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Abstract

Oblivious RAM (ORAM), first introduced in the ground-breaking work of Goldreich and
Ostrovsky (STOC ’87 and J. ACM ’96) is a technique for provably obfuscating programs’ access
patterns, such that the access patterns leak no information about the programs’ secret inputs. To
compile a general program to an oblivious counterpart, it is well-known that Ω(logN) amortized
blowup is necessary, where N is the size of the logical memory. This was shown in Goldreich and
Ostrovksy’s original ORAM work for statistical security and in a somewhat restricted model
(the so called balls-and-bins model), and recently by Larsen and Nielsen (CRYPTO ’18) for
computational security.

A long standing open question is whether there exists an optimal ORAM construction that
matches the aforementioned logarithmic lower bounds (without making large memory word
assumptions, and assuming a constant number of CPU registers). In this paper, we resolve
this problem and present the first secure ORAM with O(logN) amortized blowup, assuming
one-way functions. Our result is inspired by and non-trivially improves on the recent beautiful
work of Patel et al. (FOCS ’18) who gave a construction with O(logN · log logN) amortized
blowup, assuming one-way functions.

One of our building blocks of independent interest is a linear-time deterministic oblivious
algorithm for tight compaction: Given an array of n elements where some elements are marked,
we permute the elements in the array so that all marked elements end up in the front of the
array. Our O(n) algorithm improves the previously best known deterministic or randomized
algorithms whose running time is O(n · log n) or O(n · log log n), respectively.
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1 Introduction

Oblivious RAM (ORAM), first introduced and constructed by Goldreich and Ostrovsky [18] is a
method to compile programs in such a way that the compiled program preserve the input-output
functionality of the original program, but the memory access pattern is independent of the data
that is being manipulated by the program. This allows a client to outsource an encrypted database
to an untrusted server and to later perform queries on it without leaking information about the
content of the database. In this work, we focus on the classical setting of logarithmic-size memory
word and a constant number of CPU registers.

We are interested in efficient compilers where the complexity of the compiled RAM machine
is as close as possible to the complexity of the original RAM machine. We focus on the total
computation overhead, namely the multiplicative increase, comparing the ORAM and the original
RAM. We call this term time overhead or time blowup.

In their original work, Goldreich and Ostrovsky [18] presented the hierarchical ORAM construc-
tion that allows us to compile any program into an oblivious one with amortized poly-logarithmic
time overhead, assuming one-way functions. That is, for any sequence of operations on a logical
memory of size N , the compiler of Goldreich and Ostrovsky [18] performs them obliviously with
O(log3N) amortized time overhead.

By extending and optimizing the building blocks used in the hierarchical ORAM construc-
tions, improved constructions were given in subsequent works [1, 11, 20, 33]. Until very recently,
the best result was given by Kushilevitz, Lu, and Ostrovsky [25] who presented an ORAM with
O(log2N/ log logN) amortized time blowup. See Chan et al. [8] for a unified framework for hierar-
chical ORAM constructions that captures the main differences between all of the above schemes.

A different approach for constructing ORAM schemes, called tree-based ORAM, was initiated by
Shi et al. [35] who achieved O(log3N) time blowup (but with super constant client memory). This
approach was optimized (see e.g., Gentry et al. [15]) until the Path ORAM construction of Stefanov
et al. [37] that had O(log2N) time blowup. The Circuit ORAM of Wang, Chan, and Shi [38] has
the same time blowup but assuming constant client memory. A feature of this construction is that
if large blocks are available (e.g., of size Ω(log2N)), then the overhead becomes O(logN), the best
possible (see below). However, assuming large blocks is somewhat non-standard and we avoid doing
so in this work.

It is known that Ω(logN) amortized time blowup is required by any ORAM. This was proven
in the work of Goldreich and Ostrovsky [18] for statistically secure ORAM scheme in the so called
balls and bins model [5].1 More recently, Larsen and Nielsen [26] showed that the same lower bound
holds even for computationally secure scheme and with no assumption on the model.2 Bridging the
gap between the logarithmic time overhead lower bound and the poly-logarithmic time overhead
upper bound was a major open problem in the past three decades.

