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Abstract. Recent publications, such as [10] and [13], exploit the advan-
tages of deep-learning techniques in performing Side-Channel Attacks.
One example of the Side-Channel community interest for such techniques
is the release of the public ASCAD database, which provides power con-
sumption traces of a masked 128-bit AES implementation, and is meant
to be a common benchmark to compare deep-learning techniques perfor-
mances. In this paper, we propose two ways of improving the effectiveness
of such attacks. The first one is as new kind of layer for neural networks,
called “Spread” layer, which is efficient at tackling side-channel attacks
issues, since it reduces the number of layers required and speeds up the
learning phase. Our second proposal is an efficient way to correct the
neural network predictions, based on its confusion matrix. We have vali-
dated both methods on ASCAD database, and conclude that they reduce
the number of traces required to succeed attacks. In this article, we show
their effectiveness for first-order and second-order attacks.

Keywords: Deep-learning · Side-Channel Attack · Spread layer · AS-
CAD · Confusion matrix · Bayesian correction.

1 Introduction

1.1 Side-channel attacks

Side-channel attacks are a set of attack methods used to target cryptographic
devices and retrieve sensitive information. These methods may leverage power
consumption traces gathered when executing an algorithm.

Order of a side-channel attack During the execution of the algorithm, many
variables are processed. If one of these depends on secret data (e.g. a secret key),
then this variable is called sensitive since its knowledge may lead an attacker to
retrieve the concealed data. Moreover, the minimal amount of sensitive variables
required to retrieve the key defines the order of an attack. For instance, if we
only need to know one sensitive variable, and that this variable is correlated at
some points in the consumption traces, then this leakage is called a first-order
leakage and we need to perform a first-order side-channel attack to retrieve the
secret key.



2 C. Pfeifer, and P. Haddad

Classes of side-channel attacks These attacks may work according to two sce-
narios: profiled or non-profiled.

– In the profiled case, the attacker possesses a device similar to the one being
targeted and acquires beforehand many execution traces according to dif-
ferent parameters. Based on these observations, he elaborates and tunes a
model able to retrieve the sensitive information targeted. This category of
attacks includes Templates Attacks [4] and Stochastic models (a.k.a Linear
Regression Analysis) [5, 12, 11].

– In the non-profiled case, the attacker does not have such a device at his
disposal. This set of non-profiled attacks includes, among others, Differential
Power Analysis [14], Correlation Power Analysis [8] and Mutual Information
Analysis [6, 3].

In both scenarios, the adversary obtains afterwards attack traces and shall re-
trieve some sensitive information used. In addition, he may know some public
information such as the the plaintext, the ciphertext, etc.

1.2 Deep-learning

Some models used to predict sensitive data rely on deep-learning, which is a
branch of machine learning, namely methods learning how to extract relevant
information out of a usually large amount of data, without being explicitly told
how to. Deep-learning is specifically based on the use of neural networks to
make predictions. The basis component of a neural network is the neuron, which
performs a single operation on its input(s). Neurons are assembled into layers,
which are then stacked.

Architecture Some common layers used in deep-learning are the following:

– Dense layers are composed of many neurons, whose inputs are connected
to all outputs of the previous layer. Each input is then multiplied by some
trainable weights, and summed up before being passed to the next layer.

– Activation layers are used to increase the computational capacity of the
network. They implement an activation function, which is applied to each
output of the previous layer, and whose results make the output of the layer.
Such functions may be non-linear or almost everywhere differentiable and
are usually not trainable. For instance, the softmax function (a special case
of activation functions since it is applied on the whole previous layer) is used
to obtain a probability distribution out of its input.
A network exclusively made of the two aforementioned types of layers is
called a Multi-Layer Perceptron (MLP).

– Flatten layers are used to reshape the output of the previous layer into a
one-dimensional output.
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Learning phases The learning process of a neural network implies many ele-
ments:

– A training set contains observations, for which the correct output labels (e.g.
the value of the targeted data) are known. it is used before the attack to
train and tune the neural network.

