
Unifying Kleptographic Attacks

George Teşeleanu1,2[0000−0003−3953−2744]

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Department of Computer Science

“Al.I.Cuza” University of Iaşi 700506 Iaşi, Romania,
george.teseleanu@info.uaic.ro

Abstract. We present two simple backdoors that can be implemented into Maurer’s unified zero-
knowledge protocol. Thus, we show that a high level abstraction can replace individual backdoors
embedded into protocols for proving knowledge of a discrete logarithm (e.g. the Schnorr and Girault
protocols), protocols for proving knowledge of an eth-root (e.g. the Fiat-Shamir and Guillou-Quisquater
protocols), protocols for proving knowledge of a discrete logarithm representation (e.g. the Okamoto
protocol) and protocols for proving knowledge of an eth-root representation.

1 Introduction

Classical security models assume that the cryptographic algorithms found in a device are correctly implemented
and according to technical specifications. Unfortunately, in the real world, users have little control over the
design criteria or the implementation of a security module. When using a hardware device, for example a
smartcard, the user implicitly assumes an honest manufacturer that builds devices according to the provided
specifications. The idea of a malicious manufacturer that tampers with the device or embeds a backdoor in an
implementation was first suggested by Young and Yung [32, 33]. As proof of concept, they developed secretly
embedded trapdoor with universal protection (SETUP) attacks.

Although considered far-fetched by some cryptographers, SETUP3 attacks were found in real world
implementations [9, 10]. These attacks are based on the usage of the Dual-EC generator, a cryptographically
secure pseudorandom number generator standardized by NIST. Internal NSA documents leaked by Edward
Snowden [3,26] indicated a backdoor embedded into the Dual-EC generator. Shortly afterward, the afore-
mentioned examples were found. This backdoor is a direct application of the work conducted by Young and
Yung [32–35].

A consequence of Snowden’s revelations is the revival of this research area [2, 4, 7, 12, 16, 21, 27, 28, 31].
In [5], SETUP attacks applied to symmetric encryption schemes are re-branded as algorithmic substitution
attacks (ASA). A link between secret-key steganography and ASAs can be found in [7]. More generic attacks
(subversion attacks) tailored for signature schemes are introduced in [2]. Subversion attacks include SETUP
attacks and ASAs, but generic malware and virus attacks are also included. Generic protections against
backdoored PRNGs, such as the Dual-EC generator, are studied in [27,28].

The initial model proposed by Young and Yung is the black-box model4. For our intended purposes this
model suffices, since the zero-knowledge protocols we attack were designed for smartcards. Note that even if we
relax this model and assume that the code is open-source, according to [5], the sheer complexity of open-source
software and the small number of experts who review them still make ASAs plausible. Note that these attacks
need a malicious device manufacturer5 to work. An important property is that infected smartcards should
have inputs and outputs indistinguishable from regular smartcards. However, if the smartcard is reverse
engineered, the deployed mechanism may be detectable.

3secretly embedded trapdoor with universal protection
4A black-box is a device, process or system, whose inputs and outputs are known, but its internal structure or

working is not known or accessible to the user (e.g. tamper proof devices).
5that implements the mechanisms to recover the keys

There are two methods to embed backdoors into a system: either you generate special public parameters
(SPP) or you infect the random numbers (IRN) used by the system. In the case of discrete logarithm based
systems, SPP and IRN were studied in [16, 19, 21, 31–35]. We only found SPP [11,32,33, 35, 36] and not IRN
in the case of factorization based systems.

Zero-knowledge protocols were introduced as a mean to prove one’s identity. These protocols are defined
between a prover (usually called Peggy) that possesses some secret x6 and a verifier (usually called V ictor)
that checks if Peggy really possesses x. Two classical examples of such protocols are the Schnorr protocol [29]
and the Guillou-Quisquater protocol [20]. Note that both protocols were proposed for smartcards. By
abstracting the two protocols, Maurer shows [22] that they are actually instantiations of the same protocol.

Using the same level of abstraction as in [22], we show how an attacker (called Mallory) can mount a
SETUP attack and extract Peggy’s secret. When instantiated, this attack provides new insight into SETUP
attacks. In particular, we provide the first IRN attack on a factoring based system and the first attack on
systems based on eth-root representations7. We also provide the reader with new instantiations of Maurer’s
unified protocol: the Girault protocol, a new proof of knowledge for discrete logarithm representation in Z∗n
and a proof of knowledge of an eth-root representation.

