
An Isogeny-Based Password-Authenticated Key Establishment
Protocol

Oleg Taraskin1, Vladimir Soukharev2, David Jao3,4, and Jason LeGrow3,5

1 Bankex Foundation, Moscow, Russian Federation
tog.postquant@gmail.com, ot@bankexfoundation.org
2 InfoSec Global, Toronto, Ontario, M2J 5C2, Canada

vladimir.soukharev@infosecglobal.com
3 Department of Combinatorics and Optimization

University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
{djao,jlegrow}@uwaterloo.ca

4 evolutionQ Inc.
Waterloo Accelerator Centre

Waterloo, Ontario, N2L 6R5, Canada
david.jao@evolutionQ.com

5 Institute for Quantum Computing, Waterloo, Ontario N2L 3G1, Canada

Abstract. Password authenticated key establishment (PAKE) is a cryptographic primitive that allows
two parties who share a low-entropy secret (a password) to securely establish cryptographic keys in the
absence of public key infrastructure. We present the first quantum-resistant password-authenticated key
exchange scheme based on supersingular elliptic curve isogenies. The scheme is built upon supersingular
isogeny Diffie-Hellman [9], and uses the password to generate functions which obscure the auxiliary
points used in the computation. We include a detailed security proof based on a number of reasonable
computational problems on supersingular elliptic curves.
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1 Introduction

Many current cryptographic schemes are based on mathematical problems that are considered difficult for
classical computers, but can easily be solved using quantum algorithms. To prepare for the emergence of
quantum computers, we aim to design cryptographic primitives for common operations, such as encryption
and authentication, which will resist quantum attacks. One family of such primitives, proposed by De Feo,
Jao, and Plût [9], commonly referred to as SIDH, uses isogenies between supersingular elliptic curves to
construct quantum-resistant cryptographic protocols for public-key encryption, two-party key establishment.

Password-Authenticated Key Exchange (PAKE) is a primitive in which parties securely establish a com-
mon cryptographic key over an insecure channel using a common password (modelled as a low-entropy
secret). The first PAKE protocol was designed by Bellovin and Merritt in 1992 [3]. Today, many protocols of
this type exist—most are based on either multiplicative group Z∗p or on a group of points of elliptic curves and
are not quantum-safe. Until this work, the only PAKEs built on quantum-safe foundations are lattice-based
[10, 22]. We propose the first PAKE based on isogenies between supersingular elliptic curves. It is derived
from SIDH and its speed characteristics are very similar.

One of the most natural applications of PAKE is establishing common session secret key for mutual
authentication (and, as an option, further opening a secure channel) between a smartcard and a terminal
with keyboard for PIN. Note that terminal and smartcard reader can be physically separated, so payment
industry standards require secure channel between them in order to prevent PIN leakage. Another important
case of practical usage of PAKE is creating secure channel between process on computer and USB token
(or smartcard) inserted into it. There is a number of other applications of PAKE, which include its use for
client-server authentication and secure communication.



2 Background

2.1 Isogenies

We provide a brief review of the necessary background information. For further details on the mathematical
foundations of isogenies, we refer the reader to [9, 12, 19].

Given two elliptic curves E1 and E2 over some finite field Fq of cardinality q, an isogeny φ is an algebraic
morphism from E1 to E2 of the form

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
,

such that φ(∞) =∞ (here f1, f2, g1, g2 are polynomials in two variables, and∞ denotes the identity element
on an elliptic curve). Equivalently, an isogeny is an algebraic morphism which is a group homomorphism.
The degree of φ, denoted deg(φ), is its degree as an algebraic morphism. Two elliptic curves are isogenous
if there exists an isogeny between them.

Given an isogeny φ : E1 → E2 of degree n, there exists another isogeny φ̂ : E2 → E1 of degree n satisfying
φ ◦ φ̂ = φ̂ ◦ φ = [n] (where [n] is the multiplication by n map). It follows that the relation of being isogenous

is an equivalence relation. The isogeny φ̂ is called the dual isogeny of φ.
For any natural number n, we define E[n] to be the subgroup

E[n] = {P ∈ E(F̄q) : nP =∞}.

In other words, E[n] is the kernel of the multiplication by n map over the algebraic closure F̄q of Fq. The
group E[n] is isomorphic to (Z/mZ)2 as a group whenever m and q are relatively prime [19].

We define the endomorphism ring End(E) to be the set of all isogenies from E to itself, defined over the
algebraic closure F̄q of Fq. The endomorphism ring is a ring under the operations of pointwise addition and
functional composition. If dimZ(End(E)) = 2, then we say that E is ordinary ; otherwise dimZ(End(E)) = 4
and we say that E is supersingular. Two isogenous curves are either both ordinary or both supersingular.
All elliptic curves used in this work are supersingular.

The isogeny φ : E1 → E2 is defined to be separable if the extension Fq(E1)/φ∗(Fq(E2)) of function fields
is separable. In this work, we will only consider separable isogenies. An important property of a separable
isogeny is that the size of the kernel of that isogeny is equal to the degree of that isogeny (as an algebraic
map) [19, III.4.10(c)]. The kernel uniquely defines the isogeny up to isomorphism. Methods for computing
and evaluating isogenies are given in [5, 9, 12, 13, 21]. We use the isogenies whose kernels are cyclic groups, and
knowledge of the kernel, or any single generator of the kernel, allows for efficient evaluation of the isogeny
(up to isomorphism); conversely, the ability to evaluate the isogeny via a black box allows for efficient
determination of the kernel. Thus, in our application, the following are equivalent: knowledge of the isogeny,
knowledge of the kernel, or knowledge of any generator of the kernel.

2.2 Isogeny-Based Key Establishment

The term “elliptic curve cryptography” typically encompasses cryptographic primitives and protocols whose
security is based on the hardness of the discrete logarithm problem on elliptic curves. This hardness as-
sumption is invalid against quantum computers [18]. Hence, traditional elliptic curve cryptography is not a
viable foundation for constructing quantum-resistant cryptosystems. As a result, alternative elliptic curve
cryptosystems based on hardness assumptions other than discrete logarithms have been proposed for use
in settings where quantum resistance is desired. One early proposal by Stolbunov [20], based on isogenies
between ordinary elliptic curves, was subsequently shown by Childs et al. [7] to offer only subexponential
security against quantum computers.

In response to these developments, In PQCrypto 2011, Jao and De Feo [9, 12] proposed a new collection
of quantum-resistant public-key cryptographic protocols for entity authentication, key exchange, and public-
key cryptography, based on the difficulty of computing isogenies between supersingular elliptic curves. We
review here the operation of the most fundamental protocol in the collection, the key exchange protocol,
which forms the building block for our password-authenticated key exchange protocol.



A B
Input: A,B Input: B
mA, nA ∈R Z/`eAA Z mB , nB ∈R Z/`eBB Z
φA := E → E/ 〈mAPA + nAQA〉 φB := E → E/ 〈mBPB + nBQB〉

A,φA(PB),φA(QB),EA−−−−−−−−−−−−−−−→
B,φB(PA),φB(QA),EB←−−−−−−−−−−−−−−−

EAB := EB/〈mAφB(PA) + nAφB(QA)〉 EBA := EA/〈mBφA(PB) + nBφA(QB)〉
Output: j(EAB) Output: j(EBA)

Fig. 1. Key Establishment protocol using isogenies on supersingular curves.

Fix a prime p of the form `eAA `eBB ·f±1 where `A and `B are small primes, eA and eB are positive integers,
and f is some (typically very small) cofactor. Also, fix a supersingular curve E defined over Fp2 , and bases
{PA, QA} and {PB , QB} which generate E[`eAA ] and E[`eBB ] respectively, so that 〈PA, QA〉 = E[`eAA ] and
〈PB , QB〉 = E[`eBB ]. Alice chooses two random elements mA, nA ∈R Z/`eAA Z, not both divisible by `A, and
computes an isogeny φA : E → EA with kernel KA := 〈mAPA + nAQA〉. Alice also computes the auxiliary
points {φA(PB), φA(QB)} ⊂ EA obtained by applying her secret isogeny φA to the basis {PB , QB} for E[`eBB ],
and sends these points to Bob together with EA. Similarly, Bob selects random elements mB , nB ∈R Z/`eBB Z
and computes an isogeny φB : E → EB having kernel KB := 〈mBPB + nBQB〉, along with the auxiliary
points {φB(PA), φB(QA)}. Upon receipt of EB and φB(PA), φB(QA) ∈ EB from Bob, Alice computes an
isogeny φ′A : EB → EAB having kernel equal to 〈mAφB(PA) + nAφB(QA)〉; Bob proceeds mutatis mutandis.
Alice and Bob can then use the common j-invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) = E/〈mAPA + nAQA,mBPB + nBQB〉

to form a secret shared key.

