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Abstract. While the CRS model is widely accepted for construction of non-interactive zero knowledge
(NIZK) proofs, from the practical viewpoint, a very important question is to minimize the trust needed
from the creators of the CRS. Recently, Bellare et al. defined subversion-resistance (security in the
case the CRS creator may be malicious) for NIZK. First, we observe that subversion zero knowledge
(Sub-ZK) in the CRS model corresponds to no-auxiliary-string non-black-box NIZK (also known as
nonuniform NIZK) in the Bare Public Key (BPK) model. Due to well-known impossibility results, this
observation provides a simple proof that the use of non-black-box techniques is needed to obtain Sub-
ZK. Second, we prove that the most efficient known QA-NIZK for linear subspaces by Kiltz and Wee is
nonuniform zero knowledge in the BPK model under two alternative novel knowledge assumptions, both
secure in the subversion generic bilinear group model. We prove that (for a different set of parameters)
a slightly less efficient variant of Kiltz-Wee is nonuniform zero knowledge in the BPK model under a
known knowledge assumption that is also secure in the subversion generic bilinear group model.
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1 Introduction

Zero-knowledge proof systems introduced by Goldwasser et al. [GMR85] enable a prover to convince a verifier
in veracity of a statement while leaking no additional information. Blum et al. [BFM88] introduced non-
interactive zero-knowledge (NIZK) proof systems where the prover outputs just one message (the proof) that
convinces the verifier in the truth of the statement.

In particular, efficient transferable succinct non-interactive zero knowledge argument systems (SNARGs)
are very useful in cryptographic applications, allowing the prover to create a succinct argument π that can
be transferred to many different verifiers who can check the correctness of the argument at their leisure time.
Among many examples, an efficient SNARG can be used in e-voting to prove the correctness of shuffling and
decryption, in cryptocurrencies [BCG+14] to prove the correctness of a transaction, but also to construct
UC-secure commitments [FLM11] and verifiable computation.

As it is well-known, NIZKs are impossible in the standard model, and thus in all such applications, one
has to rely on some trust assumption like the common reference string (CRS [BFM88, FLS90, BDMP91])
model stating that there exists a trusted third party who has created the CRS from a correct distribu-
tion. Other, weaker, trust models include the registered public key (RPK, [BCNP04]) model and the bare
public key (BPK, [CGGM00,MR01]) model. However, very few NIZKs are known in the RPK model (see,
e.g., [BCNP04, DFN06, VV09]) while black-box zero knowledge [MR01, APV05] and even auxiliary-string
non-black-box [Wee07] NIZK is impossible in the BPK model.

Recently, very efficient pairing-based quasi-adaptive NIZKs [JR13,LPJY14,JR14,ABP15,KW15,GHR15]
(QA-NIZKs) have been constructed in the CRS model, with the QA-NIZK of Libert et al. [LPJY14] being
the first QA-NIZK with constant-length argument. Although QA-NIZKs for some other languages are known
(e.g., the language of bitstrings [GHR15] and the languages of shuffles [GR16]; both requiring a quadratic-
length CRS), research on QA-NIZKs has been concentrated on designing more efficient QA-NIZKs for linear
subspaces. The latter holds true partially because of the wide applicability of QA-NIZKs for linear subspaces
in the design of various cryptographic primitives ranging from UC-secure commitment schemes [FLM11,



JR13], dual system fully secure identity-based encryption [JR13], publicly-verifiable fully secure identity-
based encryption [JR13], threshold keyed-homomorphic CCA-secure encryption [LPJY14], and KDM-CCA-
secure encryption schemes [JR14] to signature schemes that are existentially unforgeable under adaptive
chosen message attacks [JR13] and linearly-homomorphic structure-preserving signature schemes [LPJY13,
LPJY14,KW15]. As a different example, Fauzi et al. [FLSZ17] combined SNARKs and QA-NIZKs for linear
subspaces to construct an efficient pairing-based NIZK shuffle argument systems.

Briefly, a (pairing-based) QA-NIZK argument system for linear subspaces allows the prover to convince
the verifier that a vector of group elements3 [y]ι belongs to the columnspace of a fixed public matrix [M ]ι ∈
Gn×mι , i.e., y = Mx for some vector x ∈ Zmp . A QA-NIZK is quasi-adaptive in the sense that the CRS is
allowed to depend on the matrix [M ]ι. One consequence of this definition is that up to now, QA-NIZKs have
been only considered in the CRS model.

Kiltz and Wee [KW15] proposed two efficient QA-NIZKs, Πas and Π ′as, for linear subspaces. Both are
perfectly zero-knowledge and (quasi-adaptively) computationally sound in the CRS model under a suitable
KerMDH assumption [MRV16]. Π ′as is more efficient, with the argument consisting of only k group elements,
where k is a small security-assumption-related integer; k = 1 in the case of asymmetric pairings. As a
drawback, Π ′as requires the matrix [M ]ι to come from a witness-sampleable distribution. (See Section 3
for a definition of witness-sampleability.) Πas works for any matrix distribution but has an argument that
consists of k + 1 group elements. (Πas was independently proposed by Abdalla et al. [ABP15] who proved
its soundness under a stronger MDDH [EHK+13] assumption.)

While the CRS model is widely accepted, from the practical viewpoint, a very important question is to
minimize the trust needed from the creators of the CRS. There has been a recent surge in the research on this
direction due to the use of SNARKs in real-life applications like cryptocurrencies. Ben-Sasson et al. [BCG+15]
constructed an efficient multi-party protocol for the creation of CRS in the specific case of succinct non-
interactive zero knowledge arguments of knowledge (zk-SNARKs, [Gro10,Lip12,GGPR13,PGHR13,Gro16]);
however, it assumes that at least one of the CRS creators is honest. Bellare et al. [BFS16] defined subversion-
resistant soundness (Sub-SND) and subversion-resistant zero knowledge (Sub-ZK) for NIZKs that guarantee
either soundness or zero knowledge, respectively, in the case all the creators of the CRS are subverted. In
particular, Bellare et al. proved that it is impossible to simultaneously obtain Sub-SND and (even non-
subversion-resistant) zero knowledge. On the other hand, they constructed a (non-succinct) statistically
sound and computationally Sub-ZK NIZK argument system for NP where the Sub-ZK property relies on a
knowledge assumption [Dam91].

Sub-ZK was further studied by Abdolmaleki et al. [ABLZ17] who defined perfect Sub-ZK4 for zk-SNARK
and proposed a Sub-ZK zk-SNARK based on Groth’s (non-subversion) zk-SNARK [Gro16] that is essentially
as efficient as Groth’s original zk-SNARK. They also proposed a general framework to achieve Sub-ZK by
constructing a (public) CRS-verification algorithm CV. Essentially, CV accepts the given CRS crs iff crs
is correctly computed starting from some simulation trapdoor ts. In the Sub-ZK proof of their SNARK,
Abdolmaleki et al. constructed a simulator that, given crs as the input, first uses a reasonable knowledge
assumption BDH-KE to recover ts and after that simulates the behaviour of the prover as in Groth’s non-
subversion zk-SNARK. Importantly, both the honest prover and the simulator abort given a malformed CRS.

For the knowledge assumption to be usable and for the simulator (and the prover) to be able to decide
whether the CRS is malformed, Abdolmaleki et al. added extra elements to the CRS which forced them to
reprove the soundness of the zk-SNARK in the Subversion Generic Bilinear Group Model (Sub-GBGM). Sub-
GBGM is a modification of the GBGM [Nec94,Sho97,Mau05], proposed by Bellare et al. [BFS16] (who called
it generic group model with hashing into the group), where the generic adversary is given additional power
to create group elements without knowing their discrete logarithms by hashing into an elliptic curve, [Ica09,

3 We assume pairing-based setting, and use the bracket notation of [EHK+13]. See Section 2 for an explanation of
the notation.

4 We note that since in [ABLZ17], the proof of zero knowledge property involves a knowledge extractor and knowledge
extractors are never perfect, their notion corresponds to statistical Sub-ZK. One can define perfect Sub-ZK by
requiring that the simulation is perfect whenever the extractor succeeds. In the current paper, to simplify the
definitions, we deal with statistical Sub-ZK.
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BCI+10,TK17]. Recall that the SNARK of [Gro16] is proven knowledge-sound in the GBGM. See Section 2
for an explanation why Sub-GBGM is a weaker model than the GBGM.

Fuchsbauer [Fuc18] used a similar approach to define another Sub-ZK version of Groth’s SNARK that
uses a slightly different knowledge assumption, different simulation, and does not require one to add elements
to the CRS. Thus, essentially, one obtains Sub-ZK for free. Because of that, it seems that there is no reason
to construct and deploy SNARKs that do not achieve Sub-ZK. A natural question to ask is if the same holds
in the case of (known) QA-NIZKs.

The knowledge assumptions of [ABLZ17,Fuc18] use crucially the fact that for each trapdoor element α,
the CRS of Groth’s zk-SNARK (but also other well-known zk-SNARKs like [GGPR13, PGHR13]) contains
[α]ι together with some other α-dependent group elements. This means that these knowledge assumptions
(that state that an adversary, who outputs [α]ι and some other well-chosen well-formed α-dependent group
elements, knows α) are trivially secure in the Sub-GBGM. Due to the known impossibility results [GW11],
one needs to use non-falsifiable assumptions (e.g., knowledge assumptions) to prove adaptive soundness of
SNARKs and SNARGs. Thus, the additional use of knowledge assumptions to prove the Sub-ZK property
does not seem to be “too strong” since non-falsifiable assumptions are needed anyhow to prove knowledge-
soundness.

In the case of QA-NIZKs, the situation is different. First, known QA-NIZKs have a very different structure
compared to known SNARKs. For example, the Kiltz-Wee QA-NIZKs have a trapdoor matrix K but [K]ι is
not explicitly given in the CRS. (In fact, the soundness proof of some of their QA-NIZKs relies on the fact
that K is ambiguous.) This means that the techniques of [ABLZ17,Fuc18] cannot be directly translated to
the case of (Kiltz-Wee) QA-NIZK. In particular, one seems to need quite different knowledge assumptions.

