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Abstract. Sanitizable signature schemes (SSS) enable a designated party (called the sanitizer) to alter admissible
blocks of a signed message. This primitive can be used to remove or alter sensitive data from already signed
messages without involvement of the original signer.
Current state-of-the-art security definitions of SSSs only define a “weak” form of security. Namely, the unforgeability,
accountability and transparency definitions are not strong enough to be meaningful in certain use-cases. We
identify some of these use-cases, close this gap by introducing stronger definitions, and show how to alter an
existing construction to meet our desired security level. Moreover, we clarify a small yet important detail in the
state-of-the-art privacy definition. Our work allows to deploy this primitive in more and different scenarios.

1 Introduction

Traditional digital signature schemes such as RSA-PSS require that a signature σ on a message m becomes invalid as
soon as a single bit of m is altered [8,25]. Contrary, many use-cases require subsequent changes to the signed data
by a semi-trusted third party. As a simple example, consider a driver’s license which is signed by the issuing state.
To prove majority, the holder wants to remove all information but the date of birth and its picture to preserve his
privacy. Obviously, having the data re-signed by the state every time the holder needs to prove its age induces too
much overhead to be practical in this scenario. This constellation is widely known as the “digital document sanitization
problem” [34].

Sanitizable signature schemes (SSS) [3] address the aforementioned shortcomings. They allow for altering all signer-
chosen admissible blocks m[i] of a given message m = (m[1], . . . ,m[i], . . . ,m[`]) to different bitstrings m[i]′ ∈ {0, 1}∗ by
the sanitizer, which holds its own private key. In particular, a sanitization of a message m creates an altered message
m′ = (m[1]′, . . . ,m[i]′, . . . ,m[`]′), where m[i] = m[i]′ for every non-admissible block, and a signature σ′, verifying under
the given public keys.

Application scenarios include secure routing, privacy-preserving handling of patient data, official document disclosure,
and blank signatures [3,11,12,13,21,28].

Organization. This paper is structured as follows. The remainder of this section is devoted for pointing out the
problems in current definitions, our contribution and existing related work. The required preliminaries are given in §2.
The security model of SSSs is revised in §3, while §4 contains the altered construction. We conclude our work in §5.

Our Contribution. We review the existing state-of-the-art security model for SSSs and show that it is not sufficient
for certain use-cases. We then revise the model, resulting in strictly stronger security definitions. Finally, we sketch how
to alter the construction of Bruszka et al. [11], such that it satisfies our new definitions.

More precisely, we introduce the notions of strong transparency, strong sanitizer- and signer-accountability, strong
non-interactive public accountability, and strong unforgeability. Moreover, we show that the original privacy definition
may not be clear enough and we provide a clearer definition. To get a first understanding, we briefly describe each
security property. The corresponding formal definitions are given in §3. We want stress that we work in the single
signer/single sanitizer model. Extensions to multiple signer/multiple sanitizer environments are straightforward.
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(Strong) Unforgeability. In SSSs, there are two key pairs, one for the signer and one for the sanitizer. Unforgeability
requires that an adversary, not having access to any of these private keys, cannot generate a signature on messages not
endorsed by the signer or the sanitizer.

Our new stronger definition also requires that the adversary cannot generate any new signatures on its own, even
with fully adaptive oracle access.

Immutability. As already mentioned before, the signer is able to define non-admissible blocks, i.e., blocks which can
neither be modified by an outsider nor by the sanitizer. Immutability thus requires that even a sanitizer holding its
own private key cannot change non-admissible blocks.

Privacy. A very important property is privacy. It defines that once a message has been sanitized, an outsider cannot
derive any information about the original content. Clearly, privacy is necessary to have a meaningful primitive. We
clarify a small detail in the current state-of-the-art definition, which may be easily overlooked. Jumping ahead, in the
security game for privacy, there are algorithms used whose behavior we clarify, i.e., make explicit.

(Strong) Transparency. The property of transparency is a stronger privacy definition. In particular, if an SSS is
transparent, an outsider not holding any private keys cannot decide whether a signature was generated by the signer or
the sanitizer, if the corresponding message was never de-anonymized. In other words, transparency is the anonymity of
the accountable party. Note, the naming is due to historic reasons [3]. Our stronger definition guarantees transparency,
as long as no message/signature pair was de-anonymized. We want to stress that Ateniese et al. already defined strong
transparency in [3]. However, Pöhls et al. showed that this property is not defined correctly [35]. Hence, our definition
does not collide with their definition.

Unlinkability. Unlinkability is also a very strong privacy notion. It prohibits an adversary from deciding from which
signature a derived signature was created.

(Strong) Signer-Accountability. As SSSs allow to alter signed data, it must be derivable which party is responsible
for a given message/signature pair. Signer-accountability thus requires that the signer cannot deny that the message
originated from itself, if it was signed by the signer.

Our stronger definition also accounts for the signature, i.e., even the signer cannot blame the sanitizer for a signature
which the sanitizer did not generate.

(Strong) Sanitizer-Accountability. Sanitizer-accountability is the counterpart to signer-accountability. In particular, the
roles are reversed. This is also true for our stronger definition.

(Strong) Non-Interactive Public-Accountability. In the original definition of SSSs, the accountable party could only be
derived if the signer provides a proof π which can be generated if the signer’s private key is known [9]. This contradicts
legal and application requirements [12,13,29].

Non-interactive public accountability solves this problem by requiring that the accountable party can be derived
without requiring any information from either the signer or the sanitizer. This property is mutually exclusive with
transparency. As before, our strong definition also takes the signature into account.

Discussion. One may argue that our stronger definitions only make sense in the context of re-randomizable signatures
or similar primitives. However, the (contrived) construction given in §3 shows that this is not true: there are cases
which are trivially insecure in our setting, regardless of the signature scheme used. Moreover, we want to explicitly
stress that, on first sight, our changes to the existing definitions seem to be rather technical and only addressing details.
However, the provided examples prove that our new definitions may open a wider deployment of this primitive. In other
words, this paper wants to raise awareness that certain constellations where SSSs are used need extra precautions and
guidance on how to avoid these pitfalls.

Motivation. Standard digital signatures normally have the property of existential unforgeability against chosen-
message attacks (eUNF-CMA) [25]. Roughly, this definition says that an adversary cannot find a signature σ∗ on a new
message m∗ even it has access to a signing oracle which it can query adaptively on messages of its own choice. Later, a
stronger notion named “strong existential unforgeability against chosen-message attacks” (seUNF-CMA) has been



3

introduced [2]. In this definition, an adversary must not be able to find any message/signature pair (m∗, σ∗) which it
has not seen before, i.e., the adversary must not be able to generate any signature σ∗ on its own, even if it already
knows arbitrarily many signatures on messages of its own choice, potentially including m∗. This allows for a broader
use of digital signatures [2,30]. We follow the same line of research for SSSs. In a nutshell, we now also consider the
signatures in the security definitions; as SSSs have three parties, this is an even more subtle task than for standard
signatures.