The full protocol is presented in Figure 1. We denote by A and B the identifiers of Alice and Bob.

Remark 1. Alice’s auxiliary points {φA(PB), φA(QB)} allow Bob (or any eavesdropper) to compute Alice’s
isogeny φA on any point in E[`eBB ]. This ability is necessary in order for the scheme to function, since Bob
needs to compute φA(KB) as part of the scheme. However, Alice must never disclose φA(PA) or φA(QA)
(or more generally any information that allows an adversary to evaluate φA on E[`eAA ]), since disclosing this
information would allow the adversary to solve a system of discrete logarithms in E[`eAA ] (which are easy
since E[`eAA ] has smooth order) to recover KA.

2.3 Computational Assumptions for Supersingular Elliptic Curve Isogenies

In this section we define a number of computational assumptions related to computing supersingular elliptic
curve isogenies. Throughout this section, we use the notation of Section 2.2 for our global parameters, and
define the security parameter λ = dlog2 pe. In [8] was shown effective trick to make SIDH faster: the kernel
group generator mP + nQ can be replaced by P + mQ essentially without loss of generality. Our protocol
will use P + nQ form of kernel generator.

We begin with the fundamental computational problem which underlies SIDH.

Definition 1 (Computational Supersingular Isogeny Diffie-Hellman Problem (C-SIDH)). Let
φA : E → EA be an isogeny with kernel 〈PA + nAQA〉 where nA ← U(Z/`eAA Z). Similarly, let φB : E → EB
be an isogeny with kernel 〈PB + nBQB〉 where nB ← U(Z/`eBB Z). The supersingular computational Diffie-
Hellman problem (C-SIDH) is to find the j-invariant of

EAB = E/ 〈PA + nAQA, PB + nBQB〉

given ((E,PA, QA, PB , QB), (EA, φA(PB), φA(QB)), (EB , φB(PA), φB(QA)).



When ((E,PA, QA, PB , QB), (EA, φA(PB), φA(QB)), (EB , φB(PA), φB(QA))) is a valid input to the C-SIDH
problem, using the notation of Definition 1, we define

SIDH
(
(E,PA, QA, PB , QB), (EA, φA(PB), φA(QB)), (EB , φB(PA), φB(QA))

)
= EAB .

When the global parameters and auxiliary points can be inferred from context, we abbreviate this quantity
as EAB = SIDH(EA, EB). We also define “one-sided” variants of SIDH:

– For EA = E/ 〈PA +mAQA〉 and any (EB , XB , YB), define SIDHA(EA, EB , XB , YB) = EB/ 〈XB +mAYB〉
– For EB = E/ 〈PB +mBQB〉 and any (EA, XA, YA), define SIDHB(EA, EB , XA, YA) = EA/ 〈XA +mBYA〉

These quantities arise naturally in SIDH by considering messages which are not necessarily well-formed.
For an algorithm A which, given a valid C-SIDH instance, produces a list of candidate solutions to the

instance, define its advantage as

AdvC-SIDH
p (A) = P[ϑ← U(InsSIDH(p)) : SIDH(ϑ) ∈ A(ϑ)]

where InsSIDH(p) is the set of all valid C-SIDH instances defined over GF (p2). Further, define

AdvC-SIDH
p (t, n) = max{AdvC-SIDH

p (A) : A runs in time t and |A(ϑ)| ≤ n for all ϑ ∈ InsSIDH(p)}.

Intuitively, this quantity measures the maximum probability of solving a randomly-chosen C-SIDH instance
in time t if you are allowed to make n guesses. The C-SIDH assumption is that for t and n polynomial in λ,
AdvC-SIDH

p (t, n) = negl(λ).
As noted in Section 2.2, in order to compute the shared secret in SIDH the parties must share the images

of the public torsion bases under the secret isogenies. Whereas previous works ignored these “auxiliary
points” in favour of standard authentication methods, such as signature schemes [15] or generic transforms
[11] for authenticating SIDH and preventing man-in-the-middle attacks, in this work we focus on their role
in the computation and how we can disrupt man-in-the-middle attacks by obfuscating them.

Naturally, because our construction relies on obfuscating the auxiliary points used in the scheme, we
require some computational assumptions related to computing auxiliary points given the relevant curves. We
present these computational assumptions here. Notably, because of the inherent asymmetry of the auxiliary
point computations, we will specify two computational problems—one for each `eAA - and `eBB -isogenies.

Definition 2 (Supersingular Isogeny Auxillary Point Computation–A (SI-APCA)). Let φA : E →
EA be an isogeny with kernel 〈PA + nAQA〉 where nA ← U(Z/`eAA Z). The supersingular isogeny auxiliary
point computation problem (type A) is to compute φA(PB) and φA(QB) given (E,PA, QA, PB , QB , EA).

Definition 3 (Supersingular Isogeny Auxillary Point Computation–B (SI-APCB)). Let φB : E →
EB be an isogeny with kernel 〈PB + nBQB〉 where nB ← U(Z/`eBB Z). The supersingular isogeny auxiliary
point computation problem (type B) is to compute φB(PA) and φB(QA) given (E,PA, QA, PB , QB , EB).

Using the notation above, we define

SI-APCA((E,PA, QA, PB , QB , EA)) = (φA(PB), φA(QB)), and

SI-APCB((E,PA, QA, PB , QB , EB)) = (φB(PA), φB(QA)).

We also define the advantages{
AdvSI-APCA

p (A) = P[ϑ← InsSI-APCA
(p) : SI-APCA(ϑ) ∈ A(ϑ)]

AdvSI-APCB
p (A) = P[ϑ← InsSI-APCB

(p) : SI-APCB(ϑ) ∈ A(ϑ)]

and{
AdvSI-APCA

p (t, n) = max{AdvSI-APCA
p (A) : A runs in time t and |A(ϑ)| ≤ n for all ϑ ∈ InsSI-APCA

(p)}
AdvSI-APCB

p (t, n) = max{AdvSI-APCB
p (A) : A runs in time t and |A(ϑ)| ≤ n for all ϑ ∈ InsSI-APCB

(p)}.

The SI-APCA and SI-APCB assumptions are that for t and n polynomial in λ, AdvSI-APCA
p (t, n) = negl(λ)

and AdvSI-APCA
p (t, n) = negl(λ), respectively. In this quantum setting, these problems can be phrased in a



more natural way: instead of looking for the images of a particular torsion basis, one can ask to search for
the image of any appropriate torsion point. This equivalence is because Shor’s algorithm can be extended to
solve extended discrete logarithms in Abelian groups, and so being able to find the auxiliary points allows
one to find the image of any point in the appropriate torsion subgroup (and the reverse reduction is trivial).
In that sense, in the quantum setting these problems can be thought of as natural easier variants of the
Supersingular Isogeny Problems (Types A and B):

Definition 4 (Supersingular Isogeny Problem–A (SSIA)). Let φA : E → EA be an isogeny with kernel
〈PA + nAQA〉 for nA ← U(Z/`eAA Z). The supersingular isogeny problem (type A) (SSIA) is, given E,EA,
φA(PB), and φA(QB), to find a generator of ker φA.

Definition 5 (Supersingular Isogeny Problem–B (SSIB)). Let φB : E → EB be an isogeny with kernel
〈PB + nBQB〉 for nB ← U(Z/`eBB Z). The supersingular isogeny problem (type B) (SSIB) is, given E,EB,
φB(PA), and φB(QA), to find a generator of ker φB.

The SI-APCA and SI-APCB problems reduce to SSIA and SSIB , respectively, by noting that finding a
generator of the kernel of an isogeny φ allows one to compute the isogeny on the whole domain curve, by
Vélu’s formulas [21], whereas SI-APCA and SI-APCB simply require one to compute the isogeny on particular
points (or, in the quantum setting, the restrictions φ|E[`

eA
A ] or φ|E[`

eB
B ].)

We will also make use of the decisional version of the auxiliary point computation problems, and so we
present them here.