Second, the definition of QA-NIZKs involves the language parameter % that has to be modelled separately
from other inputs; no such parameter exists in the case of SNARKs. The most important difference is however
that the soundness of existing efficient QA-NIZKs like [JR13, LPJY14, JR14, ABP15, KW15] is based on
standard falsifiable assumptions like KerMDH. Thus, intuitively, the use of non-falsifiable assumptions to
prove Sub-ZK of a QA-NIZK seems to be less justifiable than in the case of proving Sub-ZK of zk-SNARKs.
Moreover, while Bellare et al. had a discussion motivating the use of knowledge assumptions to obtain
Sub-ZK, they did not have a formal proof of their necessity.

This brings us to the main questions of this work:

– Are knowledge assumptions or other non-black-box techniques needed to prove Sub-ZK of NIZKs
for languages outside of BPP?

– In particular, can one easily modify existing QA-NIZKs for linear subspaces to obtain Sub-ZK?
– If so, can it be done by using black-box techniques only?
– If not, can one prove that black-box techniques are insufficient?
– Can one, similarly to SNARKs, get a Sub-ZK QA-NIZK for free?

Our Contributions. We answer to the above main questions (with yes, yes, no, yes, and mostly yes). It
turns out that achieving Sub-ZK for state-of-the-art QA-NIZKs is considerably more complicated than for
state-of-the-art SNARKs. This follows partially from the nature of QA-NIZKs (e.g., we show that the language
parameter % and the CRS behave very differently if one cannot trust the CRS creator; since state-of-the-art
SNARKs have no %, this issue does not exist for SNARKs) and from the construction of the concrete QA-NIZK.
However, in the most relevant case (k = 1), it turns out that the most efficient existing QA-NIZK by Kiltz
and Wee [KW15] is Sub-ZK under a novel knowledge assumption given a suitable CV algorithm. Hence,
Sub-ZK in this case comes for free.

First, we make a conceptually important observation that Sub-ZK in the CRS model, as defined
in [BFS16, ABLZ17, Fuc18], is equal to no-auxiliary-string non-black-box zero knowledge (called nonuni-
form zero knowledge in [Wee07]) in the BPK model. This important connection was missed in the previous
work on Sub-ZK; we hope it will make it easier to construct and analyse Sub-ZK argument systems including
both SNARKs and QA-NIZKs (or their combinations, see [FLSZ17]).

We recall that in the BPK model, only the verifier needs to store her public key and the key authority
executes the functionality of an immutable bulletin board by storing the received public keys. In particular,
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one achieves designated-verifier zero knowledge5 by using the verifier’s own public key and transferable non-
interactive zero knowledge by using the public key of a (trusted-by-many-verifiers) third party. (In the latter
case, the public key can be generated by using multi-party computation.)

Since in the BPK model, auxiliary-string non-black-box NIZK for languages not in BPP is impossi-
ble [Wee07], one can only construct no-auxiliary-string non-black-box (i.e., nonuniform) NIZK. In Section 3,
we carefully define the security of QA-NIZK arguments in the BPK model, following standard QA-NIZK defi-
nitions. However, we model the definition of nonuniform NIZK after the Sub-ZK definition of Abdolmaleki et
al. [ABLZ17]. More precisely, we require that for any efficient malicious public-key creator (either the verifier
or a third party) Z, there exists an efficient extractor ExtZ, such that if Z, by using the language parameter
% and any random coins r as an input, generates a public key pk (since there is no auxiliary input, pk has to
be generated by Z) then ExtZ, given the same input and r, outputs the secret key sk corresponding to pk.

We emphasize that Z obtains % as an input (from a fixed distribution Dp) instead of generating it. This is
to be expected since a QA-NIZK argument system is defined for a fixed distribution Dp of %. In their seminal
paper, Jutla and Roy [JR13] explicitly say that % should be created by a trusted third party. Moreover,
as we will show in Section 5, achieving an intuitively correct level of privacy will be impossible otherwise.
In particular, if the malicious public key generator leaks M either to a malicious verifier or even to the
extractor (via a knowledge assumption; this seems to be a novel consideration), the intuitive definition of
privacy will be breached. More formally, we will assume that Dp is trusted to not leak information and also
works as a black-box (that is, one cannot obtain any extra information about % even when using a knowledge
assumption); however, Dp does not have to generate % from the correct distribution. On the other hand,
the rest of the QA-NIZK public key pk can be fully subverted. Since in many QA-NIZK applications, % is
the public key of one of the parties (and the secrecy of the corresponding witness is in the interest of the
creator of the public key), this assumption usually makes sense. This result, albeit being somewhat negative,
further clarifies the distinction between the language parameter % and the QA-NIZK public key pk. Since this
distinction is the difference between QA-NIZKs and (adaptive) NIZKs, it is perhaps not surprising that % and
pk need to be handled differently. We also note that because Dp is a part of QA-NIZK definition, % is not an
auxiliary string. See Sections 3 and 5 for further discussion.

As the second main contribution of the current paper, we study the Kiltz-Wee QA-NIZK Π ′as [KW15]
(that we denote as Πkw) in the BPK model. We consider two different variants of Πkw, and prove their
computational soundness and statistical nonuniform zero knowledge property in the BPK model albeit under
different knowledge assumptions. We emphasize that we chose to analyse Π ′as since it is the most efficient
known QA-NIZK for linear subspaces. We will leave analysing other QA-NIZKs (that will hopefully be easier
to do following our definitional framework and analysis of Π ′as) to the further work.

Kiltz and Wee [KW15] proved that Πkw is perfectly zero knowledge in the CRS model. We show that
Πkw is statistically nonuniform zero knowledge in the BPK model under either one of the two new knowledge
assumptions KW-KE (the Kiltz-Wee Knowledge of Exponent assumption) and sKW-KE (the strong Kiltz-Wee
Knowledge of Exponent assumption), assuming that its whole CRS (or rather in this case, a public key pk)
is generated by the verifier or a verifier-trusted authority — even if we are set to prove nonuniform zero
knowledge that interests the prover.

We achieve this similarly to Abdolmaleki et al. [ABLZ17] by allowing V (or her trustee) to construct pk
and then designing a public-key verification algorithm PKV. Since we do not modify the public-key generation
and the prover, the (non-subversion) soundness of Πkw in the BPK model follows directly from [KW15]. We
also prove that Πkw is nonuniform zero knowledge in the BPK model under a new knowledge assumption
KW-KE. While KW-KE is a strong assumption, it is weaker than just assuming the Sub-GBGM or even the
GBGM. We show that, assuming k = 1, the KW-KE assumption holds in the Sub-GBGM (see Theorem 1).
The proof of Theorem 1 heavily depends on the fact that we work in the Sub-GBGM and is quite intricate.

5 More precisely, a publicly verifiable variation of designated-verifier where one does not need to know the secret key
to verify as opposed to say [DFN06]. The verifier only needs to be sure that the prover does not know the secret
key.
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Table 1. Comparison of Kiltz-Wee nonuniform QA-NIZK variants in the BPK model

Prot. k SND ZK |pk| PKV P V

assumpt. assumpt. group elements pairings exp. pair.
Πkw 1 KerMDH sKW-KE or

KW-KE
mn+m+ n+ 1 mn+m m n+ 1

Πbdh
kw 2 SKerMDH BDH-KE mn+ 2m+ 4n+ 8 2mn+ 4m+ 4n+ 10 2m 2n+ 4

Interestingly, under KW-KE we only get the guarantee that the part pkzk of the pk, used either by the
prover or the simulator6, has been correctly computed. (Interestingly, this shows that in the case of QA-NIZKs,
nonuniform zero knowledge can be achieved even if the correctness of the whole public key cannot be verified.)
This however suffices to prove zero knowledge of Πkw. Importantly, this means that in the case k = 1 one
can get Sub-ZK for free.

Second, we show that under a stronger knowledge assumption sKW-KE, one can guarantee that the whole
pk has been correctly computed. However, as an (unexpected) drawback, the sKW-KE assumption holds in
the Sub-GBGM only if the language parameter [M ]ι comes from a suitable hard distribution. (The latter is
often the case in QA-NIZK applications, where [M ]ι is a public key of some cryptographic primitive like an
encryption or commitment scheme.) In both cases, the soundness is guaranteed by a KerMDH assumption.

The previous two zero knowledge proofs require that k = 1, where k is a security parameter related to
the matrix distribution in KerMDH. Since there are also applications where one is interested in setting k = 2
(e.g., when one wants to rely on a weaker assumption), we also propose a slightly less efficient variant Πbdh

kw

of the Kiltz-Wee QA-NIZK that is secure when k = 2. Essentially, Πbdh
kw has a few additional elements in the

verifier’s public key (more precisely, we duplicate some public key elements to both source groups), and the
corresponding PKV algorithm checks the correctness of the new public key including the added elements.
We then prove that Πbdh

kw is (under a very natural knowledge assumption BDH-KE known to be Sub-GBGM
secure [ABLZ17]) statistically nonuniform zero knowledge. We prove Πbdh

kw is sound under the SKerMDH
assumption of [GHR15]. Thus, in the case k = 2, Sub-ZK does not come for free. However, this is expected:
the case k = 2 is mostly used with symmetric pairings; since we use asymmetric pairings, it is natural that
some of the public-key elements have to be duplicated. See Table 1 for the comparison of all mentioned
results.

In Section 5, we will provide a thorough discussion about the case % is created by a malicious party. We
will show that in this case, one has to be extra careful, in particular, to not employ too strong knowledge
assumptions. (The latter insight is, up to our knowledge, novel.)