Let us further elaborate: first, for unforgeability, the very same problems as for standard signatures apply. Namely,
once an adversary learns a signature σ on some message m, it can potentially generate many new signatures σ∗i on the
same message m, which then would trace back to the sanitizer or signer, respectively, without this party having the
chance of denying the authenticity of the message/signature pair.

Next, transparency, i.e., the anonymity of the accountable party, is only guaranteed for message/signature pairs
(mi, σi), where the message mi has never been queried to the proof oracle (which informally allows for determining the
accountable party; cf. §2). However, this means that an outsider might be able to determine the accountable party for
all signatures on messages queried to the proof oracle, which is a problem if certain messages are signed or sanitized
more than once. We clarify this statement by providing a construction secure in the old model which is “obviously”
insecure in real-world scenarios in §3.

For all three accountability definitions, similar problems apply. Consider the following examples which clarify our
claims:

Examples. Assume that a medical doctor signs a patient record with an SSS. The signed medical record can be
sanitized by a server. It removes identifying information from the record before giving it to the accountant, which, in
turn, charges the insurance company. This procedure allows to protect the patients’ privacy. The current unforgeability
definition now guarantees that no party can generate signatures for new messages. However, the definition does not
guarantee that an outsider cannot generate new signatures on already seen signed messages. This means that the
accountant may be able to generate new signatures. If the invoice only consists of the amount due and the treatments,
the accountant can thus charge more than once if no extra precautions are deployed, as, e.g., an invoice for a treatment
of a broken bone is a common scenario.

As we have two “signers” and a verifier, there also exist intermediate stages, namely for all three accountability
definitions. In particular, a corrupt server in our hospital example may alter messages in a way that the medical doctor
is accountable, while it is not, e.g., by altering cheap treatments to expensive treatments which have existed before.
Thus, the insurance company is charged more, while the accountable party for that particular signature may not be
the party who has generated the signature. The same is true for the medical doctor: if the signer signs fresh messages
which have already been output by the sanitizer, the current definition does not guarantee that the signer cannot blame
the sanitizer.

For transparency it is even more problematic as for accountability and unforgeability. Again, the current definition
only guarantees that transparency only holds for message/signature pairs (mi, σi) for which the message mi has never
been “opened”, i.e., the signer generated a proof which allows for tracing the accountable party. Depending on the
use-case, this may also not always be desired. To be more precise, consider criminal records. In some countries, these
records are deleted after ten years. If these records are signed by a national authority using an SSS, a local municipal
office can later sanitize the corresponding entries. However, once it comes to dispute over a single record and it is
checked whether it had been sanitized or not, potentially all equivalent records can be traced to either the sanitizer or
the signer. If, in this slightly simplified scenario, a record only contains the name and the criminal record, the privacy
of all citizens with the same name would be at risk. Obviously, this contradicts the very intention of SSSs.

We want to explicitly note that in the scenarios sketched above standard mechanisms such as also signing a unique id
or the current timestamp does not help at all: if the SSS is unlinkable [11,13,24], such a “tag” destroys the unlinkability
of the signature. Clearly, it depends on the use-case which security notions are required.

Related Work. SSSs have originally been introduced by Ateniese et al. [3]. Brzuska et al. formalized most of the
current security properties in [9]. These have been later extended for unlinkability [11,13,24] and non-interactive public
accountability [12,13]. See §3 for the definitions. Some properties discussed in [9] have then been refined in [26]; namely
they also consider the admissible blocks in the security games. Recently, several extensions such as limiting the sanitizer
to signer-chosen values [16,22,31,35], trapdoor SSSs (which additionally allow to add new sanitizers after signature
generation by the signer) [18,36], multi-sanitizer and -signer environments [10,13,17], and sanitization of signed and
encrypted data [23] have been considered. Currently, the only work considering SSSs and data-structures more complex
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than lists is [35]. Our results directly carry over to the aforementioned extended settings with only minor adjustments.
Real implementations and the corresponding performance measurements of SSSs have also been presented [12,13,19].

There exists much additional related work, e.g., proxy signatures [33]. Ahn et al. [1] and Demirel et al. [20] provide
a comprehensive overview.

2 Preliminaries

Here, we present some basic notation and the general framework for SSSs.

Notation. By λ ∈ N we denote the main security parameter. All algorithms implicitly take 1λ as their first input. We
write a← A(x) if a is assigned the output of algorithm A with input x. For a message m = (m[1], . . . ,m[`]), where
m[i] ∈ {0, 1}∗, we call m[i] a block, while ` ∈ N denotes the number of blocks in a message m. We call an algorithm
efficient if it runs in probabilistic polynomial time in λ. All algorithms may return an exception ⊥ /∈ {0, 1}∗.

A function ν : N→ R≥0 is negligible, if it vanishes faster than every inverse polynomial. That is, for every k ∈ N
there exists an n0 ∈ N such that ν(n) ≤ n−k for all n > n0.

Additional preliminaries are presented in Appendix A.

2.1 Sanitizable Signature Schemes

Here, we introduce the algorithms required for SSSs and the corresponding state-of-the-art security model. The
definitions are compiled from [9,12,13]. The security model is discussed and altered in §3.

Definition 1 (Sanitizable Signatures). A sanitizable signature scheme SSS consists of seven efficient algorithms
(KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) such that:

1. Key Generation: There is one key generation algorithm for the signer and one for the sanitizer. Both create a key
pair; a private key and the corresponding public key, w.r.t. the security parameter λ:

(pksig, sksig)← KGensig(1
λ), (pksan, sksan)← KGensan(1λ)

2. Signing: The Sign algorithm takes as input a message m, sksig, pksan, as well as a description adm of the admissibly
modifiable blocks. adm contains the set of indices of the modifiable blocks, as well as the number ` of blocks in
m, while we assume that adm can be uniquely and unambiguously derived from any valid message/signature pair.
We write adm(m) = 1, if adm is valid w.r.t. m, i.e., adm contains the correct ` and all indices are in m. If
adm(m) = 0, this algorithm returns ⊥. It outputs a signature σ:

σ ← Sign(m, sksig,pksan,adm)

3. Sanitizing: Algorithm Sanit takes a message m, modification instruction mod, a valid signature σ, pksig, and sksan.
It modifies the message m according to the modification instruction mod, which is a set containing pairs (i,m[i]′)
for those blocks that shall be modified, meaning that m[i] is replaced with m[i]′. We write adm(mod) = 1, if mod is
valid w.r.t. adm, meaning that the indices to be modified are contained in adm. Sanit calculates a new signature σ′

for the modified message m′ ← mod(m). Then, Sanit outputs m′ and σ′:

