
Bidirectional Asynchronous Ratcheted Key Agreement

without Key-Update Primitives

F. Betül Durak and Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne (EPFL)

LASEC - Security and Cryptography Laboratory

Lausanne, Switzerland

Abstract. Following up mass surveillance and privacy issues, modern secure

communication protocols now seek for more security such as forward secrecy

and post-compromise security. They cannot rely on any assumption such as syn-

chronization, predictable sender/receiver roles, or online availability. At EURO-

CRYPT 2017 and 2018, key agreement with forward secrecy and zero round-trip

time (0-RTT) were studied. Ratcheting was introduced to address forward secrecy

and post-compromise security in real-world messaging protocols. At CSF 2016

and CRYPTO 2017, ratcheting was studied either without 0-RTT or without bidi-

rectional communication. At CRYPTO 2018, it was done using key-update prim-

itives, which involve hierarchical identity-based encryption (HIBE).

In this work, we define the bidirectional asynchronous ratcheted key agreement

(BARK) with formal security notions. We provide a simple security model with

a pragmatic approach and design the first secure BARK scheme not using key-

update primitives. Our notion offers forward secrecy and post-compromise secu-

rity. It is asynchronous, with random roles, and 0-RTT. It is based on a cryptosys-

tem, a signature scheme, and a collision-resistant hash function family without

key-update primitives or random oracles. Compared to previous protocols, ours

is 100 to 1000 times faster. We further show that BARK (even unidirectional) im-

plies public-key cryptography, meaning that it cannot solely rely on symmetric

cryptography.

1 Introduction

In standard communication systems, protocols are designed to provide messaging ser-

vices with end-to-end encryption that provides security for the users.

In bidirectional two-party secure communication, participants alternate their role

as a sender and a receiver. Essentially, secure communication reduces to continuously

exchanging keys, because each message requires a new key.

The modern instant messaging protocols are substantially asynchronous. In other

words, for a two-party communication, the messages should be transmitted (or the key

exchange should be done) even though the counterpart is not online. Moreover, to be

able to send the payload data without requiring online exchanges is a major design goal

called zero round trip time (0-RTT). Finally, the moment when a participant wants to

send a message is undefined, meaning that participants use random roles (sender or

receiver) without any synchronization. Namely, they could send messages at the same

time. Being asynchronous, with 0-RTT, and random roles make the formalism more

difficult and tedious.

Even though many systems were designed for the privacy of their users, they were

rapidly faced with security vulnerabilities caused by the compromises of the partici-

pants’ states. In this work, compromising a participant means to obtain some of its

internal information. We will call it an exposure.

The desired security notion is that compromised information should not uncover

more than possible by trivial attacks. For instance, the compromised state of partic-

ipants should not allow to decrypt past communication. This is called forward se-

crecy. Typically, forward secrecy is obtained by updating states with a one-way function

x→ H(x)→ H(H(x))→ ... and deleting old entries. It is used, for instance, in RFID

protocols [13, 14]. One mechanical technique to allow to move forward and to prevent

from moving backward is to use a ratchet. In secure communication, ratcheting also

includes the use of randomness in every state update so that a compromised state is

not enough to decrypt future communication as well. This is called future secrecy or

backward secrecy or post-compromise security or even self-healing.

One thesis of the present work is that healing after an active attack involving a

forgery is not a nice property. We show that it implies insecurity. After one participant

is compromised and impersonated, if communication self-heals, it means that some

adversary can make a trivial attack which is not detected. We also show other insecurity

cases. Hence, we rather mandate communication to cut after active attacks.

Our goal is to obtain ratcheting security. To define it, we must exclude attacks which

trivially exploit leakages. In this work, we adopt a very easy-to-understand rule: mes-

sages which are acknowledged by the legitimate receiver are considered safe (unless

trivial passive attacks). This way, as soon as a sender is confirmed that his message was

well received, he has strong guarantees that his message is safe and will remain so.

Previous work. The security of key exchange was studied by many authors. The promi-

nent models are the CK and eCK models [4, 12].

Techniques for ratcheting first appeared in real life protocols. It appeared in the

Off-the-Record (OTR) communication system by Borisov et al. [3]. The Signal proto-

col designed by Open Whisper Systems [16] later gained a lot of interest from message

communication companies. Today, the WhatsApp messaging application reached bil-

lions of users worldwide [19]. It is using Signal.

A broad survey about various techniques and terminologies was made at S&P 2015

by Unger et al. [17].

At CSF 2016, Cohn-Gordon et al. [6] studied bidirectional ratcheted communication

and proposed a protocol. However, their protocol does not offer 0-RTT and requires

synchronized roles.

At EuroS&P 2017, Cohn-Gordon et al. [5] formally studied Signal.

At CRYPTO 2017, Bellare et al. [2] gave a secure ratcheting key exchange protocol.

Their protocol is unidirectional and does not allow receiver exposure. They further con-

struct secure communication (i.e. authentication and encryption) from key agreement

and symmetric authenticated encryption.

At CRYPTO 2018, Poettering and Rösler [15] studied bidirectional asynchronous

ratcheted key agreement and presented a protocol which is secure in the random oracle

2

model. Their solution further relies on a hierarchical identity-based encryption (HIBE)

but offers a stronger security than what we aim at, leaving the room to better protocols.

At the same conference, Jaeger and Stepanovs [10] did similar things but focused

on secure communication rather than key agreement. They proposed another proto-

col relying on HIBE. In both results, HIBE is used to construct encryption/signature

schemes with key-update security. This is a rather new notion allowing forward secrecy

but is expensive to achieve. In both cases, it was claimed that the depth of HIBE is re-

ally small. However, when participants are disconnected but send several messages, the

depth grows up quite fast. Consequently, HIBE needs unbounded depth.

In asymmetric communication, 0-RTT communication with forward secrecy was

achieved using puncturable encryption by Günther et al. at EUROCRYPT 2017 [9]. At

EUROCRYPT 2018, Derler et al. made it quite practical by using Bloom filters [7].

Two papers appeared after the first version of the current paper was released.

Jost, Maurer, and Mularczyk [1] designed another ratcheting protocol which has a

near-optimal security, does not need HIBE, but has still a huge complexity: When mes-

sages alternate well (i.e., no participant sends two messages without receiving one in

between), processing n messages requires O(n) operations in total. But when messages

accumulate before alternating (for instance, because the participants are disconnected

by the network), the complexity becomes O(n2). This is also the case for Poettering-

Rösler [15] and Jaeger-Stepanovs [10].1 One advantage of the Jost-Maurer-Mularczyk

protocol [1] comes with the resilience with random coin leakage as discussed below.

Alwen, Coretti, and Dodis [11] designed two other ratcheting protocols aiming at

instant decryption, i.e. the ability to decrypt even though some previous messages have

not been received yet. This is closer to real-life protocols but this comes with a po-

tential threat: keys to decrypt un-delivered messages are stored until the messages are

delivered. Hence, the adversary could choose to hold messages and decrypt them with

future state exposure. This weakens forward secrecy, as it can only be obtained if ad-

versaries passively let messages to be delivered. Furthermore, unless the direction of

communication changes (or more precisely, if the epoch increases), their protocols are

not really ratcheting as no random coins are used to update the state. This weakens

post-compromise security as well. In Table 1, we call this weaker security “pragmatic”.

The lighter of the two protocols is not competing in the same category because it mostly

uses symmetric cryptography. It is more efficient but with lower security. Namely, cor-

rupting the state of a participant A implies impersonating B to A, and also decrypting

the messages that A sends. Other protocols do not have this weakness (but are slower).

The second protocol by Alwen, Coretti, and Dodis [11] uses asymmetric cryptography.

Some authors address corruption of random coins in different ways. Bellare et

al. [2] and Jost et al. [1] allow to leak the random coins just after usage. Jaeger and

Stepanovs [10] allow to leak it just before usage only. Alwen et al. [11] allow adver-

sarially chosen random coins. In most of protocols, revealing (or choosing) the random

coins imply revealing some part of the new state which allows to decrypt incoming

messages. It is comparable to a state exposure. Jost et al. [1] offers a better security as

revealing the random coins reveals the new state (and allow to decrypt) only when the

previous state was already known.

1 This is only visible in the corrected version of the paper on eprint [10].

3

Table 1: Comparison of Protocols

Security Complexity Coins leakage resilience

alternating accumulating

Poettering-Rösler [15] optimal O(n) O(n2) no

Jaeger-Stepanovs [10] optimal O(n) O(n2) pre-send leakage, = state exposure

BARK [this paper] sub-optimal O(n) O(n) chosen coins, = state exposure

Jost-Maurer-Mularczyk [1] near-optimal O(n) O(n2) post-send leakage

Alwen-Coretti-Dodis [11] pragmatic O(n) O(n) chosen coins, = state exposure

Our contributions. We give a definition for a bidirectional asynchronous key agreement

(BARK) along with security properties. We give the appropriate definitions (such as

matching status) then identify all cases leading to trivial attacks. We split them into

direct and indirect leakages. Then, we define security with the KIND game (privacy).

We also consider the resistance to forgery (impersonation) and the resistance to attacks

which would heal after active attacks (RECOVER security). We use these two notions

as a helper to prove KIND-security. We finally construct a secure protocol. Our design

choices are detailed below and compared to other papers.

1. Simplicity. Contrarily to previous work, we define KIND security in a very com-

prehensive way by moving all technicalities in a cleanness predicate which identifies

and captures all trivial ways of attacking.

2. Strong security. In the same line as previous works, the adversary in our model

can see the entire communication between participants and control the delivery. Of

course, he can replace messages by anything. Scheduling communications is under the

control of the adversary. This means that the time when a participant sends or receives

messages is decided by the adversary. Moreover, the adversary is capable of corrupting

participants by making exposures of their internal data. We separate two types of expo-

sures: the exposure of the state (that is kept in an internal machinery of a participant)

and the exposure of the key (which is produced by the key agreement and given to an ex-

ternal protocol). This is because states are (normally) kept secure in our protocol while

the generated key leaves to other applications which may leak for different reasons. In

the beginning, we do not consider exposure of the random coins for simplicity. Later

on, we show how to address random-coin-leakage resilience (with adversarially chosen

random coins) in Section 3.3, by just taking Send operations with coin corruption as

operations revealing both the generated key and the state.

3. Slightly sub-optimal security. Using the result from exposure allows the ad-

versary to be quite active, e.g. by impersonating the exposed participant. However, the

adversary is not allowed to use exposures to mount a trivial attack. Identifying such

trivial attacks is not easy. As a design goal, we adopt not to forbid more than what

the intuitive notion of ratcheting captures. We do forbid a bit more than Poettering-

Rösler [15] and Jaeger-Stepanovs [10] which are considered of having optimal security

(although it is not clear what optimality means, as we discuss in Appendix B) and than

Jost-Maurer-Mularczyk [1] (which has near-optimal security), though, allowing lighter

building blocks. Namely, we need no key-update primitives and have linear-time com-

4

plexity in terms of number of exchanged messages, even when the network is occasion-

ally down. This translates to a speed up factor of 100 to 1000 in implementations.

