCT 2.0 for Monero.

There are also schemes with special properties such as identity-based linkable
ring signatures [53, 8] and certificate-based linkable ring signatures [7].

Lattice-based linkable ring signatures To date, the only lattice-based linkable
ring signature scheme was proposed by Torres et al. in 2018 [52]. It transforms
the BLISS signature [19] into a linkable ring signature scheme. Their scheme is
secure in the random oracle model. The signature size is linear to the number of
element in the ring. The signature size is reported to be 51 KB per user in the
ring. We are not aware of any implementation of this work.

1.2 Our Contribution

We present Raptor, the first lattice-based linkable ring signature that is prac-
tical. It gets its name as it is the next generation of Falcon [24] that features a
“stealth” mode. Raptor is secure in the random oracle model, based on some
widely-accepted lattice assumptions. We also present a less efficient version that
is based on standard lattice problems.

We implement Raptor, and its performance on a typical laptop is shown in
Table 1 and 2. Source code will be made available and the experimental setting
is presented in Section 6.

Our solution is in a sense optimal for the family of solutions where the signa-
tures are linear in terms of users: in our construction, the signature consists of
a lattice vector and a randomness nonce of 2λ bits, per user. It is unlikely that
one is able to reduce the size further within the linear domain. We believe that
the only way to get substantially better performance than Raptor is from the
family of solutions that are logarithmic/constant in the number of users. As a
lesson we have learned through the work in classical ring signatures, these solu-
tions require (lattice-based) zero knowledge proofs, which are far from practical,
to the best of our knowledge. Prior to our work, all the existing lattice-based

3

solutions are not implementable. The best theoretical result is due to [52], where
the signature size is claimed to be 51KB per user in the ring.

Table 1. Performance of Raptor-512

Users 5 10 50

KeyGen 29 ms 29 ms 29 ms

Sign 6 ms 9.5 ms 40 ms

verification 3 ms 6.5 ms 32 ms

PK 0.9 KB 0.9 KB 0.9 KB

SK 4.1 KB 4.1 KB 4.1 KB

Signature 6.3 KB 12.7 KB 63.3 KB

Table 2. Performance of linkable Raptor-512

Users 5 10 50

KeyGen 57 ms 57 ms 57 ms

Sign 10.7 ms 17.4 ms 61 ms

verification 5.2 ms 11 ms 50 ms

PK 0.9 KB 0.9 KB 0.9 KB

SK 9.1 KB 9.1 KB 9.1 KB

Signature 7.8 KB 14.2 KB 64.8 KB

In terms of security, our (linkable) Raptor scheme is backed by a new generic
framework that is provably secure in the random oracle model, under the as-
sumption that certain properties of a new defined primitive, namely, Chameleon
Hash Plus (CH+), are met. Note that CH+ does not necessarily need to be
lattice-based.

Nonetheless, when CH+ is instantiated with a standard lattice problem (i.e.,
the short integer solution problem), we base the security of (linkable) ring signa-
ture on the worst-case lattice problems that are conjectured to be hard against
quantum computers.

In practice, one often resorts to NTRU lattices [32] for better efficiency. Our
(linkable) Raptor scheme is such a case, where the CH+ function is instantiated
from the pre-image samplable function of Falcon [24].

We summarize our contributions:

– We propose a new primitive called Chameleon Hash Plus (CH+); a new
generic construction for (linkable) ring signature scheme that uses CH+ as
a building block. We prove its security in the random oracle model.

– We also give two instantiations of CH+. One is from the standard lattice,
based on SIS/ISIS assumption; the other from the NTRU assumption. With
those two instantiations, we obtain two (linkable) ring signatures.

4

– We implement our NTRU-based (linkable) signature, a.k.a. Raptor. We
achieve both size efficiency and speed efficiency. Although the signature size
is linear to the number of members in the ring, the actual size is very prac-
tical. For example, in a ring of 5 users, the signature size is roughly 6.3 KB.
The signing and verification speed is of the same order of classical solutions.

1.3 Overview of Our Construction

Building block: CH+ The main building block for our generic constructions is
a chameleon hash plus (CH+) function. Recall the notion of chameleon hash
function, first formalized by Krawczyk and Rabin in 2000 [33]. Chameleon hash
functions are randomized collision-resistant hash functions with an additional
property that each hash key is equipped with a trapdoor. With the trapdoor,
one can easily find collisions for any input. More specifically, on input a trapdoor
tr corresponding to some chameleon hash key hk, two messages m,m′ and a
randomness r, one can efficiently compute another randomness r′ such that
Hash(hk,m, r) = Hash(hk,m′, r′).

Our CH+ consists of four algorithms, namely, SetUp, TrapGen, Hash and Inv.
See Section 3.1 for details. Similar to a chameleon hash, without the trapdoor,
CH+ needs to be one-way and collision-resistant. There are two main difference
in CH+:

– to compute new randomness r′ for any given message m′, only the hash
value, C = Hash(hk,m, r), is needed; whereas both the original message m
and randomness r are required in a classical Chameleon hash;

– optionally, there may exist a common reference string crs as an implicit input
to all CH+ operations.

The second point is optional, as one may either choose a string for each user,
which essentially makes it a part of the hk; or set a global crs for all users. In
the rest of the paper, we assume the existence of a global crs.

The framework: ring signature Now we are going to give an overview of our
generic ring signature scheme based on CH+. We assume a crs is available at
the setup. In the key generation procedure, each signer runs algorithm TrapGen
to obtain a hash key hk and its trapdoor tr. Signer’s public key and secret key
will be hk and tr, respectively.

Suppose a signer, Sπ, with public and secret keys (hkπ, skπ), tries to sign a
message µ on behalf of a group of signer {S1, · · · , S`} (π ∈ {1, · · · , `}), Sπ first
collects all the public keys of the group of signers {hk1, · · · , hk`}. Next,

– for i 6= π, Sπ randomly samples message mi, randomness ri and computes
hash output Ci = Hash(hki,mi, ri);

– for i = π, i.e., the signer himself, Sπ samples a Cπ.

Sπ further sets C∗ = H(µ,C1, · · · , C`, hk1, · · · , hk`) where µ is the message to be
signed and H is a collision-resistant hash function. It then computes mπ which

5

satisfies m1 ⊕ · · · ⊕ m` = C∗ and uses the trapdoor to find an rπ such that
cπ = Hash(hkπ,mπ, rπ). The signature for Sπ on µ is {(m1, r1), · · · , (m`, r`)}.
Note that without the trapdoor, it is hard to find such a randomness rπ since
CH+ is one-way and collision-resistant.

To verify the signature, one can first compute Ci = Hash(hki,mi, ri) for
i = 1, · · · , `. Then check whether m1 ⊕ · · · ⊕ m` is equivalent to H(µ,C1 ,· · ·
,C` ,hk1,· · · ,hk`). If so, the verifier accepts the signature as signed by one of the
group member.

The framework: linkable ring signature Linkable ring signature scheme allows
others to link two signatures sharing the same signer. At a high level, we will use
a tag to achieve this property. The tag is a representative of the signer’s identity
for each signature. Signatures that share a same tag is linked. It is natural to
enforce that each signer only obtains one unique tag; and this tag cannot be
forged, or transferred from/to another user. We use a one-time signature3 to
achieve those properties.

During the key generation procedure, in addition to a hk and its trapdoor
tr, the signer also generates a pair of public key and secret key (opk, osk) for a
one-time signature. The signer then masks hk by H(opk) and obtains a masked
hash key hk′. The unique tag for the signer will be the public key opk. In the
end, the signer sets hk′ as public key and (tr, opk, osk) as secret key.

When the signer Sπ signs a message µ on behalf of a group of signers
{S1, · · · , S`} (π ∈ {1, · · · , `}), it will collect the public keys of the group {hk′1, · · · , hk

′
`}

as usual. For each public key hk′i in the group, Sπ computes hk′′i = hk′i⊕H(opk).
A new list of “public keys”, {hk′′1 , · · · , hk

′′
` }, is then formed. Note that hk′′π is

equivalent to the original hkπ. Next, the signer Sπ invokes the (none linkable)
ring signature with keys {hk′′1 , · · · , hk

′′
` }, a trapdoor trπ and a message µ, and

obtains a (none linkable) ring signature σR = {(m1, r1), · · · , (m`, r`)} on µ. Fi-
nally, Sπ signs µ, σR using oskπ and gets a one-time signature sig. The linkable
ring signature produced by Sπ will be {σR, opkπ, sig}.

As for verification, in addition to verifying σR, one should also check whether
sig is a valid signature on µ and σR under opkπ.

2 Preliminary

2.1 Notation

Elements in Zq are represented by integers in [− q2 ,
q
2). For a ring R we define

Rq to be the quotient ring Zq[x]/(xn + 1) with n being a power of 2 and q being
a prime. Column vectors in Zmq and elements in Rq are denoted by lower-case
bold letters (e.g. x). Matrices are denoted by upper-case bold letters (e.g. X).
We use x̂ to denote a column vector with entries from the ring.

3 We abuse the notion of one-time signature. Here we will only use the public key once;
the actual signature scheme does not necessarily need to be a one-time signature
scheme.

6

For distribution D, x ←$ D means sampling x according to distribution
D. ‖v‖1 is the `1 norm of vector v and ‖v‖ is the `2 norm of v. For v̂ =
(v1, · · · ,vn)T , we define ‖v̂‖ =

√∑n
i=1 ‖vi‖2

The continuous normal distribution over Rn centered at v with standard

deviation σ is defined as ρnv,σ(x) = (1√
2πσ2

)ne
−‖x−v‖2

2σ2 . For simplicity, when v is

the zero vector, we use ρnσ(x).
The discrete normal distribution over Zn centered at v ∈ Zn with standard

deviation σ is defined as Dn
v,σ(x) =

ρnv,σ(x)

ρnv,σ(Zn)
.