For years, the two known techniques for ORAM fell short of bridging this gap and it was
unclear whether the lower bound could be improved or there are better techniques for ORAM. In
a beautiful recent work, Patel, Persiano, Raykova, and Yeo [32] presented an ORAM scheme, in
the hierarchical ORAM framework, with quasi-logarithmic overhead, assuming one-way functions.
Namely, their scheme has a O(logN · log logN) amortized time blowup and it is computationally
secure. Still, there is no construction that matches the known lower bound.

1In this model, the n data items are modeled as “balls”, CPU registers and server-side data storage locations are
modeled as “bins”, and the set of allowed data operations consists only of moving balls between bins.

2An even more recent work of Jacob, Larsen, and Nielsen [22] shows that concrete data structures, such as stacks,
queues, deques, priority queues and search trees, when implemented obliviously require Ω(logN) overhead.
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1.1 Our Results

We provide the first optimal ORAM construction, having only O(logN) amortized time blowup
and matching the lower bounds of Goldreich and Ostrovsky [18] and Larsen and Nielsen [26]. Our
construction assumes the existence of one-way functions. Moreover, our ORAM (similarly to the
one of [32]) could be instantiated to obtain statistical security in the balls and bins model if the
client is provided with access to a random oracle, which matches the assumptions in the original
lower bound of Goldreich and Ostrovsky [18].

Theorem 1.1. There exists an ORAM (in the balls and bins model) with O(logN) amortized time
blowup, where N is the size of the logical memory. The construction assumes one-way functions,
and a constant client’s memory size.

Our construction is inspired by and non-trivially improves on the recent beautiful work of Patel
et al. [32].

The lower bound of Larsen and Nielsen [26] also relates to the case where the client’s internal
memory is not constant size. If the client’s memory size is m, then the lower bound implies that
Ω(log(N/m)) amortized overhead is inherent. Our construction extends to this scenario, obtaining
the following corollary.

Corollary 1.2. There exists an ORAM with O(log(N/m)) amortized time blowup, where N is the
size of the logical memory and m is the client’s memory size. The construction assumes one-way
functions.

Tight compaction. Our construction of Theorem 1.1 relies on many building blocks, some of
which are new and some of which are known from the literature. One of the building blocks that
we significantly improve on is oblivious tight compaction. In this problem, we are given an array
of elements where some elements are marked, and our goal is to permute the elements in the array
so that all marked elements end up in the front of the array. We give an asymptotically optimal
oblivious algorithm that achieves this task.

Theorem 1.3. There exists a deterministic oblivious tight compaction algorithm that takes O(n)
time to compact any input array of length n.

The best previously known deterministic oblivious tight compaction algorithm was implied by
sorting networks (Ajtai et al. [2] and Goodrich [19]) and thus has O(n · log n) running time. The
best previously known randomized tight compaction algorithm has running time O(n · log log n)
and negligible probability of error in n (Lin et al. [27] and Mitchell and Zimmerman [29]). Our
algorithm does not result with a stable permutation (i.e., the marked and unmarked elements do
not preserve their relative internal ordering) and this is inherent for every oblivious compaction
algorithm in the balls and bins model (Lin et al. [27]) that runs in time o(n log n).

2 Technical Overview of Our Construction

We start with an overview of the hierarchical ORAM framework initially proposed by Goldreich
and Ostrovsky [16, 18] and improved in subsequent works [8, 20, 25]. We then describe the elegant
ideas in the very recent work by Patel et al. [32] in which they further improved the asymptotical
performance of hierarchical ORAMs, achieving quasi-logarithmic blowup. Finally, we explain the
obstacles for getting rid of the extra O(log logN) factor that arises in their construction, and
describe our set of algorithmic ideas for accomplishing this.
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We note that this section contains a very high-level description of the different building blocks
and steps in our construction and additional more elaborate explanations are given later in the
corresponding sections.

