
New Techniques for Efficient Trapdoor Functions and Applications∗

Sanjam Garg † Romain Gay‡ Mohammad Hajiabadi§

February 28, 2019

Abstract

We develop techniques for constructing trapdoor functions (TDFs) with short image size
and advanced security properties. Our approach builds on the recent framework of Garg and
Hajiabadi [CRYPTO 2018]. As applications of our techniques, we obtain

• The first construction of deterministic-encryption schemes for block-source inputs (both for
the CPA and CCA cases) based on the Computational Diffie-Hellman (CDH) assumption.
Moreover, by applying our efficiency-enhancing techniques, we obtain CDH-based schemes
with ciphertext size linear in plaintext size.

• The first construction of lossy TDFs based on the Decisional Diffie-Hellman (DDH) as-
sumption with image size linear in input size, while retaining the lossiness rate of [Peikert-
Waters STOC 2008].

Prior to our work, all constructions of deterministic encryption based even on the stronger DDH
assumption incurred a quadratic gap between the ciphertext and plaintext sizes. Moreover, all
DDH-based constructions of lossy TDFs had image size quadratic in the input size.

At a high level, we break the previous quadratic barriers by introducing a novel technique for
encoding input bits via hardcore output bits with the use of erasure-resilient codes. All previous
schemes used group elements for encoding input bits, resulting in quadratic expansions.

1 Introduction

Trapdoor functions (TDFs) are a foundational primitive in cryptography and are typically used as a
fundamental building block in the construction of advanced primitives such as CCA2-secure public-
key encryption (PKE). Introduced in the 70’s [DH76, RSA78], TDFs are a family of functions, where
each individual function in the family is easy to compute, and also easy to invert if one posses an
additional trapdoor key. The most basic security requirement is that of one-wayness, requiring that
a randomly chosen function from the family be one-way.

The usefulness of TDFs stems from the fact that the inversion algorithm recovers the entire
input. This stands in sharp contrast to PKE, wherein the decryption algorithm may not recover
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the underlying randomness. This input recovery feature of TDFs is what makes them a useful tool,
especially in applications where proofs of well-formedness are required.

On the other hand, building TDFs turns out to be much more difficult than building PKE,
mostly due to the requirement of recovering the entire input, which in turn is the reason behind
the lack of black-box transformations from PKE to TDFs [GMR01]. Specifically, in groups with
discrete-log based hardness assumptions, this restricts the use of operations such as exponentiation,
for which we do not have a generic trapdoor. Furthermore, in some applications we need TDFs
to be robust, providing enhanced security properties rather than mere one-wayness (e.g., [BBO07,
PW08, PW11, PVW08, BFOR08, RS09]).

Recently, Garg and Hajiabadi [GH18] introduced a new approach for building TDFs, obtaining
the first construction of TDFs from the Computational Diffie-Hellman (CDH) assumption. Al-
though their approach gives new feasibility results, their constructed TDFs are limited in certain
ways: (a) Their TDFs are not robust enough — for example, it is not clear how to go beyond one-
wayness, obtaining more advanced properties such as those required by deterministic encryption
[BBO07, BFOR08, BFO08] or CCA2 security; and (b) The length of their TDF images grows (at
least) quadratically with the length of the input.

We stress that Point (b) is not just an artifact of the construction of [GH18]. In fact, we do
not know of any TDF constructions (even based on the stronger decisional Diffie-Hellman (DDH)
assumption) with advanced properties, such as deterministic-encryption security, with images grow-
ing linearly in their inputs.1 Since TDFs are typically used as building blocks in more advanced
primitives, designing more efficient TDFs translates into the same features in target applications.
For example, lossy TDFs [PW08, PW11] are an extremely versatile primitive with a long list of
applications; e.g., [BFOR08, BHY09, BBN+09, MY10, BCPT13].

1.1 Our Results

We develop techniques for constructing efficient and robust TDFs. As concrete applications of our
new techniques, we obtain the first construction of deterministic encryption for block sources (in the
sense of [BFO08]) under the CDH assumption. We give both CPA and CCA2 versions of our con-
structions. We stress that prior to our work we knew how to build (even) CPA-secure deterministic
encryption only from decisional assumptions, including DDH, QR, DCR and LWE [BFO08, Wee12].
Thus, in addition, we also obtain instantiations under the hardness of factoring assumption.

Furthermore, we show how to use our efficiency techniques to obtain:

1. The first CDH-based deterministic encryption schemes with ciphertext size linear in plaintext
size. Additionally, our CDH-based deterministic-encryption schemes beat all the previous
DDH-based schemes in terms of ciphertext size. The sizes of other parameters (e.g., the
secret key and public key) remain the same. See Table 1 for a comparison.

2. The first construction of lossy TDFs ([PW08, PW11]) from DDH with image size linear
in input size. Our DDH-based lossy TDFs achieve the same lossiness rate as in [PW08,
PW11]. All previous DDH-based lossy TDF constructions (achieving non-trivial lossiness
rates) resulted in images quadratically large in their inputs.

1We note that building a TDF providing mere one-wayness with linear-size images is simple: if TDF.F(ik, ·) maps
n-bit inputs to nc-bit outputs, define TDF.F′(ik, x||x′), where |x| = n and |x′| = nc, as TDF.F(ik, x)||x′. Although this
transformation results in TDFs with linear-image size, it destroy more advanced properties such as CCA2 security,
deterministic-encryption security and the lossiness rate.
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work assumption primitive index key trapdoor
key

image

ours CDH CCA2 DE Θ(n2 log p) Θ(n2 log p) log p+ Θ(n)

[BFO08] DDH CCA2 DE Θ(n2 log p) Θ(n2 log p) Θ(n log p)

ours DDH (n, log p)-
LTDF

Θ(n2 log p) Θ(n2 log p) log p+ Θ(n)

[PW08,
PW11,
FGK+10]

DDH (n, log p)-
LTDF

Θ(n2 log p) Θ(n2 log p) Θ(n log p)

Table 1: Bit complexity: p is the order of the group and n is the bit size of the TDF input. Here
(n, k)-LTDF means lossy TDFs where in lossy mode the image-space size is at most 2k. We call
1− k/n the lossiness rate.

1.2 Technical Overview

In this section we give an overview of our techniques for constructing robust and efficient TDFs.
We will build TDFs with several abstract properties, and we will apply these techniques to the
setting of deterministic encryption and lossy TDFs as concrete applications.

Our constructions rely on the same primitive of recyclable one-way function with encryption
(OWFE) used by [GH18], so we first review this notion. An OWFE consists of a one-way function
f(pp, ·) : {0, 1}n → {0, 1}ν , where pp is a public parameter, along with encapsulation/decapsulation
algorithms (E,D). Specifically, E takes as input pp, an image y ∈ {0, 1}ν of f(pp, ·), a target index
i ∈ [n] and a target bit b ∈ {0, 1}, and produces an encapsulated ciphertext ct and a corresponding
key bit e ∈ {0, 1}. The algorithm D allows us to retrieve e from ct using any pre-image x of y,

if xi = b. For security, letting y := f(pp, x), we require that if (ct, e)
$←− E(pp, y, (i, 1 − xi)), then

even knowing both x and ct, one cannot distinguish e from a truly random bit. Finally, letting E1

and E2 refer to the first and second output pars of E, the recyclability requirement says that the
output of E1 does not depend on y, namely, we have: ct = E1(pp, (i, b)) and e = E2(pp, y, (i, b)).
(See Definition 3.1.) The work of [GH18] gives CDH instantiations of this notion; see Section 3.1.

Approach of [GH18]. A property implied by recyclable OWFE is the following: given x ∈
{0, 1}n and two fresh encapsulated ciphertexts (ct0, ct1) made w.r.t. y := f(pp, x) and an arbitrary
target index i and target bits 0 and 1 (respectively), one cannot distinguish the values of the
corresponding two key bits (e0, e1) from a pair in which we replace e1−xi with a random bit.
Exploiting this property, [GH18] set their index key to contain encapsulated ciphertexts cti,b made
w.r.t. each value of i ∈ [n] and b ∈ {0, 1} — they put all the corresponding randomness values
[ri,b] in the trapdoor key. The input to their TDF contains x ∈ {0, 1}n and the output u consists
of y := f(pp, x) as well as a 2 × n matrix M of bits (ei,b)i∈[n],b∈{0,1}, where for all i, they set
ei,xi := D(pp, x, cti,xi) and set ei,1−xi to be a random bit. Since TDFs are not allowed to make use
of randomness, they draw ei,1−xi for all i from an additional part of their input which they call
the blinding part. For inverting u := (y,M), the inverter may make use of its knowledge of all the
randomness values underlying cti,b’s to form the corresponding key bits w.r.t. y. Then the inverter
may check each column of the resulting matrix, M′, against the corresponding column of the matrix
M, and look for a matched coordinate. This would enable recovering half of the input bits (on
average). The one-wayness of their scheme follows by the property alluded to above. Namely, for

3



any i ∈ [n], we may switch e1−xi from uniformly random to E2(pp, y, (i, 1−xi); ri,1−xi). Consequently,
the image of the trapdoor function becomes: (y, (ei,b)i,b), where ei,b := E2(pp, y, (i, b); ri,b) for all
i ∈ [n] and b ∈ {0, 1}. In other words, the entire view of a TDF adversary may be computed from
y alone. At this point, the one-wayness of the TDF follows from the one-wayness of the underlying
OWFE. Finally, [GH18] boosts correctness by repeating the above process in parallel. For future
reference, we call the above initial TDF (which enables recovery of half of the bits) TDF gadget.

Lack of perfect correctness in [GH18]. The TDF of [GH18] only achieves a weak form of
correctness, under which the inversion algorithm may fail w.r.t. any index/trapdoor keys for a
negligible fraction of the inputs. This severely restricts the applicability of CCA2-enhancing tech-
niques, such as those of [RS09, KMO10], for obtaining CCA2 secure primitives. Even for the
CPA case, the lack of perfect correctness hindered the construction of CPA-secure deterministic
encryption schemes. Deterministic public-key encryption schemes [BBO07] are TDFs which hide
information about plaintexts drawn from high min-entropy sources. There are various forms of
this definition, e.g., [BBO07, BFO08, BFOR08, BS11, MPRS12]. Strong versions of this notion
have so far been realized in the random oracle model [BBO07] and are subject to impossibility
results [Wic13]. Boldyreva, Fehr and O’Neill [BFO08] formulated a relaxation of this notion (called
block-source security), and showed how to realize this relaxed notion under standard assumptions
such as DDH and LWE. Informally, block-source security requires that the (deterministic) encryp-
tions of any two sources with high min entropy (more than a threshold k) remain computationally
indistinguishable.2 Ideally, we want k << n, where n is plaintext size.

The TDF of [GH18] does not achieve block-source security for the same reason that degraded
their correctness property: The TDF input contains a blinding part, which in turn is copied in the
clear in the output (but in hidden spots). To see how this breaks security, consider two sources,
where the first one fixes the blinding part to all zeros, and the second one fixes it to all ones. Then
it would be easy to distinguish between the outputs of the TDF w.r.t. these two sources — even
though the two sources have both high min entropy.

Enhancing to perfect correctness. We fix the imperfect correctness of [GH18] via a mirroring
technique. Recall that the bits of the blinding input were previously used to form the values of
ei,1−xi . Now, instead of having a blinding part in the input for making up the values of ei,1−xi , we
set ei,1−xi := ai − ei,xi , where a := (a1, . . . , an) ∈ {0, 1}n is a random vector that comes from the
index key. This way we get rid of inclusion of blinders as part of the input — the input now solely
consists of a string x ∈ {0, 1}n. We show that this method improves correctness: Our TDF is now
perfectly correct for all but a negligible fraction of index/trapdoor keys; see Remark 2.2.

Lossy-like properties of our TDF toward obtaining deterministic encryption. So far, we
showed how to fix the imperfect-correctness problem of [GH18], but this by itself does not guarantee
deterministic-encryption security. Toward this goal, we show that the mirroring technique allows
us to establish a lossy-like property for our TDFs, which in turn gives us block-source security.3

Specifically, let y be an image point of f(pp, ·) of the OWFE scheme, and let S be the set of all
pre-images of y (which can be of exponential size under our CDH instantiation). We can now set

2This is the indistinguishability-based, single-message version of their notion, which as they show, is equivalent to
the multiple-message version both for the indistinguishability- and simulation-based definitions.