We define the exclusive-or operation of two matrix X(1) ∈ Zn×mq and X(2) ∈
Zn×mq , X(1) ⊕X(2), as:

bq(x
(1)
11)⊕ bq(x

(2)
11) · · · bq(x(1)1m)⊕ bq(x

(2)
1m)

...
. . .

...

bq(x
(1)
n1)⊕ bq(x

(2)
n1) · · · bq(x(1)nm)⊕ bq(x

(2)
nm)

where bq(x) means that transform a value x ∈ Zq to its binary representation.
bq(.) can be efficiently computed.

2.2 Lattices and Hardness Assumptions

A lattice in m-dimension Euclidean space Rm is a discrete set

Λ(b1, · · · ,bn) =

{
n∑
i=1

xibi|xi ∈ Z

}
of all integral combinations of n linear independent vectors b1, · · · , bn in Rm
(m ≤ n). We call matrix B = [b1, · · · ,bn] ∈ Rm×n a basis of lattice Λ. Using
matrix notation, a lattice can be defined as

Λ(B) = {Bx|x ∈ Zn}

The discrete Gaussian distribution of a lattice Λ, parameter s and center v

is defined as DΛ,v,s(x) =
ρv,s(x)
ρv,s(Λ)

.

Definition 1 ([10]) For any lattice Λ ∈ Rm and positive real number s > 0, we
have Prx←DΛ,s [‖x‖ ≤

√
ms] ≥ 1− 2−Ω(m).

Definition 2 Let m ≥ n ≥ 1 and q ≥ 2. For arbitrary matrix A ∈ Zn×mq and
vector u ∈ Znq define m-dimensional full-rank integer lattices:

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q},

Λ⊥u (A) = {z ∈ Zm : Az = u mod q}.

Short Integer Solution (SIS) problem and Inhomogeneous Short Integer So-
lution (ISIS) problem are two average-case hard problems frequently used in
lattice-based cryptography constructions.

7

Definition 3 (SISq,n,m,β problem) Given a uniformly chosen matrix A ∈
Zn×mq , find x ∈ Λ⊥(A) and 0 < ‖x‖ ≤ β.

Definition 4 (ISISq,n,m,β problem) Given a uniformly chosen matrix A ∈
Zn×mq and vector u ∈ Znq , find x ∈ Λ⊥u (A) and 0 < ‖x‖ ≤ β.

According to [25], if q ≥ ω(
√
n log n)β and m,β = poly(n), then SISq,n,m,β

and ISISq,n,m,β is at least as hard as a standard worst-case lattice problem SIVPγ
with γ = Õ(βn).

In the ring version, there is Ring-SIS (Ring-ISIS) problem as an analogue of
SIS (ISIS) problem.

Definition 5 (R-SISq,m,β problem) Given a uniformly chosen vector â ∈ Rmq ,

find x̂ ∈ Rm such that âT · x̂ = 0 and 0 < ‖x̂‖ ≤ β.

Definition 6 (R-ISISq,m,β problem) Given a uniformly chosen vector â ∈
Rmq and a ring element u ∈ Rq, find x̂ ∈ Rm such that âT · x̂ = u and 0 <
‖x̂‖ ≤ β.

The R-SIS problem was concurrently introduced in [46, ?]. According to [40],
the R-SISq,m,β is as hard as the SVPγ problem for γ = Õ(nβ) in all lattice that
are ideals in R if R = Z[x]/(xn + 1), where n is a power of 2.

Definition 7 (NTRU assumption) Let a = g/f over Rq where ‖f ,g‖1 is
bounded by some parameter β < q. The NTRU assumption says it is hard to
distinguish a from a uniformly random element from R.

Over the years, there has been a few different versions of the NTRU assump-
tion [32, 50, 38]. Here we use a decisional version that is most convenient for our
proof. Note that this assumption holds as long as GapSVP problem is hard for
NTRU lattices.

2.3 Preimage Sampleable Functions and Falcon

Generating a ‘hard’ public basis A (chosen at random from some appropriate
distribution) of some lattice Λ, together with a ‘good’ trapdoor basis T has
been studied since the work of Ajtai [2]. In 2008, Gentry, Peikert and Vaikun-
tanathan [26] construct a preimage sampleable function using the ‘hard’ public
basis and trapdoor basis and apply it as a building block to lattice-based signa-
ture schemes. This celebrated work (referred to as the GPV framework) is fol-
lowed by a sequence of improvements. Alwen and Peikert [5] is able to generate
a shorter trapdoor, compared to [26]; while Peikert [45] provides a parallelizable
algorithm to sample preimages. To the best of our knowledge, the most efficient
construction following this direction while maintaining a security proof is due
to Micciancio and Peikert [42]. The following Theorem is abstracted from their
results.

8

Theorem 1 ([42], Theorem 5.1). There exists an efficient algorithm GenBasis
(1n, 1m, q) that given any integers n ≤ 1, q ≤ 2, and sufficiently large m =
O(n log q), outputs a parity-check matrix A ∈ Zn×mq and a ‘trapdoor’ T such that
the distribution of A is negl(n)-far from uniform. Moreover, there is an efficient
algorithm PreSample. With overwhelming probability over all random choices, for
any u ∈ Znq and large enough s = O(

√
n log q), PreSample(A, T, u, s) samples

from a distribution within negl(n) statistical distance of DΛ⊥u (A),s·ω(
√
logn).

On the other hand, the most efficient GPV construction in practice is due
to Prest at al. [21, 24] using NTRU lattices [32]. The corresponding signature
scheme is named Falcon [24].

Falcon is a candidate lattice-based signature scheme to the NIST post-
quantum standardization process [43]. It is the resurrection of NTRUSign [30]
with the aforementioned GPV framework for transcript security [26, 21], and a
fast Fourier sampling for efficiency [22]. It is by far the most practical candidates
among all submitted proposals, in terms of the combined sizes of public keys and
signatures; and the only solution that provides a preimage sampleable function.
In terms of security,

– Falcon stems from the provable secure GPV construction [25], under the
(quantum) random oracle model [12];

– although the parameters in Falcon does not support GPV’s security proof,
they are robust against best known attacks4.

2.4 Ring Signatures

In this section, we are going to give the syntax and security models for ring
signatures.

Syntax A ring signature scheme usually is a tuple of four algorithms (Setup,
KeyGen, Signing, Verification):

– Setup(1λ)→ param: On input security parameter 1λ, this algorithm gener-
ates system parameter param. We assume param is an implicit input to all
the algorithms listed below.

– KeyGen→ (sk, pk): By taking system parameter param, this key generation
algorithm generates a private signing key sk and a public verification key pk.

– Signing(sk, µ, Lpk) → σ: On input message µ, a list of user public keys Lpk,
and signing key sk of one of the public keys in Lpk, the signing algorithm
outputs a ring signature σ on µ.

– Verification(µ, σ, Lpk)→ accept/reject: On input message µ, signature σ
and list of user public keys Lpk, the verification algorithm outputs accept if
σ is legitimately created; reject, otherwise.

Correctness: the scheme is correct if signatures generated according to above
specification are always accepted during verification.

4 In practical lattice-based cryptography, it is common to derive parameters from best
known attacks other than security proofs. For example, see [4, 3].

9

Security Notions The security requirements for a ring signature scheme have
two aspects: unforgeability and anonymity. Before presenting their definitions,
we first introduce the following oracles which can be used by adversaries in
breaking the security of ring signature schemes:

– Registration Oracle RO(⊥) → pki: On request, RO generates a new user
and returns the public key of the new user.

– Corruption Oracle CO(pki) → ski: On input a user public key pki that is a
query output of RO, CO returns corresponding secret key ski.

– Signing Oracle SO(µ,Lpk, pkπ)→ σ: On input a list of user public keys Lpk,
message µ and the public key of the signer pkπ ∈ Lpk, SO returns a valid
signature σ on µ and Lpk.

Unforgeability The unforgeability of a ring signature scheme is defined via the
following game, denoted by Gameforge, between an adversary A and a challenger
C.

– Setup. The challenger C runs Setup with security parameter 1λ and generates
system parameter param. C sends param to A.

– Query. The adversary A may query RO, CO and SO for a polynomial
bounded number of times in an adaptive manner.

– Output. The adversary A outputs a forgery (µ∗, σ∗, L∗pk). A wins Gameforge
if
• Verification(µ∗, σ∗, L∗pk) = accept;
• (µ∗, L∗pk) has not been queried by A; and
• no public key in L∗pk has been input to CO.

The advantage of A, denoted by advforge
A , is defined by the probability that A

wins Gameforge:

advforge
A = Pr[A wins Gameforge]

Definition 8 (Unforgeability) A ring signature scheme (KeyGen, Signing,
Verification) is said to be unforgeable if for any polynomial-time adversary A,

advforge
A is negligible.

Anonymity For a ring signature scheme, this notion captures that it is impossible
for an adversary to identify the actual signer with probability greater than 1

n
where n is the size of the ring. More specifically, the anonymity of a ring signature
scheme can be defined by the following game, denoted by Gameanon, between
adversary A and challenger C:

– Setup. The challenger C runs Setup with security parameter 1λ and sends
the system parameter param to A.

– Query. The adversary A may query RO and CO in an adaptive manner.
– Challenge. A picks a list of user public keys Lpk = {pk1,pk2, · · · ,pkn} and a

message µ. A sends (Lpk, µ) to C. C randomly picks π ∈ {1, · · · , n} and runs
Signing(skπ,µ,Lpk)→ σ. C sends σ to A.

10

– Output. A outputs a guess π∗ ∈ {1, · · · , n}.

A wins Gameanon if π∗ = π. The advantage of A is defined by

advanon
A = |Pr[π∗ = π]− 1

n
|.

Definition 9 (Anonymity) A ring signature scheme (KeyGen, Signing, Ver-
ification) is said to be anonymous (resp. unconditionally anonymous) if for any
polynomial-time adversary (resp. unbounded adversary) A, advanon

A is negligible.

