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Abstract. Mixing Networks are protocols that allow a set of senders to send messages anony-
mously. Such protocols are fundamental building blocks to achieve privacy in a variety of appli-
cations, such as anonymous e-mail, anonymous payments, and electronic voting. Back in 2002,
Golle et al. proposed a new concept of mixing network, called optimistic mixing, that allows for
fast mixing when all the parties execute the protocol honestly. If, on the other hand, one or more
mix-servers cheat, then the attack is recognized and one can back up to a different, slow mix-net.
Unfortunately, Abe and Imai (ACISP’03) and independently Wikström (SAC’03) showed several
major flaws in the optimistic protocol of Golle et al. In this work, we give another look at op-
timistic mixing networks. Our contribution is mainly threefold. First, we give formal definitions
for optimistic mixing in the UC model. Second, we propose a compiler for obtaining a UC-secure
mixing network by combining an optimistic mixing with a traditional mixing protocol as backup
mixing. Third, we propose an efficient UC-secure realization of optimistic mixing based on the
DDH assumption in the non-programmable random oracle model. As a key ingredient of our con-
struction, we give a new randomizable replayable-CCA secure public key encryption (PKE) that
outperforms in efficiency all previous schemes. We believe this result is of independent interest.
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1 Introdution

Bakground. Mixing Networks (aka mix-nets), originally proposed by Chaum [16], are protocols
that allow a set of senders to send messages anonymously. Typically, a mix-net is realized by a
chain of mix-servers (aka mixers) that work as follows. Senders encrypt their messages and send
the ciphertexts to the first mix-server in the chain; each mix-server applies a transformation to
every ciphertext (e.g., partial decryption, or re-encryption), re-orders the ciphertexts according
to a secret random permutation, and passes the new list to the next mix-server. The idea is that,
if at least one of the permutations applied by the mixers remains secret, the list returned by
the last mixer contains (either in clear or encrypted form, depending on the mixing approach)
the messages sent by the senders in a randomly permuted order.

Mix-net protocols are used as fundamental building blocks to achieve privacy in a variety of
application scenarios, including anonymous e-mail [16], anonymous payments [36], and electronic
voting [16]. Informally, the basic security property of mix-nets asks that, when enough mix-
servers are honest, the privacy of the senders of the messages (i.e., “who sent what”) is preserved.
In several applications, it is also desirable to achieve correctness even in the presence of an
arbitrary number of dishonest mixers. This is for example fundamental in electronic voting



where a dishonest mixer could replace all the ciphertexts with encrypted votes for a desired
candidate!

Realizing Mix-Nets. A popular design paradigm of mixing networks are re-encryption mix-
nets [41] in which each server decrypts and freshly encrypts every ciphertext. Interestingly, such
a transformation can be computed even publicly using re-randomizable encryption schemes
(e.g., El Gamal). The process of re-randomizing and randomly permuting ciphertexts is typically
called a shuffle. Although shuffle-based mix-nets achieve privacy when all the mix-servers behave
honestly, they become insecure if one or more mixers do not follow the protocol. An elegant
approach proposed to solve this problem is to let each mixer prove the correctness of its shuffle
with a zero-knowledge proof (or argument). This idea inspired a long series of works on zero-
knowledge shuffle arguments, e.g., [24,40,31,51,53,34,48,9]. Notably, some recent works [53,48,9]
improved significantly over the early solutions, and they have been implemented and tested
in real-world applications (elections) [54]. In spite of the last results, zero-knowledge shuffle
arguments are still a major source of inefficiency in mix-nets. This is especially a concern in
applications like electronic voting where it is realistic for mix-nets to be able to scale up to
millions of senders (i.e., voters).

Optimistic Mixing. Most of the research effort for improving efficiency of mix-nets has been
so far devoted to improving the efficiency of shuffle arguments. A notable exception is the work
of Golle et al. [30]. They proposed a new mixing network optimized to quickly produce a correct
output when all the mix-servers execute the protocol correctly. If, on the other hand, one or
more mix-servers cheat, then no privacy is guaranteed, but the attack is noticed, and one can
decide to “back up” to a different, slow, mix-net execution. Their efficiency improvement came
from an “optimistic” or “fast-track” [25] approach, from which the name optimistic mixing.
Essentially, the idea is that optimistic mixing is not sufficient to realize a mix-net by itself,
yet one can (optimistically) attempt an execution of the optimistic mix-net and, in the rare
case of failure, “backup” to a slow mix-net. This way, one gets protocols that, in most realistic
scenarios, run fast.

Unfortunately, one year after its proposal, Abe and Imai [5] and independently Wikström [49]
showed major flaws in the optimistic protocol of Golle et al. The attacks leveraged malleability
issues in the encryption scheme used in the protocol as well as a lack of a formal security
definition for optimistic mixing.

1.1 Our Contribution

In this work we rescue the optimistic mixing approach. As main contributions, (1) we introduce
formal definitions for optimistic mixing in the UC model, (2) we propose a compiler in the
UC model for obtaining a secure mix-net through the composition of optimistic mixing with a
traditional mixing protocol as backup mixing, and (3) we propose a UC-secure realization of
optimistic mixing based on a new public key encryption (PKE) scheme that is re-randomizable
and replayable-CCA (RCCA) secure (as defined by Canetti et al. [14]).

When instantiating our compiler with our new optimistic mix-net and the UC-secure mix-
net of Wikström [51], we obtain a new UC-secure mixing network whose optimistic execution is
faster than in existing UC-secure mix-nets [50,51]. In what follows we discuss our contributions
in more detail.

Modeling Optimistic Mixing. One of the reasons that led to the break of Golle et al.’s
optimistic mixing proposal was the lack of a clear security definition for this notion. To address
this problem, our first contribution is to formally define the notion of an optimistic mix-net
(OMix). We do this by using the framework of Universal Composability (UC) [12] that, in
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addition to providing a way to clearly specify the security requirements of a protocol, offers the
strong property that security is preserved even if the protocol is arbitrarily composed with itself
or other protocols. We find the compositional property of UC particularly relevant to protocols
like mix-nets that are naturally used in composition with larger cryptographic protocols.

For our definition, we start from the mix-net UC definition of Wikström [50] who models a
mixing (Mix) protocol as one that realizes the functionality that collects inputs from the senders
and outputs their lexicographic ordering, i.e., FMix(x1, . . . , xn) = Sort(x1, . . . , xn). Inspired by
this, we model an OMix network as a protocol that UC-securely realizes the functionality that
either shuffles the input messages or does not, but in this case notifies all the parties that an
attack was performed. More precisely,

FOMix(b, x1, . . . , xn) =

{
(b,Sort(x1, . . . , xn)) b = valid

(b, x1, . . . , xn) b = invalid

Above, b is a flag provided by the adversary. This means that the ideal adversary can decide
whether the functionality provides a layer of anonymization of the inputs or not. While this
functionality may seem useless if one wishes security against dishonest mixers, the original idea
of Golle et al. [30] is that an OMix protocol needs to be backed up by another mixing protocol
(let us call it the backup mixing) which would be run in case the ideal adversary decided to
set b to invalid. In a sense, one aims to obtain FMix by composing FOMix ◦ FMix where the
composition consists in executing FOMix first, and then, if the output contains b = invalid,
executing FMix on the outptut of FOMix. The promising aspect of this composition approach
is that valid executions only run the OMix protocol, and since this must realize a weaker
functionality it might allow for faster realizations.

In our definitions we also consider the notion of public verifiability (aka auditability) for
(optimistic) mixing. In a nutshell, auditability means that any third party can publicly verify
that the output generated by running the mix-net on the private inputs is correct. To formalize
this notion, we introduce a definitional framework for (UC composition of) auditable protocols
with a bulletin board (BB). The idea is that the protocol’s transcript is registered in the BB, and
that an auditor can, in a non-interactive fashion, read this transcript and decide its correctness.
This can be seen as an extension to the UC model of the auditable MPC notion of Baum et
al. [8].

A ‘Mix+OMix⇒Mix’ Compiler. The above idea of composing an optimistic mixing with
a traditional mixing requires care, though. For example, one challenge of the composition is
that when the invalid branch is taken by the OMix protocol, the inputs cannot appear in clear
before being sent to the backup mixing. The idea of Golle et al. to solve this problem, called
double-enveloping, is that OMix runs on ciphertexts of the Mix protocol.

Our second contribution is a compiler that formalizes the double-enveloping idea (that in [30]
was presented only informally), and fully clarifies the set of functional and security prerequisites
that the backup mixing network must have to assure a secure composition. Specifically, we show
that we can obtain a secure mix-net starting from an OMix network and what we call a structured
Mix (sMix). The latter is simply any Mix protocol where senders submit their inputs encrypted
(arguably the most common technique for input submission). In terms of security, we show
that an sMix protocol must only realize a simpler, weaker functionality where there is a single
sender submitting all the messages, and these messages are encrypted using a CCA2-secure
encryption. We show that the UC-secure mix-net of Wikström [51] can be easily adapted to
become structured, and thus can be used to instantiate our compiler. Hence, we actually give an
‘sMix+OMix⇒Mix’ compiler. This is stated and proven secure in the UC model, and therefore
inherits the strong compositional properties of UC security.
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Realizing Optimistic Mixing. We construct the first secure OMix network and prove it UC-
secure in the non-programmable random-oracle (NPRO) model based on the DDH assumption.
The first two main ingredients of our OMix protocol are: (1) a re-randomizable RCCA-secure
public key encryption scheme, and (2) a non-interactive zero-knowledge (NIZK) proof of “loose
shuffling” of ciphertexts of this PKE. We recall that RCCA security, introduced by Canetti,
Krawczyk and Nielsen [14], is a relaxation of CCA2 security where one is allowed to maul
a ciphertext if the underlying plaintext stays the same, as in the case of re-randomizations,
whereas all other kinds of malleability would be detected.

In our OMix protocol, the senders use the RCCA PKE to encrypt their messages, and then
each mixer re-randomizes the ciphertexts and creates a “loose shuffling” proof. For security, the
key idea is that, despite this proof alone does not guarantee that the output ciphertexts are a
shuffle, its combination with the RCCA property yields a shuffle proof. More in detail, if the
“loose shuffling” is verified, the only other way to create a list that is not a shuffle would be to
invalidate at least one ciphertext. So, if an invalid decryption occurs when decrypting the list
returned by the last mixer, the OMix protocol raises an error.

This idea, however, does not work yet to produce a secure OMix protocol. The problem
is that, to ensure that every mixer did a shuffle, one should decrypt the lists of ciphertexts
returned by every mixer, but this would reveal their permutations. We solve this issue with
our third key ingredient, which is (3) a novel technique called authenticated re-randomization.
Informally, this offers the following guarantee: if an invalid ciphertext appears in a middle list,
then it must propagate until the last list, or in other words it is infeasible for the adversary to
repair invalid ciphertexts after they are re-randomized in an authenticated way. Authenticated
re-randomization works by letting a mixer re-randomize using a secret-key (one for all the
ciphertexts); this key performs a sort of homomorphic authentication on the ciphertexts and
can be revealed after all mixers are done. Our proof shows that as long as there is one honest
mixer performing this authentication we obtain the property that invalid ciphertexts cannot
disappear.

Putting ideas (1), (2), and (3) together gives us a secure OMix protocol. To implement these
ideas, our technical contributions are: a new PKE scheme that is re-randomizable, RCCA-secure,
and has authenticated re-randomization; a NIZK proof of “loose shuffling” for the ciphertexts
of this PKE. This NIZK is based on a simple sigma protocol for proving that a tuple of group
elements lies in the span of a public vector. For n ciphertexts, this NIZK proof can be created
and verified by doing 6n group multiplications and 5 exponentiations, which is extremely fast
considering that exponentiations are way more expensive than multiplications. So, the work to
be performed by every mixer is dominated by the authenticated re-randomization of ciphertexts,
which depends on the efficiency of the PKE. Considering the overhead of double-enveloping,
and using standard precomputation techniques, this requires 9.2 exponentiations per ciphertext
(plus other 1.8 that can be precomputed offline prior to receiving the ciphertexts). Moreover,
since re-randomization happens independently for every ciphertext, this operation can be highly
parallelizable. These costs are comparable with those of state-of-the-art mixing protocols and
are about 3 times faster than existing UC-secure mix-nets [50,51] (some details are in Sec. 7).

As a drawback, our protocol relies on a distributed decryption functionality that we have
to instantiate with general-purpose techniques and whose practical realization is left as open
problem. Nevertheless, we see our work as a first step in exploring (in a rigorous way) the
potential of the optimistic approach, and we believe that further improvements can be achieved
by investigating more the proposed paradigm. In particular, since the largest bulk of work
depends from the efficiency of the RCCA scheme, any other new candidate performing better
would yield more efficient optimistic mixing protocols.
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PKE Enc Dec Rand |C| |pk| RCCA rnd-RCCA Ass. Model

[32] Gro1 3k + 2 4k 3k + 1 3k + 1 3k + 3 weak perfect DDH std

[32] Gro2 3k + 3 4k + 3 3k + 3 3k + 2 3k + 3 full perfect – GGM

[43] PR07 22 32 24 20 11 full perfect DDH∗ std

This paper 16 18 15 11 11 full weak DDH NPRO

Table 1. Comparison among a selection of re-randomizable and RCCA-secure PKE schemes. Encryption, de-
cryption and randomization are measured in number of exponentiations; ciphertexts and public key in number
of group elements. For the schemes of [32], k is the message bit-length, in the second scheme the group is Z∗N2

for an RSA modulus N , GGM refers to the generic group model, and DDH∗ refers to the use of special groups.
rnd-RCCA stands for re-randomizability in the presence of an RCCA decryption oracle. By “weak” RCCA (resp.
rnd-RCCA) we mean the scheme satisfies the RCCA (resp. rnd-RCCA) notion in the presence of a weak-RCCA
decryption oracle, whereas “full” means that the notion is satisfied with the standard RCCA decryption oracle
(see Def. 10 and Fig. 4 for more details). Perfect re-randomizability, where the unbounded adversary gets the
secret key, implies full rnd-RCCA.

A new re-randomizable RCCA-secure PKE. As we mentioned in the previous paragraph,
a key ingredient of our OMix protocol realization is a new public key encryption that is RCCA-
secure and re-randomizable. Our scheme is proven secure in the NPRO model under the DDH
assumption and, to the best of our knowledge, outperforms all previous re-randomizable RCCA-
secure schemes in all fronts. For fairness, we should mention that we achieve a weaker notion
of re-randomizability that holds computationally and in which the adversary has access to a
weaker RCCA oracle (as defined by Groth [32]) that outputs “invalid” (instead of “same”) even
when the decrypted message is the challenge one. We stress that this weaker oracle is used only
for re-randomizability, whereas we achieve full-fledged RCCA security.

In Table 1 we present a comparison with other schemes.1 We note that the scheme of
Prabhakaran and Rosulek [43] works over two specific groups that are the quadratic residues
subgroups of Z∗2q+1 and Z∗4q+3 respectively, where (q, 2q + 1, 4q + 3) is a Cunningham chain of
the first kind of length 3. In contrast, our scheme can be instantiated over any group where the
DDH assumption holds, notably including elliptic-curve groups, which offer better performance.

1.2 Other related work

The notion of mix-net was introduced by Chaum [16]. The use of zero-knowledge arguments to
prove the correctness of a shuffle was first suggested by Sako and Kilian [45]. The first proposals
used expensive cut-and-choose based zero-knowledge techniques [45,2]. Abe et al. removed the
need of cut-and-choose by proposing a shuffle based on permutation networks [3,4]. Furukawa
and Sako [24] and independently Neff [40] proposed the first zero-knowledge shuffle arguments
for ElGamal ciphertexts that achieve a complexity linear in the number of ciphertexts. These
results have been improved by Wikström [53], and later Terelius and Wikström [48], who pro-
posed arguments where the proof generation can be split into an offline and online phase (based
on an idea of Adida and Wikström [6]). These protocols have been implemented in the Ver-
ificatum library [54]. Groth and Ishai [35] proposed the first zero-knowledge shuffle argument
with sublinear communication. Bayer and Groth gave a faster argument with sublinear commu-
nication in [9]. A definition of mix-nets in the UC-framework was given by Wikström in [50],
and another UC-secure realization appears in [51]. The concept of optimistic security is closely
related to the concept of covert security [7]. On one hand, optimistic security specializes covert
security, in the sense that the attacker is always caught when cheating; on the other hand, in
our formulation optimistic secure protocols do not identify which party cheated.

1 The table does not include the schemes in [15,37], which achieve the nice property that validity of ciphertexts
can be checked publicly, but perform way worse than ours, e.g., a ciphertext contains 52 group elements.
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2 Preliminaries

2.1 Basic Notation

For a binary string x, we denote respectively its length by |x| and its i-th bit by xi; if X is a
set, |X| represents the number of elements in X. When x is chosen randomly in X, we write
x ← $ X. When A is an algorithm, we write y ← A(x) to denote a run of A on input x and
output y; if A is randomized, then y is a random variable and A(x; r) denotes a run of A on input
x and randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized
and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial number
of steps (in the size of the input). We let [n] be the set {1, . . . , n} and denote with Sn the
group of permutations over [n]. In this paper we differentiate between ordered list of elements
〈x1, . . . , xn〉, namely, list of elements where the positions of the elements x1, . . . , xn in the list
is leaked, and not-ordered lists of elements (i.e., sets) {x1, . . . , xn} where the order does not
matter.

Negligible functions. We denote with λ ∈ N the security parameter. A function ν : N→ [0, 1]
is negligible in the security parameter (or simply negligible) if it vanishes faster than the inverse
of any polynomial in λ, i.e. for any positive polynomial p(λ) there exists a constant λ0 such
that for all λ ≥ λ0 we have ν(λ) ≤ 1/p(λ). Equivalently, ν(λ) ∈ O(1/p(λ)) for all positive
polynomials p(λ). We often write ν(λ) ∈ negl(λ) to denote that ν(λ) is negligible.

Random variables and indistinguishability. For a random variable X, we write Pr [X = x]
for the probability that X takes on a particular value x ∈ {X } (with {X } being the set where
X is defined). The statistical distance between two random variables X and X ′ defined over the
same set X is defined as SD (X;X ′) = 1

2

∑
x∈{X } |Pr [X = x]− Pr [X ′ = x] |.

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write: X ≈s Y to denote that
the two ensembles are statistically indistinguishable, i.e., there exists a negligible function ν :
N→ [0, 1] such that SD (X;Y ) ≤ ν(λ); X ≡ Y to denote that the two ensembles are identically
distributed, i.e., that SD (X;Y ) = 0; and X ≈c Y to denote that they are computationally
indistinguishable, i.e., for all PPT algorithms D there exists a negligible function ν : N→ [0, 1]
such that |Pr [D(Xλ) = 1]− Pr [D(Yλ) = 1]| ≤ ν(λ).

Lemma 1 (Shoup’s difference lemma [47]). Let A,B, F be events defined in some proba-
bility distribution, and suppose that A ∧ ¬F ⇔ B ∧ ¬F . Then |Pr [A]− Pr [B]| ≤ Pr [F ].

2.2 Non-Interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof system for a relation R is a tuple NIZK =
(Init,P,V) of PPT algorithms such that: Init on input the security parameter outputs a common
reference string crs; P(crs, x, w), given (x,w) ∈ R, outputs a proof Π; V(crs, x,Π), given instance
x and proof Π outputs 0 (reject) or 1 (accept). In the protocols of this paper we use the notion
of NIZK with labels, that are NIZKs where P and V additionally take as input a label L (e.g.,
a binary string). A NIZK (with labels) is correct if for every crs ← $ Init(1λ), any label L, and
any (xw) ∈ R, we have V(crs, L, x,P(crs, L, x, w)) = 1.

We define three properties of a NIZK argument system.

Definition 1 (Adaptive soundness). A NIZK with labels NIZK for relation R is adaptively
sound if for every PPT adversary A, the following probability is negligible:

Pr

 (x,Π)← A(crs),

x 6∈ R
V(crs, x,Π) = 1

∣∣∣∣∣∣∣ crs← Init(1λ)

 .
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If soundness holds against unbounded adversaries we call NIZK a proof system, else it is an
argument.

Definition 2 (Adaptive multi-theorem zero-knowledge, [22]). A NIZK with labels NIZK
for relation R satisfies adaptive multi-theorem zero-knowledge if the following holds:

(i) There exists an algorithm Init that outputs crs, and a simulation trapdoor tds.
(ii) There exists a PPT simulator Sim such that, for all PPT adversaries A, we have that∣∣∣Pr

[
AP(crs,·,·,·)(crs) = 1| crs← Init(1λ)

]
− Pr

[
ASIM(·,·)(crs) = 1| (crs, tds)← Init(1λ)

]∣∣∣
is negligible in λ. The simulation oracle SIM(·, ·, ·) answers queries of the form (L, x,w)
by checking if (x,w) ∈ R, if so returning Sim(tds, L, x) otherwise returning ⊥.

Groth [33] introduced the concept of simulation-extractable (SE) NIZK, which informally states
that extractability holds even in presence of a simulator that simulates NIZK proofs for (possibly
false) statements. In our paper we use a relaxed notion of simulation extractability where the
extractor only returns a (possibly not invertible) function f of the witness. Specifically, in our
case we use an f that outputs only a portion of the witness.

Definition 3 (simulation f-extractability). A NIZK with labels NIZK for relation R is
f -simulation extractable (f -SE) if the following holds:

(i) There exists an algorithm Init that outputs crs, a simulation trapdoor tds, and an extraction
trapdoor tde.

(ii) There exists a PPT algorithm Ext(tde, (L, x), Π) such that every PPT adversary A has neg-
ligible probability of winning in the following game:

– The challenger runs (crs, tds, tde)← Init(1λ), and gives crs to A.
– A is given access to the simulation oracle SIM∗(·, ·), which it can be queried on pairs of

the form (L, x) of its choice, and SIM∗ returns Sim(tds, L, x), where Sim is the simulator
given by the zero-knowledge property.

– A outputs a tuple (L∗, x∗, Π∗).
– The challenger runs y ← Ext(tde, (L∗, x∗), Π∗).

We say that A wins if: (a) (L∗, x∗) was not queried to the simulation oracle; (b) V(crs, (L∗, x∗), Π∗) =
1; (c) for any w such that f(w) = y, (x∗, w) 6∈ R.

2.3 UC Security Model

We use the Universal Composability model of Canetti [12]. Specifically, our notation for multi-
party protocols comes from the book of Cramer, Damg̊ard, and Nielsen [17]. In this formulation
of the UC model, the basic computational components are called interactive agents. Briefly, an
interactive agent A is a computational device that receives and sends messages on named ports,
and holds an internal state. More in particular, an interactive agent A has a collection of named
inports where it receives messages and a collection of named outports where it sends messages.
Given two agents A and B the union of them, denoted as A◦B is the interactive system where
every outport of A (resp. B) with name N is connected to an inport of B (resp. A) with the same
name N (if it exists). An interactive system where all the inports and outports are connected is
said closed. The collection of all the ports that are not connected is called the open ports of the
interactive system.

All the agents in the framework have one or more inports with name ending in infl or
infli. We call these special ports the influence ports of the agent. If an agent has a inport
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with named N.infl then it must have a matching port with name N.lk. We call these special
ports the leakage ports of the agent. Leakage and influence ports are very important: agents
are activated by a special message on the influence port and they return their activation on the
leakage port; parties of a protocol are corrupted by a special message on the influence port and
from that point on they return their full state on their leakage port and proxy all the messages
from the influence port (resp. to the leakage port) to (resp. from) their other ports (in this paper
we consider only active corruption of the parties); the leakage and influence port of an ideal
functionality model which information is allowed to leak and how an adversary can influence
the functionality2 (for more details see chapter 4 of [17]).

The agent of an ideal functionality with name F additionally has n inports named F.in1, . . . ,
F.inn, and n outports named F.out1, . . . , F.outn. These 2n ports are called the protocol ports. A
protocol Π consists of n parties P1, . . . ,Pn where each party is an interactive agent. A protocol
Π has a protocol name F. We let a protocol Π and the ideal functionality F that Π is supposed
to implement have the same name. We name the port N of the protocol Π as F.N. A protocol
also has ports connecting it to the resource R with resource name R. The resource R takes care
of moving messages between parties of the protocol. In addition to moving messages, it also
models the leakage of the communication network and the possible influence that an attacker
might have on the network.

A simulator S for a protocol Π with name F is defined as a polytime interactive system
with an open inport named F.infl and an open outport named F.lk; these two ports allow S
to connect to an ideal functionality F with name F. In addition to these two ports, a simulator
has a collection of ports corresponding to all the open ports of the protocol Π with resource R.
As a consequence, the interactive systems (F ◦ S) and (Π ◦ R) have the same open ports.

An environment Z for a protocol Π with resource R is an interactive system that has the
dual open ports of Π ◦ R (namely, Z ◦Π ◦ R forms a closed interactive system). In this paper
we consider protocols that are secure against environments which performs static corruption
of the parties. This means that corruption takes place before the protocol starts its execution
and, as already mentioned above, the adversary can deviate from the protocol specification in
any arbitrary way. Let Envstatic be the set of all polytime interactive agents Z of this flavor.
Specifically, Z ∈ Encstatic if, at the first activation, and only in this activation, it sends a list
of messages corrupt to the influence ports of the protocol. Two systems are indistinguishable
to an environment Z if it cannot tell them apart, expect with negligible advantage, by sending
and receiving messages on the open ports of the systems. More formally, the environment plays
with a system and then, at the end of the execution outputs a bit b. Two systems A and B
are indistinguishable to a class of environments Env if for any Z ∈ Env the bit output by Z
interacting with A and the bit output by Z interacting with B are indistinguishable.

Definition 4. Let F and R denote arbitrary protocol names. Let F be any ideal functionality
with name F, Π be any protocol with protocol name F and resource name R, and let R be an
ideal functionality with name R. We say that Π ◦ R securely implements F in the environments
from Env if there exist a simulator S such that Π ◦ R and S ◦ F are indistinguishable to the
class Env.

We are ready to state the UC Theorem (see Thm 4.20 of [17]).

Theorem 1 (The UC Theorem). Let Env be a class of environments. Let ΠF a protocol
with protocol name F and resource name G. Let ΠG a protocol with protocol name G and resource
name H. Let F ,G,H be ideal functionalities with name F, G, H.

2 For example, the ideal functionality of a private channel might send message on the leakage port of the form
“P1 sent a message to P2 of lenght n” and might receive message on influence port of the form “deliver the
message to P2”.
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If ΠF ◦ G securely implements F and ΠG ◦ H securely implements G, then (ΠF ◦ ΠG) ◦ H
securely implements F .

2.4 Algebraic Notation and Assumptions

In this section we present notation and useful definitions related to the algebraic tools used
in our constructions. Let Setup(1λ) be an algorithm that upon input λ produces parameters
prm = (G, q, G) describing a group G of prime order q > 2λ, with generator G. We use additive
notation for the group operation, and we denote group elements using the bracket notation
introduced by Escala et al. in [20]. Namely, for a y ∈ Zq we let [y] be the element y · G. We
write elements in G with capital letters and elements in Zq with lower case. We indicate vectors
with boldface (e.g. a,b, . . . ) and matrices with capital bold face (e.g. A,B, · · · ). We indicate
vectors of elements in G with overlined capital letters (e.g. Ā, B̄, . . . ).

We briefly recall the DDH assumption that we use in Sec. 5.

Definition 5 (DDH). The Decisional Diffie-Hellman Assumption assumption holds for Setup,
if for any prm = (G, q, G)← $ Setup(1λ), any a, b, c← $ Zq and any PPT A

|Pr [A(prm, [a, b, a · b]) = 1]− Pr [A(prm, [a, b, c]) = 1]| ≤ negl(λ).

Useful facts. To analyze the security of our construction we rely on the following lemma, and
a simple corollary of it.

Lemma 2 (Adaptive smoothness). For all prm ← $ Setup(1λ), any g ∈ Z2
q, a ∈ Zmq , and

any (unbounded) adversary A:

Pr
A←$ Zm×2

q ,A

 [w, z]← A(a),

w 6∈ Span(g)

z = A ·w

∣∣∣∣∣∣∣ A · g = a,

 ≤ 1/qm.

Proof. We show that for any a ∈ Zmq , any A and any assignment of the randomness of A that
leads to [w, z] such that the event in the probability above holds there is 1 possible assignments
of A ∈ Zm×2

q . In fact, notice that A is such that:{
A · g = a

A ·w = z

This is a system of 2m linear and independent equations over 2m variables in Zq, which therefore
admits only 1 solution. Notice that, conditioned on a, the matrix A is sampled uniformly at
random from a set of size qm, therefore the probability that A is a solution for the system above
is 1/qm.

Corollary 1 (Non-Adaptive Smoothness). For all prm← $ Setup(1λ), any g ∈ Z2
q, we have

(prm,A · g,w,A ·w]) ≡ (prm,A · g,w,u])

where A← $ Zm×2
q ,w← $ Z2

q ,u← $ Zmq .

The corollary follows from Lemma 2 by observing that here w is chosen randomly and inde-
pendently of a = A · g.

The two properties stated above are (slight) variants of the smoothness properties of Smooth
Projective Hash Functions (see, e.g., [18]), in the case of a construction for the DDH language.
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Although for simplicity we do not use the SPHF abstraction in our PKE scheme, we briefly
recall the corresponding construction below. Let [g]← $ G2 be a vector that defines the language
L = Span([g]) ⊂ G2. For a positive integer m ∈ N, A ← $ Zm×2

q is the secret hashing key, and
[a] = [A · g] the public projective key. Then, on input the projection key [a], word [w] and
witness w such that w = w ·g, the public hashing outputs w · [a]. Instead, on input the hashing
key A and any word w, the (private) hashing outputs [A ·w].