3We note that this lossiness property is weaker than the one of [PW08, PW11], but it can be realized under CDH.
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the index key as iky, where (a) iky loses information w.r.t. all pre-images of y: for all x, x′ ∈ S
we have TDF.F(iky, x) = TDF.F(iky, x

′) and (b) iky is computationally indistinguishable from an
honestly generated ik. We exploit this property to prove block-source security for our TDFs.

Having achieved block-source CPA security, we may boost this scheme into a CCA2-secure
deterministic-encryption scheme using the techniques of [RS09, KMO10].4 Specifically, we show
how to use our lossiness property to prove k-repetition security (introduced by [RS09]) for our TDF.
Intuitively, k-repetition security requires one-wayness to hold even if the given input is evaluated
under k-randomly chosen functions. The scheme of [GH18] fails to achieve k-repetition security,
exactly because of the presence of blinders.

Finally, we mention that based on CDH we do not get lossiness in the sense of [PW08, PW11]
as the amount of information we lose is negligible over the entire input space. Nevertheless, our
weak lossiness property which can be realized under CDH suffices for our deterministic-encryption
application, and may find other applications later.

Efficiency of our TDFs so far: quadratically large images. Under CDH instantiations of
the above approach, for plaintexts of n bits, the bit-size of the ciphertext is Θ(n2) in the CPA case,
and Θ(n2ω(log n)) in the CCA case. In contrast, the DDH-based constructions of [BFO08] give
ciphertext size Θ(n2) both for the CPA and CCA cases.

Sources of inefficiency. Recall our TDF gadget has image size Θ(n). This TDF gadget may
fail to recover any given bit of the input with probability 1/2. Thus, we ran many TDF gadgets
in parallel, resulting in Θ(n2) image size. We refer to this as correctness repetition. For the CCA2
case, since we relied on techniques of [RS09, KMO10] we needed to perform yet another repetition,
which we call CCA2 repetition. This justifies the further blowup in CCA2 image size.

We develop techniques for avoiding both these repetitions, sketched below.

Erasure-resilient codes to the rescue: linear-image TDFs. We give techniques involving
the use of erasure-resilient codes for making the size of our TDF images linear, while preserving
other properties. Recall that under our TDF gadget, for a randomly chosen input x ∈ {0, 1}n and
for any index i ∈ [n], the inversion algorithm either recovers xi correctly, or outputs ⊥ for this bit
position (with probability 1/2). Notice that the inversion process has a local property, in the sense
that each bit individually may be recovered or not with probability 1/2.

Now instead of performing parallel repetition which results in a quadratic-size blowup, we boost
correctness through the use of erasure-resilient codes. Suppose (Encode,Decode) is an erasure-
resilient code, where Encode : {0, 1}n → {0, 1}m (for m = cn ∈ O(n)), and where Decode only
needs c1n (noise-free) bits of a codeword Encode(x) — for c1 sufficiently smaller than c — in order
to recover x. Such codes may be built from Reed-Solomon codes by adapting them to bit strings;
see Definition 5.1.

The starting point of our technique is the following: On input x ∈ {0, 1}n, apply the TDF
gadget on the encoded input z := Encode(x). To invert, we no longer need to recover all the m
bits of z; recovering c1n of them will do. Unfortunately, for codes over binary alphabets, the value
of c1/c is much greater than 1/2 and our TDF gadget may be incapable of recovering that many
bits. We get around this issue by doing repetition but for a constant number of times: Instead of

4We mention that the transformation of [RS09] results in CCA-secure PKE schemes which use randomness, but
this can be avoided by using the techniques of [KMO10] to get CCA2-secure TDFs.
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applying the TDF gadget to z := z1 . . . zm, apply it to the t-repetition copy of z where we repeat
each bit of z t times. By choosing the constant t appropriately and using the mirroring idea, we can
ensure perfect correctness for all but a negligible fraction of index/trapdoor keys. This way, images
will grow linearly. The proof of CPA block-source security follows almost similarly as before.

Concretely, under CDH instantiations, CPA ciphertexts (for plaintexts of n bits) consist of
one group element and c′n bits for c′ ∈ O(1).5 This substantially improves the ciphertext size of
previous DDH-based schemes under which a ciphertext consists of n group elements.

Keeping image size linear in CCA-like applications. So far, we showed how to build linear-
image TDFs with additional properties (e.g., block-source CPA security). Typically, TDFs with
enhanced properties (such as k-repetition security [RS09] or lossy properties [PW08, PW11]) can be
boosted into CCA2 primitives, but this requires “parallel repetition” of the base object, increasing
the sizes. Our linear-image TDF turns out to be k-repetition secure, but we cannot afford to use
previous techniques for getting CCA2 security, because we would like to keep image size linear. Here
is where our other techniques come into play: We develop a half-simulation method for proving
CCA2 security for our same TDF scheme without any further modifications. For this, we just need
to choose the constant c in m = cn big enough. Our CCA techniques are different from those
of [PW08, PW11, RS09], which implicitly or explicitly relied on repetition.

As an application, we will get a CDH-based block-source CCA-secure deterministic encryption,
beating the ciphertext size of DDH-based schemes. We now sketch our techniques.

Let (Encode,Decode) be a code obtained by repeating the output bit of a codeword (which in
turn is obtained based on a linear-size-output error-correcting code) t times for a constant t. See
Definition 5.2. A codeword z may be thought of as a string of m/t blocks, each consisting entirely
of either t zeros or t ones.

Recall that a trapdoor key tk consists of all randomness values ri,b’s used to form cti,b’s (which
are in turn fixed in the index key ik). On input x ∈ {0, 1}n we form z := Encode(x) ∈ {0, 1}m and
return u := (y,M :=

( e1,0,...,em,0
e1,1,...,em,1

)
), where y := f(pp, z), ei,zi = D(pp, z, cti,zi) and ei,1−zi = ai − ei,zi ,

where a := (a1, . . . , am) ∈ {0, 1}m is sampled in ik. The inversion algorithm will recover the ith
bit of z iff ei,1−zi = 1 − E2(pp, y, (i, 1 − zi); ri,1−zi). Say the ith column of M is hung if ei,1−zi =
E2(pp, y, (i, 1− zi); ri,1−zi) — if this happens, then the inverter cannot decide on the ith bit of z.

Let us argue CCA2 security w.r.t. two sources S0 and S1: The adversary should distinguish

(ik,TDF.F(ik, x0)) from (ik,TDF.F(ik, x1)), where xb
$←− Sb. For deterministic encryption we may

assume all CCA queries happen after seeing the index key and challenge ciphertext (Definition 2.3).
Our CCA2 simulation is based on a half-trapdoor simulation technique under which we forget one

randomness value from each pair (ri,0, ri,1) in the trapdoor. Specifically, letting x? be the challenge
plaintext, imagine a half-trapdoor key obtained based on x? from tk as tkrd,z? := (r1,z?1 , . . . , rm,z?m),

where z? = Encode(x?). We perform half-trapdoor inversion of a given point u :=
(
y,
( e1,0,...,em,0
e1,1,...,em,1

))
w.r.t. tkrd,z? as follows: Build (potentially) a noisy codeword z as follows: in order to recover the
bits of the jth block, if at least for one index i in this block we have ei,z?i = 1−E2(pp, y, (i, z

?
i ); ri,z?i ),

set all the bits of z in this block to 1−z?i ; otherwise, set all those bits to the corresponding bit values
of z? in those coordinates. Once z is formed, decode it to get a string and check if the re-encryption
of that string gives back u. If so, return the string.

Letting x? be the challenge plaintext (and recalling that all CCA queries are post-challenge),
we first show we may use tkrd,z? (instead of the full key tk) to reply to the CCA queries, without

5We have not yet optimized nor tried to get tight upper bounds on the constants.
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the adversary noticing any difference, using the following two facts. First, for a queried point u,
if u is not a valid image (i.e., it does not have a pre-image), then both (full and half) inversions
return ⊥. This is because at the end of either inversion we re-encrypt the result to see whether
we get the given image point back. So suppose for the queried u :=

(
y,M :=

( e1,0,...,em,0
e1,1,...,em,1

))
we have

u := TDF.F(ik, x) for some x ∈ {0, 1}n \ {x?}. (If x = x?, then u will be the challenge ciphertext
itself and hence not a permitted query.) Let S ⊆ [m/t] contain the indices of those blocks on which
z and z? differ, where z := Encode(x). Note the half-trapdoor inversion w.r.t. tkrd,z? will correctly
recover all the bits of z that correspond to the blocks which are not in S.

For the blocks in S, we show that by choosing the constants appropriately, then for sufficiently-
many indices j ∈ S, the jth block of M is not hung; namely, for at least one index i in this block
we have ei,1−zi = 1 − E2(pp, y, (i, 1 − zi); ri,1−zi). For any index j ∈ S such that the above holds,
the half-inversion process (w.r.t. tkrd,z?) will recover the jth block of z (by definition). We will
use these facts to argue we will have enough correctly generated bits in order to able to do error
correction.

Once we solely use tkrd,z? to reply to decryption queries, letting u? :=
(
y?,
(

e?1,0,...,e
?
m,0

e?1,1,...,e
?
m,1

))
be the

corresponding challenge ciphertext, we may replace each e?i,1−z?i
with E2(pp, y

?, (i, 1 − z?i ); ri,1−z?i ),

and simultaneously set the ith bit of the vector a of the index key as ai := E2(pp, y
?, (i, z?i ); ri,z?i ) +

E2(pp, y
?, (i, 1 − z?i ); ri,1−z?i ). This change goes unnoticed by the security of the OWFE. At this

point the challenge ciphertext and index key only depend on y? and we only use z? to decide which
randomness value from each pair of tk to forget. We will now switch back to using the full trapdoor,
with analysis similar to before. At this point, the entire view of the adversary may be simulated
using y? := f(pp, z?), and thus we have block-source security in this hybrid similar to the CPA case.

Lossy TDFs. Recall that a TDF is lossy [PW08, PW11] if one may generate index keys in a
lossy way which is (1) indistinguishable from honestly generated index keys and (2) which results
in statistical loss of information if used during the evaluation algorithm. We show we can adapt the
trapdoor functions of [PW08, PW11] using our erasure-resilient code based technique for encoding
input bits via hardcore output bits. This allows us to obtain lossy TDFs based on DDH with image
size linear in input size. All previous DDH-based constructions of lossy TDFs incur a quadratic
blowup in image size [PW08, PW11, FGK+10, Wee12]. We defer the reader to Section 6 for details.
We leave open the exciting problem of constructing lossy trapdoor functions from CDH.

Other related work. OWFE is a relaxation of the notion of (chameleon) hash encryption and its
variants, which in turn imply strong primitives such as laconic oblivious transfer and identity-based
encryption (IBE) in a non-black-box way [CDG+17, DG17b, DG17a, BLSV18, DGHM18].

Freeman et al. [FGK+10] give additional constructions and simplifications to the TDF construc-
tion of [PW08, PW11]. Further constructions of (lossy) TDFs from various assumptions are given
in [Wee12, HO12, HO13]. As for efficient TDFs, Boyen and Waters show that in the bilinear setting
one may drastically shorten the index-key size of the Peikert-Waters lossy-TDF construction from
a quadratic number of group elements to linear [BW10].

Concurrent work. In an exciting independent and concurrent work, Koppula and Waters [KW18]
show that TDF techniques can be used to upgrade any attribute-based encryption or predicate en-
cryption scheme to its CCA secure variant. Similarly to this work, Koppula and Waters build on
the ideas from the CDH-based TDF construction of Garg and Hajiabadi [GH18]. In particular,
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Koppula and Waters [KW18] independently came up with a similar version of the mirroring tech-
nique along the way, which we also developed in this paper. However, the focus of our work is
very different from that of Koppula and Waters. In particular, we develop efficient techniques for
applications such as TDFs, deterministic encryption and lossy trapdoor functions.

Open problems. The main open problem is to build lossy TDFs from CDH. Also, it would
be interesting to see if our techniques help us to get adaptively-secure deterministic encryption
schemes in the sense of [RSV18].

Paper organization. We give standard definitions and lemmas in Section 2 and OWFE-related
definitions in Section 3. We give our (inefficient) construction of TDFs with deterministic-encryption
security in Section 4 and give our efficient construction in Section 5. Finally, we give our DDH-based
lossy TDF construction with linear image size in Section 6.