We argue that this is a reasonable choice enabling ratchet security as we define it: un-

less trivial leakage, a message is private as long as it is acknowledged for reception in

a subsequent message.

4. Sequence integrity. We believe that duplex communication is reliably enforced

by a lower level protocol. This solves packets loss by resend requests and to reconstruct

the correct sequence order. What we only have to care for is when an adversary pre-

vents the delivery of a message even though it has been requested several times. We

made the choice to make the transmission of the next messages impossible under such

attack. Contrarily, Alwen et al. [11] advocate for immediate decryption, even though

one message is missing. This lowers the security and we chose not to have it.

In the BARK protocol, the correctness implies that both participants generate same

keys. We define the stages matching status, direct leakage, indirect leakage. We aim to

separate trivial attacks and forgeries from non-trivial cases with our definitions. Direct

and indirect leakages define the times when the adversary can deduce the key generated

due to the exposure of a participant who can either be the same participant (direct) or

their counterpart (indirect). Such leakages cause trivial victory of the adversary.

We construct a secure unidirectional protocol (uniARK) and a secure (bidirectional)

BARK protocol. We build our constructions on top of a cryptosystem and a signature

scheme and achieve strong security, without key-update primitives or random oracles.

We further show that a secure unidirectional BARK implies public-key cryptography.

Notations. We have two characters: Alice and Bob. Whenever we need an abbreviation,

they are represented as A and B respectively. When P designates a participant, P refers

to P’s counterpart. We use the roles send and rec for sender and receiver respectively.

We define send = rec and rec = send. When participants A and B have exclusive roles

(like in unidirectional cases), we call them sender S and receiver R.

Structure of the paper. In Section 2, we define our BARK protocol along with correct-

ness definition, and security of key indistinguishability, unforgeability, and unrecover-

ability. In Section 3, we give our BARK construction. Appendix A recalls definitions for

underlying primitives. In Appendix C, we make some comments and comparison with

the results of Bellare et al. [2], Poettering-Rösler [15], and Jaeger-Stepanovs [10].

2 Bidirectional Asynchronous Ratcheted Communication

2.1 BARK Definition and Correctness

A two-party ratcheted communication protocol consists of three protocols: Init, an ini-

tial state generation protocol between two communicating parties, called Alice and

Bob; Send, a sender algorithm that is run when a participant wants to send a message;

Receive, a receiver algorithm that is run whenever a participant receives a message.

Definition 1 (BARK). A bidirectional asynchronous ratcheted key agreement (BARK)

consists of the following algorithms:

5

– Init(1λ)
$
−→ (stA,stB,z): The initial state generation protocol Init inputs a security

parameter λ and outputs a tuple (stA,stB,z) which are initial states for both Alice

and Bob and some public information z.

– Send(stP)
$
−→ (st ′P,upd,k): The algorithm inputs a current state stP for P ∈ {A,B}.

It outputs a tuple (st ′P,upd,k) with an updated state st ′P, a message upd, and a key

k.

– Receive(stP,upd)→ (acc,st ′P,k): The algorithm inputs (stP,upd) where P∈ {A,B}.

It outputs a triple consisting of a flag acc ∈ {true, false} to indicate an accept or re-

ject of upd information, an updated state st ′P, and a key k i.e. (acc,st ′P,k).

A unidirectional asynchronous ratcheted key agreement (uniARK) is a BARK in which

Alice (called the sender S) only uses Send and Bob (called the receiver R) only uses

Receive.

In practice, it is convenient to consider Init algorithms which are splittable:

Definition 2 (Splittable Init). We say that the Init algorithm of a BARK is splittable if

there exists some algorithms GenA, GenB, fA, and fB such that Init is defined by

Init(1λ):

1: GenA(1λ)→ (skA,pkA)

2: GenB(1
λ)→ (skB,pkB)

3: pick r

4: stA← (skA,fA(pkA,pkB,r))

5: stB← (skB,fB(pkA,pkB,r))

6: z← (pkA,pkB)

7: return (stA,stB,z)

This way, private keys can be generated by their holders and there is no need to rely on

an authority, except for authentication of pkA and pkB.

We consider bidirectional completely asynchronous communications. We can see,

on Fig. 1, Alice and Bob running some sequences of Send and Receive operations

without any prior agreement. Their time scale can be completely different. This means

that Alice and Bob run algorithms in an asynchronous way. We define the scheduling

by a sequence of users (Alice and Bob). Reading the sequence tells who executes a

new step of the protocol. In our model, scheduling is controlled by the adversary. For

the time being, we assume that the order of transmitted messages is preserved in each

direction. If two messages arrive in different order or one was lost or replayed, it must

be due to the attacks.

The protocol also uses random roles. Alice and Bob can both send and receive

messages. They take their role (sender or receiver) in a sequence, but the sequence

of roles of Alice is not necessarily synchronized. Sending/receiving is refined by the

RATCH(P, role, [upd]) call in Fig. 2. In the correctness notion, sent messages by partic-

ipants are buffered and delivered in the same order to the counterpart. So, both partici-

pants can send messages at the same time.

Correctness. We say that a ratcheted communication protocol functions correctly if the

receiver accepts the update information upd and generates the same key as its coun-

terpart who generated upd. We formally define the correctness in Fig. 2. In gray, we

put some instructions which are not necessary for the game itself. They define some

variables that we will use later. receivedPkey (respectively sentPkey) keeps a list of secret

6

keys that are generated by P when running Receive (respectively, Send). Similarly,

receivedPmsg (respectively sentPmsg) keeps a list of upd information that are received (re-

spectively sent) by P and accepted by Receive. We stress that the received sequences

only keep values for which acc = true. (This will be important in the security game.)

(TInit)ALICE BOBreceivedAlice
keysentAlice

key receivedBob
key sentBob

key

Send

(T0)

Send

(T1)

Receive

(T2)

Send

(T3)

Receive

(T4)

...

Send

(T5)

Send

(T6)

Send

(T7)

Receive

(T8)

Send

(T9)

Receive

(T10)

Receive

(T11)

k0

k1

k2

k4

k3

k2

k3

k5

k0

k6

k1

k4

Fig. 1: The message exchange between Alice and Bob.

For two communicating parties Alice and Bob, we run Init to set up the states, and

then run the correctness game in Fig. 2. The scheduling is defined by a sequence sched

of tuples of form either (P,send) (saying that P must run Send and send) or (P, rec)

(saying that P must run Receive with whatever is received). In this game, communica-

tion between the participants uses a waiting queue for messages in each direction. Each

participant has a queue of incoming messages and is pulling them in the order they have

been pushed in.

Definition 3 (Correctness of BARK). We say that BARK is correct if for all sequence

sched, the adversary playing the correctness game of Fig. 2 never wins. Namely, at all

time, for each P, receivedPkey is prefix of sentPkey
2 and each RATCH(., rec, .) call accepts.

The correctness implies that the decryption keys for the receiver have been gen-

erated same as encryption keys of the sender in the correct order. See Fig. 1 for the

ordering of encryption/decryption keys, e.g. sentAlice
key = receivedBob

key .

Security. We model our security notion with an active adversary who can have access to

some of the states of Alice or Bob along with access to their secret keys enabling them

2 By saying that receivedPkey is prefix of sentPkey, we mean that if n is the number of keys gener-

ated by P running Receive, then these keys are the first n keys generated by P running Send.

7

Oracle RATCH(P, rec,upd)

1: (acc,st ′P ,kP)← Receive(stP ,upd)

2: if acc then

3: updP ← upd

4: stP ← st ′P
5: append kP to receivedPkey

6: append updP to receivedPmsg

7: end if

8: return acc

Oracle RATCH(P,send)

9: (st ′P ,updP ,kP)← Send(stP)

10: stP ← st ′P
11: append kP to sentPkey

12: append updP to sentPmsg

13: return updP

Game Correctness(sched)

1: (for uniARK only) if ∃i (schedi = (A, rec)) ∨ (schedi =

(B,send)) then exit: adversary loses

2: set all sent∗∗ and received∗∗ variables to ∅

3: Init(1λ)
$
−→ (stA,stB,z)

4: i← 0

5: loop

6: i← i+1

7: (P, role)← schedi
8: if role = rec then

9: if no incoming message to P then exit: adversary loses

10: pull upd from incoming messages to P

11: acc← RATCH(P, rec,upd)

12: if acc = false then exit: adversary wins

13: else

14: upd← RATCH(P,send)

15: push upd to incoming messages to P

16: end if

17: if receivedAkey not prefix of sentBkey then exit: adversary wins

18: if receivedBkey not prefix of sentAkey then exit: adversary wins

19: end loop

Fig. 2: The correctness game.

to act both as a sender and as a receiver. We focus on three main security notions which

are key indistinguishability (denoted as KIND) under the compromise of states or keys,

unforgeability of upd information (FORGE) by the adversary which will be accepted,

and recovery from impersonation (RECOVER) which will make the two participants

restore secure communication without noticing a (trivial) impersonation resulting from

a state exposure. A challenge in these notions is to eliminate the trivial attacks. FORGE

and RECOVER security will be useful to prove KIND security.

2.2 KIND Security

The adversary can access four oracles called RATCH, EXPst, EXPkey, and TEST.

RATCH. This is essentially the message exchange procedure. It is defined on Fig. 2.

The adversary can call it with three inputs, a participant P, where P ∈ {A,B}; a

role of P; and an upd information if the role is rec. The adversary gets upd (for

role = send) or acc (for role = rec) in return.

EXPst. The adversary can expose the state of Alice or Bob. It inputs P ∈ {A,B} to the

EXPst oracle and it receives the full state stP of P.

EXPkey. The adversary can expose the generated key by calling this oracle. Upon in-

putting P, it gets the last key kP generated by P. If no key was generated, ⊥ is

returned.

TEST. This oracle can be called only once to receive a challenge key which is gener-

ated either uniformly at random (if the challenge bit is b = 0) or given as the last

8

generated key of a participant P specified as input (if the challenge bit is b = 1).

The oracle cannot be queried if no key was generated yet.

We specifically separate EXPkey from EXPst as the key k generated by BARK will

be used by the external process which may leak. Thus, EXPkey can be more frequent

than EXPst, but will harm security less.

To define security, we avoid trivial attacks. Capturing the trivial cases in a broad

sense requires a new set of definitions. All of them are intuitive. We introduce these

definitions as follows.

We use a notion of time and the value of the sequences received and sent at a given

time. The security game executes instructions on a time scale and variables are updated.

For all global variables v in the game such as receivedPmsg, kP, or stP, we denote by v(t)

the value of v at time t. For instance, receivedAmsg(t) is the sequence of upd which were

received and accepted by A when running Receive.

Definition 4 (Matching status). At a given time t, we say that a participant P is in

a matching status if there exist times t and t ′ such that 1. t ′ 6 t, 2. receivedPmsg(t) =

sentPmsg(t), and 3. receivedPmsg(t) = sentPmsg(t
′). If this is the case, we say that time t

for P originates from time t for P.