The second SETUP attack we introduce is a generalization of Young and Yung’s work. When instantiated
with the Schnorr protocol, we obtain their results. We also provide other examples not mentioned by Young
and Yung.

Structure of the paper. We introduce notations and definitions used throughout the paper in Section 2. In
Section 3 we present our new general SETUP attacks and prove them secure. Instantiations of our attacks
can be found in Section 4. We conclude in Section 5. Additional definitions are given in Appendix A.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinal of a set S. The action of selecting a
random element x from a sample space X is denoted by x $←− X, while x← y represents the assignment of
value y to variable x. The probability of the event E to happen is denoted by Pr[E]. The subset {0, . . . , s} ∈ N
is denoted by [0, s].

2.1 Groups

Let (G, ?) and (H,⊗) be two groups. We assume that the group operations ? and ⊗ are efficiently computable.
Compared to [22], we also assume that G is a cyclic group. Note that this implies that G is commutative. Let
g be a generator of G. We denote by αg the element g ? . . . ? g obtained by repeatedly applying the group
operation α− 1 times.

Let f : G → H be a function (not necessarily one-to-one). We say that f is a homomorphism if
f(x ? y) = f(x)⊗ f(y). Throughout the paper we consider f to be a one-way function, i.e. it is infeasible to
compute x from f(x). To be consistent with [22], we denote by [x] the value f(x). Note that given [x] and [y]
we can efficiently compute [x?y] = [x]⊗ [y], due to the homomorphism. By [g]α we denote [αg] = [g]⊗ . . .⊗ [g]
(α times).

Definition 1 (Hash Diffie-Hellman - hdh). Let D be a cyclic group of order q, d a generator of D, E
a group and h : D → E a hash function. Let A be a PPT algorithm which returns 1 on input (dx, dy, z) if
h(dxy) = z. We define the advantage

ADV hdh
D,d,h(A) = |Pr[A(dx, dy, h(dxy)) = 1|x, y $←− Z∗q]− Pr[A(dx, dy, z) = 1|x, y $←− Z∗q , z

$←− E]|.

If ADV hdh
D,d,h(A) is negligible for any PPT algorithm A, we say that the Hash Diffie-Hellman problem is

hard in D.
6associated with her identity
7For systems based on discrete logarithm representations a backdoor was described in [31].

2

Remark 1. According to [6], the hdh assumption is equivalent with the computational Diffie-Hellman (cdh)
assumption8 in the random oracle model. If the decisional Diffie-Hellman (ddh) assumption8 is hard in D
and h is entropy smoothing8, then the hdh assumption is hard in D [1, 24, 30]. In [17], the authors show that
the hdh assumption holds, even if the ddh assumption is relaxed to the following assumption: D contains a
large enough group in which ddh holds. A particularly interesting group is Z∗p, where p is a “large”9 prime.
According to [17], it is conjectured that if D is generated by an element d ∈ Z∗p of order q, where q is a
“large”10 prime that divides p− 1, then the ddh assumption holds. The analysis conducted in [17] provides
the reader with solid arguments to support the hypothesis that hdh holds in the subgroup D ⊂ Z∗p.

2.2 Zero-Knowledge Protocols

Let Q : {0, 1}∗ × {0, 1}∗ → {true, false} be a predicate. Given a value z, Peggy will try to convince Victor
that she knows a value x such that Q(z, x) = true. We further recall a definition from [14] that captures the
notion that being successful in a protocol (P, V) implies knowledge of a value x such that Q(z, x) = true.

Definition 2 (Proof of Knowledge Protocol). An interactive protocol (P, V) is a proof of knowledge
protocol for predicate Q if the following properties hold

– Completeness: V accepts the proof when P has as input an x with Q(z, x) = true;
– Soundness: there is an efficient program K (called knowledge extractor) such that for any P̂ (possibly
dishonest) with non-negligible probability of making V accept the proof, K can interact with P̂ and output
(with overwhelming probability) an x such that Q(z, x) = true.

Definition 3 (2-extractable). Let Q be a predicate for a proof of knowledge. A 3-move protocol11 with
challenge space C is 2-extractable if from any two triplets (t, c, r) and (t, c′, r′), with distinct c, c′ ∈ C accepted
by V ictor, one can efficiently compute an x such that Q(z, x) = true.

Peggy V ictor

Knows x. Knows z = [x].
step 1

Choose k $←− G.
Compute t← [k].

t−−−−−−−−−−−→
step 2

Choose c $←− C ⊂ N.
c←−−−−−−−−−−−

step 3

Compute r ← k ? xc.
r−−−−−−−−−−−→

step 4

If [r] = t⊗ zc return true.
Else return false.