Finally, nonuniform NIZK argument systems in the BPK model — this includes the QA-NIZK of the
current paper and the SNARKs of [ABLZ17,Fuc18] — can be made black-box zero knowledge in the stronger
Registered Public Key (RPK, [BCNP04]) model by requiring that the key registration authority creates
all the secret keys. In the simulation, the simulator Sim emulates the key registration authority and thus
will know the secret keys. (Recall in the BPK model we relied on a knowledge assumption to extract these
keys.) Alternatively, the verifier can create the public key but then prove its knowledge to the authority in
(standalone) interactive zero knowledge in the standard model [BCNP04]. In this case, in the (standalone)
simulation, Sim rewinds the verifier to obtain all the secret keys.

The way we use the BPK model is non-standard and one may argue that it is closer to the RPK
model due to the use of no auxiliary string (which guarantees the public keys are created “in-system”) and
knowledge assumptions (which guarantee one can extract the secret keys). In our opinion, there is a big
difference between the used BPK model and the RPK model since here, a prover can detect whether using

6 Recall Πkw is a split-CRS QA-NIZK [JR13], meaning that (a) one part of its CRS/public key (pkzk) is used only by
the prover (and the simulator) and another part (pksnd) only by the verifier, and (b) pksnd does not depend on %.
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the verifier’s public key can breach the zero-knowledge property. Hence, we do not assume malformed public
keys will be rejected by honest key registration authorities and thus do not rely on a trust in the latter.7

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security parameter. All adversaries will be
stateful. For an algorithm A, let im(A) be the image of A (the set of of valid outputs of A), let RND(A)
denote the random tape of A, and let r←$RND(A) denote the random choice of the randomizer r from
RND(A). By y ← A(x; r) we denote the fact that A, given an input x and a randomizer r, outputs y.
When we use this notation then r represents the full random tape of A. For algorithms A and ExtA, we
write (y ‖ y′) ← (A‖ExtA)(x; r) as a shorthand for y ← A(x; r), y′ ← ExtA(x; r). Importantly, ExtA and
A use the same randomizer r. By x←$D we denote that x is sampled according to distribution D or
uniformly randomly if D is a set. We denote by negl(λ) an arbitrary negligible function. We write a ≈λ b
if |a− b| ≤ negl(λ). We follow Bellare et al. [BFS16] by using “cryptographic” style in security definitions
where all complexity (adversaries, algorithms, assumptions) is uniform but the adversary and the security
(say, soundness) is quantified over all inputs chosen by the adversary. See [BFS16] for a discussion.

A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT , ê), where G1, G2, and GT are three additive
cyclic groups of prime order p = 2Ω(λ), and ê : G1×G2 → GT is a non-degenerate PPT computable bilinear
pairing. We assume the bilinear pairing to be Type-3 [GPS08], i.e., that there is no efficient isomorphism
from G1 to G2 or from G2 to G1. We use the bracket notation of [EHK+13], i.e., we write [a]ι to denote agι
where gι is a fixed generator of Gι. We denote ê([a]1, [b]2) as [a]1[b]2. Thus, [a]1[b]2 = [ab]T . We freely use
the bracket notation with matrices, e.g., if AB = C then A[B]ι = [C]ι and [A]1[B]2 = [C]T .
Bare Public Key (BPK) Model. In the BPK model [CGGM00,MR01], parties have access to a public file
F , a polynomial-size collection of records (id, pkid), where id is a string identifying a party (e.g., a verifier),
and pkid is her (alleged) public key. In a typical zero-knowledge protocol in the BPK model, a key-owning
party Pid works in two stages. In stage one (the key-generation stage), on input a security parameter 1λ

and randomizer r, Pid outputs a public key pkid and stores the corresponding secret key skid. We assume
the no-auxiliary-string BPK model where from this it follows that Pid actually created pkid. After that, the
public file F will include (id, pkid). In stage two, each party has access to F , while Pid has possibly access to
skid (however, the latter will be not required in the current paper). It is commonly assumed that only the
verifier of a NIZK argument system in the BPK model has a public key [MR01]; see also Section 3.

There are several well-known impossibility results about zero knowledge the BPK model. Alwen et
al. [APV05] proved that any black-box concurrent zero-knowledge argument system satisfying sequential
soundness in the BPK model for a language L outside of BPP requires at least 4 rounds. Wee [Wee07] noted
that there exists no auxiliary-string non-black-box NIZK argument system in the BPK model for a language
L outside of BPP. (This explains our reliance on the no-auxiliary-string BPK model.) These results are
complemented by a possibility result of Micali and Reyzin [MR01], who proved that if there exist certified
trapdoor permutation families secure against subexponentially-strong adversaries then there exists a 4-round
black-box resettable zero knowledge protocol, for any L ∈ NP, in the BPK model. (See also [SV12].) Here,
we recall that resettable zero knowledge is strictly stronger than concurrent zero knowledge, [MR01]. Finally,
Wee [Wee07] showed the existence of weak (where essentially, the size of the simulator can depend on the
size of the distinguisher and of the distinguishing gap) nonuniform NIZK argument systems for NP in the
BPK model, assuming subexponential hardness results; see [Wee07] for a precise statement.
Matrix Diffie-Hellman Assumptions. Kernel Matrix Diffie-Hellman Assumption (KerMDH) is a well-
known assumption family formally introduced in [MRV16] and used by Kiltz and Wee in [KW15] to prove
soundness of their QA-NIZK argument systems for linear subspaces. Informally, a D-KerMDH assumption

7 Citing [SV12]: “The BPK model is very close to the standard model, indeed the proof phase does not have any
requirement beyond the availability of the directory to all provers, and for verifiers, of a secret key associated to
their identities.” and [MR01]: “It suffices for PK to be a string known to the prover, and chosen by the verifier
prior to any interaction with him.”
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states that for a matrix A sampled from the distribution D it is difficult to find a representation of a vector
that belongs to the kernel of A> provided that the matrix is given in exponents only, i.e., as [A]ι.

More precisely, let D`k be a probability distribution over matrices in Z`×kp , where ` > k. We assume that
D`k outputs matrices A where the upper k×k submatrix Ā is always invertible. (I.e., D`k is robust, [JR13].)
We denote the lower (`− k)× k submatrix of A as A. When ` = k + 1, let Dk = D`k.

D`k-KerMDHGι [MRV16] holds relative to Pgen, if ∀ PPT A,

Advkermdh
A,D`k,ι,Pgen(λ) := Pr

[
p← Pgen(1λ);A←$D`k;

[c]3−ι ← A(p, [A]ι) : A
>c = 0k ∧ c 6= 0`

]
≈λ 0 .

D`k-SKerMDH [GHR15] holds relative to Pgen, if ∀ PPT A, Advskermdh
A,D`k,Pgen(λ) :=

Pr

[
p← Pgen(1λ);A←$D`k; ([c1]1, [c2]2)← A(p, [A]1, [A]2) :

A>(c1 − c2) = 0k ∧ c1 − c2 6= 0`

]
≈λ 0 .

According to Lem. 1 of [GHR15], if D`k-KerMDH holds in generic symmetric bilinear groups then D`k-
SKerMDH holds in generic asymmetric bilinear groups. KerMDH assumption can hold also for Type-1 pairings,
where G1 = G2, but then one needs k ≥ 2, which affects efficiency of the arguments relying on KerMDH.
Bilinear Diffie-Hellman Knowledge of Exponent Assumption. BDH-KE [DFGK14,ABLZ17] holds
relative to Pgen if ∀p ∈ im(Pgen(1λ)) and PPT adversary A there exists a PPT extractor ExtA, such that

Pr

[
r←$RND(A), ([α1]1 , [α2]2 ‖ a)← (A‖ExtA)(p; r) :
[α1]1 [1]2 = [1]1 [α2]2 ∧ a 6= α1

]
≈λ 0 .

Since with the (negligible) probability poly (λ) /p, a PPT A can output correct ([α1]1 , [α2]2) such that
[α1]1 [1]2 = [1]1 [α2]2 by repeated uniform sampling, BDH-KE (like most knowledge assumptions) is never
perfect.
Generic Bilinear Group Model. In the Generic Bilinear Group Model (GBGM) [Nec94, Sho97,Mau05,
BBG05], one assumes that the adversary has only access to group elements via generic bilinear-group op-
erations (group operations and the bilinear map) together with an equality test. In the subversion GBGM
(Sub-GBGM, [BFS16, ABLZ17]; named generic group model with hashing into the group in [BFS16]), the
adversary has an additional power of creating new indeterminates in bilinear group. The Sub-GBGM is moti-
vated by the existence of elliptic curve hashing algorithms [Ica09,BCI+10,TK17] that allow one to efficiently
create elliptic-curve group elements without knowing their discrete logarithms.

Thus, Sub-GBGM is a weaker model than GBGM. As an important example, knowledge assumptions
that state that the output group element must belong to the span of input group elements hold in the GBGM
but not in the Sub-GBGM. This is since in the Sub-GBGM, the adversary can create new group elements
without knowing their discrete logarithms; indeed the output element might be equal to one such created
group elements. Hence, a Sub-GBGM adversary is less restricted than a GBGM adversary. Moreover, as we
will see later (see Theorem 1), some knowledge assumptions that have a trivial security poof in the GBGM
have quite a complicated proof in the Sub-GBGM.

See Appendix A for a long introduction to GBGM and Sub-GBGM.

3 Defining QA-NIZK in the BPK Model

Quasi-adaptive Non-Interactive Zero-Knowledge (QA-NIZK) argument systems [JR13] are quasi-adaptive in
the sense that the CRS depends on a language parameter % that has been sampled from a fixed distribu-
tion Dp. QA-NIZKs are of great interest since they are succinct and based on standard assumptions. Since
QA-NIZKs have many applications, they have been a subject of intensive study, [JR13,LPJY14,JR14,ABP15,
KW15,LPJY15,GHR15]. The main limitation of known QA-NIZKs is that they are only known for a restricted
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set of languages like the language of linear subspaces (although see [GHR15,GR16] for QA-NIZKs for other
languages).