– A validation set contains observations, whose correct labels are also known,
but which are not used for the training. They serve as a token to prevent
lack of generality (called “overfitting”). The accuracy of the neural network
predictions on these data is regularly verified and the learning process may
be stopped if a decrease occurs.

– A loss function is applied to measure the inconsistency between the predic-
tions and the expected labels.

– An optimization algorithm is then applied on the network to tune the train-
able weights in order to reduce the loss function.

The neural network loops through the training set many times (many “epochs”)
to optimize its weights. Since this set may be very large, it is chunked into small
batches of observations, which are then processed simultaneously (e.g. taking
advantage of GPU). After each epoch, we monitor the accuracy of the predictions
on the training and validation set. At the end of the learning phase, a confusion
matrix, showing the distribution of the predicted classes for a given true label,
can be computed so as to visualize which classes are correctly predicted and
which ones are not.

Application to side-channel attacks Deep-learning models may be used to
retrieve sensitive data in profiled or non-profiled contexts. In the former, one
way to adapt the problem to their usage is to give the power consumption traces
directly as input for the neural network to learn. The targeted labels are not
necessarily the raw sensitive data, but may be the result of a leakage model
function applied to them. A common choice is the use of the Hamming weight
function.

1.3 Related works

Side-channel attacks based on deep-learning is still a recent research field but
some works have already been published.

ASCAD public database In order to have common benchmarks for researchers
to evaluate their neural networks, ANSSI and CEA have published a pub-
lic database of power consumption traces for side-channel attacks, called AS-
CAD [10]. Their traces were gathered during the execution of a masked 128-bit
AES implementation on the ATMega8515 MCU device.
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Advanced Encryption Standard The AES is a encryption algorithm using the
same key for both encryption and decryption (i.e. symmetric). This algorithm
manipulates the following data:

– A plaintext, which is the message being encrypted. It has a length of 128
bits.

– A ciphertext, which is the resulting encrypted message. It has also a length
of 128 bits.

– A secret key, which is used to encrypt the plaintext. This key is a sensitive
data and has also a length of 128 bits in the case of the ASCAD database.

During the AES execution, some internal variables are correlated to the power
consumption. One of the operations executed is a non-linear byte substitution,
called a Sbox. In the case of a 128-bit AES, the first time this operation is done,
it is applied to all bytes of the plaintext, performing the following operation:

S = Sbox(plaintext byte⊕ key byte)

where (S, plaintext byte, key byte) ∈ J0, 255K3
(1)

The substitution table being known and reversible, S is a sensitive data because
it depends on the secret key. Since the plaintext may be known by the attacker,
he may retrieve the secret key with a first-order attack.

Masking In order to prevent such attacks, countermeasures are implemented. In
ASCAD database, a 8-bit random mask is applied to the output of the Sbox:

S = Sbox(plaintext byte⊕ key byte)⊕M

where M ∈ J0, 255K
(2)

This increases by one the order of the attack required to retrieve the key. One
shall know the mask M and the masked Sbox output S so as to retrieve the key
byte.

In this article, we compare the performances of the best MLP proposed in [10]
to our solution. The Signal-to-Noise ratio of the sensitive data in these traces
has been discussed in [10].

Non-profiled deep-learning-based side-channel attacks In [13], a new
side-channel attack method in non-profiled context has been introduced. It relies
on the difference of learning rates of a neural network, when the output labels are
based on the correct key hypothesis or not. This has been shown to be efficient
against masked attack traces, but requires high computational power due to the
fact that all key hypotheses must be tested.
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1.4 Our contribution

First of all, we introduce in Section 2 a new layer called “Spread”, which im-
proves greatly the performance of first-order side-channel attacks based on neural
networks, compared to the ASCAD best MLP. Then, in Section 3, we extend
this kind of attack to second-order attacks. Eventually, we propose in Section 4 a
Bayesian correction of the neural network predictions, which reduces even more
the number of attack traces required.

2 First-order attack

2.1 Adversary strength

In this model, as summarized in Figure 1, the adversary has at his disposal a
similar device to the one being attacked, and can run it a given amount of times
during a training phase. At each run, he varies the plaintext and acquires the
corresponding consumption trace. In this scenario, the adversary can not change
the key, but knows its value and is also able to read the ciphertexts.
After that, during a so called attack phase, the targeted device may be run a
given amount of times. At each run, the adversary may change the plaintext and
acquires the attack trace with its respective ciphertext. The goal is to retrieve
the key used by the device under attack. This is the same attack model as in
ASCAD publication [10].