The second condition clearly states that all the received (and accepted) upd information

match the upd information sent by the counterpart of P, at some point in the past (at

time t), in the same order. The third condition similarly verifies that those messages

from P only depend on information coming from P. In Fig. 1, Bob is in a matching

status with Alice because he receives the upd information in the exact order as they

have sent by Alice (i.e. Bob generates k2 after k1 and k4 after k2 same as it has sent

by Alice). In general, as long as no adversary switches the order of messages or creates

fake messages successfully for either party, the participants are always in a matching

status. The third condition is useful to prove that kP(t) = kP(t). This will be done in

Lemma 8.

The key exchange literature often defines a notion of partnering which is simpler.

What makes the notion more complicated here is the fact that we have asynchronous

random roles.

An easy property of the notion of matching status is that if P is in a matching status

at time t, then P is also in a matching status at any time t0 6 t. Similarly, if P is in a

matching status at time t and t for P originates from t for P, then P is in a matching

status at time t and also at any time before. Note that although t originates from t,

which itself originates from t ′, we may have t ′ 6= t.

Definition 5 (Forgery). Given a participant P in a game, we say that the forgeries

in receivedPmsg are upd messages upd1, . . . ,updn if there exist finite sequences of upd

messages (possibly empty) seq0, . . . ,seqn such that

– receivedPmsg = (seq0,upd1,seq1,upd2,seq2, . . . ,updn,seqn);

– for all i, (seq0,seq1, . . . ,seqi−1) is a prefix of sentPmsg;

– for all i, (seq0,seq1, . . . ,seqi−1,updi) is not a prefix of sentPmsg.

9

Here, the comma operation “,” is the concatenation of sequences and single messages

updi are taken as sequences of length 1. We call upd1 as P’s first forgery.

Lemma 6. If P is not in a matching status, either P or P has received a forgery.

Proof. If P did not receive a forgery, then receivedPmsg is a prefix of sentPmsg. Therefore,

there exists a time t such that receivedPmsg(t) = sentPmsg(t). If P is not in matching

status at time t, then receivedPmsg(t) cannot be a prefix of sentPmsg(t). This implies that

P received a forgery due to Definition 5. ⊓⊔

A secure communication protocol needs such a “matching status” since it character-

izes a normal execution of the protocol. More specifically, as we explained in previous

section (and as it will become more clear later), “recovery from impersonation” cannot

be allowed in BARK. A secure protocol should either enforce that both participants are

always in matching status or make communication between them impossible.

In a matching status, any upd received by P must correspond to an upd sent by P

and the sequences must match. This implies the following notion.

Definition 7 (Corresponding RATCH calls). Let P be a participant. We consider the

RATCH(P, rec, .) calls by P returning true. We say that the ith one corresponds to the jth

RATCH(P,send) call if i= j and P is in matching status at the time of this ith accepting

RATCH(P, rec, .) call.

Lemma 8. In a correct BARK protocol, two corresponding RATCH(P, rec,upd) and

RATCH(P,send) calls generate the same key kP = kP.

Proof. If RATCH(P, rec,upd) and RATCH(P,send) correspond to each other, then P is

in matching status. We let t be the time of the RATCH(P, rec,upd) call and t be the

time of the RATCH(P,send). We make the sequence of all RATCH calls from P until

time t and all RATCH calls from P until time t. By putting them in chronological order,

thanks to the conditions of the matching status, we define a sequence sched, and the

experiment runs as the correctness game. Due to correctness, the last calls generate the

same key k. Hence, kP(t) = kP(t). ⊓⊔

Definition 9 (Ratcheting period of P). A maximal time interval during which there is

no RATCH(P,send) call is called a ratcheting period of P.

Consequently, a RATCH(P,send) call ends a ratcheting period for P and starts a new

one. In Fig. 1, the time between T1 and T3 or the interval T5 − T6 are called ratcheting

period of Alice and Bob respectively.

We now define the time when the adversary can trivially obtain a key generated by

P due to an exposure. We distinguish the case when the exposure was done on P (direct

leakage) and the case when the exposure was done on P (indirect leakage).

Definition 10 (Direct leakage). Let t be a time and P be a participant. We say that

kP(t) has a direct leakage if one of the following conditions is satisfied:

10

– There is an EXPkey(P) at a time te such that the last RATCH call which is executed

by P before time t and the last RATCH call which is executed by P before time te
are the same.

– P is in a matching status and there exists t0 6 te 6 tRATCH 6 t and t such that time

t originates from time t; time t originates from time t0; there is one EXPst(P) at

time te; there is one RATCH(P, rec, .) at time tRATCH; and there is no RATCH(P, ., .)

between time tRATCH and time t.

P P

t0

(EXPst) te

tRATCH

t

tReceive

no RATCH

In the first case, it is clear that EXPkey(P)

gives kP(te) = kP(t). In the second case (in

the figure3), the state which leaks from EXPst(P)

at time te allows to simulate all deterministic

Receive (skipping all Send) and to compute the

key kP(tRATCH) = kP(t). The reason why we can

skip all Send is that they make messages which

are supposed to be delivered to P after time t, so

they have no impact on kP(t).

Consider Fig. 1. Suppose t is in between time

T3 and T4. According to our definition P =A and

the last RATCH call is at time T3. It is a Send, thus

the second case cannot apply. The next RATCH

call is at time T4. In this case, t has a direct leak-

age for Alice if there is a key exposure of Alice

between T3 and T4.

Suppose now that T8 < t < T9. We have P = B, the last RATCH call is a Receive, it

is at time tRATCH = T8, and t originates from time t= T0 which itself originates from the

origin time t0 = TInit for B. We say that t has a direct leakage if there is a key exposure

between T8 − T9 or a state exposure of Bob before time T8. Indeed, with this last state

exposure, the adversary can ignore all Send and simulate all Receive to derive k0.

Definition 11 (Indirect leakage). We consider a time t and a participant P. Let tRATCH

be the time of the last successful RATCH call and role be its input role. (We have

kP(tRATCH) = kP(t).) We say that kP(t) has an indirect leakage if P is in matching

status at time t and one of the following conditions is satisfied

– There exists a RATCH(P, role, .) corresponding to that RATCH(P, role, .) and making

a kP which has a direct leakage for P.

– There exists t ′ 6 tRATCH 6 t and t6 te such that P is in a matching status at time

te, t originates from t, te originates from t ′, there is one EXPst(P) at time te, and

role = send.

In the first case, kP(t) = kP(tRATCH) is also computed by P and leaks from there.

The second case (in the figure) is more complicated: it corresponds to an adversary who

can get the internal state of P by EXPst(P) then simulate all Receive with messages from

P until the one sent at time tRATCH, ignoring all Send by P, to recover kP(t).

3 Origin of dotted arrows indicate when a time originates from.

11

P P

t ′

tRATCH

t

t

te (EXPst)
Send

no RATCH

For example, let t be a time between T1 and T2

in Fig. 1. We take P = A. The last RATCH call is

at time tRATCH = T1, it is a Send and corresponds

to a Receive at time T10, but t originates from the

origin time t = TInit. We say that t has an indirect

leakage for A if there exists a direct leakage for

P = B at a time between T10 and T11 (first con-

dition) or there exists a EXPst(B) call at a time

te (after time t = 0), originating from a time t ′

before time T1, so te < T10 (second condition). In

the latter case, the adversary can simulate Receive

with the updates sent at time T0 and T1 to derive

the key k1.

Exposing the state of a participant gives certain advantages to the attacker and make

trivial attacks possible. In our security game, we avoid those attack scenarios. In the

following lemma, we show that direct and indirect leakage capture the times when the

adversary can trivially win. The proof is straightforward.

Lemma 12 (Trivial attacks). Assume that BARK is correct. For any t and P, if kP(t)

has a direct or indirect leakage, the adversary has all information to compute kP(t).

Proof. We use correctness, Lemma 8, and the explanations given after Def. 10 and

Def. 11. ⊓⊔

So far, we mostly focused on matching status cases but there could be situations

with forgeries as well. We define trivial forgeries as follows.

Definition 13 (Trivial forgery). We consider a first forgery upd received by P in a

RATCH(P, rec,upd) call. Let t be the time just before this call. Let t be a time such that

receivedPmsg(t) = sentPmsg(t). If there is any EXPst(P) call during the ratcheting period

of P which includes time t, we say that upd is a trivial forgery.

We define the KIND security game in Fig. 3. Essentially, the adversary plays with all

oracles. At some point, he does one TEST(P) call which returns either the same result as

EXPkey(P) (case b= 1) or some random value (case b= 0). The goal of the adversary is

to guess b. The TEST call can be done only once and it defines the participant Ptest = P

and the time ttest at which this call is made. It also defines updtest, the last upd which

was used (either sent or received) to carry kPtest
(ttest) from the sender to the receiver. It

is not allowed to make this call at the beginning, when P did not generate a key yet. It is

not allowed to make a trivial attack as defined by a cleanness predicate Cclean appearing

on Step 5 in the KIND game on Fig. 3. Identifying the appropriate cleanness predicate

Cclean is not easy. It must clearly forbid trivial attacks but also allow efficient protocols.

In what follows we use the following predicates:

– Cleak: kPtest
(ttest) has no direct or indirect leakage.

– CP
trivial forge: P received no trivial forgery until P has seen updtest.

(This implies that updtest is not a trivial forgery. It also implies that if P never sees

updtest, then P received no trivial forgery at all.)

12

– CP
forge: P received no forgery until P has seen updtest.

– Cratchet: updtest was sent by a participant P, then received and accepted by P, then

some upd ′ was sent by P, then upd ′ was received and accepted by P.

(Here, P could be Ptest or his counterpart. This accounts for the receipt of updtest

being acknowledged by P through upd ′.)

– CnoEXP(R): there is no EXPst(R) and no EXPkey(R) query. (R is the receiver.)

Lemma 12 says that the adopted cleanness predicate Cclean must imply Cleak in all

considered games. Otherwise, no security is possible. It is however not sufficient as it

only covers trivial attacks with no forgeries.

Cratchet targets that any acknowledged sent message is secure. Another way to say is

that a key generated by one Send starting a round trip must be safe. This is the notion of

healing by ratcheting. Intuitively, we do not expect more than the security notion from

Cclean = Cleak ∧Cratchet.

Bellare et al. [2] consider uniARK with Cclean =Cleak∧CPtest

trivial forge∧CnoEXP(R). (See

Appendix C.) Other papers like Poettering-Rösler [15] and Jaeger-Stepanovs [10] im-

plicitly use Cclean = Cleak ∧CPtest

trivial forge as cleanness predicate. They show that this is

sufficient to build secure protocols but it is probably not the minimal cleanness pred-

icate. Indeed, we know that some ways to make trivial forgeries (as defined) makes

the adversary able to compute kPtest
(ttest) but there are some other ways not allowing

the adversary to do so (see Appendix B). Hence, CPtest

trivial forge forbids more attacks than

necessary.

Jost-Maurer-Mularczyk [1] excludes cases where Ptest received a (trivial) forgery

then had an EXPst(Ptest) before receiving updtest. Actually, they somehow use a clean-

ness predicate which is somewhere between Cleak∧CPtest

trivial forge and Cleak∧CA
trivial forge ∧

CB
trivial forge.