2 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote computational indistin-

guishability between two distributions and use ≡ to denote two distributions are identical. For
any ε > 0, we write ≈ε to denote that two distributions are statistically close, within statistical

distance ε, and use
s≡ for statistical indistinguishability. For a distribution S we use x

$←− S to mean
x is sampled according to S and use y ∈ S to mean y ∈ sup(S), where sup denotes the support

of a distribution. For a set S we overload the notation to use x
$←− S to indicate that x is chosen

uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm, then A(a1, . . . , an), for
deterministic inputs a1, . . . , an, denotes the random variable obtained by sampling random coins r
uniformly at random and returning A(a1, . . . , an; r).

The min-entropy of a distribution S is defined as H∞(S)
M
= − log(maxx Pr[S = x]). We call a

distribution S a (k, n)-source if H∞(S) ≥ k and sup(S) ⊆ {0, 1}n.

2.1 Standard Definitions

Definition 2.1 (Trapdoor functions (TDFs)). Let n = n(λ) be a polynomial. A family of trapdoor
functions TDF with domain {0, 1}n consists of three PPT algorithms TDF.KG, TDF.F and TDF.F−1

with the following syntax and security properties.

• TDF.KG(1λ): Takes the security parameter 1λ and outputs a pair (ik, tk) of index/trapdoor
keys.

• TDF.F(ik, x): Takes an index key ik and a domain element x ∈ {0, 1}n and deterministically
outputs an image element u.

• TDF.F−1(tk, u): Takes a trapdoor key tk and an image element u and outputs a value x ∈
{0, 1}n ∪ {⊥}.

We require the following properties.
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• Correctness:

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk,TDF.F(ik, x)) 6= x] = negl(λ), (1)

where the probability is taken over (ik, tk)
$←− TDF.KG(1λ).

• One-wayness: For any PPT adversary A: Pr[A(ik, u) = x] = negl(λ), where (ik, tk)
$←−

TDF.KG(1λ), x
$←− {0, 1}n and u := TDF.F(ik, x).

Remark 2.2. The work of Garg and Hajiabadi [GH18] builds a TDF with a weaker correctness
guarantee, under which for any choice of (ik, tk), we are allowed to have a negligible inversion error

(over the choice of x
$←− {0, 1}n). Although the correctness condition of [GH18] implies that for a

randomly chosen (ik, tk) and a randomly chosen x, the probability of an inversion error is negligible,
it falls short in certain applications, such as CCA2 constructions, for which a stronger correctness
condition, as that given in Definition 2.1, is needed.

We will now define a single-message-based notion of indistinguishability for deterministic en-
cryption of block sources, which as proved in [BFO08], is equivalent to both the simulation-based
and indistinguishability-based multiple-message notions.

Definition 2.3 (Deterministic-encryption security [BFO08]). Let TDF = (TDF.KG,TDF.F,TDF.F−1)
be as in Definition 2.1. We say that TDF is (k, n)-CPA-indistinguishable if for any two (k, n)-

sources S1 and S2: (ik,TDF.F(ik,S1))
c≡ (ik,TDF.F(ik,S2)), where (ik, ∗) $←− TDF.KG(1λ).

We say that TDF is (k, n)-CCA2-indistinguishable if for any two (k, n)-sources S0 and S1, and
any PPT adversary A the following quantity is negligible:∣∣∣∣∣Pr

[
b = b′ : (ik, tk)

$←− TDF.KG(1λ), b
$←− {0, 1}, x? $←− Sb, u? := TDF.F(ik, x?)

b′ ← AODec(ik, u?)

]
− 1

2

∣∣∣∣∣
where on input u, the decryption oracle ODec returns TDF.F−1(tk, u) if u 6= u?, and ⊥ otherwise.

We remark that considering only CCA2 queries (as opposed to both CCA1 and CCA2 queries)
in the CCA2-indistinguishability definition for deterministic encryption is without loss of generality,
since the challenge plaintexts are not chosen by the adversary. See [BFO08] for further explanation.

Definition 2.4 (Computational Diffie-Hellman (CDH) assumption). Let G be a group-generator
scheme, which on input 1λ outputs (G, p, g), where G is the description of a group, p is the order
of the group which is always a prime number and g is a generator for the group. We say that
G is CDH-hard if for any PPT adversary A: Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ), where

(G, p, g)
$←− G(1λ) and a1, a2

$←− Zp.

2.2 Standard Lemmas

Lemma 2.5 (Chernoff inequality). Let X1, . . . ,Xm be independent Boolean variables each of ex-
pected value at least p. Then, for all ε > 0:

Pr

[
1

m

m∑
i=1

Xi < p− ε

]
< e−2ε

2m.
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Lemma 2.6 (Leftover hash lemma [ILL89]). Let X be a random variable over X and h : S×X→ Y
be a 2-universal hash function, where |Y| ≤ 2m for some m > 0. If m ≤ H∞(X ) − 2 log

(
1
ε

)
, then

(h(S,X ),S) ≈ε (U ,S), where S is uniform over S and U is uniform over Y.

3 Smooth Recyclable OWFE

We recall the definition of recyclable one-way function with encryption from [GH18]. We adapt the
definition to a setting in which the underlying input distribution is not necessarily uniform. We
will also define a smoothness notion, which generalizes the one-wayness notion.

Definition 3.1 (Recyclable one-way function with encryption (OWFE)). A recyclable (k, n)-
OWFE scheme consists of the PPT algorithms K, f, E1, E2 and D with the following syntax.

• K(1λ): Takes the security parameter 1λ and outputs a public parameter pp (by tossing coins)
for a function f(pp, ·) from n bits to ν bits.

• f(pp, x): Takes a public parameter pp and a preimage x ∈ {0, 1}n, and deterministically
outputs y ∈ {0, 1}ν .

• E1(pp, (i, b); ρ): Takes a public parameter pp, an index i ∈ [n], a bit b ∈ {0, 1} and randomness
ρ, and outputs a ciphertext ct.6

• E2(pp, y, (i, b); ρ): Takes a public parameter pp, a value y, an index i ∈ [n], a bit b ∈ {0, 1}
and randomness ρ, and outputs a bit e. Notice that unlike E1, which does not take y as input,
the algorithm E2 does take y as input.

• D(pp, ct, x): Takes a public parameter pp, a ciphertext ct and a preimage x ∈ {0, 1}n, and
deterministically outputs a bit e.

We require the following properties.

• Correctness. For any choice of pp ∈ K(1λ), any index i ∈ [n], any preimage x ∈ {0, 1}n
and any randomness value ρ, the following holds: letting y := f(pp, x), b := xi and ct :=
E1(pp, (i, xi); ρ), we have E2(pp, y, (i, xi); ρ) = D(pp, ct, x).

• (k, n)-One-wayness: For any (k, n) source S and any PPT adversary A:

Pr[f(pp,A(pp, y)) = y] = negl(λ),

where pp
$←− K(1λ), x

$←− S and y := f(pp, x).

• Security for encryption: For any i ∈ [n] and x ∈ {0, 1}n:

(x, pp, ct, e)
c≡ (x, pp, ct, e′)

where pp
$←− K(1λ), ρ

$←− {0, 1}∗, ct := E1(pp, (i, 1 − xi); ρ), e := E2

(
pp, f(pp, x), (i, 1 − xi); ρ

)
and e′

$←− {0, 1}.
6ct is assumed to contain (i, b).
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Whenever we say an OWFE scheme (without specifying the parameters), we mean k = n.

Notation 3.2. We define E(pp, y, (i, b); ρ)
M
= (E1(pp, (i, b); ρ),E2(pp, y, (i, b); ρ)).

We will now define the notion of smoothness which extends the one-wayness property to an
indistinguishability-based property.

Definition 3.3 (Smoothness). Let (K, f,E,D) be as in Definition 3.1. We say that (K, f,E,D)

is (k, n)-smooth if for any two (k, n)-sources S1 and S2: (pp, f(pp, x1))
c≡ (pp, f(pp, x2)), where

pp
$←− K(1λ), x1

$←− S1 and x2
$←− S2.

3.1 Smooth Recyclable OWFE from CDH

Here we show that the recyclable OWFE from [GH18] is (k, n)-smooth, for any k ≥ log p+ω(log λ),
where p is the order of the underlying CDH-hard group. We first present the construction.

Construction 3.4 (Smooth recyclable OWFE from CDH [GH18]). Let G be a CDH-hard group-
generator scheme.

• K(1λ): Sample (G, p, g)
$←− G(1λ). For each j ∈ [n] and b ∈ {0, 1}, choose gj,b

$←− G. Output

pp :=

(
g1,0, g2,0, . . . , gn,0
g1,1, g2,1, . . . , gn,1

)
. (2)

• f(pp, x): Parse pp as in Equation 2, and output y :=
∏
j∈[n] gj,xj .

• E1(pp, (i, b); ρ): Parse pp as in Equation 2. Given the randomness ρ
$←− Zp, proceed as follows:

– For every j ∈ [n] \ {i}, set cj,0 := gρj,0, and cj,1 := gρj,1.

– Set ci,b := gρi,b and ci,1−b := ⊥.

– Output

ct :=

(
c1,0, c2,0, . . . , cn,0
c1,1, c2,1, . . . , cn,1

)
. (3)

• E2(pp, (y, i, b); ρ): Given the randomness ρ
$←− Zp, output HC(yρ), where HC denotes a hardcore

function (e.g., the Goldreich-Levin hardcore function).

• D(pp, ct, x): Parse ct as in Equation 3, and output HC
(∏

j∈[n] cj,xj

)
.

[GH18] showed that this OWFE satisfies the correctness, one-wayness, and security for encryp-
tion properties. We show that for any k ≥ log p+ ω(log λ), where p is the order of the underlying
group, we also have the smoothness property.

Lemma 3.5 (CDH implies (k, n)-smooth recyclable OWFE). Assuming that G is CDH-hard and
k ≥ log p+ ω(log λ), then the recyclable OWFE of Construction 3.4 is (k, n)-smooth.

Proof. Let S1 and S2 be two (k, n) sources. The smoothness follows directly from the leftover hash

lemma. Namely, assuming pp
$←− K(1λ), x1

$←− S1 and x2
$←− S2, since f is a 2-universal hash function,

by Lemma 2.6 we know that the outputs of both f(pp, x1) and f(pp, x2) are statistically 1
2ω(log λ)

close
to the uniform over G, and hence negligibly close (statistically) to each other.
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4 Strong TDFs from Smooth Recyclable OWFE

In this section we show that recyclable OWFE implies the existence of TDFs with almost-perfect
correctness in the sense of Definition 2.1. This improves the correctness property of [GH18]; see
Remark 2.2. Moreover, we show that if the base recyclable OWFE scheme is smooth (Definition 3.3),
then the resulting TDF satisfies the notions of security for deterministic encryption (Definition 2.3).
We will then use this statement along with Lemma 3.5 to obtain the first deterministic-encryption
scheme based on CDH. In particular, the existence of deterministic encryption (even) with CPA
security from CDH has been open until now.

A central new tool developed in this work is a mirroring technique, which we will describe

below. As notation, for a matrix M ∈ Zk×n2 , we define RSum(M)
M
= M1 + · · ·+Mk ∈ Zn2 , where Mi

for i ∈ [k] denotes the ith row of M.

Definition 4.1. (The mirror function Mir) Let (K, f,E1,E2,D) be a recyclable OWFE scheme.

For a public parameter pp, a value x ∈ {0, 1}n, a matrix CT :=
(

ct1,0,ct2,0,...,ctn,0
ct1,1,ct2,1,...,ctn,1

)
of ciphertexts

outputted by E1, and a vector a ∈ {0, 1}n, the function Mir(pp, x,CT, a) outputs a matrix M ∈ Z2×n
2 ,

where M :=
(

b1,0,b2,0,...,bn,0
b1,1,b2,1,...,bn,1

)
is formed deterministically and uniquely according to the following two

rules:

1. for all i ∈ [n]: bi,xi = D(pp, cti,xi , x); and

2. RSum(M) = a.

Note that the above computation is deterministic and can be done efficiently.

Construction 4.2 (TDF construction). We now present our TDF construction.

Base primitive. A recyclable OWFE scheme E = (K, f,E,D). Let Rand be the randomness space
of the algorithm E.