2.1 Overview of Previous Constructions and Challenges

Our starting point is the hierarchical ORAM. For a logical memory of N blocks, we construct
a hierarchy of hash tables, henceforth denoted T1, . . . , TL where L = logN . Each Ti stores 2i

memory blocks. We refer to table Ti as the i-th level. In addition, we store next to each table a
flag indicating whether the table is full or empty. When receiving an access request to read/write
some logical memory address addr, the ORAM proceeds as follows:

• Read phase. Access each non-empty levels T1, . . . , TL in order and perform Lookup for addr.
If the item is found in some level Ti, then when accessing all non-empty levels Ti+1, . . . , TL
look for dummy.

• Write back. If this operation is read, then store the found data in the read phase and write
back the data value to T0. If this operation is write, then ignore the associated data found in
the read phase and write the value provided in the access instruction in T0.

• Rebuild: Find the first empty level `. If no such level exists, set ` := L. Merge all {Tj}j≤`
into T`. Mark all levels T1, . . . , T`−1 as empty and T` as full.

For each access, we perform logN lookups, one per hash table. Moreover, after every t accesses,
we rebuild the i-th table dt/2ie times. When implementing the hash table using the best known
oblivious hash table (e.g., oblivious Cuckoo hashing [8,20]), building a level with 2k items obliviously
requires O(2k · log(2k)) = O(2k · k) time blowup. This building algorithm is based on oblivious
sorting, and its time overhead is inherited from the time overhead of the oblivious sort procedure
(specifically, the best known algorithm for obliviously sorting n elements takes O(n · log n) time [2,
19]). Thus, summing over all levels (and ignoring the logN lookup operations across different levels

with each access), t accesses require
∑logN

i=1

⌈
t
2i

⌉
·O(2i · i) = O(t · log2N) time blowup. On the other

hand, lookup is essentially constant time per level (ignoring searching in stashes which introduce
additive factor), and the time of lookup is O(logN). Thus, there is an asymmetry between build
time and lookup time, and the main overhead is the build.

The work of Patel et al. [32]. In earlier constructions, oblivious hash tables [8, 16, 18, 20, 25]
could be built from every input array. However, obliviously building such a hash table requires
expensive oblivious sorting, causing the extra logarithmic factor. The key idea of Patel et al. [32]
is to modify the hierarchical ORAM framework to realize ORAM from a weaker primitive: an
oblivious hash table that works only for randomly shuffled input arrays. Patel et al. describe a novel
oblivious hash table such that building a hash table containing n elements can be accomplished
without oblivious sorting and consumes only O(n · log log λ) total time3; further, lookup consumes
O(log log n) total time. Patel et al. argue that their hash table construction retains security not
necessarily for every input, but when the input array is randomly permuted, and moreover the
input permutation must be unknown to the adversary.

To be able to leverage this relaxed hash table in hierarchical ORAM, a remaining question
is the following: whenever a level is being rebuilt in the ORAM (i.e., a new hash table is being
constructed), how do we make sure that the input array is randomly and secretly shuffled? A näıve

3λ denotes the security parameter. Since the size of the hash table n may be small, here we separate the security
parameter from the hash table’s size.
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answer is to employ an oblivious random permutation to permute the input, but known oblivious
random permutation constructions require oblivious sorting which brings us back to our starting
point. Patel et al. solve this problem and show that there is no need to completely shuffle the
input array. Recall that when building some level T`, the input array consists of all unvisited
elements in tables T0, . . . , T`−1 (and T` too if ` is the largest level). Patel et al. argue that the
unvisited elements in tables T0, . . . , T`−1 are already randomly permuted within each table and the
permutation is unknown to the adversary. Then, they presented a new technique, called multi-
array shuffle, that combines these arrays to a shuffled array within O(n · log log λ) time, where
n = |T0|+ |T1|+ . . .+ |T`−1|.4 The algorithm is rather involved, and has a negligible probability of
failure. We elaborate on this procedure below.