In our construction we use the predicate Cclean = Cleak ∧CA
forge ∧CB

forge. However,

we define FORGE security (unforgeability) which implies that (Cleak ∧CA
forge ∧CB

forge)-

KIND security and (Cleak ∧CA
trivial forge ∧CB

trivial forge)-KIND security are equivalent. (See

Th. 17.) One drawback is that it forbids more than (Cleak ∧CPtest

trivial forge)-KIND secu-

rity. The advantage is that we can achieve security without key-update primitives. We

will prove in Th. 19 that this security is enough to achieve security with the predicate

Cclean = Cleak ∧Cratchet, thanks to RECOVER-security. Thus, our cleanness notion is

fair enough.

Definition 14 (Cclean-KIND security). Let Cclean be a cleanness predicate. We consider

the KINDA
b,Cclean

game of Fig. 3. We say that the ratcheted key agreement BARK is

(q,T ,ε)-Cclean-KIND-secure if for any adversary limited to q queries and time com-

plexity T , the advantage

Adv(A) =
∣

∣

∣
Pr
[

KINDA
0,Cclean

→ 1
]

−Pr
[

KINDA
1,Cclean

→ 1
]
∣

∣

∣

of A in KINDA
b,Cclean

security game is bounded by ε.

13

Game KINDA
b,Cclean

1: Init(1λ)
$
−→ (stA,stB,z)

2: set all sent∗∗ and received∗∗ variables to ∅
3: set ttest, kA, kB to ⊥
4: b ′←ARATCH,EXPst,EXPkey,TEST(z)

5: if ¬Cclean then abort

6: return b’

Oracle EXPst(P)

1: return stP

Oracle TEST(P)

1: if ttest 6=⊥ then abort ⊲ TEST was queried

2: if kP =⊥ then abort

3: ttest← time, Ptest← P, updtest← updP
4: if b= 1 then

5: return kP
6: else

7: return random {0,1}|kP |

8: end if

Oracle EXPkey(P)

1: return kP

Fig. 3: Cclean-KIND game.

(Oracle RATCH is defined in Fig. 2.)

2.3 Unforgeability

Another security aspect of the key agreement BARK is to have that no upd information

is forgeable by any bounded adversary except trivially by state exposure. This security

notion is independent from KIND security but is certainly nice to have for explicit au-

thentication in key agreement. Besides, it is easy to achieve. We will use it as a helper

to prove KIND security: to reduce CP
trivial forge-cleanness to CP

forge-cleanness.

A first forgery is a upd received by a participant P making him lose his matching sta-

tus. Let the adversary interact with our oracles RATCH,EXPst, EXPkey in any order. For

BARK to have unforgeability, we eliminate the trivial forgeries (as defined in Def. 13).

The FORGE game is defined in Fig. 4.

Definition 15 (FORGE security). Consider FORGEA game in Fig. 4 associated to the

adversary A. Let the advantage of A in succeeding the attack in FORGEA game be the

probability of succeeding the game. We say that BARK is (q,T ,ε)-FORGE-secure if, for

any adversary limited to q queries and time complexity T , the advantage is bounded by

ε.

We can now justify why forgeries in the KIND game must be trivial for a BARK with

unforgeability.

Lemma 16. Assume that BARK resists to FORGEA game. Let A be an adversary play-

ing KINDA
b,Cclean

game. For any P and t, if there exists no trivial forgery, the probability

that P is not in matching status at a time t is negligible.

Proof. It follows from Lemma 6 and the definition of the FORGEA game. ⊓⊔

Theorem 17. If a BARK is FORGE-secure, then (Cleak ∧CPtest

forge)-KIND-security implies

(Cleak ∧CPtest

trivial forge)-KIND-security and (Cleak ∧CA
forge ∧CB

forge)-KIND-security implies

(Cleak ∧CA
trivial forge ∧CB

trivial forge)-KIND-security.

Proof. This is obvious, as FORGE-security implies no non-trivial forgery. ⊓⊔

14

Game FORGEA

1: Init(1λ)
$
−→ (stA,stB,z)

2: (P,upd)←ARATCH,EXPst,EXPkey(z)

3: if one (or both) participants is NOT in a matching

status then abort

4: RATCH(P, rec,upd)→ acc

5: if acc = false then abort

6: if P is in a matching status then abort

7: if upd is a trivial forgery for P then abort

8: the adversary wins

Game RECOVERA
BARK

1: win← 0

2: Init(1λ)
$
−→ (stA,stB,z)

3: set all sent∗∗ and received∗∗ variables to ∅
4: P←ARATCH,EXPst,EXPkey(z)

5: if we can parse receivedPmsg = (seq1,upd,seq2)

and sentPmsg = (seq3,upd,seq4) with seq1 6=
seq3 (where upd is a single message and all seqi
are finite sequences of single messages) then

win← 1

6: return win

Fig. 4: FORGE and RECOVER games.
(Oracle RATCH, EXPst, EXPkey are defined in Fig. 2 and Fig. 3.)

2.4 Recovery from Impersonation

A priori, it seems nice to be able to restore a secure state when a state exposure of a

participant takes place. We show here that it is not a good idea.

Let A be an adversary playing as shown in Fig. 5. On the left strategy, A exposes

A with an EXPst query (Step 2). Then, the adversary A impersonates A by running

the Send algorithm on its own (Step 3). Next, the adversary A “sends” a message to B

which is accepted due to correctness because it is generated with A’s state. In Step 5,

A lets the legitimate sender to generate upd ′ by calling RATCH oracle. In this step, if

security self-restores, B accepts upd ′ which is sent by A. Hence, acc ′ = 1 in the final

step. It is clear that the strategy shown on the left side in Fig. 5 is equivalent to the

strategy shown on the right side of the same figure (which only switches Alice and the

adversary who run the same algorithm). Hence, both lead to acc ′ = 1 with the same

probability p.

The crucial point is that the forgery in the right-hand strategy becomes non-trivial,

which implies that the protocol is not FORGE-secure. In addition to this, if such phe-

nomenon occurs, we can make a KIND adversary passing the Cleak ∧CPtest

trivial forge and

Cleak ∧CPtest

trivial forge ∧CnoEXP(R) conditions. Thus, we lose KIND-security.

In general, we believe it is not reasonable to allow recoveries from impersonation as

it could serve as a discrete and temporary active attack and facilitate mass surveillance.

For this purpose, we define the RECOVER security notion with another game. Essen-

tially, in the game, we require the receiver P to accept some messages upd ′ sent by the

sender after the adversary makes successful forgeries upd. We will further use it as a

second helper to prove KIND security with Cratchet-cleanness.

Definition 18 (RECOVER security). Consider RECOVERA
BARK game in Fig. 4 associ-

ated to the adversary A. Let the advantage of A in succeeding playing the game be

Pr(win = 1). We say that the ratcheted communication protocol is (q,T ,ε) RECOVER-

secure, if for any adversary limited to q queries and time complexity T , the advantage

is bounded by ε.

15

ALICE BOBADVERSARY

(EXPst)

•

•

•

•

•
(forgery)

•

acc = 1

acc = 1

acc = 1

acc = 1

acc = 1

1: · · · (normal communications)· · ·
2: EXPst(A)→ stA
3: Send(stA)→ (st′

A
,upd,kA)

4: RATCH(B, rec,upd)→ acc

5: RATCH(A,send)→ upd′

6: RATCH(B, rec,upd′)→ acc′

ALICE BOBADVERSARY

(EXPst)

•

•

•

•

•

•(forgery)

acc = 1

acc = 1

acc = 1

acc = 1

acc = 1

1: · · · (normal communications)· · ·
2: EXPst(A)→ stA
3: RATCH(A,send)→ upd

4: RATCH(B, rec,upd)→ acc

5: Send(stA)→ (st′
A

,upd′,k′

A
)

6: RATCH(B, rec,upd′)→ acc′

Fig. 5: Two recoveries succeeding with the same probability.

We will see that RECOVER-security is quite easy to achieve using a collision-resistant

hash function.

Theorem 19. If a BARK is RECOVER-secure and (Cleak∧CA
forge∧CB

forge)-KIND secure,

then it is (Cleak ∧Cratchet)-KIND secure.

Proof. Let us consider a (Cleak ∧Cratchet)-KIND game in which Cratchet holds. Let P be

the participant who sent updtest. Since updtest is a genuine message from P which is

received by P, the RECOVER security implies that P did not receive a forgery until it

received updtest (except in negligible cases). So, CP
forge holds. Similarly, since P received

a genuine upd ′ after seeing updtest, P did not receive a forgery until then (except in

negligible cases). So, CP
forge holds, except in negligible cases. ⊓⊔

2.5 uniARK Implies KEM

We now prove that a weakly secure uniARK implies public key cryptography. Namely,

we can construct a key encapsulation mechanism (KEM) out of it. We recall the KEM

definition.

Definition 20 (KEM scheme). A KEM scheme KEM consists of three algorithms: a key

pair generation Gen(1λ)
$
−→ (sk,pk), an encapsulation algorithm Enc(pk)

$
−→ (k,ct),

and a decapsulation algorithm Dec(sk,ct)→ k. It is correct if Pr[Dec(sk,ct) = k] = 1

when the keys are generated with Gen and Enc(pk)→ (k,ct).

We consider a uniARK which is KIND-secure for the following cleanness predicate:

Cweak: the adversary makes only three oracle calls which are, in order, EXPst(S),

RATCH(S,send), and TEST(S).

16

(Note that R is never used.) This implies cleanness for all other considered predicates.

Hence, it is more restrictive. Our result implies that it is unlikely to construct even such

weakly secure uniARK from symmetric cryptography.

Theorem 21. Given a uniARK protocol, we can construct a KEM with the following

properties. The correctness of uniARK implies the correctness of KEM. The Cweak-KIND-

security of uniARK implies the IND-CPA security of KEM.

Proof. Assuming a uniARK protocol, we construct a KEM as follows:

KEM.Gen
$
−→ (sk,pk): run uniARK.Init

$
−→ (stS,stR,z) and set pk = stS, sk = stR.

KEM.Enc(pk)
$
−→ (k,ct): run uniARK.Send(pk)

$
−→ (.,upd,k) and set ct = upd.

KEM.Dec(sk,ct)→ k: run uniARK.Receive(sk,upd)→ (., .,k).

The IND-CPA security game with adversary A works as in the left-hand side below. We

transform A into a KIND adversary B in the right-hand side below.

Game IND-CPA:

1: KEM.Gen
$
−→ (sk,pk)

2: KEM.Enc(pk)
$
−→ (k,ct)

3: if b= 0 then set k to random

4: A(pk,ct,k)
$
−→ b ′

5: return b ′

Adversary B(z):

1: call EXPst(S)→ pk

2: call RATCH(S,send)→ ct

3: call TEST(S)→ k

4: run A(pk,ct,k)→ b ′

5: return b ′

We can check that Cweak is satisfied. The KIND game with B simulates perfectly the

IND-CPA game with A. So, the KIND-security of uniARK implies the IND-CPA security

of KEM. ⊓⊔

3 A BARK Construction

3.1 Our BARK Protocol

We construct a BARK from a signcryption SC and a hash function H as on Fig. 6. Our

construction is based on a unidirectional asynchronous ratcheted communication with

associated data (uniARCAD), which itself is based on SC. The signcryption we use is

a naive combination of a public-key cryptosystem and a digital signature scheme, as

defined in Appendix A. The collision-resistant hash function is defined in Appendix A

as well.