Construction. The construction is parameterized over two parameters n = n(λ) and r = r(λ),
where n is the input length to the function f(pp, ·), and r will be instantiated in the correctness
proof. The input space of the TDF is {0, 1}n.

• TDF.KG(1λ):

1. Sample pp← K(1λ).

2. For each h ∈ [r]:

Ph :=

(
ρ
(h)
1,0 , ρ

(h)
2,0 , . . . , ρ

(h)
n,0

ρ
(h)
1,1 , ρ

(h)
2,1 , . . . , ρ

(h)
n,1

)
$←− Rand2×n, (4)

CTh :=

(
E1(pp, (1, 0); ρ

(h)
1,0),E1(pp, (2, 0); ρ

(h)
2,0), . . . ,E1(pp, (n, 0); ρ

(h)
n,0)

E1(pp, (1, 1); ρ
(h)
1,1),E1(pp, (2, 1); ρ

(h)
2,1), . . . ,E1(pp, (n, 1); ρ

(h)
n,1)

)
. (5)

3. For h ∈ [r] sample ah
$←− {0, 1}n.
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4. Form the index key ik and the trapdoor key tk as follows:

ik := (pp,CT1, . . . ,CTr, a1, . . . , ar), (6)

tk := (pp,P1, . . . ,Pr) . (7)

• TDF.F(ik, x): Parse ik as in Equation 6. Set y := f(pp, x). Return

u := (y,Mir(pp, x,CT1, a1), . . . ,Mir(pp, x,CTr, ar)) . (8)

• TDF.F−1(tk, u):

1. Parse tk := (pp,P1, . . . ,Pr) and parse Ph for h ∈ [r] as in Equation 4.

2. Parse u := (y,M1, . . . ,Mr), where for all h ∈ [r], Mh ∈ Z2×n
2 .

3. Reconstruct x := x1 · · · xn ∈ {0, 1}n bit-by-bit as follows. To recover the ith bit of x:

(a) If for some h ∈ [r], Mh[i] =

(
E2(pp,y,(i,0);ρ

(h)
i,0 )

1−E2(pp,y,(i,1);ρ
(h)
i,1 )

)
, set xi = 0. Here Mh[i] denotes

the ith column of Mh.

(b) Else, if for some h ∈ [r], Mh[i] =

(
1−E2(pp,y,(i,0);ρ

(h)
i,0 )

E2(pp,y,(i,1);ρ
(h)
i,1 )

)
, set xi = 1.

(c) Otherwise, halt and return ⊥.

4. Return x.

Lemma 4.3 (TDF correctness). We have

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk, (TDF.F(ik, x))) 6= x] ≤ n2n

2r
, (9)

where the probability is taken over (ik, tk)
$←− TDF.KG(1λ). For instance, setting: r = n + ω(log λ)

gives a negligible inversion error.

Lemma 4.4 (TDF one-wayness and CPA-indistinguishability security). Assuming E is an OWFE
scheme (i.e., an (n, n)-OWFE scheme), the TDF (TDF.KG,TDF.F,TDF.F−1) given in Construc-
tion 4.2 is one-way. That is, for any PPT adversary A

Pr[A(ik,TDF.F(ik, x)) = x] = negl(λ), (10)

where (ik, tk)
$←− TDF.KG(1λ) and x

$←− {0, 1}n. Moreover, if E is (k, n)-smooth (Definition 3.3), the
constructed TDF is (k, n)-CPA-indistinguishable (Definition 2.3).

We may now combine Lemmas 3.5, 4.3 and 4.4 to get the first CPA-secure deterministic en-
cryption scheme from CDH.

Corollary 4.5 (CDH implies deterministic encryption). Let G be a CDH-hard group scheme. For
any k ≥ log p+ ω(log λ) and any n ≥ k (where p is the order of the underlying group), there exists
a (k, n)-CPA-indistinguishable deterministic encryption scheme with plaintext size n (in bits) and
ciphertext size Θ(n2).
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4.1 Proof of Correctness: Lemma 4.3

Proof. We will use notation given in Construction 4.2. Note that for a given x ∈ {0, 1}n, the
inversion succeeds unless there exists an index i ∈ [n] for which the following bad event happens.

• Badx,i: for all h ∈ [r], ah[i] = E2(pp, y, (i, 0); ρ
(h)
i,0 ) + E2(pp, y, (i, 1); ρ

(h)
i,0 ) ∈ Z2, where ah[i]

denotes the i’th coordinate of ah ∈ {0, 1}n.

Since the bits ah[i] for all h ∈ [r] are chosen uniformly at random (independently of pp and
ρi,b’s), we have: Pr[Badx,i] = 2−r. Doing a union bound over all column i ∈ [n] gives the probability
n · 2−r of an inversion error for a given x. We conclude using a union bound over all x ∈ {0, 1}n.

4.2 Proof of One-Wayness and CPA Security: Lemma 4.4

To prove Lemma 4.4 we first give a simulated way of sampling an index key together with an image
point for a target input value.

Definition 4.6 (Simulated distribution Sim). Let E = (K, f,E,D) be the underlying recyclable
OWFE scheme. Fix x ∈ {0, 1}n and let y := f(pp, x). We define a simulator Sim(pp, n, y), which
samples a simulated index key iksim with a corresponding simulated TDF image usim for x, as follows.

For h ∈ [r] sample rhi,b
$←− {0, 1}∗ for all (i, b) ∈ [n]× {0, 1}, and set

(CTh,Mh)
$←−
(
E1(pp, (1, 0); rh1,0), . . . ,E1(pp, (n, 0); rhn,0)

E1(pp, (1, 1); rh1,1), . . . ,E1(pp, (n, 1); rhn,1)

)
,

(
E2(pp, y, (1, 0); rh1,0), . . . ,E2(pp, y, (n, 0); rhn,0)

E2(pp, y, (1, 1); rh1,1), . . . ,E2(pp, y, (n, 1); rhn,1)

)
. (11)

Let

iksim := (pp,CT1, . . . ,CTr,RSum(M1), . . . ,RSum(Mr))

usim := (y,M1, . . . ,Mr).

Equipped with the above definition, we now give of the proof of Lemma 4.4.

Proof of Lemma 4.4. For any distribution S over {0, 1}n, we show that the sole security-for-encryption
requirement of the recyclable OWFE implies that

(x, ik,TDF.F(ik, x))
c≡ (x,Sim(pp, n, y)), (12)

where x
$←− S, pp

$←− K(1λ), (ik, ∗) $←− TDF.KG(1λ) and y := f(pp, x).
We first show how to use Equation 12 to derive the one-wayness and indistinguishability security

of the resulting TDF from the corresponding one-wayness and smoothness of the underlying OWFE
scheme, and will then prove Equation 12.

For one-wayness, if there exists an inverter A that with non-negligible probability can compute

x from (ik,TDF.F(ik, x) — where (ik, ∗) $←− TDF.KG(1λ) and x
$←− {0, 1}n — then Equation 12

implies that with non-negligible probability the adversary A can compute x from Sim(pp, n, y),
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where y := f(pp, x). However, this latter violates the one-wayness of f, because the computation of
Sim(pp, n, y) may be done efficiently with knowledge of pp, n and y.

For indistinguishability security (Definition 2.3) let S0 and S1 be two (k, n) sources and assume
that the recyclable OWFE scheme is k-smooth (Definition 3.3).

Letting (ik, ∗) $←− TDF.KG(1λ), x0
$←− S0, x1

$←− S1, y0 := f(pp, x0) and y1 := f(pp, x1), by
Equation 12 we have

(ik,TDF.F(ik, x0))
c≡ Sim(pp, n, y0)

c≡ Sim(pp, n, y1)
c≡ (ik,TDF.F(ik, x1)),

where the second indistinguishability follows from the k-smoothness of the recyclable OWFE

scheme, which states (pp, y0)
c≡ (pp, y1).

We are left to prove Equation 12. Fix the distribution S for which we want to prove Equation 12.
To this end, we change the simulator Sim given in Definition 4.6 to define a new simulator Sim′

which on input Sim′(pp, x) samples a pair (ik′sim, u
′
sim) as follows. Let y := f(pp, x). For all h ∈ [r],

let CTh be sampled as in Sim(pp, n, y), but with the following modification to Mh:

• Letting Mh :=

(
e
(h)
1,0 ,...,e

(h)
n,0

e
(h)
1,1 ,...,e

(h)
n,1

)
be formed as in Sim(pp, y), for any i ∈ [n] change e

(h)
i,1−xi to a

random bit (fresh for each index).

Having defined how CTh and Mh are sampled for h ∈ [r] during Sim′(pp, x), form (ik′sim, u
′
sim)

exactly as how (iksim, usim) is formed during Sim(pp, n, y).

The security-for-encryption requirement of the OWFE scheme implies that (x, iksim, usim)
c≡

(x, ik′sim, u
′
sim), where x

$←− S, y := f(pp, x), (iksim, usim)
$←− Sim(pp, n, y) and (ik′sim, u

′
sim)

$←− Sim′(pp, x).
Moreover, it is easy to verify that (x, ik′sim, u

′
sim) is identically distributed to (x, ik,TDF.F(ik, x)),

where (ik, tk)
$←− TDF.KG(1λ). The proof is now complete.

4.3 CCA2 Security for Construction 4.2

The TDF given in Construction 4.2 is CPA secure (in a deterministic-encryption sense), but it
is not hard to show that the construction is not CCA2 secure. Nonetheless, using techniques
from [RS09, KMO10] one may use the TDF of Construction 4.2 to build another TDF which is
CCA2 secure. This upgrading further increases the ciphertext size, resulting in ciphertext size
Θ(n3) (for the CDH-based instantiation), where n is the plaintext size. We skip the details of
this construction, because later in Section 5 we will give constructions of efficient CCA2-secure
deterministic encryption schemes with linear-size ciphertexts. In what comes below we explain
about a feature of the TDF of Construction 4.2 which enables the upgrading into CCA2-secure
deterministic encryption in the style of [RS09, KMO10].

Specifically, Rosen and Segev [RS09] show that t-repetition security, an extension of the basic
notion of one-wayness for TDFs, suffices for the construction of CCA2-secure PKE. We first review
this definition, and then show that the TDF of Construction 4.2 provides t-repetition security for
any t. This observation allows us to obtain the first t-repetition secure TDFs from CDH.

Definition 4.7 (t-repetition-secure TDFs [RS09]). Let TDF := (TDF.KG,TDF.F,TDF.F−1) be
as in Definition 2.1. We say that TDF is t-repetition secure if for any PPT adversary A we
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have Pr[A((ik1, u1), . . . , (ikt, ut)) = x] = negl(λ), where x
$←− {0, 1}n and for all i ∈ [t], (iki, ∗)

$←−
TDF.KG(1λ) and ui := TDF.F(iki, x).

We will now show that our TDF given in Construction 4.2 provides t-repetition security, for all
t.7 This gives us the first CDH-based construction of t-repetition-secure TDFs.

Lemma 4.8. Assuming E is a recyclable (n, n)-OWFE scheme, the TDF (TDF.KG,TDF.F,TDF.F−1)
given in Construction 4.2 is t-repetition secure, for all t.

Proof. The proof is an immediate generalization of the proof of Lemma 4.4. Specifically, using a
hybrid argument, we may extend Equation 12 (Page 14) to obtain

(x, ik1,TDF.F(ik1, x), . . . , ikt,TDF.F(ikt, x))
c≡ (x, Sim(pp, n, y; r1), . . . ,Sim(pp, n, y; rt)), (13)

where x
$←− {0, 1}n, pp

$←− K(1λ), y := f(pp, x) and for i ∈ [t], (iki, ∗)
$←− TDF.KG(1λ) and ri

$←− {0, 1}∗.
Now the t-repetition security of the TDF follows immediately from Equation 13, by noting the whole
view of the adversary may be formed in a computationally-close way using (pp, y) only.

5 Efficient Strong TDFs from Smooth OWFE

The TDF and deterministic encryption presented in Section 4 have the drawback that the output
size grows at least quadratically with the input size. The reason behind this blowup is that we had
to do “repetitions,” resulting in Θ(n) output bits for every single bit of the input. In this section
we show how to do away with excessive use of repetition, and to obtain TDFs (and deterministic
encryption) whose image/ciphertext size grows linearly with input size. Our main idea involves the
use of error-correcting codes, taking advantage of the local inversion property of our basic TDF. As
a result, we will obtain the first CPA-secure deterministic encryption scheme with linear ciphertext
size based on CDH. We stress that, even relying on DDH, previous DDH-based deterministic-
encryption and TDF schemes resulted in quadratically large ciphertexts.