Fig. 1. Maurer’s Unified Zero-Knowledge (UZK) Protocol.

8We refer the reader to Appendix A for a definition of the concept.
9at least 2048 bits, better 3072 bits

10at least 192 bits, better 256 bits
11Peggy sends t, V ictor sends c, Peggy sends r

3

According to [22], UZK (Figure 1) is a zero-knowledge protocol if the conditions from Theorem 1 are
satisfied. If the challenge space C is small, then one needs several 3-move rounds to make the soundness error
negligible.

Theorem 1. If values ` ∈ Z and u ∈ G are known such that

– gcd(c0 − c1, `) = 1 for all c0, c1 ∈ C with c0 6= c1,
– [u] = z`,

then the protocol described in Figure 1 is 2-extractable. Moreover, a protocol consisting of s rounds is a proof
of knowledge if 1/|C|s is negligible, and it is a zero-knowledge protocol if |C| is polynomially bounded.

2.3 SETUP attacks

Definition 4 (Secretly Embedded Trapdoor with Universal Protection - SETUP). A Secretly
Embedded Trapdoor with Universal Protection (SETUP) is an algorithm that can be inserted in a system such
that it leaks encrypted private key information to an attacker through the system’s outputs. Encryption of the
private key is performed using an asymmetric encryption scheme. It is assumed that the decryption function
is accessible only to the attacker.

Definition 5 (SETUP indistinguishability - ind-setup). Let C0 be a black-box system that uses a secret
key sk. Let AE be the asymmetric encryption scheme used by a SETUP mechanism as defined above, in
Definition 4. We consider C1 an altered version of C0 that contains a SETUP mechanism based on AE. Let
A be a PPT algorithm which returns 1 if it detects that C0 is altered. We define the advantage

ADV ind-setup
C0,C1

(A) = |Pr[AC1(sk,·)(λ) = 1]− Pr[AC0(sk,·)(λ) = 1]|.

If ADV ind-setup
C0,C1

(A) is negligible for any PPT algorithm A, we say that C0 and C1 are polynomially
indistinguishable.

Remark 2. Definition 5 is a formalization of the indistinguishability property for a regular SETUP mech-
anism described in [33]. The authors of [2] propose a more general concept (publi ucndetectability) that
allows Mallory to tailor his attacks depending on each of his victim’s public key. The two formalizations,
SETUP indistinguishability and public undetectability, assume that the public parameters (g,G,H) and the
secret/public key pair (x, z) are honestly generated. In some cases, Mallory can also maliciously generate
these. This scenario is captured in [27] (cliptographic game). A consequence of the three formalizations is that
C0 and C1 have the same security.

Remark 3. We consider that the attacks presented from now on are implemented in a device D that is used
by Peggy to prove the knowledge of x. We assume that x is stored only in D’s volatile memory12. Note that
Peggy believes that D works in accordance with the UZK protocol.

Remark 4. UZK can be transformed into a signature scheme using the Fiat-Shamir transform [15]. Thus,
obtaining a unified signature scheme. Note that the SETUP attacks described for UZK are preserved by the
Fiat-Shamir transform, therefore Mallory can recover Peggy’s signing key by using either of them.

3 Unified Setup Attacks

In this section we state the principal results of this paper. The main protocol is a SETUP attack against UZK
that allows Mallory to extract Peggy’s knowledge of x, while the supplementary one only allows Mallory to

12If Peggy knows her secret she is able to detect the SETUP mechanism using its description and parameters
(found by means of reverse engineering a black-box, for example).

4

compute x in some specific instantiations of UZK. We only show how to infect two sessions of the protocol
and assume that the rest of the sessions remain unmodified.

Before stating the results, we first make some preliminary assumptions. Let h : H→ G be a hash function
and let i = 0, 1 be an index. We assume that Peggy runs the protocols at least two times (i.e. once for i = 0
and once for i = 1). We denote by y ← [g]xM Mallory’s public key, while xM

$←− |G| is his secret key. Note
that y is stored on D’s volatile memory. All the data we save will also be stored on D’s volatile memory.

3.1 The Main Setup Attack

In Figure 2 we present the main protocol against UZK. We depict in red the modifications on UZK to obtain
our SETUP attack. Note that after session 0 the index is incremented.