2.5 Linkable Ring Signatures

In this section, we are going to present the syntax and security requirements of
linkable ring signatures. We emphasize that the linkable ring signature here is
one-time linkable ring signature and the public key for a signer is only supposed
to use once.

Syntax A linkable ring signature scheme usually consists of five algorithms,
namely, (Setup, KeyGen, Signing, Verification, Link):

– Setup(1λ)→ param: On input the security parameter 1λ, this algorithm
generates the system parameter param. We assume param is an implicit input
to all the algorithms listed below.

– KeyGen→ (sk, pk): By taking the system parameter param, this key gener-
ation algorithm generates a private signing key sk and a public verification
key pk.

– Signing(sk, µ, Lpk)→ σ: On input a message µ, a list of user public keys Lpk,
and a signing key sk of one of the public keys in Lpk, the signing algorithm
outputs a ring signature σ on µ.

– Verification(µ, σ, Lpk)→ accept/reject: On input a message µ, a signature
σ and a list of user public keys Lpk, the verification algorithm outputs accept
if σ is legitimately created. otherwise, output reject.

– Link (σ1, σ2, µ1, µ2, L
(1)
pk , L

(2)
pk)→ linked/unlinked: Takes two messages µ1,

µ2 and their signatures σ1 and σ2 as input, output linked or unlinked.

Correctness: the scheme is correct if

– signatures signed as above is always accepted during verification; and
– two legally signed signatures are linked if and only if they share a same

signer.

Security Notions The security of a linkable ring signature should have four as-
pects, namely, unforgeability, anonymity, linkability and nonslanderability. Same
as the security notions for ring signatures, there are also three oracles, namely,
RO, CO and SO jointly model the ability of an adversary:

The security definition of unforgeability for linkable ring signatures remains
the same as in section 2.4. The definitions of anonymity, linkability and nons-
landerability are adopted from Liu et al. [36].

11

Anonymity We require that, for a secure linkable ring signature scheme, it should
be impossible for an adversary to identify the actual signer with probability
greater than 1

n where n is the size of the ring. More specifically, the anonymity of
a linkable ring signature scheme can be defined by the following game, Game∗anon,
held between adversaryA and challenger C. The difference between Game∗anon and
Gameanon is that, in Game∗anon, A is only allowed to query register oracle RO.

– Setup. The challenger C runs Setup with security parameter 1λ and sends
the system parameter param to A.

– Query. The adversary A may query RO in an adaptive manner.
– Challenge. A picks a list of user public keys Lpk = {pk1, pk2, · · · , pkn} and

a message µ. A sends (Lpk, µ) to C. C randomly picks π ∈ {1, · · · , n} and
runs Signing(skπ, µ, Lpk)→ σ. C sends σ to A.

– Output. A outputs a guess π∗ ∈ {1, · · · , n}.

A wins Game∗anon if π∗ = π. The advantage of A is defined by

advanon
A = |Pr[π∗ = π]− 1

n
|.

Definition 10 (Anonymity) A linkable ring signature scheme is said to be
anonymous (resp. unconditionally anonymous) if for any polynomial-time ad-
versary (resp. unbounded adversary) A, advanon

A is negligible.

Linkability This notion captures that Link algorithm always outputs linked for
two signatures generated by a same signer. We use the following game, Gamelink,
between a challenger C and an adversary A to define linkability:

– Setup. The challenger C runs Setup and gives A system parameter param.
– Query. The adversary A is given access to RO, CO, SO and may query the

oracles in an adaptive manner.

– Output. A outputs two sets, {L(1)
pk , µ1, σ1} and {L(2)

pk , µ2, σ2}, where L
(1)
pk

and L
(2)
pk are two lists of public keys, µ1 and µ2 are messages, σ1 and σ2 are

two signatures.

A wins the game if

– all public keys in L
(1)
pk and L

(2)
pk are query output of RO;

– Verification(µ1, σ1,L
(1)
pk) = Accept ;

– Verification(µ2, σ2,L
(2)
pk) = Accept ;

– A queried CO less than two times; and
– Link(σ1, σ2, µ1, µ2) = unlinked.

The advantage of A is defined by the probability A wins Gamelink:

advlink
A = Pr[A wins Gamelink]

Definition 11 (Linkability) A linkable ring signature scheme is linkable if for
any polynomial-time adversary A, advlink

A is negligible.

12

Nonslanderability The nonslanderability requires that a signer cannot frame
other honest signers for generating a signature linked with another signature
not signed by the signer. We use the following game, Gameslander, to define the
nonslanderability of a linkable ring signature scheme:

– Setup. The challenger C runs Setup and gives A system parameter param.
– Query. The adversary A is given access to RO, CO, SO and may query the

oracles in an adaptive manner.
– Challenge. A gives C a list of public keys Lpk, a message µ and a public

key pkπ ∈ Lpk. C runs Signing(sk, µ, Lpk) and returns the corresponding
signature σ to A. A still can queries oracles with arbitrary interleaving.

– Output. A outputs a list of public keys L∗pk, message µ∗, and a signature σ∗.

A wins Gameslander if the following holds:

– Verification(µ∗, σ∗,L∗pk) = accept ;
– pkπ is not queried by A to CO;
– pkπ is not queried by A as an insider to SO;
– all public keys in L∗pk and Lpk are query outputs of RO; and
– Link(σ, σ∗, µ, µ∗) = linked.

The advantage of A is defined by:

advslander
A = Pr[A wins Gameslander]

Definition 12 (Nonslanderability) A linkable ring signature scheme is non-
sladerable if for any polynomial-time adversary A, advslander

A is negligible.

Theorem 2. [[9], Sec 3.2] If a linkable ring signature scheme is linkable and
nonslanderable, it is also unforgeable.

3 Generic Construction

3.1 Chameleon Hash Plus

Now we are ready to give the definition to chameleon hash plus CH+. CH+ can
be considered as a more powerful variants of Chameleon hash functions. A CH+
usually consists of four algorithms, namely, SetUp, TrapGen, Hash and Inv, as
follow:

– SetUp(1λ)→ crs: On input the security parameter 1λ, this algorithm samples
a common reference string crs. crs will be an implicit input to SamK and Hash.

– TrapGen(1λ)→ (hk, tr): This algorithm takes security parameter 1λ as input
and then returns a pair (hk, tr) where hk is a hash key to CH+, tr is the
trapdoor of hk.

– Hash(hk,m, r)→ C: On input a hash key hk, a message m and a randomness
r, this algorithm returns a hash output C.

13

– Inv(hk, tr, C,m′) → r′: On input a hash key hk, a trapdoor tr, a hash out-
put C and a message m′, this algorithm returns randomness r′ such that
Hash(hk,m′, r′) = C.

We require CH+ to satisfy following requirements:

1. CH+ should be one-way and collision resistant. In other words, for all PPT
A, there exists a negligible function negl(λ) such that

Pr[{(m0, r0), (m1, r1)} ← A(1λ, hk, crs) : (m0, r0) 6=

(m1, r1) ∧ Hash(hk,m0, r0) = Hash(hk,m1, r1)] = negl(λ);

Pr[(m, r)← A(1λ, C, hk, crs) : Hash(hk,m, r) = C] = negl(λ).

2. For hash key hk generated from TrapGen, assuming the range of hk is Rhk,
the distribution of hk should be either statistically close to uniform in Rhk; or
computationally close to the uniform distribution with an additional prop-
erty that the probability a randomly sampled h̄k ←$ Rhk has a trapdoor is
negligible.

3. For r′ generated from Inv, the distribution of r′ should be with negl(λ) dis-
tance from the distribution where r is sampled from.

Looking ahead, in the next section, we will show how to build CH+ from standard
lattice problems and from NTRU assumptions.

3.2 A new framework for ring signatures

Our ring signature is constructed as follows:

– Setup(1λ) → param: On input the security parameter 1λ, this algorithm
chooses a hash function H : {∗} → Db. It also runs SetUp(1λ)→ crs.

– KeyGen→ (sk, pk): This algorithm generates (hk, tr)← TrapGen(1λ). Then
it sets public key pk = hk and secret key sk = tr.

– Signing(skπ, µ, Lpk) → σ: On input a message µ, a list of user public keys
Lpk = {pk1, · · · , pk`}, and a signing key skπ = trπ of pkπ = hkπ ∈ Lpk, the
signing algorithm runs as follow:
1. For i ∈ [1, · · · , `] and i 6= π, pickmi and ri. Compute Ci = Hash(hki,mi, ri).

For i = π, pick Cπ.
2. Compute mπ such that

m1 ⊕ · · · ⊕mπ ⊕ · · · ⊕mn = H(µ,C1, · · · , C`, Lpk).

3. Given mπ and Cπ, invoke Inv(hkπ, trπ, Cπ,mπ)→ rπ.
The ring signature of µ and Lpk is σ = {(m1, r1), · · · , (m`, r`)}.

– Verification(µ, σ, Lpk)→ accept/reject: On input a message µ, a signature
σ and a list of user public keys Lpk, the verification algorithm first phrases
σ = {(m1, r1), · · · , (m`, r`)}. It then checks whether each pair of (mi, ri)
satisfies Ci = Hash(hki,mi, ri) for all i ∈ [1, · · · , `] and whether m1 ⊕ · · · ⊕
m` = H(µ,C1, · · · , C`, Lpk). If yes, output accept. Otherwise, output reject.

14

3.3 Linkable ring signatures

Our linkable ring signature is constructed as follows:

– Setup(1λ) → param: On input the security parameter 1λ, this algorithm
chooses two hash functions H0 and H1. It also runs SetUp(1λ) → crs and
selects a one-time signature scheme ΠOTS = {OKeygen,OSign,OVer}.