Definition 5.1 ((m,n, d)2-Codes). We recall the notion of (m,n, d)2 error-correcting codes. Such
a code is given by efficiently computable functions (Encode,Decode), where Encode : {0, 1}n →
{0, 1}m, and where

1. Distance. For any two distinct x1, x2 ∈ {0, 1}n we have Hdst(Encode(x1),Encode(x2)) ≥ d,
where Hdst denotes the Hamming distance.

2. Erasure correction. For any x ∈ {0, 1}n, letting z := Encode(x), given any string z′ ∈
{0, 1,⊥}m, which has at most d− 1 ⊥ symbols, and whose all non-⊥ symbols agree with z, we
have Decode(z′) = x.

3. Error correction. For any x ∈ {0, 1}n, letting z := Encode(x), given any z′ ∈ {0, 1}m such
that Hdst(z, z

′) < d/2, we have Decode(z′) = x.

We are interested in binary codes with constant rate, constant relative distance, that is: m = cn,
and d = c1n. Such codes can be obtained by concatenating codes with constant rate and constant
relative distance over large fields — such as Reed-Solomon codes — with codes with constant rate
and binary alphabet. See for instance binary Justesen codes [Jus72].

7For t-repetition security, we assume that pp is a public parameter (the same across all index keys).
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Definition 5.2 (rECC code). We define a code that suites our purposes, which is the concate-
nation of an ECC code with a repetition code. Specifically, for a repetition constant t, a t-rECC
code (Encode,Decode) consists of Encode : {0, 1}n → {0, 1}m, which is obtained by first applying a
(cn, n, c1n)2 code and then repeating each bit of the cn bit codeword t times. Thus, m = tcn. Note
that this code is now a (tcn, n, tc1n)2-code.

Looking ahead, we remark that the use of these repetition codes makes decoding later easier.
Specifically, with this repetition, an m bit codeword can be viewed as having cn blocks of t bits
each. Furthermore, for decoding it is enough to recover one bit per block for at least cn− c1n+ 1
blocks.

In our constructions, it is instructive to think of c = 200, c1 = 20 and t = 9 for convenience in
proofs.8

Block index versus bit index. Having codes given as above based on repetition, for a codeword
z ∈ {0, 1}m we talk about a jth block of z for j ∈ [m/t] to refer to the collections of the bits with
indices {(j − 1)t+ 1, . . . , jt}.

Construction 5.3 (TDF construction). We now describe our TDF construction.

Base primitive. A t-rECC code (Encode,Decode), where Encode : {0, 1}n → {0, 1}m, and a
recyclable OWFE scheme E = (K, f,E,D), where f’s input space is {0, 1}m. We will instantiate the
value of constant t in the correctness proof. Let Rand be the randomness space of the encapsulation
algorithm E.

Construction.

• TDF.KG(1λ):

1. Sample pp← K(1λ) and

P :=

(
ρ1,0, ρ2,0, . . . , ρm,0
ρ1,1, ρ2,1, . . . , ρm,1

)
$←− Rand2×m, (14)

CT :=

(
ct1,0, ct2,0, . . . , ctm,0
ct1,1, ct2,1, . . . , ctm,1

)
, (15)

where for all i ∈ [m] and b ∈ {0, 1}, cti,b := E1(pp, (i, b); ρi,b).

2. Sample a
$←− {0, 1}m.

3. Form the index key ik and the trapdoor key tk as follows:

ik := (pp, a,CT) tk := (pp, a,P). (16)

• TDF.F(ik, x): Parse ik := (pp, a,CT). Let z := Encode(x) and y := f(pp, z). Return

u := (y,Mir(pp, z,CT, a)). (17)

• TDF.F−1(tk, u):

8The choices of the constants were made as above so to have slackness in proofs — they have not been optimized
for efficiency.
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1. Parse tk := (pp, a,P) and parse P as in Equation (14). Parse u := (y,M), where
M ∈ Z2×m

2 . If RSum(M) 6= a, then return ⊥.

2. Construct z′ := z′1 · · · z′m bit-by-bit as follows. To recover the ith bit of z′:

(a) If M[i] =
(

E2(pp,y,(i,0);ρi,0)
1−E2(pp,y,(i,1);ρi,1)

)
, set z′i = 0. Here M[i] denotes the ith column of M.

(b) Else if M[i] =
(

1−E2(pp,y,(i,0);ρi,0)
E2(pp,y,(i,1);ρi,1)

)
, set z′i = 1.

(c) Else, set z′i = ⊥.

3. Letting x := Decode(z′), if TDF.F(ik, x) = u, then return x. Otherwise, return ⊥.

We will now give the correctness and security statements about our TDF, and will prove them
in the subsequent subsections.

Lemma 5.4 (Correctness). Using a t-rECC code (Encode,Decode) with parameters (tcn, n, tc1n)2
(Definition 5.2), we have

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk, (TDF.F(ik, x))) 6= x] ≤ 2n · e−
(2tc1−c)

2n

22t−1c . (18)

In particular, by choosing the repetition constant t based on c and c1 in such a way that 2tc1 > c

and that (2tc1−c)2
22t−1c

≥ 0.7, we will have a negligible error.

Lemma 5.5 (TDF one-wayness and CPA-indistinguishability security). Assuming E is an (n,m)-
OWFE scheme, the TDF (TDF.KG,TDF.F,TDF.F−1) given in Construction 4.2 is one-way. That
is, for any PPT adversary A

Pr[A(ik,TDF.F(ik, x)) = x] = negl(λ), (19)

where (ik, tk)
$←− TDF.KG(1λ) and x

$←− {0, 1}n. Moreover, assuming that the underlying OWFE
scheme is (k,m)-smooth (Definition 3.3), the constructed TDF is (k, n)-indistinguishable (Defini-
tion 2.3).

Theorem 5.6 (CCA2-indistinguishability security). Assuming that the underlying OWFE scheme
is (k,m)-smooth and by appropriately choosing the parameters (in particular we will have t, c, c1 ∈
O(1)), the constructed TDF is (k, n)-CCA2-indistinguishable.

We may now combine Lemmas 3.5, 5.4 with Theorem 5.6 to get the following corollary.

Corollary 5.7 (CDH implies efficient deterministic encryption). Let G be a CDH-hard group
scheme. For any k ≥ log p + ω(log λ) and any n ≥ k (where p is the order of the underlying
group), there exists a (k, n)-CCA2-indistinguishable deterministic encryption scheme with plaintext
size n (in bits) and ciphertext size log p+O(n).

5.1 Proof of Correctness: Lemma 5.4

Proof. We will use notation and variables used in construction 5.3. For any x ∈ {0, 1}n, the inversion
of u := TDF.F(ik, x) w.r.t. tk succeeds if the inversion algorithm can recover at least tcn− tc1n+ 1
coordinates i ∈ [m] of z := Encode(x). That is, for at least cn− c1n+ 1 coordinates i from different
blocks we should have z′i 6= ⊥, where recall that z′ is constructed during TDF.F−1(tk, u).
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Using the Boolean random variables Xj = 1 for j ∈ [cn] if ∃i ∈ {(j − 1)t+ 1, . . . , jt} such that
z′i 6= ⊥, and Xj = 0 otherwise, we may write the probability of an inversion error for a given x as:
Pr[
∑cn

j=1Xj ≤ cn− c1n].
Let u := f(pp, x). For all j, we have Xj = 1 iff there exists at least one i ∈ {(j − 1)t+ 1, . . . , jt}

such that ai 6= E2(pp, y, (i, 0); ρi,0) + E2(pp, y, (i, 1); ρi,1), where ai ∈ Z2 denotes the i’th bit of a ∈
Zm2 . (Recall that a is given as part of the index key ik.) This is because, parsing u := (y,M), for any

ith column M[i], by design we have ai = RSum(M[i]), and that we have M[i] =
(

E2(pp,y,(i,0);ρi,0)
1−E2(pp,y,(i,1);ρi,1)

)
or M[i] =

(
1−E2(pp,y,(i,0);ρi,0)
E2(pp,y,(i,1);ρi,1)

)
or M[i] =

(
E2(pp,y,(i,0);ρi,0)
E2(pp,y,(i,1);ρi,1)

)
. The first two cases lead to z′i 6= ⊥, and

the last case causes z′i = ⊥.
Since the bits ai are picked uniformly at random (independently of pp, ρi,0 and ρi,1), the Boolean

variables Xj are independent and of same expected value 1− 1/2t. We now have

Pr[

cn∑
j=1

Xj ≤ cn− c1n] = Pr[
1

cn

cn∑
j=1

Xj ≤ 1− c1
c

]

= Pr[
1

cn

cn∑
j=1

Xj ≤ 1− 1

2t
− (

c1
c
− 1

2t
)

≤∗ e−2(
c1
c
− 1

2t
)2cn = e−

(2tc1−c)
2n

22t−1c ,

where the inequality marked with * is obtained from Chernoff inequality (Theorem 2.5) by setting
p = 1− 1/2t and ε = c1/c− 1/2t.

We now conclude using a union bound over all x ∈ {0, 1}n.

In the proof of lemma above, we implicitly alluded to the notion of hung versus correct columns.
We will now formalize these notions, because we will use them later in the paper.

Definition 5.8 (Hung and correct columns). Fix a trapdoor key tk := (pp, a, [ρi,b]) and let ik be
the corresponding index key. Let u := (y,M) be an (alleged) image point. We say that the ith

column M[i] of M is correct if either M[i] =
(

E2(pp,y,(i,0);ρi,0)
1−E2(pp,y,(i,1);ρi,1)

)
or M[i] =

(
1−E2(pp,y,(i,0);ρi,0)
E2(pp,y,(i,1);ρi,1)

)
.

We say that the ith column is hung if M[i] =
(

E2(pp,y,(i,0);ρi,0)
E2(pp,y,(i,1);ρi,1)

)
. Note that if u is a true image (i.e.,

u := TDF(ik, x) for some x ∈ {0, 1}n), then each column is either correct or hung.
Following the notation of Construction 5.3, an ith correct column means that the inversion

algorithm TDF.F−1(tk, u) can recover the ith bit of z.

5.2 Proof of CPA Security: Lemma 5.5

Proof. The proof of this lemma is similar to the proof of Lemma 4.4. More specifically, for any
distribution S over {0, 1}n, in the same way as in the proof of Lemma 4.4, we may show that the
sole security-for-encryption requirement of the OWFE implies that

(x, ik,TDF.F(ik, x))
c≡ (x,Sim(pp,m, y)), (20)

where x
$←− S, (ik, ∗) $←− TDF.KG(1λ), z := Encode(x) and y := f(pp, z), and recall that the algorithm

Sim is defined in Definition 4.6.
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Given Equation 20 we show how to derive both the one-wayness and indistinguishability claims
of the lemma.

For one-wayness, if there exists an inverter A that with non-negligible probability can compute x

from (ik,TDF.F(ik, x)) — where (ik, ∗) $←− TDF.KG(1λ) and x
$←− {0, 1}n — then Equation 20 implies

that with non-negligible probability the adversary A can compute x (and hence z := Encode(x))
from Sim(pp,m, y), where y := f(pp, z). Now since z ∈ {0, 1}m and z has min entropy n, this latter
condition violates the (n,m)-one-wayness of f, because the computation of Sim(pp,m, y) may be
done efficiently with knowledge of pp, m and y.

For indistinguishability security (Definition 2.3) let S0 and S1 be two (k, n) sources on the TDF
input and assume that the underlying OWFE scheme is (k,m)-smooth (Definition 3.3).

Letting (ik, ∗) $←− TDF.KG(1λ), x0
$←− S0, x1

$←− S1, z0 := Encode(x0), z1 := Encode(x1), y0 :=
f(pp, z0) and y1 := f(pp, z1), by Equation 20 we have

(ik,TDF.F(ik, x0))
c≡ Sim(pp,m, y0)

c≡ Sim(pp,m, y1)
c≡ (ik,TDF.F(ik, x1)),

where the second indistinguishability follows from the (k,m)-smoothness of the OWFE scheme,

which states (pp, y0)
c≡ (pp, y1). The proof is now complete.