Profiled

Training phase

AES
provides

Traces
Plaintexts
Ciphertexts
Keys

Attack phase

Traces, Plaintexts, Ciphertexts

→ Retrieve key

Fig. 1: Attack context.

2.2 Protocol

In the first phase of the protocol, the neural network is trained to predict the
Hamming weight of the Sbox output value, using the acquired traces from the
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available device. After that, the second phase of our protocol relies on the Max-
imum Likelihood Estimator (MLE). First (step A), we apply the trained neural
network to each attack trace, so as to obtain a probability vector of the Hamming
weight of the Sbox output value. Then (step B), knowing the Hamming weight
distribution and assuming that the Sbox outputs are uniformly distributed over
all possible byte values, we compute the probability for each Sbox output byte
to be the correct one, using Equation 3.

Pr(S = s) =
Pr(HW (S) = HW (s))

C
HW (s)
8

(3)

where Pr(HW (S) = HW (s)) is given by our neural network (step A). After-
wards (step C), these probabilities can be used to derive probabilities over the
keys, since one Sbox output and one plaintext match exactly one key byte, as
recalled in Equation 4.

key byte = Sbox−1(S)⊕ plaintext byte (4)

Eventually (step D), the sum of the logarithm of each key hypothesis proba-
bility over all attack traces gives us the likelihood of each key. The higher the
likelihood, the more likely is one key hypothesis. The entire recombination pro-
cess is summarized in Figure 2 and the algorithm is described, step by step, in
Algorithm 1.

Design choice We decided to implement the Maximum Likelihood Estimator
(MLE) to combine together the probability vectors of each attack trace, since it
has two interesting properties, according to [7]:

– The MLE is the best estimator asymptotically. This means that it has the
best convergence rate when the number of traces increases.

– The MLE is consistent under appropriate conditions. Therefore, it should
converge to the true value when the number of traces increases.

More details about these conditions may be found in [7].
Given this protocol, the neural network predictions play a determining role in

the key retrieval process. In the following two subsections, we give more details
about its implementation and specifically about the new layer, called Spread
layer, which we devised.

2.3 Spread layer

Core concept The design of the Spread layer is based on the observation that
the leakages in our traces are located at some time samples, which are always
matching extreme values (e.g. consumption peaks). At these points, the power
consumption is linearly correlated to the Hamming weight of the sensitive data
targeted. Therefore, we need a neural network able to efficiently classify traces
based on different values at some points. The only layer able to perform such
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Fig. 2: Recombination of attack traces for the first-order attack.

Algorithm 1: Secret key byte retrieval for the first-order attack.

Input: traces: Attack traces
Input: NN : Neural network giving prob. vect. for HW(Sbox byte)
Output: Secret key byte
for trace ∈ traces do

A probSboxHW []← NN(trace);
for s ∈ All(Sbox bytes) do

B probMatrix[s]← probSboxHW [HW (s)]

C
HW (s)
8

;

end
for s ∈ All(Sbox bytes) do

C vn[Sbox−1(s)⊕ ptxt]← probMatrix[s];
end

D v ← v + log(vn);

end
return argmax(v);
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classification is the activation layer, because its non-regularity can be used to
have a very different response according to the input value. For instance, a binary
step, having 0 or 1 as output if its input is respectively negative or positive, will
efficiently discriminate 2 values, which have been centered around zero. But in
our case, we want to discriminate between all possible Hamming weights. The
Spread layer is intended to perform this operation more efficiently. The basic idea
is to transform the output of a neuron into a spatially-encoded information at the
expense of a dimensionality increase, since the latter is known to be efficiently
handled by neural networks. We implemented it directly using Tensorflow (and
not Keras backend, which lacks some functions at the time of this writing).