– KeyGen→ (sk, pk):

1. This algorithm first generates (hk, tr)← TrapGen(1λ).

2. It also generates a pair of ΠOTS public key and secret key (opk, osk)←
OKeygen(1λ) and computes mk = H1(opk).

3. It computes hk′ = hk⊕mk.

4. It sets public key pk = hk′ and secret key sk = {tr, opk, osk}.
– Signing(skπ, µ, Lpk) → σ: On input a message µ, a list of user public keys
Lpk = {pk1, · · · , pk`}, and a signing key skπ = {trπ, opkπ, oskπ} of pkπ =
hk′π ∈ Lpk, the signing algorithm runs as follow:

1. Compute mkπ = H1(opkπ).

2. For i ∈ [1, · · · , n] and i 6= π, pick mi and ri. Compute hki = hk′i ⊕mkπ
and Ci = Hash(hki,mi, ri). For i = π, pick Cπ.

3. Compute mπ such that

m1 ⊕ · · · ⊕mπ ⊕ · · · ⊕m` = H0(µ,C1, · · · , C`, Lpk).

4. Given mπ and Cπ, compute rπ ← Inv(hkπ, trπ, Cπ,mπ).

5. Compute one-time signature sig=OSign(oskπ; (m1, r1), · · · , (m`, r`),Lpk,
opkπ).

The linkable ring signature of µ and Lpk is σ={(m1, r1), · · · , (m`, r`), opkπ,
sig}.

– Verification(µ, σ, Lpk)→ accept/reject: On input a message µ, a signature
σ and a list of user public keys Lpk = {hk′1, · · · , hk

′
`}, the verification al-

gorithm first phrases σ = {(m1, r1), · · · , (m`, r`), opk, sig}. This algorithm
runs as follow:

1. It first computes mk = H1(opk). It also computes hki = hk′i ⊕ mk and
Ci = Hash(hki,mi, ri) for all i ∈ [1, · · · , `];

2. It checks whether m1 ⊕ · · · ⊕m` = H0 (µ,C1, · · · , C`, Lpk);

3. Verify the signature via OVer(opk; sig; (m1, r1), · · · , (m`, r`), Lpk, opk).

If all pass, output accept. Otherwise, output reject.

– Link(σ1, σ2, µ1, µ2, L
(1)
p k, L

(2)
p k) → linked/unlinked : On input two message

signature pairs (µ1, σ1) and (µ2, σ2), this algorithm first checks the valid-

ity of signatures σ1 and σ2. If Verification(µ1, σ1, L
(1)
pk) → accept and

Verification(µ2, σ2, L
(2)
pk) → accept, it phrases σ1={(m(1)

1 ,r
(1)
1), · · · ,(m(1)

` ,

r
(1)
`), opk1,sig1} and σ2 = {(m(2)

1 , r
(2)
1), · · · , (m(2)

` , r
(2)
`), opk2, sig2}. The al-

gorithm outputs linked if opk1 = opk2. Otherwise, output unlinked.

15

4 Security Analysis

4.1 Ring signature

Theorem 3 (Unforgeability). Our generic ring signature scheme is unforge-
able in random oracle model if CH+ is collision resistant.

Proof. Assume there is an adversary A who can successfully forge a ring signa-
ture with probability δ by making at most qr queries to RO oracle, qc queries
to CO oracle, qs queries to SO oracle, and qh queries to random oracle H. We
define the number of possible values in the output range of H as DH. Then we
can construct a simulator S who can break the collision resistance of CH+ with
a non-negligible probability.
S is given an instance as following: Given CH+ hash key hkc and common

reference string crsc, it is asked to output {(m′, r′), (m′′, r′′)} such that (m′, r′) 6=
(m′′, r′′) and Hash(hk′,m′, r′) = Hash(hk′,m′′, r′′) for crs′. In order to use A to
solve this problem instance, the simulator S needs to simulate the challenger C
and oracles to play Gameforge with A. S runs as follow:
Setup. Simulator S picks a hash function H. H will be modeled as a random
oracle. S picks {h1, h2, · · · , hp} ←$ DH as the qh responses of the random oracle.
S gives random coin φ to A. Hash function H and common reference string crsc
are set as system parameter.
Oracle Simulation. S simulates the oracles as follow:

– RO(⊥): Assume the adversary A can only queries RO qr times (qr ≥ 1). S
randomly picks an index I ∈ [1, · · · , qr]. For index I, S assigns hkc to index
I as the public key. For other indexes, S generates the public key and secret
key according to the KeyGen algorithm. Upon the jth query, S returns the
corresponding public key.

– CO(pk): On input a public key pk returned by RO oracle, S first checks
whether it corresponds to the index I. If yes, S aborts. Otherwise, S returns
the corresponding secret key sk.

– SO(µ,Lpk, pkπ): When A queries SO on message µ, a list of public keys
Lpk = {pk1, · · · , pk`} and the public key for the signer pkπ where pkπ ∈ Lpk,
S simulates SO as follow:

• If pkπ 6= pkI , S runs Signing(skπ, µ, Lpk) where the output of the ran-
dom oracle will be programmed as the first hi ∈ {h1, h2, · · · , hp} that
has not been used yet. S returns the signature σ to A;

• If pkπ = pkI , for i ∈ [1, · · · , `] and pki = hki, S samples mi, ri and
computes Ci = Hash(hki,mi, ri). S then programs random oracle as
H(µ,C1, · · · , C`) = m1 ⊕ · · · ⊕m`.

– Random Oracle H: For a query input that has already been programmed,
S returns the corresponding output. Otherwise, the output of the random
oracle will be the first hi ∈ {h1, h2, · · · , hp} that has not been used yet. S
will record all the queries to the random oracle in a table, in case same query
is issued twice.

16

Output. Finally, the adversary A will finish running and output a forgery (µ∗, σ∗,
L∗pk) with probability δ such that Verification(µ∗, σ∗, L∗pk) = accept; (µ∗, L∗pk)
has not been queried by A for signature; and no public key in L∗pk has been input
to CO. If pkI /∈ L∗pk, S aborts.

Simulator S then uses the forgery (µ∗, σ∗, L∗pk) to solve the problem instance.
S phrases σ∗ to {(m∗1, r∗1), · · · , (m∗` , r∗`)} and denotes m∗1 ⊕ · · · ⊕m∗` by h∗. No-
tice that with probability 1 − 1

|DH| , h
∗ will be one of the hi ∈ {h1, · · · , hp}

or the hash outputs from the SO queries. Since if the random oracle was not
queried or programmed on some input, the probability for A to produce a
{(m∗1, r∗1), · · · , (m∗` , r∗`)} such that m∗1⊕· · ·⊕m∗` = H(µ∗, C∗1 , · · · , C∗` , L∗pk) where

C∗i = Hash(pk∗i ,m
∗
i , r
∗
i) is 1

|DH| . The probability for A to produce a forgery

is δ. Thus, the probability for A outputs a forgery (µ∗, σ∗, L∗pk) and h∗ =

H(µ∗, C∗1 , · · · , C∗` , L∗pk) has been queried in SO or RO is δ − 1
|DH| .

Type 1 forgery: The first type of forgery is that, for the forgery (µ∗, σ∗ = {(m∗1, r∗1),
· · · , (m∗` , r

∗
`)}, L∗pk), h∗ is a response of random oracleH onH(µ′, C ′1, · · · , C ′`′ , L′pk)

during a SO query. Then, we have

H(µ∗, C∗1 , · · · , C∗` , L∗pk) = H(µ′, C ′1, · · · , C ′`′ , L′pk).

If µ∗ 6= µ′, (C∗1 , · · · , C∗`) 6= (C ′1, · · · , C ′`′) or L′pk 6= L∗pk, we find a collision to
the hash function. Thus, we must have µ∗ = µ′, (C∗1 , · · · , C∗`) = C ′1, · · · , C ′`′
and L′pk = L∗pk. Since we require that (µ∗, L∗pk) has not been queried by A for
signature. Type 1 forgery is not a valid forgery.
Type 2 forgery: The second type of forgery is that, h∗ = m1 ⊕ · · · ⊕m` is a re-
sponse of a RO query issued by A. We store the forgery (µ∗, σ∗ = {(m∗1, r∗1),
· · · , (m∗` , r

∗
`)}, L∗pk). Assume h∗ = hi where hi ∈ {h1, · · · , hp}, picks new

h′i, · · · , h′p ←$ DH . S then run Gameforge again on (hkc, crsc, ψ, φ, h1, · · · , hi−1,
h′i, · · · , h′p). According to the General Forking Lemma, we obtain that h′i 6= hi
and the adversary A uses the new random oracle response h′i in its forgery is at
least

Pr = acc(
acc

qs + qh
− 1

|DH|
),

where

acc =
1

qr − qc
(δ − 1

|DH|
− 1

qr
).

That is, with the same probability, A will output a forgery {µ′, σ′ = {(m′1, r′1),
· · · , (m′`′ , r

′
`′)}, L′pk} and µ∗ = µ′, (C∗1 , · · · , C∗`) = (C ′1, · · · , C ′`′), L′pk = L∗pk.

Thus, ` = `′. Assuming pkI = pkj ∈ L∗pk(L′pk), at least with probability 1
` , S has

m∗j 6= m′j . Since C∗j = Cj , S finds a collision (m∗j , r
∗
j), (m′j , r

′
j).

The probability for S aborting during SO is no more than 1
qr

. The probability

for S not aborting during output is no less than 1
qr−qc . Thus, the probability for

S solving problem instance is no less than

(1− 1

qr
)(

1

qr − qc
) · Pr

which is non-negligible.

17

Theorem 4 (Anonymity). Our ring signature scheme is unconditional anony-
mous.

Proof. When Gameanon is played between challenger C and adversary A, for each
RO query, KeyGen algorithm runs and public key pk = hk is returned. For
each CO(pk) query, secret key sk = tr corresponding to hk will be returned. If
adversary A ask for a signature on message µ and ring {pk1, · · · , pk`}, C will
random samples π ←$ [1, · · · , `] and signs µ using skπ.