Peggy V ictor

Knows x. Knows z = [x].
step 1

If i = 0 then:
- choose α $←− |G| and store α,
- compute k0 ← αg and t0 ← [g]α.
Else:
- compute k1 ← k0 ? h(yα) and t1 ← [k1],
- erase α.

ti−−−−−−−−−−−→
step 2

Choose ci
$←− C ⊂ N.

ci←−−−−−−−−−−−
step 3

Compute ri ← ki ? x
ci .

ri−−−−−−−−−−−→
step 4

If [ri] = ti ⊗ zci return true.
Else return false.

Fig. 2. The Main Unified Setup Attack.

We further show how Mallory can extract Peggy’s knowledge if she uses a device that is infected with
US-1.

Theorem 2. If Peggy uses US-1 and UZK satisfies the conditions from Theorem 1, then Mallory can
compute an x̃ such that [x̃] = z. More precisely,

x̃ = ua ? (r−1
1 ? r0 ? h(txM

0))b,

where a and b are computed using Euclid’s extended gcd algorithm such that `a+ (c0 − c1)b = 1.

Proof. From the definitions of r0 and r1 we obtain the following relations

[r0] = [k0 ? x
c0] = t0 ⊗ zc0 and [r1] = [k1 ? x

c1] = [k0 ? h(yα) ? xc1] = t0 ⊗ [h(yα)]⊗ zc1 .

Let β = h(yα) = h(txM
0). We make use of

[r−1
1 ? r0] = [r−1

1]⊗ [r0] = z−c1 ⊗ [β]−1 ⊗ zc0 = zc0−c1 ⊗ [β]−1

5

and Theorem 1 to see that Mallory can compute an x̃ such that [x̃] = z

[x̃] = [ua ? (r−1
1 ? r0 ? β)b]

= [u]a ⊗ ([r−1
1 ? r0]⊗ [β])b

= (z`)a ⊗ (zc0−c1 ⊗ [β]−1 ⊗ [β])b

= z`a+(c0−c1)b = z.

ut

We continue by stating the security margin for the ind-setup between UZK and US-1.

Theorem 3. If hdh is hard in 〈[g]〉 then UZK and US-1 are ind-setup in the standard model. Formally,
let A be an efficient PPT ind-setup adversary. There exists an efficient algorithm B such that

ADV ind-setup
UZK,US-1(A) ≤ 2ADV hdh

〈[g]〉,[g],h(B).

Proof. Let A be an ind-setup adversary trying to distinguish between UZK and US-1. We show that A’s
advantage is negligible. We construct the proof as a sequence of games in which all the required changes are
applied to US-1. Let Wi be the event that A wins game i.

Game 0. The first game is identical to the ind-setup game13. Thus, we have

|2Pr[W0]− 1| = ADV ind-setup
UZK,US-1(A). (1)

Game 1. In this game, h(yα) from Game 0 becomes [g]z, where z $←− |G|. Since this is the only change
between Game 0 and Game 1, A will not notice the difference assuming the hdh assumption holds. Formally,
this means that there exists an algorithm B such that

|Pr[W0]− Pr[W1]| = ADV hdh
〈[g]〉,[g],h(B). (2)

Game 2. The last change we make is k0, k1
$←− G. Adversary A will not notice the difference, since

– α is a random exponent and G is cyclic
– multiplying k0 with a random element yields a random element.

Formally, we have that

Pr[W1] = Pr[W2]. (3)

The changes made to US-1 in Game 1 and Game 2 transformed it into UZK. Thus, we have

Pr[W2] = 1/2. (4)

Finally, the statement is proven by combining the equalities (1)− (4). ut

3.2 A Supplementary SETUP Attack

In Figure 3 we present a supplementary protocol against UZK. Again, we depict in red the modifications
made to UZK to obtain our SETUP attack. Note that after session 0 the index is incremented.

13as in Definition 5

6

Peggy V ictor

Knows x. Knows z = [x].
step 1

If i = 0 then:
- choose α $←− |G| and store α,
- compute k0 ← αg and t0 ← [g]α.
Else:
- compute k1 ← h(yα) and t1 ← [k1],
- erase α.

ti−−−−−−−−−−−→
step 2

Choose ci
$←− C ⊂ N.

ci←−−−−−−−−−−−
step 3

Compute ri ← ki ? x
ci .

ri−−−−−−−−−−−→
step 4

If [ri] = ti ⊗ zci return true.
Else return false.

Fig. 3. A Supplementary Unified Setup Attack.

Unlike US-1, with US-2 Mallory cannot extract Peggy’s knowledge except for some particular instan-
tiations of UZK. More precisely, if Mallory knows or can compute the cardinal of G then he can extract
Peggy’s knowledge.