Implementation details As described in Figure 3, the Spread layer extends
the dimension of the previous layer by a spread factor, its only hyperparameter.
Each new neuron created is related to a neuron of the previous layer and is
assigned a centroid from 0.5 to spread factor - 0.5. When a value x is passed
as input by the previous neuron, this value is remapped linearly in the interval
[0, spread factor] to a new value x′. Then, the 1 or 2 neurons, whose centroids
are the closest to x′, output a value proportional to their distance to x′, more
precisely:

∀x′ ∈ [0, spread factor],∀neuron nc with centroid c,

nc(x
′) =


1 if c = 0.5 ∧ x′ < c

1 if c = spread factor − 0.5 ∧ x′ > c

max(0, 1− abs(c− x′)) otherwise

(5)

Behavior The Spread layer outputs values belonging to [0,1], whose sum per
input neuron always equals one. Most of the time, 2 neurons have a non-zero
output per input neuron, except when one has a value equal to 1, which occurs
either when the input exactly matches a centroid, or when the output saturates
at the borders.

The training phase consists in learning the minimum and maximum output
values of each input neuron, in order to map x without saturation. Due to
implementation constraints, the initial interval is [0,1] and the previous layer
shall output at least over this interval for better fitting. But this is the case
most of the time with the usual initializers.
In the next subsections, we describe how we implemented the spread layer in a
neural network.

2.4 Neural network structure

Our neural network has the structure described in Figure 4. The couples indicate
the shape of the data, the first dimension being the not-fixed batch size, hence
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Fig. 3: Spread layer principle with example spread factor of 3.

“None”, but equals to 100 for all our tests.
It has been trained to predict the Hamming weight of the Sbox output, that is:

y = HammingWeight(Sbox(plaintext⊕ key)) (6)

It has been compiled using the Nadam optimizer and the categorical crossentropy
loss function. At the beginning of this section, we presented the protocol used to
retrieve the key and the way we implemented the neural network. In the next two
sections, we evaluate and compare our proposed improvement to state-of-the-art
results.

2.5 Validation

To compare our model (refered to as Spread in the following parts) to others,
we implemented the ASCAD best MLP (refered to as MLP in the following
parts). Since this model uses the identity leakage model instead of the Hamming
weight, we decided to test all combinations of models and leakage models; that is:
MLP & ID, MLP & HW, Spread & ID and Spread & HW. We also adapted the
whole attack process in order to handle the identity leakage model, and tested
all these combinations with various amounts of training traces. We stopped the
training after 80 epochs so as to lower the overfitting. Therefore, we deem the
learning speed as an important factor in our tests, since the attack process shall
be repeated 16 times to recover all key bytes.
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main_input: InputLayer
input:

output:

(None, 700)

(None, 700)

dense_1: Dense
input:

output:

(None, 700)

(None, 100)

spread_1: Spread
input:

output:

(None, 100)

(None, 600)

dense_2: Dense
input:

output:

(None, 600)

(None, 9)

softmax_1: Softmax
input:

output:

(None, 9)

(None, 9)

Fig. 4: Architecture of the Spread & HW neural network.

We then performed the attack on subsets of remaining ASCAD traces. Each
subset contains 5,000 attack traces. We computed the mean rank of the correct
key byte over all attacks, and considered the attack as a success (PASS) if all
the attacks on subsets succeeded within less than 5,000 attack traces; that is,
that the correct key byte is the most likely (i.e. has rank 0) at some points and
keeps its rank until the end of our subset. We indicated in brackets the minimal
amount of traces required such that all attacks succeed.
On the other hand, we considered the attack a failure (FAIL) if any of our at-
tacks did not lead to the correct key byte in the end, in which case we indicate
the amount of succeeded attacks divided by the amount of total attacks.

In practice, the labels do not match those of Equation 6, but also take into
account the mask values. As we know them during the attack phase, this is equiv-
alent to a first-order AES implementation, and is what has been done in [10].