3 Verifiable and Optimistic Mixing Definitions

In this section we give definitions for Verifiable and Optimistic Mixing protocols in the UC
model. In our work we are interested in protocols that are auditable (or, in other words, publicly
verifiable). Informally speaking, auditability means that a third party (the auditor) can publicly
verify that the output generated by executing the protocol on private inputs is correct.

To formalize this notion, we introduce a definitional framework for auditable protocols with
a bulletin board (BB, for short). The basic idea is that the protocol’s transcript, including
the output, is written in the BB, and that an auditor can, in a non-interactive fashion, read
such transcript from the BB and decide its correctness. Auditability was considered by Baum,
Damg̊ard and Orlandi [8]. Our definition follows in spirit their definition as we consider an
external auditor party that cannot be corrupted, acts after the execution of the protocol and
interacts only with the bulletin board. The main difference is that our definition is in the UC
model and, loosely speaking, achieves what they call auditable correctness by comparing two
experiments (in an ideal-versus-real-world fashion), whereas their definition asks explicitly that
the probability of an auditor to accept (resp. reject) an output y is overwhelming when the
functionality would output (resp. would not output) y over the input provided.

3.1 Auditable Protocols with Bulletin Board

In our model all the protocols have, as resource, a bulletin board BB with name BB. The func-
tionality bulletin board is the same as defined in [50], and can be realized using an authenticated
broadcast channel (c.f. [28,38]). This resource is shared by all the protocols. To formalize this,
we slightly tweak the notion of composition of interactive agents. Specifically, given two proto-
cols Π1 and Π2 both with resource BB, we denote the composition of (Π1 ◦BB) and (Π2 ◦BB)
as (Π1 ◦Π2 ◦BB), where the protocol ports of the resource BB in the composed system are the
union of the protocol ports of BB in Π1 ◦BB and Π2 ◦BB.

An auditable protocol is a tuple (Π,Audit), where Audit is a non-interactive PPT algorithm
and Π is a multi-party protocol. To define auditability we consider an auditor party PA defined
as an agent with name A and parametrized by an algorithm Audit (see Fig. 1). More in detail, the
party PA cannot be corrupted, (i.e., it would reject all corruption messages sent to its influence
port), and whenever activated it reads the full content of the BB, it selects a relevant portion
τ (e.g., the messages of the specific protocol execution to audit), runs the audit algorithm
b← Audit(τ), and returns b on its leakage port.

To make auditable protocols composable, and in particular to enable the composability of
Audit algorithms, we define an ideal audit procedure for the output of an ideal functionality.
Notice that the output of an ideal functionality is, by definition, correct as it is produced as
the correct computation on the private inputs. Therefore, given an ideal functionality/resource
F with name F we define the ideal audit Audit∗F that trivially accepts if it finds in the BB a
specific output authenticated by F .

However, we need to instruct the ideal functionality to write its output messages on the
bulletin board. To get this, given an ideal functionality F , we consider a wrapper W[F ] that
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proxies all the messages of F and also forwards all the messages in the protocol’s output ports
to the bulletin board using a special port name. This way, the bulletin board can syntactically
distinguish what event to register in the “ideal board” DI and what to register in the “real
board” DR. The auditor party PA is the only agent that can get access to the ideal board DI .
Formally, let DR,DI , X as in the description of the auditor agent in Fig. 1, we let Audit∗F(DI , X)
return true iff ∃c : (c, F, X) ∈ DI .

Definition 6. Given an ideal functionality F with name F, a resource R with name R, and
a class of environments Env, we say that an auditable protocol (Π,Audit), where Audit is a
non-interactive PPT algorithm, and Π is a protocol with protocol name F and resource name R,
is secure for F with resource R for environments in Env if:

1. The protocol Π with resourcesW[R] and BB securely implements F◦BB for all environments
Z ∈ Env.

2. Let S be the simulator of Π, the agent systems (W[S] ◦W[F ] ◦BB ◦ PA[Audit]) and (W[S] ◦
W[F ] ◦BB ◦ PA[Audit∗F]) are indistinguishable for all environments Z ∈ Env.

3.2 Verifiable Mixing Schemes and Optimistic Mixing Schemes

A Verifiable Mixing scheme and a (Verifiable) Optimistic Mixing scheme are auditable protocols
that involve two groups of parties: (i) the senders {PSj}j∈[n], (ii) and the mixers {PMi}i∈[m]. To
define the security of VMix and OMix schemes we describe corresponding ideal functionalities
FMix in Fig. 2 and FOMix in Fig. 3.

In brief, the mixing functionality FMix waits for an input Mj from every sender PSj , and
after all senders have submitted their inputs it returns these inputs in sorted order (essentially
hiding who sent which message). The optimistic mixing functionality FOMix is almost the same
as FMix except that the adversary can send a special message invalidate. Then, if invalidate
was sent, FOMix returns the senders’ inputs in the same order as they were submitted, otherwise
it returns the inputs in sorted order as FMix does. In addition to the list of messages, FOMix

outputs b ∈ {valid, invalid} to indicate if invalidate was sent or not.

We stress that for both FMix and FOMix the mixers do not need to provide any input to the
functionalities. This feature is particularly useful in the UC model. For example, in our Mix-Net
protocol, there is no need to UC-extract the permutations used by the mixers.

Definition 7. A VMix VM = (Π,Audit) is R-secure iff VM is a secure auditable protocol for
FMix with resource R for environments in Envstatic.

Definition 8. An OMix OM = (Π,Audit) is R-optimistic-secure iff OM is a secure auditable
protocol for FOMix with resource R for environments in Envstatic.

4 RCCA PKE with Authenticated Re-randomizability

4.1 Re-randomizable RCCA PKE

A re-randomizable PKE scheme PKE is a tuple of five algorithms specified as follows.

Setup(1λ) takes as input the security parameter λ (in unary) and produces public parameters
prm, which include a description of the message space M.

KGen(prm, 1`) is the key generation algorithm that, on input the parameters prm, outputs a key
pair (pk, sk).
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Wrapper W[F ] (resp. W[S]):

The wrapper has the same open ports of the functionality F with name F (resp. the simulator S with name S).
Moreover the wrapper has an outport with name inF that connects it to the bulletin board. (Resp. the wrapper
for any ideal functionality simulated by S with name F as an outport with name inF that connects it to the
bulletin board.)

1. On activation proxy all the messages on its inports to the inports of F and activate F (resp. S and activate
S);

2. Once F (resp. S) returns its activation proxy all the messages on the outports of F (resp. S) to its outports,
moreover if F has sent a message X on an protocol port outi then send the message (write, F, (i,X)) to the
port inF (resp. if S has sent a message X on a protocol port F, outi then send the message (write, F, (i,X))
to the port inF).

Ideal functionality BB:

The ideal functionality has enough protocol ports to connect with all the protocols’ agents of the agent system,
for each ideal functionality in the agent system, it has special protocol ports named with inF where F is the name
of the functionality, it has a special protocol inport inA and special protocol outport named outA (connected to
the auditor party).

1. The functionality holds three databases D,DI and DT . We call DI the database of the ideal functionalies’
messages and DT the database of the messages on transit. At first activation initialize the databases as empty,
and the counters c← 1, cI ← 1.

2. Upon message (write, pid, x) on the inport BB.ini, with x ∈ {0, 1}∗, write (pid, i, x) on the database DT .
Send the message (write, pid, i, x) to the outport BB.lk.

3. Upon message (write, X) on the inport BB.infl, if X appears in DT then write (c,X) on the database D,
delete the entry from DT , and increase the counter c.

4. Upon message (read, c) on the inport BB.ini send the message (read, i, c) to the outport BB.lk.
5. Upon message (read, i, c) on the inport BB.infl, read from the database D the tuple (p, i, x) and if it exists

write (read, (p, i, x)) to the outport BB.outi and to BB.lk.

Special commands:

6. Upon message (write, F, X) on the inport BB.inF write (c,X) on the database DI and increase the counter
cI .

7. Upon message read on the inport BB.inA, send the message (read,D,DI) to the outport BB.outA.

Agent PA[Audit]:

The agent has two port BB.inA and BB.outA connected to the BB. Moreover, a protocol identifier pid is assigned
to the agent.

1. Upon activation, if the message corrupt appears in the influence port then ignore it;
2. Read the message (input, X) from the influence port, send the message read to the outport BB.inA and at next

activation read the message (read,D,DI) from BB.outA. Let DR be the set {(c, i, x) : p = pid, (c, p, i, x) ∈ D}
and let τ ← (DR,DI).

3. If for all i ∈ [n] there exists (∗, i, endProtocol) then compute b← Audit(τ,X) else return the message error

to the port port A.lk and return;
4. Return the message (audit, b) to the port A.lk.

Fig. 1: The wrapper for auditable ideal functionalities, the ideal functionality for Bulletin Board, and the
auditor party.
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Functionality FMix:

The functionality is implicitly parametrized by the security parameter 1λ and has n = poly(λ) protocol ports
with indices {Sj}j∈[n] and m = poly(λ) protocol ports with indices {Mi}i∈[m].

Init: At first activation read from Mix.infl the sets of corrupted players CS ,CM , and set IS ← ∅, flginpDone ←
false, and flgmixDone ← false;

Input: On message (input, i, Mi) on the inport Mix.inSi (or on the inport Mix.infl if i ∈ CS), if the entry (i, ∗)
does not exist in the database of the inputs then set IS ← IS ∪ {i}, register the entry (i, Mi) in the database
of the inputs, and send (input, i) on outport Mix.lk.
If |IS | = n then set flginpDone ← true and return.

Mix: On message mixDone on the inport Mix.infl, if flginpDone = true, compute O ← Sort(〈Mj〉j∈[n]), send message
(mixDone,O) on the outport Mix.lk, and set flgmixDone = true.

Delivery: On message (mixDone, i), if flgmixDone = true, then send the message (mixDone,O) on the outport
Mix.outMi .

Fig. 2: Ideal Functionality for Mixing.

Functionality FOMix :

The functionality is implicitly parametrized by the security parameter 1λ, has name OMix , and has n = poly(λ)
protocol ports with indices {Sj}j∈[n] and m = poly(λ) protocol ports with indices {Mi}i∈[m].

Init: At first activation read from OMix.infl the sets of corrupted players CS ,CM , and set IS ← ∅, flginpDone ←
false and flgmixDone ← false, b← valid;

Input: On message (input, i, Mi) on the inport OMix.inSi (or on the inport OMix.infl if i ∈ CS), if the entry
(i, ∗) does not exist in the database of the inputs, then set IS ← IS ∪ {i}, register the entry (i, Mi) in the
database of the inputs, and send (input, i) on outport OMix.lk.
If |IS | = n then set flginpDone ← true and return.

Mix: On message mixDone on the inport OMix.infl, if flginpDone = true:
– If b = valid then compute O ← Sort(〈Mj〉j∈[n]);
– If b = invalid then compute O ← 〈Mj〉j∈[n].

send (mixDone, b,O) on the outport OMix.lk and set flgmixDone ← true.
Delivery: On message (mixDone, i), if flgmixDone = true, then send the message (mixDone, b,O) on the outport

OMix.outMi .
Invalidate: On message invalidate on the inport OMix.infl then set b← invalid (resp. ignore the message).

Fig. 3: Ideal Functionality for Optimistic Mixing.

Enc(pk, M) is the encryption algorithm that, on input a public key pk and a message M ∈ M,
outputs a ciphertext C;

Dec(sk, C) is the decryption algorithm that, on input the secret key sk and a ciphertext C,
outputs a message M ∈M or an error symbol ⊥.

Rand(pk, C) is the randomization algorithm that, on input a public key pk and a ciphertext C,
outputs another ciphertext C′;

We require the natural correctness property that for any pair (pk, sk) ∈ KGen any randomization
of a valid ciphertext under pk decrypts to the intended plaintext under sk.

We recall the notion of RCCA-PKE Security [14]. Very intuitively this can be thought of as a
relaxation of the standard CCA security notion that allows for re-randomization of ciphertexts.
A bit more technically, this is formalized with a security experiment that proceeds the same
as the CCA security one except that in RCCA the decryption oracle can be queried on any
ciphertext and, when decryption leads to one of the challenge messages M0, M1, it answers with
a special symbol � (meaning “same”).

Definition 9 (Replayable CCA Security.). Consider the experiment ExpRCCA in Fig. 4,
parametrized by a security parameter λ, an adversary A, and a PKE scheme PKE. We say that
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PKE is indistinguishable secure under replayable chosen-ciphertext attacks (RCCA-secure, for
short) if there exists a negligible function negl such that for any PPT adversary A∣∣∣∣Pr

[
ExpRCCA

A,PKE(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ).

Experiment ExpRCCA
A,PKE(λ):

prm← Setup(1λ), b∗ ← $ {0, 1};
(pk, sk)← KGen(prm);

(M0, M1)← ADec(sk,·)(pk);
C← Enc(pk, Mb∗);

b′ ← ADec�(sk,·)(pk, C);
return (b′ = b∗).

Oracle Dec�(sk, ·):
Upon input C;
M′ ← Dec(sk, C);
if M′ ∈ {M0, M1} then output �,
else output M′.

Experiment ExpRand−wRCCA
A,PKE (λ):

prm← Setup(1λ), b∗ ← $ {0, 1};
(pk, sk)← KGen(prm);

C← A(pk)Dec(sk,·);
M← Dec(sk, C);
if M = ⊥ return b∗;
if b∗ = 0 then C∗ ← Enc(pk, M),
else C∗ ← Rand(pk, C);

b′ ← A(pk, C∗)Dec⊥(sk,·);
return (b′ = b∗).

Oracle Dec⊥(sk, ·):
Upon input C;
M′ ← Dec(sk, C);
if M′ = M then output ⊥,
else output M′.

Fig. 4: The Re-Randomizable RCCA Security Experiments.

Second, we recall the notion of re-reradomizability for PKE. Intuitively, this notion asks
that an adversary cannot tell apart a randomized ciphertext from a fresh new ciphertext for
the same message. The strongest notion of re-randomizability (as considered in Groth [32] and
Prabhajaran and Rosulek [43]), indeed, asks that the two distributions are identical, even condi-
tioned on the knowledge of the secret material. In our work, we settle down for a weaker notion
that considers indistinguishability for computationally bounded adversaries, which can still do
a form of chosen-ciphertext attacks.3 Specifically, we consider a decryption oracle that outputs
the error message (⊥) either when the ciphertext does not decrypt or when it properly decrypts
to the challenge message. This weaker oracle was considered by Groth [32] as a weakening of
the RCCA one.

Definition 10 (Weak-RCCA Re-randomizability.). Consider the experiment ExpRand−wRCCA

in Fig. 4. Let PKE be a re-randomizable PKE scheme. PKE is rerandomizable under weak re-
playable chosen-chipertexts attacks (Rand-wRCCA secure) if there is a negligible function negl

such that for any PPT adversary A∣∣∣∣Pr
[
ExpRand−wRCCA

A,PKE (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ).

4.2 Authenticated Re-randomizability

We introduce the notion of (key-homomorphic) authenticated re-randomizability for PKE schemes.
Informally speaking, this notion ensures that after honest re-randomization, an adversarially

3 Notice that the former notion captures chosen-ciphertext attacks thanks to the knowledge of the secret material.
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generated ciphertext (which may be invalid), cannot be “repaired” to become valid. This prop-
erty is crucial to counter “invalidate-and-repair” ciphertext tagging attacks that work as follows.
Assume a mixing service consisting of three mixers such that each of them outputs a permuted
re-randomization of the list of ciphertexts taken as input; also, assume that mixing is consid-
ered valid if all ciphertexts decrypt correctly (otherwise, an error is raised). Now, consider an
adversary that controls the first and last mixer and, despite the honest behavior of the second
mixer, wants to track a given input ciphertext, i.e., it wants to learn if the i-th ciphertext Ci
given to the first mixer corresponds to the j-th ciphertext C′j returned by the second mixer,
thus de-anonymizing the i-th sender. The attack is the following: the first mixer invalidates Ci
(replacing it with C̃i); the third mixer makes a corresponding reverse operation on C′j (replacing

it with C̃′j). Such operation has the property that, if C′j is a re-randomization of C̃i, then C̃′j
is a valid re-randomization of Ci. This way, if an error is not raised while decrypting C̃′j , the
adversary learns that, with high probability, i was mapped into j. Notably, such an attack is
not prevented by the RCCA property, and in fact it is possible to show RCCA schemes (e.g.,
the one in [43]) susceptible to it.

To solve this problem and make such repair infeasible, we introduce our new notion of authen-
ticated re-randomizability. In terms of functionality, we require the randomization algorithm
to use a authentication secret key κ, which must then be known by the decryption algorithm.
Additionally, to let different independent parties re-randomize a ciphertext in a cascade fashion,
we allow each party to use a different secret key, and decryption to work with the product of
all these keys. Namely, Rand(κ2,Rand(κ1, C)) can be decrypted using (κ1 · κ2) (this property is
useful for efficiency, but not necessary for correctness). For security, we formalize a notion of
unforgeability, which at a very high level says that an adversary who receives a ciphertext C re-
randomized under secret key κ can only produce a ciphertext C′ that is either invalid or decrypts
(under κ) to the same value as C, i.e., Dec(sk, κ, C) = Dec(sk, κ, C′), or Dec(sk, κ, C) = ⊥.

Formally, a re-randomizable PKE scheme PKE = (Setup,KGen,Enc,Dec,Rand) has authen-
ticated re-randomizability if it admits two PPT algorithms (ADec,ARand) and a group K acting
as key space, that work as follows:

ARand(pk, κ, C) is the authenticated re-randomization algorithm that takes as input a public
key pk, a secret randomization key κ ∈ K and a ciphertext C, and outputs a ciphertext C′.

ADec(sk, κ, C) is the authenticated decryption algorithm that takes as input the secret key sk,
a randomization key κ ∈ K and a ciphertext C, and outputs a message M or a special symbol
⊥ (indicating an error).

For correctness, the following two properties must be satisfied.4 For any (sk, pk) ∈ KGen(prm)
and for any message M: (1) For any κ ∈ K we have ADec(sk, 1,Enc(pk, M)) = M; (2) For any
κ, κ′ ∈ K and for any C such that Dec(sk, κ, C) = M, we have ADec(sk, κ ·κ′,ARand(pk, κ′, C)) = M.

We introduce the following security property.

Definition 11 (Unforgeability under Chosen-Chipertext Attacks). Consider the ex-
periment ExpUF−CCA in Fig. 5. Let APKE = (Setup,KGen,Enc,ADec,ARand) be a PKE with
authenticated re-randomizability. We say that APKE is unforgeable under chosen-ciphertext
attacks (UF-CCA-secure, for short) if there exists a negligible function negl such that for any
PPT A

Pr
[
ExpUF−CCA

A,APKE(λ) = 1
]
≤ negl(λ).

4 Notice that these properties generalize the correctness of a re-randomizable PKE.
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Experiment ExpUF−CCA
A,APKE(λ):

prm← Setup(1λ),
(pk, sk)← KGen(prm), κ← $ K;
({Ci}i∈[n], κ̃)← A(pk);
C = {C′i ← ARand(pk, κ, Ci)}i∈[n]; Q = {ADec(sk, κ̃, Ci)}i∈[n];
C∗ ← A(C); M∗ ← ADec(sk, κ̃ · κ, C∗));
return 1 iff (m∗ /∈ Q ∪ {⊥}).

Fig. 5: UF-CCA security experiment.

Finally, for a PKE scheme with authenticated re-randomizability, the properties of RCCA
security and weak-RCCA re-randomizability are required to hold with respect to the decryption
oracle ADec(sk, ·, ·) that takes inputs (κ, C).

4.3 A Scheme Secure under DDH in the Random Oracle Model

We present our PKE scheme with authenticated re-randomizability. In order, we first present a
re-randomizable PKE and prove that it is RCCA-secure and re-randomizable under the DDH
assumption in the non-programmable random oracle model. Next, we show that the scheme can
be extended to satisfy authenticated re-randomizability.

Our re-randomizable RCCA PKE. We are ready to describe the main construction of this
section. The scheme works over a group G where the DDH problem is assumed intractable, and
it supports the encryption of messages that are tuples of ` ∈ N group elements. By abusing of
the notation we let the key generation algorithm takes, as additional input, the length parameter
` = poly(λ). The scheme PKE = (Setup,KGen,Enc,Dec,Rand) is defined by the following tuple
of algorithms.

– Setup(1λ): Choose a group G of prime order q such that q > 2λ, and let G be a generator of
G. Output the group description prm = (G, q, G).

– KGen(prm, 1`): Sample g ← $ Z2
q , a, c,d ← $ Z2

q , B ← $ Z`×2
q and F ← $ Z(`+3)×2

q . Compute

a ← aT · g, b ← B · g, c ← cT · g, d ← dT · g and f ← F · g. Choose hash functions
H : G→ {0, 1}λ and G : G` × {0, 1}λ → Zq that will be modeled as random oracles.
Return pk = (H,G, [g, a,b, c, d, f ]), sk = (a,B, c,d,F).

– Enc(pk, M̄): Sample w, x, y ← $ Zq and R← $ G uniformly at random, and compute:

ak← H(R), p← G(M̄‖ak),

[w]← w · [g], [cw]← w · [a] +R, Z̄ ← w · [f ]

[x]← x · [g], [cx]← x · [b] + M̄, [px]← x · (p[c] + [d]),

[y]← y · [g], [cy]← y · [b], [py]← y · (p[c] + [d]),

Define W̄ := [w, cw] ∈ G3, X̄ := [x, cx, px] + Z̄ ∈ G`+3, Ȳ := [y, cy, py] ∈ G`+3, and output
the ciphertext C := (W̄ , X̄, Ȳ ).

– Rand(pk, C;w′, s, t): Parse C = (W̄ , X̄, Ȳ ) as defined above. Sample w′, t← $ Zq and s← $ Z2λ

and output C′ := (W̄ ′, X̄ ′, Ȳ ′) computed as follows:

W̄ ′ ← W̄ + w′ · [g, a], X̄ ′ ← X̄ + s · Ȳ + w′ · [f ], Ȳ ′ ← t · Ȳ

– Dec(sk, C): Parse C := (W̄ , X̄, Ȳ ), W̄ := [w, cw].
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Sample t← $ Zq, compute X̄ ′ ← X̄−F · [w]+t ·Ȳ , and parse X̄ ′ := [x, cx, px]. Next, compute

ak← H([cw]− aT · [w]), M̄← [cx]−B · [x], p← G(M̄‖ak)

If [cw]− aT · [w] 6= [0] and [px] = (p · c + d)T · [x], output M̄, else output ⊥.

The correctness of the scheme can be checked by inspection. If we do not consider re-
randomization, then it simply reduces to the correctness property of the underlying SPHF, e.g.,
on that aT · [w] = w · [a] when w = w · [g].

We remark that the decryption procedure is randomized (namely, it sample the value t).
In this way we can simultaneously check, by verifying only one equation, that both the X̄
component and the Ȳ component lie in the suitable subspaces. Alternatively, one could de-
randomize the procedure by additionally check the validity of the py component of Ȳ and that
the cy component decrypts to 0. Notice this extra checks on the Ȳ component are necessary
only to comply with our notion of correctness which asks that for any valid ciphertext a re-
randomization of it decrypts to its intended value. However, one could redefine the decryption
procedure by fixing t = 0 and still obtain a RCCA-secure scheme with a slightly relaxed notion
of correctness.

In the following theorems we state the RCCA security (see Def. 9) and re-randomizability
(see Def. 10) of the PKE scheme described above.

Theorem 2. If the DDH assumption holds, the scheme PKE described above is RCCA secure
in the NPRO Model.

Theorem 3. If the DDH assumption holds, the scheme PKE described above satisfies weak-
RCCA re-randomizability in the NPRO Model.

The proofs appear slightly later in Section 4.3.

Remark 1 (On Variations of the Scheme.). The proof of Theorem 2 does not use neither the
component Ȳ nor the secret key F to argue security. In fact, a PKE scheme like the above one
but where ciphertexts consist only (W̄ , X̄), and y = 0 in encryption is RCCA secure (but not
re-randomizable). Golle et al. [29] define the notion of universal re-randomizability that says
that the re-randomization algorithm can work without the public key. For efficiency reason, our
PKE scheme is not universally re-randomizable (as, for example, the scheme of [43]). However,
using the double-strand technique of Golle et al. for the component W̄ (as we do with X̄, Ȳ ) we
can make our scheme universally re-randomizable.

Our PKE with authenticated re-randomizability. Here we show that the scheme PKE
described earlier can be extended to have authenticated re-randomizability. To this end, we
describe the two additional algorithms (ARand,ADec), let K = Z∗

2λ
, and then show that the

scheme APKE = (Setup,KGen,Enc,ARand,ADec) has correctness, UF-CCA security, as well as
RCCA security and re-randomizability.

– ARand(pk, κ, C): Output C′ ← Rand(pk, κ · C).
– ADec(sk, κ, C): Output Dec(sk, C/κ).

First, we show in the following lemma the correctness of the scheme.

Lemma 3. The scheme APKE is a correct PKE scheme with authenticated re-randomizability.
Namely, for any `, any sk, pk ∈ KGen(prm, 1`) and for any message M: (1) for any κ ∈ Z∗q we
have ADec(sk, 1,Enc(pk, M)) = M; (2) for any κ, κ′ ∈ Z∗q and for any C such that Dec(sk, κ, C) = M

we have ADec(sk, κ · κ′,ARand(pk, κ′, C)) = M.
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Proof. Property (1) follows immediately by the correctness of PKE . To see that the second
correctness property holds, we proceed as follows.

Let C̃← ARand(pk, κ̃, C), parse C̃ = (W̃ , X̃, Ỹ ) with W̃ = [w̃, c̃w], Ȳ = [ỹ, c̃y, p̃y], and parse
analogously C = (W̄ , X̄, Ȳ ). Let decryption of C with κ compute the following values:

R← ([cw]− aT · [w])/κ

X̄ ′ ← (X̄ − F · [w])/κ and parse X̄ ′ = [x′, c′x, p
′
x]

M̄← [c′x]−B · [x′]

and let the check [px] = (p · c + d)T · [x] be satisfied, for p = G(M̄‖H(R)).

Decryption of the re-randomized ciphertext C̃ with tag κ · κ̃ instead computes the following:

R̃← ([c̃w]− aT · [w̃])/(κ · κ̃)

X̃ ′ ← (X̃ − F · [w̃])/(κ · κ′) and parse X̃ ′ = [x̃′, c̃′x, p̃
′
x]

M̃← [c̃′x]−B · [x̃′]

Let w, s, t be the randomizers used in ARand. First, we argue that R′ = R:

R̃ = ([c̃w]−aT · [w̃])/(κ · κ̃) =

=(κ̃ · [cw] + w · [a]− aT · (κ̃ · [w] + w · [g]))/(κ · κ̃)

=(κ̃ · [cw]− κ̃ · aT · [w])/(κ · κ̃) = ([cw]− aT · [w])/κ = R

Second, we argue that X̃ ′ = X̄ ′ + s · Ȳ :

X̃ ′ = (X̃ − F · [w̃])/(κ · κ̃) =

= (κ̃(X̄ + s · Ȳ + s · Ȳ + w · [f ])− F · κ̃([w] + w · [g]))/(κ · κ̃) =

= (X̄ + s · Ȳ − F · [y])/κ = X̄ + s · Ȳ .

Third, we argue that M̃ = M̄:

[c̃′x]−B · [x̃′] = [c̃′x]−B · [x̃′] + s · ([c′y]−B · [y′]) = [c′x]−B · [x′] + s · 0

Finally, by the same derivation in the equation above, the decryption checks [p̃′x] = (p·c+d)T ·[x̃′]
and [p̃′y] = (p · c + d)T · [ỹ′] (with p = G(M̄‖H(R)) ) are also satisfied.

In the following theorems we state the security properties of the APKE scheme described above.

Theorem 4. If the DDH assumption holds, the scheme PKE described above satisfies RCCA
security and weak-RCCA re-randomizability in the NPRO Model.

The proof of this theorem can be obtained in a straightforward way by adapting the proofs
of theorems 2 and 3 for the scheme PKE . The idea is very simple. Since the only difference is
that for APKE the decryption oracle takes inputs (κ, C), by following the construction of the
ADec algorithm we observe that every oracle query to ADec can be simulated by using the Dec
simulation on input C/κ.

Theorem 5. If the DDH assumption holds, the scheme APKE described above is UF-CCA-
secure in the NPRO model.
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The proof of this theorem appears in Appendix 4.6. Here we give an intuition, which relies on two
main ideas. The first one is that the re-randomization secret key κ is hidden to the adversary:
via a series of hybrid steps based on the DDH assumption we can get to an experiment where
each ciphertext is authenticated with a random and independent key κi. Once the previous step
is done, the key κ used in the decryption of the ciphertext C∗ is random and independent of the
adversary’s view. Hence, the second idea is that in such a case there is a negligible probability
(over the choice of κ) that the adversary can create a valid ciphertext (unless it is a honest
re-randomization of one it received).

4.4 Proof of Theorem 2 (RCCA Security)

Proof. We prove the theorem by defining the following sequence of hybrid experiments and
arguing that each consecutive pair of experiments is indistinguishable. Eventually, in the last
experiment the adversary can guess the challenge bit only with probability 1/2.

To simplify the exposition, we consider a slightly different decryption algorithm where the
randomizer t is always set to 0. Notice that for any adversary A for the RCCA experiment with
oracle access to the original decryption procedure there exists an adversary A′ for the RCCA
experiment with oracle access to this new decryption procedure.