The Init protocol is splittable.

For each participant, the state is a tuple st=(hk,ListS,ListR,Hsent,Hreceived) where

hk is the hashing key, Hsent is the iterated hash of all sent messages, and Hreceived is

the iterated hash of all received messages. We also have two lists ListS resp. ListR of

states. They are lists of states to be used for sending resp. receiving. Both lists are grow-

ing but start with erased entries. Thus, they can be compressed. (Typically, each list has

only its last entry which is not erased.)

The idea is that the ith entry of ListS for a participant P is associated to the ith entry

of ListR for its counterpart P. Every time a participant P sends a message, it creates a

17

new pair of states and sends the sending state to his counterpart P, to be used in the case

P wants to respond. If the same participant P keeps sending without receiving anything,

he accumulates some receiving states this way. Whenever a participant P who received

many messages starts sending, he also accumulated many sending states. His message

is sent using all those states. The sent message is done by onion encapsulation using

each remaining send state from ListS. Then, all but the last send state are erased, and

the message shall indicate the erasures to the counterpart P, who shall erase receiving

states accordingly. Unidirectional send operations in layers of onion encryption with

j < u need no state update (as the state is erased) while the first layer with j= u needs

a state update. This is why we added a flag in uniARCAD.Send.

The protocol is quite efficient when participant alternate their roles well, because

the lists are often flushed to contain only one unerased state. It also becomes more se-

cure due to ratcheting: any exposure has very limited impact. If there are unidirectional

sequences, the protocol becomes less and less efficient due to the growth of the lists.

In practice, one might want to reuse a key k and a “symmetric ratchet” for sessions of

unidirectional sequences. This will lower security a bit but would be perfectly in line

with the current practice of “double ratchets”.

We note that our protocol does not offer (Cleak ∧CPtest

forge)-KIND security due to the

following attack:

1: EXPst(A)→ stA

2: EXPst(B)→ stB ⊲ this reveals sk
rec,1
B to be used later on

3: RATCH(B,send)→ updB
4: RATCH(A, rec,updB)→ true

5: RATCH(A,send)→ upd

6: TEST(A)→ k

7: Send(stA)→ updA ⊲ this creates a trivial forgery

8: RATCH(B, rec,updA)→ true ⊲ this makes B out-of-sync and updates sk
rec,1
B

9: EXPst(B)→ st ′B ⊲ this reveals sk
rec,2
B and sk

rec,1
B (updated)

10: use sk
rec,1
B (original) and sk

rec,2
B to decrypt upd

11: compare the result with k

Note that the trivial forgery is here to make the following EXPst(B) a non-trivial leakage

for sk
rec,2
B (sk

rec,1
B is already known).

The attack is ruled out in the (Cleak ∧CA
forge ∧CB

forge)-KIND security which does not

allow forgeries until upd is received.

3.2 Security Proofs

We prove the security of BARK in this section.

Theorem 22 (Unrecoverability). If H is a (T ,ε)-collision-resistant hash function, then

BARK on Fig. 6 is (T ,ε)-RECOVER-secure.

Proof. Each upd sent must include the hash of the previous upd sent. We call them

chained for this reason. If (seq1,upd,seq2) and (seq3,upd,seq4) are two validly chained

list of messages with seq1 6= seq2, we can easily see that upd = (n,h,onion) must in-

clude a collision h. This cannot happen, thanks to collision resistance. ⊓⊔

18

uniARCAD.Init(1λ)

1: SC.GenS(1
λ)

$
−→ (skS,pkS)

2: SC.GenR(1
λ)

$
−→ (skR,pkR)

3: stS← (skS,pkR)

4: stR← (skR,pkS)

5: z← (pkS,pkR)

6: return (stS,stR,z)

uniARCAD.Send(stS,ad,pt,flag)

1: parse stS = (skS,pkR)

2: if flag then

3: SC.GenS(1
λ)

$
−→ (sk ′S,pk ′S)

4: SC.GenR(1
λ)

$
−→ (sk ′R,pk ′R)

5: st ′S← (sk ′S,pk ′R)

6: st ′R← (sk ′R,pk ′S)

7: else

8: st ′S,st ′R←⊥
9: end if

10: pt ′← (st ′R,pt)

11: ct← SC.Enc(skS,pkR,ad,pt ′)

12: return (st ′S,ct)

uniARCAD.Receive(stR,ad,ct)

1: parse stR = (skR,pkS)

2: SC.Dec(skR,pkS,ad,ct)→ pt ′

3: if pt ′ =⊥ then

4: return (false,stR,⊥)
5: end if

6: parse pt ′ = (st ′R,pt)

7: return (true,st ′R,pt)

BARK.Init(1λ)

1: uniARCAD.Init(1λ)
$
−→ (stsend

A ,strec
B ,zA→B)

2: uniARCAD.Init(1λ)
$
−→ (stsend

B ,strec
A ,zB→A)

3: H.Gen(1λ)
$
−→ hk

4: stA← (hk,(stsend
A),(strec

A),⊥,⊥)
5: stB← (hk,(stsend

B),(strec
B),⊥,⊥)

6: z← (zA→B,zB→A)

7: return (stA,stB,z)

BARK.Send(stP)

8: pick k at random

9: parse stP = (hk,(st
send,1
P , . . . ,st

send,u
P),(st

rec,1
P , . . . ,st

rec,v
P),Hsent,Hreceived)

10: uniARCAD.Init(1λ)
$
−→ (stSnew,st

rec,v+1
P ,z) ⊲ append a new receive state to the strec

P list

11: onion← (stSnew,k) ⊲ then, stSnew is erased to avoid leaking

12: take the smallest i s.t. st
send,i
P 6=⊥ ⊲ i= u−n if we had n Receive since the last Send

13: for j= u down to i do ⊲ add encryption layers to onion and update stsend
P

14: uniARCAD.Send(st
send,j
P ,(u− j,Hsent),onion, j= u)

$
−→ st

send,j
P ,onion ⊲ update st

send,j
P

15: if j < u then st
send,j
P ←⊥ ⊲ flush the send state list: only st

send,u
P remains

16: end for

17: upd← (u− i,Hsent,onion) ⊲ the onion has u− i+1(= n+1) layers

18: Hsent ′←H.Eval(hk,upd)

19: st ′P ← (hk,(st
send,1
P , . . . ,st

send,u
P),(st

rec,1
P , . . . ,st

rec,v+1
P),Hsent ′,Hreceived)

20: return (st ′P ,upd)

BARK.Receive(stP ,upd)

21: parse stP = (hk,(st
send,1
P , . . . ,st

send,u
P),(st

rec,1
P , . . . ,st

rec,v
P),Hsent,Hreceived)

22: parse upd = (n,h,onion) ⊲ the onion has n+1 layers

23: if h 6= Hreceived then return (false,stP ,⊥)

24: set i to the smallest index such that st
rec,i
P 6=⊥

25: if i+n > v then return (false,stP ,⊥)
26: for j= i to i+n do ⊲ peel off onion and compute the next strec

P if accepted

27: uniARCAD.Receive(st
rec,j
P ,(i+n− j,Hreceived),onion)→ (acc,st ′P

rec,j
,onion)

28: if acc = false then return (false,stP ,⊥)
29: end for

30: parse onion = (st
send,u+1
P ,k) ⊲ a new send state is added in the list

31: for j= i to i+n−1 do ⊲ update strec
P stage 1: clean up

32: st
rec,j
P ←⊥

33: end for ⊲ n entries of strec
P were erased

34: st
rec,i+n
P ← st ′P

rec,i+n
⊲ update strec

P stage 2: update st
rec,i+n
P

35: Hreceived ′←H.Eval(hk,upd)

36: st ′P ← (hk,(st
send,1
P , . . . ,st

send,u+1
P),(st

rec,1
P , . . . ,st

rec,v
P),Hsent,Hreceived ′)

37: return (acc,st ′P ,k)

Fig. 6: Our BARK Protocol.

19

Theorem 23 (Unforgeability). For any q,T ,ε, assuming that SC is (T ′,ε)-EF-OTCPA-

secure and H is a (T ,ε)-collision-resistant hash function, then BARK on Fig. 6 is

(q,T ,qε)-FORGE-secure. Here, T ′= T+TInit+qTSend,Receive where TInit denotes a com-

plexity upper bound of Init and TSend,Receive denotes a complexity upper bound of both

Send and Receive.

Proof. We first prove that a forgery upd = (n,h,onion) for BARK corresponds to a

forgery onion with ad = (n,h) for at least one instance of the uniARCAD protocol in

the game. Then, we prove that we cannot forge a valid (ad,onion) pair in uniARCAD.

Let A be an adversary playing the FORGE game against BARK. We denote this

game Γ . We assume without loss of generality that both participants are always in a

matching status during Γ (otherwise, we make Γ abort as it will be the case in the

FORGE game, eventually). Let m be the number of uniARCAD.Init calls during Γ . The

first two are done in the initialization phase of Γ . All others are made by RATCH(.,send)

calls. We define m games Γ1, . . . ,Γm which simulate Γ . We can easily trace when the

ith uniARCAD.Init is run and when the two states it generates are used, evolve, and are

erased. We denote those evolving states as stS and stR. The game Γi is playing the

FORGE game against uniARCAD with those states (with a RATCH oracle updated in a

straightforward manner in Γi because we deal with a uniARCAD instead of a BARK). It

simulates the ith uniARCAD.Init call by taking the initialized states in this game, and the

uniARCAD.Send and uniARCAD.Receive by using some RATCH calls. Similarly, when

stS or stR are needed in an EXPst call by Γ , we use the corresponding EXPst call in

Γi. There is only one particular simulation: when stSnew is generated in BARK.Send,

it must be onion-encrypted. Thus, we get it in Γi using EXPst(S). We call it the extra

EXPst(S) call. The simulation is clearly perfect. We have to show that for any successful

run of Γ , there exists at least one Γi which makes a non-trivial forgery in uniARCAD. We

will prove below the FORGE-security of uniARCAD and therefore obtain the FORGE-

security of BARK.

If we have a successful run releasing a forgery (P,upd) in Γ , we know that the

forgery is not trivial in this game Γ . We denote upd = (n,h,onion).

P P

t

t
upd ′

upd

no EXPst

In the first case, we assume that P success-

fully received a message upd ′ from P before upd.