2.6 Results and comparisons

Figure 5 compares the mean rank of the correct key byte according to the amount
of attack traces for the four combinations of neural networks and leakage models,
given 1,000 training traces. We observed that the only neural network able to
pass the test is the Spread & HW. If we use the full ASCAD training database,
that is 50,000 training traces, all combinations succeed. As the results are very
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clear for low amounts of training traces, we wanted clear results on the whole
training set too, and decided to lower the attack set size to 100 traces, in order
to compute our mean over 100 attack sets, as shown in Figure 6. In this case,
MLP & ID and Spread & ID have similar results. As already stated in [10], we
can verify that MLP & HW is much worse than MLP & ID. But Spread & HW
shows impressive results by requiring for its worst-case attack less than half of
the traces needed by the worst-case MLP & ID attack.

(a) MLP & ID (b) MLP & HW

(c) Spread & ID (d) Spread & HW

Fig. 5: Mean rank of the correct key byte as a function of number of attack
traces, given 1,000 training traces.

Table 1 compares all four combinations for various amounts of training traces.

2.7 Conclusion

The use of our Spread layer-based network shows better results regarding the
number of attack traces required, regardless of the number of training traces. It
allows successful attacks with a small number of available training traces and
improves the convergence speed towards the correct key byte.
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(a) MLP & ID (b) MLP & HW

(c) Spread & ID (d) Spread & HW

Fig. 6: Mean rank of the correct key byte as a function of number of attack
traces, given 50,000 training traces.

Table 1: Comparison of all four networks according to the amount of training
traces.
Nb of training traces 1,000 2,000 4,000 8,000

MLP & ID (ASCAD) FAIL (0/11) FAIL (0/11) FAIL (0/11) FAIL (1/10)

MLP & HW FAIL (2/11) FAIL (9/11) FAIL (1/11) PASS (230)

Spread & ID FAIL (0/11) FAIL (0/11) FAIL (7/11) PASS (100)

Spread & HW PASS (1302) PASS (116) PASS (35) PASS (13)

Nb of training traces 16,000 32,000 50,000

MLP & ID (ASCAD) PASS (868) PASS (12) PASS (7)

MLP & HW PASS (353) PASS (9) PASS (5)

Spread & ID PASS (15) PASS (11) PASS (6)

Spread & HW PASS (7) PASS (7) PASS (5)



Spread: a new layer for profiled deep-learning side-channel attacks 13

This behavior is all the more interesting since real-life devices, like the one
used for the profiling phase, usually implement counters, limiting the number of
consumption traces, which can be acquired. Encouraged by the promising results
obtained in Section 2, we decided to adapt this first-order attack protocol to a
second-order attack.

3 Second-order attack

3.1 Adversary strength

In this model, the adversary has at his disposal a similar device as the one being
attacked. During the training phase, he can vary the plaintexts and the masks
used a given amount of times, and acquires the consumption traces as well as
the ciphertexts. The key is fixed but known to him.
During the attack phase, the adversary can run the attacked device a given
amount of times, may change the plaintexts, but knows neither the masks, nor
the key. The adversary’s goal is to retrieve this latter key.

3.2 Protocol

Here, we adapted the previously used protocol to the case, where we know nei-
ther the Sbox output, nor the mask. First (step A), we apply a trained neural
network on each of our attack traces, so as to obtain a probability vector of the
Hamming weights of the masked Sbox output value and of the mask. Then (step
B), knowing the Hamming weight distribution and assuming that the keys and
the masks are uniformly distributed over all possible byte values, we compute
the probability for each couple (Mask byte,Masked Sbox byte) to be the cor-
rect one, using Equation 7. This is justified by the fact that the Sbox output
and the mask are independent random variables when the key is unknown.

Pr(Mask byte = m ∩ Sbox byte = s) =
probMask[m] · probSbox[s]

C
HW (m)
8 · CHW (s)

8

(7)

Afterwards (step C), these probabilities can be used to derive probabilities over
the keys. Since one couple and one plaintext match exactly one key byte, as re-
called in Equation 8, we keep the maximum probability associated to all couples
implying the same given key.

key byte = Sbox−1(sbox byte⊕mask byte)⊕ plaintext byte (8)

Eventually (step D), the remaining recombination is the same as for the previous
attack scenario. The whole recombination process is summarized in Figure 7 and
the algorithm is described, step by step, in Algorithm 2.