(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)

4. Verification: The Verify algorithm outputs a decision d ∈ {true, false} verifying the correctness of a signature σ
for a message m w.r.t. the public keys pksig and pksan:

d← Verify(m,σ,pksig,pksan)

5. Proof: The Proof algorithm takes as input sksig, a message m = (m[1],m[2], , . . . ,m[`]), m[i] ∈ {0, 1}∗ and a valid
signature σ and a set of (polynomially many) additional message/signature pairs {(mi, σi)} and pksan. It outputs
a string π ∈ {0, 1}∗ which can be used by the next algorithm (Judge) to derive the accountable party of a given
message/signature pair:

π ← Proof(sksig,m, σ, {(mi, σi) | i ∈ N},pksan)

6. Judge: Algorithm Judge takes as input a message m, a valid signature σ, both public keys and a proof π. Note, this
means that once a proof π is generated, no additional action is required with the signer or the sanitizer. It outputs a
decision d ∈ {Sig, San} indicating whether the message/signature pair has been created by the signer or a sanitizer:

d← Judge(m,σ,pksig,pksan, π)

We require the usual correctness requirements to hold [9].
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Experiment SUnforgeabilitySSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·)(pksig, pksan)
for i = 1, 2, . . . , q let (mi, pksan,i,admi) and σi index the queries/answers to/from Sign
for j = 1, 2, . . . , q′ let (mj , σj , pksig,j ,modj) and (m′j , σ

′
j) index the queries/answers to/from Sanit

if Verify(m∗, σ∗, pksig, pksan) = true ∧
∀i ∈ {1, 2, . . . , q} : (pksan,m

∗, σ∗) 6= (pksan,i,mi, σi) ∧
∀j ∈ {1, 2, . . . , q′} : (pksig,m

∗, σ∗) 6= (pksig,j ,m
′
j , σ
′
j)

return 1
return 0

Fig. 1. Strong Unforgeability

3 Revisiting the Security Properties

Here, we introduce the stronger security framework for SSSs. The non-strong definitions are compiled from [9,11,12,13].
Our strong definitions are also based on the work done in [9,11,12,13]. We do not restate the properties we strengthen;
we will highlight the differences in each definition. If one wants to also consider adm as a part which needs to be
protected, one needs to add the alterations presented in [26].

Next, we discuss the shortcomings of some of the security definitions and provide strictly stronger variants. In
particular, we review and revise the following properties and introduce their strengthened/clarified definitions:

– Unforgeability
– Privacy
– Transparency
– Signer Accountability
– Sanitizer Accountability
– Non-Interactive Public Accountability

In a nutshell, for almost all of the aforementioned security definitions, we also consider the signature in the security
definitions. As already argued, this seems to be a small technical detail, but has a significant impact on the resulting
security. For transparency, which we think has the largest impact, we clarify this statement by introducing a (contrived)
scheme which is trivially insecure in our setting, while it achieves the weaker state-of-the-art transparency notion.

3.1 Security of Sanitizable Signatures Re-Revisited

Strong Unforgeability. The first notion we want to revisit is unforgeability. The original definition given in [9] allows
the adversary to derive new signatures on already queried messages, as the winning condition of the security game
requires that the adversary outputs a message that was not queried before.

As already argued, this is not desired in all use-cases, very similar to the case of standard digital signatures. Hence,
we alter the definition in such a way that the adversary cannot even generate any new signatures on its own, highlighted
by the additional underlined conditions. In other words, in the strong definition of unforgeability, the adversary also
wins if it can generate any new valid signature σ∗ on its own.

Definition 2 (Strong Unforgeability). An SSS is strongly unforgeable, if for any efficient adversary A there exists
a negligible function ν such that:

Pr[SUnforgeabilitySSSA (λ) = 1] ≤ ν(λ) ,

where the experiment is defined in Figure 1.

We now obtain the following separation result:

Theorem 1. Every scheme which is strongly unforgeable, is also unforgeable. The converse is not true.
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Experiment ImmutabilitySSSA (λ)

(pksig, sksig)← KGensig(1λ)

(m∗, σ∗, pk∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)
for i = 1, 2, . . . , q let (mi, pksan,i,admi) index the queries to Sign

return 1, if
Verify(m∗, σ∗, pksig, pk

∗) = true ∧
(∀i ∈ {1, 2, . . . , q} : pk∗ 6= pksan,i ∨ m∗ /∈ {mod(mi) | mod with admi(mod) = 1})

Fig. 2. Immutability

Proof. The proof is straightforward. Let A be an adversary winning the standard unforgeability game. We can then
construct an adversary B which uses A internally to break the strong unforgeability of an SSS. B proceeds as follows:

1. B receives both public keys of its own challenger.
2. B passes the public keys to A.
3. B simulates all oracles of A using its own oracles without any modifications.
4. Eventually, A outputs (m∗, σ∗). B also outputs (m∗, σ∗) as its own forgery.
5. As for all queries i to the signing oracle (pksan,m

∗) 6= (pksan,i,mi) yields and for all queries j to the sanitization
oracle we also have (pksig,m

∗) 6= (pksig,j ,m
′
j), (m∗, σ∗) clearly breaks the strong unforgeability of SSS with the

same probability as A wins its own game.

The other direction is also easy: for each signature generation, we append a 0. For processing a signature, the last bit is
removed. An adversary can exchange the 0 with a 1, while the signature verification is not affected. ut

Jumping back to our example in §1, the new definition now prohibits the attacks: the accountant is bound to the
signatures it receives from the server and cannot generate any new ones.

Immutability. As already aforementioned, a sanitizer should only be able to alter admissible blocks defined by adm.
Hence, also deleting or appending blocks must be prohibited. As usual, the adversary is given full oracle access, while it
is also allowed to generate the sanitizer key pair.

Definition 3 (Immutability). An SSS is immutable, if for any efficient adversary A there exists a negligible function
ν such that:

Pr[ImmutabilitySSSA (λ) = 1] ≤ ν(λ) ,

where the experiment is defined in Figure 2.

Privacy. Privacy is related to the indistinguishability of ciphertexts. In particular, the adversary is allowed to input
two messages with the same adm which are sanitized to the exact same message. Then, the adversary has to decide
which message was used to generate the sanitized one. Again, the adversary receives full adaptive oracle access.

Definition 4 (Privacy). An SSS is private, if for any efficient adversary A there exists a negligible function ν such
that: ∣∣∣∣Pr[PrivacySSSA (λ) = 1]− 1

2

∣∣∣∣ ≤ ν(λ) ,

where the experiment is defined in Figure 3.