Definition 6 (Supersingular Isogeny Auxillary Point Decision–A (SI-APDA)). Let φA : E → EA
be an isogeny with kernel 〈PA + nAQA〉 where nA ← U(Z/`eAA Z). The supersingular isogeny auxiliary
point decision problem (type A) is, given given (E,PA, QA, PB , QB , EA) and two points (X,Y ) on EA with

eEA
(X,Y ) = eE(PB , QB)`

eA
A where either

1. X = φA(PB) and Y = φA(QB), or

2. (X,Y )← U({(S, T ) ∈ EA[`eBB ]2 : eEA
(X,Y ) = eE(PB , QB)`

eA
A and ordEA

(X) = ordEA
(Y ) = `eBB })

(each with probability 1
2) is to decide which is the case.

Definition 7 (Supersingular Isogeny Auxillary Point Decision–B (SI-APDB)). Let φB : E → EB
be an isogeny with kernel 〈PB + nBBB〉 where nB ← U(Z/`eBB Z). The supersingular isogeny auxiliary
point decision problem (type B) is, given given (E,PB , BB , PA, BA, EB) and two points (X,Y ) on EB with

eEB
(X,Y ) = eE(PA, BA)`

eB
B where either

1. X = φB(PA) and Y = φB(BA), or

2. (X,Y )← U({(S, T ) ∈ EB [`eAA ]2 : eEB
(X,Y ) = eE(PA, BA)`

eB
B and ordEB

(X) = ordEB
(Y ) = `eAA })

(each with probability 1
2) is to decide which is the case.

As before, we define the advantages{
AdvSI-APDA

p (A) = P[ϑ← InsSI-APCA
(p) : A(ϑ) is correct]

AdvSI-APDB
p (A) = P[ϑ← InsSI-APCB

(p) : A(ϑ) is correct]

and {
AdvSI-APDA

p (t, n) = 2 max{AdvSI-APCA
p (A) : A runs in time t for all ϑ ∈ InsSI-APDA

(p)} − 1

AdvSI-APDB
p (t, n) = 2 max{AdvSI-APCB

p (A) : A runs in time t for all ϑ ∈ InsSI-APDB
(p)} − 1.

The corresponding computational assumptions are that for t polynomial in λ, AdvSI-APDA(t) = negl(λ)
and AdvSI-APDB (t) = negl(λ).

Finally, we must discuss a computational problem which, in the context of our protocol, will be related
to password-guessing. This computational problem will be related to certain group actions of a matrix group
on groups related to our PAKE. We cover the relevant topics here.



For a prime ` and an integer e, we define

SL2(`, e) =
{
Ψ ∈ (Z/`eZ)2×2 : detA ≡ 1 (mod `e)

}
Υ2(`, e) = {Ψ ∈ SL2(`, e) : A is upper triangular modulo `}

to be the special linear and special reduced upper triangular groups modulo `e, respectively. If p = `eAA `eBB f±1
is a prime and E is a supersingular elliptic curve defined over Fp2 , Υ2(`A, eA) acts on E[`eAA ]2 in a way

completely analogous with ordinary matrix-vector multiplication over a ring: if Ψ =
[
α β
γ δ

]
then

Ψ

[
X
Y

]
=

[
α β
γ δ

] [
X
Y

]
=

[
αX + βY
γX + δY

]
.

It is this action that we will use to obfuscate the auxiliary points in our protocol. This action has two
important qualities which make it amenable to our PAKE (in particular, they do not enable a particular
kind of offline dictionary attack):

1. If {X,Y } is a Z-basis for E[`eAA ], then so is {X ′, Y ′}, defined by
[
X′

Y ′

]
= Ψ−1Ψ ′ [XY ] for any Ψ, Ψ ′ ∈

Υ2(`A, eA).
2. For anyX,Y ∈ E[`eAA ] and for any Ψ, Ψ ′ ∈ Υ2(`A, eA), for

[
X′

Y ′

]
= Ψ−1Ψ ′ [XY ] we have e(X,Y ) = e(X ′, Y ′),

where e is the Weil pairing on E. Moreover, SL2(`A, eA) is the unique maximal matrix group acting as
defined above which has this property.

In the context of isogeny computations, this (left) action of Υ2(`A, eA) induces a new (right) action on Z/`eAA Z
in the following way: observe that if

[
X′

Y ′

]
= Ψ [XY ] where Ψ =

[
α β
γ δ

]
, then for any m ∈ Z/`eAA Z

E/ 〈X ′ +mY ′〉 = E/ 〈(αX + βY ) +m(γX + δY )〉

= E/

〈
X +

δm+ β

γm+ α
Y

〉
;

we thus might naturally define the right action mΨ := δm+β
γm+α . The two actions are related as described above:

mapping the auxiliary basis according to the action of Ψ on E[`eAA ]2 is equivalent to mapping the integer
m which defines the kernel of the isogeny according to the action of Ψ on Z/`eAA Z. This action relates to a
sort of “related-key attack” on SIDH: in an unauthentiacted setting, an active adversary can force an honest
party to compute a shared key corresponding to an ephemeral key chosen by the adversary and the image
of the honest party’s ephemeral key under the action of a known matrix Ψ .

Note that for a given EA for which EA = E/ 〈PA +mAQB〉 and Ψ ∈ Υ (`A, eA) it is easy to find
(EB , XB , YB), E′ satisfying

E′ = EB/
〈
XB +mΨ

AYB
〉

;

simply set EB = E/ kerφ for some isogeny φ, and [XB , YB ]T = Ψ−1[φ(PB), φ(QB)]T (and of course, this
works just the same with A and B switched). In the context of our protocol, this computation corresponds to
guessing a single password in an online attack, and is essentially unavoidable in any PAKE protocol. What
we must prevent is online guessing of two or more passwords in a single session. The following computational
problems underly such online guessing:

Definition 8 (Computational Simultaneous Group Action Problem–A (C-SGAA)). Let φA : E →
EA be an isogeny with kernel 〈PA +mAQA〉 for nA ← U(Z/`eAA Z), and let Ψ1, Ψ2 ← U(Υ2(`A, eA)). The Com-
putational Simultaneous Group Action Problem (Type A) (C-SGAA) is to find (EB , XB , YB), E1, E2 which
satisfy E1 = EB/〈XB+mΨ1

A YB〉 and E2 = EB/〈XB+mΨ2

A YB〉 given (E,PB , QB) and (EA, φA(PB), φA(QB)).

Definition 9 (Computational Simultaneous Group Action Problem–B (C-SGAB)). Let φB : E →
EB be an isogeny with kernel 〈PB +mBQB〉 for nB ← U(Z/`eBB Z), and let Ψ1, Ψ2 ← U(Υ2(`B , eB)). The
Computational Simultaneous Group Action Problem (Type B) (C-SGAB) is to find (EA, XA, YA), E1, E2

which satisfy E1 = EA/〈XA+mΨ1

B YA〉 and E2 = EA/〈XA+mΨ2

B YA〉 given (E,PA, QA) and (EB , φB(PA), φB(QA)).



We define SGAA((E,PA, QA, PB , QB), EA, Ψ1, Ψ2)) and SGAB((E,PA, QA, PB , QB), EB , Ψ1, Ψ2)) to be
the set of all solutions to the respective problems with the given parameters, and we define the advantages{

AdvC-SGAA
p (A) = P[ϑ← InsSI-APCA

(p) : SGAA(ϑ) ∩ A(ϑ) 6= ∅]

AdvC-SGAB
p (A) = P[ϑ← InsSI-APCB

(p) : SGAB(ϑ) ∩ A(ϑ) 6= ∅]

and{
AdvC-SGAA

p (t, n) = max{AdvC-SGAA
p (A) : A runs in time t and |A(ϑ)| ≤ n for all ϑ ∈ InsC-SGAA

(p)}
AdvC-SGAB

p (t, n) = max{AdvC-SGAB
p (A) : A runs in time t and |A(ϑ)| ≤ n for all ϑ ∈ InsC-SGAB

(p)}.

Again, these computational problems reduce to the corresponding isogeny computation problems, by
noting that one can recover the secret integer mA or mB from a generator of kerφA or kerφB , and from
there can compute E/〈X +mΨ

AY 〉 or E/〈X +mΨ
BY 〉 for any Ψ and any (E,X, Y ).