5.3 Proof of CCA2 Security: Theorem 5.6

We give the proof of Theorem 5.6 via a series of lemmas. We first start with the following notation.

Notation 5.9. For an OWFE scheme (K, f,E1,E2,D), letting P :=
( ρ1,0,ρ2,0,...,ρm,0
ρ1,1,ρ2,1,...,ρm,1

)
we define

E(pp, y,P)
M
=(

E1(pp, (1, 0); ρ1,0), . . . ,E1(pp, (m, 0); ρm,0)
E1(pp, (1, 1); ρ1,1), . . . ,E1(pp, (m, 1); ρm,1)

)
,

(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (m, 0); ρm,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (m, 1); ρm,1)

)
.

Half-trapdoor keys. In the proof of Theorem 5.6 we will make use of an alternative way of
inversion which works with respect to knowledge of half of all the randomness values that were
fixed in the trapdoor key. We refer to such trapdoor keys as half trapdoor keys (or simulated
trapdoor keys). Recall that a real trapdoor key is of the form

(pp, a, (ρ1,0, ρ1,1), . . . , (ρm,0, ρm,1)). (21)

A half-trapdoor key is a reduced version of a full trapdoor key in that we forget one randomness
value from each pair, while remembering whether we chose to keep the first or the second coordinate
of that pair. Formally, given a full trapdoor key as in Equation (21), a half trapdoor key is obtained
based on a string s ∈ {0, 1}m as tkrd := (pp, a, s, (ρ1, . . . , ρm)), where ρi = ρi,si . (The subscript rd
stands for “reduced.”)

We will now define how to perform inversion w.r.t. half-trapdoor keys.

Definition 5.10 (Half-trapdoor inversion TDF.F−1rd ). For an image u := (y,M) of our constructed
TDF and a half-trapdoor key tkrd := (pp, a, s, (ρ1, . . . , ρm)) we define TDF.F−1rd (tkrd, u) as follows:

1. If RSum(M) 6= a ∈ Zm2 , then return ⊥.
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2. Construct z′ ∈ {0, 1}m bit by bit as follows. For all i ∈ [m], we denote by M[i] =
(ei,0
ei,1

)
the

i’th column of M. If ei,si = 1− E2(pp, y, (i, si); ρi), then set z′i = 1− si; otherwise set z′i = ⊥.

3. For all j ∈ [cn], if ∃i∗ ∈ {(j − 1)t + 1, . . . , jt} such that z′i∗ 6= ⊥ then for all i ∈ {(j − 1)t +
1, . . . , jt} set z′′i = z′i∗; else set z′′i = si

4. Letting x := Decode(z′′), if TDF.F(ik, x) = u, return x. Otherwise, return ⊥.

As terminology, we say that TDF.F−1rd (tkrd, u) is able to open the ith column of M if z′i 6= ⊥ (i.e., if
ei,si = 1− E2(pp, y, (i, si); ρi)).

We first fix some notation and will then prove a useful property about half-inversion simulation,
which in turn will be used in the CCA2 proof.

Notation 5.11 (Half trapdoor keys). For a given tk := (pp, a, (ρ1,0, ρ1,1), . . . , (ρm,0, ρm,1)) and

z ∈ {0, 1}m we define tk/z
M
= (pp, a, z, ρ1,z1 , . . . , ρm,zm).

We now give the following lemma about the effectiveness of the half-trapdoor inversion proce-
dure.

Lemma 5.12 (Half-trapdoor inversion). Fix x ∈ {0, 1}n and let z := Encode(x). Using a t-rECC
code (Encode,Decode) with parameters (tcn, n, tc1n)2 and setting t such that 1− 2−t ≥ 1

2 + c1
2c −

2
c1

,
we have

Pr
(ik,tk)

[∃x′ ∈ {0, 1}n \ {x} s.t. TDF.F−1(tk, u′) 6= TDF.F−1rd (tkrd, u
′)] ≤ 2ne

− (c1−4)2n
2c1 ,

where (ik, tk)
$←− TDF.KG(1λ), u′ := TDF.F(ik, x′) and tkrd := tk/z. Thus, by appropriately choosing

c1 and c (and t based on these two values) the above probability will be negligible.

Proof. Fix x ∈ {0, 1}n and let z := Encode(x). For a sampled (ik, tk) we define the event Bad as

Bad := ∃x′ ∈ ({0, 1}n \ {x}) s.t. TDF.F−1(tk, u′) 6= TDF.F−1rd (tkrd, u
′),

where u′ := TDF.F(ik, x′) and tkrd := tk/z.
First, note that if TDF.F−1(tk,TDF.F(ik, x′)) = ⊥, then TDF.F−1rd (tkrd,TDF.F(ik, x′)) = ⊥, and if

TDF.F−1rd (tkrd,TDF.F(ik, x′)) 6= ⊥, then TDF.F−1(tk,TDF.F(ik, x′)) = x′ = TDF.F−1rd (tkrd,TDF.F(ik, x′)).
This follows from the descriptions of TDF.F−1rd and TDF.F−1, and from the correctness property of
TDF.F−1.

Thus, defining

Bad′ : ∃x′ ∈ ({0, 1}n \ {x}) s.t.
(
TDF.F−1rd (tkrd, (TDF(ik, x′))) = ⊥

)
,

we have Pr[Bad] ≤ Pr[Bad′]. In what follows, for any fixed x′ ∈ {0, 1}n we will show

Pr[Badx′ ] ≤ e
− (c1−4)2n

2c1 ,

where we define Badx′ := TDF.F−1rd (tkrd, (TDF(ik, x′))) = ⊥. This will complete the proof.
For the fixed x′ ∈ {0, 1}n, let u′ := TDF.F(ik, x′) and z′ := Encode(x′). Parse u′ := (y′,M′).
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In order to argue about the correctness of the output of TDF.F−1rd (tkrd, u
′), let z∗ denote the

string that is constructed bit-by-bit during the execution of TDF.F−1rd (tkrd, u
′). We will show that

the fractional distance Hdst(z
∗,z′)

m ≤ c1
2c , and thus by the error-correction property of the underlying

code (Item 3 of Definition 5.1) we will have TDF.F−1rd (tkrd, u
′) = x′, as desired.

Let S ⊆ [cn] be the set of block indices on which z and z′ are different. (Recall the notion of
block index from the paragraphs after Definition 5.1.) Suppose |S| = v and let S := {u1, . . . , uv}.
Note that v ≥ c1n. We have

1. For any block index j ∈ [cn] \ S, all those t bits of z′ which come from its jth block will be
equal to those of z∗. Namely, for any j ∈ [cn] \S and for all i ∈ {(j − 1)t+ 1, . . . , jt} we have
z′i = z∗i .

2. For any block index j ∈ S, if the jth block of z′ is different from that of z∗, then all the
columns of the jth block of M′ are hung; Namely, for all i ∈ {(j − 1)t+ 1, . . . , jt}, M′[i] is
hung. (See Definition 5.8 for the definition of hung.) This fact follows easily by inspection.

With the above intuition in mind, for j ∈ [v] let Wj be a Boolean random variable where Wj = 0 if
the entire uj ’th block of M′ is hung (i.e., all the corresponding t columns are hung), and Wj = 1,
otherwise. Note that for all j: Pr[Wj = 1] = 1 − 2−t; this follows from the random choice of the
vector a which is fixed in ik. Thus, by the bounds fixed in the lemma we have Pr[Wj = 1] ≥
1
2 + c1

2c −
2
c1

. Let p := 1− 2−t. We have

Pr[Badx′ ] ≤ Pr[
1

v

v∑
j=1

Wj <
c1
2c

] ≤ Pr[
1

v

v∑
j=1

Wj < p− (
1

2
− 2

c1
)] ≤∗ e−2(

1
2
− 2
c1

)2v

≤ e
−2( 1

2
− 2
c1

)2c1n = e
− 2(c1−4)2c1n

4c21 = e
− (c1−4)2n

2c1 , (22)

where the probability marked with ∗ follows from the Chernoff bounds. The proof is now complete.

Our CCA2 hybrids will also make use of a simulated way of producing index/trapdoor keys.
This procedure is described below.

Definition 5.13 (Simulated TDF key generation). We define a simulated key-generation algorithm
for the TDF given in Construction 5.3. Let (K, f,E1,E2,D) be the underlying OWFE scheme. The
simulated key generation algorithm TDF.KGsim(pp, y) takes pp and an image y of the function f as

input, and outputs (ik, tk) formed as follows. Sample P
$←− Rand2×m and set (CT,M) := E(pp, y,P).

(See Notation 5.9.) Set ik := (pp,RSum(M),CT) and tk := (pp,RSum(M),P).

We will now describe the hybrids for proving CCA2 security of the deterministic encryption
scheme. We define the hybrids with respect to a distribution D and will then instantiate the
distribution in the subsequent lemmas.
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Hybrid H0[D]: real game.

• Index/trapdoor keys. Sample (ik, tk)
$←− TDF.KG(1λ).

• Challenge ciphertext. Set u := TDF.F(ik, x), where x← D.

• CCA2 inversion queries. Reply to each inversion query u′ 6= u with TDF.F−1(tk, u′).

Hybrid H1[D]: half-trapdoor inversion. Same as H0 except we reply to inversion queries using
a half trapdoor and by using the algorithm TDF.F−1rd .

• Index/trapdoor keys. Sample (ik, tk)
$←− TDF.KG(1λ). Set the index key to be ik and form

the trapdoor key as follows: sample x ← D, let z := Encode(x) and set the trapdoor key to
be tkrd := tk/z (Notation 5.11).

• Challenge ciphertext. Return u := TDF.F(ik, x), where recall that x was sampled in the
previous step.

• CCA2 inversion queries. Reply to each inversion query u′ 6= u with TDF.F−1rd (tkrd, u
′).

Hybrid H2[D]: half-trapdoor inversion with a simulated index key. Same as H1[D] except
that we sample the index key and the challenge ciphertext jointly in a simulated way.

• Index/trapdoor keys:

1. Sample x← D, and let z := Encode(x). Set y := f(pp, z).

2. Sample (ik, tk)
$←− TDF.KGsim(pp, y).

3. Set the index key to be ik and the trapdoor key to be tkrd := tk/z.

• Challenge ciphertext. Return u := TDF.F(ik, x), where recall that x was sampled above.

• CCA2 inversion queries. Reply to each inversion query u′ 6= u with TDF.F−1rd (tkrd, u
′).

Hybrid H3[D]: Full trapdoor inversion with a simulated index key. Same as H2[D] except
we use tk as the trapdoor key (instead of tkrd) and will reply to each CCA2 inversion query u′ 6= u
with TDF.F−1(tk, u′). That is:

• Index/trapdoor keys:

1. Sample x← D, and let z := Encode(x). Set y := f(pp, z).

2. Let the index/trapdoor key be (ik, tk)
$←− TDF.KGsim(pp, y).

• Challenge ciphertext. Return u := TDF.F(ik, x).

• CCA2 inversion queries. Reply to each inversion query u′ 6= u with D(tk, u′).

The above concludes the description of the hybrids. We now define some notation and will then
prove some lemmas.
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Notation. For i ∈ {0, 1, 2, 3} we use outi[D] to denote the output bit of an underlying adversary

in hybrid Hi[D]. For i, j ∈ {0, 1, 2, 3} and two distributions S0 and S1, we write Hi[S0]
c≡ Hj [S1] to

mean that for all PPT adversaries A we have |Pr[outi[S0] = 1]− Pr[outj [S1] = 1]| = negl(λ).
The proof of Theorem 5.6 follows from the following lemmas.

Lemma 5.14 (Indistinguishability of Hybrids H0 and H1). By appropriately choosing the parame-
ters for c, c1 and t, for any PPT adversary A we have |Pr[out0[D] = 1]−Pr[out1[D] = 1]| = negl(λ).

Lemma 5.15 (Indistinguishability of Hybrids H1 and H2). If the OWFE satisfies the security-for-
encryption property, then for any distribution D and any PPT adversary A, we have |Pr[out1[D] =
1]− Pr[out2[D] = 1]| = negl(λ).

Lemma 5.16 (Indistinguishability of Hybrids H2 and H3). If the OWFE satisfies the security-for-
encryption property and by choosing the parameters appropriately, then for any distribution D and
any PPT adversary A, we have |Pr[out2[D] = 1]− Pr[out3[D] = 1]| = negl(λ).