Discussion. Compared to the original definition given in [9], we additionally check whether adm “matches” both
messages. This has a severe impact, depending on how one interprets the constraints given in [9]. Namely, [9] only
requires that mod0 and mod1 are compatible with adm, while “the resulting modified messages are identical for
both tuples” [9]. However, it is not clear what this concretely means if adm does not match one of the messages.
More precisely, the adversary may proceed as follows: it chooses m0 = (1, 2) with adm = {{1, 2}, ` = 2}. Let the
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Experiment PrivacySSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, pksan)← KGensan(1λ)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·),LoRSanit(·,·,·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit on input of m0,mod0,m1,mod1,adm
if mod0(m0) 6= mod1(m1) ∨ adm(m0) 6= adm(m1), return ⊥
let σ ← Sign(mb, sksig, pksan,adm)
return (m′, σ′)← Sanit(mb,modb, σ, pksig, sksan)

return 1, if a = b. Else, return 0.

Fig. 3. Privacy

Experiment STransparency1SSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·),Sanit/Sign(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle Sanit/Sign on input of m,mod,adm:
σ ← Sign(m, sksig, pksan,adm)
(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)
if b = 1:
σ′ ← Sign(m′, sksig, pksan,adm)

return (m′, σ′)
if A has queried any (m′, σ′) output by Sanit/Sign to Proof, return a random bit
return 1, if a = b. Else, return 0.

Fig. 4. Strong Transparency V1

other message be m1 = (1). Clearly, adm(m1) = 0, i.e., adm is not valid w.r.t. the message m1. Further consider
mod0 = mod1 = {(2, 3)}. Depending on how one implements the modification algorithm in detail, we may have
mod0(m0) = mod1(m1) = (1, 3), as it is not specified whether mod returns ⊥ for mod1(m1). However, now Sign
returns ⊥ for b = 1, but a signature if b = 0. Clearly, the adversary can easily derive b from the information it sees. We
assume that prior art, e.g., [9,11], implicitly requires that mod(m) returns ⊥ if adm(mod) = 0. In our definition, we
made this explicit.

Strong Transparency. As mentioned earlier, the standard transparency definition only guarantees that the identity
of the accountable party of a message m remains anonymous as long as no signature on this message m has ever been
opened, i.e., no proof π has ever been created for that m. That is, as soon as the issuer of a signature on a certain
message has been revealed, all previous and future signatures on the same message, regardless whether they are freshly
signed or sanitized, may potentially be de-anonymized as well. As already argued, this might have undesirable side
effects in practice. Our strong transparency definition in Figure 4 prohibits such attacks. Considering our example,
even if it comes to a dispute over a sanitized criminal record, all other records remain transparent.

Definition 5 (Strong Transparency). An SSS is strongly proof-restricted transparent, if for any efficient adversary
A there exists a negligible function ν such that:∣∣∣∣Pr[STransparency1SSSA (λ) = 1]− 1

2

∣∣∣∣ ≤ ν(λ) ,

where the experiment is defined in Figure 4.
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Experiment STransparency2SSSA (λ)

(sksig, pksig)← KGensig(1λ)

(sksan, pksan)← KGensan(1λ)
b← {0, 1}
Q ← ∅
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof′(sksig,·,·,·,·),Sanit/Sign(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle Proof′ on input of sksig,m, σ, {(mi, σi) | i ∈ N}, pk′san:
return ⊥, if pk′san = pksan ∧

((m,σ) ∈ Q ∨ Q ∩ {(mi, σi)} 6= ∅)
return Proof(sksig,m, σ, {(mi, σi)}, pk′san)

where oracle Sanit/Sign on input of m,mod,adm, sksig, sksan, b:
σ ← Sign(m, sksig, pksan,adm)
(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)
if b = 1:
σ′ ← Sign(m′, sksig, pksan,adm)

If σ′ 6= ⊥, set Q ← Q∪ {(m′, σ′)}
return (m′, σ′)

return 1, if a = b
return 0

Fig. 5. Strong Transparency V2

Remark. In the previous experiment, depicted in Fig. 4, the adversary does not win if it queried any output of the
Sanit/Sign-oracle to the Proof-oracle. This definition may lead to some misconception. For example, in the original
version of the papers by Beck et al. [4] and Camenisch et al. [14], i.e., the eprint-versions from 05/12/2017 [5],
and 01/11/2017 [15], resp., use a slightly rephrased definition of transparency. Namely, they log the output of the
Sanit/Sign-oracle, while they prohibit that the adversary inputs any message/signature pair as the first two arguments
to the Proof-oracle (See Fig. 6). In this definition, the adversary still wins even if it queried a output of Sanit/Sign-oracle
to the Proof-oracle, as long as this query was made before the Sanit/Sign-oracle returned the signature in question.
This accounts for the insights gained by Bellare et al. [6].

However, defining it this way may lead to a trivial attack, leaking the bit directly. Consider the following strategy
of the adversary:

1. Query the Sanit/Sign-oracle with an arbitrary message m with a single admissible block, receiving a signature σ.

2. Sanitize the message to a different message m′ 6= m, receiving a signature σ′.

3. Query the Proof-oracle with (m′, σ′, {(m,σ)}, pksan), receiving a proof π (which may be ⊥).

4. If π = ⊥, return 0.

5. If π 6= ⊥, return 1.

Why does this strategy work? If the Sanit/Sign-oracle always freshly signs, the correctness definition requires that this
signature, i.e., σ can be used to find the accountable party for the signature σ′. If, however, this is not the case, we
directly know that the signature σ is the result of a sanitization. Note, due to the definition of correctness by Brzuska
et al. [9], our attack always works.

Thus, as later fixed by Beck et al. [4] (eprint-version from 12/13/2017 [5]), it is important to also check the other
argument of the Proof-oracle in some cases. We restate the fixed, and more intuitive definition, in Fig. 5.

After all, there may be schemes which do not require any non-sanitized signatures to find the accountable parties,
e.g., schemes following the construction paradigm introduced by Brzuska et al. [11] (See §4), as they completely ignore
the additional signatures during proof generation. Thus, there may be schemes which fulfill this, even stronger, version
of transparency, as our attack presented above no longer applies. However, one must alter the syntax and correctness
definition to make “Strong Transparency V3” a meaningful definition. We leave the construction and correctness of
such schemes as an interesting research opportunity.