The original QA-NIZK security definitions, [JR13], were given in the CRS model. In what follows, we
will lift them to the weaker BPK model. In some of the cases, the only difference compared to the original
definitions is in notation (a CRS will be replaced by a public key). The rest of the definitional changes are
motivated by the definition of Sub-ZK zk-SNARKs in [ABLZ17], e.g., a QA-NIZK in the BPK model will
have a public-key verification algorithm PKV and the zero knowledge definition mentions a subverter and
an extractor. Since black-box [MR01,APV05] and even auxiliary-input non-black-box [Wee07] NIZK in the
BPK model is impossible we will give an explicit definition of no-auxiliary-string non-black-box NIZK (or,
more precisely, nonuniform NIZK [Wee07]).

As in [BFS16], we will implicitly assume that the system parameters p are generated deterministically
from λ; in particular, the choice of p cannot be subverted. A QA-NIZK argument system enables to prove
membership in a language defined by a relation R% = {(%, w%)}, which in turn is completely determined by a
parameter % sampled from a distribution Dp.8 In the proof of zero knowledge, we will assume that Dp works
as a black box and one cannot obtain from it any secret keys. As noted by Jutla and Roy [JR13], one needs
to assume that Dp is reasonable; for example, it should not be the case that all languages L% for % ∈ Dp

are easy to decide. (See additional discussion at the end of the current section and in Section 5. ) We will
assume implicitly that % contains p and thus not include p as an argument to algorithms that also input
%. A distribution Dp on L% is witness-sampleable [JR13] if there exists a PPT algorithm D′p that samples
(%, w%) ∈ R% such that % is distributed according to Dp, and membership of % in the parameter language L%
can be verified in PPT given w%.

While the verifier’s public key pk may depend on % (however, we assume that % was not created by the
verifier), the zero-knowledge simulator is usually required to be a single (non-black-box) PPT algorithm
that works for the whole collection of relations Rp = {R%}%∈Supp(Dp ); that is, one usually requires uniform
simulation (see [JR13] for a discussion). We however accompany the universal simulator with an adversary-
dependent extractor. The simulator is not allowed to create new % but has to operate with one given to it
as an input.

A tuple of PPT algorithms Π = (Pgen,K,PKV,P,V,Sim) is a nonuniform zero knowledge QA-NIZK
argument system in the BPK model for a set of witness-relations Rp = {R%}%∈Supp(Dp ) with % sampled
from a distribution Dp over associated parameter language Lp, if the following properties (i-iii) hold. Here,
Pgen is the parameter generation algorithm, K is the public key generation algorithm, PKV is the public key
verification algorithm, P is the prover, V is the verifier, and Sim is the simulator.

(i) Perfect Completeness: ∀λ, p ∈ Pgen(1λ), % ∈ Dp, and (x,w) ∈ R%,

Pr

[
(pk, sk)← K(%);π ← P(%, pk, x, w) :

PKV(%, pk) = 1 ∧ V(%, pk, x, π) = 1

]
= 1 .

(ii) Computational Quasi-Adaptive Soundness: ∀ PPT A, AdvqasoundA,Π (λ) :=

Pr

[
p← Pgen(1λ); %←$Dp; (pk, sk)← K(%);

(x, π)← A(%, pk) : V(%, pk, x, π) = 1 ∧ ¬(∃w : R%(x,w))

]
≈λ 0 .

(iii) Statistical Nonuniform Zero Knowledge: for any PPT subverter Z there exists a PPT ExtZ, such
that ∀λ, ∀p ∈ Pgen(1λ), % ∈ Dp, and computationally unbounded A, εzk0 ≈λ εzk1 , where

εzkb = Pr

[
r←$RND(Z); (pk, auxZ ‖ sk)← (Z ‖ExtZ)(%; r) :
PKV(%, pk) = 1 ∧ AOb(·,·)(%, pk, auxZ) = 1

]
.

8 In the QA-NIZK literature, it is assumed that samples from Dp are generated by a trusted third party (TTP),
see [JR13] for a discussion. For example, in the case of the language L = ([1]1, [x]1, [y]1, [xy]1) of DDH tuples, [x]1
is created by the TTP. Instead of TTP, one can have a protocol participant who has self-interest in choosing %
securely and not leak corresponding secret.
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Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R%, and otherwise it returns P(%, pk, x, w).
Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R%, and otherwise it returns Sim(%, pk, sk, x).

As mentioned before (see the definition of BDH-KE in Section 2), the extractor defined by a knowledge
assumption never works with probability 1. However, if it works then in our constructions the simulation
will be perfect. For the sake of simplicity, we will not formalize this as perfect zero knowledge. (One reason
for this is that is that differently from [ABLZ17], the secret key extracted by ExtZ is not unique in our case,
see discussion in Section 4.)

The existence of PKV is not needed in the CRS model, assuming the CRS creator is trusted by the prover,
and thus PKV was not included in the prior art QA-NIZK definitions. Since soundness is proved in the case
pk is chosen correctly (by the verifier or a trusted third party, trusted by her), V does not need to execute
PKV. However, PKV should be run by P. The simulator is only required to correctly simulate in the case
PKV accepts pk.
On Sub-ZK versus Nonuniform Zero Knowledge in the BPK model. Subversion-security was
defined by Bellare et al. [BFS16] for the CRS model, and further CRS-model subversion-security definitions
were given in [ABLZ17, Fuc18]. As proven in [BFS16], one cannot achieve Sub-SND (soundness even if
the CRS was generated maliciously) and zero knowledge at the same time. Thus, subsequent efforts have
concentrated on achieve either Sub-SND and witness-indistinguishability [BFS16], subversion knowledge-
soundness and witness-indistinguishability [FO18], or Sub-ZK (zero knowledge in the case the CRS was
generated maliciously) and soundness, [BFS16, ABLZ17, Fuc18]. In the latter case, the CRS is trusted by
the verifier V while (following the definitions of [ABLZ17]) the prover checks that the CRS is well-formed
by using a publicly available algorithm. Thus, Sub-ZK in the CRS model is the same as zero knowledge
in the BPK model: the CRS has to be trusted by (or, even chosen by) V and hence can be equal to the
public key of an entity trusted by V (or of V herself). Since black-box NIZK [MR01] and even auxiliary-input
non-black-box NIZK [Wee07] in the BPK model is impossible, one has to define nonuniform zero knowledge
as above. 9 In particular, the main result of [ABLZ17, Fuc18], reformulated in our language, is that there
exist computationally knowledge-sound nonuniform zero knowledge zk-SNARKs for NP in the BPK model.

Finally, Wee’s definition of nonuniform zero knowledge [Wee07] is slightly different from ours. First, it
allows the simulator to depend nonuniformly on the cheating verifier, while we have a universal simulator
coupled with an extractor where only the extractor depends nonuniformly on the cheating subverter. This
change is motivated by the prior definitions of Sub-ZK by Abdolmaleki et al. [ABLZ17] and the standard
requirement that QA-NIZKs have a universal simulator [JR13]. Second, we do not require explicitly that
there is a polynomial relation between the size of the subverter and that of the extractor although this is
implicit due to polynomial dependence on the common security parameter.
Language of linear subspaces. An important application of QA-NIZK is in the case of the following
language. Assume we need to show that [y]ι ∈ im([M ]ι), where [M ]ι is sampled from a distribution Dp over
Gn×mι . We assume, following [JR13], that (n,m) is implicitly fixed by Dp. That is, a QA-NIZK for linear
subspaces handles languages L[M ]ι defined as follows:

L[M ]ι =
{
[y]ι ∈ Gnι : ∃w ∈ Zmp s.t. y =Mw

}
.

The corresponding relation is defined as RM = {([y]ι,w) ∈ Gnι × Zmp : y = Mw}. This language is
surprisingly useful in many applications, [JR13]. As a typical application, let [M ]ι = [1, sk]>ι be a public key
of the Elgamal cryptosystem; then a ciphertext [y]ι ∈ L[M ]ι iff it encrypts 0. In this case, [M ]ι comes from
a witness-sampleable distribution Dp with Dp-KerMDH being hard.
Kiltz-Wee QA-NIZK. The most efficient known QA-NIZK for linear subspaces in the CRS model was pro-
posed by Kiltz and Wee [KW15]. In particular, they proposed a QA-NIZK Πkw (named Π ′as in [KW15]) that

9 Bellare et al. [BFS16] motivated not incorporating auxiliary strings to the definition of Sub-ZK by known im-
possibility results. Moreover, as noted also in [BFS16], auxiliary-input zero knowledge is usually used to achieve
sequential composition in the case of interactive zero knowledge. The given definition of nonuniform zero knowledge
guarantees sequential security in the case of NIZK, see [ABLZ17] for a proof.
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K([M ]ι ∈ Gn×mι ): A←$Dk; K ←$Zn×kp ; C ←KĀ ∈ Zn×kp ; P ←M>K ∈ Zm×kp ; pk← ([Ā,C]3−ι, [P ]ι); sk←K;
Return (pk, sk);

P([M ]ι, pk, [y]ι,w): return [π]ι ← [P ]>ι w ∈ Gkι ;
Sim([M ]ι, pk, sk, [y]ι): return [π]ι ←K>[y]ι ∈ Gkι ;
V([M ]ι, pk, [y]ι, [π]ι) : check that [y]>ι [C]3−ι = [π]>ι [Ā]3−ι;

Fig. 1. Kiltz-Wee argument system Πkw for [y]ι = [M ]ιw

assumes that the parameter % = [M ]ι ∈ Gn×mι is sampled from a witness-sampleable distribution Dp. Πkw

results in the argument that consists of k group elements, where k is the parameter (k = 1 being usually
sufficient in the case of asymmetric pairings) related to the underlying KerMDH distribution. In particular,
Πkw is significantly more efficient than the Groth-Sahai NIZK [GS08] for the same language.

For the sake of completeness, Fig. 1 depicts the original Kiltz-Wee QA-NIZK for linear subspaces in the
CRS model. Given n > m, the Kiltz-Wee QA-NIZK is computationally quasi-adaptively sound under the
Dk-KerMDHGι assumption relative to Pgen, [KW15].