The reason is that the randomized part of the decryption algorithm can be publicly per-
formed. More in details, the adversary A′ emulates the adversary A and whenever it gets a
decryption query C = (W̄ , X̄, Ȳ ) it samples randomness t← $ Zq and sets C′ = (W̄ , X̄+ t · Ȳ , Ȳ )
and forwards C′ to its decryption oracle. It is to see that the adversary A′ simulates perfectly
the original decryption oracle for the adversary A.

We are ready to start with the hybrids argument. In what follows we denote underlined the
changes introduced in each experiment.

Hybrid H1. In this experiment H1 the challenge ciphertext C∗ = (W̄ ∗, X̄∗, Ȳ ∗) is encrypted as
in ExpRCCA except that [x∗], [w∗]← $ G2 \Span([g]) and the computation of C∗ uses the private
hashing procedure with knowledge of the secret material. Specifically:

Sample: [w∗], [x∗]←$ G2 \ Span([g]), y∗ ←$ Zq
let [µw]← aT · [w∗], [µx]← B · [x∗],

W̄ ∗ ← ([w∗], µw +R∗), Z̄∗ ← F · [w∗]

X̄∗ ← ([x∗], [µx] + M̄b∗ , (p · c + d)T · [x∗]) + Z̄

Ȳ ∗ ← y∗ · ([g],b, (p · [c] + [d])

Lemma 4. If the DDH Assumption holds over G as generated by Setup then ExpRCCA
PKE ≈c H1.

The proof is rather straightforward and thus we only give a sketch. The reduction, given in
input a DDH challenge, which is either in Span([g]) or random in G2, can sample all the secret
material of the experiment (i.e., secret key values and challenge bit b∗) and runs an experiment
that simulates either ExpRCCA

PKE or H1 according to whether [x∗], [w∗] are in Span([g]) or random
in G2. With a little more detail, this argument also relies on the fact that elements sampled
from G2 and G2 \ Span([g]) are statistically indistinguishable.

Hybrid H2. Let experiment H2 be the same as H1 but where all the randomness used for the
challenge ciphertext, including ak∗ ← $ {0, 1}λ, is sampled at the beginning of H2, and where
the decryption oracle executes the following decryption procedure:
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Dec2(sk, C): Parse C = (W̄ , X̄, Ȳ ), and W̄ = [w, cw]. Proceed as Dec except that compute
R as follow.

Let αw, βw be such that w = αw ·w∗ + βw · g. Notice that every w ∈ Z2
q can be written

in this way as (w∗,g) is a basis for Z2
q . Compute R← [cw]− αw · [µw]− βw · [a] .

Lemma 5. Hybrids H1 and H2 are identically distributed: H1 ≡ H2.

Proof. The only difference between Dec and Dec2 is that the former computes R as [cw]−aT ·[w]
while the latter computes as described above. However notice that:

aT · [x] = aT · (αw[w∗] + β[g]) = αw(aT [w∗]) + βw · [a] = αw · [µw] + β · [a],

in the last equation, we use that [µw] is set as aT · [w∗], as introduced in the experiment H1.

Hybrid H3. Let experiment H3 be the same as H2 but the element µw ← $ G is sampled
uniformly at random.

Lemma 6. The hybrids H3 and H3 are identically distributed: H3 ≡ H4.

Proof. We use the non-adaptive smoothness of Corollary 1. In particular, notice that, given in
input (prm, a,x∗, µw) we can perfectly simulate the experiment without the knowledge of the
secret key componet a. In fact, because of the changes introduced in H3, the decryption oracle
does not use a to compute its answer.

Hybrid H4. Let experiment H4 be the same as H3 but where all the randomness used for the
challenge ciphertext, including ak∗ ← $ {0, 1}λ, is sampled at the beginning of H4, and where
the decryption oracle executes the following decryption procedure:

Dec4(sk, C): Parse C = (W̄ , X̄, Ȳ ), and W̄ = [w, cw]. Proceed as Dec except that, instead
of computing R, it defines ak as follows.

Let αw, βw be such that w = αw ·w∗ + βw · g.

1. If αw = 1 and cw = αw · c∗w + βw · a, then set ak← ak∗;
2. If αw = 0 then compute ak← H([cw]− βw · [a]);
3. If αw 6∈ {0, 1} or (αw = 1 and cw 6= αw · c∗w + βw · a) then sample ak← $ {0, 1}λ.

Lemma 7. Hybrids H4 and H3 are statistically indistinguishable: H4 ≈s H3.

Proof. Let us call a ciphertext C = (W̄ , X̄, Ȳ ) W̄ -invalid if it falls in case (3) of Dec2, i.e., if
αw 6∈ {0, 1} or (αw = 1 and cw 6= αw · c∗w + βw · a).

Let QH be the set of queries made by A to the random oracle H together with the corre-
sponding answers, and let Q̂H be the projection of QH to only the queries of H. Let QDec be
the queries made by A to the decryption oracle.

We define the following two events in the experiments H3,H4:

– InvQuery(a): there exists a W̄ -invalid ciphertext (W̄ = [w, cw], X̄, Ȳ ) ∈ QDec such that

([cw]− aT · [w]) ∈ Q̂H
– InvQuery(b): R

∗ ∈ Q̂H,

In the following claim we argue that H4 ≡ H3 unless either one of the above events occurs.
Then we will conclude the proof by showing that each event occurs with negligible probability.

Claim 1 |Pr [H4]− Pr [H3] | ≤ Pr
[
InvQuery(a)

]
+ Pr

[
InvQuery(b) ∧ ¬InvQuery(a)

]
.
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Proof. Let E be the event (InvQuery(a) ∨ (InvQuery(b) ∧ ¬InvQuery(a))). To prove the claim
we rely on Shoup’s difference lemma (see lemma 1) and a standard union bound. To apply this
lemma, we have to show that Pr [H4 ∧ ¬E] = Pr [H3 ∧ ¬E]. Namely, since ¬E = ¬InvQuery(a) ∧
¬InvQuery(b), we show that conditioned on the event that both InvQuery(a) and InvQuery(b)

do not occur, the two hybrids are identically distributed.

Since the two games differ only in the answers to decryption queries, let us partition these
queries in three classes: for i = 1, 2, 3, queries of type i are those that fall in the i-th case of the
Dec4 decryption algorithm. For queries of type 2, it is easy to see that they are answered in the
same way in both games. For queries of type 1, the adversary has basically sent a component
W̄ that is a re-randomization of [w∗, c∗w], which thus must decrypt to R∗. Therefore, in H4

continuing decryption with ak = ak∗ generates the same distribution as in H3 if we condition
on the fact that R∗ /∈ Q̂H. For queries of type 3, Dec4 answers by sampling ak at random that,
similarly to the previous case, generates the same distribution as in H3 if we condition on the
fact that ([cw]− aT · [w]) /∈ Q̂H.

We continue the proof by bounding Pr
[
InvQuery(a)

]
.

Claim 2 For every PPT adversary Pr
[
InvQuery(a)

]
∈ negl(λ).

Proof. We show that the claim holds over the random choice of a ∈ Z2
q . Consider the following

algorithm:

Adversary B(a):

1. Sample B← $ Z`×2
q , c,d← $ Z2

q and F← $ Z(`+3)×2
q and set sk = (⊥,B, c,d,F) and

pk = [g, a,b, c, d, f ] where [b] = [B · g], [c] = [cT · g], [d] = [dT · g] and [f ] = [F · g].
2. Run the hybrid experiment H4 with the adversary A where the decryption oracle

Dec4 takes as secret key sk, and where the random oracle H is simulated in the non-
programmable way (recall, this means that the reduction can only see the queries
made by A but it cannot program their outputs). Let QDec be the set of all queries
made by A to the decryption oracle. Notice that the challenge ciphertext can be
sampled without the knowledge of aT · [w∗] because of the change introduced in H3.

3. Pick a random C from QDec and pick a random element (R, ak) from QH. Parse
C = (W̄ , X̄, Ȳ ) where W̄ = [w, cw] and output ([w], [cw]−R).

We show that

Pr
a←$ Z2

q ,B

[
aT · [w] = [cw]−R

w 6∈ Span(g)

∣∣∣∣∣ aT · g = a

]
≥

Pr
[
InvQuery(a)

]
|QDec| · |QH|

In fact, conditioning on InvQuery(a), with probability 1/|QDec| the ciphertext C = (W̄ , X̄, Ȳ )

chosen by B is such that ([cw] − aT [w]) ∈ QH. Conditioning on the latter, with probability
1/|QH| the element (R, ak) is such that R = [cw]− aT · [w].

Therefore, by applying Lemma 2, we obtain Pr
[
InvQuery(a)

]
≤ |QDec| · |QH|/q, and since

both |QH| and |QDec| are polynomially bounded in λ, we obtain our claim.

We show that Pr
[
InvQuery(b) ∧ ¬InvQuery(a)

]
is negligible in λ over the randomness of a.

Claim 3 For every PPT adversary Pr
[
InvQuery(b) ∧ ¬InvQuery(a)

]
∈ negl(λ).
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Proof. This proof is similar to the one of the previous claim. Consider the following algorithm:

Adversary B(a):

1. Sample B← $ Z`×2
q , c,d← $ Z2

q and F← $ Z(`+3)×2
q and set sk = (⊥,B, c,d,F) and

pk = [g, a,b, c, d, f ] where [b] = [B · g], [c] = [cT · g], [d] = [dT · g] and [f ] = [F · g].
2. Run the hybrid experiment H4 with the adversary A where the decryption oracle Dec4

takes as secret key sk, the random oracle H is simulated in the non-programmable
way, and with the only difference that the challenge ciphertext component [c∗w] is
sampled uniformly at random from G.

3. Pick a random element (R, ak) from QH and output ([w], [c∗w]−R).

We show that

Pr
a←$ Z2

q ,B

[
aT · [w] = [c∗w]−R

w 6∈ Span(g)

∣∣∣∣∣ aT · g = a

]
≥

Pr
[
InvQuery(b) ∧ ¬InvQuery(a)

]
|QH|

In fact, first notice, conditioning on ¬InvQuery(a) then by Corollary 1 the distribution of [c∗w]
in H4 is equivalent to the uniform distribution over G. Further conditioning on InvQuery(b),

with probability 1/|QH| the element (R, ak) is such that R = ([c∗w]− aT · [w∗]) = R∗.
By Lemma 2 the left hand side of the above equation is upper bounded by 1/q. Therefore

we obtain that Pr
[
InvQuery(b) ∧ ¬InvQuery(a)

]
≤ |QH|/q, and since |QH| is polynomially

bounded in λ, we obtain our claim.

By combining the three Claims above we obtain the proof of Lemma 7.

Hybrid H5. Let experiment H5 be the same as H4 but with the decryption algorithm modified
as follow:

Dec5(sk, C): Parse C = (W̄ , X̄, Ȳ ) and Ȳ = [y, cy, py]. Compute ak from W̄ as in Dec4,

and let [x, cx, px]← X̄ − Z̄.
Let α, β ∈ Zq be such that x = α · x∗ + β · g. Notice that, as in H2, every x can be
written in this way.
Compute M̄← [cx]− (α · µx + β · [b]);

If [px] = (p · c + d)T · [x] , output M̄, else output ⊥.

Lemma 8. The hybrids H5 and H4 are identically distributed: H5 ≡ H4.

Proof. The only difference between Dec4 and Dec5 is that the former computes M̄ as [cx]−B · [x]
while the latter computes it as described above. However notice that:

B · [x] = B · (α · [x∗] + β · [g]) = α · (B · [x∗]) + β · [b] = α · µx + β · [b],

in the last equation, we use that µx is set B · [x∗], as introduced in the experiment H1.

Hybrid H6. Let experiment H6 be the same as H5 but the element µx ← $ G` is sampled
uniformly at random.

Lemma 9. The hybrids H6 and H5 are identically distributed: H6 ≡ H5.

Proof. We use the non-adaptive smoothness of Corollary 1. In particular, notice that, given in
input (prm,b,x∗,µx) we can perfectly simulate the experiment without the knowledge of the
secret key componet B. In fact, because of the changes introduced in H5, the decryption oracle
does not use B to compute its answer.
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Hybrid H7. Let experiment H7 be the same as H6 but with the decryption algorithm modified
as follow:

Dec7(sk, C): Parse C = (W̄ , X̄, Ȳ ). Compute ak from W̄ as in Dec4. Let α, β ∈ Zq be such
that x = α · x∗ + β · g, and compute M̄ as in the previous experiment.
If ak 6= ak∗ and α 6= 0, or ak = ak∗ and α 6= 0 and M̄ 6∈ {M̄0, M̄1} then output ⊥,
else, execute the last line of Dec5.

Lemma 10. The hybrids H7 and H6 are statistically indistinguishable: H7 ≈s H6.

Proof. Let BadDecryption be the event that the adversary queries the decryption oracle on a
ciphertext such that ak 6= ak∗ and α 6= 0, or ak = ak∗ and α 6= 0 and M̄ 6∈ {M̄0, M̄1}, and that in
experiment H6 would be answered with an output 6= ⊥.

Claim 4 |Pr [H7]− Pr [H6] | ≤ Pr [BadDecryption].

Proof. We rely again on Shoup’s difference lemma (see lemma 1). The two games differ only in
the answers to decryption queries, and in particular, while Dec7, for the queries described by
the event above outputs ⊥, Dec5 may not.

We show that BadDecryption happens with probability negligible in the security parameter.

First, notice that if either ak 6= ak∗ and α 6= 0, or ak = ak∗ and α 6= 0 and M̄ 6∈ {M̄0, M̄1}
happen, then the value p ← G(M̄‖ak) is different from p∗ = G(M̄b∗‖ak∗) with overwhelming
probability. This is easy to see: in the first case ak 6= ak∗ and therefore ak 6= ak∗; in the second
case M̄ 6∈ {M̄0, M̄1}.

By definition of BadDecryption, the decryption oracle in H6 does not output ⊥ therefore:

[px] =(p · c + d)T · [x]

=(p · c + d)T · [α · x∗ + β · g]

=(p · c + d)T · α · [x∗] + β · (p · [c] + [d])

If we let [γ]← cT [x∗] and [δ]← dT [x∗], we can rewrite the above equation as:

p · [γ] + [δ] = ([px]− β · (p · [c] + [d]))/α (1)

Below we argue that this equation is satisfied with negligible probability.

By Corollary 1, one can see that, before the adversary makes any query, [γ, δ] are uniformly
distributed in G2. After seeing the challenge ciphertext and interacting with the decryption
oracle, the adversary can learn some information about γ and δ. Yet, we argue that conditioned
on this information, γ and δ are sufficiently random to make the event happen with negligible
probability.

More precisely, let j be the index of the decryption query such that the event BadDecryption
happens for the first time. This means that for the i-th query with i < j, and where the
ciphertext is of the form described in BadDecryption, both H7 and H6 would output ⊥. Notice
that at the time of the j-th decryption query, the adversary has learned some information about
γ and δ. Let us consider every previous decryption query i < j. We have three cases:

1. If the queried ciphertext has αi = 0, the query’s outcome reveals no information on γ, δ.
2. If the queried ciphertext has αi 6= 0 and aki = ak∗ and M̄i = M̄b∗ , then the value pi computed

by the decryption oracle is equal to p∗ which is already present in the view of the adversary.
The latter implies that no information on γ, δ is revealed.
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3. If the queried ciphertext is such that aki 6= ak∗ and αi 6= 0, or aki = ak∗ and αi 6= 0 and
M̄i 6= M̄b∗ , then the adversary learns that pi ·γ+δ 6= px,i−βi ·(pi ·c+d)/αi, where px,i, pi, βi, αi
are the values px, p, β, α as computed in the i-th decryption.

The above considerations and the definition of γ and δ implies that the distribution of [γ, δ] at
the time of the j-th query is uniform over the set

Sj = {[γ, δ] ∈ G2 : p∗ · γ + δ = p∗x
∧
i<j

pi · γ + δ 6= px,i − βi · (pi · c+ d)/αi ∧ p∗ 6= pi}

which has cardinality ≥ q − j.
Therefore, considering the probabilities that ak 6= ak∗ and that equation (1) is satisfied, we

have that BadDecryption occurs for the first time in the j-th decryption query with probability
at most (1 − 2−λ)/(q − j). By a union bound, we can conclude that Pr [BadDecryption] ≤
|QDec|(1−2−λ)/(q−|QDec|). Finally, notice that |QDec| is a polynomial in λ while q is exponential
in λ. Hence this probability is negligible in λ.

Hybrid H8. Let experiment H8 be the same as H7 but with the decryption algorithm modified
as follow:

Dec8(sk, C): Parse C = (W̄ , X̄, Ȳ ). Compute ak from W̄ as in Dec4. Let α, β ∈ Zq be
such that x = α · x∗ + β · g, and compute M̄ as in the previous experiment. Compute
p← G(M̄‖ak).
If ak 6= ak∗ and α 6= 0, or ak = ak∗ and α 6= 0 and M̄ 6∈ {M̄0, M̄1} then output ⊥ (as in the
previous experiment),
else if (1) ak = ak∗ and α 6∈ {0, 1} and M̄ ∈ {M̄0, M̄1}, or (2) ak = ak∗ and α = 0, then
output ⊥,
else, execute the last line of Dec5.

Lemma 11. The hybrids H8 and H7 are statistically indistinguishable: H8 ≈s H7.

Proof. Let BadDecryption(j) be the event that the j-th query to the decryption oracle is the
first one such that either ak = ak∗ and α 6∈ {0, 1} and M̄ ∈ {M̄0, M̄1} or ak = ak∗ and α = 0, and
that in experiment H7 the query would be answered with an output 6= ⊥.

Claim 5 |Pr [H8]− Pr [H7] | ≤ Pr
[
∃j ≤ |QDec| : BadDecryption(j)

]
.

The claims follows easily applying the Shoup’s difference lemma (see lemma 1). Recalling that
QG is the set of queries to the random oracle G, define the event Queried be the event that ∃M̄
such that (M̄, ak) ∈ QG notice that:

Pr [BadDecryption(j)] ≤ Pr [BadDecryption(j)| ¬Queried] + Pr [Queried] .

Claim 6 Pr [BadDecryption(j)| ¬Queried] ≤ negl(λ).

Proof. If the event BadDecryption(j) happens then it holds px = (p · c + d)T · x where p ←
G(M̄‖ak∗). However, since ¬Queried then the value p is uniformly distributed over Zq. Hence,
for such random p (and considering that x 6= 0 since α 6= 0) the equation px = (p · c + d)T · x
holds with probability ≤ 1/q.

Let QDec be the set of decryption oracle queries.
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Claim 7 Pr [Queried] ≤ |QH′ |/(2λ − |QDec|).

Proof. Notice that ak∗ is sampled uniformly from {0, 1}λ, because of the change introduced in
H4, moreover, ak∗ is independent from C∗, because of the change introduced in experiment H6.
However, we cannot claim that ak∗ is uniformly distributed over {0, 1}λ given all the view of
the adversary. In fact, the behavior of Dec8 depends on ak∗. However, below we argue that the
decryption oracle leaks only a small amount of information about ak∗. We analyze this case by
case:

1. If α = 0 then when ak = ak∗ the decryption algorithm always output ⊥, on the other
hand, when ak 6= ak∗, the decryption could output either ⊥ or a message M̄′. Notice that the
message is computed as a function of ak which is uniformly random conditioned on ak 6= ak∗,
therefore the information that M̄′ carries about ak∗ is not more than the information of ak
carries about ak∗, which is just that ak 6= ak∗.

2. If α = 1 then when ak = ak∗ the decryption oracle outputs either � or ⊥, on the other hand,
when ak 6= ak∗, the decryption outputs ⊥.

3. If α 6∈ {0, 1} then when ak = ak∗ then the decryption oracle outputs ⊥, also, when ak 6= ak∗,
the decryption outputs ⊥.

By the analysis above, all the queries made by the adversary allow to exclude one possible
assignment for the value of ak∗. Specifically, for (1) the worst case is when in one case the
decryption oracle outputs ⊥ but in the other case outputs a message M̄′, for (2) the worst case
is when in one case the decryption oracle outputs � but in in the other case outputs ⊥ and for
(3) the decryption oracle gives no information since it always outputs ⊥. The random variable
ak∗ is uniformly distributed over a space of size 2λ − |QDec|, therefore for any fixed ak′ the
probability that ak∗ is equal to ak′ given the view is 1/(2λ − |QDec|). By a simple union bound
over all the random oracle query to H′, we can prove the statement of the claim.

Putting together Claim 6 and Claim 7, and by union bound over all the queries to the decryption
oracle we obtain that the probability that exists j ≤ |QDec| such that BadDecryption(j) is
negligible in λ and therefore, by Claim 5, the statement of the lemma.

Hybrid H9. Let experiment H9 be the same as H8 but with the decryption algorithm modified
as follow:

Dec8(sk, C): Parse C = (W̄ , X̄, Ȳ ). Compute ak from W̄ as in Dec4. Let α, β ∈ Zq be
such that x = α · x∗ + β · g, and compute M̄ as in the previous experiment. Compute
p← G(M̄‖ak).
If ak 6= ak∗ and α 6= 0, or ak = ak∗ and α 6= 0 and M̄ 6∈ {M̄0, M̄1} then output ⊥ (as in the
previous experiment),
else if (1) ak = ak∗ and α 6∈ {0, 1} and M̄ ∈ {M̄0, M̄1}, or (2) ak = ak∗ and α = 0, then
output ⊥,
else if ak = ak∗ and α = 1 and M̄ ∈ {M̄0, M̄1} then
let [x̃, c̃x, p̃x]← X̄∗ − Z̄∗, (where X̄∗, Z̄∗ are defined in H1)
if [cx, px] = [c̃x, p̃x] + β · [b, p∗c+ d] return � else ⊥,
else execute the last line of Dec5.

Lemma 12. The hybrids H9 and H8 are statistically indistinguishable: H9 ≈s H8.

Proof. Let BadDecryptionSame be the event that the adversary queries the decryption oracle
with a ciphertext such that ak = ak∗ and α = 1 and M̄ ∈ {M̄0, M̄1}, and [cx, px] 6= [c̃x, p̃x] + β ·
[b, p∗c+ d] but the decryption oracle Dec8 would not output ⊥.
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Claim 8 |Pr [H9]− Pr [H8] | ≤ Pr [BadDecryptionSame].

Proof. We rely again on Shoup’s difference lemma. The two games might differ only when
answering decryption queries such that ak = ak∗ and α = 1 and M̄ ∈ {M̄0, M̄1}. Moreover, notice
that if [cx, px] = [c̃x, p̃x] + β · [b, p∗c + d] then both decryption oracles would answer �, so
the relative branch in the decryption procedure Dec9 returns the same as Dec8 would. So the
two experiments proceed exactly the same conditioned on the event BadDecryptionSame not
happening.

We show that BadDecryptionSame happens with negligible probability in the security parame-
ter. Notice that since [cx, px] 6= [c̃x, p̃x]+β ·[b, p∗c+d] but ak = ak∗, and α = 1 and M̄ ∈ {M̄0, M̄1},
and the ciphertext decrypt correctly in H8, then it must be that M̄ = M̄1−b∗ , in fact if [cx] = [c̃x]
then px 6= p̃x + p∗c+ d and thus the ciphertext cannot decrypt correctly.

As shown in the previous lemma, Pr
[
∃M̄ : (M̄, ak∗) ∈ QG

]
∈ negl(λ) in H8. So, let p′ ←

G(M̄1−b∗‖ak∗) then p′ is statistically close to a value uniformly distributed over Zq. Given this,
the equation px = (p′ · c + d)T · x holds with negligible probability, which implies that the
probability of BadDecryptionSame is negligible.

Lemma 13. In H9, Pr [bA = b∗] = 1
2

Proof. We show that in H9 the Pr [bA = b∗] is equal to 1
2 . In fact, since µx is chosen uniformly at

random, the ciphertext C∗ and the bit b∗ are independently distributed given the public key and
all the answers to the oracle queries up to generation of the C∗. Moreover, all the queries with
ak 6= ak∗ and α 6= 0 are answered with ⊥, which does not give any further information about
b∗; all the queries with ak 6= ak∗ and α = 0 can be answered as a function of the view of the
adversary. Finally, all the queries with ak = ak∗ are answered either with ⊥ or with �. Notice
that � is given independently of b∗. Wrapping up all together, the full view of the adversary in
the experiment H9 is independent of the challenge bit, therefore the lemma follows.

By the lemmas above and the triangular inequality the distribution of the real experiment
is 1

2 + negl(λ). Moreover, all the reductions given do not need to program the random oracle
but instead they simply keep track of the queries made by the adversary. Therefore the scheme
is secure in the Non-Programmable Random Oracle Model.

4.5 Proof of Theorem 3 (re-randomizability)

Proof. We prove the theorem using a sequence of hybrid experiments.
Similarly to the proof of Theorem 2, to simplify the exposition, we consider a slightly different

decryption algorithm where the randomizer t is always set to 0. As before, for any adversary
A for the Rand-wRCCA experiment for the original PKE scheme there exists an adversary A′

for the Rand-wRCCA experiment over this slightly different PKE scheme that has the same
advantage of A. The reason is the same as before, namely, that the randomized part of the
decryption algorithm can be publicly performed. There is a little detail to notice. In the Rand-
wRCCA experiment the adversary sends the challenge ciphertext C (see Fig. 4), the adversary
looses immediately if the ciphertext does not decrypt. However, we notice that if the challenge
ciphertext C decrypts under the randomized decryption procedure then it does decrypt under
the slightly modified decryption procedure. We can do this without loss of generality because
the randomized part of the decryption procedure can be publicly performed.

The difference between each consecutive pair of hybrid games is denoted underlined.

Hybrid H0. The hybrid H0 is equivalent of the experiment ExpRand−wRCCA but the hybrid aborts
whenever it finds a collision either in the random oracle G or in the random oracle H.
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Lemma 14. The Rand-wRCCA experiment on PKE and H0 are statistically close.

Proof. The event that a collision is found in G or H is negligible in the security parameter.
The two distributions diverge only when such event happens, by the Shoup’s difference lemma
(lemma 1) the two experiments are statistically close.

Hybrid H1. In this experiment H1 the challenge ciphertext is computed as in experiment
H0 except that [y∗]← $ G2 \ Span([g]) and [w∗]← $ G2 \ Span([g]). Moreover, the ciphertext
C∗ = (W̄ ∗, X̄∗, Ȳ ∗) is computed using the secret material as follow:

[c∗w]←

{
aT · [w∗] +R∗ if b∗ = 0

aT · [w∗] + [ĉw] else
, Z̄∗ ← F̄ · [w∗]

X̄∗ ←

{
x∗ · [g,b, p∗c+ d] + [0, M̄, 0] + Z̄∗ if b∗ = 0

X̂ + Z̄∗ + s · Ŷ else

Ȳ ∗ ←

{
[y∗,B · y∗, (p∗c + d)T · y∗] if b∗ = 0

t · Ŷ else

where R∗ ← $ G, x∗ ← $ Zq, p← G(M̄‖H(R∗)), Ĉ = (Ŵ , X̂, Ŷ ) is the ciphertext provided by the
adversary and M̄← Dec(sk, Ĉ). Moreover, we define µw := aT ·w∗.

Lemma 15. If the DDH Assumption holds over G as generated by Setup then H0 and H1 are
indistinghuishable.

Easy lemma, proof omitted.

Hybrid H2. Let experiment H2 be the same as H1 but where the decryption oracle executes
the following decryption procedure:

Dec2(sk, C): Parse C = W̄ , X̄, Ȳ and W̄ = [w, cw]
Compute R̄← [cw]− aT · [w]
if R̄ 6∈ QH then output ⊥,
else continue as the decryption algorithm Dec.

Lemma 16. The hybrids H2 and H1 are statistically indistinguishable.

Proof (Sketch). Let Decrypt the event that for a decryption query C it happens that R̄ 6∈ QH
but the decryption oracle in H1 does not output ⊥. By the Shoup’s difference lemma (see lemma
1), it is easy to see that the statistical distance between the two experiments is bounded by the
probability of this event.

Notice that if R̄ 6∈ QH and R̄ 6= R̄∗ then the value p ← G(M̄‖H(R̄)) is statistically close
to be uniformly random over Zq, and therefore the probability that the decryption equations
hold is less or equal than 1/q. On the other hand if R̄ = R̄∗, either the p = p∗ and then
independently on the fact that the decryption equations hold or not the decryption oracle of
H1 would output ⊥ (or abort if a collision is found) or p 6= p∗ and in this case p is statistically
close from being uniformly random and again the decryption equations would hold only with
negligible probability.

Hybrid H3. Let experiment H3 be the same as H2 but that samples µw ← $ Zq and Z̄∗ ← $ G`+3

and the decryption oracle executes the following decryption procedure:
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Dec3(sk, C): Parse C = W̄ , X̄, Ȳ and W̄ = [w, cw],
find αw, βw such that w = αw · [w∗] + βw[g],
R̄← [cw]− (αw · [µw] + βw · [a]) and X̄ ′ ← X̄ − (αw · Z̄∗ + βw · [f ]),
if R̄ 6∈ QH then output ⊥,
continue as the decryption algorithm Dec.

Lemma 17. The hybrids H3 and H2 are equivalently distributed.

Proof. We use the non-adaptive smoothness (lemma 1) for both the hash function defined by
a and by F. Notice that, by linearity of the hash functions, we compute the randomizer R̄ and
X̄ ′ equivalently in both hybrids.