For completeness, the mentioned definition of transparency is given in Fig. 6.
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Experiment STransparency3SSSA (λ)

(sksig, pksig)← KGensig(1λ)

(sksan, pksan)← KGensan(1λ)
b← {0, 1}
Q ← ∅
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof′(sksig,·,·,·,·),Sanit/Sign(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle Proof′ on input of sksig,m, σ, {(mi, σi) | i ∈ N}, pk′san:
return ⊥, if pk′san = pksan ∧

(m,σ) ∈ Q
return Proof(sksig,m, σ, {(mi, σi)}, pk′san)

where oracle Sanit/Sign on input of m,mod,adm, sksig, sksan, b:
σ ← Sign(m, sksig, pksan,adm)
(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)
if b = 1:
σ′ ← Sign(m′, sksig, pksan,adm)

If σ′ 6= ⊥, set Q ← Q∪ {(m′, σ′)}
return (m′, σ′)

return 1, if a = b
return 0

Fig. 6. Strong Transparency V3

Discussion. Even though a bit more subtle (as anonymity is only potentially affected per message), the difference
between the original definition and Definition 4 is comparable to the difference between, e.g., CPA- and CCA-anonymity
for group signature schemes [27]. For CPA-anonymity the anonymity of the issuer of a signature is only guaranteed
as long as no signature has never been inspected, i.e., de-anonymized, but all signers might be at risk once a single
signature was inspected. However, for CCA-anonymity privacy is guaranteed for each signature as long as this specific
signature has not been de-anonymized.

To clarify this statement in the context of SSSs, we derive a (contrived) construction which is transparent,
but trivially does not meet our strong transparency definition. Let E = {EKGen,Enc,Dec} be a secret-key CPA-
secure encryption scheme. We require that the secret-key and message space of E contains {0, 1}λ. Moreover, let
E ′ = {EKGen′,Enc′,Dec′} denote a labeled public-key CCA2-secure encryption scheme. Let PRF : {0, 1}λ × {0, 1}λ →
{0, 1}λ be a pseudo-random function, and H : {0, 1}∗ → {0, 1}λ be a random oracle. We implicitly assume that the
key-space of E is {0, 1}λ.

Let SSS = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) be a sanitizable signature scheme according to the
already existing standard definitions. We now construct a contrived sanitizable signature scheme SSS ′ from SSS which
still fulfills the standard definitions but not strong transparency. For brevity, we skip obvious checks.4

Construction 1 We define SSS ′ = (KGen′sig,KGen
′
san,Sign

′,Sanit′,Verify′,Proof′, Judge′) as follows:

1. Key Generation/Signer (KGen′sig):

(a) Create a key κ← {0, 1}λ for a PRF at random.
(b) Return (pksig, sk

′
sig), where sk′sig = (κ, sksig), and (pksig, sksig)← KGensig(1

λ) is generated as in the original
SSS

2. Key Generation/Sanitizer (KGen′san):
(a) Generate an additional key pair of a labeled (CCA2-secure) public-key encryption scheme, i.e., (pk′, sk′) ←

EKGen′(1λ)
(b) Return ((pksan,pk′), (sksan, sk

′)), where (pksan, sksan) ← KGensan(1λ), i.e., the same keys as in the original
SSS

3. Signing (Sign′):
(a) Compute σ ← Sign(m, sksig,pksan,adm). If σ = ⊥, return ⊥

4 In the original publication [32], we use an encryption scheme without labels. However, without the labels, we cannot simulate
the decryption in the proof. Likewise, for the symmetric encryption scheme, IND-CPA is sufficient.
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(b) k ← PRF(κ,H(pksan))
(c) k′ ← PRF(k,H(m))
(d) Return σ′ = (σ, c1, c2), where c1 ← Enc(k′, 0λ) and c2 ← Enc′(pk′, k, (pksig,pksan))

4. Sanitizing (Sanit′):
(a) Parse σ as (σ′, c1, c2)
(b) Let k ← Dec′(sk′, c2, (pksig,pksan))
(c) Calculate (m′, σ′′)← Sanit(m,mod, σ′,pksig, sksan). If σ′′ = ⊥, return ⊥
(d) Let k′ ← PRF(k,H(m′))), c′1 ← Enc(k′, 1λ), and c′2 ← Enc′(pk′, k, (pksig,pksan))
(e) Return (m′, (σ′′, c′1, c

′
2))

5. Verification (Verify′):
(a) Parse σ as (σ′, c1, c2)
(b) Return Verify(m,σ′,pksig,pksan)

6. Proof (Proof′):
(a) Parse σ as (σ′, c1, c2) and each (mi, σi) as (mi, (σ

′
i, c1,i, c2,i)).

(b) Let π ← Proof(sksig,m, σ
′, {(mi, σ

′
i)},pksan). If π = ⊥, return ⊥

(c) Let k ← PRF(κ,H(pksan)), and k′ ← PRF(k,H(m))
(d) Return π′ = (π, k′).

7. Judge (Judge′):
(a) Parse π as (π′, k′) and σ as (σ′, c1, c2)
(b) Return Judge(m,σ′,pksig,pksan, π

′)

Theorem 2. If SSS is secure, SSS ′ is also secure.

Proof. We prove each property on its own.

Correctness. Follows from the correctness of the underlying SSS.

Unforgeability. Assume, towards contradiction, that SSS ′ is not unforgeable. We can then construct an adversary B
which breaks the unforgeability of the underlying SSS. The reduction B proceeds as follows. It receives pksig and pksan

from its own challenger, draws κ and pk (for the encryption scheme) honestly and passes pk, pksig and pksan to A for
initialization. For every signing query, B queries its own signing oracle to receive the inner signature σ′. c1 and c2 are
generated honestly by B using κ. Likewise, for sanitization, B strips of c1 and c2 and queries its own sanitization oracle
to receive σ′′. Then c1 and c2 are updated honestly. The combined sanitized signature is returned to A. Finally, the
proof-oracle is simulated honestly, i.e., the inner proof π is obtained by B using the proof-oracle provided (by supplying
the inner signatures). The key k′ is calculated honestly. Eventually, A returns a signature (σ′∗, c∗1, c

∗
2), along with a

message m∗. As, by assumption, m∗ was never returned by B’s signing oracle, B can return (m∗, σ′∗) as its own forgery
attempt. As A’s environment is simulated perfectly, B’s advantage equals the one of A.

Immutability. Assume, towards contradiction, that SSS ′ is not immutable. We can then construct an adversary B
which breaks the immutability of the underlying SSS. The reduction B proceeds as follows. It receives pksig from its
own challenger, draws κ honestly and passes pksig to A for initialization. For every signing query, B queries its own
signing oracle to receive the inner signature σ′. c1 and c2 are generated honestly by B using κ. The proof-oracle is
simulated honestly, i.e., the inner proof π is obtained by B using the proof-oracle provided (by supplying the inner
signatures). The key k′ is calculated honestly. Eventually, A returns a tuple (m∗, σ∗, pk∗). As, by assumption, m∗ is not
derivable from the signatures seen, B can return (σ′∗,m∗, pk∗1) (i.e., pk from the encryption scheme must be stripped
off) as its own forgery attempt. As A’s environment is simulated perfectly, B’s advantage equals the one of A.