Our construction. Our construction builds upon and simplifies the construction of Patel et al.
We improve the construction of Patel et al. in two different aspects:

1. We show how to implement a multi-array shuffle in O(n) time. Our algorithm has perfect
security and perfect correctness.

2. We develop a hash table that supports build in O(n) time assuming that the input array is
randomly shuffled.

In the following, we describe the core ideas behind these improvements, where in Section 2.2 we
present our multi-array shuffle algorithm. In Section 2.3 we show how to build a hash table in O(n)
time. In Section 2.4 we describe our tight compaction algorithm that plays a pivotal role in our
construction.

2.2 Multi-Array Shuffle in Linear Time: Intersperse

The multi-array shuffle of Patel et al. takes as input k arrays, I1, . . . , Ik of size n1, . . . , nk, respec-
tively. Each Ii is assumed to already be randomly shuffled. The output of the procedure is a single
array that contains the all the elements from I1, . . . , Ik in a randomly shuffled order. Ignoring
obliviousness for now, we could first initialize an output array of size n = n1 + . . . + nk. Then,
we assign for I1 exactly n1 random locations in the output array, and place the elements from I1

arbitrarily in these locations. Then, for I2 we assign exactly n2 random locations in the remaining
n − n1 open cells in the output array, and place the elements from I2 in these cells. We continue
in a similar manner until all input arrays are placed in the output array.5 The challenge is how
to perform this placement obliviously, without revealing the mapping from the input array to the
output array. Patel et al. shows a rather involved technique for achieving this placement obliviously
in total time O(n log log λ) with negligible probability of failure.

We simplify this construction. For simplicity of exposition, we consider the case of randomly
shuffling only two input arrays I0 and I1, and call this procedure “intersperse”. We choose at
random a bit vector Aux in which exactly |I0| locations are 0, and |I1| locations are 1. Our goal
is to (obliviously!) place in each location i in the output array an element from IAux[i]. Towards
this end, we observe that this problem is exactly the reverse problem of oblivious tight compaction:
given an input array of size n containing keys that are 1-bit, we want to sort the array such that
all elements with key 0 will appear before all elements with key 1. We devise an oblivious tight
compaction algorithm for arrays of size n in O(n) time. We refer to Section 2.4 for an overview of

4The time overhead is a bit more complicated to state and the above expression is for the case where |Ti| = 2|Ti−1|
for every i (which is the case in an hierarchical ORAM construction).

5Note that the number of such assignments is
(

n
n1n2...nk

)
. Assuming that each array is already permuted, the

number of possible outputs of this approach is
(

n
n1...nk

)
· n1! . . . nk! = n!.
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this construction, and to Section 5 for the detailed construction. We show how to use this algorithm
“in reverse” to intersperse two arrays. The reader is referred to Section 6 for further details.

2.3 Hash Table Build in Linear Time

In previous works, hash tables were implemented as oblivious Cuckoo hash tables, where build
requires O(n · log n) time and relies on oblivious sorts. The hash table of Patel et al. requires
O(n · log log λ) time and works as long as the input array is a-priori shuffled. In this section, we first
describe a warmup construction that can be used to build a hash table in O(n · poly log log λ) time
and supports lookups in O(poly log log λ) time. We will then get rid of the additional poly log log λ
factors in both the build and lookup phases.

The following warmup construction already deviates from the one by Patel et al. In particular,
the construction of Patel et al. has log log λ layers of hash tables of decreasing sizes, and one has
to look for an element in each one of these hash tables, i.e., searching within log log λ bins. In our
solution, conceptually, we rely only on a single layer of such a hash table construction; thus, lookup
accesses only a single bin. While the warmup construction requires poly log log λ time to perform
the single access within that bin, this simplification, however, allows us to later show a construction
that performs this in-bin lookup in O(1) time.