The signature will be in the form of σ = {(m1, r1), · · · , (m`, r`)}. Assume
the signer of the signature is sπ, for i 6= π, mi and ri are sampled by S. For
i = π, mπ = m1 ⊕ · · · ⊕ mπ−1 ⊕ mπ+1 ⊕ · · · ⊕ m` ⊕ H(µ,C0, · · · , C`), rπ is
generated by Inv(hkπ, trπ, Cπ,mπ). Since mi (i 6= π) is uniformly sampled and
H is a hash function, the distribution of mπ should be also uniform over {0, 1}k.
According to the requirements of CH+, the distribution of rπ is within negl(λ)
statistical distance from the distribution S used to sample other randomness.
Thus, the best way for an adversary to win this game is to make a guess. The
probability for adversary to make a successful guess is no more than 1

` . Thus,
the advantage advanon

A of an adversary should be negligible. Our ring signature
scheme is unconditional anonymous.

4.2 Linkable ring signature

Theorem 5 (Anonymity). Our linkable ring signature scheme is anonymous
in random oracle model if the second requirement in section 3.1 holds for CH+.

Proof. Assume there is a simulator S who plays Game∗anon with adversary A as
follow:
Setup. Simulator S runs Setup(1λ)→ param and passes system parameter param
to adversary A.
Oracle Simulation. For registration oracle RO(⊥), when adversary queries RO,
S samples pk uniformly at random from its possible range.
Challenge. A picks a list of user public keys Lpk = {pk1, pk2, · · · , pk`} and a mes-
sage µ. A sends (Lpk, µ) to S. S randomly picks π ∈ {1, · · · , `}. S also generates a
pair of ΠOTS public key and secret key (opkπ, oskπ)← OKeygen for pkπ. For i =
{1, · · · , `}, S first computes pk′i = pki ⊕H1(opkπ). It also picks mi, ri and com-
putes Ci = Hash(pk′i,mi, ri). S programs H0(µ,C1, · · · , C`, Lpk) = m1⊕· · ·⊕m`.
Finally, it computes one-time signature sig = OSign(oskπ; (m1, r1), · · · , (m`, r`),
Lpk, opkπ) and returns σ={(m1, r1), · · · , (m`, r`), opkπ, sig} as signature.

For adversary A, A can not distinguish this game from the original one. Since
in the scheme, the signer public key pki is the result of the exclusive or of hki
and H1(opki) where H1(opki) is a hash output. Thus, A can not distinguish
pk generated following the rule from pk sampled uniformly at random from its
possible range.
Case 1: In case 1, we have the distribution of hk statistically close to uniform over
Rhk. Thus for i = 1, · · · , `, all the pk′i = pki ⊕ H1(opkπ) are indistinguishable
from a true hash key for A. The best way for A to win this game is to guess a
π∗ ∈ {1, · · · , `}. The probability for π∗ = π is no more 1

` .

18

Case 2: In case 2, we have the distribution of the distribution of hk computation-
ally close to the uniform distribution and the probability for h̄k←$ Rhk and h̄k
existing trapdoor is negligible. Thus for i = 1, · · · , `, all pk′i = pki ⊕ H1(opkπ)
are computationally indistinguishable from a true hash key for A. Since pk′i can
be considered as sampled uniformly at random from Rhk, the probability for pk′i
having trapdoor is negligible. Thus for A, the best way wining this game is to
guess a π∗ ∈ {1, · · · , `}. The probability for π∗ = π is no more 1

` .

The advantage advanon
A in this game is negligible. Our scheme is anonymous.

Theorem 6 (Linkability). Our linkable ring signature is linkable in random
oracle model if CH+ is collision resistant.

Proof. Assume there is an adversary A who can successfully forge a linkable
ring signature with probability δ by making at most qr queries to RO oracle, qc
queries to CO oracle, qs queries to SO oracle, and qh queries to random oracle
H0. We define the number of possible values in the output range of H0 as |DH|.
Then we can construct a simulator S who can break the collision resistance of
CH+ with a non-negligible probability.

S is given an instance as following: Given CH+ hash key hkc and common
reference string crsc, it is asked to output {(m′, r′), (m′′, r′′)} such that (m′, r′) 6=
(m′′, r′′) and Hash(hk′,m′, r′) = Hash(hk′,m′′, r′′) for crsc. In order to use A to
solve this problem instance, the simulator S needs to simulate the challenger C
and oracles to play Gameforge with A. S runs as follow:

Setup. Simulator S picks two hash functions H0, H1 and sets as system param-
eter. H0 will be modeled as random oracle. S picks random coins ψ, φ for S and

A respectively. Besides, S also picks {h1, h2, · · · , hp}
$←− DH0

as the qh responses
of the random oracle H0. S gives random coin φ to A. S sets H0, H1, crsc as
public parameter.

Oracle Simulation. S simulates the oracles as follow:

– RO(⊥): Assume adversary A can only queries RO qr times (qr ≥ 1). A
random picks an index I ←$ [1, · · · , qr]. For index I, S runs OKeygen(1λ)→
(opkI , oskI) and set pkI = hk′I = hkc⊕H1(opk). For other index, S generates
the public key and secret key according to the KeyGen algorithm. Upon
the jth query, S returns the corresponding public key.

– CO(pk): On input a public key pk returned by RO oracle, S first checks
whether it corresponds to index I. If yes, S aborts. Otherwise, S returns the
corresponding secret key sk. According to the requirements, A is allowed to
query this oracle no more than once.

– SO(µ,Lpk, pkπ): When A queries SO on message µ, a list of public keys
Lpk = {pk1, · · · , pk`} and the public key for the signer pkπ where pkπ ∈ Lpk,
S simulates SO as follow:

• If pkπ 6= pkI ,S runs Signing(skπ, µ, Lpk) where the output of the random
oracle will be the first hi ∈ {h1, h2, · · · , hp} that has not been used yet.
S returns the signature σ to A;

19

• If pkπ = pkI , for i ∈ [1, · · · , `], pki = hk′i, S computes hki = H1(opkπ)⊕
hk′i. S samples mi, ri and computes Ci = Hash(hki,mi, ri). S then
programs random oracle H0 as H0(µ,C1, · · · , C`, Lpk) = m1 ⊕ · · · ⊕
m`. S also computes one-time signature sig = OSign(oskπ; (m1, r1),
· · · , (m`, r`), Lpk, opk). S returns signature σ = {(m1, r1), · · · , (m`, r`),
opkπ,sig}.

– Random Oracle H0: For query input that has already been programmed,
S returns the corresponding output. Otherwise, the output of the random
oracle will be the first hi ∈ {h1, h2, · · · , hp} that has not been used yet. S
will record all the queries to the random oracle in a table, in case same query
is issued twice.

Output. Adversary A outputs two sets {L(1)
pk , µ1, σ1} and {L(2)

pk , µ2, σ2} where

L
(1)
pk and L

(2)
pk are two lists of public keys, µ1 and µ2 are messages, σ1 and σ2 are

two signatures. Also these two sets should satisfy that Verification(µ1, σ1, L
(1)
pk) =

accept and Verification(µ2, σ2, L
(2)
pk) = accept ; A queried CO less than two

times; and Link(σ1, σ2, µ1, µ2, L
(1)
pk , L

(2)
pk) = unlinked. Since A is allowed query

CO less than two times. At least one of the output signatures should be gen-
erated from the secret key that A does not obtain. Assume σj , j ∈ {1, 2} is

not produced by the secret key A obtaining. If pkI /∈ L
(j)
pk , abort. Otherwise, S

accepts σ1 and σ2.

The probability for pkI ∈ L
(j)
pk is no less than 1

qr
. In the following we use

(µ∗, σ∗, L∗pk) to denote (µj , σj , L
(j)
pk). Simulator S then uses the set (µ∗, σ∗, L∗pk)

to break the collision resistance of CH+. S phrases σ∗ to {(m∗1, r∗1), · · · , (m∗` , r
∗
`),

opk∗, sig∗} and denotes m∗1 ⊕ · · · ⊕ m∗` by h∗. Notice that with probability
1 − 1

|DH| , h
∗ will be one of the hi ∈ {h1, · · · , hp} or the hash outputs from

the SO queries. Since if the random oracle was not queried or programmed on
some input, the probability for A to produce a {(m∗1, r∗1), · · · , (m∗` , r∗`)} such
that m∗1 ⊕ · · · ⊕m∗` = H(µ∗, C∗1 , · · · , C∗` , L∗pk) is 1

|DH| . The probability for A to

produce a forgery is δ. Thus, the probability for A outputs a forgery (µ∗, σ∗, L∗pk)

and h∗ = H(µ∗, C∗1 , · · · , C∗` , L∗pk) has been queried in SO or RO is δ − 1
|DH| .

Type 1 forgery: The first type of forgery is that, for the forgery (µ∗,σ∗ = {(m∗1, r∗1),
· · · , (m∗` , r

∗
`), opk∗,sig∗},L∗pk), m∗1 ⊕ · · · ⊕m∗` = H(µ∗, C∗1 , · · · , C∗` , L∗pk) is a re-

sponse of random oracle H on H(µ′, C ′1, · · · , C ′`′ , L′pk) during a SO query. Then,
we have

H(µ∗, C∗1 , · · · , C∗` , L∗pk) = H(µ′, C ′1, · · · , C ′`′ , L′pk)

If µ∗ 6= µ′, (C∗1 , · · · , C∗`) 6= (C ′1, · · · , C ′`′) or L′pk 6= L∗pk, we find a collision of
the hash function. Thus, we must have µ∗ = µ′, (C∗1 , · · · , C∗`) = C ′1, · · · , C ′`′
and L′pk = L∗pk. Since we require that (µ∗, L∗pk) has not been queried by A for
signature. Type 1 forgery is not a valid forgery.
Type 2 forgery: The second type of forgery is that, h∗ = m∗1 ⊕ · · · ⊕ m∗` is a
response of a RO query issued by A. We store the forgery (µ∗, σ∗={(m∗1, r∗1),
· · · , (m∗` , r

∗
`), opk∗, sig∗},L∗pk). Assume h∗ = hi where hi ∈ {h1, · · · , hp}, picks

20

new h′i, · · · , h′p ←$ DH . S then run Gameforge again on (hkc, crsc, ψ, φ, h1, · · · ,
hi−1, h′i, · · · ,h′p). According to the General Forking Lemma, we obtain that
h′i 6= hi and the adversary A uses the random oracle response h′i in its forgery
is at least

Pr = acc(
acc

qs + qh
− 1

|DH|
),

where

acc =
1

qr
(δ − 1

|DH|
− 1

qr
)

Which means that with the same probability, A will output a forgery {µ′, σ′ =
{(m′1, r′1), · · · , (m`′ , r`′), opk

′, sig′}, L′pk} and µ∗ = µ′, (C∗1 , · · · , C∗`)= (C ′1, · · · ,
C ′`′), L

′
pk = L∗pk, and opk′ = opk∗. Thus, ` = `′. At least with probability

1
` , m∗I 6= m′I . Since C∗I = C ′I , S has Hash(hkc,m

∗
I , r
∗
I) = Hash(hkc,m

′
I , r
′
I).