Privacy. Assume, towards contradiction, that SSS ′ is not private. We can then construct an adversary B which breaks
privacy of the underlying SSS. To prove that our scheme is private, we use a sequence of games:

Game 0: The original privacy game.
Game 1: We now replace the generation of k using a purely random choice (which remains consistent with pksan).
Transition - Game 0 → Game 1: Clearly, if this changes the view of the adversary, it breaks the pseudo-randomness

of the PRF . Thus, |Pr[S0]− Pr[S1]| ≤ νprf(λ) follows.
Game 2: We now replace the content of each c2 encrypted to pk with a 0.
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Transition - Game 1 → Game 2: In this case, the adversary can break the encryption scheme used. The reduction
works as follows. The reduction receives pk from the encryption scheme, generates all other values honestly (with
the alterations from Game 1), and replaces each c2 using a series of hybrids. Whatever the adversary A outputs, is
also output by B. Note, the ciphertexts for all other pksans can still be decrypted due to the provided decryption
oracle and different labels. Thus, |Pr[S1]− Pr[S2]| ≤ qνind-cca2(λ) follows, where q is the number of generated c2
with the challenge pksan.

Game 3: We now abort, if the adversary guesses the bit b correctly.
Transition - Game 2 → Game 3: The only case left is that the underlying SSS is not private. The reduction is simple.
B receives pksig and pksan from its own challenger, pk (for the encryption scheme) honestly and passes pk, pksig and
pksan to A for initialization. Then, all oracles are simulated according to Game 2, querying the provided oracles
to get each inner signature σ′. Then, whatever A outputs, is also output by B. |Pr[S2] − Pr[S3]| ≤ νsss-privacy(λ)
follows.

Now, the adversary can no longer win the privacy game, privacy is proven. Moreover, each hop changes the view of
the adversary only negligibly, concluding the proof.

Transparency. Assume, towards contradiction, that SSS ′ is not transpart. We can then construct an adversary B which
breaks transparency of the underlying SSS. To prove that our scheme is transparent, we use a sequence of games:

Game 0: The original transparency game.
Game 1: We now replace the generation of k using a purely random choice (which remains consistent with pksan).
Transition - Game 0 → Game 1: Clearly, if this changes the view of the adversary, it breaks the pseudo-randomness

of the PRF . Thus, |Pr[S0]− Pr[S1]| ≤ νprf(λ) follows.
Game 2: We now replace the content of each c2 encrypted to pk with a 0.
Transition - Game 1 → Game 2: In this case, the adversary can break the encryption scheme used. The reduction

works as follows. The reduction receives pk from the encryption scheme, generates all other values honestly (with
the alterations from Game 1), and replaces each c2 using a series of hybrids. Whatever the adversary A outputs, is
also output by B. Note, the ciphertexts for all other pksans can still be decrypted due to the provided decryption
oracle and different labels. Thus, |Pr[S1]− Pr[S2]| ≤ qνind-cca2(λ) follows, where q is the number of generated c2
with the challenge pksan.

Game 3: We now abort, if the adversary queries the proof-oracle with a valid message/signature pair (m∗, σ∗) pair for
the challenge pksan, while m∗ was neither generated by the signing oracle nor the sanitizing oracle, or the LoRSanit
oracle.

Transition - Game 2 → Game 3: Clearly, this tuple breaks the unforgeability of the SSS, as m∗. The reduction is
essentially the same as for standard unforgeability and therefore omitted. (To simulate the LoR-oracle, the reduction
simply tosses a coin and uses the sign-oracle and sanitizing-oracle to mimic this oracle.) Thus, |Pr[S2]− Pr[S3]| ≤
νsss-unf(λ) follows.

Game 4: We now replace the generation of k′ using a purely random choice (which remains consistent with m).
Transition - Game 3 → Game 4: Clearly, if this changes the view of the adversary, it breaks the pseudo-randomness

of the PRF . Thus, |Pr[S3]− Pr[S4]| ≤ νprf(λ) follows.
Game 5: We now abort, if a key k′ was drawn twice (for different messages).
Transition - Game 4 → Game 5: Due to the birthday paradox, this can only happen with negligible probability. Thus,
|Pr[S4]− Pr[S5]| ≤ q2/2λ follows, where q is the number of different messages queried for the challenge pksan.

Game 6: We now replace each c1 for a message which not queried to the proof oracle with a random message.
Transition - Game 5 → Game 6: Here, the reduction uses its own challenge oracle to receive the challenge ciphertext

to embed. Using a series of hybrids, we replace each c1 generated iteratively. Thus, |Pr[S5]− Pr[S6]| ≤ qνcpa(λ)
follows, where q is the number of replaced ciphers.

Game 7: We now abort, if the adversary guesses the bit b correctly with a probability non-negligibly better than 1
2 .

Transition - Game 6 → Game 7: The only case left is that the underlying SSS is not transparent. The reduction is
simple. B receives pksig and pksan from its own challenger, pk (for the encryption scheme) honestly and passes pk, pksig

and pksan to A for initialization. Then, all oracles are simulated according to Game 3, querying the provided oracles
to get each inner signature σ′. Then, whatever A outputs, is also output by B. |Pr[S6]− Pr[S7]| ≤ νsss-transparency(λ)
follows.

Now, the adversary can no longer win the transparency game, transparency is proven. Moreover, each hop changes
the view of the adversary only negligibly, concluding the proof.
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Experiment UnlinkabilitySSSA (λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
a← ASanit(·,·,·,·,sksan),LoRSanit(·,·,·,·,·,·,·,sksan,b)(pksan)

where oracle LoRSanit on input of m0,mod0, σ0,m1,mod1, σ1, pksig:
if adm0 6= adm1 ∨ mod0(m0) 6= mod1(m1) ∨ adm0(mod0) 6= adm1(mod1) ∨
Verify(m0, σ0, pksig, pksan) 6= Verify(m1, σ1, pksig, pksan), return ⊥
return (m′, σ′)← Sanit(mb,modb, σb, pksig, sksan)

return 1, if a = b. Else, return 0.

Fig. 7. Unlinkability

Signer-Accountability. Essentially the same reduction as for unforgeability, but only the sanitization-oracle must be
simulated, while the key pk∗ returned by A is also returned.

Sanitizer-Accountability. Essentially the same reduction as for unforgeability, but the sanitization oracle must not be
simulated, while the key “inner” pk∗1 returned by A is also returned.

Note, however, as Proof now also returns the secret key to decrypt c1, an adversary can now decide for each message
which has been queried to Proof how the corresponding signature was generated by decrypting, which is contained in
the signature σ. We want to stress that [19] also defines transparency in a similar way. However, their scheme does
not fulfill this definition, as the authors do not use strongly unforgeable signatures. In [12,13] transparency is defined
similarly; however, as their schemes fulfill non-interactive public accountability and not transparency, this is not of
importance.