Discussion: creation of the language parameter.When introducing QA-NIZKs in the CRS model, Jutla
and Roy [JR13] claimed that in most of the applications, % is set by a trusted third party. For example, %
could be his public key. As also argued by Jutla and Roy, in many applications, that party has no motivation
to cheat while generating % since the security is defined with respect to this key. They mention that if % is
created say by the prover, then he should as minimum at least prove that % ∈ Dp.

Now, consider the BPK model definitions of the current paper where pk might be generated by malicious
Z. In this case, Z should not generate %, partially since a QA-NIZK argument system is defined for a fixed
distribution of % and partially due to simple attacks that become possible if Z just leaks %. We provide
thorough discussion on this in Section 5, just noting here that since % is sampled from Dp it means that Dp

has to be implemented by a trusted third party who does not leak any secret keys to Z.
The notion of QA-NIZK in the BPK model is important in the case where % is not generated by the

verifier but either by the prover or some (trusted) third party. In particular, recall that Kiltz-Wee proposed
two different QA-NIZKs, Πas (Πas was independently proposed by Abdalla et al. [ABP15]) and Π ′as where
the latter for its soundness requires % = [M ]ι to come from a witness-sampleable distribution. Hence, in the
case of Π ′as, intuitively, [M ]ι should be created honestly.

Applications of QA-NIZK in the BPK Model. The simplest example application is that of UC com-
mitments from [JR13] where a trusted third party generates a commitment key % together with a QA-NIZK
public key pk and P opens the commitments later by disclosing a QA-NIZK argument of proper commitment
under the commitment key %. In this case, % should not be generated by P (who could then equivocate) or
by V (who could then extract the message). However, pk can be generated by V. This allows one, securely
generated %, to be used in many applications, from UC commitments to efficient identity-based encryption.
In each such application, a trusted authority trusted by V (or V herself) can create her pk that takes the
particularities of that application into account.

As another example, consider the case of wide-scale e-voting, where the public key pke used for encryption
belongs to a designated decryption authority (say, trusted hardware; or, in a threshold manner, to authori-
ties). In a typical e-voting protocol, the voters encrypt their ballots (w.r.t. pke) and prove in zero knowledge
that the plaintext belongs to the set of valid candidates. Later, one can use a mixnet to shuffle (i.e., permute
and rerandomize) the encrypted ballots. Each mixserver must prove that he shuffled the encrypted ballots
correctly by using a CRS-model shuffle argument [GL07,LZ12,FL16,FLZ16,FLSZ17].

In all such cases, the set of verifiers includes mixservers, the decryption authority, and third-party auditors.
Thus, it makes sense to have a separate trusted party (or trusted parties) who generates the public key pkv
used to verify the correctness of all arguments but by using the language parameter %e that is contained in
the public key pke of the decryption authority. If e-voting is employed in a big scale, it makes sense that pke
is fixed ahead of the time and made public, so that pkv can be later created based on pke.
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4 Kiltz-Wee QA-NIZK in the BPK Model

In this section, we will show that a minimally changed variant of the Kiltz-Wee QA-NIZK Πkw is secure in the
BPK model. More precisely, we assume that the public key (corresponds to the CRS in original Kiltz-Wee)
belongs either to the verifier or to a party, trusted by the verifier. Hence, we prove computational soundness
in the setting where the verifier trusts the public key (i.e., that the corresponding sk is secret and the CRS
is well-formed). Since the public key is not trusted by the prover, we prove nonuniform zero knowledge in
the case of a nontrusted (possibly subverted) public key. As motivated in Section 3, we assume that [M ]ι
is sampled honestly, i.e., from a witness-sampleable distribution and moreover, neither the verifier nor the
simulator knows the corresponding witness M or any function of M not efficiently computable from [M ]ι.

To modify Πkw in Fig. 1 so that it would be secure in the BPK model instead of the CRS model, the
simplest idea is to divide pk into pksnd = [Ā,C]3−ι (the part of pk is used by the verifier and thus intuitively
needed to guarantee soundness) and pkzk = [P ]ι (the part of pk that is used by the prover and thus intuitively
needed to guarantee zero knowledge). Thus, the prover needs to be assured that pkzk is generated honestly
and the verifier needs to be assured that pksnd is generated honestly. Hence, one could use pkzkP from the
prover’s public key and pksndV from the verifier’s public key to create an argument. However, it is not clear
how to do this since both pksndV and pkzkP depend on the same secretK.10 Moreover, in this case both P and V
have public keys while we strive to have a situation, common in the BPK model, where only V has a public
key.

In what follows, we assume that the verifier’s public key is equal to the whole Kiltz-Wee CRS and then
construct a public-key verification algorithm PKV for Πkw. Assume k = 1 (this gives the best efficiency and
is thus the most interesting in practice). We prove that in the BPK model, Πkw is computationally quasi-
adaptively sound under a KerMDH assumption and nonuniform zero knowledge under a novel knowledge
assumption. In fact, we define two different knowledge assumptions, KW-KE and sKW-KE.

The assumption KW-KE guarantees that one can extract a secret key sk =K from which one can compute
pkzk = [P ]ι (but not necessarily pksnd) as in Πkw. Since pkzk does not fix K uniquely, KW-KE extracts one
possible K. Since for achieving nonuniform zero knowledge, it is not needed that pksnd can be computed
from sk, KW-KE will be sufficient. We note that KW-KE is a tautological knowledge assumption for Πkw. To
argue that KW-KE is a reasonable knowledge assumption, we prove that it holds in the Sub-GBGM.

We also introduce a stronger knowledge assumption sKW-KE that allows to extract the unique secret key
K that was used to generate the whole public key pk. We prove sKW-KE holds in the Sub-GBGM given that
% = [M ]ι is chosen from a hard distribution. The latter assumption is undesirable but holds often in practice,
e.g., when % corresponds to a randomly chosen public key of a cryptosystem or a commitment scheme (see
Section 3 for an example).

After that, we will prove that Πkw is nonuniform zero knowledge under either KW-KE and sKW-KE
where in the latter additionally guarantees that the public key is correctly formed. Since we essentially
did not modify Πkw (we only defined PKV for Πkw!), its completeness and computational soundness follow
from [KW15].

However, the Sub-GBGM proofs for KW-KE and sKW-KE only work if k = 1. Since there are applications
(e.g., in the setting of symmetric pairing) where one might want to use k = 2, we also prove that Πbdh

kw ,
a variant of Πkw, obtained after adding some elements to the public key, is sound under a SKerMDH as-
sumption and nonuniform zero knowledge under a more standard, previously known, knowledge assumption
BDH-KE [ABLZ17]. Since in the case of Πbdh

kw , one has to rely on the SKerMDH and thus assume that k = 2,
Πbdh

kw is less efficient than Πkw where k = 1 is sufficient.

10 Jutla and Roy [JR13] say that a QA-NIZK is split-CRS if (a) its CRS can be divided into soundness (used only by
the verifier) and zero-knowledge part (used only by the prover) that only share common randomness, and (b) the
soundness CRS does not depend on %. The QA-NIZK of Jutla and Roy is split-CRS, as are some of the QA-NIZKs
of Libert et al. [LPJY14] and of Kiltz and Wee. See [JR13] for applications of split-CRS QA-NIZKs.
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K([M ]ι ∈ Gn×mι ): A←$Dk; K ←$Zn×kp ; C ←KĀ ∈ Zn×kp ; P ←M>K ∈ Zm×kp ;
if Π = Πkw then pkpkv ← ε; elseif Π = Πbdh

kw then pkpkv ← [Ā,C]ι; fi
pkzk ← [P ]ι; pksnd ← [Ā,C]3−ι; pk← (pksnd, pkzk, pkpkv); sk←K; return (pk, sk);

P([M ]ι, pk, [y]ι,w): return [π]ι ← [P ]>ι w ∈ Gkι ;
Sim([M ]ι, pk, sk, [y]ι): return [π]ι ←K>[y]ι ∈ Gkι ;
V([M ]ι, pk, [y]ι, [π]ι) : check that [y]>ι [C]3−ι = [π]>ι [Ā]3−ι; // ∈ G1×k

T

PKV([M ]ι, pk): // k ∈ {1, 2}

Check that
1 : [Ā]3−ι ∈ Gk×k3−ι ∧ [C]3−ι ∈ Gn×k3−ι ∧ [P ]ι ∈ Gm×kι ∧ [M ]ι ∈ Gn×mι ;

2 : if Π = Πbdh
kw then check [Ā]ι ∈ Gk×kι ∧ [C]ι ∈ Gk×kι ;fi

3 : [M ]>ι [C]3−ι = [P ]ι[Ā]3−ι;
4 : if k = 1 then check [a11]3−ι 6= [0]3−ι// I.e., det Ā 6= 0

else check [a11]1[a22]2 − [a12]1[a21]2 6= [0]T ;fi // I.e., det Ā 6= 0

5 : if Π = Πbdh
kw then check [Ā]1[1]2 = [1]1[Ā]2;fi

6 : if Π = Πbdh
kw then check [C]1[1]2 = [1]1[C]2;fi

return 1 if all checks pass and 0 otherwise.

Fig. 2. Variants Πkw and Πbdh
kw of Kiltz-Wee QA-NIZK for [y]ι = [M ]ιw in the BPK model. Here, Π ∈ {Πkw, Π

bdh
kw }.

4.1 Πkw: QA-NIZK with k = 1

Assume the CRS of the original Kiltz-Wee QA-NIZK is now the public key pk of the verifier. Since the
amount of public information does not change and the verifier is interested in soundness, there is no need to
reprove soundness. On the other hand, a malicious verifier may provide a malformed public key pk such that
the nonuniform zero knowledge property does not hold. To protect the prover, we construct a public-key
verification algorithm PKV, see Fig. 2, that checks whether pkzk is well-formed. Since Πkw is perfectly zero
knowledge in the CRS model, it is enough to equip the simulator Sim of Πkw with the correct secret key sk to
achieve zero knowledge. In the new construction, in simulation one first uses a (novel) knowledge assumption
to retrieve the secret key sk and then runs the original Kiltz-Wee simulator Sim on sk to achieve nonuniform
zero knowledge.