(m∗I , r
∗
I) and (m′I , r

′
I) is a collision for hash key hkc.

The probability for S aborting during SO is no more than 1
qr

. The probability

for S not aborting during output is no less than 1
qr

. Thus, the probability for S
solving problem instance is no less than

(1− 1

qr
)(

1

qr
) · Pr

which is non-negligible.

Theorem 7 (Nonslanderability). Our linkable ring signature is nonslander-
able in random oracle model if the one-time signature scheme ΠOTS is one-time
unforgeable.

Proof. Assume there is an adversary A who can win Gameslander with probability
δ. Then we can construct a simulator S who can break the unforgeability of the
one-time signature ΠOTS used in our construction also with probability δ.
S is given a ΠOTS public key opk′ and is allowed to query the signature

sig′ of a message m′ once for any message of its choosing. S is said breaking
the unforgeability of ΠOTS if it can produce (m′′, sig′′) such that (m′′, sig′′) 6=
(m′, sig′) and OVer(opk′; sig′′; m′′) = accept. In order to use A to break the
unforgeability of ΠOTS , the simulator S needs to simulate the challenger C and
oracles to play Gameslander with A. S runs as follow:
Setup. Simulator S picks two hash functions H0, H1. It also generates crs ←
SetUp(1λ). H0, H1, crs and ΠOTS will be set as system parameter.H0 and H1

will be modeled as random oracles.
Oracle Simulation. S simulates the oracles as follow:

– RO(⊥): S uniformly samples hk′ and returns hk′ as the public key.
– CO(pk): On input a public key pk = hk′ returned by RO oracle, S first

checks whether it is an output of RO query. If yes, S runs OKeygen(1λ) →
(opk, osk). S runs TrapGen(1λ) → (hk, tr). S returns (tr, opk, osk) as secret
key and programs H1(opk) = hk⊕ hk′.

21

– SO(µ,Lpk, pkπ): When A queries SO on message µ, a list of public keys
Lpk = {pk1, · · · , pk`} and the public key for the signer pkπ where pkπ =
hk′ ∈ Lpk, S simulates SO as follow:

• If pkπ has been queried to CO oracle,S runs Signing(skπ, µ, Lpk) and
returns the signature σ to A;

• If pkπ has not been queried to CO, S runs OKeygen(1λ) → (opk, osk).
For i ∈ [1, · · · , `], pki = hk′i, S computes hki = hk′i ⊕ H1(opk). S sam-
ples mi, ri and computes Ci = Hash(hki,mi, ri). S then programs ran-
dom oracle H0 as H0(µ,C1, · · · , C`, Lpk) = m1 ⊕ · · · ⊕m`. S Computes
one-time signature sig = OSign(osk; (m1, r1), · · · , (m`, r`), Lpk, opk). S
returns signature σ = {(m1, r1), · · · , (m`, r`), opk, sig}.

– Random Oracle H0: For input that has already been programmed, S returns
the corresponding output. Otherwise, S randomly samples h0 and outputs
h0. S will record all the queries to the random oracle in a table, in case same
query is issued twice.

– Random Oracle H1: For input that has already been programmed, S returns
the programmed output. Otherwise, S randomly samples h1 and output h1.
S will record all the queries to the random oracle in a table, in case same
query is issued twice.

Challenge. A sends a list of public keys L′pk = {pk1, · · · , pk`}, message µ and
public key pkπ ∈ Lpk. According to the requirements, pkπ should not been
queried to CO or as an insider to SO. Thus, there is no one-time signatures
keys chosen for pkπ yet. S takes opk′ as the one-time signature public key for
pkπ. For i ∈ [1, · · · , `], pki = hk′i, S computes hki = hk′i ⊕ H1(opk′). S sam-
ples mi,ri and computes Ci = Hash(hki,mi, ri). S then programs random oracle
H0 as H0(µ,C1, · · · , C`, Lpk) = m1 ⊕ · · · ⊕ m`. Then, S queries for the one-
time signature sig′ of message ν′ = {(m1, r1), · · · , (m`, r`), L

′
pk, opk

′)}. S returns

σ′ = {(m1, r1), · · · , (m`, r`), opk
′, sig′} to A.

Output. A outputs a list of public keys L∗pk, message µ∗, and a signature σ∗ such

that Verification(µ∗, σ∗, L∗pk) = accept, Link(σ, σ∗, µ, µ∗, L
′

pk, L
∗
pk) = linked.

Simulator S then use (L∗pk, µ
∗, σ∗) to break the unforgeability of ΠOTS . S

phrases σ∗ = {(m∗1, r∗1), · · · , (m∗`′ , r∗`′), opk
∗, sig∗}. Since Link(σ, σ∗, µ, µ∗, L

′

pk,

L∗pk) = linked, we must have opk′ = opk∗ and OVer(opk∗; sig∗; (m∗1, r
∗
1), · · · ,

(m∗`′ , r
∗
`′),L

∗
pk, opk

∗) = accept. Since σ∗, L∗pk must be different from σ′, L′pk. S
obtains a one-time message signature pair where message is ν∗ = {(m∗1, r∗1), · · · ,
(m∗`′ , r

∗
`′), L

∗
pk, opk

∗} 6= ν′ in challenge. sig∗ is a valid one-time signature for opk′

and ν∗. S breaks the unforgeability of ΠOTS .

According to Theorem 2, our linkable ring signature scheme has nonslader-
ability and linkability. Thus it is also unforgeable.

22

5 Instantiation

5.1 Instantiation of CH+ from Standard Lattice

In this section, we are going to present our first instantiation of CH+ from
standard lattice.

Table 3. Parameters for CH+ Standard Lattice Instantiation

parameter Usage Value

H Common reference matrix Zn×kq

A Hash key Zn×mq

T Trapdoor of A

b Binary message vector {0, 1}k
r Randomness vector Zmq

SetUp(1λ) → H: On input the security parameter 1λ, this algorithm ran-
domly samples a matrix H←$ Zn×kq . The matrix H will be an implicit input to
Hash and Inv algorithm.

TrapGen(1λ) → (A,T): This algorithm runs GenBasis (1n, 1m, q) → (A,T)
where A ∈ Zn×mq is a parity-check matrix and T is a ‘good’ trapdoor basis of

Λ⊥(A).
Hash(A,b, r)→ c: On input hash key A, binary message vector b ∈ {0, 1}k

and randomness vector r ← Dm
s , this algorithm computes c = Hb + Ar and

returns c.
Inv(A,T, c,b′) → r′: On hash key A ∈ Zn×mq and its trapdoor T, a vector

c ∈ Znq , a binary vector b′ ∈ {0, 1}k, it computes u = c − Hb′ and r′ =
PreSample(A,T,u, s).

Now we argue that this instantiation satisfies our requirements of CH+.

– Our instantiation is collision resistant and one-way if SISq,n,m′,β and ISISq,n,m′,β
is hard for m′ = m+ k, β =

√
2ms2 + 2k and β =

√
ms2 + k respectively.

– For the second requirement, according to Lemma 1, we have the distribution
of parity-check matrix A ∈ Zn×mq generated from GenBasis algorithm is
within negl(n) far from uniform. Thus, the distribution of A is statistically
close to uniform in Zn×mq . Our instantiation satisfies the second requirement.

– For the third requirement, this instantiation requires that randomness vector
r is sampled from Gaussian distribution Dm

s . According to Lemma 1, if
we set deviation s appropriately (i.e., greater than the smooth parameter
of T, see [26]), the random vector r′ sampled by algorithm Inv is within
negl(n) statistical distance of Dm

s . Thus our instantiation satisfies the third
requirement.

5.2 Instantiation of CH+ from NTRU

The Falcon-based CH+ scheme consists of following algorithms:

23

Table 4. Parameters for CH+ NTRU Instantiation

parameter Usage Value

h Common reference matrix Rq
a Hash key Rq
T Trapdoor of a R2×2

q

b Hash message Rq
r Randomness R2

q

SetUp(1λ)→ (h, Db, Dr): On input the security parameter 1λ, this algorithm
firstly sets up the polynomial ring Rq and samples h←$ Rq. It also sets related
distributions:

– Db: a uniform distribution over Rq with binary coefficients;
– Dr: a discrete Gaussian distribution over Rq ×Rq.

TrapGen(1λ) → (a,T): This algorithm takes security parameter 1λ as input
and then runs Falcon key generation function to obtain a tuple (a,T) where the
public description of CH+, namely, a = g/f is computationally indistinguishable

from uniform over Rq under NTRU assumption; T :=

[
f g
f̄ ḡ

]
is the trapdoor of

a.
Hash(a,b, r) → c: On input a hash key a, a binary message string b ∈ Db

and randomness r := (r0, r1) ∈ Dr, this algorithm returns a hash output c :=
r0 + ar1 + hb ∈ Rq.

Inv(a,T, c,b′) → r′: On input hash key a, its trapdoor T, a value c ∈ Dc

and a binary message b′, this algorithm

– Compute u = c− b′h;
– Generate a falcon signature r′ := (r′0, r

′
1) on u such that r′0 + r′1a = u.