Lemma 5.17 (CCA2 Security in H3). If the OWFE is (k,m)-smooth, then for any two (k, n)
sources S0 and S1 and any PPT adversary A, we have |Pr[out3[S0] = 1] − Pr[out3[S1] = 1]| =
negl(λ).

Proof of Theorem 5.6. By applying the above lemmas, for any (k, n)-sources S0 and S1, we
have:

H0[S0]
c≡ H1[S0]

c≡ H2[S0]
c≡ H3[S0]

c≡ H3[S1]
c≡ H2[S1]

c≡ H1[S1]
c≡ H0[S1].

We first give the proof of Lemma 5.17 and then will give the proofs of the other lemmas.

Proof of Lemma 5.17

Proof. The proof of this lemma follows from the fact that in Hybrid H3 the whole view of a
CCA2 adversary with a challenge ciphertext u := TDF(ik, x) may be simulated via knowledge of
y := f(pp,Encode(x)), and specially without knowing x.

Concretely, suppose for two (k, n) sources S0 and S1, and for a PPT adversary A we have
|Pr[out3[S0] = 1] − Pr[out3[S1] = 1]| > negl(λ). Let S ′0 := Encode(S0) and S ′1 := Encode(S1), and
note that both S ′0 and S ′1 are (k,m)-sources. We build an adversary B that breaks the (k,m)-
smoothness of the underlying OWFE scheme E = (K, f,E,D) w.r.t. the distributions S ′0 and S ′1.

Letting (pp, y) be the challenge input of B, B does the following:

1. Sample P
$←− Rand2×m and set (CT,M) := E(pp, y,P) (Notation 5.9). Set ik := (pp,RSum(M),CT)

and tk := (pp,RSum(M),P).

2. Set u := (y,M).

3. Run the CCA2 adversary A on input (ik, ct) and reply to to each inversion query u′ 6= u with
D(tk, u′). Return the bit output by A.

It is now easy to verify that if y corresponds to f(pp,S ′b) for b ∈ {0, 1}, then the output of A
will be equally distributed to out3[Sb]. The proof is now complete.
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Proof of Lemma 5.14

Proof. Notice that the only difference between H0 and H1 lies in the way CCA2 decryption queries
are handled: we reply to a permitted (i.e different from the challenge ciphertext) CCA2 query
u′ := (y,M′) with TDF.F−1(tk, u′) in H0 and reply to it with TDF.F−1rd (tkrd, u

′) in H1.
We prove that this difference is negligible, using Lemma 5.12. Notice that for a given CCA2

query u′, if u′ = u (i.e., u′ is the challenge image) or if u′ is not a valid image (i.e., if there does not
exist any x such that TDF.F(ik, x) = u′), then in both H0 and H1 we reply to u′ with ⊥. The reason
for the latter is that at the end of both TDF.F−1 and TDF.F−1rd we will check whether the evaluation
of TDF.F(ik, ·) on the recovered string gives back u′. Also, if u′ is a valid image and u′ 6= u, then
Lemma 5.12 implies that this query is replied to with the same answer in both hybrids.

Proof of Lemma 5.15

For this proof, we need the following lemma.

Lemma 5.18. Let (K, f,E1,E2,D) be an OWFE scheme. For any z ∈ {0, 1}m we have

(pp, a1, ρ1,z1 , . . . , ρm,zm , z,CT)
c≡ (pp, a2, ρ1,z1 , . . . , ρm,zm , z,CT), (23)

where pp
$←− K(1λ), y := f(pp, z), P :=

( ρ1,0,ρ2,0,...,ρm,0
ρ1,1,ρ2,1,...,ρm,1

) $←− Rand2×m, (CT,M)
$←− E(pp, y,P),

a1
$←− Zm2 and a2 := RSum(M).

Proof. First, note that the security-for-encryption requirement of the OWFE implies that(
z, pp, {E1(pp, (i, 1− zi)), ei}i∈[m]

)
c≡
(
z, pp, {E1(pp, (i, 1− zi)),E2(pp, y, (i, 1− zi))}i∈[m]

)
, (24)

where y := f(pp, z) and e1, . . . , em
$←− {0, 1}.

Given a sample (z, pp, {cti, ui}i∈[m]) from either side of Equation (24), we show how to turn it
into a sample from the same side of Equation (23). As notation, for two elements w1 and w2 and
a bit b we define Perm(w1,w2, b) to output (w1,w2) if b = 0, and (w2,w1) otherwise.

To this end,

1. Sample ρ1, . . . , ρm
$←− Rand. For i ∈ [m] let (ct′i, e

′
i) := (E1(pp, (i, zi)),E2(pp, y, (i, zi))).

2. Let a := (u1, . . . , um) + (e′1, . . . , e
′
m).

3. Return (pp, a, ρ1, . . . , ρm, z,Perm(ct1, ct
′
1, z1), . . . ,Perm(ctm, ct

′
m, zm)).

Using simple inspection we may verify that starting from a sample from either side of Equa-
tion (24), the above procedure produces a sample from the same side of Equation (23). The proof
is now complete.

We now proceed to prove Lemma 5.15 (indistinguishability of H1[D] and H2[D]).
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Proof. We will prove this by showing that (ik, tkrd, u) — which is the joint distribution of the
index key, the simulated half-trapdoor key and the challenge ciphertext — is computationally
indistinguishable between H1[D] and H2[D]. This will imply the statement of the claim, because
the entire view in either hybrid can be constructed via knowledge of the corresponding tuple
(ik, tkrd, u).

By Lemma 5.18, we have:

(pp, a1, ρ1,z1 , . . . , ρm,zm , z,CT)
c≡ (pp, a2, ρ1,z1 , . . . , ρm,zm , z,CT), (25)

where pp
$←− K(1λ), x

$←− D, z := Encode(x), y := f(pp, z), P
$←− Rand2×m, (CT,M)

$←− E(pp, y,P),

a1
$←− Zm2 and a2 := RSum(M).
Given a sample v := (pp, a, ρ1,z1 , . . . , ρm,zm , z,CT) from an unknown side of Equation (25)

we may form (ik, tkrd) as follows. Let ik := (pp, a,CT), tkrd := (pp, a, z, ρ1,z1 , . . . , ρm,zm) and
u := (y,M), where y := f(pp, z), and M is formed as follows. Parse a := (a1, . . . , am) and for i ∈ [m]
let ei := E2(pp, y, (1, z1); ρ1,z1) and set

M := (Perm(e1, a1 − e1, z1), . . . ,Perm(em, am − em, zm)) .

It is now easy to verify that if v is a sample from the left-side (resp., right-side) part of Equa-
tion (25), then the produced (ik, tkrd, u) corresponds to H1[D] (resp., H2[D]). The proof is now
complete.

Proof of Lemma 5.16: indistinguishability of H2[D] and H3[D]. The proof of the final hop
follows similarly to that of the first hop, except with one difference. The difference is that the index
keys are now generated in a simulated way (Definition 5.13) and thus the counting strategies given
earlier do not immediately apply.

We first start with the following lemma.

Lemma 5.19. Let (K, f,E1,E2,D) be an OWFE scheme. . Fix x, x′ ∈ {0, 1}n and let z := Encode(x)
and z′ := Encode(x′). Fix i ∈ [m] to be an index for which zi 6= z′i. We have

(pp, z, z′, ei,0 + ei,1, e
′
i,0 + e′i,1)

c≡ (pp, z, z′, b, b′), (26)

where pp
$←− K(1λ), y := f(pp, z), y′ := f(pp, z′), ρ0, ρ1

$←− {0, 1}∗, ei,0
$←− E2(pp, y, (i, 0); ρ0), ei,1

$←−
E2(pp, y, (i, 1); ρ1), e

′
i,0

$←− E2(pp, y
′, (i, 0); ρ0), e

′
i,1

$←− E2(pp, y
′, (i, 1); ρ1) and b, b′

$←− {0, 1}.
In particular, letting pi := Pr[ei,0 + ei,1 = e′i,0 + e′i,1] we have |pi − 1/2| = negl(λ).

Proof. The “in particular” part follows immediately from the first part, and so we focus on proving
the first part of the lemma.

For the first part, by the security-for-encryption requirement of the OWFE we have

(pp, z, z′, ct, ct′, e, e′) ≡ (pp, z, z′, ct, ct′, b, b′), (27)

where ρ, ρ′
$←− {0, 1}∗, (ct, e)

$←− E(pp, y, (i, 1 − zi); ρ), (ct′, e′)
$←− E(pp, y′, (i, 1 − z′i); ρ) and b, b′

$←−
{0, 1}. Recall that we have 1 − zi = z′i. Thus, by the correctness of the OWFE we have
E2(pp, y, (i, zi); ρ

′) = D(pp, z, ct′) and E2(pp, y
′, (i, z′i); ρ) = D(pp, z′, ct). With this intuition in mind,
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we show how to generically turn a sample from either side of Equation (27) into a sample from the
same side of Equation (26).

Given (pp, z, z′, ct, ct′, e1, e
′
1) return

(pp, z, z′, e1 + D(pp, z, ct′), e′1 + D(pp, z′, ct)).

The proof is now complete.

Equipped with the above lemma we now give the proof for the last hybrid hop. The proof of
Lemma 5.16 follows immediately from the following lemma.

Lemma 5.20. Choosing the parameters of the code (Encode,Decode) such that 2ne
− (c1−4)2n

2c1 =
negl(λ) and choosing t such that 1− (4/7)t ≥ 1

2 + c1
2c −

2
c1

, the following holds: For any distribution
D and any PPT adversary A, we have |Pr[out2[D] = 1]− Pr[out3[D] = 1]| = negl(λ).

Proof. The only difference between H2 and H3 lies in the way CCA2 queries are handled: we
reply to a permitted CCA2 query u′ := (y,M′) with TDF.F−1(tkrd, u

′) in H2 and reply to it with

TDF.F−1rd (tk, u′) in H3, where x
$←− D, z := Encode(x), y := f(pp, z), (ik, tk)

$←− TDF.KGsim(pp, y) and
tkrd := tk/z. (See Notation 5.11.)

To prove that this difference is negligible, we will largely proceed as in the proof of Lemma 5.12.
Namely, exactly as in the proof of Lemma 5.12, it suffices to show that for any fixed x′ ∈ {0, 1}n
we have

Pr[TDF.F−1rd (tkrd, (TDF(ik, x′))) = ⊥] ≤ e
− (c1−4)2n

2c1 ,

where y := f(pp,Encode(x)), (ik, tk)
$←− TDF.KGsim(pp, y), u′ := TDF.F(ik, x′) and tkrd := tk/z.

Define Badx′ := TDF.F−1rd (tkrd, (TDF(ik, x′))) = ⊥.
For the fixed x′ ∈ {0, 1}n, let u′ := TDF.F(ik, x′) and z′ := Encode(x′). Parse u′ := (y′,M′ :=

[e′i,b]).
Let S ⊆ [cn] be the set of block indices on which z and z′ are different. Suppose |S| = v and

parse S := {u1, . . . , uv}. Note that v ≥ c1n.
For j ∈ [v] let Wj be a Boolean random variable where Wj = 0 if the entire uj ’th block of M′

is hung (i.e., all the corresponding t columns of the block with index uj are hung), and Wj = 1,

otherwise. As in the proof of Lemma 5.12 we just need to show Pr[
∑v

j=1Wj <
c1
2c ] < e

− (c1−4)2n
2c1 .

We claim that for all j: Pr[Wj = 1] ≥ 1 − (4/7)t. The reason for this is that a jth block
is hung if all its t columns j1, . . . , jt are hung. In turn, we know that an ith column is hung iff
ei,0 + ei,1 = e′i,0 + e′i,1, where ei,b := E2(y, (i, b); ρi,b). The rest follows by Lemma 5.19, noting that
|1/2− 4/7| > negl(λ).