To be able to extract sk = K in the case k = 1, we rely on the following novel knowledge Kiltz-Wee
Knowledge of Exponent assumption that is essentially a tautological knowledge assumption for the Kiltz-Wee
QA-NIZK. Nevertheless, it is weaker than the Sub-GBGM itself, and due to the remark in Section 2 it is
hence also weaker than the GBGM. Intuitively, we assume that if A outputs a well-formed pk then there
exists an extractor ExtA who, knowing the secret coins of A, returns a secret key K that could have been
used to compute pkzk. We emphasize that [M ]ι is given as an input to A.

Definition 1 (KW-KE). Fix ι ∈ {1, 2}, k = 1, and n > m ≥ 1. Let PKV be defined as in Fig. 2. (n,m)-
KW-KEGι holds relative to Pgen if ∀p ∈ im(Pgen(1λ)), M ∈ Zn×mp , and PPT adversary A, there exists a
PPT extractor ExtA, s.t.

Pr

[
r←$RND(A); (pk← ([Ā,C]3−ι, [P ]ι) ‖K)← (A‖ExtA)([M ]ι; r) :

PKV([M ]ι, pk) = 1 ∧ (K 6∈ Zn×kp ∨ P 6=M>K)

]
≈λ 0 .

Here, we do not require that pksnd = [Ā,C]3−ι is of correct shape since pksnd is not needed for zero knowledge.
Recall from Section 2 that the extractor defined by a knowledge assumption never works with probability 1.

We will also use the following knowledge assumption (strong Kiltz-Wee Knowledge of Exponent assump-
tion) that is not needed to obtain zero knowledge but is needed for the whole public-key verification.

Definition 2 (sKW-KE). Fix ι ∈ {1, 2}, k = 1, and n > m ≥ 1. Let PKV be as in Fig. 2. Then (n,m)-
sKW-KEGι holds relative to Pgen if ∀p ∈ im(Pgen(1λ)), M ∈ Zn×mp , and PPT adversary A, there exists a
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PPT extractor ExtA, s.t.

Pr

[
r←$RND(A); (pk← ([Ā,C]3−ι, [P ]ι) ‖K)← (A‖ExtA)([M ]ι; r) :

PKV([M ]ι, pk) = 1 ∧ (K 6∈ Zn×kp ∨ P 6=M>K ∨ C 6=KĀ)

]
≈λ 0 .

In Theorem 1, we also need the following “weak KerMDH” assumption.

Definition 3. D`k-wKerMDHGι holds relative to Pgen, if ∀ PPT A,

Advwkermdh
A,D`k,ι,Pgen(λ) := Pr

[
p← Pgen(1λ);A←$D`k; c← A(p, [Ā]ι) :

A>c = 0k ∧ c 6= 0`

]
≈λ 0 .

Clearly, D`k-wKerMDHGι is not stronger and it is ostensibly weaker than D`k-KerMDHGι since computing c
may be more complicated than computing [c]3−ι. Computational Diffie-Hellman (CDH) is a classical example
of wKerMDH.

Theorem 1 (Sub-GBGM Security of KW-KE and sKW-KE). Fix ι ∈ {1, 2} and n > m ≥ 1. Then

(i) the (n,m)-KW-KEGι assumption holds in the Sub-GBGM.
(ii) under the Dp-wKerMDHGι assumption, the (n,m)-sKW-KEGι assumption holds in the Sub-GBGM.

This statement is straightforward when we replace Sub-GBGM with GBGM. Partially since Sub-GBGM
proofs are not common, the following proof contains some novel ideas. In particular, since we work in the
Sub-GBGM, the elements output by a KW-KE-adversary A can be written down as an affine function of all
group-element inputs and all indeterminates created the by A. This means that the verification equation
gives us a large number of equalities in the coefficients corresponding to the new indeterminates (e.g.,
P jĀi = 0m×k for each i ≥ 0, j > 0). The constructed Sub-GBGM extractor ExtA returns Ci0Ā

−1
i0

where
i0 is the smallest index for which det Āi 6= 0. In the case of sKW-KE, we (somewhat suprisingly) need to
additionally assume that [M ]ι comes from a hard (wKerMDH) distribution.

Proof. AssumeA is a sKW-KE or KW-KE adversary that succeeds with some probability ε. That is, for anyM
and r←$RND(A), with probability ε, A([M ]ι; r) outputs pk = ([Ā,C]3−ι, [P ]ι), such that PKV([M ]ι, pk) =
1. (In particular, det Ā 6= 0 and M>C = PĀ.)

We now construct the following Sub-GBGM extractor ExtA, where Yζi are indeterminates created
by A (i.e., group elements created by her for which she does not know the discrete logarithm) in Gζ ,
ζ ∈ {1, 2}, with Y10 = Y20 = 1. (Since A works in the Sub-GBGM, ExtA can extract Ā and C.)

ExtA([M ]ι; r)

1 : Extract the coefficients of Ā =
∑
i≥0 ĀiY3−ι,i and C =

∑
i≥0CiY3−ι,i;

2 : Let i0 be the smallest i for which det Āi 6= 0;
3 : return K ← Ci0Ā

−1
i0

;

Note that i0 can be any i for which det Āi 6= 0; we made the above choice for the sake of concreteness.
We will now analyse ExtA, showing that ExtA is the extractor in the definition of KW-KE / sKW-KE.

Assume that A was successful with inputs ([M ]ι; r), where M =MYι0 ∈ Zp. We now execute ExtA([M ]ι)
and obtain K as above. Since A works in Sub-GBGM,

P =
∑
j≥0P jYιj

(for coefficients P j that we might not know). From the equation 3 in PKV (i.e., M>C = PĀ),

M>Yι0

(∑
i≥0CiY3−ι,i

)
−
(∑

j≥0P jYιj

)> (∑
i≥0 ĀiY3−ι,i

)
= 0m×k .

Since Yζi are random variables, the coefficients of Y3−ι,iYιj in the last displayed equation must be equal to
0m×k for each i, j ≥ 0. Thus,
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1. P 0Āi =M
>Ci for each i ≥ 0,

2. P jĀi = 0m×k for each i ≥ 0, j > 0.

Since k = 1 (it does not hold in general) and det Ā 6= 0, N := {i ≥ 0 : det Āi 6= 0} is non-empty. But then
for each i ∈ N , Āi is invertible. Define Ki := CiĀ

−1
i ∈ Zn×kp for i ∈ N . Thus,

1. P 0 =M>Ki for each i ∈ N ,
2. P j = 0m×k for each i ∈ N and j > 0.

Thus, for any i ∈ N and thus also for i = i0, P =
∑
j≥0P jYιj =M

>Ki and we have proven the Sub-GBGM
security of KW-KE.

To prove that sKW-KE is secure in the Sub-GBGM, we need to also show that C =KĀ. We do it by a
reduction to Dp-wKerMDH. We can use the above extractor but in this case we have that [M ]ι is sampled
from Dp. (This is fine, since the extractor exists for any [M ]ι, including also the case [M ]ι←$Dp.) If i 6∈ N ,
then since k = 1, M>Ci = 0m×k. If Ci 6= 0n×k, and since k = 1, we have found a non-trivial element in
the cokernel of M and thus broken Dp-wKerMDH. Thus, Ci = 0n×k for i 6∈ N . If |N | ≥ 2, then for each
i1, i2 ∈ N , M>Ki1 =M>Ki2 and thus

M>(Ki1 −Ki2) = 0m×k .

For all i1, i2 ∈ N , since k = 1, this means that either Ki1 = Ki2 or Ki1 −Ki2 is a non-trivial element in
the cokernel of M . The latter gives us contradiction with the hardness of Dp-wKerMDH. Thus, there exists
K, such that for all i ∈ N , K = Ki. (This is trivially true if |N | = 1.) Thus, for each i ∈ N , K = CiĀ

−1
i

and thus Ci =KĀi. If i 6∈ N , Ci = 0n×k. Thus,

C =
∑
i∈N KĀiY3−ι,i =KĀ .

Since P j =M
>
j K for each j, P =M>K. ut

Remark 1. We note that % = [M ]ι, generated by Dp, is a member of Gι and thus by the definition of Sub-
GBGM the only way to make [C]3−ι, [Ā]3−ι ∈ G3−ι to depend on it is to consider its hashing to G3−ι as a
new indeterminate; this is intuitively what we did when we constructed ExtA. ut

In the case of sKW-KE, we extracted the uniqueK that was used to compute the CRS. Following the proof
idea from Abdolmaleki et al. [ABLZ17], it is easy to show that under this assumption, Πkw is nonuniform
zero knowledge.

Theorem 2 (Security of Πkw). Let Π = Πkw be the QA-NIZK argument system for linear subspaces from
Fig. 2. Let ι ∈ {1, 2} and k = 1. Then the following statements hold in the BPK model.

(i) Πkw is perfectly complete.
(ii) If the sKW-KEGι assumption holds relative to Pgen then Πkw is statistically nonuniform zero knowledge.

(And thus also in the Sub-GBGM assuming Dp-wKerMDH, i.e., if [M ]ι comes from a wKerMDH-hard
distribution.)

(iii) If the KW-KEGι assumption holds relative to Pgen then Πkw is statistically nonuniform zero knowledge.
(And thus also in the Sub-GBGM.)

(iv) If the Dk-KerMDH assumption holds relative to Pgen then Πkw is computationally quasi-adaptively
sound.