The receiving RATCH(P, rec,upd ′)→ true call at

some time t corresponds to a RATCH(P,send)→
upd ′ call at some time t. Since the forgery upd

is non-trivial, this call starts a ratcheting session

for P with no state exposure. The RATCH(P,send)

call at time t also defines some value u and

some states st
send,u

P
and st

rec,u
P . Let i be the in-

dex of the uniARCAD.Init call which initialized

those states. This defines our game Γi of interest

in which P is the sender S and P is the receiver

R. After that corresponding RATCH(P,send) at

time t, the list of send states of P is flushed

and only st
send,u

P
remains (updated). After the

RATCH(P, rec,upd ′) call at time t, st
rec,u
P will be

20

the first active receive state in the list of P. The upd forgery must thus be first accepted

by uniARCAD.Receive(st
rec,u
P ,(n,h),onion). If onion is not a forgery in the Γi game, it

means that one uniARCAD.Send from a subsequent RATCH(P,send) after time t which

has some uniARCAD.Send(st
send,u

P
,(n,h),onion ′)→ (.,onion) with h = Hsent. Since

Hsent=H.Eval(hk, . . . ,upd), we obtain a collision for H. Thanks to collision-resistance,

we deduce that (ad,onion) is a forgery in the Γi game. We can also observe that since it

is non-trivial in Γ , it must be non-trivial in Γi as well. (Note that the uniARCAD.Init by P

which generated the initial st
send,u

P
, required an extra EXPst(S) to onion-encrypt it in Γi

but this EXPst does not make the forgery trivial as there was a subsequent ratcheting of

S in Γi inside RATCH(P,send) at time t.) Therefore, Γi succeeds to forge in uniARCAD.

In the second case, we assume that P never received anything from P. We proceed

as before with u = 1. This state is initialized at the beginning of Γ so requires no extra

EXPst(S). The proof is the same.

We now show that uniARCAD makes valid (ad,upd) pairs unforgeable. To show

this FORGE security, we can see that a first forgery consists of a pair (ad,upd) which

verifies with key pkS. For each SC.GenS execution in the game, we construct a hybrid

playing the EF-OTCPA game. This EF-OTCPA game is outsourcing the signing key skS
and simulating Init and the RATCH calls in FORGE (hence the complexity of T +TInit +

qTSend,Receive). We note that skS is kept in stS and can only be used in signing with

SC.Enc or in leaking with EXPst(S). So, we can fully outsource it in the EF-OTCPA

game, with the exception in the leakage case. If there is any EXPst(S) to disclose stS,

we make the EF-OTCPA game abort. In the FORGE game, a first forgery which is non-

trivial must correspond to a hybrid which succeeds in making a non-trivial forgery.

Since it is non-trivial, there is no EXPst(S) call which is supposed to disclose skS.

Hence, this hybrid playing EF-OTCPA wins. Due to the EF-OTCPA security of SC,

those hybrids have a probability to succeed bounded by ε. Hence, forgeries must start

by a trivial one, but for negligible cases. We deduce FORGE-security. ⊓⊔

Theorem 24 (KIND Security). For any q,T ,ε, assuming that SC is (T ′,ε)-IND-CCA-

secure, then BARK on Fig. 6 is (q,T ,2qε)-(Cleak ∧CA
forge ∧CB

forge)-KIND-secure. Here,

T ′ = T + TInit +qTSend,Receive where TInit denotes a complexity upper bound of Init and

TSend,Receive denotes a complexity upper bound of both Send and Receive.

Due to Th. 17, Th. 23, and Th. 24, we deduce (Cleak ∧CA
trivial forge ∧CB

trivial forge)-KIND-

security. The advantage of treating (Cleak ∧CA
forge ∧CB

forge)-KIND-security specifically

is that we clearly separate the required security assumptions for SC.

Due to Th. 19, Th. 22, and Th. 24, we deduce (Cleak ∧Cratchet)-KIND-security.

Proof. We take a KIND game which we denote by Γ . The idea is that we will identify

which keys generated by SC.GenR are safe and apply the IND-CCA reduction to what-

ever they encrypt. This way, we hope that the key k which is tested by TEST will be

replaced by a random one and never used in a distinguishable way. The difficulties are

– to identify which keys are safe;

– to get rid of a safe skR (except for decryption) to apply the IND-CCA game;

– to see the connection between Cclean and the notion of safe key.

21

We number each use of SC.GenR with an index j. All indices are set in chronologi-

cal order. For each j, we define a list ij,1, . . . , ij,ℓj of length ℓj. The jth run of SC.GenR is

either done on Step 2 in uniARCAD.Init (called either by ARCAD.Init or ARCAD.Send) or

on Step 4 in uniARCAD.Send (called by ARCAD.Send). If it is done in uniARCAD.Init,

we set ℓj = 0. Actually, the receive decryption key skR which is generated by SC.GenR
stays local on the participant which generated it in BARK.Send (or BARK.Init). Other-

wise, skR is generated during a uniARCAD.Send called by BARK.Send and it will be

encrypted in an onion to be sent to the other participant. There is at least one encryption

in the generating uniARCAD.Send (Step 11) but it may be followed by more encryptions

in the onion. We let ij,1, . . . , ij,ℓj be the indices of the SC.GenR runs which generated

the keys which are needed to onion-decrypt skR. (If some keys were not generated by a

SC.GenR run of the game, they are not listed.) We note that those indices are all lower

than j, due to the chronological order.

In a game, for each j we define a flag NoEXPj. The jth decryption key skR generated

by the jth run of SC.GenR appears in some strec in stA or stB. If there is no oracle call

EXPst(P) at a time when stP includes skR, we set NoEXPj to true. Otherwise, we set

it to false. Hence, NoEXPj indicates if the jth key skR is revealed by some EXPst. One

problem is that NoEXPj can only be determined for sure after the key is updated or

erased by a successful BARK.Receive.

For each j, if ℓj = 0, we define SafeKeyj = NoEXPj. Otherwise, we define recur-

sively safe keys as those which are not exposed and which are encrypted by at least one

safe key:

SafeKeyj =
(

SafeKeyij,1 ∨ · · ·∨SafeKeyij,ℓj

)

∧NoEXPj

This is well defined because the indices ij,1, . . . , ij,ℓj are all lower than j.

P P

t1

t2

t1

t2

upd1

upd2

no EXPst

To understand which keys are safe, let us con-

sider some RATCH calls:

– RATCH(P,send) → upd1 at time t1 (some

skR is generated by uniARCAD.Init),

– RATCH(P, rec,upd1)→ true at time t̄1,

– RATCH(P,send)→ upd2 at time t̄2 > t̄1,

– RATCH(P, rec,upd2)→ true at time t2 > t1.

This is a round-trip P→ P→ P. We assume

that there is no EXPst(P) between t1 and t2.

Hence, the new receive key skR generated by P

in uniARCAD.Init at time t1 stays in P. It is used

to decrypt upd2 at time t2 then destroyed (actu-

ally, skR is updated into another key generated by

P). As there is no EXPst(P) to reveal skR between

time t1 and t2, this key skR is safe. As long as no

EXPst(P) reveals them, the key generated by P in

uniARCAD.Send at time t2 to update skR at time t2 (and in subsequent RATCH(P,send)

as long as there is no RATCH(P, rec, .)) is also safe as it is safely encrypted for the de-

cryption key skR.

22

We define hybrid games Γj starting from Γ0 = Γ . In those games, there is a flag bad

which is set to false at the beginning. Some stR states in stA or stB will include some

decryption keys skR which will be replaced in hybrid games by random values and

clearly marked as such. If any EXPst call reveals a state which includes such marked

key, the flag bad is set to true and the game aborts.

Given Γj−1, we look at the jth run of SC.GenR. We let pkR be the encryption key

and skR be the decryption key. We compute the flag NoEXPj and SafeKeyj in Γj−1. If

SafeKeyj = false, we set Γj = Γj−1. Otherwise, once generated, we replace skR by a

well-marked random value, but we use the right skR when it is needed in a SC.Dec exe-

cution. If the key skR is not onion-encrypted, the two games give exactly the same result

as NoEXPj = true and skR is only used for decryption. If the key skR is onion-encrypted,

since SafeKeyj = true, there must be one index jij,m such that SafeKeyjij,m
= true. We

can use the IND-CCA game with the key of index jij,m to show that the encryption of

the real skR or some random value are indistinguishable, up to an advantage of ε. The

probability that bad becomes true in Γj−1 and Γj cannot differ by more than ε as well.

Eventually, we obtain a game Γq in which bad is true with negligible probability

and giving an outcome which is indistinguishable from Γ . In Γq, all keys skR which are

safe are marked and replaced by a random value, so only used for decryption. Hence,

we can apply the IND-CCA game for any of the safe keys.

Now, we can analyze what happens if the key k tested with TEST(Ptest) at time ttest

is replaced by a random one, when the cleanness property of the KIND game is satisfied.

P P

Ptest ∈ {P,P}

t

t

updtest

First of all, we note that the key ktest =

kPtest
(ttest) is made on Ptest either by BARK.Send

together with updtest (so generated by this algo-

rithm), or by BARK.Receive so transmitted before

through updtest. Due to the CA
forge ∧CB

forge clean-

ness condition, updtest is not a forgery. So, ktest

is always originally made by a BARK.Send which

generated updtest. In what follows we denote by P

the participant who runs this BARK.Send and by t

the time when this execution terminates. Let t̄ be

the time when P ends the reception of updtest (let

t̄ =∞ if it never receives it). Hence, ktest is gen-

erated by P and somehow sent to P. Note that Ptest

may be P (so ktest = kP(t)) or P (so ktest =kP(t)).

We stress that thanks to the CA
forge∧CB

forge assump-

tion and Lemma 6, P is in a matching status at

time t and P is in a matching status at time t̄.

Clearly, ktest is not revealed by any EXPkey due to the assumption that there is no

direct or indirect leakage. Hence, EXPkey never uses ktest. So, ktest is only used during

onion encryption in updtest and by TEST.

Now, we can look at which flow of onion encryption followed the ktest generation

to reach the receiver P, with the cleanness assumption. The onion encryption is done

with some keys defined in st
send,u
P ,st

send,u−1
P , . . . ,st

send,i
P . We show below that ktest is

23

transmitted with at least one safe encryption (in the sense of the SafeKeyj flag). Hence,

we can use the IND-CCA game for this safe encryption. We deduce that ktest is only

used by TEST, so indistinguishable from random. We obtain KIND security. Therefore,

what remains to be proven is that k is encrypted by at least one safe encryption.

P P

t1

t2

t1

t2

updtest

no EXPst

We start with the t̄ < ∞ case: P receives

updtest at some point. We recall that P must be

in a matching status, due to the above discussion.

Hence, both P and P have ktest and Ptest is one or

the other. Due to the Cleak hypothesis, P has no

direct leakage at time t̄. (This is straightforward

if Ptest = P, and this comes from the first condi-

tion of indirect leakage if Ptest = P.) Since P re-

ceives updtest, the condition of no direct leakage

implies that either there is no prior EXPst or there

is a round-trip communication P→ P→ P in be-

tween the last EXPst and time t̄, hence, a message

sent by P after the last EXPst and received by P be-

fore time t. Due to our previous analysis on this

round trip, this means that updtest was encrypted

with a safe encryption.

P P

t ′

t0

t

te

t0

no EXPst

updtest

If now t̄=∞ (P never receives upd; so Ptest =

P) and there are some EXPst(P) queries, due to

the no forgery assumption, P stays in a matching

status originating from a time prior to t. The sec-

ond condition of no indirect leakage on P at time

t implies that if te denotes the time of the latest

EXPst(P) and t ′ denotes the time when it origi-

nates from, then there is a RATCH(P,send)→ upd

at a time t0 after time te and a corresponding

RATCH(P, rec,upd) at a time t0 between time t ′

and time t. The uniARCAD.Send in the onion sent

at time t0 generates a safe key which is used to

encrypt the next sent upd from P, and updtest as

well.