Theorem 3. Every scheme which is strongly transparent, is transparent. The converse is not true.

Proof. The claim immediately follows from the construction above.

Unlinkability. Unlinkability prohibits an adversary to decide how a signature was generated, i.e., from which signature
a sanitized signature was derived. We introduce the stronger definition from [13], where even the signer can be malicious.
This game is similar to privacy with the same constraints. However, compared to the privacy game, the adversary can
also input the signatures and the modification instruction. Again, it receives full oracle access; the signing and proof
oracles can be simulated by the adversary.

Definition 6 (Unlinkability). An SSS is unlinkable, if for any efficient adversary A there exists a negligible function
ν such that: ∣∣∣∣Pr[UnlinkabilitySSSA (λ) = 1]− 1

2

∣∣∣∣ ≤ ν(λ) ,

where the experiment is defined in Figure 7.

Next, we revise the three accountability definitions. As already argued, these definitions capture the intermediate
cases, i.e., when either the sanitizer or the signer is adversarial. This is captured within the next three definitions.

Strong Signer-Accountability. For strong signer-accountability, a signer should not be able to blame a sanitizer if
the sanitizer is actually not responsible for a given message/signature pair never generated by the sanitizer. Hence, the
adversary has to generate a proof π∗ which makes Judge to decide that the sanitizer is accountable, if it is not for a
message/signature pair (m,σ). Here, the adversary gains access to all oracles related to sanitizing.

Definition 7 (Strong Signer Accountability). An SSS is strongly signer accountable, if for any efficient adversary
A there exists a negligible function ν such that:

Pr[SSig-AccountabilitySSSA (λ) = 1] ≤ ν(λ) ,

where the experiment is defined in Figure 8.
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Experiment SSig-AccountabilitySSSA (λ)

(pksan, sksan)← KGensan(1λ)
b← {0, 1}
(pk∗, π∗,m∗, σ∗)← ASanit(·,·,·,·,sksan)(pksan)

for i = 1, 2, . . . , q let (m′i, σ
′
i) and (mi,modi, σi, pksig,i) index the answers/queries from/to Sanit

if Verify(m∗, σ∗, pk∗, pksan) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, σ∗) 6= (pksig,i,m

′
i, σ
′
i) ∧

Judge(m∗, σ∗, pk∗, pksan, π
∗) = San

return 1
return 0

Fig. 8. Strong Signer Accountability

Experiment SSan-AccountabilitySSSA (λ)

(pksig, sksig)← KGensig(1λ)
b← {0, 1}
(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)

for i = 1, . . . , q let (mi,admi, pksan,i) and σi index the queries/answers to/from Sign
π ← Proof(sksig,m

∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗)
if Verify(m∗, σ∗, pksig, pk

∗) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, σ∗) 6= (pksan,i,mi, σi) ∧
Judge(m∗, σ∗, pksig, pk

∗, π) = Sig

return 1
return 0

Fig. 9. Strong Sanitizer Accountability

Theorem 4. Every scheme which is strongly signer-accountable, is also signer-accountable. The converse is not true.

Proof. Similar to the proof of Theorem 1.

Strong Sanitizer-Accountability. Strong sanitizer-accountability is similar to standard sanitizer-accountability.
However, compared to the original definition, the adversary now also wins if it can generate any signature σ∗ which has
not been generated by the signer. As usual, the adversary gains access to all signer-related oracles.

Definition 8 (Strong Sanitizer-Accountability). An SSS is sanitizer accountable, if for any efficient adversary
A there exists a negligible function ν such that:

Pr[SSan-AccountabilitySSSA (λ) = 1] ≤ ν(λ) ,

where the experiment is defined in Figure 9.

Theorem 5. Every scheme which is strongly sanitizer-accountable, is also sanitizer-accountable. The converse is not
true.

Proof. Similar to the proof of Theorem 1.

Strong Non-Interactive Public Accountability. Strong non-interactive public accountability is also similar to
the standard definition of non-interactive public accountability. However, this definition now also covers the case where
the adversary could generate new signatures.
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Experiment SPubaccountabilitySSSA (λ)

(pksig, sksig)← KGensig(1λ)

(pksan, sksan)← KGensan(1λ)

(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)(pksig, pksan)
for i = 1, 2, . . . , q let (mi,admi, pksan,i) and σi index the queries/answers to/from Sign

for j = 1, 2, . . . , q′ let (mj ,modj , σj , pksig,j) and (m′j , σ
′
j) index the queries/answers to/from Sanit

if Verify(m∗, σ∗, pksig, pk
∗) = true ∧

∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, σ∗) 6= (pksan,i,mi, σi) ∧
Judge(m∗, σ∗, pksig, pk

∗,⊥) = Sig

return 1
if Verify(m∗, σ∗, pk∗, pksan) = true ∧
∀j ∈ {1, 2, . . . , q′} : (pk∗,m∗, σ∗) 6= (pksig,j ,m

′
j , σ
′
j) ∧

Judge(m∗, σ∗, pk∗, pksan,⊥) = San

return 1
return 0

Fig. 10. Strong Public Accountability

Definition 9 (Strong Non-Interactive Public Accountability). An SSS is strongly non-interactive publicly
accountable, if for any efficient adversary A there exists a negligible function ν such that:

Pr[SPubaccountabilitySSSA (λ) = 1] ≤ ν(λ) ,

where the experiment is defined in Figure 10.

Theorem 6. Every scheme which is strongly non-interactive publicly accountable, is also non-interactive publicly
accountable. The converse is not true.

Proof. Similar to the proof of Theorem 1.

Discussion. Clearly, all three definitions above fix the problems given in the running example: the server cannot
generate any signature which has not been endorsed by the medical doctor, and vice versa.

Moreover, some known implications of the existing security properties from [9,11,12,13] carry over to our setting.
Namely, strong sanitizer-accountability and strong signer-accountability together imply strong unforgeability, while
strong non-interactive public accountability implies both strong sanitizer-accountability and strong signer-accountability.
As strong transparency implies transparency, it also implies (proof-restricted) privacy. The proofs for this statement
are essentially the same as given for the non-strong ones [9,11,12,13] and are therefore omitted. We leave it as open
work to prove if other implications and separations are still valid in our setting.

4 Sketched Constructions

We now sketch how to achieve our new notions. As (strong) non-interactive public accountability and (strong)
transparency are mutually exclusive, we need two distinct constructions.