14 C. Pfeifer, and P. Haddad

trace 1

NN

A


Pr(HW (S) = 0)
Pr(HW (S) = 1)

...
Pr(HW (S) = 8)



Pr(HW (M) = 0)
Pr(HW (M) = 1)

...
Pr(HW (M) = 8)


B

 p(S,M)=(0,0) . . .
...

. . .

p(S,M)=(255,0) . . .


max

C

Plaintext
Pr(K = 0)
Pr(K = 1)

...
Pr(K = 255)



. . . . . . . . .

trace n

NN

A


Pr(HW (S) = 0)
Pr(HW (S) = 1)

...
Pr(HW (S) = 8)



Pr(HW (M) = 0)
Pr(HW (M) = 1)

...
Pr(HW (M) = 8)


B

 p(S,M)=(0,0) . . .
...

. . .

p(S,M)=(255,0) . . .


max

C

Plaintext
Pr(K = 0)
Pr(K = 1)

...
Pr(K = 255)



log

log

log ∑
D


L(K = 0)
L(K = 1)

...
L(K = 255)



Fig. 7: Recombination of attack traces for the second-order attack.

Algorithm 2: Secret key byte retrieval for the second-order attack.

Input: traces: Attack traces
Input: NN : Neural network giving prob. vect. for HW(Mask byte) and

HW(Sbox byte)
Output: Secret key byte
for trace ∈ traces do

A probMask[], probSbox[]← NN(trace);
for (m, s) ∈ AllCouples(Mask bytes, Sbox bytes) do

B probMatrix[m, s]← probMask[m]·probSbox[s]

C
HW (m)
8 ·CHW (s)

8

;

end
for key byte ∈ All(Key bytes) do

C vn[key byte]← max(m,s),key byte=Sbox−1(s⊕m)⊕ptxt(probMatrix[m, s]);

end
D v ← v + log(vn);

end
return argmax(v);
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Design choice We decided to keep the maximal probability over all possible
couples of Mask and Sbox for the following reason. We may model the choice
of the correct key byte k as 28 statistical hypothesis tests like this: the null
hypothesis is “k is the correct key” and the other alternative is “k is not the
correct key”. Then, we want to minimize the risk to reject the null hypothesis
when this one appears to be true (also called minimizing the Type-I error) at
the expense of requiring more attack traces. Keeping the maximal probability
minimizes this kind of error.

3.3 Architecture of our neural network

Our neural network has been designed with two branches. The first one is trained
to predict the Hamming weight of the masked Sbox output. The other one is
intended to predict the Hamming weight of the mask applied, which is also to
be found in the consumption traces. This architecture is depicted in Figure 8.
We altered the MLP best from ASCAD the same way, adding a branch for each
sensitive data we want to retrieve. The compilation parameters have not been
changed.

3.4 Results

Behavior comparison In Figure 9, we depicted the confusion matrices of the
two branches for the MLP & HW and the Spread & HW trained with 2,000
training traces. Two different behaviors can be noticed. On the one hand, the
MLP & HW tends to predict the most represented label first, and then to grasp
the more distant labels. On the other hand, the Spread & HW best predicts labels
around the most represented one, which leads to a slightly lesser accuracy.
Nevertheless, this is of no use for the secret key retrieval algorithm to have only
the most represented label predicted. Rather than that, we would like to have at
least two distinct labels with accurate enough predictions. A way to represent
that is to compute the Pearson correlation coefficient of the confusion matrix. If
it has a high absolute value, then the predictions are linearly correlated to the
true labels, and we can use these for our algorithm. But if the predictions do
not depend on the true label, the coefficient will be near to zero. And indeed, we
observe in Figure 10 that this coefficient is higher for the Spread & HW neural
networks, which leads to the success of all attacks, compared to the other one,
having no successful attack at all.