2.4 Applications

Password-authenticated key establishment has many applications and is in wide use. There is a variety of
PAKE-based protocols and standards, as well as program implementations within certain well-known and
widely used cryptographic libraries such as OpenSSL [17] and Bouncy Castle [4]. Given emerging quantum
threat and ubiquity of PAKEs, it is imperative to construct a post-quantum PAKE.

One of the main PAKE applications is smartcard- or token-based security. Generally, software that inter-
acts with smartcards and USB tokens mainly use standard programming interfaces which reduce duplicate
code while performing the same job and enables the program to support devices from different vendors.

ISO 7816 and PKCS#11 are the two most popular and de facto mandatory standards for device vendors
meaning that a smartcard/token manufacturer will support at least one of those standards. ISO 7816 is a
standard for establishing communication with a smartcard on a very low (signal) level. Among other things,
this standard defines the structure of the basic level APDU commands used to interact with the device. Most
vendors manufacture devices with the same APDU commands for such simple actions as selecting, reading,
or writing files. Most likely, the APDUs for more complex actions, such as generating a key pair, will be
different: in those cases, PKCS#11 should be used, as its library encapsulates APDUs. Besides, PKCS#11
is a high-level standard which uses C language to describe function prototypes for interacting with abstract
devices that can execute cryptographic operations and store keys. Such abstraction helps programmers to
concentrate on cryptography-related tasks without having to deal with the details of platform-related APDUs
or smartcard filesystems.

There are two distinct principles of interaction between a computer program and a smartcard/token
connected to a computer, with or without establishing a secure channel. Without a secure channel, the
APDU transmission speed is higher, because the device does not need time for encryption, decryption,
and MAC calculations. Also, it is easier to support the host software and the devices microprogram. The
main disadvantage of the absence of a secure channel is the vulnerability to an attack: all APDUs can be
eavesdropped or maliciously modified by an attacker. The attacker can obtain such secret information as
PIN and symmetric session key by eavesdropping. The attacker can also force a party to generate a digital
signature. Therefore, the communication channel should be protected.

One of the practical advantages of PAKE is that it can be “hidden” inside high-level library (like
PKCS#11 or CSP(Cryptographic Service Provider)) without changing library’s interface functions, so that
developer who integrates it into program, don’t have to care about implementation of PAKE protocol and
simply can use just the same calls of library functions that work with non-PAKE smartcard or token.

2.5 Security Model and Definitions

We prove the security of our protocol in the model of Bellare, Pointcheval, and Rogaway [1]. We review the
essential features of the model here.

Protocols. Fundamentally, a protocol Π is a probabilistic algorithm which maps strings (in the context of
password-authenticated key establishment, these strings will be a concatenation of passwords, randomness,
and protocol-specific messages and global parameters) to strings (keys).



Parties and Party Identifiers. Participants in protocols are called parties. Parties come in two distinct
flavours: clients C and servers S. As the names suggest, in this model, protocols are always initiated by
clients and responded to by servers. All clients are served by all servers.

Each party P ∈ C tS is uniquely identified by a string of some fixed length (depending on the number
of parties); if P is a party, we will also use P to refer to P ’s identifier string when no confusion will arise (in
particular, as arguments to functions).

Passwords and Transformed Passwords. Each client A ∈ C has a password pwdA, and each server has
a collection {pwdBA}A∈C of transformed passwords. We may consider either a symmetric scenario, where
pwdBA = pwdA ∀A ∈ C, B ∈ S (i.e., servers know their clients’ passwords) or an asymmetric scenario, where
servers store an actually-transformed password. In the asymmetric setting it is often desirable for it to be
difficult to recover pwdA from a reasonably-sized6 subset of {pwdBA}B∈S, so that the protocol is better able
to resist server information leakage.

Password Initialization. In models of authenticated key establishment, parties establish public-key/private-
key pairs and securely publish their public keys (e.g., [2, 6, 14]) in a pre-protocol “initialization” phase.
Similarly, in this model of password-authenticated key establishment there is a pre-protocol initialization
phase where users generate passwords and “install” them on servers (i.e., servers get the corresponding
transformed passwords) securely.

Party Instances. Associated to each party U ∈ C t S is a collection of party instances {Ω(n)
U }n∈N. When

the adversary interacts with a party (in one of the ways described below) he may be required to specify
an instance with which to interact. Intuitively, these instances model the fact that parties may establish
many keys at different times and with different partners, and these different key-establishing sessions may
be attacked differently (or not at all) by the adversary. As a practical matter, explicitly modelling party
instances make it easier compartmentalize keys established by the parties (and their associated private
ephemeral information), and simplify the security definition.

Acceptance and Termination. We say that a party instance “accepts” when they compute a session key, and
“terminates” when it will not send any more messages. In our protocol, acceptance is always followed imme-
diately by termination, but termination may occur without acceptance (in the case of ill-formed incoming
messages, for instance).

The Security Experiment. Informally, the security experiment sees a new entity—the adversary—attempt to
break semantic security of the protocol after interacting with the parties and one additional “formal” party
who “administrates” the game—the challenger. The security experiment proceeds in three stages

1. Initialization: The adversary chooses disjoint sets C and S of client and server identifiers. Each client
A ∈ C generates a password according to a probability distribution on their password-space: pwdA ←
PA ∀A ∈ C; then, each server B ∈ S computes the transformed passwords {pwdBA}A∈C. Password-
generation happens out-of-view of the adversary, though the adversary knows each PA and the maps
pwdA 7→ pwdBA .

2. Information Gathering: During this phase, the adversary is allowed to perform computations on his
own machine and interact with the parties and challenger. The computational power of the adversary is
not fixed in the model, but his interactive abilities are limited to the following five interaction commands:

(a) Send(U, n,msg): Message M is sent to Ω
(n)
U . As a result, Ω

(n)
U ’s internal state (including which step

in the protocol it has reached, its ephemeral key for this instance, etc.) is updated appropriately
according to the specification of Π.

(b) Reveal(U, n): The party instance Ω
(n)
U reveals its session key sk

(n)
U (if it exists).

(c) Execute(A,n,B,m): If A ∈ C, B ∈ S, and neither Ω
(n)
A nor Ω

(m)
B has been used, the challenger C

instructs Ω
(n)
A to execute Π with Ω

(n)
B . The transcript of this execution is then provided to A.

6 What size is “reasonable” depends on how powerful an adversary we consider. Typically we would consider
polynomially-sized sets, but we do not assume this a priori. Similarly, what is meant by “difficult” is context-
dependent.



(d) Corrupt(U): If U ∈ C, this returns pwdU . If U ∈ S, this returns {pwdUA}A∈C.
(e) Test(U, n): The challenger C chooses b ∈ {0, 1} uniformly at random; if b = 0, the challenger delivers

sk
(n)
U to A, while if b = 1, the challenger chooses s̃k from the secret key space uniformly at random

and delivers s̃k to A.

Remark 2. Our definition of Corrupt in item (d) above is known as the weak corruption model [1, Remark

3]. In the strong corruption model, a Corrupt(U) query also reveals the state of each oracle Ω
(n)
U , n ∈ N;

this presents another way by which a secret session key can become known to the adversary, and the
definition of freshness (Definition 11) would have to be modified in order for two-pass protocols (like the
one we present in Section 3) to have any hope of being secure [1, Remark 7].

3. The Game: To begin, we must define what it means for an oracle Ω
(n)
U to be fresh, which itself requires

that we define partnered sessions:

Definition 10 (Partnered Oracles). A pair of oracles Ω
(n)
A and Ω

(m)
B are called partnered if all of

the following are true:
(a) A ∈ C and B ∈ S, or A ∈ S and B ∈ C.

(b) Ω
(n)
A and Ω

(m)
B have both accepted.

(c) Ω
(n)
A ’s peer is B, and Ω

(m)
B ’s peer is A (that is, A believes she is establishing a key with B, and vice

versa).

(d) Ω
(n)
A and Ω

(m)
B have the same message transcript and session key.

(e) No other oracle Ω
(k)
U accepts with the same message transcript.

Definition 11 (Fresh Oracle). An oracle Ω
(n)
U is called fresh (or, to emphasize that we are explicitly

considering forward secrecy in the weak corruption model, weak forward secrecy fresh) if none of the
following is true:
(a) Reveal(U, n) has been issued.

(b) Reveal(V,m) has been issued, where Ω
(m)
V is the partner to Ω

(n)
U .

(c) Corrupt(V, i) was issued for some V ∈ C tS and Send(U, n,M) was issued for some M ∈M.