Proof. (i: perfect completeness): obvious.
(ii: nonuniform zero knowledge under sKW-KE): Let Z be a subverter that computes pk so as

to break the nonuniform zero knowledge property. That is, Z([M ]ι; rZ) outputs (pk, auxZ). Let A be the
adversary from Fig. 3. Note that RND(A) = RND(Z). Under the sKW-KE assumption, there exists an
extractor Ext′A, such that if PKV([M ]ι, pk) = 1 then Ext′A([M ]ι; rZ) outputs K, such that C = KĀ and
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A([M ]ι; rZ)

(pk, auxZ)← Z([M ]ι; rZ); return pk;

ExtZ([M ]ι; rZ)

return Ext′A([M ]ι; rZ);

Fig. 3. The extractor and the constructed adversary A from the nonuniform zero knowledge proof of Theorem 2, for
both the sKW-KE and KW-KE case.

P =M>K. We construct a trivial extractor ExtZ([M ]ι; rZ) for Z, as depicted in Fig. 3. Clearly, ExtZ returns
sk =K, such that C =KĀ and P =M>K.

Fix concrete values of λ, p ∈ im(Pgen(1λ)), [M ]ι ∈ Dp, ([y]ι,w) ∈ RM , rZ ∈ RND(Z), and run
ExtZ([M ]ι; rZ) to obtain K. It clearly suffices to show that if PKV([M ]ι, pk) = 1 and ([y]ι,w) ∈ RM
then

O0([y]ι,w) =P([M ]ι, pk, [y]ι,w) = [P ]>ι w ,

O1([y]ι,w) =Sim([M ]ι, pk,K, [y]ι) =K
>[y]ι

have the same distribution. This holds since from PKV([M ]ι, pk) = 1 it follows that P = M>K and from
([y]ι;w) ∈ RM it follows that y =Mw. Thus,

O0([y]ι,w) = [P ]>ι w = [K>Mw]ι =K
>[y]ι = O0([y]ι,w) .

Hence, O0 and O1 have the same distribution and thus, Πkw is nonuniform zero knowledge under sKW-KE.
(iii: nonuniform zero knowledge under KW-KE): The security proof is the same as in the previous

case, except that Ext′A is an extractor guaranteed by KW-KE. The only difference in the following is that it
is not guaranteed that C =KĀ. The claim follows since C =KĀ is not used in the proof of (ii).

(iv: soundness under KerMDH): follows from [KW15]. ut

4.2 Πbdh
kw : QA-NIZK with k = 2

The KW-KE and sKW-KE assumptions are secure in the Sub-GBGM when k = 1. In the case k = 2, we
will prove nonuniform zero knowledge under the known BDH-KE assumption. To be able to use BDH-KE,
we need to include more elements to the public key since the simulator must be able to extract Ā and C,
and the BDH-KE assumption requires then [Ā,C]ι to be available. The corresponding PKV algorithm checks
that also these added elements are correct. The argument is depicted in Fig. 2 (the case Π = Πbdh

kw ).

Theorem 3 (Security of Πbdh
kw ). Let ι ∈ {1, 2} and k = 2. Consider Π = Πbdh

kw from Fig. 2. The following
statements hold in the BPK model.

(i) Πbdh
kw is perfectly complete.

(ii) If the Dk-SKerMDH assumption holds relative to Pgen then Πbdh
kw is computationally quasi-adaptively

sound.
(iii) If the BDH-KE assumption holds relative to Pgen then Πbdh

kw is statistically nonuniform zero knowledge.

Proof. (i: perfect completeness): obvious.
(ii: soundness): The proof is similar to the soundness proof of Π ′as in [KW15]. There, the authors

reduced the soundness of the argument to the KerMDH assumption. Since we added ([Ā,C]ι) to the public
key, we reduce instead to the SKerMDH assumption of [GHR15]; this changes certain aspects of the proof.

Assume that A breaks the soundness of Πbdh
kw with probability ε. We will build an adversary B, see Fig. 4,

that breaks SKerMDH with probability ≥ ε− 1/p.
Note that in Fig. 4, [Ā′]ζ = [Ā]ζ ∈ Gk×kζ . Define implicitly (we do not know this value) K ← K′ +

M⊥A′Ā−1 ∈ Zn×kp . Thus,

[C]ζ = (K′||M⊥)[A′]ζ = [K′Ā′ +M⊥A′]ζ = [(K′ +M⊥A′Ā−1)Ā]ζ = [KĀ]ζ
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B(p, ([A]1, [A]2)) // ([A]1, [A]2) ∈ G(k+1)×k
1 × G(k+1)×k

2

([M ]ι,M)←$D
′
p; // M ∈ Zn×mp

Let M⊥ ∈ Zn×(n−m)
p be a basis of the kernel of M>;

K′ ←$Zn×kp ;R←$Z(n−m−1)×(k+1)
p ;

for ζ ∈ {1, 2} do

[A′]ζ ←
(

[A]ζ
R·[A]ζ

)
; // A′ ∈ Z(n−m+k)×k

p

[C]ζ ← (K′||M⊥)[A′]ζ ; endfor

[P ]ι ← [M>K′]ι;
pk′ ← ([Ā,C]3−ι, [Ā,C,P ]ι);
([y]ι, [π]ι)← A([M ]ι, pk

′); // [y]ι ∈ Gnι , [π]ι ∈ Gkι
[c]>ι ← [(π> − y>K′)|| − y>M⊥]ι;

Represent [c]>ι as [c>1 ||c>2 ]ι with [c1]ι ∈ Gk+1
ι and [c2]ι ∈ Gn−m−1

ι ;

s3−ι ←$Zk+1
p ; [sι]ι ← [c1 +R

>c2 + s3−ι]ι;
return ([s1]1, [s2]2);

Fig. 4. Adversary B in the soundness proof of Theorem 3

A′([M ]ι; rZ)

(pk, auxZ)← Z([M ]ι; rZ); return ([C]1, [C]2);

A′′([M ]ι; rZ)

(pk, auxZ)← Z([M ]ι; rZ); return ([Ā]1, [Ā]2);

ExtZ([M ]ι; rZ) // Check rZ etc

C ← Ext′A′([M ]ι; rZ);
Ā← Ext′′A′′([M ]ι; rZ);

K ← CĀ−1;
return K;

Fig. 5. The extractor and A′, A′′ from the nonuniform zero knowledge proof of Theorem 3.

and
[P ]ι = [M>K′]ι = [M>(K −M⊥A′Ā−1)]ι = [M>K]ι .

Thus, pk′ has the same distribution as the real public key.
With probability ε, A is successful, i.e.,

1. y>M⊥ 6= 01×(n−m) (i.e., y 6∈ im(M)) and thus also c 6= 0n−m+k;
2. y>C = π>Ā (V accepts). Thus, 0 = π>Ā − y>C =

(
π>||0>n−m

)
A′ − y>

(
K′||M⊥)A′ =(

(π> − y>K′)|| − y>M⊥)A′ = c>A′.

Clearly, sι − s3−ι = c1 +R>c2 and

(s>ι − s>3−ι)A = (c>1 + c>2 R)A = c>A′ = 01×k .

Since c 6= 0n−m+k and R leaks only through A′ (in definitions of [C]1, [C]2) as RA,

Pr[c1 +R
>c2 = 0 | RA] ≤ 1/p ,

where the probability is over R←$Z(n−m−1)×(k+1)
p .

(ii: nonuniform zero knowledge of Πbdh
kw under BDH-KE): Let Z be a subverter aims to break

the nonuniform zero knowledge property. That is, Z([M ]ι; rZ) outputs (pk, auxZ). Let A′ and A′′ be the
adversaries from from Fig. 5. Note that RND(A′) = RND(A′′) = RND(Z). Under the BDH-KE assumption,
there exist extractors Ext′A′ and Ext′′A′′ , such that Ext′A′([M ]ι; rZ) outputs C and Ext′′A′′([M ]ι; rZ) outputs
A. We construct an extractor ExtZ([M ]ι; rZ) for Z, as depicted in Fig. 5. Clearly, ExtZ returns sk =K.

Fix concrete values of λ, p ∈ im(Pgen(1λ)), [M ]ι ∈ Dp, ([y]ι,w) ∈ RM , rZ ∈ RND(Z), and run
ExtZ([M ]ι; rZ) to obtain sk. It suffices to show that if PKV([M ]ι, pk) = 1 and ([y]ι,w) ∈ RM then

O0([y]ι,w) =P([M ]ι, pk, [y]ι,w) = [P ]>ι w ,
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O1([y]ι,w) =Sim([M ]ι, pk, sk; [y]ι) =K
>[y]ι

have the same distribution. This holds since from PKV([M ]ι, pk) = 1 it follows that P = M>K and from
([y]ι;w) ∈ L[M ]ι it follows that y =Mw. Thus,

O0([y]ι,w) = [P ]>ι w = [K>Mw]ι =K
>[y]ι = O0([y]ι,w) .

Hence, O0 and O1 have the same distribution and thus, Πkw is nonuniform zero knowledge under sKW-KE.
ut

We remark that k = 2 is needed to get soundness since Ā is represented in both groups; SKerMDH is not
secure with k = 1, [GHR15].

5 Discussion: Subverter Choosing %

In Section 3, we defined nonuniform zero knowledge in the BPK model assuming that the language parameter
% is generated honestly, that is, from the correct distribution and without any leakage of the secret keys. In
this section, we will study whether this assumption is really needed.