It returns r′ ∈ Dr such that Hash(a,b′, r′) = c. The distribution of r′ will
be identical to the distribution of r used in Hash due to the property of GPV
sampler.

This instantiation satisfies our requirements of CH+.

– The one-wayness and collision resistance of this instantiation is based on
NTRU assumption, R-SIS and R-ISIS. According to NTRU assumption,
a is computationally close to uniform. For a R-SIS3,q,β problem instance5

{e1, e2, e3}, we can compute {1,a′,h′} = {e1

e1
, e2

e1
, e3

e1
}. a′ should be indistin-

guishable with a real hash key a. By obtaining a collision {r(0)0 , r
(0)
1 ,b(0)},

{r(1)0 , r
(1)
1 ,b(1)} on hash key a′ and public parameter h′. We have

((r
(0)
0 − r

(1)
0) + a′(r

(0)
1 − r

(1)
1) + h(b(0) − b(1))) = 0.

We find a solution to the problem instance {e1, e2, e3}. We can use the
similar way to argue the one-wayness of NTRU instantiation.

5 We require at least one of the three elements is invertible over Rq. For Falcon-512,
the probability is (1− 1/q)N ≈ 96%.

24

– Under NTRU assumption, Falcon public key is computationally indistin-
guishable from uniform; and the probability that a uniform sampled ring
element ā←$ Rq having a Falcon trapdoor is negligible.

– Falcon is essentially a GPV sampler over NTRU. Therefore, according to
Theorem 1, if the deviation of Dr is greater than the smoothing parameter,
then r′ generated by algorithm Inv will be within negl(n) statistical distance
of DΛ⊥u (a),s. Thus our instantiation satisfies the third requirement.

5.3 Full description of Raptor

Now we are ready to present our instantiation. Falcon works over a polynomial
ring Rq := Zq[x]/(xn + 1) for n ∈ {512, 1024} and q = 12289. There is a third
parameter set with a different, more complicated polynomial ring. For simplicity,
we omit this parameter set.
Setup(1λ)→ param: On input the security parameter 1λ, this algorithm chooses
a hash function H: {∗} → {0, 1}n, a suitable R and distributions Db, Dr for the
security level, where Db := {0, 1}256, Dr := D2

R,η, D is a discrete Gaussian
distribution over R with deviation η, and η ≈ 1.17

√
q is the smooth parameter.

It also picks a public polynomial h←$ Rq at random as crs.
KeyGen→ (sk, pk): This algorithm firstly generates (a, f ,g, f̄ , ḡ)← Falcon.KeyGen
(param) where

1. a = g/f ∈ Rq,
2. f × ḡ − g × f̄ = q,
3. ‖(f ,g)‖ and ‖(f̄ , ḡ)‖ are small.

Then it sets public key pk = {a} and secret key sk = {f ,g, f̄ , ḡ}.
Signing(skπ, µ, Lpk, param) → σ: On input message µ, list of user public keys
Lpk = {pk1, · · · , pk`}, and signing key skπ = {fπ,gπ, f̄π, ḡπ} of pkπ = {aπ}, and
the system parameter param, the signing algorithm runs as follow:

1. For i ∈ [1, · · · , `] and i 6= π, picks bi ←$ {0, 1}256 and (ri,0, ri,1) ← D2
R,η.

Compute ci = ri,0 + airi,1 + hbi.
2. For i = π, pick cπ ←$ Rq.
3. Compute bπ such that

b1 ⊕ · · · ⊕ bπ ⊕ · · · ⊕ b` = H(µ, c1, · · · , c`).

4. Set uπ = cπ − hbπ.
5. Compute (rπ,0, rπ,1) = Falcon.sign(skπ; uπ) such that rπ,0 + rπ,1aπ = uπ.

The ring signature of µ and Lpk is σ = {(ri,0, ri,1,bi)}`i=1.
Verification(µ, σ, Lpk)→ accept/reject: On input message µ, signature σ and a
list of user public keys Lpk, the verification algorithm performs as follows:

1. phrases σ = {(ri,0, ri,1,bi)}`i=1;
2. checks whether each tuple of (ri,0, ri,1,di) ∈ D ×D ×Db; outputs reject if

not.
3. computes ci = ri,0 + airi,1 + hbi for all i ∈ [1, · · · , `] and checks whether

b1 ⊕ · · · ⊕ b` = H(µ, c1, · · · , c`); outputs reject if not.
4. outputs accept.

25

5.4 Full description of the linkable Raptor

As shown in Section 3.3, one can convert Raptor into a one-time linkable one
with a one-time signature scheme. For easiness of implementation, we will use
also use Falcon to instantiate this signature scheme.
Setup(1λ)→ param: On input the security parameter 1λ, this algorithm chooses
H0, H1, Db, Dr and η as in Raptor.
KeyGen→ (sk, pk): This algorithm firstly generates

– (a, f ,g, f̄ , ḡ) ← Falcon.KeyGen(param), and
– (aots, fots,gots, f̄ots, ḡots) ← Falcon.KeyGen(param)

Then it sets a′ := a +H1(aots) mod q. The public key pk = {a′,aots} and secret
key sk = {f ,g, f̄ , ḡ, fots,gots, f̄ots, ḡots}.
Signing(skπ, µ, Lpk, param) → σ: On input message µ, list of user public keys
Lpk = {pk1, · · · , pk`}, and signing key skπ = {fπ,gπ, f̄π, ḡπ, fots,gots, f̄ots, ḡots}
of pkπ = {a′π,aots}, and the system parameter param, the signing algorithm runs
as follow:

1. For i ∈ [1, · · · , `], compute ai = a′i −H1(aots) mod q.
2. For i ∈ [1, · · · , `] and i 6= π, picks bi ←$ {0, 1}256 and (ri,0, ri,1) ← D2

R,η.
Compute ci = ri,0 + airi,1 + hibi.

3. For i = π, pick cπ ←$ Rq.
4. Compute bπ such that

b1 ⊕ · · · ⊕ bπ ⊕ · · · ⊕ b` = H(µ, c1, · · · , c`).

5. Set uπ = cπ − hbπ.
6. Set (rπ,0, rπ,1) = Falcon.sign((fπ,gπ, f̄π, ḡπ); uπ) such that rπ,0 + rπ,1aπ =

uπ.
7. Compute sig := Falcon.sign ((fots, gots, f̄ots, ḡots); ({ri,0, ri,1,bi}`i=1,{a′i}`i=1,

aots)).

The ring signature of µ and Lpk is σ ={{ri,0, ri,1, bi}`i=1,aots, sig}.
Verification(µ, σ, Lpk)→ accept/reject: On input message µ, signature σ and a
list of user public keys Lpk, the verification algorithm performs as follows:

1. phrases σ={{ri,0, ri,1,bi}`i=1,aots, sig};
2. For i ∈ [1, · · · , `], compute ai = a′i −H1(aots) mod q;
3. checks whether each tuple of (ri,0, ri,1,di) ∈ D ×D ×Db; outputs reject if

not.
4. computes ci = ri,0 + airi,1 + hibi for all i ∈ [1, · · · , `] and checks whether

b1 ⊕ · · · ⊕ b` = H(µ, c1, · · · , c`); outputs reject if not.
5. verify sig is a signature for ({ri,0, ri,1,bi}`i=1, {a′i}`i=1,aots) with public key

aots; outputs reject if fails.
6. outputs accept.

Note that in this implementation we use additions and subtractions over the
Rq instead of bit-wise XOR operations. Under the random oracle modelH1(aots)
will output a random ring element. This creates a perfect one-time mask that
assures a′ is indistinguishable from random.

26

6 Parameters and implementation

Here we give some parameter figures for Raptor-512, instantiated with Fal-
con-512. Our Raptor-512 uses a signature size of (617× 2 + 32)` ≈ 1.26` kilo
bytes, where ` is the number of users in a signature. This is because, for each
tuple {ri,0, ri,1,bi} within a ring signature, we need a pair of ri,0 and ri,1, each
of 617 bytes, and an additional 32 bytes for bi to avoid any search attacks [28].
This parameter set yields 114 bits security against classical attackers, and 103
bits security against quantum attackers, under the BKZ2.0 framework [17] with
(quantum) sieving algorithm [4, 34].

As for linkable Raptor-512, we need an additional Falcon public key and
signature which is of size 897 + 617 ≈ 1.5 kilo bytes. This accounts for a total of
(1.3`+ 1.5) kilo bytes.

For conservative purpose, one may also choose Falcon-1024 for better se-
curity, which results in a signature size of 2.5` kilo bytes for Raptor-1024,
and (2.5`+ 3) kilo bytes for linkable Raptor-1024. The security level for both
schemes will be over 256 bits.

We implemented Raptor-512 on a typical laptop with an Intel 6600U pro-
cessor. The performance is shown in Tables 1 and 2. Our source code is available
at [55]6. This is a proof-of-concept implementation. We did not take into account
potential optimizations such as NTT-based ring multiplication and AVX-2 in-
structions. We leave those to future work.

6 Link omitted due to anonymous submission. Will be provided upon PC chair’s re-
quest.

27

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys. In
Y. Zheng, editor, Advances in Cryptology - ASIACRYPT 2002, 8th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Queenstown, New Zealand, December 1-5, 2002, Proceedings, volume 2501 of
Lecture Notes in Computer Science, pages 415–432. Springer, 2002.

2. M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the twenty-eighth annual ACM symposium on theory of computing,
STOC 1996, pages 99–108. ACM, 1996.

3. M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite,
F. Virdia, and T. Wunderer. Estimate all the LWE, NTRU schemes! Cryptology
ePrint Archive, Report 2018/331, 2018. https://eprint.iacr.org/2018/331.

4. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
- A new hope. In 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016., pages 327–343, 2016.

5. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In
S. Albers and J. Marion, editors, 26th International Symposium on Theoretical
Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Ger-
many, Proceedings, volume 3 of LIPIcs, pages 75–86. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2009.