Now, at any point during the protocol, A may make a Test(U, n) query. If Ω
(n)
U is not fresh or this

is not the first Test query of the game, A loses the game; otherwise, the challenger answers the query
appropriately. The game continues, and eventually A makes a guess b′ at the value of b that the challenger
chose in response to the Test query; the adversary wins if b′ = b and loses otherwise. We define the
adversary’s advantage to be

AdvΠΓ (A) = 2P[A wins the game Γ with protocol Π]− 1.

In our proof we will consider a sequence of games, and how the adversary’s advantage changes when we
go from one game to the next. The following fact is helpful:

P[A wins Γ with protocol Π] ≤ P[A wins Γ ′ with protocol Π] + ε =⇒ AdvΠΓ (A) ≤ AdvΠΓ ′(A) + 2ε.

3 Our Protocol

The protocol is based on the (ephemeral) SIDH scheme for key establishment by De Feo, Jao, and Plût [9]. In
that original scheme, the public information sent by each user consists of the image curve and two auxiliary
points. Our scheme uses the password to generate coefficients which scramble the auxiliary points.

Suppose a client A ∈ C wishes to establish a key with a server B ∈ S, who share a common password
pwdA. The setup is as follows: Fix a prime p of the form `eAA `eBB · f ± 1 where `A and `B are small primes,
eA and eB are positive integers, and f is some (typically very small) cofactor. Also, fix a supersingular
curve EK defined over Fp2 , and bases {PA, QA} and {PB , QB}. Let HA and HB be random oracles with
codomHA = Υ2(`B , eB) and codomHB = Υ2(`A, eA). They follow the following process:



1. A generates an ephemeral key and sends public information to B. In particular, A:
(a) Chooses nA ∈ {0, 1, . . . , `eAA − 1} uniformly at random;
(b) Constructs GA = PA + nAQA;
(c) Defines EA = EK/〈GA〉 and φA to be the isogeny defined on EK with kernel 〈GA〉;
(d) Defines ΨA = HA(j(EA)||pwdA)
(e) Defines [

XA

YA

]
= ΨA ·

[
φA(PB)
φA(QB)

]
(f) Sends (EA, XA, YA) to B.

2. Upon receiving (E,X, Y ) from A, B:
(a) Computes ordE(X) and ordE(Y )—if either is not `eBB , abort;

(b) Checks that eE(X,Y ) = eEK
(PB , QB)`

eA
A —if not, abort;

(c) Computes ΨAB = HA(j(E)||pwdA)
(d) Computes [

PAB
QAB

]
= Ψ−1AB ·

[
X
Y

]
(e) Chooses nB ∈ {0, 1, . . . , `eBB − 1} uniformly at random;
(f) Constructs GB = PB + nBQB ;
(g) Defines EB = EK/〈GB〉 and φB to be the isogeny defined on EK with kernel 〈GB〉;
(h) Computes ΨB = HB(j(EB)||pwdA)
(i) Computes [

XB

YB

]
= ΨB ·

[
φB(PA)
φB(QA)

]
(j) Sends (EB , XB , YB) to A; and,
(k) Constructs the key

KB = KDF((E,X, Y )||(EB , XB , YB)||j(E/〈PAB + nBQAB〉)||ΨAB ||ΨB)

3. Upon receiving (E′, X ′, Y ′) from B, A:
(a) Computes ordE′(X

′) and ordE′(Y
′)—if either is not `eAA , abort;

(b) Checks that eE′(X
′, Y ′) = eEK

(PA, QA)`
eB
B —if not, abort;

(c) Computes ΨBA = HB(j(E′)||pwdA);
(d) Computes [

PBA
QBA

]
= Ψ−1BA ·

[
X ′

Y ′

]
and,

(e) Constructs the key

KA = KDF((EA, XA, YA)||(E′, X ′, Y ′)||j(E/〈PBA + nBQBA〉)||ΨA||ΨBA)

4 Security of the Scheme

We prove the following result:

Theorem 1. Suppose A plays Γ with protocol Π, runs in time T , and makes at most nS , nE , nO, nK queries
to Send, Execute, the random oracles, and KDF, respectively. Then

AdvΠΓ (A) ≤nS
L

+
2(nS + nE)(nS + nE + nO + nK)

min{`eAA , `eBB }
+

2nK

min{`3eA−2A (`A − 1), `3eB−2B (`B − 1)}

+ 2nS

(
AdvC-SGAA

p (t, nK(nK − 1)) + AdvC-SGAB
p (t, nK(nK − 1))

)
+ 2nEAdvC-SIDH

p (t, nK)

+ 2(nS + nE)
(

(`B + 1)AdvSI-APCA
p (t, nK) + (`A + 1)AdvSI-APCB

p (t, nK)
)

+ 4(nS + nE)
(

AdvSI-APDA
p (t) + AdvSI-APDB

p (t)
)



Before we begin the proof, as in [16] (and later in [10]), for notational reasons it will be convenient to
define some events which correspond intuitively to the Adversary making online password guesses:

– ClientPasswordTest(A, i,B, pwd): For some E,X, Y,E′, X ′, Y ′, Ψ, Ψ ′, A makes queries:

• KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′);
• Send(A, i, (Initiate, B)) with output (E,X, Y );
• Send(A, i, (E′, X ′, Y ′));
• HA(j(E)||pwd) = Ψ and HB(j(E′)||pwd) = Ψ ′

and E′′ ∼= SIDHA(E,E′, Ψ ′−1
[
X′

Y ′

]
). The value associated to this event is

sk
(i)
A = KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′)

Intuitively, A is testing whether pwdA = pwd by running a key establishment instance with client A
(pretending to be server B).

– ServerPasswordTest(B, j,A, pwd): For some E,X, Y,E′, X ′, Y ′, Ψ, Ψ ′, A makes queries:

• KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′);
• Send(B, j, (E,X, Y )) with output (E′, X ′, Y ′);
• HA(j(E)||pwd) = Ψ and HB(j(E′)||pwd) = Ψ ′

and E′′ ∼= SIDHB(E,E′, Ψ−1 [XY ]). The value associated to this event is

sk
(i)
B = KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′)

Intuitively, A is testing whether pwdA = pwd by running a key establishment instance with server B
(pretending to be client A).

– PassivePasswordTest(A, i,B, j,pwd): For some E,X, Y,E′, X ′, Y ′, Ψ, Ψ ′, A makes queries:

• KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′)
• Execute(A, i,B, j) with transcript msg

(i)
A = (E,X, Y ),msg

(j)
B = (E′, X ′, Y ′);

• HA(j(E)||pwd) = Ψ and HB(j(E′)||pwd) = Ψ ′

where E′′ ∼= SIDH(E,E′). The value associated to this event is

sk
(i)
A = sk

(j)
B = KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′)

Intuitively, A is testing whether pwdA = pwd by passively observing an instance of A establishing a key
with B and guessing at the password.

– ActiveCorrectPassword: Either a ClientPasswordTest(A, i,B, pwdA) event occurs for some A ∈
C, B ∈ S and i ∈ N, or a ServerPasswordTest(B, j,A, pwdA) event occurs for some A ∈ C, B ∈ S
and j ∈ N. As the name suggests, this is precisely the event that A has guessed a client’s password in a
session in which they have actively participated.

– PassiveCorrectPassword: A PassivePasswordTest(A, i,B, j,pwdA) event occurs for some A ∈ C, B ∈
S, and i, j ∈ N. As the name suggests, this is precisely the event that A guesses a client’s password
correctly in a session which they have only observed passively.

– 2ClientPassword: This is the event that the adversary is detected checking two distinct passwords in an
online dictionary attack against a client: for some pwd 6= pwd′, both ClientPasswordTest(A, i,B, pwd)
and ClientPasswordTest(A, i,B,pwd′) occur.

– 2ServerPassword: This is the event that the adversary is detected checking two distinct passwords in an
online dictionary attack against a server: for some pwd 6= pwd′, both ServerPasswordTest(B, j,A, pwd)
and ServerPasswordTest(B, j,A, pwd′) occur.

Proof. We give a sequence of games {Γi}9i=0, where Γ0 is the original security game, and Γt admits nothing
more than a simple online dictionary attack. In the following series of claims, we bound the advantage
difference between consecutive games, and hence bound the advantage for the original security game.

Γ0: The original security game.