Theorem 4. If Peggy uses US-2 and |G| is publicly known, then Mallory can compute an x̃ such that
[x̃] = z, with probability ϕ(|G|)/|G|. More precisely,

x̃ = (r1 ? (h(txM
0))−1)c

−1
1 .

Proof. Let β = h(yα) = h(txM
0). From the definition of r1 we can easily extract x by computing

x = (r1 ? k
−1
1)c

−1
1 = (r1 ? β

−1)c
−1
1 .

ut

We further state the security margin for the ind-setup between UZK and US-2. We omit the proof due
to its similarity to Theorem 3.

Theorem 5. If hdh is hard in 〈[g]〉 then UZK and US-2 are ind-setup in the standard model. Formally,
let A be an efficient PPT ind-setup adversary. There exists an efficient algorithm B such that

ADV ind-setup
UZK,US-2(A) ≤ 2ADV hdh

〈[g]〉,[g],h(B).

4 Special Cases of the Unified SETUP Attacks

In this section we describe a number of attacks based on US-1 and US-2 for different instantiations UZK.

7

4.1 Proofs of Knowledge of a Discrete Logarithm

Let p = 2q + 1 be a prime number such that q is also prime. Select an element h ∈ Hp of order q in some
multiplicative group of order p. The discrete logarithm of an element z ∈ Hp is an exponent x such that
z = hx. We further describe a protocol for proving the knowledge of a discrete logarithm.

The Schnorr protocol [29]14 is a special case of UZK where (G, ?) = (Zq,+) and H = 〈h〉. The one-way
group homomorphism is defined by [x] = hx and the challenge space C can be any arbitrary subset of [0, q− 1].
According to [22], the conditions of Theorem 1 are satisfied for ` = q and u = 0.

Standard instantiation of the Schnorr protocol define Hp either as Z∗p or as an elliptic curve, so according
to Remark 1, we can safely apply both SETUP attacks. Thus, for the first attack we have the following
parameters

g ← 1, k0 ← α, t0 ← hα, k1 ← k0 + h(yα), t1 ← hk1 .

According to Theorem 2, Peggy’s secret can be recovered by computing

x̃ = (c0 − c1)−1(r0 − r1 + h(txM
0)).

For the second attack the only change in the protocol is k1 ← h(yα). According to Theorem 4, Mallory can
recover Peggy’s secret by computing

x̃ = c−1
1 (r1 − h(txM

0)).

Remark 5. Recovering x when Peggy uses US-2 was first described in a series of papers by Young and
Yung [32–35]. Remark that in this setting computing x is a little bit more efficient than in the case of US-1.

We further describe a variation of the Schnorr protocol introduced by Girault [18]14. Thus, let p = 2fp′+ 1
and q = 2fq′ + 1 be prime numbers such that f , p′ and q′ are distinct primes. Select an element h ∈ Z∗n of
order f , where n = pq. Note that p and q are secret.

Using the UZK notations we have (G, ?) = (Zf ,+) and H = 〈h〉. The one-way group homomorphism is
defined by [x] = hx and the challenge space C can be any arbitrary subset of [0, f − 1]. It is easy to see that
` = f and u = 0 satisfy the two conditions of Theorem 1.

Since hdh is hard in H15 then both attacks can be mounted. Note that the attacks can be easily derived
from the attacks on the Schnorr protocol.

4.2 Proofs of Knowledge of an eth-root

Let p and q be two safe prime numbers such that (p− 1)/2 and (q− 1)/2 are also prime. Compute n = pq and
choose a prime e such that gcd(e, ϕ(n)) = 1. An eth-root of an element z ∈ Z∗n is a base x such that z = xe.
Note that the eth-root is not unique. We further describe a protocol for proving the knowledge of an eth-root.

The Guillou-Quisquater protocol [20] is a special case of UZK where (G, ?) = (H,⊗) = (Z∗n, ·). The
one-way group homomorphism is defined by [x] = xe and the challenge space C can be any arbitrary subset
of [0, e− 1]. According to [22], the conditions of Theorem 1 are satisfied for ` = e and u = z. Note that when
e = 2 we obtain the protocol introduced by Fiat and Shamir [15].