Hybrid H4. Let experiment H4 be the same as H3 but where the decryption oracle executes
the following decryption procedure:

Dec4(sk, C): Parse C = W̄ , X̄, Ȳ and W̄ = [w, cw],
find αw, βw such that w = αw · [w∗] + βw[g],
R̄← [cw]− (αw · [µw] + βw · [a]) and X̄ ′ ← X̄ − (αw · Z̄∗ + βw · [f ]),
if αw 6= 0 and R̄ 6= R̂ then output ⊥,
if R̄ 6∈ QH then output ⊥,
else continue as the decryption algorithm Dec.

In the above R̂ is the randomizer computed in the decryption of the ciphertext Ĉ chosen by the
adversary. (Recall that in the weak re-rand experiment the adversary chooses a ciphertext Ĉ

that sends to the challenger.)

Lemma 18. The hybrids H4 and H3 are statistically indistinguishable.

Proof (Sketch). The proof of the lemma follows closely the proof of Lemma 7. In particular, let
QDec be the queries to the decryption oracle we define the event:

– InvQuery: there exists a ciphertext (W̄ = [w, cw], X̄, Ȳ ) ∈ QDec such that αw 6= 0 and
R̄ := ([cw]− aT · [w]) ∈ Q̂H \ {R̂}.

Claim 9 |Pr [H3]− Pr [H2] | ≤ Pr [InvQuery].

Proof. To prove the claim we rely Shoup’s difference lemma (see lemma 1). In fact, conditioned
on ¬InvQuery all queries are such that if βw such that w = βw · g does not exist then R̄ 6∈ QH,
so for those queries where the predicate holds both H2 and H3 would output ⊥.

We recall that in Lemma 7 we proved that the event happen only with negligible probability (the
event is called InvQuery(a)). (In this hybrid experiment and the hybrid experiment of Lemma 7
we sample w∗ is the same way.)

Hybrid H5. Let experiment H5 be the same as H4 but where the decryption oracle executes
the following decryption procedure:

Dec5(sk, C): Parse C = W̄ , X̄, Ȳ and W̄ = [w, cw],
find αw, βw such that w = αw · [w∗] + βw[g],
R̄← [cw]− (αw · [µw] + βw · [a]) and X̄ ′ ← X̄ − (αw · Z̄∗ + βw · [f ]),
if αw 6= 0 and R̄ 6= R̂ then output ⊥,
if αw 6= 0 and R̄ = R̂ then output ⊥,
if R̄ 6∈ QH then output ⊥,
else continue as the decryption algorithm Dec.

29



Lemma 19. The hybrids H5 and H4 are statistically indistinguishable.

Proof. First notice that if M̄ = M̂ then both decryption oracles will always output ⊥, indepen-
dently of the validity of the decryption equations, so we consider M̄ 6= M̂. Let Invalid be the
event that the adversary queries with a ciphertext C such that the randomizer R̄ = R̂ but for
which the decryption procedure Dec4 would not output ⊥.

The two hybrids are equivalent if such event does not happen, so applying the Shoup’s
difference lemma, we need only to show that the event happens with negligible probability. Let
Invalidi be the event that the adversary queries for the first time with a ciphertext C such
that the randomizer R̄ = R̂ but for which the decryption procedure Dec4 would not output ⊥
at the i-th decryption oracle query. It is easy to check that Pr [Invalid] ≤

∑
i Pr [Invalidi].

Claim 10 Pr [Invalidi] ∈ negl(λ).

Proof. Let View be the random variable that describes the view of the adversary up to the i-th
decryption oracle query, and let Z̄∗ = (z1, . . . , z`+3). We notice that, conditioning on View, if
b∗ = 0 then the variable z`+3 has still q possible ways to be assigned. In fact, the view View con-
tains the ciphertext C∗ where x∗ is hidden information theoretically by the elements z1, . . . , z`+2

in all the positions, and x∗ hides z`+3 in the last position. Moreover, all the decryption oracle
calls with αw = 0 are independent of Z∗, and all the decryption oracle calls with αw 6= 0 were
answered with ⊥ (cause of the definition of the event Invalidi). Similarly, when b∗ = 1 the
variable z`+3 has still 2λ possible ways to be assigned. In fact, in this case the ciphertext would
contain the sum (ŝ · py + px + z`+3) and ŝ is uniformly distributed over Z2λ . (As otherwise we
could compute z`+3 with probability better than 2−λ.) So by taking the minimum, the variable
z3+` has at least 2λ possible ways to be assigned.

On the other hand, when the event Invalid happens then the adversary submits a ciphertext
C = W̄ , X̄, Ȳ , where X̄ = [x, cx, px], for which the decryption equation below must hold:

px − (βw · f`+3 + αw · z`+3) = (c · p+ d)T · x′,

and x′ = x − (βw · g + αw · (z1, z2)). Notice that this equation, when p 6= p̂ (cause M̄ 6= M̂) and
αw 6= 0, holds with probability at most 2−λ.

Hybrid H6. Let experiment H6 be the same as H5 but where the decryption oracle executes
the following decryption procedure:

Dec6(sk, C):

Parse C = W̄ , X̄, Ȳ , W̄ = [w, cw] and Ȳ = [y, cy, py]
find αw, βw such that w = αw · [w∗] + βw[g],
R̄← [cw]− (αw · [µw] + βw · [a]) and X̄ ′ ← X̄ − (αw · Z̄∗ + βw · [f ]),
if αw 6= 0 then output ⊥,
if R̄ 6∈ QH then output ⊥,
if x′ 6∈ Span(g) or y 6∈ Span(g) then output ⊥.
else continue as the decryption algorithm Dec.

Lemma 20. The hybrids H6 and H5 are statistically indistinguishable.

Proof (Proof Sketch.). The lemma follows by the standard Cramer-Shoup’s analysis over c,d.
We can assume that for all the decryption queries the value p as computed by the decryption
procedure is either different than p∗ or if it the same then the computed message M̄ is equal
to M̂. In fact the event above implies a collision in G which can be found only with negligible
probability.
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Let Decrypt be the first time that decryption oracle of H5 and H6 diverge, namely Dec6

outputs ⊥ while Dec5 would not and let C = (W̄ , X̄, Ȳ ) be the queried ciphertext.
First notice, whenever the decryption computes p = p∗, independently of the validity of the

decryption equations, the output of the oracle is ⊥. Moreover, for each of the decryption query
before this where x′ or y were not in Span(g) both the decryption oracle answered with ⊥. So
given (p∗c+d)T · [y∗] both the values (pc+d)T · [x′] and (pc+d)T · [y] are uniformly distributed
over a set of size at most q − |QDec|. The latter implies that the decryption equations would
hold only with negligible probability.

Hybrid H7. Let experiment H7 be the same as H6 but where the decryption oracle executes
the following decryption procedure:

Dec7(sk, C):

Parse C = W̄ , X̄, Ȳ , W̄ = [w, cw] and Ȳ = [y, cy, py]
find αw, βw such that w = αw · [w∗] + βw[g],
R̄← [cw]− (αw · [µw] + βw · [a]) and X̄ ′ ← X̄ − (αw · Z̄∗ + βw · [f ]),
if αw 6= 0 then output ⊥,
if R̄ 6∈ QH then output ⊥,
if x′ 6∈ Span(g) or y 6∈ Span(g) then output ⊥.
Compute p as in Dec and if p ∈ {p̂, p∗}, then output ⊥,
else continue as the decryption algorithm Dec.

Lemma 21. The hybrids H7 and H6 are equivalently distributed.

Proof. For any oracle query where the event p ∈ {p̂, p∗} happens, let M̄′ be the output of
Dec7(sk, C). If M̄′ = ⊥ or M̄′ = M̄, then there is no difference between H7 and H6, as in both
cases the oracle answer would be ⊥. So, the only interesting event that would mark a difference
between the two hybrids is that one where p ∈ {p̂, p∗} occurs and M̄′ 6= M̄. However, this event
is equal to the event that the adversary finds a collision in the random oracle G, and when this
happens both hybrids would abort. Hence, H7 ≡ H6.

Hybrid H8. Consider the hybrid experiment H8 be the same as H7 but where X̄∗ is computed
as follow:

[c∗w]←

{
[µw] + R̂ if b∗ = 0

[µw] + [ĉw] else
,

X̄∗ ←

{
x∗ · [g,b, p̂ · c+ d] + [0, M̄, 0] + Z̄∗ if b∗ = 0

X̂ + Z̄∗ + s · Ŷ else

Ȳ ∗ ←

{
[y∗,B · y∗, (p̂ · c + d)T · y∗] if b∗ = 0

t · Ŷ else

Lemma 22. The hybrids H8 and H7 are identically distributed.

Proof. Essentially the changes in H8 occur only in the case when b∗ = 0. However, notice that
in this case the vector x∗ · [g,b, p̂c+ d] + [0, M̄, 0] is masked by the uniformly distributed vector
Z̄∗; similarly, R̂ is masked by the uniformly distributed element aT · [w∗] and both (p∗ ·c+d) ·y∗
and (p̂ · c + d) · y∗ are uniformly distributed. (Recall that we changed the way the decryption
oracles are answered so the statements above are true even conditioning on the answers of the
decryption oracle.)
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In addition, switching from p∗ to p̂ in X̄∗ does not introduce any difference in the answers to
decryption queries since, by the change introduced in hybrid H7, the decryption oracle behaves
the same.

Hybrid H9. Consider the hybrid experiment H9 be the same as H8 but where Z̄∗ is sampled
as follow:

Z̄∗←$

{
−x∗ · [g,b, p̂ · c+ d]− [0, M̄, 0] + X̂ + s · Ŷ + Z̄ ′ if b∗ = 0

Z̄ ′ else

where Z̄ ′ ← $ G`+3.

Lemma 23. The hybrids H9 and H8 are identically distributed.

Proof. We first recall that the decryption oracle does not depend on Z̄∗, so the only part
of the view of the adversary that depends on the random variable Z̄∗ is the challenge re-
randomized/fresh ciphertext. Moreover, this change is only conceptual as the distribution de-
scribed above is equivalent to the uniform distribution over G`+3. In fact, we notice that Z̄∗

in H9 does not depend on b∗, x∗, s, p̂, M̄. In particular for any assignment of these variables the
distribution of Z̄∗ is uniformly random over G`+3, even given the full view of the adversary.

Before we describe the next hybrid, we notice that H9 computes the challenge ciphertext as
follow:

W̄ ∗ ←

{
[w∗, µw] + ([0], [0], R̂) if b∗ = 0

[w∗, µw] + Ŵ else
,

X̄∗ ← X̂ + s · Ŷ + Z̄ ′,

Ȳ ∗ ←

{
[y∗,B · y∗, (p̂ · c + d)T · y∗] if b∗ = 0

t · Ŷ else

Hybrid H10. We revert the changes introduced in H3,H4,H5 and H6 (which are not efficiently
computable).

Lemma 24. The hybrids H10 and H9 are statistically close.

The lemma follows applying the same arguments of the previous lemmas.

Hybrid H11. We revert the change introduced in H1. Specifically, we sample y∗ from the
distribution Span([g]).

Lemma 25. The hybrids H11 and H10 are computationally indistinguishable.

Notice that the hybrid H10 can be computed efficiently, we simply apply the DDH Assumption.
The proof of the lemma is trivial, therefore omitted.

We end the proof of the theorem noticing that in H11 the distribution of C∗ is identical in
both cases when b∗ = 0 and b∗ = 1. Therefore Pr [H11 = 1] = 1

2 . The theorem follows by the
lemmas and the triangle inequality.
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4.6 Proof of Theorem 5 (unforgeability)

Proof. To prove the theorem we describe a sequences of hybrids. The difference between each
consecutive pair of hybrid games is denoted underlined.

Similarly to the proof of Theorem 2 and Theorem 3 we consider a decryption procedure
that always fixes the randomizer t to 0. We can do this without loss of generality for the same
reasons of proof of Theorem 3, namely, the randomized part of the decryption procedure can
be publicly performed and a valid forged ciphertext C∗ (see Fig. 5) of the UF-CCA security
experiment over the original encryption scheme is also a valid forged ciphertext for the modified
encryption scheme.

Hybrid H’. Consider the hybrid experiment H′ be the same as ExpUF−CCA but where all the
ciphertexts Ci for i ∈ [n] are rerandomizated using the private hashing procedure. Specifically,
for all i ∈ [n] the ciphertext C′i = (W̄ ′i , X̄

′
i, Ȳ

′
i ) is computed as follow:

W̄ ′i ← κ · W̄i + [w′i,a
T ·w′

i] where w′i = w′i · g,
X̄ ′i ← κ · X̄i + s · Ȳi + F · [w′i]
Ȳ ′i ← κ · t · Ȳi

Moreover, the hybrid sample the values κ′1, . . . , κ
′
n ← $ Zq.

Lemma 26. The hybrids H′ and the experiment ExpUF−CCA are equivalent.

This follows from the projective hashing property, namely aT · [w′i] = w′i · [a].

Next, we consider a series of hybrids indexed by i = 1, . . . , n.

Hybrid Hi. This hybrid Hi is the experiment that runs the same as H′ but for j = 1 to i−1, it
re-randomizes the j-th ciphertext using κ′j as re-randomization key, instead of κ. Specifically, for

all j ≥ i, C′j = (W̄ ′j , X̄
′
j , Ȳ

′
j ) is computed as in H′, while for j < i the ciphertext C′j is computed

as follows:

W̄ ′i ← κ′j · W̄i + [w′i,a
T ·w′

i] where w′i = w′i · g,

X̄ ′i ← κ′j · X̄i + s · Ȳi + F · [w′i]

Ȳ ′i ← κ′j · t · Ȳi

It is easy to see that our hybrid H′ described above is the same as hybrid H1 where all the
ciphertexts are re-randomized using the same κ.

To prove the theorem we show that each consecutive pair is computationally indistinguish-
able, i.e., Hi ≈c Hi+1. To this end (and for ease of analysis), for every 1 ≤ i ≤ n, we argue the
transition from hybrid i to i+ 1 using other 7 intermediate experiments.

Namely, we show:

H1 ≈c H1,1 ≡ · · · ≡ H1,7 ≈c H2 ≈c · · · ≈c Hn ≡ Hn,1 ≡ · · · ≡ Hn,7 ≈c Hn+1

and finally we will argue that the probability of winning in Hn+1 is negligible.

Hybrid i,1 Consider the hybrid experiment Hi,1 be the same as Hi but where the i-th cipher-
text is rerandomized using w′i and yi taken from a different distribution. Specifically, the i-th
rerandomizated ciphertext C′i = (W̄ ′i , X̄

′
i, Ȳ

′
i ) is computed as follow:

W̄ ′i ← κ · W̄i + [w′i,a
T ·w′

i] where w′i ←$ G2

X̄ ′i ← κ · X̄i + s · Ȳi + F · [w′i]
Ȳ ′i ← κ · t · Ȳi
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Lemma 27. If the DDH Assumption holds over G as generated by Setup then Hi ≈c Hi,1.

Easy lemma, proof omitted.

Hybrid i,2 Let the hybrid experiment Hi,2 be the same as Hi,1 except that the experiment
uses the following decryption procedure ADeci,2 instead of ADec.

On input all the secrets of the experiment (notably including sk and w′i,y
′
i), a re-randomization

key κ and any ciphertext C = (W̄ , X̄, Ȳ ), ADeci,2 proceeds the same as ADec except that values
R, X̄ ′ are computed as follows:

Find αw, βw ∈ Zq such that w = αw ·w′i + βw · g.

R← ([cw,j ]− αw · [aT ·w′i]− βw · [a])/κ

X̄ ′ ← X̄j − αw · [F ·w′i]− βw · [f ]

Lemma 28. The hybrids Hi,2 and Hi,1 are equivalent.

The lemma follows by looking at the definition of w and by the definition of [a] = [aT ·w] and
[f ] = [F · g].

Hybrid i,3 Let the hybrid experiment Hi,3 be the same as Hi,2 except that:

1. it defines two new variables: µw,i = aT ·w′i ∈ Zq and Z̄i = F · y′i ∈ Z`+3
q ;

2. it uses µw,i, Z̄i to re-reandomize the i-th ciphertext Ci = (W̄i, X̄i, Ȳi) as follows:

W̄ ′i ← κ · W̄i + [w′i, µw,i] where w′i ←$ G2

X̄ ′i ← κ · X̄i + s · Ȳi + Z̄i

Ȳ ′i ← κ · t · Ȳi

3. it uses a decryption algorithm ADeci,3 that is the same as ADeci,2 except for:

R← ([cw,j ]− αw · [µw,i]− βw · [a])/κ

X̄ ′ ← X̄j − αy · [Z̄i]− βy · [f ]

Lemma 29. The hybrids Hi,2 and Hi,3 are equivalent.

This is only a syntactic change, introduced for ease of exposition. Thus the lemma is obvious.

Hybrid i,4 Let the hybrid experiment Hi,4 be the same as Hi,3 except that it samples
µw,i ← $ Zq and Z̄i ← $ Zm+3

q .

Lemma 30. The hybrids Hi,3 and Hi,4 are equivalent.

The lemma follows by applying Corollary 1. Slightly more in detail, we rely on that given
(aT ·g,F ·h,w′i,w′i), the values aT ·w′i and F ·w′i are identically distributed to random elements
in Zq and Z`+3

q respectively. In particular, notice that to apply Corollary 1 we need the hybrids

to be computable without knowing the secret keys aT ,F: this is possible due to the changes
introduced in Hi,2,Hi,3.

Hybrid i,5 Let the hybrid experiment Hi,5 be the same as Hi,4 except that the i-th ciphertext
Ci = (W̄i, X̄i, Ȳi) is re-randomized by using κ′i instead of κ. Namely:

W̄ ′i ← κ′i · W̄i + [w′i, µw,i] where [w′i, µw,i]←$ G3

X̄ ′i ← κ′i · X̄i + s · Ȳi + Z̄i where Z̄i ←$ G`+3

Ȳ ′i ← κ′i · t · Ȳi
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Lemma 31. The hybrids Hi,4 and Hi,5 are equivalent.

First we notice that for the component Ȳ ′i this is a simple rewriting, infact t could be sampled
as t′ · κκ

′
i

where t′ ← Zq. For the remaining components, as one can see, in these hybrids the
vectors W̄ ′i , X̄

′
i are essentially chosen uniformly and independently at random. In other words,

the random masks [w′i, µw,i] ← $ G3, Z̄i ← $ G`+3 act as a one-time pad and thus switching κ
into κ′i can be done by keeping the distribution of these elements identical.

In the following two hybrids we essentially revert all the changes made from Hi,4 back to
Hi,1.

Hybrid i,6 Let the hybrid experiment Hi,6 be the same as Hi,5 except that it defines µw,i = aT ·w′i ∈ Zq
and Z̄i = F · y′i ∈ Zm+3

q .

Hybrid i,7 Let the hybrid experiment Hi,7 be the same as Hi,6 except that it uses the
decryption algorithm ADec.

Lemma 32. The hybrids Hi,5, Hi,6 and Hi,6 are identically distributed.

Hi,5 ≡ Hi,6 is justified by the same argument used to argue Hi,3 ≡ Hi,4. Hi,6 ≡ Hi,7 is justified
by the same arguments used to argue Hi,2 ≡ Hi,1.

Finally, we recall hybrid Hi+1 where the i-th re-randomized ciphertext given to the ad-
versary is a correctly distributed re-randomization but done using a random and independent
re-randomization key κ′i.

Hybrid i+1 Let the hybrid experiment Hi+1 be the same as Hi,7 except that it samples
w′i ← $ Span(g).

Lemma 33. If the DDH assumption holds over G as generated by Setup, Hi+1 ≈c Hi,7.

The proof is the same as that used to argue H0 ≈c Hi,1.

Finally, we show that in the last hybrid Hn+1 the adversary has only negligible probability
of winning.

Lemma 34. There exist a negligible function negl such that Pr [Hn+1 = 1] ≤ negl(λ)

Proof. Notice that in the hybrid Hn+1 the re-randomization key κ used to decrypt the ciphertext
C∗ does not appear anymore in the view of the adversary. We argue that over the random choice
of κ← $ Z∗

2λ
, ADec(sk, κ̃ · κ, C∗) 6= ⊥ occurs only with negligible probability.

To see this, we observe that a random κ makes the value R∗ = ([c∗w]−aT ·[w∗])/κ̃·κ uniformly
distributed over a set of 2λ − 1 elements (recall that we check for [c∗w]− aT · [w∗] 6= 0). Hence,
we have that, in a cascade fashion, the value p∗ = G(M∗||H(R∗)) is also uniformly distributed,
and this makes the equation [p∗x] = (p∗ ·c+d)T ·x∗ (similarly, [p∗y] = (p∗ ·c+d)T ·y∗) satisfiable
with probability at most 1/q, which is negligible.

The proof of the theorem follows by joining together all the lemmas thanks to the triangular
inequality.

Remark 2 (On the sufficient assumptions over the hash function G). Lemma 10 can be proved
based only on collision resistance of G cause we need only p 6= p∗, Lemma 11 (resp. lemma 12)
can be proved based only on the property that G(M̄‖ak∗) (resp. G(M̄1−b∗‖ak∗)) is uniformly
distributed for any M̄, i.e., it is sufficient that for any assignment of M̄ the function is regular.
Lemma 18 can be proved based only on collision resistance of G cause we need only p 6∈ {p̂, 6= p∗},
in the proof of Theorem 5 we do not use any property of the hash functions.
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5 Our Optimistic Mixing Construction

In this section we describe a protocol that realizes the optimistic mixing functionality of Fig. 3.
The main building blocks of our protocol are the PKE scheme in the previous section, and
two NIZK proof systems for proving statements about the ciphertexts of our PKE scheme (see
Appendix A) . Our protocol is given in an hybrid world with a non-programmable random oracle
and an ideal functionality FDec (see Fig. 6) that models the key generation and decryption of
the PKE, and the common reference string generation of the NIZKs. A protocol for realizing
the initialization phase of FDec can be obtained using fairly standard techniques for distributed
key/crs generation. On the other hand, computing ADec in a distributed way is more tricky.
While a realization can be obtained using general-purpose techniques, the realization of an
efficient protocol is left for future work.

Building blocks and main ideas. Recall that in our scheme a ciphertext C is a tuple
(W̄ , X̄, Ȳ ), where W̄ = [w · g, w · a + R] ∈ G3 for random w ∈ Zq, and R ∈ G. Our proto-
col uses:

– NIZKsd = (Initsd,Psd,Vsd), a NIZK Proof of Knowledge with labels in the CRS+NPRO
model for the NP relation

Rsd =
{

((S̄, W̄ ), (w,R)) : W̄ = w · S̄ + (0, 0, R)
}
,

where (S̄, W̄ ) ∈ G6 is the instance and (w,R) ∈ Zq × G is the witness. For NIZKsd we
require simulation f -extractability with f(w,R) = R.
This NIZK can be used to prove knowledge of the randomizer R used to create a ciphertext.

– NIZKmx = (Initmx,Pmx,Vmx), a NIZK Proof of Membership with labels in the CRS+NPRO
model for the NP relation

Rmx =
{

((S̄, R̄), w) ∈ G6 × Zq : R̄ = w · S̄
}
,

where (S̄, R̄) ∈ G6 is the instance and w ∈ Zq the witness. This NIZK can be used to
prove that the W̄ component of a ciphertext is a Diffie-Hellman tuple W̄ = w · [g, a] (i.e., it
encrypts a neutral randomizer). By homomorphic property, this is also useful to show that
two ciphertexts encrypt the same randomizer R.

Given two lists of ciphertexts L = 〈C1, . . . , Cn〉 and L′ = 〈C′1, . . . , C′n〉, and a randomization key
κ ∈ Zq, we define the checksum of these lists as the output of the following procedure:

Procedure CkSum(L,L′, κ):

1. For all j ∈ [n] parse Cj = (W̄j , X̄j , Ȳj) and C′j = (W̄ ′j , X̄
′
j , Ȳ

′
j );

2. Output
∑

j W̄
′
j − κ ·

∑
j W̄j .

The combination of NIZKmx and CkSum can be used to show that the sum of the random-
izers Rj of the ciphertexts in L is the same as the sum of the randomizers R′j of the ciphertexts
in L′. In particular, this is true when the ciphertexts in L′ are shuffled re-randomizations (with
key κ) of those in L. To see this, assume that L′ contains a shuffled re-randomization, with key
κ, of the ciphertexts in L, i.e., for every j ∈ [n], W̄ ′π(j) ← κ · W̄j + w′j · [g, a]. Then one can see

that (
∑

j W̄
′
j − κ ·

∑
j W̄j) ∈ Rmx with witness (

∑
j w
′
j).

A key idea of our optimistic mixing protocol is that proving CkSum(L,L′, κ) ∈ Rmx is
“almost” a proof of shuffling. More precisely, combining this NIZK proof with the RCCA security
property of our PKE scheme gives us a designated-verifier optimistic proof of shuffling, which
can be verified by checking the NIZK, and by decrypting the list L′ and checking that no
ciphertext decrypts to ⊥.
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However, since our protocol cannot decrypt every list (as it would reveal the permutations)
but only the last one, we have to ensure that if no ⊥ appears while decrypting the last list, then
no ⊥ would have appeared when decrypting a previous list. This way verifying all the NIZKs
and decrypting the last list would be equivalent to ensuring that every mixer correctly shuffled
the ciphertexts. We achieve this property thanks to the UF-CCA security of our PKE that, in-
tuitively, guarantees that the adversary cannot repair ciphertexts after an honest authenticated
re-randomization.

Functionality FDec:

Let Dec be the name of the functionality.

Initialization Phase: At the first activation do the following:
1. Sample pk, sk← $ KGen(1λ) where pk = [g,h, a,b, c, d];
2. Sample crssd ← $ Initsd(1

λ) of the NIZK for Rsd.
3. Sample crsmx ← $ Initmx(1

λ) of the NIZK for Rmx.
4. Set pub← (pk, crssd, crsmx) and sec← sk;

Store the tuple (pub, sec);
Public Value: On message pk on any input port or on the influence port send the message pub to the respective

output port or on the leakage port and return;
Decode Value: On message (dec, κ, C) on the inport Dec.inMi check that the tuple (C, κ, M, I) exists in the

database, if so update I including the index i else create the new entry (C, κ,ADec(sk, κ, C), {i}) in the
database. If |I| equals m then send (dec, X, κ, M) to the leakage outport;

Deliver: On message (dec, κ, C, i) on the influence port, If the tuple (X,κ, M, [m]) exists in the database then
send the message (dec, X, κ, M) in the outport Dec.outMi .

Functionality FNPRO:

Let NPRO the name of the functionality.

Query: Upon message (query, x) on a protocol’s port NPRO.ini (resp. on the influence port NPRO.infl) check if
(x, y) is in the database, if sample uniformly random y ← $ {0, 1}λ and add the entry (x, y) in the database;
Send the message y to the outport NPRO.outi (resp. to the leakage port NPRO.lk).

Fig. 6: Ideal Functionality for Init and Decode and for the Non-Programmable Random Oracle.

5.1 A high-level description of the protocol

Here we provide a description of our optimistic mixing protocol without going into the full
formalism of the UC model. All the parties in the protocol have input pub = (pk, crssd, crsmx),
where pk is the public key of the RCCA encryption scheme, and crssd and crsmx are the common
reference strings for the NIZK proof systems. we write RO(x) for an invocation of the non-
programmable random oracle functionality over input x.

Input Submission. Every sender PSj , with j ∈ [n], encrypts its message Mj by computing
Cj ← Enc(pk, Mj), and creates a NIZK proof of knowledge Πs

j , with label j, of the random

values wj , Rj used to create Cj , i.e., it computes Πs
j ← $ Psd(crssd, (j, [g, a], W̄j), (wj , Rj))

where W̄j is the first component of Cj . Finally, PSj posts (Cj , Π
s
j ) on the bulletin board.

Optimistic Mixing. Once all the senders are done with the previous phase, let L0 be the
list of ciphertexts they posted on the BB such that the NIZK proofs verify. To simplify
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the exposition of the result, we assume that all the NIZK proofs {Πs
j }j∈[n] verify, so that

L0 = 〈C0,j〉j∈[n]. We can assume this without loss of generality5.
For i = 1 to m, the mixer PMi waits for the previous mixer to be done and does the following:
1. Sample a permutation πi ← $ Sn, and a secret randomization key κi ← $ Zq, and computes

comi ← RO(κi);
2. Read from the BB the list of ciphertexts Li−1 posted by the previous mixer (or read L0

if this is the first mixer), and parse Li−1 = 〈Ci−1,j〉j∈[n];
3. Build the list Li ← 〈Ci,j〉j∈[n] of shuffled and re-randomized ciphertexts by computing

Ci,πi(j) ← ARand(pk, κi, Ci−1,j ;wj , yj , sj , tj),

where, for every j ∈ [n], wj , yj , sj , tj ← $ Zq are randomly chosen;
4. Compute the value w∗i =

∑n
j=1wj , and store it locally;

5. Post (Li, comi) on the BB.
Mixing Proof. Once all mixers are done with the previous phase, every mixer PMi (this

step can be computed concurrently by all the mixers) computes a NIZK proof ΠM
i ←

$ Pmx(crsmx, (i, [g, a],CkSum(Li−1,Li, κi)), w∗i ), and posts (ΠM
i , κi) on the BB. With such a

message, every mixer PMi is opening the commitment comi, and proving in zero-knowledge
that the new list Li it produced contains ciphertexts that have the same randomizers as in
the previous list Li−1 (precisely, the sum of randomizers

∑
j Rj in the two lists is the same).