Comparison according to number of training traces Table 2 compares all
four combinations for various amounts of training traces. The identity leakage
model does not succeed for both neural networks. The Spread & HW succeeds
from 2,000 training traces, and requires on the whole training set two times less
attack traces than MLP & HW.
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main_input: InputLayer
input:

output:

(None, 700, 1)

(None, 700, 1)

flattenSbox: Flatten
input:

output:

(None, 700, 1)

(None, 700)
flattenMask: Flatten

input:

output:

(None, 700, 1)

(None, 700)

denseSbox0: Dense
input:

output:

(None, 700)

(None, 100)
denseMask0: Dense

input:

output:

(None, 700)

(None, 100)

spreadSbox0: Spread
input:

output:

(None, 100)

(None, 600)
spreadMask0: Spread

input:

output:

(None, 100)

(None, 600)

denseSbox1: Dense
input:

output:

(None, 600)

(None, 9)
denseMask1: Dense

input:

output:

(None, 600)

(None, 9)

sbox_output: Softmax
input:

output:

(None, 9)

(None, 9)
mask_output: Softmax

input:

output:

(None, 9)

(None, 9)

Fig. 8: Architecture of the Spread & HW neural network with two branches.

(a) MLP & HW (b) Spread & HW

Fig. 9: Comparison of confusion matrices in the second-order attack case with
2,000 training traces.
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(a) MLP & HW (b) Spread & HW

Fig. 10: Comparison of Pearson correlation coefficient according to the number
of epochs in the second-order attack case with 2,000 training traces.

Table 2: Comparison of all four networks according to the amount of training
traces.
Nb of training traces 1,000 2,000 4,000 8,000

MLP & ID (ASCAD) FAIL (0/11) FAIL (0/11) FAIL (0/11) FAIL (1/10)

MLP & HW FAIL (0/11) FAIL (0/11) FAIL (0/11) FAIL (7/10)

Spread & ID FAIL (0/11) FAIL (0/11) FAIL (0/11) FAIL (0/10)

Spread & HW FAIL (0/11) PASS (2308) PASS (2465) PASS (1113)

Nb of training traces 16,000 32,000 50,000

MLP & ID (ASCAD) FAIL (0/8) FAIL (0/5) FAIL (0/2)

MLP & HW PASS (1809) PASS (1700) PASS (786)

Spread & ID FAIL (0/8) FAIL (0/5) FAIL (0/2)

Spread & HW PASS (878) PASS (699) PASS (344)
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3.5 Conclusion

Similarly to what we have seen in Section 2 for first-order attacks, we observed
here that the use of our Spread layer-based network also shows better results
regarding the number of attack traces required for second-order attacks. More-
over, our improvement allows successful attacks with a small number of available
training traces and improves the convergence speed towards the correct key byte.
In the next section, we introduce the last improvement of this article. It reduces
the number of attack traces required. As it relies on the confusion matrix and
Bayes’ theorem, we call it the Bayesian correction.

4 Bayesian correction

The use of confusion matrices to provide information on the errors and improve
the accuracy has already been studied, among others, in [2, 1, 9, 15]. Here, we
adapted these approaches to our case.

4.1 Principle

The confusion matrix gives us valuable information about the bias and variance
of the neural network for each input label. We decided to leverage it in order
to correct the predictions. Indeed, its output may be considered as a random
variable Y , whose value depends on the expected label, a random variable X.
The confusion matrix let us know the distribution of Y knowing X, that is
Pr(Y |X). By means of Bayes’ theorem, which is recalled in Equation 9, we
can retrieve the probability of the true label knowing the output of the neural
network, that is Pr(X|Y ) and thus correct somewhat its predictions.

Pr(X|Y ) =
Pr(Y |X) · Pr(X)

Pr(Y )
(9)

In the case of the Hamming weight leakage model, X follows a binomial distri-
bution. More precisely, X ∼ B(8, 1

2 ) and the distribution of Y is known thanks
to the law of total probability. The final formula is summarized in Equation 10.