Remark 6. Before stating the parameters for the SETUP attacks we must first address two issues. The first
issue is that both SETUP attacks assume that a generator g is known to Mallory. This is needed in order
to set-up Mallory’s public key. But n is generated internally by Peggy’s device and no generator for Z∗n
is publicly available in the general case. To remove this impediment we always choose p, q ≡ 3 or 5 mod 8.
According to [23] this ensures us that 2 is a generator for both Z∗p and Z∗q . Hence, 2 is also a generator for Z∗n.
If p and q are stored only in Peggy’s device, then she cannot distinguish this particular choice of primes from
other randomly chosen primes, since she only has access to n.

14This proof can be seen as a more efficient version of a proposal made by Chaum et al. [8].
15See Remark 1

8

The last issue that we have to address is the selection of Mallory’s secret key. Let’s assume that n is a
λ-bit integer. Since φ(n) is unknown to Mallory, instead of choosing xM

$←− |Z∗n|, he will choose xM
$←− [0, 2λ].

It is easy to see that the statistical distance between the two distributions is (φ(n)− 2λ)/φ(n). Thus, it is
negligible.

Since hdh is hard in H15 and it is infeasible to compute |G|, then only US-1 can be applied. Thus, we
have the following parameters for US-1

g ← 2, k0 ← 2α, t0 ← 2αe, k1 ← k0h(yα), t1 ← hk1 .

According to Theorem 2, Peggy’s secret can be recovered by computing

x̃ = za · (r−1
1 r0 · h(txM

0))b.

4.3 Proofs of Knowledge of a Discrete Logarithm Representation

Let p = 2q + 1 be a prime number such that q is also prime. Select m elements h1, . . . , hm ∈ Hp of order q in
some multiplicative group of order p. A discrete logarithm representation of an element z ∈ 〈h1, . . . , hm〉 is a
list of exponents (x1, . . . , xm) such that z = hx1

1 . . . hxm
m . Note that discrete logarithm representations are not

unique. We further describe a protocol for proving the knowledge of a discrete logarithm representation.
A protocol for proving the knowledge of a representation is presented in [22]14. To instantiate UZK

and obtain Maurer’s protocol we set G = Zmq with ? defined as addition applied component-wise and
H = 〈h1, . . . , hm〉. The one-way group homomorphism is defined by [(x1, . . . , xm)] = hx1

1 . . . hxm
m and the

challenge space C can be any arbitrary subset of [0, q − 1]. According to [22], the conditions of Theorem 1 are
satisfied for ` = q and u = (0, . . . , 0). Note that when m = 2 we obtain a protocol introduced by Okamoto [25].

The SETUP attacks for this protocol can be easily derived from the attacks on the Schnorr protocol and,
thus, are omitted.

Chaum et al. [8] also provide a variant for their protocol when n is composite. Thus, by adapting the Girauld
protocol and tweaking the Maurer protocol, we can obtain a more efficient version of the Chaum et al. protocol.
Using the notations from the Girauld protocol, we set G = Zmf and H = 〈h1, . . . , hm〉, where h1, . . . , hm ∈ Z∗n
are elements of order f . The one-way group homomorphism is defined by [(x1, . . . , xm)] = hx1

1 . . . hxm
m and

the challenge space C can be any arbitrary subset of Zf . It is easy to see that ` = f and u = (0, . . . , 0). Note
that US-1 and US-2 can also be mounted in this setting.

4.4 Proofs of Knowledge of an eth-root Representation

Let p and q be two prime numbers such that (p− 1)/2 and (q − 1)/2 are also prime. Compute n = pq and
choose primes e1, . . . , em such that gcd(ei, ϕ(n)) = 1, for 1 ≤ i ≤ n. An eth-root representation of an element
z ∈ Z∗n is a list of bases (x1, . . . , xm) such that z = xe1

1 . . . xem
m . Note that eth-root representations are not

unique. We further describe a protocol for proving the knowledge of an eth-root representation.
A protocol for proving the knowledge of an eth-root representation can be obtained from UZK if we set

G = (Z∗n)m with ? defined as multiplication applied component-wise and (H,⊗) = (Z∗n, ·). The one-way group
homomorphism is defined by [(x1, . . . , xm)] = xe1

1 . . . xem
m and the challenge space C can be any arbitrary subset

of [0, e− 1], where e is a prime such that gcd(e, φ(n)) = 1. It is easy to see that ` = e and u = (xe1, . . . , xem).
The US-1 SETUP attack for this protocol can be easily derived from the attack on the Guillou-Quisquater

protocol and, thus, is omitted.

5 Conclusions

By introducing a new level of abstraction we devise new attack methods for zero-knowledge protocols and
their corresponding signature schemes. It would be interesting to find new protocols that fit our framework.