Verification. Once all mixers are done with the previous phase, every mixer PMi executes the
following:
1. Read the messages (Li, comi) and (ΠM

i , κi) posted by every mixer on the BB, as well as
the messages (C0,j , Π

s
j ) posted by the senders;

2. For all j ∈ [n] check that Vsd(crssd, (j, [g, a], W̄j), Π
s
j ) = 1, where W̄j is the first compo-

nent of ciphertext C0,j ;
3. For all i ∈ [m], check Vmx(crsmx, (i, [g, a],CkSum(Li−1,Li, κi)), ΠM

i ) = 1 and RO(κi) =
comi;

4. If all checks verified set flgvalid ← true, else set flgvalid ← false;
5. Compute κ∗ ←

∏m
i=1 κi;

Decode. All the mixers PMi execute the following in parallel (using the ideal functionality
FDec to compute decryptions):
1. If flgvalid = true, let Lm = 〈C∗j 〉j∈[n] be the list of ciphertexts returned by the last mixer.

For j = 1 to n, decrypt Mj ← ADec(sk, κ∗, C∗j ); if Mj = ⊥ set flgvalid ← false and go to the
next step, else continue decrypting.

2. If flgvalid = true, post (valid,Sort(〈Mj〉j∈[n])) on the BB.
3. If flgvalid = false, let L0 = 〈C∗j 〉j∈[n] be the list of ciphertexts posted by the senders. For
j = 1 to n, decrypt Mj ← Dec(sk, C∗j ) and post (invalid, 〈Mj〉j∈[n]) on the BB.

Audit Message. The mixers PMi agree on posting the message (flgvalid) on the BB.

Algorithm Audit: This simply consists into reading from the BB and computing the Verification
step of the protocol above (notice that this only relies on public information). The algorithm
outputs 1 if it recomputes the same flag flgvalid posted at the end of the BB.

5.2 Description of the Algorithms

We describe a protocol that makes use of the ideal functionality FDec and FNPRO. We implicitly
make the parties call the functionality FNPRO when they execute the algorithms Enc,ADec. We
write (read, (i, j)) as a shorthand for the set of messages {(read, k)}k∈{i,...,j}.
5 In fact, the resource FMix for n senders can be used to realize the functionality FMix for n′ ≤ n senders where

the value n′ is an influence of the adversary.
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Protocol Π:
1. Input Submission. For all j ∈ [n] the sender PSj upon input Mj :

(a) Send the message pk to the port Dec.inSj and return the activation;
(b) (At next activation) read pub = (pk, crssd, crsmx) from the port Dec.outSj ;
(c) Compute Cj ← Enc(pk, Mj ;Rj , wj , xj , yj) by sampling randomness Rj , wj , xj , yj for

the encryption procedure (as described in Sec. 4.3);
(d) Parse Cj = (W̄j , X̄j , Ȳj) and compute Πs

j ← $ Psd(crssd, (j, [g, a], W̄j), (wj , Rj));
(e) Send (write, (input, j, (Cj , Π

s
j )) ) to the outport BB.inSj and return.

2. Optimistic Mix. For all i = 1 to m, in order, the mixer PMi does the following:
(a) Sample a permutation πi ← $ Sn, and a secret randomization key κi ← $ Zq, and

send (query, κi) to the outport NPRO.inMi ;
(b) (At next activation) read comi from the inport NPRO.outMi ;
(c) If this is the first mixer, i.e., i = 1, then send (read, (1, n)) to the outport BB.inMi

and return;
(d) (At next activation) if i = 1 read the messages {(Cj , Πs

j )}j∈[n] from the inport

BB.outMi , set L0 ← 〈C0,j〉j∈[n], and send6 (write,L0) to BB.inM0 ;
(e) If i > 1 then send (read, n+ i− 1) to the outport BB.inMi and return;
(f) If i > 1 read Li−1 from the inport of BB and parse it as 〈Ci−1,j〉j∈[n];
(g) For all j ∈ [n], sample wj , yj , sj , tj ← $ Zq at random, compute:

Ci,πi(j) ← ARand(pk, κi, Ci−1,j ;wj , yj , sj , tj);

and set Li ← 〈Ci,j〉j∈[n];
(h) Send the message (write, (Li, comi)) to the outport BB.inMi ;
(i) Compute the value ŵi =

∑n
j=1wj , store it, and return.

3. Prove. After all mixers are done with the previous phase, every mixer PMi does the
following in parallel:
(a) Compute the proof ΠM

i ← $ Pmx(crsmx, (i, [g, a],CkSum(Li−1,Li, κi)), ŵi);
(b) Send the message (write, (ΠM

i , κi)) to the outport BB.inMi and return;
4. Verification. Every mixer PMi executes the following in parallel:

(a) Send the message (read, (n+ 1, n+ 2m+ 1)) to the outport BB.inMi and return;
(b) (At next activation) read L0, {(Li, comi)}i∈[m], {ΠM

i , κi}i∈[m] from inport BB.outMi ;
(c) If ∃j ∈ [m] s.t. RO(κj) 6= comj or Vmx(crsmx, (j, [g, a],CkSum(Lj−1,Lj , κj)), ΠM

j ) =
0, then set the flag flgvalid to false;

(d) Send the message (read, 1, n) to the outport BB.inMi and return;
(e) (At next activation) read the messages {Cj , Πs

j }j∈[n] from the inport BB.outMi ;

(f) If ∃j ∈ [n] s.t. Vsd(crssd, (j, [g, a], W̄j), Π
s
j ) = 0 then set the flag flgvalid to false

(where W̄j is the first component of ciphertext Cj);
(g) Compute κ∗ ←

∏m
j=1 κj ;

5. Decode. All the mixer parties PMi executes the following in parallel:
(a) if the flag flgvalid is true send (read, n+m+1) to the outport BB.inMi and return;

else send (read, n+ 1) to the outport BB.inMi and return;
(b) (At next activation) if flgvalid is true read the message (Lm, comm) from BB.outMi

and parse Lm = 〈C∗j 〉j∈[n], else read the message L0, parse L0 = 〈C∗j 〉j∈[n], and set
κ∗ ← 1.

(c) For all j ∈ [n] send the message (dec, κ∗, C∗j ) to the outport Dec.inMi ; return the
activation;

6 This message is redundant and not necessary for the security of the scheme, however we add it to simplify the
exposition of the scheme.
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(d) (At next activation) read the messages 〈Mj〉j∈[n] from the outport Dec.outMi ; If
flgvalid is true and there exists j such that Mj = ⊥ then set the flag flgvalid to false
and go back to step 5 (restart the decoding); else if flgvalid is true and Mj 6= ⊥
∀j ∈ [n], then send (write, valid,Sort(〈Mj〉j∈[n])) to BB.inMi and return;

(e) if flgvalid is false send the message (write, invalid, 〈Mj〉j∈[n]).
6. Audit Message. The mixers PMi agree on sending one message (write, κ∗) and one

message (write, flgvalid).

Algorithm Audit: On input the transcriptsDR = {pub, {Xj}j∈[n], {Li, comi}i∈[m], {ΠM
i , κi}i∈[m], κ

∗, flgvalid},
DI and (b,O). Output 1 if and only if flgvalid = b and either b = valid all all the con-
ditions below hold or b = invalid and at least one of the conditions below is false.
1. For all j ∈ [n] parse Xj = (Cj , Π

s
j ) and check if Vsd(crssd, (j, [g, a], W̄j), Π

s
j ) is true

where W̄j is the first component of ciphertext Cj .
2. For all j ∈ [m] check if Vmx(crsmx, (j, [g, a],CkSum(Lj ,Lj+1, vj)), Π

M
j ) is true.

3. If b∗ = valid, parse Lm = 〈C∗j 〉j∈[n] else L0 = 〈C∗j 〉j∈[n] and for all j ∈ [n] check that

there exists M∗j such that Audit∗Dec(DI , (dec, C∗j , κ∗, M∗j )) and check that Sort(〈M∗j 〉j∈[n]) =
O.

Theorem 6. The protocol (Π,Audit)described above is (FDec,FNPRO)-secure OMix.

Proof. The first part of the proof consists in showing a simulator S and arguing that for any
PPT environment Z it holds

(Π ◦ FDec ◦ FNPRO ◦BB ◦ Z) ≈c (FOMix ◦ S ◦ Z).

To show the indistinguishability of the above experiments we give a sequence of hybrid exper-
iments in which the experiment running the interactive agent (Π ◦ FDec ◦ FNPRO ◦ BB ◦ Z) is
progressively modified until reaching an experiment that is identically distributed to the one
with our simulator S.

In the proof, we let h∗ be the index of the first honest mixer, i.e., h∗ is the smallest index
in [m] \CM . Also, our simulator and hybrid experiments maintain two sets Ψin and Ψhide, both
consisting of tuples (X,Y ) ∈ (G` ∪ {�})2. For Ψin (resp. Ψhide) we define a corresponding map
ψin : G` → G` ∪ {�,⊥} (resp. ψhide) such that

ψin(X) =

{
Y if (X,Y ) ∈ Ψin

X else

and analogously for ψhide. Moreover, both the simulator and the hybrid experiments keep track
of all the queries to the random oracle F in a set QF of pairs (κ, com) ∈ Zq × {0, 1}λ.

We proceed with a sequence of hybrids. Before describing them in detail, we review them
informally:

Hybrid H0: We check that for every value comi posted by malicious mixers on the BB
there exists a pre-image κi in the list of the queries to the random oracle RO, otherwise we
abort. By the random oracle property, this hybrid is statistically close to the real experiment.

Hybrid H1: We generate the CRS of the NIZKs using the trapdoor mode. By the zero-
knowledge property this hybrid is computationally indistinguishable from the previous one.

Hybrid H2: We introduce the set M̂H of honest simulated messages (each randomly cho-
sen) and two empty lists Ψin, Ψhide. The list Ψin is populated to map each simulated honest input
in M̂H to a corresponding real honest input, and the decryption agent is modified to output
ψin(ψhide(M)) instead of M. This hybrid is distributed the same as the previous one except if at
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decryption time a message in M̂H is hit (in this case the map ψin would modify the returned
value). However, since messages in M̂H are randomly chosen and are not in the environment’s
view, this bad event happens only with negligible probability.

Hybrid H3: We encrypt the simulated sender inputs M̂j instead of the the honest sender
inputs. This hybrid can be shown indistinguishable from the previous one based on the RCCA
security of the PKE scheme, and the zero-knowledge of NIZKsd. The goal of the changes done
so far is that from now on we can keep track of the every honest ciphertext via its underlying
message M̂j ∈ M̂H , which acts as a unique handle for it. As we shall see, this for example allows
us to understand if a mixer “removed” a ciphertext by checking if the corresponding handle has
disappeared when looking at the decryptions of the ciphertexts returned by that mixer.

Hybrid H4: Let Vm be the decryption of the list of ciphertexts output by the last mixer
PMm . If the protocol execution is valid and the set M̂H is not a subset of Vm, H4 aborts.
This check essentially ensures that none of the inputs of the honest senders has been discarded.
Using the adaptive soundness of NIZKmx, the zero-knowledge and simulation extractability of
NIZKsd, and the RCCA security of our PKE, we can show that this abort can happen only
with negligible probability. Notice that if there is no abort we are guaranteed that Vm contains
all the messages of the honest senders, i.e., M̂H ⊆ Vm.

Hybrid H5: This hybrid checks if in Vm every message of M̂H appears only once, and
aborts if not. Intuitively, this check ensures that none of the inputs of the honest sender was
copied. Similarly to the previous hybrid, we show how to reduce an adversary causing such an
abort again to adaptive soundness ofNIZKmx, the zero-knowledge and simulation extractability
of NIZKsd, and the RCCA security of the PKE.

Hybrid H6: Let Vh∗ be decryption of the list of ciphertexts output by the first honest mixer.
If the protocol execution is valid and Vm 6⊆ Vh∗ , H6 aborts. Intuitively, this check ensures that
the set of ciphertexts output by the last mixer is a subset of the set of ciphertexts returned and
authenticated by the first honest mixers. In a nutshell, this means for example that an adversary
controlling the mixers after PMh∗ the best it can do with ciphertexts corresponding to honest
senders is to invalidate them. We show that an adversary causing such an abort can be reduced
to attack against the UF-CCA property of our PKE scheme.
Notice that with the changes done so far, if no abort occurs, we are ensured that M̂H ⊆ Vm ⊆
Vh∗ , which also means that the list of ciphertexts returned by the last mixer decrypts to a
permutation of the messages of the honest senders.
The next hybrids are aimed to show that this permutation is hidden to the environment.

Hybrid H7: We simulate the zero-knowledge proof of the first honest mixer. By the zero-
knowledge of NIZKmx, this hybrid is indistinguishable from the previous one.

Hybrid H8: Let 〈Ch∗−1,j〉j∈[n] be the list of ciphertexts received by the first honest mixer
PMh∗ . Instead of re-randomizing all ciphertexts, here PMh∗ decrypts and re-encrypts all the
valid ones, i.e., it sets Ch∗,πh∗ (j) as a fresh encryption of Mh∗−1,j , if Mh∗−1,j 6= ⊥. This difference
can be reduced to the (weak) RCCA re-randomizability of our PKE scheme. This hybrid is
preparatory for the next hybrid.

Hybrid H9: Here, instead of re-encrypting the same messages, we re-encrypt new fresh
(and uncorrelated) messages. Namely, instead of creating Ch∗,πh∗ (j) as a re-encryption of Mh∗−1,j ,
this is set as an encryption of a random an independent message Hj . Moreover, we start pop-
ulating the set Ψhide to associate Hj with Mh∗−1,j ; this way this modification is not visible by
looking at the outcome of decryption or because of the changes introduced in H4,H5,H6. The
indistinguishability of H8 and H9 can be reduced to the RCCA security of the PKE.

Hybrid H10: We do not permute anymore according to πh∗ the list of ciphertexts returned
by the first honest mixer, i.e., Ch∗,j is a re-encryption of Hj . Precisely, this is done only for
those indices j such that Ch∗−1,π−1

h∗ (j) decrypts correctly. We show that this hybrid is identically
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distributed to the previous one; intuitively because we are just permuting random messages that,
until that point, were not in the view of the environment. This makes the list of ciphertexts
returned by PMh∗ completely independent from the permutation πh∗ restricted to the indices
for which Ch∗,j decrypts correctly, which include all the indices of the honest senders.

In what follows we describe each hybrid experiment in detail, and prove the indistinguisha-
bility of each consecutive pair.

Hybrid 0. Let the hybrid experiment H0 be the experiment that runs the interactive agent
(Π ◦FDec ◦FNPRO ◦BB◦Z). More precisely, the hybrid sees the internal views of all the agents,
and additionally keeps track of all the messages sent by Z to the random oracle functionality
FNPRO. Let QF be the set of queries made by Z to F . H0 does the following operations:

1. Initialize the flag flgRO to false;
2. For any i ∈ CM when the message (write, (Li, comi)) appears in the port BB.inMi check if

there exists an entry (κ̃i, comi) in the set QF ; If the check fails then set flgRO to true;
3. If the flag flgRO true and the message (write, valid) appears in a port BB.inMi where
i ∈ [n] \CM then abort.

Lemma 35. H0 ≈s (Π ◦ FDec ◦ FNPRO ◦BB ◦ Z).

Proof. The two experiments diverge if the event in the step 3 above happens. Let us call GuessRO
such event. By Lemma 1, we need to prove that Pr [GuessRO] ∈ negl(λ). To see this, notice that
if GuessRO occurs, then during the verification phase (Step 4 of Π) the message (write, (ΠM

i , κi))
appears in OMix.inflMi and F(κi) = comi. This means that the environment Z guessed the
image of κi for F before F was queried on this value. The latter event happens only with
probability 2−λ.

Hybrid 1. The hybrid experiment H1 is the same as H0 but with the following difference:

1. The agent of the ideal functionality FDec, instead of steps 2 and 3, computes crssd, tdssd, tdesd ←
Initsd(1

λ) and crsmx, tdsmx ← Initmx(1
λ) respectively;

Lemma 36. H1 ≈c H0.

The indistinguishability can be reduced in a straightforward way to the zero-knowledge of
NIZKsd and NIZKmx.

Hybrid 2. The hybrid experiment H2 runs the same of H1 but with the following difference:

1. Compute the list of inputs of the honest senders MH ← {Mj : j ∈ [n] \ CS} (this can be
easily computed by watching at the port Omix.inSj for j ∈ [n] \CS) and sample the list of

simulated inputs of the honest senders M̂H ← {M̂j : j ∈ [n] \CS} such that each M̂j ← $ G`

is sampled uniformly at random and M̂H contains no repetitions;
For every j ∈ [n] \CS , add (M̂j , Mj) to Ψin, and initialize Ψhide as the empty set.

2. Whenever a message (dec, X, κ, M) appears either in the leakage port Dec.lk or in the outport
Dec.outMi for any i, replace the message with (dec, X, κ, ψin(ψhide(M)));

Lemma 37. H2 ≈s H1.

Proof. Notice that H2 differs from H1 only when M is replaced with ψin(ψhide(M)) in step (2).
However, this replacement causes a change only if M ∈ M̂H . We argue that the probability of
this event is upper bounded by n2/(|G|` − n) ∈ negl(λ). To see this, observe that prior to the
occurrence of this event, the view of Z in H2 is independent from the values in M̂H , and thus
the adversary has n trials to guess one of the possible n elements chosen at random from a set
of size |G|` and for each (unsuccessful) trial it can exclude one possible value.
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Hybrid 3. The hybrid experiment H3 runs the same of H2 but with the following difference:

1. Whenever a message (input, j, (Cj , Π
s
j )) appears in a port BB.inSj for j ∈ [n] \ CS then

replace the message with (input, j, (Ĉj , Π̂s
j )) where Ĉj ← Enc(pk, M̂j ;Rj , wj , xj , yj , sj , tj)

and Π̂s
j ← $ Psd(crssd, (j, [g, a], W̄j), (wj , Rj), Rj ← $ G, wj , xj , yj , sj , tj ← $ Zq and W̄j ←

(wj · [g], wj · [a] +Rj);

Lemma 38. H3 ≈c H2.

Proof. The indistinguishability of the two hybrids can be argued based on the RCCA-security
of PKE and zero-knowledge of NIZKsd via a sequence of hybrid experiments in which the
encrypted honest messages are replaced one by one. This reduction is rather standard, so we
provide here only a sketch.

For i ∈ [n], let H3,i be the hybrid that executes the same code of H3 for all the honest
senders PSj such that j < i, and executes the code prescribed by the protocol for all the honest
senders PSj such that j ≥ i. Clearly, H3,1 ≡ H2 and H3,n ≡ H3. Now we only need to show
that H3,i ≈c H3,i+1. To do so we first define another hybrid H′3,i that executes the same code of
H3,i except that the proof Πs

i is computed using the simulator of NIZKsd and the knowledge
of tdssd. Clearly, H3,i ≈c H′3,i holds based on the adaptive zero-knowledge property of NIZKsd.
Similarly, let H′′3,i+1 be the same as H3,i+1 except that the proof Πs

i is computed using the
simulator of NIZKsd. Then we are left with proving H′3,i ≈c H′′3,i+1, and this we reduce it to
RCCA-security.

Briefly, we can define an adversary B that runs H′3,i and instead of running the code of

PSi asks the challenger with challenge plaintexts (Mi, M̂i). Notice that at this point the proof
Πs
i can be computed without knowing the randomness of the ciphertext, as it is simulated.

Next, B continues the execution of H′3,i but uses the decryption oracle whenever a decryption
is necessary. Notice that, thanks to the modification introduced in H2, B can safely return Mi
whenever the decryption oracle returns �. Indeed, by the definition of the map ψin we have
ψin(M̂i) = Mi = ψin(Mi). B’s simulation is perfect: if Mi (resp. M̂i) is chosen by its challenger, B
simulates H′3,i (resp. H′′3,i+1).

Hybrid 4. The hybrid experiment H4 is as the hybrid H3 but with the following difference:

1. At initialization phase, flgstuffed is initialized to false;
2. Executing the step 2 of the protocol (Optimistic Mix), recall that for any i ∈ [m], Li =
〈Ci,1, . . . , Ci,n〉 is the list of ciphertext produced by the mixer PMi and L0 = 〈C0,1, . . . , C0,n〉
consists of all the ciphertexts submitted by the senders.
Compute the multiset V0 ← {Dec(sk, C0,j) : j ∈ [n]}.

3. When the message (write, (Lm, comm)) appears in the port BB.inMm , compute the multiset
Vm ← {ADec(sk,

∏m
l=1 κl, Cm,j) : j ∈ [n]}.

If M̂H 6⊆ ψhide(Vm) then set the flag flgstuffed to true.
4. At the end of the protocol’s execution, if flgstuffed is true and a the message (write, valid)

appears in a port BB.inMi where i ∈ [n] \CM , then abort;

Lemma 39. H4 ≈c H3.

Proof. We prove the indistinguishability based on the RCCA-Security of PKE (as well as the
simulation extractability and zero-knowledge of NIZKsd and adaptive soundness of NIZKmx).
To do so we define a sequence of intermediate hybrid experiments. Let H4,i be the same as H4

but where the step 3 is substituted by the following:
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3. If {M̂j : j ∈ [i] \CS} 6⊆ ψhide(Vm) then set the flag flgstuffed to true.

Notice that H4,0 ≡ H3 as the flag flgstuffed is never raised (∅ 6⊆ Vm is always false), while
H4,n ≡ H4.

Now, let Hsi
4,i−1 be the same as H4,i−1 but where the proof Πs

i is computed using the
simulator of NIZKsd and the knowledge of tdssd and let Hsi

4,i be the same as H4,i but where
the proof Πs

i is computed using the simulator of NIZKsd and the knowledge of tdssd. By zero-
knowledge property of NIZKsd we have H4,i−1 ≈c Hsi

4,i−1 and Hsi
4,i ≈c H4,i.

Next, let Hsi,e
4,i−1 (resp. Hsi,e

4,i ) be the same as Hsi
4,i−1 (resp. Hsi

4,i) with the following additional

step: whenever a message (input, j, (Cj , Π
s
j )) appears in a port Mix.inflSj , with j ∈ CS (i.e.,

an input from the corrupted sender PSj ), if Vsd(crssd, (j, [g, a], W̄j), Π
s
j ) = 1 compute R̂j ←

Extsd(tdesd, (j, [g, a], W̄j), Π
s
j ), and if R̂j = ⊥ then abort. By the simulation-extractability of

NIZKsd, we have Hsi
4,i−1 ≈c Hsi,e

4,i−1 and Hsi,e
4,i ≈c Hsi

4,i.

Notice that we need to simulate only the proofΠs
j , thus we could base the indistinguishability

of the hybrids steps just performed on the weaker notions of adaptive single-theorem zero-
knowledge and one-time simulation extractability. For simplicity in the exposition however we
use the stronger notions of multi-theorem zero-knowledge and simulation extractability.

We are left with showing Hsi,e
4,i−1 ≈c Hsi,e

4,i ∀i ∈ [n]. The two hybrids differ when the optimistic

mix succeeds and, for i /∈ CS , M̂i 6∈ Vm (notice that Ψhide is still empty). The first condition
in particular implies that all the mixer proofs ΠM

j for j ∈ CM and the senders proofs Πs
j for

j ∈ CS verify and that all the decryptions performed by the protocol are valid (i.e., ⊥ /∈ Vm).

It is sufficient to bound the probability of the conjunction of the events:

1. Verify0: For all j ∈ CM , Vmx(crsmx, (j, [g, a],CkSum(Lj−1,Lj , κj))) is true,
2. Verify1: For all j ∈ CS , Vsd(crssd, (j, [g, a], W̄j)) is true,
3. Decrypt: ⊥ 6∈ Vm,
4. Stuffed: M̂i 6∈ Vm.

Let Bad be the conjunction of the events above. Consider the following adversary for the RCCA-
Security experiment on PKE :

Adversary B(pk) with oracle access to Dec�:

1. Run the hybrid Hsi,e
4,i (but do not sample the parameter of the PKE , instead use the

value pk received as input);
2. Sample M̂i,0, M̂i,1 uniformly at random and send them to the challenger of the RCCA-

experiment.
3. Receive the challenge ciphertext C∗;
4. Once the agent PSi is activated send the message (input, (i, (C∗, Π∗)) where Π∗ ←

Simsd(tdssd, C
∗) to the port of BB;

5. Compute all the decryptions using the oracle Dec�; whenever the oracle answers �,
use the message Mi (the message provided by the honest sender, following in this way
what the map ψin would do);

6. If either M̂i ∈ Vh∗ or the message (write, invalid) appears in a port BB.inMj where
j ∈ [n] \CM then abort and output a random bit b;

7. Let R ← {Rj : j ∈ [n] \ {i}}. (Recall that for j ∈ [n] \ {i} if j ∈ [n] \ CM then
the value Rj is the sampled by the hybrid experiment else Rj is computed by the
extractor of NIZKsd.)

8. Let (write, 〈Cm,j : j ∈ [n]〉) be the message appeared in the port BB.inMm and let
Q ← {R′ : (R′, ∗) ∈ QH} ∪ R, where QH is the list of oracle queries made by Z to
the random oracle H.
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For all j ∈ [n] , let M̃j be the answer of the decryption oracle on C̃j = Cm,j/(
∏m
l=1 κl),

and do the following:
For all R′ ∈ R :
– Compute p = G(M̃j |H(R′))) and X̄ ′ = x · [g,b, (pc+ d)] for x← $ Zq.
– Query the decryption oracle on C̃j + [0, X̄ ′,0].
– If the answer is not ⊥ then set R̃j ← R′ and break the cycle.

9. Compute R∗ ← (
∑

j∈[n] R̃j)− (
∑

j∈[n]\{i}Rj);

10. Compute p← G(M̂i,0|H(R∗))) and X̄ ′ ← x′ · [g,b, (pc+ d)] for x′ ← $ Zq.
11. Query the decryption oracle on C∗ + [0, X̄ ′,0].
12. If the answer is ⊥ then output 1 else output 0.

We show that Pr
[
ExpRCCA

B,PKE(λ) = 1
]
≥ 1

2 + 1
2 Pr [Bad]− negl(λ). Notice that

Pr
[
ExpRCCA

B,PKE(λ) = 1
]

= 1
2(1− Pr [Bad]) + Pr

[
ExpRCCA

B,PKE(λ) = 1 ∧ Bad
]

(2)

In fact, when (¬Bad) then in step 6 the adversary B outputs a random bit. Let E be the event
“∀j ∈ CM : CkSum(Lj−1,Lj , κj) ∈ Span([g, a])”. Notice that:

Pr[ExpRCCA
B,PKE(λ) = 1 ∧ Bad] ≥

Pr
[
ExpRCCA

B,PKE(λ) = 1 |Bad ∧ E
]
· (Pr [Bad]− Pr [Verify0 ∧ ¬E]) .

Claim 11 Pr [Verify0 ∧ ¬E] ≤ negl(λ).

Proof. For every j ∈ CM , let Ej be the event “CkSum(Lj−1,Lj , κj) ∈ Span([g, a])” so that
E =

∧
j∈CM Ej . Applying the union bound:

Pr [Verify0 ∧ ¬E] = Pr

 ∨
j∈CM

(Verify0 ∧ ¬Ej)

 ≤∑j∈CM Pr [Verify0 ∧ ¬Ej ] .

By the soundness of NIZKmx, for any j ∈ CM the probability of Pr [¬Verify0 ∧ ¬Ej ] is negli-
gible in λ.

Claim 12 Pr
[
ExpRCCA

B,PKE(λ) = 1 |Bad ∧ E
]
≥ 1− negl(λ).

Proof. We show that, conditioning on the equation above, the value R∗ =
∑

j R̃j −
∑

j 6=iRj is
the randomizer of the challenge ciphertext with overwhelming probability. Since we condition
on E we have CkSum(L0,Lm,

∏m
l=1 κl) ∈ Span([g, a]). More in detail, for k = 0, . . . ,m, let

Lk = 〈Ck,1, . . . , Ck,n〉 and recall that by construction of B we have C0,i = C∗. If we let Ci,j =
(W̄i,j , X̄i,j , Ȳi,j), then there exists t ∈ Zq such that:∑

j W̄m,j/(
∏m
l=1 κl) + t · [g, a] =

∑
j W̄0,j

The equation above implies:

∑
j [−a, 1]T · W̄m,j/(

∏m
l=1 κl) +

=[0]︷ ︸︸ ︷
[−a, 1]T · t · [g, a] =

∑
j [−a, 1]T · W̄0,j (3)

First, notice that by the property of the NIZKsd extractor, by the modification added in H3,
with overwhelming probability: ∑

j 6=i
Rj =

∑
j 6=i

[−a, 1]T · W̄0,j . (4)
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Second, notice that since ⊥ 6∈ Vm for any Cm,j , with overwhelming probability, either there exists
a value (R′, ∗) ∈ QH such that the adversary Z produced the ciphertext using randomizer R′, or
the ciphertext is a re-randomization of a ciphertext in 〈C0,j〉j∈[n]\CS . The procedure described

in Step 8 successfully recognizes these randomizers. Indeed, for any Cm,j , let R̃j be the value
of its randomizer, and let p̃ = G(M̃j‖H(R̃j))). If R′ = R̃j , then p = G(M̃j‖H(R′))) = p̃, and
therefore X̄m,j + X̄ ′ is distributed exactly as a fresh ciphertext and thus R̃j is successfully
recovered. If R′ 6= R̃j , then with overwhelming probability p = G(M̃j‖H(R′))) 6= p̃, and thus
the value X̄m,j + X̄ ′ would trigger a decryption error with overwhelming probability. Therefore
with overwhelming probability:∑

j [−a, 1]T · W̄m,j/(
∏m
l=1 κl) =

∑
j R̃j (5)

By putting together Eq. 3, Eq. 4 and Eq. 5 we have that R∗ as computed in step 9 is equal to the
randomizer used in the challenge ciphertext. By an argument similar to the one for step (8), the
computation of steps (10)–(12) can figure out what message was encrypted by the challenger,
i.e., if the decryption oracle answer is not ⊥ the challenge ciphertext is an encryption of Mi,0.