Pr(X|Y = y) =
Pr(Y = y|X) · Pr(X)∑8

x=0 Pr(Y = y|X = x) · Pr(X = x)
(10)

Limitation This correction is only valid if the confusion matrix over the training
set is the same as over the attack set. This should approximately be the case
if the neural network did not overfit during the training phase, as shown in
Figure 11.
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Fig. 11: Comparison of confusion matrix over training and validation set for
Spread & HW in the first-order attack trained over 8,000 traces.
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4.2 Results

We compared the mean ranks of the correct key byte with and without correction
for the same trained Spread & HW neural network. Figure 12 shows the confusion
matrices with and without this correction in the second-order attack. We notice
that the correction enables better predictions of some Hamming weights with a
few samples (e.g. labels 0 and 8). On the other hand, the mask predictions, which
were strongly biased, become very fuzzy. Their respective correct key byte mean
ranks are depicted in Figure 13. The results are worse than expected. It seems
that a biased estimator is better than a corrected one in the case of a fuzzy
confusion matrix, due to the presence of “columns” in the original confusion
matrix, that is subgroups of X values for which the distribution of Y is almost
independent. The correction is not working great in this case, and even though
our neural network is biased, the amount of required traces will be lower without
correction, since it is more accurate over the most represented classes. Therefore,
we decided to correct only the Sbox predictions.

(a) Without correction (b) With correction

Fig. 12: Confusion matrices of Spread & HW trained on 16,000 training traces.

First-order attack scenario Table 3 compares the effect of the correction
in the first-order attack case. The failure of the improvement on 1,000 training
traces is due to the neural network inclination to predict the most represented
labels and thus having a low Pearson correlation coefficient, as depicted in Fig-
ure 14.

Second-order attack scenario Table 4 compares the effect of the correction
in the second-order attack case. We do not apply any correction to the mask
predictions because of their high tendency to be less correlated to their inputs.
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(a) Without correction (b) With correction

Fig. 13: Mean rank of correct key byte over 5 attacks.

Table 3: Comparison of Spread & HW without and with correction.
Nb of training traces 1,000 2,000 4,000 8,000

Spread & HW PASS (1302) PASS (138) PASS (44) PASS (18)

Spread & HW & Correction FAIL (2/11) PASS (57) PASS (23) PASS (9)

Nb of training traces 16,000 32,000 50,000

Spread & HW PASS (8) PASS (8) PASS (6)

Spread & HW & Correction PASS (8) PASS (7) PASS (5)

(a) Confusion matrix (b) Pearson correlation coefficient

Fig. 14: Metrics of Spread & HW trained with 1,000 traces in the first-order
attack scenario.

Table 4: Comparison of Spread & HW without and with correction.
Nb of training traces 4,000 8,000 16,000 32,000

Spread & HW PASS (2465) PASS (1237) PASS (1305) PASS (1205)

Spread & HW & Correction PASS (2272) PASS (947) PASS (1042) PASS (556)

Nb of training traces 50,000

Spread & HW PASS (466)

Spread & HW & Correction PASS (338)
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4.3 Conclusion

The Bayesian correction of the Spread & HW predictions enables all our attacks
to succeed with even less attack traces, by reducing this amount of up to more
than 50%. Unfortunately, this method does not succeed when the output of
the neural network is almost independent of its input. In such cases, it seems
better to have few variances on the most represented labels, rather than to make
the confusion matrix fuzzy. This is why we decided to correct only the Sbox
predictions for the second-order attack.

5 Conclusion and perspectives

In this paper, we propose two different improvements, which increase the effec-
tiveness of profiled side-channel attacks based on deep-learning techniques.

The first improvement is a new neural network layer, called Spread layer. Its
goal is to reduce the amount of both training and attack traces required to
retrieve the key. In order to evaluate the level of this reduction with the state-of-
the-art neural network used for side-channel attacks, we followed the benchmark
strategy promoted in [10]. The result of this evaluation confirms that the goal of
the Spread layer has been achieved for first-order attacks as well as for second-
order attacks.
The second improvement is a method of correcting the neural network predic-
tions. It reduces most of the time even more the number of attack traces required
to succeed the key retrieval.

Our new layer might be useful for other applications in the field of deep-learning,
when one needs to perform a classification relying on the values of some input
features. Indeed, the resulting neural network might be shallower than these
based on the common activation layers.

Future works may be to assess our method with higher-order masking. In
this case, the neural network would have one branch per share and the post-
processing algorithm would comprise a matrix with more dimensions. Another
possibility is to lower the hypothesis so as to target traces without mask knowl-
edge.
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