6. M. H. Au, S. S. M. Chow, W. Susilo, and P. P. Tsang. Short linkable ring signatures
revisited. In A. S. Atzeni and A. Lioy, editors, Public Key Infrastructure, Third
European PKI Workshop: Theory and Practice, EuroPKI 2006, Turin, Italy, June
19-20, 2006, Proceedings, volume 4043 of Lecture Notes in Computer Science, pages
101–115. Springer, 2006.

7. M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen. Certificate based (linkable) ring
signature. In E. Dawson and D. S. Wong, editors, Information Security Practice
and Experience, Third International Conference, ISPEC 2007, Hong Kong, China,
May 7-9, 2007, Proceedings, volume 4464 of Lecture Notes in Computer Science,
pages 79–92. Springer, 2007.

8. M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen. Secure id-based linkable and
revocable-iff-linked ring signature with constant-size construction. Theor. Comput.
Sci., 469:1–14, 2013.

9. M. H. Au, W. Susilo, and S. Yiu. Event-oriented k -times revocable-iff-linked group
signatures. In L. M. Batten and R. Safavi-Naini, editors, Information Security and
Privacy, 11th Australasian Conference, ACISP 2006, Melbourne, Australia, July
3-5, 2006, Proceedings, volume 4058 of Lecture Notes in Computer Science, pages
223–234. Springer, 2006.

10. W. Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen, 296(4):625–636, 1993.

11. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In Halevi and Rabin [29], pages 60–79.

12. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,
pages 41–69, 2011.

13. Z. Brakerski and Y. T. Kalai. A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. IACR Cryptology ePrint
Archive, 2010:86, 2010.

28

14. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups
(extended abstract). In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes in Computer
Science, pages 410–424. Springer, 1997.

15. N. Chandran, J. Groth, and A. Sahai. Ring signatures of sub-linear size without
random oracles. In L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, editors,
Automata, Languages and Programming, 34th International Colloquium, ICALP
2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes
in Computer Science, pages 423–434. Springer, 2007.

16. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Advances
in Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application of of
Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings, volume
547 of Lecture Notes in Computer Science, pages 257–265. Springer, 1991.

17. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASI-
ACRYPT 2011, pages 1–20. Springer, 2011.

18. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in
ad hoc groups. In C. Cachin and J. Camenisch, editors, Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings,
volume 3027 of Lecture Notes in Computer Science, pages 609–626. Springer, 2004.

19. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In R. Canetti and J. A. Garay, editors, Advances in Cryptology
- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 40–56. Springer, 2013.

20. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, volume
8042 of LNCS, pages 40–56. Springer, 2013.

21. L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based encryption over
NTRU lattices. In Advances in Cryptology - ASIACRYPT 2014 - 20th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II,
pages 22–41, 2014.

22. L. Ducas and T. Prest. Fast fourier orthogonalization. In Proceedings of the ACM
on International Symposium on Symbolic and Algebraic Computation, ISSAC 2016,
Waterloo, ON, Canada, July 19-22, 2016, pages 191–198, 2016.

23. C. Dwork and M. Naor. Zaps and their applications. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 283–293. IEEE Computer Society, 2000.

24. P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-Fourier Lattice-
based Compact Signatures over NTRU.

25. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In C. Dwork, editor, Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, pages 197–206. ACM, 2008.

26. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the 40th annual ACM symposium on
Theory of computing, STOC ’08, page 197206, New York, NY, USA, 2008. ACM.

29

27. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret
and spend a coin. In E. Oswald and M. Fischlin, editors, Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part II, volume 9057 of Lecture Notes in Computer Science, pages
253–280. Springer, 2015.

28. L. K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219, 1996.

29. S. Halevi and T. Rabin, editors. Theory of Cryptography, Third Theory of Cryptog-
raphy Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings,
volume 3876 of Lecture Notes in Computer Science. Springer, 2006.

30. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.
NTRUSIGN: digital signatures using the NTRU lattice. In M. Joye, editor, Topics
in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference
2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings, volume 2612 of
Lecture Notes in Computer Science, pages 122–140. Springer, 2003.

31. J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and Z. Zhang.
Choosing parameters for ntruencrypt. IACR Cryptology ePrint Archive, 2015:708,
2015.

32. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288,
1998.

33. H. Krawczyk and T. Rabin. Chameleon signatures. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2000, San Diego, California,
USA. The Internet Society, 2000.

34. T. Laarhoven and A. Mariano. Progressive lattice sieving. In Post-Quantum Cryp-
tography - 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL,
USA, April 9-11, 2018, Proceedings, pages 292–311, 2018.

35. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures with-
out trapdoors. In M. Fischlin and J. Coron, editors, Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 1–31.
Springer, 2016.

36. J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Linkable ring signature with uncon-
ditional anonymity. IEEE Trans. Knowl. Data Eng., 26(1):157–165, 2014.

37. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In H. Wang, J. Pieprzyk, and
V. Varadharajan, editors, Information Security and Privacy: 9th Australasian Con-
ference, ACISP 2004, Sydney, Australia, July 13-15, 2004. Proceedings, volume
3108 of Lecture Notes in Computer Science, pages 325–335. Springer, 2004.

38. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 1219–1234, 2012.

39. V. Lyubashevsky. Lattice signatures without trapdoors. In Pointcheval and Jo-
hansson [47], pages 738–755.

30

40. V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are colli-
sion resistant. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors,
Automata, Languages and Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume 4052 of Lecture
Notes in Computer Science, pages 144–155. Springer, 2006.

41. C. A. Melchor, S. Bettaieb, X. Boyen, L. Fousse, and P. Gaborit. Adapting lyuba-
shevsky’s signature schemes to the ring signature setting. In A. Youssef, A. Nitaj,
and A. E. Hassanien, editors, Progress in Cryptology - AFRICACRYPT 2013,
6th International Conference on Cryptology in Africa, Cairo, Egypt, June 22-24,
2013. Proceedings, volume 7918 of Lecture Notes in Computer Science, pages 1–25.
Springer, 2013.

42. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Pointcheval and Johansson [47], pages 700–718.

43. National Institute of Standards and Technology. Post-Quantum Cryptography
Standardization, 2017.

44. L. Nguyen. Accumulators from bilinear pairings and applications. In A. Menezes,
editor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the
RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceed-
ings, volume 3376 of Lecture Notes in Computer Science, pages 275–292. Springer,
2005.

45. C. Peikert. An efficient and parallel gaussian sampler for lattices. In T. Rabin,
editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of
Lecture Notes in Computer Science, pages 80–97. Springer, 2010.

46. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In Halevi and Rabin [29], pages 145–166.

47. D. Pointcheval and T. Johansson, editors. Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume
7237 of Lecture Notes in Computer Science. Springer, 2012.

48. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd,
editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Gold
Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes
in Computer Science, pages 552–565. Springer, 2001.

49. P. W. Shor. Polynominal time algorithms for discrete logarithms and factoring on
a quantum computer. In L. M. Adleman and M. A. Huang, editors, Algorithmic
Number Theory, First International Symposium, ANTS-I, Ithaca, NY, USA, May
6-9, 1994, Proceedings, volume 877 of Lecture Notes in Computer Science, page
289. Springer, 1994.

50. D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over
ideal lattices. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 27–47, 2011.

51. S. Sun, M. H. Au, J. K. Liu, and T. H. Yuen. Ringct 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero.
In S. N. Foley, D. Gollmann, and E. Snekkenes, editors, Computer Security - ES-
ORICS 2017 - 22nd European Symposium on Research in Computer Security, Oslo,
Norway, September 11-15, 2017, Proceedings, Part II, volume 10493 of Lecture
Notes in Computer Science, pages 456–474. Springer, 2017.

31

52. W. A. Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta, N. Bhattacharjee,
M. H. Au, and J. Cheng. Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (lattice ringct v1.0).
Cryptology ePrint Archive, Report 2018/379, 2018. https://eprint.iacr.org/

2018/379.
53. P. P. Tsang, M. H. Au, J. K. Liu, W. Susilo, and D. S. Wong. A suite of non-

pairing id-based threshold ring signature schemes with different levels of anonymity
(extended abstract). In S. Heng and K. Kurosawa, editors, Provable Security - 4th
International Conference, ProvSec 2010, Malacca, Malaysia, October 13-15, 2010.
Proceedings, volume 6402 of Lecture Notes in Computer Science, pages 166–183.
Springer, 2010.

54. P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting, e-cash
and attestation. In R. H. Deng, F. Bao, H. Pang, and J. Zhou, editors, Infor-
mation Security Practice and Experience, First International Conference, ISPEC
2005, Singapore, April 11-14, 2005, Proceedings, volume 3439 of Lecture Notes in
Computer Science, pages 48–60. Springer, 2005.

55. zhenfei zhang. Raptor source code. online. available from https://github.com/

zhenfeizhang/raptor.

7 Appendix

7.1 Known attacks of Raptor

The NTRU assumption and the security of Falcon signature has been exten-
sively studied in the literature [31, 17, 3, 20, 21, 24]. Here we consider the hardness
of inverting the CH+. We note that the attack described here does not work for
the Falcon parameters. Indeed, this attack is strictly less efficient than forging
a Falcon signature, or recovering the secret keys directly.

Our CH+ is defined as c = r0 + ar1 + hb mod q. Therefore, one may build

a lattice with basis

 qIa I
1
αh 0 1

αI

 where the vector (r0, r1, αb) is a close vector to

(c, 0, 0); α is a scaling factor of roughly ∼ η. Note that solving the CVP here
is not equivalent to finding a pre-image. Our b is a binary vector, therefore, to
have a successful forgery we will also require the third part of the output to be
in the form of α multiplying a binary vector.

It is easy to see that, even if we relax above the requirement, solving this
CVP is still harder than forging a Falcon signature, i.e., solving some CVP for[
qI
a I

]
where the root Hermite factor is a lot larger than that of attacks on the

CH+ scheme.

32