Concluding, conditioned on Bad ∧ E, B wins the RCCA-security game with overwhelming
probability .

By joining the Claim 11 and Claim 12 we have that:

Pr[ExpRCCA
B,PKE(λ) = 1 ∧ Bad] ≥ Pr [Bad]− negl(λ).

Using the above bound in Eq. 2 we have that the advantage of B is 1
2 Pr [Bad] − negl(λ), and

thus Pr [Bad] is negligible. This shows that the two hybrids are indistinguishable.

Hybrid 5. The hybrid experiment H5 is as the hybrid H4 but with the following difference:

1. At initialization phase, flgcopied is initialized to false;
2. When the message (write, (Lm, comm)) appears in the port BB.inMm , for every j ∈ [n]

compute Mm,j ← ADec(sk,
∏m
l=1 κl, Cm,j), and define the multiset Vm ← {Mm,j}j∈[n].

If ∃j, j′ ∈ [n] such that j 6= j′, Mm,j = Mm,j′ and ψhide(Mm,j) ∈ M̂H then set the flag flgcopied

to true.
3. At the end of the protocol’s execution, if flgcopied is true and a message (write, valid)

appears in a port BB.inMi for i ∈ [n] \CM then abort;

Lemma 40. H5 ≈c H4.

The indistinguishability of the two experiments can be reduced to the RCCA-Security of PKE
(as well as the simulation extractability and zero-knowledge of NIZKsd and adaptive soundness
of NIZKmx).

The proof is very similar to the one of the previous lemma, and thus here we give only a
sketch pointing out the differences. In the proof of lemma 39 the adversary B computes the
randomizer R∗ ← (

∑
j R̃j) − (

∑
j 6=iRj) in step 9. That was done to bound the event that the

challenge ciphertext is not included in the list Lm.
In this hybrid, instead we want to bound the event that the challenge ciphertext appears

more than once in Lm. Let J be the set of indexes such that j ∈ J if and only if Cm,j decrypts
to �. We can build an adversary B that works the same as the adversary of lemma 39 except
that the step 9 here becomes:

9. Compute R∗ ← ((
∑

j∈[n]\J R̃j)− (
∑

j 6=iRj))/(1− |J |).
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The distinghuishing condition tells us that |J | > 1, thus the operation above is well defined.
Moreover, by the soundness of NIZKmx we have that

∑
j∈[n] R̃j =

∑
j Rj and so the computed

randomizer R∗ is indeed the randomizer used in the challenge ciphertext C∗, and once R∗ is
learned it can be used to successfully figure out which of the two plaintexts was encrypted by
the challenger.

Hybrid 6. The hybrid experiment H6 is as the hybrid H5 but with the following difference:

1. At the end of the protocol’s execution, abort if (write, valid) appears in a port BB.inMi

for i ∈ [n] \CM and ψhide(Vm) 6⊆ Vh∗ ;

Lemma 41. H6 ≈c H5.

Proof. The views of Z in the two two hybrids is exactly the same until the execution reaches the
step described above: H6 might abort while H5 would continue its execution. Let us call Forged
the event of this aborting condition. By lemma 1, Pr[H6 = 1] − Pr[H5 = 1] ≤ Pr [Forged]. In
the following claim we show that Forged occurs with negligible probability.

Claim 13 Pr [Forged] ∈ negl(λ).

Proof. We prove the claim by doing a reduction to the UF-CCA security of APKE . Below we
show an adversary for the UF-CCA security experiment:

Adversary B(pk):

1. Run the hybrid H5 (but do not sample the public key of APKE , instead use the
value pk received as input) and do not compute the set V0;

2. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1

set κ̃←
∏h∗−1
l=1 κk outputs to the challenger the tuple (Lh∗−1, κ̃).

Adversary B({C′j}j∈[n]):

3. Resume the execution of the hybrid, and for any j ∈ [n] set the ciphertext Ch∗,πh∗ (j) ←
C′j and let Lh∗ ← 〈Ch∗,j〉j∈[n], and sample comh∗ ← $ {0, 1}λ (the adversary B does
not know the preimage of comh∗);

4. Continue the computation until the message (write, (Lm, comm)) appears in the port
BB.outMm ;

5. Sample an index j∗ ← $ [n] and output the ciphertext C∗ ← Cm,j∗/
∏m
l=h∗+1 κl.

We show that Pr[ExpUF−CCA
B,APKE(λ) = 1] ≥ Pr [Forged] /n. First, notice that the adversary B

samples comh∗ ← $ {0, 1}λ while the hybrid experiment produces it as an hash of κh∗ . However,
the preimage of comh∗ is never used in the execution of B, so B simulates perfectly (up to where
it stops) the view of Z in H6. Moreover, κh∗ is uniformly distributed given the view of B, and
therefore, it is distributed as the re-randomization key in of the UF-CCA experiment.

Next, conditioning on the event Forged, we have that, ψhide(Vm) 6⊆ Vh∗ , the protocol execu-
tion is valid and Ψhide is empty, which means that at least one of the messages in Vm is not in
Vh∗ . Let j be the index such that Cm,j decrypts, under the authentication key κh∗ , to a message
not in Vh∗ . In the conditional space where Forged and j = j∗ hold, B wins with probability 1.
So the claim follows.

Hybrid 7. The hybrid experiment H7 is as the hybrid H6 but with the following difference:

– When the message (write, (ΠM
h∗ , κh∗)) appears in the port BB.inMh∗ replace it with (write, (Π̂M

h∗ , κh∗))
where:

Π̂M ← Simmx(tdsmx, (h
∗, [g, a],CkSum(Lh∗−1,Lh∗ , κh∗))).
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Lemma 42. H7 ≈c H6.

The lemma follows by a simple reduction to the adaptive zero-knowledge property of NIZKmx,
we omit the details.

Hybrid 8. The hybrid experiment H8 is as the hybrid H7 but with the following difference:

1. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1
, then for

all j ∈ [n] compute the ciphertext Ch∗,π(j) as follow:

Ch∗,π(j) ←

{
ARand(pk,

∏h∗

l=1 κk,Enc(pk, Mh∗−1,j)) if Mh∗−1,j 6= ⊥
ARand(pk, κh∗ , Ch∗−1,j) else

where Mh∗−1,j ← ADec(sk,
∏h∗−1
l=1 κl, Ch∗−1,j).

Set Lh∗ ← 〈Ch∗,j〉j∈[n] and continue the execution of the experiment.

Lemma 43. H8 ≈c H7.

Proof. To do the proof we use a sequence of intermediate hybrids where the condition above is
weakened. Specifically let H8,i be the same as H8 but where the step 1 is modified as follow:

1. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1
, for all

1 ≤ j < i compute the ciphertext Ch∗,π(j) as follow:

Ch∗,π(j) ←

{
ARand(pk,

∏h∗

l=1 κl,Enc(pk, Mh∗−1,j)) if Mh∗−1,j 6= ⊥
ARand(pk, κh∗ , Ch∗,j) else

where Mh∗−1,j ← ADec(sk,
∏h∗−1
l=1 κl, Ch∗−1,j).

For all i ≤ j ≤ n compute the ciphertext Ch∗,π(j) as in H7.
Set Lh∗ ← 〈Ch∗,j〉j∈[n] and continue the execution of the experiment.

Notice that H8,1 ≡ H7 and H8,n+1 ≡ H8.

Claim 14 For all i ∈ [n], H8,i+1 ≈c H8,i.

Proof. The hybrids differ because H8,i+1 would decrypt and re-encrypt Ch∗−1,i, when its de-
cryption is not ⊥, while H8,i would always re-randomize it. Below we show how to reduce the
indistinguishability of these hybrids to the weak-RCCA re-randomizability of APKE .7 Consider
the following adversary:

Adversary B(pk):
1. Run the hybrid H8,i (but do not sample the public key of PKE , instead use the

value pk received as input) and compute V0 (the list of plaintexts of L0) using the
decryption oracle Dec.

2. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1
,

compute the ciphertext C′ ← Ch∗−1,i/
∏h∗−1
l=1 κl, and query the oracle Dec on C′; let M̃

be its answer and assume that M̃ 6= ⊥ (in fact, when the i-th ciphertext decrypts to
⊥ the hybrids are identical and thus we want to make a reduction only for the other
case). Next, send C′ to the challenger, receive a ciphertext C∗, and set Ch∗,πh∗(i) ←
ARand(pk,

∏h∗

l=1 κl, C
∗). From now on, B has access to the oracle Dec⊥.

7 A reduction to (full-fledged) RCCA re-randomizability would be straightforward; however, our scheme is only
weak-RCCA re-randomizable, therefore we need to work a bit harder to make the reduction works.
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3. Sample an index i∗ ← $ [n+1]. To simulate the decode phase (step 5) of the protocol,
for all j ∈ [n] decrypt the ciphertext Cm,j using the oracle Dec⊥; specifically, by
sending Cm,j/

∏m
l=1 κl. If the answer is ⊥ and j < i∗, then replace it with M̃; else if

the answer is ⊥ and j ≥ i∗, answer the decryption with ⊥. Notice that in the latter
case the protocol enters the invalid branch (see next step). Here i∗ is a guess for the
event that the i∗-th decryption query is the first for which Dec⊥ outputs ⊥ while it
is actually the case that the queried ciphertext decrypts to ⊥. i∗ = n+1 corresponds
to the case where none of these queries falls in this case.

4. Continue the execution of H8,i, in case the protocol turns to the invalid branch,
then it will decrypts the ciphertext of L0, uses the decryption of V0 to answer all the
subsequent decryptions, and finally outputs the bit that Z outputs.

We define the following events:

– Let Guess be the event that the i∗-th decryption query is the first for which Dec⊥ outputs
⊥ and, actually, Dec(sk, Cm,i∗) = ⊥.

– Let Rand be the event that Dec(sk, C′) 6= ⊥.
– Let Good be the event Guess ∧ Rand.

Claim 15 For i ∈ [n], Pr [H8,i = 1 | ¬Rand] = Pr [H8,i+1 = 1 | ¬Rand]

Proof. If the event Rand does not happen then both the hybrids will re-randomize the ciphertext
Ch∗−1,i following the procedure defined by the Π. Therefore, there isn no difference between the
two hybrids.

We show that conditioning on the event Good the behavior of B in ExpRand−wRCCA perfectly
matches the hybrids H8,i+1 and H8,i (depending on the challenge bit of the experiment).

Claim 16 For i ∈ [n], Pr[H8,i = 1 | Rand] = Pr[ExpRand−wRCCA
B,PKE (λ) = 1 |b∗ = 1, Good].

Proof. Since the challenge bit b∗ = 1 then the ciphertext Ch∗,πh∗ (i) is computed as:

ARand(pk,
∏h∗

l=1 κl,Rand(pk, Ch∗−1,i/
∏h∗−1
l=1 κl)),

which, by a simple inspection of the re-randomization algorithms, is equivalent to ARand(pk, κh∗ , Ch∗−1,i),
and thus the distribution of Lh∗ is the same in B’s simulation and in H8,i. However, we have not
considered the decryption oracle queries yet. Notice that we are conditioning on Guess, hence
the behavior of B exactly matches the pattern of decryptions for all the queries answered with
⊥ by the decryption oracle, therefore B perfectly simulates H8,i when b∗ = 1.

Claim 17 For i ∈ [n], Pr[H8,i+1 = 1 | Rand] = Pr[ExpRand−wRCCA
B,PKE (λ) = 0 |b∗ = 0, Good].

Proof. As in the proof of the previous claim, since we condition on Guess the behavior of B
exactly matches the pattern of decryptions. Moreover, by inspection the procedure to decrypt
and re-encrypt executed by B in the rand-wRCCA experiment and in the hybrid H8,i+1 are
exactly the same.

49



Let B := ExpRand−wRCCA
B,PKE (λ) = 1, by easy calculations:

Pr[ExpRand−wRCCA
B,PKE (λ) = 1]

= Pr[B | Good] · Pr [Good] + Pr[B | ¬Good] · Pr [¬Good]

≥Pr[B | Good] · Pr [Good] + 1
2 · Pr [¬Good]

=1
2 (Pr[B | b∗ = 0, Good] + Pr[B | b∗ = 1, Good]) · Pr [Good] + 1

2 · Pr [¬Good]

=1
2 (1− Pr[¬B | b∗ = 0, Good] + Pr[B | b∗ = 1, Good]) · Pr [Good] + 1

2 · Pr [¬Good]

=1
2(Pr [Good] + Pr [¬Good]) + (Pr[H8,i+1 = 1]− Pr[H8,i = 1])/2 · Pr [Good]

=1
2 + (Pr[H8,i+1 = 1 | Rand]− Pr[H8,i = 1 | Rand])/2 · Pr [Good] .

Finally, notice that the probability of Guess is 1/(n + 1) (which is non-negligible in λ), inde-
pendently of the probability of Rand therefore, putting together the derivation above with the
Claim 15 and by the rand-wRCCA security of PKE the two hybrids are indistinguishable.

Hybrid 9. The hybrid experiment H9 is as the hybrid H8 but with the following difference:

1. At the initialization phase sample another set of inputs Mhide ← {Hj}j∈[n] such that Hj ←
$ G`, Mhide contains no repetitions, and Mhide ∩ M̂H = ∅.

2. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1
, for all

j ∈ [n], compute Mh∗−1,j ← ADec(sk,
∏h∗−1
l=1 κl, Ch∗−1,j) and do the following:

– Compute the ciphertext Ch∗,π(j) as follow:

Ch∗,πh∗ (j) ←

{
ARand(pk,

∏h∗

l=1 κl,Enc(pk, Hj)) if Mh∗−1,j 6= ⊥
ARand(pk, κh∗ , Ch∗−1,j) else

– If Mh∗−1,j 6= ⊥ then add (Hj , Mh∗−1,j) to Ψhide.
Set Lh∗ ← 〈Ch∗,j〉j∈[n] and continue the execution of the experiment.

Lemma 44. H9 ≈c H8.

Proof. We prove indistinguishability based on the RCCA-security of PKE . To do so we define
intermediate hybrids: let H9,i be the experiment that re-encrypts the first i ciphertexts as in
H9, and all the other ciphertexts as in H8. More precisely, H9,i is as H9 except that step 2 is
modified as follow:

2. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1
:

– For all j < i compute the ciphertext Ch∗,πh∗ (j) as in H9 (i.e., re-randomize a fresh
encryption of Hj and add (Hj , Mh∗−1,j) to Ψhide);

– For all i ≤ j ≤ n compute the ciphertext Ch∗,πh∗ (j) as in H8.
Set Lh∗ ← {Ch∗,j}j∈[n] and continue the execution of the experiment.

Clearly, H9,1 ≡ H8 and H9,n+1 ≡ H9. Below we show that H9,i ≈c H9,i+1 for all i ∈ [n].

Let Rand be the event that ADec(sk,
∏h∗−1
l=1 κl, Ch∗−1,i) 6= ⊥.

Claim 18 For i ∈ [n], Pr [H9,i = 1 | ¬Rand] = Pr [H9,i+1 = 1 | ¬Rand].

The claim follows by inspection: by hybrid definitions one can see that when Rand does not
happen both hybrids re-randomize the ciphertexts following the procedure described in Π.

Next, consider the following adversary for the RCCA-security experiment:

Adversary B(pk):
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1. Run the hybrid H9,i (but do not sample the public key of PKE , instead use the value
pk received as input); (Pick a setMhide ← {Hj}j∈[n] where Hj ← $ G`, all the messages

in the set Mhide are distinct, and Mhide ∩ M̂H = ∅;)
2. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1

:

(a) For all j ≤ i− 1 compute the ciphertext Ch∗,πh∗ (j) as in H9. and add (Hj , Mh∗−1,j)
to ψhide;

(b) Query the decryption oracle on C′ ← (Ch∗−1,i/
∏h∗−1
l=1 κl); let Mh∗−1,i be its re-

sponse;
(c) Send the pair (Mh∗−1,i, Hi) to the challenger, and let C∗ be the challenge cipher-

text received in reponse. Next, set Ch∗,πh∗ (i) ← ARand(pk,
∏h∗

l=1 κl, C
∗) and add

(Hi, Mh∗−1,i) to Ψhide. Moreover, add (�, ψin(Mh∗−1,i)) to Ψin; this latter assignment

implies that if Mh∗−1,i ∈ M̂H , then � is mapped to the corresponding honest
sender input, otherwise the assignment is equivalent to adding (�, Mh∗−1,i) to Ψin.)

(d) For all i < j ≤ n compute the ciphertext Ch∗,πh∗ (j) as in H8.

3. Compute all the decryptions that the hybrid H9,i performs (for example, to compute
Vh∗ ,Vm) with the help of the oracle Dec� and whenever the decryption oracle outputs
� replace it with Mh∗−1,i;

4. At the end of the hybrid experiment outputs what Z outputs.

Claim 19 The following claims are both true:

1. Pr[H9,i = 1 | Rand] ≈s Pr[ExpRCCA
B,PKE(λ) = 0 |b∗ = 0, Rand],

2. Pr[H9,i+1 = 1 | Rand] = Pr[ExpRCCA
B,PKE(λ) = 0 |b∗ = 1, Rand].

Proof. The adversary B perfectly simulates all the step of H9,i until the challenge message is
sent. At this point, if the challenge bit b∗ = 0 then the adversary receives an encryption C∗ of
the message Mh∗−1,i and therefore the ciphertext Ch∗,πh∗ (i) is distributed exactly as in H9,i. On
the other hand, if the challenge bit is 1 then the adversary receives an encryption C∗ of the
message Hi, and therefore the ciphertext Ch∗,πh∗ (i) is distributed exactly as in H9,i+1.

Notice that the hybrid H9,i does not add (Hi, Mh∗−1,i) to Ψhide while B does it. This may raise
a difference in B’s simulation. However, the value Hi is uniformly random over a set of size at
least |G`| − 2n, and the view of Z is independent of Hi. Hence, the simulation can diverge only
if Z guesses the value Hi which can happen only with negligible probability.

By simple inspection of step 3 of B, we notice that B and H9,i compute the sets Vh∗ and Vm
in the same way. On the other hand, the two sets are computed differently by B and H9,i+1. In
fact, in step 3 of B whenever � occurs B adds Mh∗−1,i to the computed set (either Vh∗ or Vm),
while H9,i+1 would add Hi. We argue this change does not create any difference in the view of
Z. In particular, in H4 we introduced the check M̂H 6⊆ ψhide(Vm) and in H6 we introduced the
check ψhide(Vm) 6⊆ Vh∗ . Notice that ψhide(Vm) as computed by B would map Mh∗−1,i to Mh∗−1,i

while in hybrid H9,i+1 would map Hi to Mh∗−1,i. Hence, after applying ψhide, the checks work

with identical sets. Finally, concerning the check of H5 – ψhide(Mm,j) ∈ M̂H – for B if Mm,j = �
this is remapped to Mh∗−1,i while in H9,i+1 would be Hi: for the same reason as above, after
applying ψhide the check computed in B’s simulation works the same as in H9,i+1.
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Let B := ExpRand−wRCCA
B,PKE (λ) = 1, by easy calculations:

Pr[ExpRand−wRCCA
B,PKE (λ) = 1]

= Pr[B | Rand] · Pr [Rand] + Pr[B | ¬Rand] · Pr [¬Rand]

≥Pr[B | Rand] · Pr [Rand] + 1
2 · Pr [¬Rand]

=1
2 (Pr[B | b∗ = 0, Rand] + Pr[B | b∗ = 1, Rand]) · Pr [Rand] + 1

2 · Pr [¬Rand]

=1
2 (1− Pr[¬B | b∗ = 0, Rand] + Pr[B | b∗ = 1, Rand]) · Pr [Rand] + 1

2 · Pr [¬Rand]

=1
2(Pr [Rand] + Pr [¬Rand]) + (Pr[H9,i+1 = 1]− Pr[H9,i = 1])/2 · Pr [Rand]

=1
2 + (Pr[H9,i+1 = 1 |Rand]− Pr[H9,i = 1 |Rand])/2 · Pr [Rand] .

The lemma follows by putting together Claim 18 and the derivation above, and by the RCCA-
security of PKE .

Hybrid 10. The hybrid experiment H10 is as the hybrid H9 but with the following difference:

1. When the message (write, (Lh∗−1, comh∗−1)) appears in the port OMix.inflMh∗−1
, for all

j ∈ [n], compute Mh∗−1,j ← ADec(sk,
∏h∗−1
l=1 κl, Ch∗−1,j) and do the following:

– Compute the ciphertext

Ch∗,πh∗ (j) ←

{
ARand(pk,

∏h∗

l=1 κl,Enc(pk, Hπh∗ (j))) if Mh∗−1,j 6= ⊥
ARand(pk, κh∗ , Ch∗−1,j) else

– If Mh∗−1,j 6= ⊥ then add (Hπh∗ (j), Mh∗−1,j) to Ψhide.

Claim 20 H10 ≡ H9.

Proof. There are two syntactical differences between H10 and H9 (underlined above).

The first one is that Ch∗,πh∗ (j) is assigned the encryption of Hπh∗ (j) in H10, and the encryption
of Hj in H9. However, for any j ∈ [n], the distributions of Hj and Hπh∗ (j) are exactly the same
up to the decoding phase, so the list Lh∗ has the same distribution in both hybrids (up to
the decoding phase). The second difference is that, for all j ∈ [n] such that Mh∗−1,j 6= ⊥, H10

adds (Hπh∗ (j), Mh∗,j) to Ψhide, whereas H9 adds (Hj , Mh∗−1,j). The latter implies that, even after
the decoding phase, the two lists of ciphertexts are distributed exactly the same. Indeed, both
hybrids would return the same value as decryption of the ciphertext Ch∗,j .

We are ready now to describe the simulator.

Simulator S():

Initialization Phase:

1. Set the following flags flgRO ← false, flgstuffed ← false, flgcopied ← false.

2. Sample the list of simulated inputs of the honest senders M̂H ← {M̂j}j∈[n]\CS such

that each M̂j ← $ G` is sampled uniformly at random and M̂H contains no repetitions.
3. Sample another set of inputs Mhide ← {Hj}j∈[n] such that Hj ← $ G`, Mhide contains

no repetitions, and Mhide ∩ M̂H = ∅.
4. Run internally the open agent (Π ◦ F ′Dec ◦ FNPRO ◦ BB), where the functionality
F ′Dec works the same as FDec except that:

– Instead of step 2, compute crssd, tdssd, tdesd ← Initsd(1
λ);

– Instead of step 3, compute crsmx, tdsmx ← Initmx(1
λ).
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Listen to all the ports of the open agent system and react as described below.
Input Submission:
5. Forward all the messages from/to the ports OMix.lkSi and OMix.inflSi for i ∈ CS of

the simulator from/to the same ports in the internal execution of the agent.
6. Whenever a message (input, j) appears in the input port OMix.lk of the simulator,

with j ∈ [n] \ CS (i.e., the notification that the honest sender PSj submitted its
input), instead of running the code prescribed by Π, run the following:
– Compute Ĉj ← Enc(pk, M̂j ;Rj , wj , xj , yj) where Rj ← $ G, wj , xj , yj ← $ Z3

q ;
– Compute Πs

j ← $ Psd(crssd, (j, [g, a], W̄j), (wj , Rj)) where W̄j ← (wj · [g], wj · [a]+
Rj);

– Insert the message (input, j, (Ĉj , Π
s
j )) to the port BB.inSj ;

Optimistic Mix:
7. Forward all the messages from/to the ports OMix.lkMi and OMix.inflMi for i ∈ CM

of the simulator from/to the same ports in the internal execution of the agent.
8. For any i ∈ CM when the message (write, (Li, comi)) appears in the port BB.inMi

check if there exists an entry (κi, comi) ∈ QF : if not, set flgRO ← true;
9. When the message (write, (Lh∗−1, comh∗−1)) appears in the port BB.inMh∗−1

, sample
κh∗ ← $ Zq, πh∗ ← $ Sn, parse Lh∗−1 = 〈Ch∗−1,j〉j∈[n] and for all j ∈ [n]:

– Compute Mh∗−1,j ← ADec(sk,
∏h∗−1
l=0 κl, Ch∗−1,j)

– Compute the ciphertext:

Ch∗,πh∗ (j) ←

{
ARand(pk,

∏h∗

l=1 κl,Enc(pk, Hπh∗ (j))) if Mh∗−1,j 6= ⊥
ARand(pk, κh∗ , Ch∗−1,j) else

– If Mh∗−1,j 6= ⊥ then add (Hπh∗ (j), Mh∗−1,j) to Ψhide.
Build the multiset Vh∗−1 ← {Mh∗−1,j : j ∈ [n]}, define Lh∗ ← 〈Ch∗,j〉j∈[n] and continue
the execution of the experiment.

10. When the message (write, (Lm, comm)) appears in the port BB.inMm , for every
j ∈ [n] compute Mm,j ← ADec(sk,

∏m
l=1 κl, Cm,j), and define the multiset Vm ←

{Mm,j}j∈[n]. Moreover:

(a) If M̂H 6⊆ ψhide(Vm) then set the flag flgstuffed to true.
(b) if ∃j, j′ ∈ [n] such that j 6= j′, Mm,j = Mm,j′ and ψhide(Mm,j) ∈ M̂H then set the

flag flgcopied to true.
11. When the message (write, (ΠM

h∗ , κh∗)) appears in the port BB.inMh∗ replace it with

(write, (Π̂M
h∗ , vκh∗)) where

Π̂M
h∗ ← Simmx(tdmx, (h

∗, [g, a],CkSum(Lh∗−1,Lh∗ , κh∗))).
Verification Phase:
12. If the message (write, valid) appears in a port BB.inMi where i ∈ [n] \ CM and
⊥ 6∈ Vm then send the message invalidate in the influence port OMix.infl.

Decode Phase:
13. If the message (write, valid) appears in a port BB.inMi where i ∈ [n] \CM and one

of the following conditions hold then abort:
(a) the flag flgRO is true
(b) the flag flgstuffed is true;
(c) the flag flgcopied is true;
(d) ψhide(Vm) 6⊆ Vh∗ ;

14. If the message (write, valid) appeared then send the following messages to the port
OMix.infl:
– For all j ∈ [n] compute Mm,j ← ADec(sk,

∏m
l=1 κl, Cm,j) if ψhide(Mm,j) 6∈ M̂H then

send the message (input, j, Mm,j);

53



– send the message mixDone;

Successively, receive the message (mixDone, valid,O). Let OC ← ψhide(Vm) \ M̂H ,
and computeOH ← O\OC (the ordered list of the honest inputs). Let {i1, . . . , in−|CS |} =

[n] \CS , and parse OH = 〈MOi1 , . . . , M
O
i
n−|CS |

〉. For all j ∈ [n − |CS |] add (M̂ij , M
O
ij

) to

Ψin.
15. Else if the message (write, invalid) appeared, send the following messages to the

port OMix.infl:

– For all i ∈ CS send the message (input, i,Dec(sk, C0,j));
– send the message mixDone;

Successively, receive the message (mixDone, invalid,O), parse O as 〈MO1 , MO1 , . . . , MOn 〉,
for all j ∈ [n] \CS add (M̂j , M

O
j ) to Ψin.

16. Whenever a message (dec, X, κ, M) appears either in the leakage port Dec.lk or in the
outport Dec.outMi for any i substitute the message with (dec, X, κ, ψin(ψhide(M))).

The final step is to prove that the last hybrid and the ideal world are indistinguishable.

Lemma 45. H10 ≡ (FOMix ◦ S ◦ Z).

Proof. We start noticing that, by the changes introduced in steps H0,H2,H4,H5,H6, the abort-
ing conditions of hybrid H10 and S are the same. Let Valid be the event that H10 (resp. S) did
not abort and the message (write, valid) appeared.

We show that conditioned on Valid, Z has the same view in both experiments. By the check
in 10a and 10b of the simulator, all the honest simulated messages M̂H appear in Vm (or more
formally in the projected set ψhide(Vm)) and moreover each of them appears once and only once.
Therefore the simulator sends exactly |CS | messages to the ideal functionality. So, summed to
the inputs sent by the honest senders the ideal functionality received exactly n inputs.

In the decoding phase of the protocol both the simulator and the hybrid H10 compute a list
of decryptions. In particular, we need to prove that the distributions of these lists as computed
by the simulator and by the hybrid are indistinguishable. Both the simulator and the hybrid
H10 compute the list as follow:

〈ψin(ψhide(ADec(sk,
∏m
l=1 κl, Cm,j))) : j ∈ [n]〉.

Moreover:

1. Both the simulator and the hybrid compute the set Ψhide in the same way.
2. The hybrid H10 computes Ψin as the set of tuples (M̂j , Mj) for j ∈ [n] \CS , where Mj is the

honest input message. The simulator instead computes Ψin by first looking at the list O\OC
(namely, the ordered list of the output messages minus the corrupted messages extracted
by the simulator) and then by assigning to each simulated honest sender message M̂j a value
from the list O \ OC .

In particular, the two points above are already sufficient to show that, without considering the
order, the two lists (as computed by the simulator or by hybrid) are the same. However, we still
need to prove that the order does not allow to distinguish the two distributions.

The order of the corrupted inputs is equivalent in the two lists, so we focus on the order of
the honest inputs.

Parse [n] \CS as {i1, . . . , in−|CS |}, and notice that by steps 13d and 10a of S we have that

M̂H ⊆ Vh∗ , and therefore:

– there exists a function π′ such that Mh∗,π′(ij) = M̂ij for all j and,
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– there exists a set M′ ⊆Mhide such that ψhide(M′) = M̂H .