Γ1: The same as Γ0, except that the party oracles are all simulated by the challenger rather than being
directly accessible to the adversary. In particular:

1. During setup, the challenger chooses each party’s password uniformly at random from the dictionary P,
and stores it.

2. Upon receiving a Send query, the challenger computes the appropriate party’s output and forwards it to
the adversary.

3. Upon receiving an Execute query, the challenger simulates the appropriate parties and forwards the
transcript of the session to the adversary.

4. Upon receiving a Reveal query, the challenger reveals the appropriate session key (if it exists).
5. Upon receiving a Corrupt query, the challenger reveals the appropriate password.

Claim. For any adversary A, AdvΠΓ0
(A) = AdvΠΓ1

(A).

Proof. It is clear that the two games are indistinguishable from the perspective of the adversary. ut

Γ2: The same as Γ1, except that if the challenger chooses an ephemeral key nU for a party U which has it
has chosen previously for any party (in step 1a or 2d of a protocol execution, as appropriate) or for which
the curve generated by this randomness (EK/〈PA + nUQA〉 or EK/〈PB + nUQB〉 as appropriate) has been
used by the adversary as input to a Send, random oracle, or KDF query then the challenger ends the game
and the adversary loses.

Claim. For any adversary A which makes nS , nE , nO, nK queries to Send, Execute, the random oracles, and

KDF, respectively, we have AdvΠΓ1
(A) ≤ AdvΠΓ2

(A) + 2(nS+nE)(nS+nE+nO+nK)

min{`eAA ,`
eB
B }

.

Proof. The numbers of valid ephemeral keys for clients and for servers are `eAA and `eBB , respectively. It follows
then that if the challenger participating in game Γ2 is choosing an ephemeral key after k−1 total ephemeral
key choices, random oracle queries, and KDF queries, the probability that the randomness is distinct from
the previous randomnesses is

P[Ω
(i)
U ’s ephemeral key is unused] ≥


`
eA
A −(k−1)
`
eA
A

≥ `
eA
A −(nS+nE+nO+nK)

`
eA
A

If U ∈ C

`
eB
B −(k−1)
`
eB
B

≥ `
eB
B −(nS+nE+nO+nK)

`
eB
B

If U ∈ S

for each 1 ≤ k ≤ (nS +nE). Then the probability that an ephemeral key pair has already been used satisfies

P[Ω
(i)
U ’s ephemeral key has been used] ≤


(nS+nE+nO+nK)

`
eA
A

If U ∈ C
(nS+nE+nO+nK)

`
eB
B

If U ∈ S

≤ max

{
(nS + nE + nO + nK)

`eAA
,

(nS + nE + nO + nK)

`eBB

}
=

(nS + nE + nO + nK)

min{`eAA , `eBB }

for each k. Since the adversary makes at most (nS + nE) Send and Execute queries, and each such query
loses the game with probability bounded as above, it follows that

AdvΠΓ1
(A)−AdvΠΓ2

(A) ≤ 2(nS + nE)(nS + nE + nO + nK)

min{`eAA , `eBB }

from which the result follows. ut

Γ3: The same as Γ2, except that Send and Execute queries are executed without using random oracles, and
future random oracle queries are answered in a way which is consistent with previous Send and Execute

queries whenever possible. In particular,

1. In an Execute(A, i,B, j) query for which Ω
(i)
A and Ω

(j)
B are unused, set



(a) n
(i)
A ← U({0, 1, . . . , `eAA − 1}) and n

(j)
B ← U({0, 1, . . . , `eBB − 1})

(b) φ
(i)
A to be the isogeny defined on EK with kernel 〈PA + n

(i)
A QA〉, and φ

(j)
B to be the isogeny defined

on EK with kernel 〈PB + n
(j)
B QB〉

(c) E
(i)
A = EK/ kerφ

(i)
A and E

(j)
B = EK/ kerφ

(j)
B

(d) ΨA ← U(Υ2(`A, eA))

(e) ΨB ← U(Υ2(`B , eB))

(f) msg
(i)
A = (E

(i)
A , ΨA

[
φA(PB)
φA(QB)

]
)

(g) msg
(i)
B = (E

(i)
B , ΨB

[
φB(PA)
φB(QA)

]
)

(h) sk
(i)
A = sk

(j)
B ← U({0, 1}λ)

2. When A ∈ C is instructed to initiate unused session i with B ∈ S, set

(a) n
(i)
A ← U({0, 1, . . . , `eAA − 1});

(b) φ
(i)
A to be the isogeny defined on EK with kernel 〈PA + n

(i)
A QA〉;

(c) E
(i)
A = EK/ kerφ

(i)
A ;

(d) ΨA ← U(Υ2(`B , eB))

(e) msg
(i)
A = (E

(i)
A , ΨA

[
φA(PB)
φA(QB)

]
)

3. In a Send(B, j,msg) query where B ∈ S and Ω
(j)
B is unused, set

(a) n
(j)
B ← U({0, 1, . . . , `eBB − 1});

(b) φ
(j)
B to be the isogeny defined on EK with kernel 〈PB + n

(j)
B QB〉;

(c) E
(j)
B = EK/ kerφ

(j)
B ;

(d) ΨB ← U(Υ2(`A, eA))

(e) msg
(i)
B = (E

(i)
B , ΨB

[
φB(PA)
φB(QA)

]
)

(f) sk
(j)
B ← U({0, 1}λ).

4. In a Send(A, i,msg) query where A ∈ C and Ω
(i)
A has not yet computed a session key:

(a) If Ω
(i)
A is partnered with Ω

(j)
B for some B ∈ S, set sk

(i)
A = sk

(j)
B ; otherwise,

(b) If this query causes ClientPasswordTest(A, i, S, pwdA), set sk
(i)
A to the corresponding value; other-

wise,

(c) Set sk
(i)
A ← U({0, 1}λ).

5. In a KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′) query:
(a) If this query causes an ActiveCorrectPassword or PassiveCorrectPassword event, output the

associated value; otherwise,

(b) Output a uniformly random element of {0, 1}λ.

Claim. For any adversary A which runs in time t and makes at most nS , nE , nK queries to Send, Execute,
and KDF, respectively, we have

AdvΠΓ2
(A) ≤ AdvΠΓ3

(A) +
2nK

min{`3eA−2A (`A − 1), `3eB−2B (`B − 1)}

+ 2(nS + nE)
(

(`B + 1)AdvSI-APCA
p (t, nK) + (`A + 1)AdvSI-APCB

p (t, nK)
)

Proof. Consider the ways that a KDF query could occur, and what happens in Γ2 when they do:

1. When Ω
(j)
B (B ∈ S) receives a message and generates a key, it calls KDF on an input which has never

been called before since, if it had been called before, we should have aborted either because an earlier

server oracle had chosen the same randomness as Ω
(j)
B or the adversary had made a random oracle or

KDF query with the corresponding randomness. So the output of this KDF query is independent from
everything that has happened previously.

2. When Ω
(i)
A (A ∈ C) receives a message and generates a key, there are three possibilities:



(a) Ω
(i)
A is partnered with some Ω

(j)
B for some B ∈ S7, in which case sk

(i)
A = sk

(j)
B ; or,

(b) Ω
(i)
A is unpartnered and a ClientPasswordTest(A, i, U, pwdA) events occurs, in which case sk

(i)
A is

set to the value of the event (the corresponding KDF value); or

(c) Ω
(i)
A is unpartnered and no ClientPasswordTest(A, i, U, pwdA) events occurs, in which case sk

(i)
A is

chosen independently of all previous queries, since the KDF query that yields it is new.
3. When A makes a KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′) query, there are four (not mutually exclu-

sive) possibilities:
(a) It causes a ClientPasswordTest, ServerPasswordTest or PassivePasswordTest event, in which

case the output is the associated session key;
(b) Ψ is correct, but no HA(j(E)||pwdA) query has been made;
(c) Ψ ′ is correct, but no HB(j(E′)||pwdA) query has been made, or;
(d) This KDF query is new, and so the output is chosen uniformly at random from {0, 1}λ.

It is clear that Γ3 is indistinguishable from Γ2 unless case 3.(b) or 3.(c) occurs. Consider the circumstances
under which a KDF((E,X, Y )||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′) query in one of the two cases could occur:

1. (E,X, Y ) has not been the output of a Send(A, i, (Initiate, B)) query, and Ψ is correct. This case occurs
with probability `2−3eBB (`B − 1)−1, since this matrix has not been computed before and so A cannot do
any better than guessing, and |Υ (`B , eB)| = `3eB−2B (`B − 1).