We now consider the case t = ∞ with no

EXPst(P) query. With a similar analysis as before,

the last reception key generated for P is safe. So, updtest is safely encrypted. ⊓⊔

3.3 Addressing Random Coin Corruption

Assuming that an adversary can control the random coins which are selected during a

Send operation, the benefit of ratcheting is lost. In our security game, we could add a

new option to the oracle RATCH which does the same as RATCH with role send but with

an extra input which is the sequence of random coins to be used by Send. By treating

those RATCH calls as if they were followed by EXPst and EXPkey at the same time, we

24

make sure that our security notion would not change and normal RATCH with role send

would be healing.

Oracle RATCH(P,send,r)

1: (stP,updP,kP)← Send(stP;r)

2: EXPkey(P)

3: EXPst(P)

4: return updP

Otherwise, we would need to add conditions in the Cleak predicate by taking into ac-

count the Send queries with coin leakage. We can see that the proof of our BARK

protocol still works in this setting. We only need to add a clause on the definition of

SafeKeyj: that the considered SC.GenR did not leak with coins in the Send query which

run SC.GenR.

It is quite normal to assume EXPkey is done as the generated key depends on freshly

flipped coins. As for EXPst, this is less clear. Actually, Jost et al. [1] have a subtle

protocol making sure that corrupted coins do not imply leaking the state. So far, no

other protocol offers such property.

4 Conclusion

We studied the BARK security. For this, we marked three important security objec-

tives: the BARK protocol should be KIND-secure; the BARK protocol should resist to

unforgeability (FORGE-security). Moreover, the BARK protocol should not self-heal

after impersonation (RECOVER-security). By relaxing the cleanness notion in KIND-

security, we designed a protocol based on an IND-CCA-secure cryptosystem and a one-

time signature scheme. We used no random oracle nor key-update primitives. We imple-

mented BARK and competing protocols (Poettering-Rösler [15], Jaeger-Stepanovs [10],

and Jost-Maurer-Mularczyk [1]; we did not implement yet Alwen-Coretti-Dodis [11]

which play in another category). We observed a speed up factor between 100 and 1000,

depending on how messages are exchanged (namely, alternating or unidirectional).

Acknowledgements. We thank Joseph Jaeger for his valuable comments to the first

version of this paper. We thank Paul Rösler for insightful discussions. We also owe to

Andrea Caforio whose implementation results contributed to support our design.

References

1. Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions,

proofs, and modularization for the signal protocol. Available at: https://eprint.iacr.

org/2018/1037.pdf.

2. Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs.

Ratcheted encryption and key exchange: The security of messaging. In Advances in Cryp-

tology – CRYPTO 2017, pages 619–650. Springer International Publishing, 2017.

3. Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication, or, why not

to use PGP. In Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society,

WPES ’04, pages 77–84, New York, NY, USA, 2004. ACM.

25

4. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for build-

ing secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT

2001, pages 453–474, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

5. Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila.

A formal security analysis of the signal messaging protocol. In 2017 IEEE European Sym-

posium on Security and Privacy (EuroS&P), pages 451–466, April 2017.

6. Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-compromise security. In

2016 IEEE 29th Computer Security Foundations Symposium (CSF), pages 164–178, June

2016.

7. David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom filter encryption

and applications to efficient forward-secret 0-RTT key exchange. In Jesper Buus Nielsen

and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages 425–455,

Cham, 2018. Springer International Publishing.

8. Yevgeniy Dodis, Michael J. Freedman, Stanislaw Jarecki, and Shabsi Walfish. Optimal sign-

cryption from any trapdoor permutation. Available at: https://eprint.iacr.org/2004/

020.pdf.

9. Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key exchange with

full forward secrecy. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances

in Cryptology – EUROCRYPT 2017, pages 519–548, Cham, 2017. Springer International

Publishing.

10. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained state com-

promise: The safety of messaging. Available at: https://eprint.iacr.org/2018/553.

pdf.

11. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal guar-

antees for secure messaging. Available at: https://eprint.iacr.org/2018/954.pdf.

12. Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated

key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, Provable Security, pages

1–16, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

13. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic approach to

”privacy-friendly” tags. In RFID Privacy Workshop, 2003.

14. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Efficient hash-chain based RFID

privacy protection scheme. In International Conference on Ubiquitous Computing (Ubi-

comp), Workshop Privacy: Current Status and Future Directions, 2004.

15. Bertram Poettering and Paul Rösler. Ratcheted key exchange, revisited. Available at: https:

//eprint.iacr.org/2018/296.pdf.

16. Open Whisper Systems. Signal protocol library for Java/Android. GitHub repository https:

//github.com/WhisperSystems/libsignal-protocol-java, 2017.

17. Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and

Matthew Smith. SoK: Secure messaging. In 2015 IEEE Symposium on Security and Privacy,

pages 232–249, May 2015.

18. Serge Vaudenay. Adversarial correctness favors laziness. Presented at the CRYPTO 2018

Rump Session.

19. WhatsApp. Whatsapp encryption overview. Technical white paper, available at: https:

//www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf, 2016.

A Used Definitions

Function families and collision-resistant hash functions. A function family H de-

fines an algorithm H.Gen(1λ) which generates a key hk (we may denote its length

26

as H.kl) and a deterministic algorithm H.Eval(hk,m) which takes a key hk and a mes-

sage m to produce a digest of fixed length (we may denote it by H.ln). We will need a

collision-resistant hash function H. It should be intractable, given a honestly generated

hashing key hk, to find two different messages m and m ′ such that H.Eval(hk,m) =

H.Eval(hk,m ′).

Definition 25 (Collision-resistant hash function). We say that a function family H

is (T ,ε)-collision resistant if for any adversary A limited to time complexity T , the

probability to win is bounded by ε.

1: H.Gen(1λ)
$
−→ hk

2: A(hk)
$
−→ (m1,m2)

3: if H.Eval(hk,m1) =H.Eval(hk,m2) and m1 6=m2 then win

Signcryption. Our construction is based on signcryption. Actually, we do not use a

strong signcryption scheme as defined by Dodis et al. [8] but rather a naive combination

of signature and encryption. We only want that it encrypts and authenticates at the same

time. We take the following definition for our naive signcryption scheme.

Definition 26 (Signcryption scheme). A signcryption scheme SC consists of four al-

gorithms: two key generation algorithms GenS(1
λ)

$
−→ (skS,pkS); and GenR(1

λ)
$
−→

(skR,pkR); an encryption algorithm Enc(skS,pkR,ad,pt)
$
−→ ct; a decryption algorithm

Dec(skR,pkS,ad,ct)→ pt returning a plaintext or ⊥. The correctness property is that

for all pt and ad,

Pr[Dec(skR,pkS,ad,Enc(skS,pkR,ad,pt)) = pt] = 1

when the keys are generated with Gen.

This notion comes with two security notions.

Definition 27 (EF-OTCPA). A signcryption scheme (T ,ε)-resists to existential forgeries

under one-time chosen plaintext attacks (EF-OTCPA) if for any adversary A limited to

time complexity T playing the following game, the probability to win is bounded by ε.

1: GenS(1
λ)

$
−→ (skS,pkS)

2: GenR(1
λ)

$
−→ (skR,pkR)

3: A(skR,pkS,pkR)
$
−→ (st,ad,pt)

4: Enc(skS,pkR,ad,pt)
$
−→ ct

5: A(st,ct)
$
−→ (ad ′,ct ′)

6: if (ad,ct) = (ad ′,ct ′) then abort

7: Dec(skR,pkS,ad ′,ct ′)→ pt ′

8: if pt ′ =⊥ then abort

9: the adversary wins

Definition 28 (IND-CCA). A signcryption scheme is (q,T ,ε)-IND-CCA-secure if for

any adversary A limited to q queries and time complexity T , playing the following

game, the advantage Pr[IND-CCAA
0

$
−→ 1]−Pr[IND-CCAA

1
$
−→ 1] is bounded by ε.

27

Game IND-CCAA
b

1: challenge =⊥

2: GenS(1
λ)

$
−→ (skS,pkS)

3: GenR(1
λ)

$
−→ (skR,pkR)

4: ACh,Dec(skS,pkS,pkR)
$
−→ b ′

5: return b ′

Oracle Dec(ad,ct)

6: if (ad,ct) = challenge then abort

7: Dec(skR,pkS,ad,ct)→ pt

8: return pt

Oracle Ch(ad,pt)

1: if challenge 6=⊥ then abort

2: if b = 0 then replace pt by a random

message of same length

3: Enc(skS,pkR,ad,pt)
$
−→ ct

4: challenge← (ad,ct)

5: return ct

Clearly, we can work with the naive signcryption scheme defined by

SC.Enc(skS,pkR,ad,pt) = PKC.Enc(pkR,(pt,DSS.Sign(skS,(ad,pt))))

using an IND-CCA-secure public-key cryptosystem PKC and a EF-OTCMA-secure dig-

ital signature scheme DSS.

B CPtest

forge Forbids More Than Necessary

Let us consider SC.Enc(skS,pkR,pt)=PKC.Enc(pkR,pt) (which does not use skS/pkS),
where PKC is an IND-CCA-secure cryptosystem without the plaintext aware (PA) secu-
rity. Hence, there exists an algorithm C(pkR;r)= ct such that (pkR,r,PKC.Dec(skR,ct))

and (pkR,r, random) are indistinguishable.4 We can show that the uniARK obtained

from the uniARCAD of Fig. 6 has (Cleak ∧CPtest

forge)-KIND security. We can consider the

following adversary:

1: EXPst(S)→ pkR
2: pick r; C(pkR;r)→ ct

3: RATCH(R, rec,ct)→ true

4: TEST(R)→ K∗

Due to the non-PA security, we do have privacy for the tested key. However, this ad-

versary is ruled out by CPtest

forge. Hence, this cleanness predicate does forbid more than

necessary: we have KIND security for more attacks than allowed.

C Comparison with Bellare et al. [2]

Bellare et al. [2] consider uniARK. They consider the KIND security defined by the game

on Fig. 7 (with slightly adapted notations). This game has a single exposure oracle

revealing the state st, the key k, and also the last used coins, but for the sender only. It

also allows multiple TEST queries.

4 As an example, we can start from an IND-CCA-secure PKC0 and add a ciphertext in the

public key to define PKC. PKC.Gen: PKC0.Gen→ (sk,pk0); pick x; PKC0.Enc(pk,x)→ y;

pk← (pk0,y). Set Enc and Dec the same in PKC0 and PKC. Then C(pk;r) = y. PKC is also

IND-CCA-secure and C has the required property.

28

In the KIND game, the restricted flag is set when there is a trivial forgery. (It could

be unset by receiving a genuine upd but we can ignore it for schemes with RECOVER

security.) We can easily see that the cleanness notion required by the TEST queries

corresponds to Cleak ∧CPtest

trivial forge ∧CnoEXP(R).