9

In [31] we can find an extensive list of signature schemes that are vulnerable to SETUP attacks. Thus, an
interesting direction of research is abstracting digital signatures16 and devising a method for attacking all of
them at once, instead of tweaking the attacks for each individual signature.

Acknowledgements

The dissemination of this work is funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 692178.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An Encryption Scheme Based on the Diffie-Hellman Problem.
IACR Cryptology ePrint Archive 1999/7 (1999)

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-Resilient Signature Schemes. In: ACM-CCS 2015. pp. 364–375.
ACM (2015)

3. Ball, J., Borger, J., Greenwald, G.: Revealed: How US and UK Spy Agencies Defeat Internet Privacy and Security.
The Guardian 6 (2013)

4. Bellare, M., Jaeger, J., Kane, D.: Mass-Surveillance without the State: Strongly Undetectable Algorithm-
Substitution Attacks. In: ACM-CCS 2015. pp. 1431–1440. ACM (2015)

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of Symmetric Encryption Against Mass Surveillance. In:
CRYPTO 2014. Lecture Notes in Computer Science, vol. 8616, pp. 1–19. Springer (2014)

6. Bellare, M., Rogaway, P.: Minimizing the Use of Random Oracles in Authenticated Encryption Schemes. In: ICICS
1997. Lecture Notes in Computer Science, vol. 1334, pp. 1–16. Springer (1997)

7. Berndt, S., Liśkiewicz, M.: Algorithm Substitution Attacks from a Steganographic Perspective. In: ACM-CCS
2017. pp. 1649–1660. ACM (2017)

8. Chaum, D., Evertse, J.H., Van De Graaf, J.: An Improved Protocol for Demonstrating Possession of Discrete
Logarithms and Some Generalizations. In: EUROCRYPT 1987. Lecture Notes in Computer Science, vol. 304, pp.
127–141. Springer (1987)

9. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M., Heninger, N., Weinmann, R.P.,
Rescorla, E., Shacham, H.: A Systematic Analysis of the Juniper Dual EC Incident. In: ACM-CCS 2016. pp.
468–479. ACM (2016)

10. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart, T., Bernstein, D.J., Maskiewicz,
J., Shacham, H., Fredrikson, M.: On the Practical Exploitability of Dual EC in TLS Implementations. In: USENIX
Security Symposium. pp. 319–335. USENIX Association (2014)

11. Crépeau, C., Slakmon, A.: Simple Backdoors for RSA Key Generation. In: CT-RSA 2003. Lecture Notes in
Computer Science, vol. 2612, pp. 403–416. Springer (2003)

12. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A Formal Treatment of Backdoored Pseudorandom
Generators. In: EUROCRYPT 2015. Lecture Notes in Computer Science, vol. 9056, pp. 101–126. Springer (2015)

13. Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness Extraction and Key Derivation Using
the CBC, Cascade and HMAC Modes. In: CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152, pp.
494–510. Springer (2004)

14. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. Journal of cryptology 1(2), 77–94 (1988)
15. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In:

CRYPTO 1986. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer (1986)
16. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A Kilobit Hidden SNFS Discrete Logarithm Computation. In:

EUROCRYPT 2017. Lecture Notes in Computer Science, vol. 10210, pp. 202–231. Springer (2017)
17. Gennaro, R., Krawczyk, H., Rabin, T.: Secure Hashed Diffie-Hellman over Non-DDH Groups. In: EUROCRYPT

2004. Lecture Notes in Computer Science, vol. 3027, pp. 361–381. Springer (2004)
18. Girault, M.: An Identity-based Identification Scheme Based on Discrete Logarithms Modulo a Composite Number.

In: EUROCRYPT 1990. Lecture Notes in Computer Science, vol. 473, pp. 481–486. Springer (1990)
19. Gordon, D.: Designing and Detecting Trapdoors for Discrete Log Cryptosystems. In: CRYPTO 1992. Lecture

Notes in Computer Science, vol. 740, pp. 66–75. Springer (1993)

16not only the ones obtained using the Fiat-Shamir transform

10

20. Guillou, L.C., Quisquater, J.J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing
Both Transmission and Memory. In: EUROCRYP 1988. Lecture Notes in Computer Science, vol. 330, pp. 123–128.
Springer (1988)

21. Maimuţ, D., Teşeleanu, G.: Secretly Embedding Trapdoors into Contract Signing Protocols. In: SECITC 2017.
Lecture Notes in Computer Science, vol. 10543. Springer (2017)