2. (E′, X ′, Y ′) has not been the output of a Send(B, j,A, (E,X, Y )) query, and Ψ ′ is correct. This case
occurs with probability `2−3eAA (`A − 1)−1, since this matrix has not been computed before and so A
cannot do any better than guessing, and |Υ (`A, eA)| = `3eA−2A (`A − 1).
Notice that cases 1. and 2. occur at most nK times in total, and so the total advantaged gained by the
adversary by considering both of these cases is bounded by

2nK

min{`3eA−2A (`A − 1), `3eB−2B (`B − 1)}
3. (E,X, Y ) has been the output of a Send(A, i, (Initiate, B)) query, and Ψ is correct. We use an adversary

who causes this case to solve the SI-APCA problem.
Given an instance (EK , PA, QA, PB , QB , EA) of the SI-APCA problem and an adversary A who causes
this scenario with probability ε, run A with global curve and torsion bases (E,PA, QA, PB , QB). Choose
one of the fewer than nS + nE client messages uniformly at random, and replace its message by m̂sg =
(EA, X, Y ) for (X,Y ) chosen uniformly at random from

W =
{

(S, T ) ∈ EA[`eBB ]2 : eEA
(S, T ) = eEK

(PB , QB)`
eA
A and ordEA

(S) = ordEA
(T ) = `eBB

}
.

Observe that m̂sg is valid if and only if the (unique) representation of X and Y as{
X = αφA(PB) + βφA(QB)
Y = γφA(PB) + δφA(QB)

(where φA is the true isogeny φA : EK → EA) satisfies Ψ =
[
α β
γ δ

]
∈ Υ2(`A, eA).

By choice of W , Ψ ∈ SL2(`A, eA), and so Ψ ∈ Υ2(`A, eA) with probability

P[Ψ ∈ Υ2(`A, eA)] = [SL2(`A, eA) : Υ2(`A, eA)]−1 = (`A + 1)−1.

When m̂sg is a correctly-formatted message, the simulation is indistinguishable from Γ3 from the per-
spective of the adversary. In any case, with probability ε, the scenario occurs in the way described, and
with probability (nS + nE)−1 it occurs for m̂sg. Moreover, at most nK queries are made at all, and we
have at most nK queries of the form KDF(m̂sg|| · || · ||Ψi||·). The probability that the correct Ψ is in the
list {Ψi}i is thus bounded by

P[Ψ ∈ {Ψi}i] ≥ ε · (`B + 1)−1 · (nS + nE)−1.

The set {Ψi}i gives us a list of size at most nK of candidate solutions {Ψ−1i [XY ]}i to our instance of
SI-APCA. It follows that

ε ≤ (nS + nE)(`B + 1)P[Ψ ∈ {Ψi}i] ≤ (nS + nE)(`B + 1)AdvSI-APCA
p (t, nK)

7 Notably, because of the definition of partnering, this partner Ω
(j)
B is unique.



4. (E′, X ′, Y ′) has been the output of a Send(B, j,msg) query, and Ψ ′ is correct. By an analogous argument
to point 3. above, we find that the probability that this occurs is bounded by

(nS + nE)(`A + 1)AdvSI-APCB
p (t, nK).

By the above arguments,

AdvΠΓ2
(A) ≤ AdvΠΓ3

(A) +
2nK

min{`3eA−2A (`A − 1), `3eB−2B (`B − 1)}

+ 2(nS + nE)
(

(`B + 1)AdvSI-APCA
p (t, nK) + (`A + 1)AdvSI-APCB

p (t, nK)
)

as required. ut

Γ4: The same as Γ3, except that there is no checking for PassiveCorrectPassword events.

Claim. For any adversary A that runs in time t and makes at most nK queries to the KDF oracle we have
AdvΠΓ3

(A) ≤ AdvΠΓ4
(A) + 2nEAdvC-SIDH

p (t, nK).

Proof. It is clear that Γ3 is indistinguishable from Γ4 unless PassiveCorrectPassword occurs. Suppose it
occurs with probability ε. We build an SIDH solver from A as follows:

Suppose we are given an instance ((EK , PA, QA, PB , QB), (EA, XA, YA), (EB , XB , YB)) of SIDH. Run A
as usual, with global curve and torsion bases (EK , PA, QA, PB , QB), and at the beginning of the game, choose
an index 1 ≤ k ≤ nE of a potential Execute query. When A makes its kth Execute query, instead of choosing
the messages as usual, instead choose Ψ ← U(Υ (`B , eB)) and Ψ ′ ← U(Υ (`A, eA)) and set the transcript as

m̂sgA = (EA, Ψ
[
XA

YA

]
), and m̂sgB = (EB , Ψ

′ [XB

YB

]
).

With probability ε, A will cause PassiveCorrectPassword, and with probability at least n−1E it will occur for

the Execute command we chose. Now,Amakes at most nK queries of the form KDF(m̂sgA||m̂sgB ||j(Êi)||Ψ ||Ψ ′)
and so produces a list of size at most nK of candidate solutions Êj to the SIDH instance. It follows that

P[SIDH(EA, EB) ∈ {Êj}j ] ≥ n−1E ε, which implies ε ≤ nEP[SIDH(EA, EB) ∈ {Êj}j ] ≤ nEAdvSIDH
p (t, nK)

from which the result follows. ut

Γ5: The same as Γ4, except that if ActiveCorrectPassword occurs, the game ends and the adversary wins.

Claim. For any adversary A, AdvΠΓ4
(A) ≤ AdvΠΓ5

(A).

Proof. This is clear; we have simply added more win conditions for the adversary. ut

Γ6: The same as Γ5, except that if 2ServerPassword occurs, the game ends and the adversary loses.

Claim. For any adversary A which runs in time t and makes at most nS Send queries and nK KDF queries,
we have

AdvΠΓ5
(A) ≤ AdvΠΓ6

(A) + 2nSAdvC-SGAB
p (t, nK(nK − 1))

Proof. Given an instance (Ψ1, Ψ2, (EB , φB(PA), φB(QA))) of C-SGAB , choose an index 1 ≤ kS ≤ nS of a
potential Send query that A can make. Run the protocol as usual until the kth Send query occurs. If the query
is submitted to a client, abort and try again. Otherwise, the query is of the form Send(B, j,A, (E,X, Y )) for

A ∈ C, B ∈ S, and Ω
(j)
B unused. Set the response message to this Send query as m̂sgB = (EB , Ψ

[
φB(PA)
φB(QA)

]
).

A makes fewer than nK queries of the form KDF((E,X, Y )||m̂sgB ||j(E′′i )||Ψ ′′i ||·); hence (letting Min(Ψ)
denote the matrix of minors of Ψ) the list of all ordered pairs{(

(E′′i ,Min(Ψ1)−TΨ ′′−1i [XY ]), (E′′j ,Min(Ψ2)−TΨ ′′−1j [XY ])
)}
i 6=j

has size at most nK(nK − 1). If 2ServerPassword occurs, then with probability n−1S it occurs for the Send

query we chose, and in this case it must hold that for some i 6= j,

E′′i = SIDHB(E,EB , Ψ
′′−1
i [XY ]) and E′′j = SIDHB(E,EB , Ψ

′′−1
j [XY ]).



Note that

E′′i = E/
〈
[1, nB ]Ψ ′′−1i [XY ]

〉
= E/

〈
[1, nB ]Min(Ψ1)T

(
Min(Ψ1)−TΨ ′′−1i [XY ]

)〉
= E/

〈
[1, nΨ1

B ]
(
Min(Ψ1)−TΨ ′′−1i [XY ]

)〉
and

E′′j = E/
〈

[1, nΨ2

B ]
(
Min(Ψ2)−TΨ ′′−1j [XY ]

)〉
But then

(
(E′′i ,Min(Ψ1)−TΨ ′′−1i [XY ]), (E′′j ,Min(Ψ2)−TΨ ′′−1j [XY ])

)
is precisely a solution to our instance of

C-SGAB . It follows that if 2ServerPassword occurs with probability ε, we have

n−1S ε ≤ AdvC-SGAB
p (t, nK(nK − 1)) =⇒ ε ≤ nSAdvC-SGAB

p (t, nK(nK − 1)).