Warmup construction: Oblivious hash table with poly log log λ slack. Intuitively, to build
a hash table, the idea is to randomly distribute the n elements in the input into B = n/poly log λ
bins of size poly log λ in the clear. The distribution is done according to a pseudorandom function
with some secret key K, where an element with address addr is placed in the bin with index
PRFK(addr). Whenever we lookup for a real element addr′, we access the bin PRFK(addr′); in
which case, we might either find the element there (if it originally one of the n elements in the
input) or we might not find it in the accessed bin (in the case where the element is not part of the
input array). Whenever we perform a dummy lookup, we just access a random bin.

Since we assume that the n balls are secretly and randomly distributed to begin with, the build
procedure does not reveal the mapping from original elements to bins. However, a problem arises
in the lookup phase. Since the total number of elements in each bin is revealed, accessing in the
lookup phase all real keys of the input array would produce an access pattern that is identical
to that of the build process, whereas accessing n dummy elements results in a new, independent
balls-into-bins process of n balls into B bins.

To this end, we first place the n balls into the B bins, and get loads n1, . . . , nB which are revealed
to the adversary. Then, we sample new secret loads L1, . . . , LB corresponding to an independent
process of throwing n′ balls into B bins. By tuning n′, we can guarantee that Li < ni holds for
every i = 1, . . . , B with overwhelming probability. We extract from each bin arbitrary ni − Li
elements obliviously and move them to an overflow pile, while padding the sizes of all bins to the
same bound. The crux of the security proof is that the secret loads L1, . . . , LB are never revealed
and thus the access pattern in the lookup phase is independent to that of the build phase, and
therefore is simulatable.

There are many techincal details needed to implement the above approach. First, how are the
bin sizes truncated to the secret loads L1, . . . , LB. Second, how are the elements in the overflow
pile stored and accessed. Finally, how each bin is being implemented.

For the first question, we leverage the linear time tight compaction algorithm (see Section 2.4)
to extract the number of elements we want from each bin. For the overflow pile, which turns out
to be of size m = n/ log2 λ, we use a standard cuckoo hashing scheme such that it can be built in
O(m · logm) = O(n) time and supports lookups effectively in O(1) time (plus some stash of size
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O(log λ), which we ignore for now). To support lookups for bins of size O(poly log λ), we use a
perfectly secure ORAM constructions that can be built in O(poly log λ · poly log log λ) and looked
up in O(poly log log λ) time [9, 11].

Oblivious hash table with linear build time and constant lookup time. In the warmup
construction, ignoring the lookup time in the cuckoo hash table, the only super-linear operation
that we have is the use of a perfectly secure ORAM, which we employ for bins of size O(poly log λ).
We now show how to replace this with a data structure with linear time build and constant time
lookup.

Oblivious sorts and oblivious random permutations are frequently used in ORAM constructions.
We observe that if a memory word can hold B elements, then one can run oblivious sorts and
oblivious random permutations in O( nB ·log2 n) time. Moreover, since our bin sizes are O(poly log λ),
the metadata to represent an element can be represented in O(log log λ) bits. We assume that the
word size is Ω(logN), and therefore each word can hold up to B = Ω(logN/ log log λ) elements’
metadata (but not the elements themselves). Thus, for n = O(poly log λ), we can run oblivious
sorts and oblivious random permutations on metadata in linear time in n. Namely, we can compute
for each element its final destination, but not actually move it.

We show that this weaker primitive is sufficient. We carefully separate between working on
metadata and working on the elements themselves, and show how to compute a Cuckoo hash table
for the elements while first considering only the metadata and not the actual elements. We refer
the reader to Section 8 for the actual construction.

Additional techniques to achieve the final ORAM construction. Our final ORAM con-
struction uses the linear time intersperse procedure and linear time oblivious hash table described
above. There are still two concerns that are not addressed. First, the smallest level in the ORAM
construction cannot use the hash table construction described earlier. This is because elements are
added to the smallest level as soon as they are accessed and our hash table does not support such
an insertion. We address this by using an oblivious dictionary built atop a perfectly secure ORAM
for the smallest level of the ORAM. This incurs an additive O(poly log log λ) blowup. Second, the
stashes for each of the Cuckoo hash tables (at every level and every bin within the level) incur
O(log λ) time. We leverage the techniques from Kushilevitz et al. [25] to merge all stashes into a
common stash of size O(log2 λ), which is added to the smallest level when it is rebuilt.