For the sake of concreteness, let us first consider Πkw (thus, % = [M ]ι for some matrix M) and the
nonuniform zero knowledge definition in Section 3. According to the latter, if Z on input % outputs pk then
he can leak information through two different channels: auxZ (any string of Z’s choice that can be sent to
a malicious distinguisher) and sk (the secret key extracted from Z by the PPT extractor ExtZ, where the
existence of the latter is stated by the definition).
Leaking Information via auxZ. If Z leaks (a part of) M to the verifier through auxZ then V will be able
to check whether [y]ι ∈ im([M ]ι) or even compute (a part of) [w]ι from [y]ι. This holds since L[M ]ι is not
necessarily hard ifM is public. E.g., consider the case when [M ]ι = [M1,M2]

>
ι is an Elgamal public key for

Mi 6= 0. Then [y1, y2]
>
ι =? [M ]ιw = [M1w,M2w]

>
ι can be decided efficiently, given (M1,M2), by checking

whether M1[y2]ι =M2[y1]ι. Moreover, one can compute (1/M1)[y1]ι = [w]ι.
This attack is possible unless communication between the creator of [M ]ι and the malicious verifier

is limited to not leak any additional information about M . Hence, achieving the intuitive notion of zero
knowledge is impossible unless [M ]ι is created by a separate party who does not leak information to V. (Or,
the language L[M ]ι is easy, which is not interesting.)
Leaking Information via Knowledge Assumptions. There is a more sneaky (and seemingly novel)
attack where the subverter, who knowsM , leaksM to the simulator via sk. Since this attack is less obvious,
we will consider it in more detail. In principle, this attack means that one can construct QA-NIZK arguments
that are “formally” zero knowledge but intuitively leak information.

For example, consider the case where the pair ([M ]1, [M ]2) belongs to pk created by Z. Under the
BDH-KE assumption, there exists a PPT extractor ExtZ that extracts M from the pk. Given [y]ι ∈ L[M ]ι

and M , ExtZ computes [w]ι s.t. [y]ι = [M ]ιw (cf. the previous subsubsection). One can now construct a
contrived QA-NIZK (see Fig. 6) where the prover and the simulator both output [w]ι. Since the outputs of
P and Sim are the same, this protocol is formally zero knowledge although intuitively it leaks information
about w.

More generally, a malicious subverter can choose sk to be a function ofM and thus leak (partially)M to
the simulator who then uses this information to simulate; as above, in this case one can design an argument
system that is formally zero knowledge but still leak information.

This is a well-known problem: if the simulator can compute the witness then she can just output the
honest proof. Thus, if simulator is allowed to run in time, sufficient to compute witness from the input, there
is no reason to construct a zero knowledge argument system. In the case of nonuniform zero knowledge, one
also has to make sure that the (PPT) extractor will not be able to extract M (or a part of it). Hence, one
should not use a knowledge assumption where the extractor, given pk output by Z, returns some value that
depends on M . This is impossible to achieve in general: for example in Πkw and Πbdh

kw , the subverter who
knows M can choose K as a function of M .
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K(p): // K creates sk =M ∈ Z2×1
p so he does not get [M ]ι as an input

([M ]1,M)←$D′p; pk← ([M ]1, [M ]2); sk←M ; return (pk, sk);
P(%, pk, [y]ι, w): return [π]ι ← [w]ι ∈ G1

ι ;
ExtZ(pk; r): Extract sk = (M1,M2)

> by using BDH-KE; return sk;
Sim(%, pk, sk, [y]ι): if M−1

1 [y1]ι 6=M−1
2 [y2]ι then return ⊥; else return [π]ι ←M−1

1 [y1]ι ∈ G1
ι ; fi

V(%, pk, [y]ι, [π]ι) : check that [y]>ι [1]3−ι = [π]>ι [M ]>3−ι;
PKV(%, pk): check that [M ]1[1]2 = [1]1[M ]2;

Fig. 6. A contrived leaky subspace QA-NIZK (n = 2, m = k = 1)

Thus, we cannot allow the subverter to construct (or even know) M herself since then we can construct
an ostensibly nonuniform zero knowledge QA-NIZK argument system where the extractor can use a simple
knowledge assumption (like BDH-KE), that is not specific to M at all, to recover M (or a part of it).

6 Conclusion and Open Questions

Bellare, Fuchsbauer, and Scafuro [BFS16] defined the framework of subversion-resistant NIZK. In particular,
a NIZK is Sub-ZK if it stays zero knowledge even if the CRS creator is malicious (subverted). After that,
Abdolmaleki, Baghery, Lipmaa, and Zając [ABLZ17] and Fuchsbauer [Fuc18] showed how to make the most
efficient known SNARKs Sub-ZK. Importantly, as shown in [ABLZ17,Fuc18], Sub-ZK for SNARKs comes for
free except that the prover has to check the correctness of the CRS. Since the prover can omit the check
assuming that the CRS was correctly generated, one can argue that Sub-ZK is the correct notion of zero
knowledge for zk-SNARKs. It is a natural question whether the same is the case for QA-NIZKs. In the current
paper, we showed that this is indeed so although the answer is (unexpectedly?) more complicated than in
the case of SNARKs.

We first showed that Sub-ZK is equivalent to the previously known notion of no-auxiliary-string non-black-
box zero knowledge (also known as non-uniform zero knowledge [Wee07]) in the BPK model; this natural
connection was missed in the previous work. In particular, this means that due to the known impossibility
results for nonuniform zero knowledge [Wee07], we get that the use of non-falsifiable assumptions in [BFS16,
ABLZ17,Fuc18] to prove Sub-ZK is unavoidable. (This is alluded to but not proven by Bellare et al. [BFS16].)

After that, we showed that one can achieve nonuniform zero knowledge (and thus Sub-ZK) for free for
the most efficient known QA-NIZK for linear subspaces by Kiltz and Wee [KW15]. However, the QA-NIZK
case is more complicated than the SNARK case: in the case k = 1 (where k is a security parameter related
to the matrix distributions; k = 1 gives the best efficiency) we showed that one can achieve nonuniform
zero knowledge for free under a new knowledge assumption. Interestingly, the knowledge assumption that
is sufficient to achieve nonuniform zero knowledge does not guarantee that the whole public key is correct.
We showed that the latter can be established under a stronger assumption. We also proved that nonuniform
zero knowledge in the (less interesting) case k = 2 can be obtained from a standard knowledge assumption
but it requires one to duplicate some public-key elements to both source groups. Importantly, we noted that
all analysed QA-NIZK variants are black-box zero knowledge in the RPK model.

Finally, we showed that the language parameter % of QA-NIZKs needs to be generated so that the trapdoor
will not be leaked to the verifier or the simulator. This is normal in the case of QA-NIZKs (in particular, a
QA-NIZK argument system is only defined for a fixed distribution of % = [M ]ι). Nevertheless, we pointed
out some possible attacks (including a non-obvious one where a malicious public-key generator leaks M to
the simulator via a knowledge assumption).

Open Problems and Further Work. Since in the important case k = 1, Sub-ZK can be achieved for free,
we argue that it is the correct notion of zero knowledge for QA-NIZKs even if achieving it is not needed in a
concrete application. Still, we mentioned some concrete applications of Sub-ZK QA-NIZK, but we leave their
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further investigation as an interesting open question. We also leave it to the further work to study whether
different versions of QA-NIZKs (like one-time simulation-sound QA-NIZKs [JR13], unbounded simulation-
sound QA-NIZK [LPJY14,KW15,LPJY15] or QA-NIZKs for other languages [GHR15,GR16]) can be made
Sub-ZK “for free”.
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A GBGM and Sub-GBGM

Generic Bilinear Group Model. Next, we will introduce the Generic Bilinear Group Model
(GBGM) [Nec94,Sho97,Mau05,BBG05], by following the exposition in [ABLZ17].

We start by picking an asymmetric bilinear group (p,G1,G2,GT , ê) ← Pgen(1λ). Consider a black box
B that stores values from additive groups G1,G2,GT in internal state variables cell1, cell2, . . . , where for
simplicity we allow the storage space to be infinite (this only increases the power of a generic adversary).
The initial state consists of some values (cell1, cell2, . . . , cell|inp|), which are set according to some probability
distribution. Each state variable celli has an accompanying type typei ∈ {1, 2, T,⊥}. Initially, typei = ⊥ for
i > |inp|. The black box allows computation operations on internal state variables and queries about the
internal state. No other interaction with B is possible.

Let Π be an allowed set of computation operations. A computation operation consists of selecting a (say,
t-ary) operation f ∈ Π together with t + 1 indices i1, i2, . . . , it+1. Assuming inputs have the correct type,
B computes f(celli1 , . . . , cellit) and stores the result in cellit+1 . For a set Σ of relations, a query consists of
selecting a (say, t-ary) relation % ∈ Σ together with t indices i1, i2, . . . , it. Assuming inputs have the correct
type, B replies to the query with %(celli1 , . . . , cellit). In the GBGM, we define Π = {+, ê} and Σ = {=},
where

1. On input (+, i1, i2, i3): if typei1 = typei2 6= ⊥ then set celli3 ← celli1 + celli2 and typei3 ← typei1 .
2. On input (ê, i1, i2, i3): if typei1 = 1 and typei2 = 2 then set celli3 ← ê(celli1 , celli2) and typei3 ← T .
3. On input (=, i1, i2): if typei1 = typei2 6= ⊥ and celli1 = celli2 then return 1. Otherwise return 0.

Since we are proving lower bounds, we will give a generic adversary A additional power. We assume that
all relation queries are for free. We also assume that A is successful if after τ operation queries, he makes
an equality query (=, i1, i2), i1 6= i2, that returns 1; at this point A quits. Thus, if typei 6= ⊥, then celli =
Fi(cell1, . . . , cell|inp|) for a polynomial Fi known to A.
Sub-GBGM. By following [BFS16,ABLZ17], we enhance the power of generic bilinear group model. Since
the power of the generic adversary will increase, security proofs in the resulting Sub-GBGM are more realistic
than in the GBGM, see Section 2.

More precisely, we give the generic model adversary an additional power to effectively create new inde-
terminates Yi in groups G1 and G2 (e.g., by hashing into elliptic curves), without knowing their values. Since
[Y ]1 [1]2 = [Y ]T and [1]1 [Y ]2 = [Y ]T , the adversary that has generated an indeterminate Y in Gι can also
operate with Y in GT . Formally, Π will contain one more operation create, with the following semantics:

4. On input (create, i, t): if typei = ⊥ and t ∈ {1, 2, T } then set celli←$Zp and typei ← t.

The semantics of create dictates that the actual value of the indeterminate Yi is uniformly random in Zp,
that is, the adversary cannot create indeterminates for which she does not know the discrete logarithm and
that yet are not random.
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