Since games Γ5 and Γ6 are indistinguishable unless 2ServerPassword occurs, we find that

AdvΠΓ5
(A) ≤ AdvΠΓ6

(A) + 2nSAdvC-SGAB
p (t, nK(nK − 1))

as required. ut

Γ7: The same as Γ6, except that if 2ClientPassword occurs, the game ends and the adversary loses.

Claim. For any adversary A which runs in time t and makes at most nS Send queries and nK KDF queries,

AdvΠΓ6
(A) ≤ AdvΠΓ7

(A) + 2nSAdvC-SGAA
p (t, nK(nK − 1)).

Proof. This follows by an argument analogous to the previous claim. ut

Γ8: The same as Γ7, except that whenever a client would send a message (EA, XA, YA), we instead send
(EA, X̂A, ŶA), for (X̂A, ŶA) chosen uniformly at random from

W =
{

(S, T ) ∈ EA[`eBB ]2 : eEA
(S, T ) = eEK

(PB , QB)`
eA
A and ordEA

(S) = ordEA
(T ) = `eBB

}
.

Claim. For any adversary A running in time t,

AdvΠΓ7
(A) ≤ AdvΠΓ8

(A) + 2(nS + nE)AdvSI-APDA
p (t)

Proof. We proceed by a hybrid argument; let {Γ (j)
7 }

nS+nE
j=0 be a sequence obtained from Γ7 by replacing only

the first j client messages as described. We will show that for 1 ≤ j ≤ nS + nE ,

AdvΠ
Γ

(j−1)
7

(A) ≤ AdvΠ
Γ

(j)
7

(A) + 2AdvSI-APDA
p (t).

Suppose we are faced with an instance (EA, XA, YA) of SI-APDA. Run the simulation against A as usual,
but replace the first j − 1 client messages as described, and replace the jth client message with m̂sgA =
(EA, Ψ

[
XA

YA

]
) for Ψ ← U(Υ (`B , eB)). Play the game to completion with A, or terminate it if it exceeds its

time or query bounds or fails. Upon completion, guess that (XA, YA) are the correct auxiliary points for EA
if A wins the security game, and guess that they are random points otherwise. Observe that

P[We guess correctly] = P[(XA, YA) are correct|A wins] + P[(XA, YA) are random|A does not win]

≥ P[(XA, YA) are correct] · P[A wins|(XA, YA) are correct]

+ P[(XA, YA) are random] · P[A does not win|(XA, YA) are random]

=
1

2

(
1

2
+

1

2
AdvΠ

Γ
(j−1)
7

(A)

)
+

1

2

(
1

2
− 1

2
AdvΠ

Γ
(j)
7

(A)

)
.



This procedure takes time at most t, and so by definition P[We guess correctly] ≤ 1
2 + AdvSI-APDA

p (t).
Substituting this into the above and simplifying we find that for each j,

1

2
+AdvSI-APDA

p (t) ≥ 1

2
+

1

4
AdvΠ

Γ
(j−1)
7

(A)− 1

4
AdvΠ

Γ
(j)
7

(A) =⇒ AdvΠ
Γ

(j−1)
7

(A) ≤ AdvΠ
Γ

(j)
7

(A)+4AdvSI-APDA
p (t).

There are nS + nE + 1 hybrids, and so, substituting Γ
(0)
7 = Γ7 and Γ

(nS+nE)
7 = Γ8 we obtain

AdvΠΓ7
(A) ≤ AdvΠΓ8

(A) + 4(nS + nE)AdvSI-APDA
p (t)

as required. ut

Γ9: The same as Γ8, except that whenever a server would send a message (EB , XB , YB), we instead send
(EB , X̂B , ŶB), for (X̂B , ŶB) chosen uniformly at random from

W =
{

(S, T ) ∈ EB [`eAA ]2 : eEB
(S, T ) = eEK

(PA, QA)`
eB
B and ordEB

(S) = ordEB
(T ) = `eAA

}
.

Claim. For any adversary A running in time t, AdvΠΓ8
(A) ≤ AdvΠΓ9

(A) + 2(nS + nE)AdvSI-APDB
p (t)

Proof. This follows by an argument analogous to the previous claim. ut

Claim. For any adversary A that makes at most nS Send queries, AdvΠΓ9
(A) ≤ nS

L where L is the size of the
password space.

Proof. Note that

P[A succeeds] ≤ P[ActiveCorrectPassword]

+ P[A succeeds|No ActiveCorrectPassword] · P[No ActiveCorrectPassword]

In game Γ9, the messages contain no information about the passwords, since the auxiliary points are
random. It follows that P[ActiveCorrectPassword] ≤ nS

L , since the adversary causes at most nS total
ClientPasswordTest and ServerPasswordTest events.

It remains to compute P[A succeeds|No ActiveCorrectPassword]. The only way for A to win if it does

not cause an ActiveCorrectPassword event is to make a Test query to a fresh instance Ω
(i)
U and successfully

guess whether the returned key is true or random. We show that the A’s view is independent of sk
(i)
U , and

hence that A wins in this way with probability exactly 1
2 .

There are two kinds of queries we need to consider:

1. Reveal queries. Since Ω
(i)
U is fresh, A has made neither a Reveal(U, i) query nor a Reveal(V, j) query,

where Ω
(j)
V is the partner to Ω

(i)
U (if it exists). For any other instance Ω

(k)
W , the session key sk

(k)
W is

computed as

sk
(k)
W = KDF(msg

(k)
W ||msg

(k′)
W ′ ||j(E

(k)
W )||Ψ ||Ψ ′)

where msgW ,msgW ′ is the transcript of the protocol. By Γ2, we know that the message transcript from

the perspective of Ω
(i)
U is different from that of Ω

(k)
W , since otherwise we would have aborted. Since KDF

is a random oracle, sk
(i)
W is independent from sk

(i)
U , and hence a Reveal(W,k) query gives no advantage

to A for the given Test query.
2. KDF queries. Note that in games Γ4 and beyond, the output of KDF queries is independent of any previ-

ously computed session keys, since there are no checks for PassiveCorrectPassword, and ActiveCorrectPassword

events cause the simulation to end. So we need only consider KDF queries that occur before sk
(i)
U is set.

There are three cases to consider:
(a) U ∈ C, and Ω

(i)
U is unpartnered. In this case, cases 4.(a) and 4.(b) in the description of Γ3 do not

occur (because U is unpartnered, and ActiveCorrectPassword events end the simulation) and so

we must be in case 4.(c); but here sk
(i)
U is chosen without regard for anything that has previously

occurred.



(b) U ∈ C, and Ω
(i)
U is partnered with some Ω

(j)
V . In this case, sk

(i)
U = sk

(j)
V . But according to point 3.(f)

in the description of Γ3, sk
(j)
V is chosen without regard for anything that has previously occurred.

(c) U ∈ S. Again we are in point 3.(f) in the description of Γ3, and so sk
(i)
U is chosen without regard for

anything that has previously occurred.

Altogether, this says that A’s view in independent from sk
(i)
U when ActiveCorrectPassword does not occur,

and so P[A succeeds|No ActiveCorrectPassword] = 1
2 .

Now,

P[A succeeds] = P[ActiveCorrectPassword] +
1

2
P[No ActiveCorrectPassword]

= P[ActiveCorrectPassword] +
1

2
(1− P[ActiveCorrectPassword])

=
1

2
+

1

2
P[ActiveCorrectPassword]

≤ 1

2
+

1

2

nS
L

from which it immediately follows that AdvΠΓ9
(A) ≤ nS

L . Using the preceding 8 claims, we finally obtain the
desired result. ut

Corollary 1. Under the SIDH, SI-APCA, SI-APCB, SI-APDA, SI-APDB, C-SGAA and C-SGAB assump-
tions, if HA, HB, and KDF are modelled as random oracles, our protocol is secure in the model of [1] against
polynomial-time adversaries.

5 Conclusions and Future Work

We have given a construction for a PAKE in the random oracle model whose security is based on the hardness
of computational problems related to isogenies of supersingular elliptic curves—in particular, problems which
are conjectured to be resistant to quantum algorithms. This is the first proposed PAKE from quantum-safe
primitives which is not lattice-based.

Going forward there are two main questions related to this work that remain open:

1. Can we construct an isogeny-based PAKE in the quantum random oracle model (where quantum access
to all hash functions are allowed) or with no random oracles?

2. How hard is the C-SGA problem? Can we reduce a better-understood problem to it?
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