Game KINDA
b

1: is← 0; ir← 0

2: Init(1λ)
$
−→ (stS,stR,z)

3: pick k

4: ks← k ; kR← k

5: b ′
$
←−ARATSEND,RATREC,EXP,CHSEND,CHREC(z)

6: return b ′

Oracle EXP

1: if op[is] =“ch” then return ⊥
2: op[is] =“exp”

3: return (r,stS,kS)

Oracle RATSEND

1: pick r; (st ′S,updS,kS)← Send(stS;r)

2: auth[is]← upd; is← is+1

3: return upd

Oracle RATREC(upd)

1: (acc,stR,kR)← Receive(stR,upd)

2: if not acc then return false

3: if op[ir] =“exp” then restricted← true

4: if upd = auth[ir] then restricted← false

5: ir← ir+1; return true

Oracle CHSEND

1: if op[is] =“exp” then return ⊥
2: op[is]← “ch”

3: if rkey[is] =⊥ then rkey[is]
$
←− {0,1}kl

4: if b= 1 then return ks else return rkey[is]

Oracle CHREC

1: if restricted then return kR
2: if op[ir] =“exp” then return ⊥
3: op[ir]← “ch”

4: if rkey[ir] =⊥ then rkey[ir]
$
←− {0,1}kl

5: if b= 1 then return kR else return rkey[ir]

Fig. 7: The security game in Bellare et al. [2].

D Comparison with Poettering-Rösler [15]

Poettering and Rösler [15] have a different way to define correctness. Unfortunately,

their definition is not complete as it takes schemes doing nothing as correct [18]. In-

deed, the trivial scheme letting all states equal to ⊥ and doing nothing is correct (and

obviously secure).

The Poettering-Rösler construction allows to generate keys while treating “associ-

ated data” ad at the same time. However, their security notion does not seem to imply

authentication of ad although their proposed protocol does. Like ours, this construc-

tion method starts from unidirectional, but their uniARK is not FORGE-secure as the

state of the receiver allows to forge messages. Another important difference is that their

scheme erases the state of the receiver as soon as the reception of an upd fails, instead

of just rejecting it and waiting for a correct one. This makes their scheme vulnerable to

denial-of-services attack.

The scheme construction uses no encryption. It also accumulates many keys in

states, but instead of using an onion encryption, it does many parallel KEM and com-

bines all generated keys as input to a random oracle. They feed the random oracle with

the local history of communication as well (instead of using a collision-resistant hash

function). It uses a KEM with a special additional property which could be realized with

a hierarchical identity-based encryption (HIBE). Instead, we use a signcryption scheme.

Finally, it uses the output of the random oracle to generate a new sk/pk pair. One of the

participants erases sk and keeps pk while the other keeps sk. In our construction, one

participant generates the pair, sends sk to the other, and erases it.

We recall the KIND game of Poettering-Rösler [15] on Fig. 8 (with slightly adapted

notations). The adversary can make several TEST queries. Furthermore, TEST(P) queries

29

Game KINDA

b

1: for P ∈ {A,B} do

2: sP ,rP← 0
3: ⊲ number of sent and received messages
4: eP← 0
5: ⊲ eP : number of in-sync received messages
6: EPP[·]←⊥ ⊲ EPP[s]: value of eP at the sth send
7: E⊢

P
,E⊣

P
← 0

8: ⊲ E⊢

P
: number of in-sync sent acked by P

9: ⊲ E⊣

P
← 0: number of in-sync sent messages

10: adcP[·]←⊥ ⊲ list of sent (ad,upd)
11: isP← true ⊲ isP says if P is in-sync
12: kP[·]←⊥, XPP←∅ ⊲ list of s during EXPst(P)
13: TRP←∅ ⊲ list of forbidden TEST(P, . . .)
14: CHP←∅ ⊲ list of TEST(P, . . .) made
15: end for

16: Init(1λ)
$
−→ (stA,stB)

17: b′←ARATSEND,RATREC,EXPst,EXTkey,TEST()
18: if TRA∩CHA 6= ∅ or TRB∩CHB 6= ∅ then abort
19: if TRB∩CHB 6= ∅ or TRB∩CHB 6= ∅ then abort
20: return b′

Oracle RATSEND(P,ad)
1: if SP =⊥ then abort
2: (stP ,k,upd)← Send(stP ,ad)
3: if isP then

4: adcP[sP]← (ad,upd)
5: EPP[sP]← eP

6: E⊣

P
←E⊣

P
+1

7: end if

8: kP[P,eP ,sP]← k
9: sP← sP +1
10: return upd

Oracle EXPkey(P, role,e,s)

1: if kP[role,e,s]∈ {⊥,⋄} then abort ⊲ not allowed if kP is not defined
or is available from k

P

2: k← kP[role,e,s]
3: kP[role,e,s]←⋄
4: return k

Oracle RATREC(P,ad,upd)
1: if SP =⊥ then abort
2: if isP ∧adc

P
[rP] 6= (ad,upd) then ⊲ first forgery

3: isP← false

4: if rP ∈ XP
P

then ⊲ trivial forgery

5: TRP← TRP ∪ {send}× {0,1, . . .}× {sP ,sP +1, . . .}
6: TRP← TRP ∪ {rec}× {0,1, . . .}× {rP ,rP +1, . . .}
7: end if

8: end if

9: if isP then

10: E⊢

P
← EP

P
[rP]

11: eP← eP +1
12: end if

13: (stP ,k)← Receive(stP ,ad,upd)
14: if stP =⊥ then return⊥
15: if isP then k←⋄ ⊲ k is already available on P
16: kP[rec,E⊢

P
,rP]← k

17: rP← rP +1
18: return

Oracle EXPst(P)
1: TRP← TRP ∪ {rec}× {E⊢

P
, . . . ,E⊣

P
}× {rP ,rP +1, . . .}

2: if isP then

3: XPP← XPP ∪ {sP}
4: TR

P
← TR

P
∪ {send}× {E⊢

P
, . . . ,E⊣

P
}× {rP ,rP +1, . . .}

5: end if

6: return stP

Oracle TEST(P, role,e,s)
1: if kP[role,e,s]∈ {⊥,⋄} then abort
2: k← kP[role,e,s]
3: if b= 0 then k← random
4: kP[role,e,s]←⋄
5: CHP← CHP ∪ {(role,e,s)}
6: return k

Fig. 8: The KIND game of Poettering-Rösler [15].

30

are not necessarily on the last active kP but can be on any previously generated kP
value. For this reason, TEST takes as input the index (a triplet (role,e,s)) of the tested

key. This does not change the security notion.

The KIND game keeps a flag isP stating if P is “in-sync”. It means that P did not

receive any forgery. This is a bit weaker than our matching status. However, assuming

that a protocol is such that participants who received a forgery are no longer able to

send valid messages to their counterparts, in-sync is equivalent to the matching status.

As we can see, a key kP produced during a reception is erased if P is in-sync, because

it is available on the P side from where it could be tested. This is one way to rule out

some trivial attacks.

The other way is to mark a TEST as forbidden in a TR list. We can see in the KIND

game (Step 2–8 in RATREC) that if P receives a trivial forgery (this is deduced by

rP ∈ XPP), then no further TEST(P) is allowed. This means that CPtest

trivial forge is included

in the cleanness predicate of this KIND game.

We can easily check that Cleak is included in the cleanness predicate. Hence, this

KIND game looks equivalent to ours with cleanness predicate Cleak ∧CPtest

trivial forge.

This security notion does not seem to imply FORGE security.

E Comparison with Jaeger-Stepanovs [10]

We recall the AEAC game of Jaeger-Stepanovs [10] on Fig. 9 (with slightly adapted

notations). The RATSEND oracle implements the left-or-right challenge at the same

time. Hence, the adversary can make several challenges. Additionally, the RATREC

oracle implements a decrypt-or-silent oracle which leaks b in the case of a non-trivial

forgery. (The oracle always decrypts after a trivial forgery and never decrypts if no

forgery. Its behavior changes only in the presence of a non-trivial forgery and with

no previous trivial forgery.) Hence, FORGE security is implied by AEAC security. A

novelty here is that the adversary can get the next random coins to be used: zP for

sending or ηP for receiving. (Bellare et al. [2] allowed to expose the last coins.) This is

managed by all instructions in gray on Fig. 9. Extracting these coins must be followed

by the appropriate oracle query (enforced by the nextop state).

We cannot challenge P after P received a trivial forgery (due to the restrictedP
flag). Hence, we have some kind of CPtest

trivial forge condition for cleanness. Since Cleak is

necessary, we can say that this model includes the Cleak ∧CPtest

trivial forge predicate.

31

Game AEACA

b

1: for P ∈ {A,B} do

2: sP ,rP← 0
3: restrictedP← false ⊲ P received a trivial forgery
4: forgeP[·]← nontrivial ⊲ forgeP[r] says if rth reception could be a

trivial forgery
5: XP← 0 ⊲ challenge forbidden if rP <XP because some

EXPst(P) occurred
6: pick zP ,ηP

7: end for

8: (stA,stB)← Init(1λ)
9: b′←ARATSEND,RATREC,EXPst()
10: return b′

Oracle RATSEND(P,pt0,pt1,ad)
1: if nextop 6∈ {(P,send),⊥} then return⊥
2: if |pt0| 6= |pt1| then return⊥
3: if (rP <XP∨restrictedP∨chP[sP+1]= forbidden)∧pt0 6= pt1 then

return⊥
4: (stP ,ct)← Send(stP ,ad,ptb;zP)
5: nextop←⊥, sP← sP +1, pick zP

6: if ¬restrictedP then ctable
P
[sP]← (ct,ad)

7: ⊲ register ct if P had no trivial forgery
8: if pt0 6= pt1 then chP[sP]← done

9: ⊲ challenge was done for the sth send
10: return ct

Oracle RATREC(P,ct,ad)
1: if nextop 6∈ {(P, rec),⊥} then return⊥
2: (stP ,pt)← Receive(stP ,ad,ct;ηP)
3: nextop←⊥, pick ηP

4: if pt =⊥ then return⊥
5: rP← rP +1
6: if forgeP[rP] = trivial∧(ct,ad) 6= ctableP[rP] then restrictedP← true

⊲ trivial forgery
7: if restrictedP ∨(b= 0∧(ct,ad) 6= ctableP[rP]) then return pt ⊲

return pt only after trivial forgeries
8: ⊲ (b= 0 case) return pt for a non-trivial forgery
9: return⊥

Oracle EXPst(P,coins)
1: if nextop 6=⊥ then return⊥
2: if restrictedP then return (stP ,zP ,ηP)
3: if ∃i : rP < i6 s

P
∧ ch

P
[i] = done then return⊥

4: ⊲ challenge from P was done but not received yet
5: forge

P
[sP +1]← trivial, z,η←⊥, X

P
← sP +1

6: if coins = send then

7: nextop← (P,send), z← zP , X
P
← sP +2

8: forge
P
[sP +1]← trivial, chP[sP +2]← forbidden

9: else if coins = rec then

10: nextop← (P, rec), η← ηP

11: end if

12: return (stP ,z,η)

Fig. 9: The AEAC game of Jaeger-Stepanovs [10].

32