Construction with Strong Transparency. A good candidate for a construction with strong transparency (and
unlinkability) is the construction given by Brzuska et al. [11], if slightly altered. The main idea of the construction
given in [11] is to sign all non-admissible blocks, the sanitizer’s and the group’s public key, and adm using a strongly
unforgeable deterministic signature scheme S. Finally, the complete message, and the signer’s public key are signed
using a group signature scheme GS [7,11]. All standard properties of the SSS follow in a straightforward manner from
the strong unforgeability and the group signature’s security properties.5 To achieve our stronger definitions, one needs a

5 Note, their scheme only achieves a weaker form of unlinkability; also the signer’s key pair is generated honestly. The adversary
gains oracle access to Sign and Proof [11].
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stronger group signature scheme. Namely, the anonymity, non-frameability and traceability security definitions [7,11] of
the group signature scheme need to be adjusted. In particular, as done in §3, we need alter the games in the following
way:6

– For anonymity, the adversary must never submit a pair (m,σ) for signature σ received for m from the LoR-Sign
oracle to the opening oracle (instead of only m).

– For non-frameability and traceability, the adversary must never have received σ∗ for m∗ (instead of only not asking
for a signature on m∗) from the signing oracle.

We also require that all other information in the full signature is non-malleably attached to it, e.g., by also signing
them.

We leave a formal proof of security of the sketched construction as open work.

Construction with Strong Non-Interactive Public Accountability. The construction given in [13] achieves
non-interactive public accountability. The basic idea of their scheme is the same as in the aforementioned construction,
but instead of using a group signature GS, they use another deterministic and unique signature scheme S. Due to
the determinism and uniqueness of the signature schemes deployed, their scheme already fulfills our strong definitions
without any modifications. It depends on the use-case if a deterministic SSS offers the required properties from a
real-world perspective.

5 Conclusion

We have shown that the state-of-the-art security definitions of SSSs are not sufficient for some use-cases we have
identified. We introduced new strictly stronger definitions, accounting for these additional use-cases. In particular,
we have introduced the notions of strong unforgeability, strong transparency, strong sanitizer-accountability, strong
signer-accountability and strong non-interactive public accountability and clarified the property of privacy. Finally, we
have sketched how to alter an existing construction to achieve our enhanced notions.
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A Security Definitions Building Blocks

A.1 Labeled Public-Key Encryption Schemes E ′

Correctness. For a public-key encryption scheme E ′ we require the correctness properties to hold. In particular, we require
that for all λ ∈ N, for all (sk, pk)← EKGen′(1λ), for allm ∈M, for all θ ∈ {0, 1}∗, we have Dec′(sk,Enc′(pk,m, θ), θ) = m.
This definition captures perfect correctness.

IND-CCA2 Security. IND-CCA2 Security requires that an adversary A cannot decide which message is actually
contained in a ciphertext c, while in the case of CCA2 A receives full adaptive access to the decryption oracle. We
also require that the message space M implicitly defines an upper bound on the message length, i.e., |m|. In other
words, this means that the length is implicitly hidden for all messages in M. From a practical viewpoint, this can be
implemented using suitable padding techniques.

Definition 10 (IND-CCA2 Security). A labeled public-key encryption scheme E ′ is IND-CCA2 secure, if for

any efficient adversary A there exists a negligible function ν such that
∣∣∣Pr[IND-CCA2E

′

A (1λ) = 1]− 1
2

∣∣∣ ≤ ν(λ). The

corresponding experiment is depicted in Fig. 11.

www.prismacloud.eu


17

Experiment IND-CCA2E
′
A (λ)

(sk, pk)← EKGen′(1λ)
b← {0, 1}
(m0,m1, θ

∗, stateA)← AO(pk)
where O ← Dec′(sk, ·, ·).

if m0 /∈M ∨ m1 /∈M, let c← ⊥
else, let c← Enc′(pk,mb, θ

∗)
a← AO(c, stateA)

where O ← Dec′(sk, ·, ·).
Dec′′(sk, ·) behaves as Dec′, but returns ⊥ if queried with (c, θ∗).

return 1, if a = b
return 0

Fig. 11. Labeled IND-CCA2 security

Experiment IND-CPAEA(λ)

sk← EKGen′(1λ)
b← {0, 1}
(m0,m1, stateA)← A(1λ)
if m0 /∈M ∨ m1 /∈M, let c← ⊥
else, let c← Enc′(sk,mb)
a← A(c, stateA)
return 1, if a = b
return 0

Fig. 12. IND-CPA security

A.2 Secret-Key Encryption Schemes E

Correctness. For a secret-key encryption scheme E we require the correctness properties to hold. In particular, we
require that for all λ ∈ N, for all sk ← EKGen(1λ), for all m ∈ M we have Dec(sk,Enc(sk,m)) = m. This definition
captures perfect correctness.

IND-CPA Security. IND-CPA Security with requires that an adversary A cannot decide which message is actually
contained in a ciphertext c, while in the case of CPA A does not receive access to a decryption oracle. We also require
that the message space M implicitly defines an upper bound on the message length, i.e., |m|. In other words, this
means that the length is implicitly hidden for all messages in M. From a practical viewpoint, this can be implemented
using suitable padding techniques.

Definition 11 (IND-CPA Security). An encryption scheme E is IND-CPA secure, if for any efficient adversary

A there exists a negligible function ν such that
∣∣∣Pr[IND-CPAEA(1λ) = 1]− 1

2

∣∣∣ ≤ ν(λ). The corresponding experiment is

depicted in Fig. 12.

A.3 Pseudo-Random Functions PRF

Definition 12 (Pseudo-Random Functions (PRFs)). A pseudo-random function PRF consists of two algorithms
(PRFKGen,PRFEval) such that:

PRFKGen. The algorithm PRFKGen on input security parameter λ outputs the secret key of the PRF : κ← PRFKGen(1λ).
PRFEval. The algorithm PRFEval gets as input the key κ, and the value x ∈ {0, 1}λ to evaluate. It outputs the evaluated

value v ← PRFEval(κ, x), v ∈ {0, 1}λ.
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Experiment Pseudo-RandomnessPRFA (λ)

κ← PRFKGen(1λ)
b← {0, 1}
f ← Fλ

a← APRFEval′(κ,·)(1λ)
where oracle PRFEval′ on input κ, x:

return ⊥, if x /∈ {0, 1}λ
if b = 0, return PRFEval(κ, x)
return f(x)

return 1, if a = b
return 0

Fig. 13. Pseudo-Randomness

Pseudo-Randomness. We require that PRF is actually pseudo-random. In the definition, let Fλ = {f : {0, 1}λ →
{0, 1}λ} be the set of all functions mapping a value x ∈ {0, 1}λ to a value v ∈ {0, 1}λ.

Definition 13 (Pseudo-Randomness). A pseudo-random function PRF is pseudo-random, if for any efficient
adversary A there exists a negligible function ν such that

∣∣Pr[Pseudo-RandomnessPRFA (1λ) = 1] − 1
2

∣∣ ≤ ν(λ). The
corresponding experiment is depicted in Fig. 13.
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