In particular, we can parse M′ = {Hπh∗ (π′(i1)), . . . , Hπh∗ (π′(i
n−|CS |))

}. In H10 the following holds

for all j:
ψin(ψhide(Hπh∗ (π′(ij)))) = ψin(M̂π′(ij)) = Mπ′(ij),

while in the simulator the following holds for all j:

ψin(ψhide(Hπh∗ (π′(ij)))) = ψin(M̂π′(ij)) = MOπ′(ij).

However, notice that the view of Z is independent of the permutation πh∗ , restricted to the
indices j such that Mh∗−1,j 6= ⊥, and in particular, since M̂H ⊆ Vh∗ , the view of Z is independent
of the permutation πh∗ restricted to the points {π′(ij) : j ∈ [n] \ CS}. This implies that
in both worlds each element Hπh∗ (π′(ij)) is assigned to a uniformly randomly selected honest
message (without repetition, of course). Therefore the distributions of the decoded ciphertexts
are equivalent in H10 and in the simulator.

Let Invalid be the event that the message (write, invalid) appeared. We show that the
distribution of the decoded ciphertexts of S and H10 are exactly the same. We first analyze the
inputs of the honest senders: conditioned on the event Invalid, the simulator assigns to M̂j the
input of the honest sender Mj for any j ∈ [n] \CS . The hybrid H10 does exactly the same thing.
The inputs of the malicious senders given to the ideal functionality by S, conditioned on the
event Invalid, are the decryptions of L0, so are the outputs. On the other hand, the hybrid
H10, conditioned on the event Invalid, does decrypt the list L0 therefore obtaining the same
messages.

Finally notice that the events Valid, Invalid, and the event that the simulator (resp. the
hybrid) aborts partition the space of the possible outcomes. Therefore, we have proved all the
possible cases.

By the triangular inequality and the lemmas above we get (Π ◦ FDec ◦ FNPRO ◦ BB ◦ Z) ≈c
(FOMix ◦ S ◦ Z).

Lemma 46. Let A := (W[S] ◦W[FDec] ◦FNPRO ◦BB), for all environment Z ∈ Env, (Z ◦A◦
PA[Audit]) ≡ (Z ◦ A ◦ PA[Audit∗OMix]).

Proof. Suppose the two hybrids diverge. Then it must be that the environment Z sent an input
(b∗,O∗) to PA such that Audit and Audit∗OMix answer differently.

Suppose that Audit returns false while Audit∗OMix returns true. If Audit∗OMix returns true, it
means that the simulator sent mixDone to the influence port of ideal functionality FOMix and
the message (b∗,O∗) appears in DI . Suppose that Audit return false because flgvalid 6= b∗,
but notice that if flgvalid appears the BB the simulator accordingly to its value sends the
message invalidate to the ideal functionality. In particular when flgvalid = valid then the
simulator does not send the invalidate message and therefore b∗ cannot be invalid and when
flgvalid = invalid then the simulator does send the message invalidate and therefore b∗

cannot be valid. This implies that b∗ = flgvalid.
If b∗ = valid then the checks (1) and (2) of the Audit algorithm hold true, moreover,

⊥ 6∈ Vm so all the ciphertexts in the list Lm decrypt correctly. The latter implies that the
simulator in step (15) when receives messages of the form (dec, C∗j , κ

∗, M) it substitute it with
(dec, C∗j , κ

∗, Ψin(Ψhide(M))) where the maps are programmed to outputs exactly what is O∗, there-
fore also check (3) holds true.

If b∗ = invalid then either the adversary sent invalidate so either (1) or (2) are false or
⊥ ∈ Vm. In step (15) when receives messages of the form (dec, C∗j , κ

∗, M) it substitute it with
(dec, C∗j , κ

∗, Ψin(Ψhide(M))) where the map Ψin is programmed to outputs all the input messages,
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therefore, if (1) and (2) are true it must be that check (3) holds false as otherwise O∗ is not the
same as the one output by the ideal functionality.

The other case – Audit returns true but Audit∗Mix returns false – simply cannot happen by
definition of S (as the simulator does use the ideal functionality to produce its output).

This concludes the proof of the Theorem.

6 Verifiable Mixing from Optimistic Mixing

We propose a construction of a verifiable mixing scheme obtained by combining an optimistic
mixing and a verifiable mixing scheme. The main feature of the mixing scheme that we obtain
is that, in case all the participants behave correctly, it runs (approximately) as efficiently as the
underlying optimistic mixing scheme. At the same time, it achieves the same security property
of a verifiable mixing. More specifically, our construction uses a specific class of VMix schemes,
that we call structured VMix, and that satisfy specific structural properties. We define structured
VMix in the next section and then present our compiler in Section 6.2.

6.1 Structured Verifiable Mixing Scheme

Informally speaking, a Structured Verifiable Mixing (sVMix) scheme is a verifiable mixing
scheme where: every sender submits its input by creating an encoding of it (e.g., using a public
algorithm Encode), and the output is a sorted list of the decoded inputs. Also, the scheme leaves
the possibility releasing the secret key if mixing did not happen. This behavior and capabilities
are quite natural for mixing protocols and indeed capture many existing schemes. In Sec. 6.3,
we indeed show how to instantiate it using the UC-secure mixing protocol of [51]. Furthermore,
for the sake of our compiler we need a structured VMix that satisfies a security property weaker
and simpler than the one of a standard VMix. Namely, inputs of the ideal functionality are
submitted (in encoded form) by one single party all at once.

More formally, we define a Structured Verifiable Mixing (sVMix) scheme as a tuple SVM =
(ES, Π,Audit) where ES is a quintuple of PPT algorithms (Init,Encode,Decode,EncodeX ,DecodeX)
representing an encoding scheme as defined below, Π is a multi-party protocol, and Audit is a
PPT algorithm.

For the encoding scheme ES we consider a specific kind of schemes in which the Encode
algorithm outputs a pair Z = (X,Y ) and, very informally, restricting ciphertexts to the X
component yields an correct encryption scheme (notably, we do not require any kind of security)
while full ciphertexts yield an IND-CCA2-secure one.

This is essentially a specialization of the notion of augmented cryptostystem that was in-
troduced of Wikström [52] as a tool for submitting inputs to mix-net protocols, and captures
several IND-CCA2 encryption schemes, such as Cramer-Shoup (where Y is a well specified com-
ponent of the ciphertext), or ones following the Naor-Yung paradigm (where Y is essentially a
proof of knowledge of the plaintext encrypted in X). More formally:

Definition 12 (Encoding Scheme). An encoding scheme ES = (Init,Encode,Decode,EncodeX ,
DecodeX) is one where (Init,Encode,Decode) is a correct encryption scheme, and the following
extra properties hold:

– Encode(pub, M) outputs an encoding Z = (X,Y );
– EncodeX is the algorithm that runs Encode and returns X only;
– The algorithm Decode(sec, Z) works by computing DecodeX(sec, Strip(sec, Z)) where Strip8

is an algorithm that on input Z = (X,Y ) outputs X or ⊥.
8 While here we let Strip work with the secret key sec, the algorithm Strip could also work only with public

parameter
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Definition 13 (Submission security). An encoding scheme ES as above is submission-secure
if (i) the tuple (Init,Encode,Decode) is IND-CCA2 secure, and (ii) the tuple (Init,EncodeX ,
DecodeX) is a correct encryption scheme9.

To model security of sVMix, in Fig. 7 we describe an ideal functionality FsMix[ES], parametrized
by the encoding scheme ES. At high level, FsMix[ES] works as follows. In the Init phase, it gener-
ates the keys (pub, sec) of the encoding scheme. For input submission, it waits a message from
the first mixer PM1 containing a list of encoded inputs {Zj}j∈[n]. In the mixing phase, it waits
a confirmation from every mixer and then outputs the sorted list Sort(〈Decode(sec, Zj)〉j∈[n]).
Finally, the functionality has a command Unveil that, when all mixers agree, release the secret
parameter sec.

We are ready to define the security property of a structured mixing protocol:

Definition 14. An sVMix scheme SVM = (ES, Π,Audit) is R-secure iff: (1) SVM is a se-
cure auditable protocol for FsMix[ES] with resource R for environments in Envstatic; (2) ES is
submission-secure.

Functionality FsMix[ES]:

The functionality is implicitly parametrized by the security parameter 1λ.

Init: At first activation read from sMix.infl the sets of corrupted players CM , compute (pub, sec) ← Init(1λ),
set IS ← ∅, IM ← ∅, flginpDone ← false, and flgmixDone ← false. Send the message (pk, pub) on outport sMix.lk
and return.

Input Submission: On message (input, 〈Zj〉j∈[n]) on the inport sMix.inM1 (or from sMix.infl if M1 ∈ CM )
set IZ ← 〈Zj〉j∈[n]; Send (input, IZ) to the leakage port and set flginput to true.

Mix: On message mix on the inport sMix.inMi add the index i in the set of the the mixers’ inputs IM
and send (mix, i) to the leakage port; Moreover, if |IM | = m then set flgmixDone to true and set O ←
Sort(〈Decode(sec, Zj)〉j∈[n])

Unveil: On message unveil on the protocol input ports inMi store the index i in the set I, if |I| = m then
send the message (unveil, sec) to the leakage port;

Delivery:
– On message (pk, i) on the influence port, send the message (pk, pub) to the port outMi ;
– On message (mixDone, i) on the inport sMix.infl, if flgmixDone is true then send the message (mixDone,O)

on the outport sMix.outMi .
– On message (unveil, i) on the influence port if |I| = n send the message (unveil, sec) to the port outMi ;

Fig. 7: Ideal Functionality for “Structured” Mixing.

6.2 Construction

Let PKEC = (KGenC ,EncC ,DecC) be an IND-CPA secure encryption scheme, and let FDKG be
the ideal key generation functionality parametrized for KGenC (see Fig. 8).

Given a structured VMix scheme SVM = (ES, Π,Audit), an OMix schemeOM = (Π ′,Audit′),
we construct a VMix scheme VM = (Π ′′,Audit′′) as follows.

The protocol. The protocol Π ′′ with resources FsMix[ES], FOMix and FDKG[KGenC ]:

9 Namely, that for any pair (pk, sk) ∈ Init, any message M, the equation Decode(sec,Encode(pub, M)) = M holds
true.
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1. Encode and Input Submission. The sender PSj on input Mj , reads from the input protocol
port of sMix the message (pk, pub), computes Zj := (Xj , Yj) ← Encode(pub, Mj), compute
Ψj ← EncC(pk, Yj), send the message (write, (j, Ψj)) to the outport BB.inSj , and sends the
message (input, Xj) to the outport OMix.inSj .

2. Mix. The mixer PMi reads the message (mixDone, b,O′) from the inport OMix.outMi , parses
O′ = 〈X ′j〉j∈[n], and sends the message (write, (b,O′)) to the port BB.inMi ;
Valid Branch: (If b = valid) Send the message unveil to the outport sMix.inMi and

return; at next activation read the messages (unveil, sec), send the message (write, sec)
to the input port of BB, and compute Mj ← DecodeX(sec, X ′j) for j ∈ [n] and output
(mixDone,O′′) where O′′ ← Sort(〈Mj〉j∈[n]).

Invalid Branch: (If b = invalid)
(a) Send the message unveil to the port DKG.inMi and the messages (read, j) for j ∈ [n]

to the port BB.inMi and return; At next activation read the message (unveil, sk) from
the port DKG.outMi and read {(read, (j, Ψj))}j∈[n] from port BB.outMi and compute

the Y ′j ← DecC(sk, Ψj) and set Z ′j ← (X ′j , Y
′
j ) for all j ∈ [n],

(b) If i = 1 send the message (input, 〈Z ′j〉j∈[n]) and mix to the outport sMix.inM1 ;

(c) If i 6= 1 read the message (input, IZ) from the port sMix.outMi ; if IZ = 〈Z ′j〉j∈[n]

send the message mix to the outport sMix.inM1 ;
(d) Read the message (mixDone,O) from sMix.outMi and output (mixDone,O′′) where
O′′ ← O;

3. All parties send the message (write, endProtocol) to the relative protocol input port of BB.

The Audit Algorithm. The algorithm Audit takes as input (τ,O), and works as follows:

1. Parse τ as (DR,DI), and initialize O′′ ← ∅;
2. Check if for all i ∈ [m] there exists an entry (∗,Mi, ∗,O′) in DR, otherwise return false;
3. If for all i ∈ [m] there exists an entry (∗,Mi, (valid,O′)) in DR:

(a) Check if Audit∗OMix(DI , (mixDone, valid,O′)) = 1, otherwise return false;
(b) Check that Audit∗sMix(DI , (unveil, sec)) = 1 where (∗, ∗, sec) ∈ DR, for all X ∈ O′, check

if there exists M ∈ O such that DecodeX(sec, X) = M, and if so add the message M in the
list O′′;

(c) Return true if Sort(O′′) = O, false otherwise.
4. Else return true if all the following checks are satisfied, and false otherwise:

Audit∗OMix(DI , (mixDone, invalid,O′)) = 1, Audit∗sMix(DI , (mixDone,O)) = 1, and Audit∗DKG(DI , (unveil, sk)) =
1.

Functionality FDKG[KGen]:

The functionality has m parties with indexes {Mi : i ∈ [m]}. The functionality is implicitly parametrized by the
security parameter 1λ.

Init: At first activation sample (pk, sk)← KGen(1λ) and set the set I to empty;
Unveil: On message unveil on the protocol input ports inMi store the index i in the set I, if |I| = m then

send the message (unveil, sk) to the leakage port;
Delivery: On message (pubkey, i) on the influence port send the message (pubkey, pk) to the port outMi ; On

message (unveil, i) on the influence port if |I| = n send the message (unveil, sk) to the port outMi ;

Fig. 8: Ideal functionality for Distributed Key Generation

In what follows we prove that the protocol VM above is a secure VMix. The interesting part
of the construction above is its computational complexity. Informally, whenever the adversary
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Z does not invalidate the optimistic execution, the execution time of the protocol depends only
on the complexity of the OMix protocol. We formalize this intuitive property in the statement
of the theorem below:

Theorem 7. Let PKEC = (KGenC ,EncC ,DecC) be an IND-CPA secure encryption scheme,
SVM = (ES, Π ′,Audit′) be a F-secure structured VMix for any F , and OM = () The following
two statements are both true: (1) VM is a (FsMix[ES],FOMix,FDKG[KGenC ])-secure verifiable
mixing scheme, (2) for any execution of the protocol, if the message invalid does not appear
in the port OMix.infl then no message of the form (input, ∗) appears in the outports of sMix.

Proof. We prove the theorem with a series of hybrids. Hybrid 1. Let H1(λ) be the experiment

that runs the interactive agent (Z ◦Π ′′ ◦ FMix[ES] ◦ FOMix ◦ FDKG ◦BB) on input the security
parameter. The hybrid sees the internal views of all the agents and keeps track of all the messages
sent. Moreover the hybrid does the following modifications:

– When the message (input, j,Xj) appears in the port of OMix.inSj :

• If j ∈ CS then register the tuple (j,Xj ,⊥) in the database of the encoded inputs
• If j ∈ [n] \CS , compute Ẑj = (X̂j , Ŷj) ← Encode(pub, 0), store the tuple (j,Xj , X̂j) in

the database of the encoded inputs, compute Ψ ′j ← EncC(pk, Yj), and send the message
(write, (j, Ψ ′j)) to the bulletin board.

– When the message (mixDone, b,O′) appears from the protocol ports of OMix, replace it with
(mixDone, b, Ô′) where Ô′ is computed as follows:

• If b = valid let Ô′ ← Sort(〈Xj〉j∈[n]), where (j,Xj , ∗) appears in the database of the
encoded inputs.
• If b = invalid let Ô′ ← 〈X ′j〉j∈[n] where X ′j :

X ′j ←

{
Xj j ∈ CS

X̂j else

Lemma 47. (Z ◦Π ′′ ◦ FsMix[ES]FOMix ◦ FDKG ◦BB) ≈c H1.

Proof. To prove the lemma, we define another sequence of hybrid experiments H1,i for i ∈ [n],
where H1,i is the same as H1 except that:

– When both the messages (input, j,Xj) and (write, (j, Ψj)) appear in the outports of the
party PSj :
• If j ∈ CS or j ≥ i, then register the tuple (j,Xj ,⊥) in the database of the encoded

inputs,
• If j ∈ [n] \CS and j < i compute Ẑj := (X̂j , Ŷj) ← Encode(pub, 0) and store the tuple

(j,Xj , X̂j) in the database of the encoded inputs, compute Ψ ′j ← EncC(pk, Yj), and send
the message (write, (j, Ψ ′j)) to the bulletin board.

– When the message (mixDone, b,O′) appears from the protocol ports of OMix do as follow:

• If b = valid let Ô′ ← Sort(〈Xj〉j∈[n]) where (j,Xj , ∗) appears in the database of the
encoded inputs.
• If b = invalid let Ô′ ← 〈Aj〉j∈[n] where:

Aj ←

{
Xj if j ∈ CS or j ≥ i
X̂j if j ∈ [n] \CS and j < i
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Clearly, H1,i executes exactly the same as the real experiment, while H1,n+1 ≡ H1.
Without loss of generality we consider an environment Z that outputs only a single bit. We

rely on the weak submission security of ES and on the IND-CPA security of the encryption
scheme PKE . Specifically, consider two classes of environments: the class Env1 such that, for
all Z ∈ Env1, Z does static and active corruption of the players and the message invalidate is
sent with negligible probability and the class Env2 such that for all Z ∈ Env2 the environment
Z does static corruption of the players and the message invalidate is sent with noticeable
probability.
Notice that Env2 ∪ Env1 = Envstatic.

Claim 21 For all Z ∈ Env1 and for all i ∈ [n], H1,i ≈c H1,i+1.

Proof. In this case the message invalidate is sent only with negligible probability by Z. By
inspection, we notice that conditioned on the event that invalidate is not sent, the encoded
messages 〈X̂i〉i∈[n]\CS do not appear in the view of the environment. However, notice that while

H1,i produces Ψ ′i as an encryption of Yi, H1,i+1 produces Ψ ′i as an encryption of Ŷi. Moreover,
in this conditional space the secret key sk for the encryption scheme PKEC is never unveiled.
Therefore, we can easily reduce to the IND-CPA security of PKEC . So in this conditional
space the two views are computationally close. This is enough to prove that, even without
conditioning on this event, the views are computationally close, because the event happens only
with negligible probability.

Claim 22 For all Z ∈ Env2 and for all i ∈ [n], H1,i ≈c H1,i+1.

Proof. In this case the message invalidate is sent with noticeable probability 1/p(λ) by Z. We
show how to reduce to the submission security of ES (specifically, to the IND-CCA2 security of
(Init,Encode,Decode)). We consider a reduction that simulates correctly only the invalid branch
and aborts otherwise. The reduction is almost straightforward to the IND-CCA2 experiment.
More details follow:

Adversary B(pub):

1. Run the same code of H1,i but the agent FsMix[ES], instead of sampling from Init(1λ),
sets the public key as pub; (In particular, it does not know the relative secret key.)

2. When a honest sender PSj , with j ∈ [n] \CS , is activated and receives its input Mj ,
store Mj , and if j 6= i keep on simulating the hybrid H1,i by encrypting either Mj or
0; else if j = i send to the challenger the tuple (Mi, 0); get a ciphertext (X̂i, Ŷi);

3. When a message (input, j,Xj) appears in a port OMix.inflSj and a message (write, (j, Ψj)

appears in the port BB.inSj with j ∈ CS , first decrypt Yj ← DecC(sk, Ψj) the cipher-
text and then query (Xj , Yj) to the decryption oracle, obtain Mj and store it;

4. If the message mixDone is sent by the environment, all the senders have sent their
inputs to the functionality FOMix but the message invalidate has not been sent then
abort; (Let Abort be such event.)

5. Simulate the ideal functionality FsMix[ES] computing O ← Sort(〈Mj〉j∈[n]).
6. At the end of the experiment output whatever Z outputs.

When the challenge bit b∗ is equal to 0 then the challenger encrypts the message Mi, and thus
B perfectly simulates the view of Z in H1,i conditioned on the event (¬Abort). On the other
hand, when b∗ = 1 the message encrypted is 0, and therefore B perfectly simulates the view of Z
in H1,i+1, again conditioned on the event (¬Abort). Let ε := |Pr [H1,i = 1]− Pr [H1,i+1 = 1] |,
where the hybrids run with environment Z ∈ Env2. By standard calculation we have that the
advantage of B in the IND-CCA2 experiment is at least 1/2p(λ)ε.
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We define the simulator.

Simulator S:
The simulator internally runs the open agent system (Π ′′ ◦ FsMix[ES] ◦ FOMix ◦ FDKG) on input
the security parameter. The simulator sees the internal views of all the agents and keeps track
of all the messages sent, and also interacts externally with the agents Z and FMix and forwards
all the messages from/to Z. Moreover, the simulator does the following modifications:

– When the message (input, j) appears in the leakage port of FsMix (the port that connects the
simulator with the ideal functionality) send the input 0 to the party PSj of the internally sim-

ulated protocol Π ′′, the party computes (X̂j , Ŷj)← Encode(pub, 0) and (Ψ̂j ← EncC(pk, Ŷj)
and sends the relative messages. Store the tuple (i, X̂j , Ŷj ,⊥) in the database of the inputs.

– When the message Xj appears in the influence port of FOMix and the message (write, Ψj)
appears in the influence port OMix.inflSj (both ports connect the simulator with the en-

vironment) then compute Yj ← DecC(sk, Ψj) and register the tuple (j,Xj , Yj ,⊥) in the
database of the inputs.

– If the message invalidate appears in the influence port of FOMix set the bit b to invalid.
– When the message mixDone appears in the influence port of FOMix (the message comes from

the environment),
• if b = valid for every entry (j,Xj , Yj ,⊥) where j ∈ CS in the database of the inputs

compute Mj ← DecodeX(sec, Xj)) and update the entry to (i,Xj , Yj , Mj) and send the
message (input, j, Mj) to the influence port of the ideal functionality FsMix.
• if b = invalid for every entry (j,Xj , Yj ,⊥) where j ∈ CS in the database of the inputs

compute Mj ← Decode(sec, (Xj , Yj)) and update the entry to (i,Xj , Yj , Mj) and send the
message (input, j, Mj) to the influence port of the ideal functionality FsMix.

Next, send mixDone to the influence port of the ideal functionality FMix, and receive the
message (mixDone,O′′). Proceed as follows:
• If b = valid let 〈MO1 , . . . , MOn−|CS |〉 be the list of honest inputs computed asO′′\〈Decode(sec, Xj)〉j∈CS ,

let Ô′ ← Sort( 〈Xj〉j∈CS , 〈EncodeX(pub, MOj )〉j∈[n]\CS ), where (j,Xj , Yj , Mj) appears in
the database of the encoded inputs.
• If b = invalid let Ô′ ← 〈X ′j〉j∈[n] where X ′j :

X ′j ←

{
Xj j ∈ CS

X̂j else

Continue and trivially simulate the ideal functionality FsMix[ES] using Ô′ and the function-
ality FDKG.

Lemma 48. H1 ≡ (Z ◦ S ◦ FMix).

Proof. By simple inspection, the view of the Z when the message invalidate is sent is the
same in H1 and in the simulated world. On the other hand, consider the two views conditioned
on the event that the message invalidate is not sent. In this case, the simulator gets the
output messages from the ideal functionality and then creates the encoding ES ← 〈Xj ←
EncodeX(pub, MOj )〉j∈[n]\CS . On the other hand the hybrid receives the encoded messages EH ←
〈Xj : (Xj , Yj) ← Encode(pub, Mj)〉j∈[n]\CS . We notice that, if we consider the order, then the
two distributions are different. However, the environment receives them sorted, as the optimistic
mixing functionality executes the valid branch. In this case the two distributions are equivalent.

Notice that the two lemmas above implies the first condition of Def. 6 (secure auditable
protocols). We now prove the second condition.
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Lemma 49. Let A := (W[S] ◦ W[FMix] ◦ BB), for all environment Z ∈ Env, (Z ◦ A ◦
PA[Audit]) ≡ (Z ◦ A ◦ PA[Audit∗VMix]).

Proof. Suppose the two hybrids diverge. Then it must be that the environment Z sent an input
O∗ to PA such that Audit and Audit∗Mix answer differently.

Suppose that Audit returns false while Audit∗Mix returns true. If Audit∗Mix returns true, it means
that the simulator sent mixDone to the ideal functionality, and the simulator, by definition, sends
the messages (write,Mi, b,O′) to the BB for all i ∈ [m]. Hence, the algorithm Audit does not
return false as result of the check in step 2. Furthermore, if mixDone was sent by S to the ideal
functionality FMix, by construction of S it must be that a message (mixDone, b,O′) appeared in
the leakage port of FOMix. This means that Audit∗OMix returns true either in step 3a or in step 4.

Now, assume the conditions of the step 3 holds. Then, in the view of the environment there is
the list of encoded messages A← Sort( 〈Xi〉i∈CS , 〈Encode(pub, MOi )〉i∈[n]\CS ), which are exactly
the outputs of the ideal functionality FMix, and by following the steps of the protocol (which
S simulates) the simulated ideal functionality sMix sends the messages (unveil, sec). Hence,
because of the correctness of the decoding procedure DecodeX , the algorithm Audit does not
outputs false as consequence of the check in steps 3b and 3c.

At this point, we are only left with the possibility that Audit returns false in step 4. However,
we have already shown above that Audit∗OMix returns true. Moreover, if we reached step 4, the
message (mixDone, invalid,O′) was sent to all the mixers (as step 2 verified), and because the
protocol terminated, the simulated ideal functionality FsMix[ES] sends the message (mixDone,O)
with O = O∗ (the latter equality holds by construction of Π ′′ and due to the fact that Audit∗Mix
returns true). But then it must be that both Audit∗sMix and Audit∗DKG return true in step 4, which
is a contradiction as started from the assumption that Audit returns false.

The other case – Audit returns true but Audit∗Mix returns false – simply cannot happen by
definition of S (as the simulator does use the ideal functionality to produce its output).

6.3 Concrete Instantiation for the Structured Mix

In this section we show that the UC-secure (sender) verifiable mix-net10 of Wikström [51] can
be framed as a structured verifiable mixing.

Wikström shows a mixing protocol with resources the bulletin board BB, an ideal El Gamal
distributed key generation11 functionality FKG and an ideal zero-knowledge functionality FZK

for proving knowledge of the plaintexts (for the senders) and for the knowledge of a special kind
of shuffle (for the mixers). Let us call ΠWik05 such protocol.

Briefly, the mixers compute and share the secret and public parameter for a special form
of El Gamal encryption scheme using the functionality FKG. The senders, given the public
key pk, encrypt their messages and send them to the bulletin board and later they create a
zero-knowledge proof of knowledge of the plaintext using the ideal functionality FZK. At this
point, the mixers decrypt and sort the lists of ciphertexts and provide zero-knowledge proofs of
knowledge of correct decryption and sorting (again using the ideal functionality).

We recall that for our compiler we need to realize a weaker mixing functionality where
there are no senders and where the inputs are given encrypted to the functionality. The former
property implies that we can cut from the protocol the input submission phase executed by
the senders, the latter property implies that we can avoid the phase where the senders prove in

10 The definition of Wikström for the ideal functionality of mixing is slightly different, but it is not hard to see
that it is compatible with ours. Specifically, the ideal functionality defined there is strong enough to realizes
our ideal FMix functionality.

11 The functionality accepts as input tuple of public and secret keys, and distributes the public keys and unveil
the secret keys of the parties in case of agreement of the majority.
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(UC) zero-knowledge to the mixers the knowledge of the plaintexts. In fact, the simulator does
not have to extract the inputs from the malicious senders, since the inputs of the functionality
are the ciphertexts themselves which are given “on the clear” by the senders.

The protocol of Wikström uses the resource FKG which has a special command to reveal
the secret key of a mixer in case of misbehavior. We can use this special command to easily
implement the command Unveil needed for sMix.

Notice that the encoding scheme ES of a structured Mix needs to be CCA2 secure, while the
underlying encoding scheme in the protocol of Wikström is El Gamal which is only CPA-secure.
The easiest solution to this problem is to consider a construction à la Naor-Young [39,44], where
the encoded messages (X,Y ) is such that X is an El Gamal ciphertext and Y is a SE-NIZK of
knowledge of the plaintext.

Finally, we notice that the protocol ΠWik05 could be made auditable (according to our model)
if the underlying resource FZK is auditable. We summarize the discussion above in the following
informal theorem:

Theorem 8 (Informal). There exists a SVM = (ES, Π,Audit) that is a FKG,FZK,FCRS-
secure structured VMix protocol where the X-part of the encoded message (X,Y ) is made only
of 2 groups elements.

As a final note, our compiler can also work with verifiable mixing schemes that are not
UC-secure, provided that the protocols are proven secure in the real/ideal security paradigm
of Goldreich, Micali and Wigderson [27]. In fact, as noted by Canetti (c.f. [11], pag. 70), we
can consider the ideal functionality FNC that wraps a protocol into a non-concurrent and iso-
lated environment. The end result, applying theorem 7, is a scheme with resource FNC where,
informally speaking, the verifiable mixing, in case of invalid branch, must be computed on an
“isolated network”.

7 Efficiency Evaluations

We provide an estimation of costs for the instantiation of our compiler with our optimistic proto-
col of Section 5 and the UC-secure mix-net in [51] as structured mixing. Costs are parametrized
by the number of senders, n, and the number of mixers, m. The encoding scheme in [51] is
ElGamal with a ZK proof of knowledge of plaintext; this means that we can instantiate our
RCCA scheme with ` = 2. Our evaluations focus on the costs of mixing and verification in the
optimistic case, and consider an instantiation over an elliptic-curve prime order group.