Thus, by the bounds fixed in the lemma we have Pr[Wj = 1] ≥ 1
2 + c1

2c −
2
c1

. Let p := 1− (4/7)t.
We have

Pr[Badx′ ] ≤ Pr[
1

v

v∑
j=1

Wj <
c1
2c

] ≤ Pr[
1

v

v∑
j=1

Wj < p− (
1

2
− 2

c1
)] ≤∗ e−2(

1
2
− 2
c1

)2v

≤ e
−2( 1

2
− 2
c1

)2c1n = e
− 2(c1−4)2c1n

4c21 = e
− (c1−4)2n

2c1 , (28)

as desired.
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6 Lossy TDFs with Linear-Image Size

In this section, using our erasure-resilient code techniques, we show how to adapt a variant of
the TDFs from [PW08, FGK+10, PW11] to obtain the first lossy trapdoor functions with images
growing linearly in their inputs, based on the DDH assumption. This improves upon all previous
lossy TDFs, as their output size is quadratic in the input size. We first recall the definition of lossy
TDF from [PW08, PW11].

Definition 6.1 (Lossy TDFs [PW08, PW11]). An (n, k)-lossy TDF ((n, k)-LTDF) is given by four
PPT algorithms TDF.KG, TDF.KGls, TDF.F, TDF.F−1, where TDF.KGls(1

λ) only outputs a single
key (as opposed to a pair of keys), and where the following properties hold:

• Correctness in real mode. The TDF (TDF.KG,TDF.F,TDF.F−1) satisfies correctness in
the sense of Definition 2.1.

• k-Lossiness. For all but negligible probability over the choice of ikls
$←− TDF.KGls(1

λ), we
have |TDF.F(ikls, {0, 1}n)| ≤ 2k, where we use TDF.F(ikls, {0, 1}n) to denote the set of all
images of TDF.F(ikls, ·).

• Indistinguishability of real and lossy modes. We have ik
c≡ ikls, where (ik, ∗) $←−

TDF.KG(1λ) and ikls
$←− TDF.KGls(1

λ).

Lossiness rate. In the definition above, we refer to the fraction 1 − k/n as the lossiness rate,
describing the fraction of the bits lost. Ideally, we want this fraction to be as close to 1 as possible,
e.g., 1− o(1).

6.1 Lossy TDF from DDH

Our LTDF construction makes use of the following notation.

Notation. Letting x ∈ {0, 1}n and M :=
( g1,0,g2,0...,gn,0
g1,1,g2,1,...,gn,1

)
we define x�M =

∏
j∈[n]

gj,xj . For i ∈ [n],

b ∈ {0, 1} and M as above, we define the matrix M′ := (M −−→
(i,b)

g′) to be the same as M except

that instead of gi,b we put g′ in M′. If M is matrix of group elements, then Mρ denotes entry-wise
exponentiation to the power of ρ.

Overview of the construction and techniques. Let us first demonstrate the idea for retrieving
the first bit of the input. Imagine two 2×n matrices M and M′, where M :=

( g1,0,...,gn,0
g1,1,...,gn,1

)
is chosen

at random and where M′ := (Mρ −−−→
(1,b)

g1), where ρ
$←− Zp, b

$←− {0, 1} and g1
$←− G. That is, M′ is

a perturbed ρth power of M, in that we replace one of the two elements of the first column of the
exponentiated matrix with a random group element.

Think of (M,M′) as the index key. Suppose an evaluator TDF.F with input x ∈ {0, 1}n wants
to use (M,M′) to communicate her first bit x1 to an inverter who has knowledge of b, g1 and ρ. A
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first attempt for TDF.F would be to output two group elements (g̃, g′1) := (x �M, x �M′). Given
(g̃, g′1), if g′1 = g̃ρ, then x1 = 1− b; otherwise, x1 = b — hence allowing TDF.F−1 to recover x1.

9

The above method is in fact what used (implicitly) in all previous approaches [PW08, FGK+10,
PW11]. However, the cost paid is high: for communicating one bit of information we need to
output (at least) one group element.

We will now illustrate our main idea. Let BL : G → {0, 1} be a balanced predicate, meaning
that BL(g∗) on a randomly generated g∗ is a completely random bit. (We will show how to build
this object unconditionally.) Returning to the above idea, instead of sending (g̃, g′1) we will send
(g̃,BL(g′1)) ∈ (G, {0, 1}). Before arguing correctness and security, note that this method yields
linear image size for the whole input, because the group element g̃ can be re-used across all indices.

To argue correctness, let us see how TDF.F−1 — given b, ρ and g1 — may invert an encoding
(g̃, b′) of the first bit of x. To this end, note the following two facts:

1. If x1 = 1− b, then b′ = BL(g̃ρ).

2. If x1 = b, then b′ = BL( g̃
ρg1
gρ1,b

).

Thus, if BL(g̃ρ) 6= BL( g̃
ρg1
gρ1,b

), then we can determine the value of x1. This is because in this case we

either have

• b′ = BL(g̃ρ) and b′ 6= BL( g̃
ρg1
gρ1,b

): which implies x1 = 1− b; or

• b′ 6= BL(g̃ρ) and b′ = BL( g̃
ρg1
gρ1,b

): which implies x1 = b.

Summing up the above discussion, we will fail to determine the value of x1 only when BL(g̃ρ) =
BL( g̃

ρg1
gρ1,b

). This happens with probability 1/2 because the predicate BL is balanced. For any constant

t, we may reduce this probability to (1/2)t via repetition for t times. Thus, by choosing the constant
t appropriately, and doing the above procedure for every index, we will be able to retrieve a good
fraction of all the bits of x, which will make the rest retrievable using erasure correction.

For security, we will show that this method admits a simple lossy way of generating public keys.
We now formally define the notion of balanced predicates, which will be used in our LTDF

construction.

Definition 6.2 (Balanced predicates). We say a randomized predicate P : S × {0, 1}∗ → {0, 1} is

balanced over set S if Pr[P(x; r) = 0] = 1/2, where x
$←− S and r

$←− {0, 1}∗.

In the above definition, if S = {0, 1}n, then we have a trivial predicate, one which returns, say,
the first bit of its input. For our LTDF construction, we require the existence of a predicate for
the underlying group G. Assuming any 1-1 mapping G → {0, 1}n (which may not be surjective),
we may define the predicate P as the inner product function over F2: i.e., P(x, r) = 〈x, r〉.

Construction 6.3 (Linear-image lossy TDF). Let G be a group scheme and let (Encode,Decode)
for Encode : {0, 1}n → {0, 1}m be a t-rECC code (Definition 5.2) for some constant t that we will
instantiate in the correctness proof. Also, let BL be a balanced predicate for the underlying group
(Definition 6.2).

We define our LTDF construction (TDF.KG,TDF.KGls,TDF.F,TDF.F
−1) as follows.

9For simplicity assume g1 6= gρ1,b, hence we will not have a hung situation.
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• TDF.KG(1λ):

1. Sample (G, p, g)
$←− G(1λ), and

M :=

(
g1,0, g2,0, . . . , gm,0
g1,1, g2,1, . . . , gm,1

)
$←− G2×m. (29)

2. For all i ∈ [m], sample gi
$←− G, ρi

$←− Zp and bi
$←− {0, 1}.

3. Sample random coins r for the underlying function BL.

4. Set the index and trapdoor keys as

ik :=(M, (Mρ1 −−−→
(1,b1)

g1), . . . , (M
ρm −−−−→

(m,bm)
gm), r) (30)

tk :=(M, (ρ1, b1, g1), . . . , (ρm, bm, gm), r). (31)

• TDF.KGls(1
λ): Return ikls := (M,Mρ1 , . . . ,Mρm , r), where M and ρi for i ∈ [m] and r are

sampled as above.

• TDF.F(ik, x ∈ {0, 1}n): Parse ik := (M,M1, . . . ,Mm, r). Set z := Encode(x) and return

u := (z�M,BL(z�M1; r), . . . ,BL(z�Mm; r)), (32)

• TDF.F−1(tk, u):

1. Parse tk := (M, (ρ1, b1, g1), . . . , (ρm, bm, gm), r) and u := (gc, b
′
1, . . . , b

′
m). Parse M as in

Equation 29.

2. Construct z′ := z′1 · · · z′m ∈ {0, 1,⊥}m as follows. For i ∈ [m]:

(a) Set g′i := gρic and g′′i := g
ρi
c

g
ρi
i,bi

· gi. Then

i. If BL(g′i; r) = BL(g′′i ; r), set z′i = ⊥;

ii. Else, if b′i = BL(g′i; r), set zi = 1− bi. Else (i.e., b′i = BL(g′′i ; r)), set zi = bi.

3. Return Decode(z′).

The following theorem gives the lossiness property of the scheme.

Theorem 6.4 (Linear-image LTDF from DDH). Using a t-rECC code (Encode,Decode) with pa-

rameters (tcn, n, tc1n)2 such that 4tc1 > 3tc and that (4tc1−3tc)2
24t−1c

≥ 0.7, the LTDF of Construc-
tion 6.3 is (n, log p)-lossy with image size log p + cn ∈ Θ(n). By setting n ∈ ω(log p) we obtain
1− o(1) lossiness rate.

We prove all the required properties below.

Lemma 6.5 (log p-Lossiness). For any ikls ∈ TDF.KGls(1
λ) we have |TDF.F(ikls, {0, 1}n)| ≤ p,where

recall that p is the order of the underlying group.

Proof. Parse ikls := (M,M1, . . . ,Mm). It is easy to verify that for any two x, x′ ∈ {0, 1}n

TDF.F(ikls, x) 6= TDF.F(ikls, x
′)⇐⇒ x�M 6= x′ �M. (33)

The statement of the lemma now follows, since {x � M | x ∈ {0, 1}n} ⊆ G, and thus we have
|{x�M | x ∈ {0, 1}n}| ≤ p.
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Lemma 6.6 (Indistinguishability of real and lossy modes). We have ik
c≡ ikls, where (ik, ∗) $←−

TDF.KG(1λ) and ikls
$←− TDF.KGls(1

λ).

Proof. Immediate by the DDH assumption using standard techniques.

Lemma 6.7 (Correctness in real mode). Using a t-rECC code (Encode,Decode) with parameters
(tcn, n, tc1n)2 such that such that 2tc1 > c we have

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk, (TDF.F(ik, x))) 6= x] ≤ 2n · e−
(2tc1−c)

2

22t−1c
n. (34)

In particular, by choosing the repetition constant t such that 2tc1 > c and that (2tc1−c)2
22t−1c

≥ 0.7, the
probability in Equation (34) will be negligible.

Proof. Fix x ∈ {0, 1}n and let z := Encode(x). All probabilities below are taken over the random
choice of (ik, tk). Parse

tk :=

(
M :=

(
g1,0, g2,0, . . . , gm,0
g1,1, g2,1, . . . , gm,1

)
, (ρ1, b1, g1), . . . , (ρm, bm, gm), r

)
.

For input x ∈ {0, 1}n, let Failx be the event that TDF.F−1(tk,TDF.F(ik, x)) 6= x. Fix x ∈ {0, 1}n
and let z := Encode(x) ∈ {0, 1}m. Also, let u := TDF(ik, x) := (gc, b

′
1, . . . , b

′
m).

Recall that z consists of cn blocks, where each block consists of t identical bits (Definition 5.2).
For each block index j ∈ [cn] we define an event Badj , which corresponds to the event that the
inversion algorithm fails to recover the bit that corresponds to the jth block. That is, Badj occurs
if all the t repetitions inside block j leads to failure during inversion. More formally:

• Badj : The event that for all i ∈ {(j − 1)t + 1, . . . , jt}: BL(g′i; r) = BL(g′′i ; r), where g′i := gρic

and g′′i := g
ρi
c

g
ρi
i,bi

· gi.

Note that all Badj are i.i.d. events and we have Pr[Badj ] = (1/2)t. The reason for this is that
all of (g1, . . . , gn) are sampled uniformly at random independently of all other values, and thus the
two group elements g′i and g′′i are uniform and independent.

Let Goodj = Badj and note that Pr[Goodj ] = 1− (1/2)t. We now have

Pr[Failx] ≤ Pr[

cn∑
j=1

Goodj ≤ cn− c1n] = Pr[
1

cn

cn∑
j=1

Goodj ≤ 1− c1
c

]

= Pr[
1

cn

cn∑
j=1

Goodj ≤ 1− 1

2t
− (

c1
c
− 1

2t
)] ≤∗ e−2cn(

2tc1−c
2tc

)
2

≤ e−
(2tc1−c)

2

22t−1c
n, (35)

where the inequality marked with * follows from the Chernoff inequality (Theorem 2.5 with p =
1− 1/2t and ε = c1/c− 1/2t. Note that since we must have ε > 0, we should have 2tc1 > c.)

We conclude using a union bound over all x ∈ {0, 1}n.
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