22. Maurer, U.: Unifying Zero-Knowledge Proofs of Knowledge. In: AFRICACRYPT 2009. Lecture Notes in Computer
Science, vol. 5580, pp. 272–286. Springer (2009)

23. McCurley, K.: A Key distribution System Equivalent to Factoring. Journal of cryptology 1(2), 95–105 (1988)
24. Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-Random Functions. Journal of the

ACM (JACM) 51(2), 231–262 (2004)
25. Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In:

CRYPTO 1992. Lecture Notes in Computer Science, vol. 740, pp. 31–53. Springer (1992)
26. Perlroth, N., Larson, J., Shane, S.: NSA Able to Foil Basic Safeguards of Privacy on Web. The New York Times 5

(2013)
27. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power of kleptographic attacks. In:

ASIACRYPT 2016. Lecture Notes in Computer Science, vol. 10032, pp. 34–64. Springer (2016)
28. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic Semantic Security against a Kleptographic Adversary. In:

ACM-CCS 2017. pp. 907–922. ACM (2017)
29. Schnorr, C.P.: Efficient Identification and Signatures For Smart Cards. In: CRYPTO 1989. Lecture Notes in

Computer Science, vol. 435, pp. 239–252. Springer (1989)
30. Shoup, V.: Sequences of Games: A Tool for Taming Complexity in Security Proofs. IACR Cryptology ePrint

Archive 2004/332 (2004)
31. Teşeleanu, G.: Threshold Kleptographic Attacks on Discrete Logarithm Based Signatures. IACR Cryptology

ePrint Archive 2017/953 (2017)
32. Young, A., Yung, M.: The Dark Side of “Black-Box” Cryptography or: Should We Trust Capstone? In: CRYPTO

1996. Lecture Notes in Computer Science, vol. 1109, pp. 89–103. Springer (1996)
33. Young, A., Yung, M.: Kleptography: Using Cryptography Against Cryptography. In: EUROCRYPT 1997. Lecture

Notes in Computer Science, vol. 1233, pp. 62–74. Springer (1997)
34. Young, A., Yung, M.: The Prevalence of Kleptographic Attacks on Discrete-Log Based Cryptosystems. In:

CRYPTO 1997. Lecture Notes in Computer Science, vol. 1294, pp. 264–276. Springer (1997)
35. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John Wiley & Sons (2004)
36. Young, A., Yung, M.: Malicious Cryptography: Kleptographic Aspects. In: CT-RSA 2005, Lecture Notes in

Computer Science, vol. 3376, pp. 7–18. Springer (2005)

A Additional Preliminaries

Definition 6 (Computational Diffie-Hellman - cdh). Let D be a cyclic group of order q, d a generator
of D and let A be a probabilistic polynomial-time algorithm (PPT algorithm) that returns an element from D.
We define the advantage

ADV cdh
D,d (A) = Pr[A(dx, dy) = dxy|x, y $←− Z∗q].

If ADV cdh
D,d (A) is negligible for any PPT algorithm A, we say that the Computational Diffie-Hellman

problem is hard in D.

Definition 7 (Decisional Diffie-Hellman - ddh). Let D be a cyclic group of order q, g a generator of D.
Let A be a PPT algorithm which returns 1 on input (dx, dy, dz) if dxy = dz. We define the advantage

ADV ddh
D,d (A) = |Pr[A(dx, dy, dz) = 1|x, y $←− Z∗q , z ← xy]− Pr[A(dx, dy, dz) = 1|x, y, z $←− Z∗q]|.

If ADV ddh
D,d (A) is negligible for any PPT algorithm A, we say that the Decisional Diffie-Hellman problem

is hard in D.

11

Definition 8 (Entropy Smoothing - es). Let D be a cyclic group of order q, K the key space and
H = {hi}i∈K a family of keyed hash functions, where each hi maps D to E, where E is a group. Let A be a
PPT algorithm which returns 1 on input (i, y) if y = hi(z), where z is chosen at random from D. Also, let
We define the advantage

ADV es
H(A) = |Pr[A(i, hi(z)) = 1|i $←− K, z $←− D]− Pr[A(i, h) = 1|i $←− K, h $←− E]|.

If ADV es
H(A) is negligible for any PPT algorithm A, we say that H is Entropy Smoothing.

Remark 7. In [13], the authors prove that the CBC-MAC, HMAC and Merkle-Damgård constructions satisfy
the above definition, as long as the underlying primitives satisfy some security properties.

12

	Unifying Kleptographic Attacks