Every mixer must compute n authenticated re-randomizations and one proof for NIZKmx.
This requires a total of 8n exponentiations that can be computed offline, and 18n + 8 expo-
nentiations and 6n + 3 (much cheaper) multiplications to be computed online. Moreover, the
mixer posts λ(22n+ 11) bits on the BB. Precisely, for every ciphertext (consisting of 11 group
elements), re-randomization requires 8 exponentiations to create the random masks (which can
be computed offline), 10 full exponentiations to compute s · Ȳ and t · Ȳ , and 8 exponentiations
with a shorter exponent κ ∈ Z2λ , which essentially count half in an elliptic-curve implemen-
tation. Creating the proof (consisting of 3 group elements and 2 elements in Zq) requires 5
exponentiations, plus 6n+ 3 group multiplications and 3 exponentiations for the checksum.

A verifier must read mλ(22n + 11) + 16nλ bits from the BB, check all the senders NIZKs,
computem checksums for the lists of ciphertexts and check the mixers proofs. This requires 10n+
8m exponentiations and about 3nm group multiplications. Precisely, verifying one sender NIZK
requires 10 exponentiations; computing m checksums costs 3m exponentiations and 2(nm+n+
m) multiplications, and verifying the mixer NIZKs costs 5m exponentiations.

A closer look at the protocol shows that several of the exponentiations above are for fixed
bases in the public parameters, and thus can be sped up (approximately by a factor 4.5) using
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precomputation techniques (c.f., [1]). If we use a full exponentiation on an ECC group as time
unit, these optimizations show that a mixer in our protocol needs a total of 11n exponentiations
(1.8n offline, 9.2 online), whereas a verifier needs about 5.3n+ 4.1m exponentiations.

For a comparison, we consider the most efficient UC-secure mix-net proposed by Wikström
in [51]. We observe that a precise comparison is difficult as the estimations in [51] are given for
specific groups (a prime order group and an RSA group) and are presented using exponentiations
in prime order groups as time unit. We computed estimations for the [51] protocol, considering
optimizations such as multi-exponentiations and precomputations, and an instantiation of their
prime order groups with ECC. Using an ECC exponentiation as time unit, we have that a mixer
and verifier in [51] must do the equivalent of at least 30n and 22nm exponentiations.12 In terms
of rounds of communications our protocol needs one extra (parallel) broadcast round in which
the mixers reveal the authentication keys, plus the rounds needed for the distributed decryption
of the ciphertexts returned by the last mixer. However, in the protocol of Wikstrom every mixer
must post in the BB at least 6nλ + 6n|N | bits (where |N | is the bit size of an RSA modulus
for security parameter λ), which for example are 19200n bits for λ = 128. In contrast, in our
protocol each mixer posts 2816n+ 1408 bits, that is about 7 times shorter.

8 Conclusions and Open Problems

We revisited the notion of optimistic mixing showing new feasibility results for this, previously
abandoned, research direction. Our contributions give evidences that the optimistic approach
can lead to new practical schemes. Below, we identify a number of interesting problems that
are left open by our work. We believe that our contributions, by reviving the interest of the
research community, are an interesting starting point.

First, in our protocol an attacker might decide to invalidate the execution of an optimistic
protocol only to slow down the mixing process (let us call this a “trolling attack”). We could
consider a more granular definition of optimistic security that protects against these attacks for
a specific subset of the parties. For example, we could look for protocols where trolling attacks
are ruled out for senders (e.g., by asking them to send a NIZK proof of correct decryption).
Moreover, in the same vein of covert secure MPC [7], we could look for protocols with an
“investigation phase” where the dishonest party is identified.

Although our construction uses specific properties of our re-randomizable RCCA encryption
scheme, our paradigm is applicable to other RCCA PKE schemes. Ideally, a more abstract con-
struction would reduce the problem of constructing efficient OMix protocols to the (conceptually
easier) problem of constructing re-randomizable RCCA scheme.

Our protocol makes use of a local random oracle functionality. Recently, Camenisch et al.[10]
proposed a definition of global random oracle functionality which allows for very practical imple-
mentation of many cryptographic primitives such as CCA2 PKE, signatures and commitment
schemes. It would be interesting to extend their analysis to rerandomizable RCCA PKE in
the random oracle model. In particular, provided that the RCCA PKE is secure with a global
random oracle, a minimal modification to our OMix protocol would result in a secure OMix in
the Generalized UC [13] with a programmable and observable random oracle (see [10] for more
details) as global setup assumption.

Finally, the main bottleneck of our construction is the distributed decryption of the RCCA
ciphertexts (recall that our OMix protocol uses as ideal resource the functionality FDec). Con-
structing new re-randomizable RCCA PKEs with efficient distributed decryption, or giving a
practical protocol for distributed decryption of our scheme are indeed the most important open
problems.

12 Our estimations are quite generous and for example do not include the time to generate n 100-bit primes.
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36. M. Jakobsson and D. M’Räıhi. Mix-based electronic payments. In S. E. Tavares and H. Meijer, editors, SAC
1998, volume 1556 of LNCS, pages 157–173. Springer, Heidelberg, Aug. 1999.

37. B. Libert, T. Peters, and C. Qian. Structure-preserving chosen-ciphertext security with shorter verifiable ci-
phertexts. In S. Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages 247–276. Springer, Heidelberg,
Mar. 2017.

38. Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated byzantine agreement. In
34th ACM STOC, pages 514–523. ACM Press, May 2002.

39. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In 22nd
ACM STOC, pages 427–437. ACM Press, May 1990.

40. C. A. Neff. A verifiable secret shuffle and its application to e-voting. In ACM CCS 01, pages 116–125. ACM
Press, Nov. 2001.

41. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing election scheme. In
T. Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 248–259. Springer, Heidelberg, May
1994.

42. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In J. Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, Aug. 1992.

43. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In A. Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 517–534. Springer, Heidelberg, Aug. 2007.

44. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40th
FOCS, pages 543–553. IEEE Computer Society Press, Oct. 1999.

45. K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution to the implementation of a
voting booth. In L. C. Guillou and J.-J. Quisquater, editors, EUROCRYPT’95, volume 921 of LNCS, pages
393–403. Springer, Heidelberg, May 1995.

46. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 239–252. Springer, Heidelberg, Aug. 1990.

47. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Report 2004/332, 2004. http://eprint.iacr.org/2004/332.

48. B. Terelius and D. Wikström. Proofs of restricted shuffles. In D. J. Bernstein and T. Lange, editors,
AFRICACRYPT 10, volume 6055 of LNCS, pages 100–113. Springer, Heidelberg, May 2010.

66

http://eprint.iacr.org/2004/332


49. D. Wikström. Five practical attacks for “optimistic mixing for exit-polls”. In M. Matsui and R. J. Zuccherato,
editors, SAC 2003, volume 3006 of LNCS, pages 160–175. Springer, Heidelberg, Aug. 2004.

50. D. Wikström. A universally composable mix-net. In M. Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 317–335. Springer, Heidelberg, Feb. 2004.

51. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In B. K. Roy, editor, ASI-
ACRYPT 2005, volume 3788 of LNCS, pages 273–292. Springer, Heidelberg, Dec. 2005.

52. D. Wikström. Simplified submission of inputs to protocols. In R. Ostrovsky, R. D. Prisco, and I. Visconti,
editors, SCN 08, volume 5229 of LNCS, pages 293–308. Springer, Heidelberg, Sept. 2008.

53. D. Wikström. A commitment-consistent proof of a shuffle. In C. Boyd and J. M. G. Nieto, editors, ACISP
09, volume 5594 of LNCS, pages 407–421. Springer, Heidelberg, July 2009.

54. D. Wikström. Verificatum, 2010. https://www.verificatum.com.

A NIZK Proof Systems

In this section we show how to instantiate the NIZK proof systems used in the protocol of Sec. 5.

A.1 Instatiations in the CRS+NPRO Model

The Mixers NIZK NIZKmx. Consider the NP relation:

Rl =
{

((S̄, R̄), w) ∈ G2l × Zq : R̄ = w · S̄
}

where (S̄, R̄) is the instance and w the witness. We show a NIZK NIZKl for Rl. Notice that
Rmx = R3, and thus NIZKmx is NIZKl with l = 3.

Initmx(1
λ, prm): sample v← $ Z2

q and two hash functions H,H ′, output crs = (H,H ′, [v]).13

Pmx(crs, (L, S̄, R̄), w): sample a, r ← $ Zq and compute: Ā← a·S̄ ∈ Gl, A′ = (H ′(Ā), r)>·[v] ∈ G,
β ← H(L, S̄, R̄, A′) ∈ Zq, γ ← a+ β · w. Return Π = (Ā, r, γ).

Vmx(crs, (L, S̄, R̄), Π): output 1 iff γ · S̄ = Ā+H(L, S̄, R̄, A′) · R̄, with A′ = (H ′(Ā), r)> · [v].

Efficiency. A proof consists of l elements of G plus 2 values in Zq. The prover must perform
l + 2 exponentiations, while the verifier performs 2l + 2 exponentiations.14

Theorem 9. If the discrete logarithm assumption holds in G, H’ is collision-resistant, and H
is modeled as a non-programmable random-oracle, then NIZKl is a NIZK.

The theorem follows by combining a series of results given in the following section. In particular,
the NIZK above is obtained by applying a transformation by Damg̊ard [19] (and then the Fiat-
Shamir [23] transform) to a simple sigma protocol for relation Rl.

The Senders NIZK NIZKsd. We give a simulation f -extractable NIZK for relation Rsd.
Rsd =

{
(([g, a], W̄ ), (w,R)) ∈ G6 × Z2

q : W̄ = w · [g, a] + (0, 0, R)
}

. In our case f -extractability
says that we can extract only the witness component R, which is sufficient for our purposes.

Initsd(1
λ, prm): sample u, v ← $ Z2

q and two hash functions H,H ′, output crs = (H,H ′, [u,v]).
Psd(crs, (L, [g, a], W̄ ), (w,R)): sample a, r ← $ Zq and compute: Ē ← w · [u] + (R, 0), S̄ ←

([g], [a] − [u1],−[u2]), R̄ ← (W̄ , 0) − (0, 0, Ē). Ā ← a · S̄ ∈ G4, A′ = (H ′(Ā), r)> · [v] ∈ G,
β ← H(L, S̄, R̄, A′) ∈ Zq, γ ← a+ β · w. Return Π = (Ā, r, γ, Ē).

Vsd(crs, (L, [g, a], W̄ ), Π): compute S̄ ← ([g], [a] − [u1],−[u2]), R̄ ← (W̄ , 0) − (0, 0, Ē), and
output 1 iff γ · S̄ = Ā+H(L, S̄, R̄, A′) · R̄, with A′ = (H ′(Ā), r)> · [v].

13 We note that [v] is simply the key of a Pedersen commitment.
14 We ignore the costs of computing hash functions, group multiplications and Zq operations as they are negligible

in comparison.
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Efficiency. A proof consists of 6 elements of G plus 2 values in Zq. The prover (resp. verifier)
must perform 8 (resp. 10) exponentiations.

Theorem 10. If the DDH assumption holds in G, H’ is collision-resistant, and H is modeled
as a non-programmable random-oracle, then NIZKsd is a f -simulation-extractable NIZK with
distributional zero-knowledge (i.e., it achieves zero-knowledge when the elements [g, a], w,R of
the relation come from a uniform distribution).

The theorem follows by combining a series of results given in the following section. In a nutshell,
this NIZK is a sigma protocol in which one encrypts the witness component R using ElGamal,
and then use NIZK4 (with simulation-soundness) to show that the same R is encrypted with
ElGamal and in W̄ . The sigma protocol we use has a straight-line simulator (Damgaard [19]).
Moreover we use an optimization that consists in using w as randomness for ElGamal (relying
on the fact that this witness comes from a uniform distribution). Finally, Fiat-Shamir [23] is
applied to make it non-interactive.

A.2 How to obtain NIZKmx and NIZKsd

We first recall the notion of Σ-protocols.

Definition 15 (Sigma protocol). A protocol Π between a prover PP and a verifier PV is
said to be a Σ-protocol for a relation R if:

1. Π is a three move protocol where the prover starts and the second message is uniformly
random over the challenge space. (We will parse a transcript of an execution as (α, β, γ).)
The protocol is complete, meaning that if the prover and verifier follow the protocol on input
(x,w) ∈ R then the verifier always accepts.

2. For any x and any pair of accepting transcripts α, β, γ and α, β′, γ′ where β 6= β′ one can
efficiently compute w such that (x,w) ∈ R. This is often called special soundness property.

3. There exists a simulator S that upon input β and an instance x outputs a transcript α, β, γ
distributed as a real transcript conditioned on β. This is often called special honest-verifier
zero-knowledge (HV-ZK) property.

In this section we give a SS-NIZK proof system for any relation R in the CRS+NPRO model
based on the existence of aΣ-protocol forR. Specifically, to get the non-programability property,
we consider a non-interactive version (using the Fiat-Shamir methodology [23]) of the concurrent
ZK protocol based on Σ-protocols of Damg̊ard [19].

We first notice that Fiat-Shamir-based NIZK with labels are simulation-sound. In [21], Faust
et al. showed that Fiat-Shamir NIZK based on Σ-protocols can be proved simulation sound in
the programmable random oracle model based on a special property of sigma protocol called
quasi unique responses. However, when considering the definition with labels, as we show below,
the above property is not necessary.

The Construction of [19]. The construction is based on the notion of trapdoor-hiding com-
mitment schemes. We recall here the syntax of the primitive and state only informally its security
properties.

Definition 16 (Trapdoor-hiding commitment). We say that COM = (Setup,Com,Com,Equiv)
is a trapdoor-hiding commitment scheme if the following holds.

1. The algorithm Setup upon input 1λ (and optionally parameter prm) outputs a verification
key vk and a trapdoor key tdcom;
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2. The algorithm Com upon input vk, a message m and randomness r, outputs a commitment
Com;

3. The algorithm Com upon input tdcom outputs a commitment Com and an equivocation value
r′;

4. The algorithm Equiv upon input tdcom, a message m and r′, outputs randomness r such that
for any (Com, r′)← Com(tdcom) and r ← (tdcom,m, r′) then Com = Com(vk,m, r).

We require that the commitment is binding, meaning that given only vk is hard to find two tu-
ples (m0, r0) and (m1, r1) such that Com(vk,m0; r0) = Com(vk,m1; r1), and trapdoor-hiding,
meaning that for all (vk, tdcom)← Setup(1λ) and for all m the distribution (Com, r) generated
by Com, r′ ← $ Com(tdcom) and r ← Equiv(tdcom,m, r′) is indistinguishable from the distribution
of (Com, r) generated by Com.

We describe the construction of [19], let Π be a sigma protocol between a prover PP and a
verifier PV for a relation R, and let COM = (Setup,Com,Com,Equiv) be a trapdoor-hiding
commitment scheme. Consider the following protocol Π ′ in the CRS model

– Let Init be the CRS generation algorithm that upon input 1λ, sample vk, tdcom ← $ Setup(1λ)
and set the common reference string to be vk; (If the protocol Π is in the CRS model, then
also the common reference string of Π is sampled.)

– Let P ′P be the prover of a new Σ-protocol that:

1. upon input x,w and vk and randomness r, r′ ← $ {0, 1}λ, computes α ← PP (x,w; r),
α′ ← Com(vk, α; r′), and outputs as first message the value α′;

2. upon input x,w, randomness r, r′, and challenge β′, computes γ ← PP (x,w, β′; r) and
output γ′ = (α, r′, γ);

– Let P ′V be the verifier that upon a transcript α′, β′, γ′, parse γ′ = α, r′, γ, and outputs 1 if
and only if (1) α′ = Com(vk, α; r′) and (2) PV (α, β′, γ) = 1.

Theorem 11 ([19]). The protocol Π ′ described above is a concurrent zero-knowledge proof

system for R in the common reference string model. In particular, there exists a algorithm Init
′

and a straight-line (namely, that does not use rewinding technique) simulator S′ that, with oracle
access to an adversary A, produces a view that it is indistinguishable from an interaction of the
adversary with the honest prover.

Remark 3. The theorem above holds also when the adversary can chose the instance x,w
as a function of the verification key vk. In fact, the trapdoor-hiding property holds for all
(vk, tdcom)← Setup(1λ) and for all m.

The Fiat-Shamir transform. From a Sigma protocol for relation R as the one obtained from
the previous theorem, we can build a NIZK scheme with labels NIZK = (Init,P,V) for R
where: (1) Init is exactly as described in the protocol above, (2) the prover P upon input x,w
and a tag L:

1. Samples randomness r and produces α′ ← P ′P (vk, x, w; r, r′),
2. Computes β′ ← RO(x‖L‖α)
3. Computes γ′ ← P ′P (x,w, β′; r) and return the proof (α, γ);

(3) the verifier V re-computes β′ given x, L, α using the random oracle, and outputs what
P ′V (α′, β′, γ′) does.

Theorem 12. The scheme NIZK described above is a NIZK with adaptive multi-theorem zero-
knowledge in the Non-Programmable Random Oracle model.
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Proof (Proof Sketch.). The proof is rather easy. The algorithm Init for NIZK is exactly the
same provided by theorem 11. We describe a simulator SNPRO. Let S′ be the simulator given by
the theorem 11. We define our new simulator to be the machine that upon input an instance
x and a tag L, runs the simulator S′ on input x, and upon the first message α from S′, the
simulator SNPRO computes RO(x‖L‖α) as prescribed by the definition of the protocol. We notice
that this new simulator does not need to program the random oracle. The theorem holds by a
simple hybrid argument over the number of invocations of SIM, reducing to the zero-knowledge
of the interactive construction.

We recall the definition of simulation soundness, this property is strictly stronger than adaptive
soundness (Def. 1) necessary to instantiate the NIZK NIZKmx in Sec. 5.

Definition 17 (simulation soundness, [44]). Let NIZK be a non-interactive argument sys-
tem for a relation R. We say that NIZK is simulation sound (SS) with labels if the following
holds:

(i) There exists an algorithm Init that outputs a CRS crs and a simulation trapdoor tds.
(ii) For all PPT adversaries A, we have P[A wins] ∈ negl(λ) in the following game:

– The challenger runs (crs, tds, tde)← Init(1λ), and gives crs to A.
– A is given access to the simulation oracle SIM∗, which it can query adaptively.
– A outputs a tuple ((x∗, L∗), Π∗). We say that A wins if: (a) the pair (x∗, L∗) was not

queried to the simulation oracle; (b) V(crs, (x∗, L∗), Π∗) = 1; and (c) ∀r : (x∗, r) 6∈ R.
The simulation oracle SIM(tds, ·) responds to queries of the form (x, L) by outputting
a simulated argument Sim(tds, (x, L)).

Theorem 13 (simulation-soundness of Fiat-Shamir in the RO). The scheme NIZK
described above is simulation-sound in the (programmable) RO model.

Proof (Proof Sketch.). Let A be an adversary that interacts with the oracle SIM∗ for q ∈ N
times and with the random oracle RO. The adversary forwards a queries (xi, Li) for i ∈ [q] to
SIM∗ which replies with (α∗i , γ

∗
i ). Successively, the adversary outputs a tuple x̃, L̃ and a NIZK

proof (α̃, γ̃). There are two cases, either x̃ = xi and α̃ = α∗i for some i ∈ [q], in this case the
labels L̃ and Li are different therefore RO(xi‖Li‖α) 6= RO(xi‖L̃‖α), so we can extract the witness
using the special soundness of the interactive protocol. On the other hand it could be that x̃ is
not in {xi}i∈[q], in this case we can, via standard rewinding technique and by programming the
random oracle again reduce to special soundness of the interactive protocol.

We notice that the proof of the simulation-soundness does program the random oracle model,
however, we use programmability only to prove soundness but we do not need to program
explicitly the random oracle when utilizing the NIZK NIZK as a primitive in a bigger protocol.

A.3 A Sigma protocol for Rmx

Consider the relationship Rl =
{

((S̄, R̄), w) ∈ G2l × Zq : R̄ = w · S̄
}

, we notice Rmx = R3. The
protocol below is a generalization to vectors of the classical Schnorr’s protocol [46]. Consider
the Σ-protocol with parties P lP ,P lV for the relation Rl:

– The party P lP upon input (S̄, R̄), w, a tag L, the parameters of the group prm:
1. Sample randomness a← $ Zq and compute α← a · S̄
2. Upon challenge β ∈ Zq compute γ ← a+ β · w

– The party P lV upon input (S̄, R̄), a tag L, the parameters of the group prm and a transcript
α, β, γ outputs 1 if and only if γ · S̄ = α+ β · R̄.
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Theorem 14. The protocol described above is a sigma protocol.

We can derive the NIZK proof system NIZKmx presented at the beginning of this section using
the above results, where the trapdoor-hiding commitment is instantiated with the classical
Pedersen’s commitment scheme [42] based on discrete log. Moreover, although a Pedersen’s
commitment allows one to commit values in Zq, we can commit to α ∈ Gl using a collision
resistant hash function from Gl to Zq and storing the hash key in the verification key of the
commitment.

A.4 Non-interactive zero-knowledge proof system for Rsd

We show a simulation f -extractable NIZK for Rsd. Here we present a construction obtained in
a modular way from NIZK4 for the relation R4, and the ElGamal encryption scheme, that is
used to get extractability. More in details, NIZKsd = (Initsd,Psd,Vsd) is defined as follow:

– Initsd(1
λ, prm): sample an ElGamal public key H̄ = [h1, h2] ← $ G2, and compute crs4 ←

$ Init4(1λ) of NIZK4, and output the tuple crssd = (H̄, crs4);
– Psd(crssd, (L, [g, a], W̄ ), (w,R)): upon input an instance [g, a], W̄ and a label L, a witness

(w,R), and the common reference string crs = (H̄, crs4), do the following:
• Compute Ē ← w · H̄ + (R, 0);
• Set S̄ ← [g, a− h1,−h2] and set R̄← (W̄ , 0)− (0, 0, Ē);
• Let Π ← $ P4(crs, (S̄, R̄), w, L);
• Return Π ′ ← (Ē,Π).

– Vsd(crssd, (L, [g, a], W̄ ), Π ′): upon input the common reference string crs = (H̄, crs4), an
instance [g, a], W̄ , a label L, and a proof Π ′, do the following:
• Parse Π ′ as (Ē,Π)
• Compute S̄ ← [g, a− h1,−h2] and set R̄← (W̄ , 0)− (0, 0, Ē);
• Output V4(crs4, (S̄, W̄ ), Π);

Completeness of the proof system above comes (W̄ , 0)− (0, 0, Ē) = w · S̄.
We consider a weaker form of zero-knowledge that is still sufficient the protocol in Sec. 5. In

particular, given a class of relations {Rλ ⊆ {0, 1}λ×{0, 1}∗}λ∈N and given a class of distributions
D̄ = {Dλ,n}λ,n∈N where Dλ,n is efficiently samplable and ranges over ({0, 1}λ × {0, 1}∗)n we
consider a distributional definition à la Goldreich [26].

Definition 18 (D̄-zero-knowledge). Let NIZK = (Init,P,V) be a proof system for {Rλ}λ∈N
we say that NIZK is D̄-zero-knowledge if there exists a PPT algorithm Init and a PPT simulator
S such that for any n polynomial in λ the following distribution ensembles are indistinguishable:

RNIZK,D̄ :=

{
crs, (xi,P(crs, x, w))i∈[n] :

crs← Init(1λ),

(x0, w0), . . . (xn−1, wn−1)← $ Dλ,n

}
λ∈N

SNIZK,D̄ :=

{
crs, (xi, S(tds, xi))i∈[n] :

crs, tds ← Init(1λ),

(x0, w0), . . . (xn−1, wn−1)← $ Dλ,n

}
λ∈N

Theorem 15. For any set S = {prm ← Setup(1λ)}k∈N, let ŪS = {Uprm,n}prm∈S where Uprm,n
is the distribution that picks at random [g, a] ← $ G3, wi ← $ Zq and Ri ← $ G for i ∈ [n],
and outputs the tuples (Z̄, W̄i) where Z̄ = [g, a] and W̄i = wi · Z̄ + (0, 0, Ri), the proof system
NIZKsd is ŪS-zero-knowledge.

Proof. We define the algorithm Initsd that upon input 1λ and the group parameters prm samples
a public key H̄ = [h1, h2] ← $ G2 and set tde ← h2/h1 ∈ Zq and computes crs, tds ← $ Init4(1λ)
of NIZK4, and output the tuple crs = (H̄, crs4) and the trapdoors tds, tde; We define the
simulator. Let S4 be the simulator for the NIZK4.
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Simulator S(tds, (Z̄, W̄i)):

1. Sample ei ← $ Zq and compute Ēi ← ei · H̄;
2. Compute S̄ ← [g, a− h1,−h2] and set R̄i ← (W̄i, 0)− (0, 0, Ēi);
3. Compute Πi ← $ S4(tds, (S̄, R̄i));
4. Output (Ēi, Πi).

Consider an hybrid experiment H1 where the elements Ēi are computed as ei · H̄ + (Ri, 0).
Specifically, H1 is the distribution:

(crs, (Z̄, W̄ ), (Ē,Π)) :

(H̄, crs′)← $ Init(1λ)

S̄ ← [g, a− h1,−h2]

∀i ∈ [n] : wi ← $ Zq, Ri ← $ G
Ēi ← ei · H̄ + (0, Ri),

R̄i ← wi · ([g, a, 0]− (0, 0, H̄))

Π ′i ← S4(tds, (S̄, R̄i))


Claim 23 If DDH assumption holds over G chosen from the sequence S then H1 ≈c SD̄,NIZKsd

.

Proof. The proof follows in three steps. First we consider the hybrid H′ where the values Ēi
are sampled uniformly in G2. This hybrid is computationally indistinguishable from H1 by the
DDH assumption. Then we consider the hybrid H′′ where the values Ēi = Ē′i + (0, Ri) where
again Ē′i ← $ G2. The distribution H′ and H′′ are equivalent. Finally, using again the DDH
assumption we can prove that H′′ is computationally indistinguishable from H1.

Consider an hybrid experiment H2 where the elements Ēi are computed as wi · H̄ + (Ri, 0).
Specifically, H is the distribution:

(crs, (Z̄, W̄ ), (Ē,Π)) :

(H̄, crs′)← $ Init(1λ)

S̄ ← [g, a− h1,−h2]

∀i ∈ [n] : wi ← $ Zq, Ri ← $ G
Ēi ← wi · H̄ + (0, Ri),

R̄i ← wi · ([g, a, 0]− (0, 0, H̄))

Π ′i ← S4(tds, (S̄, R̄i))


Claim 24 If DDH assumption holds over G chosen from the sequence S then H2 ≈c H1.

Proof (Sketch). We can use an hybrid argument to switch one by one the elements Ēi. In each
step of the hybrid argument we reduce to the problem of distinghuish the tuple [d, f ], w · [d, f ]
from [d, f ], w · [d], e · [f ] where [d] ∈ G2 and [f ] ∈ G2. Easily, the indistinguishability of this
problem is implied by DDH assumption. Given [d, f ], Z̄1, Z̄2, where Z̄1 = Z1,1, Z1,2, from the
challenger we set [g]← [d̄], H̄ ← [f̄ ], a← α · [g2] for α← $ Zq, W̄i = Z̄1, α · Z1,2 + (0, 0, Ri) and
Ēi ← Z̄2 + (Ri, 0).

Claim 25 If NIZK4 is adaptive multi-theorem zero-knowledge then H2 ≈c RNIZKsd,ŪS
.

Proof. The difference between H2 and RNIZKsd,ŪS
is only that former use the simulator of

NIZK4 while the latter use the prover of NIZK4, the reduction is trivial.
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Remark 4 (On the sufficiency of distributional zero-knowledge.). In the proof of the theorem 6,
specifically in the proof of the lemmas for the hybrid H4 and H5 we need to simulate the proof
Πs
j , however the instance [g, a], W̄ are indeed sampled from Uprm, in fact [g, a] are sampled

at initialization and a = [g]T · a, so [a] is distributed uniformly at random, and the w,R are
sampled uniformly at random, since j ∈ [n] \CS .

Theorem 16. Let f be the function that upon input (w,R) ∈ Zq × G outputs R. The proof
system NIZKsd is f -simulation extractable.

Proof. We define the extractor Ext to be the function that upon input a proof (Ē,Π) and the
trapdoor tde outputs R ← E1 − tde · E2. Let A be an adversary that plays the simulation ex-
tractability experiment for NIZKsd. In particular the adversary outputs an instance [g′, a′], W̄ ′

and a proof Ē′, Π ′ such that the V4(crs4, [g
′, a′ − h1,−h2], (W̄ ′, 0) − (0, 0, E′), Π ′) = 1 but for

any w′ the following holds W̄ 6= w′ · [g′, a′] + (0, 0, R̃).
By simulation soundness of NIZK4, with overwhelming probability, there exists w such

that (W̄ ′, 0)− (0, 0, Ē′) = w · [g′, a′ − h1,−h2].
Moreover, by the definition of R̃ there exist a value w′′ such that:

(W̄ ′, 0)− (0, 0,−w′′ · h1 − R̃,−w′′ · h2) = w · [g′, a′ − h1,−h2]

In particular, this implies that w′′ = w. By substitution and simple calculations:

(W̄ ′, 0) = w · [g′, a′ − h1, g2] + w · (0, 0, h1, h2) + (0, 0, R̃, 0) = w · [g′, a′, 0] + (0, 0, R̃, 0)

The last equation is in contradiction with our assumption that the adversary A breaks f -
simulation extractability.
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