2.4 Oblivious Tight Compaction

Given an input array I of n elements in which some are marked 0 and the rest are marked 1,
we want to move all elements marked 0 to the beginning of the array. We show a deterministic
algorithm for this task that runs in time O(n). We first show how to reduce this problem (in linear
time) to the relaxed problem of loose compaction: Given an array I with n elements in which at
most n/` elements are real (for some constant ` > 2), return an array of size n/2 that contain all
the real elements. We then show how to implement loose compaction in linear time.

Reducing tight compaction to loose compaction. Given an input array I of n elements in
which some are marked 0 and the rest are marked 1, we first count the number of total elements
marked 0 in the input array, and let c be this number. The first observation is that all 0-elements
in the input array that reside in locations 1, . . . , c, and all 1-elements in locations c + 1, . . . , n are
already placed correctly. Thus, we just need to handle the rest of the elements which we call the
misplaced ones. The number of misplaced elements marked 0 equals to the number of misplaced
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elements marked 1, and all we have to do is to swap between each misplaced 0-element with some
misplaced 1-element.

Our main idea to perform these swaps obliviously is to perform swaps along the edges of a
bipartite expander graph. That is, consider a bipartite expander graph where the left nodes are
associated with the elements. The edges of the graph are the access pattern of our algorithm. We
will swap two misplaced elements that have a different mark if they have a common neighbor on the
right. To make sure this algorithm runs in linear time, the graph has to be d-regular for d = O(1)
and that the list of neighbors of every node can be computed using O(1) basic operations. Such
explicit expander graphs are known to exist (for example, Margulis [28]).

Using the expansion properties of the graph, we can bound the number of misplaced elements
that were not swapped by this process: at most n/` for some ` > 2. Thus, we can invoke loose
compaction where we consider the remaining misplaced element as the real ones and the rest as
dummies. By this, we reduced the problem from n elements to n/2 and we proceed in recursion to
swap the misplaced elements on that first half of the array, until all 0-elements and 1-elements are
swapped.

Loose compaction. The main idea of the procedure is to first distribute the real balls to many
bins, while ensuring that no bin consists of too many real balls. Particularly, we will show, for some
B = O(1), a method to distribute all real balls to 2n/B bins such that each bin will have at most
B/4 real balls (and the rest are dummies). After performing this balanced distribution, all bins
have small load, and we can merge any 4 bins together to one bin. Thus, the 2n/B bins results
in n/(2B) bins of size B each, i.e., an array of size n/2. It remains to explain how we obtain the
balanced distribution of real balls.

Interpret the input array I as n/B bins of B elements each, simply by considering the i-th bin
as the elements I[i · B + 1], . . . , I[(i + 1) · B], for i = 0, . . . , n/B − 1. Additionally, allocate an
array I′ of n/B bins, each consists of B dummy elements. Each bin that contains at least B/4
real elements we mark as “dense”, and all other bins we mark as “sparse”. Consider a bipartite
expander graph G = (L,R,E), where the left n/B nodes correspond to the bins of I and the right
n/B nodes to the bins of I′, and let S ⊂ L be the set of dense bins in I. The balanced distribution
of elements will be defined using the edges of the bipartite expander and more specifically using a
(B,B/4)-matching in G for the set S: such a matching is a set of edges M ⊆ E, such that for every
u ∈ S there are at least B outgoing edges, and for every v ∈ R there are at most B/4 incoming
edges. Using this matching M for the set of dense bins S, we distribute these bins in I into bins
in I′, while guaranteeing that no bin in both I, I′ holds more than B/4 real elements. Note that
the access pattern in this procedure is again determined by the edges of the graph G, which is
independent to the input array I. It is important that the graph has a linear number of edges and
the set of edges can be computed in linear time.

We describe how to obliviously find the aforementioned matching in linear time. A non-oblivious
linear time algorithm that achieves exactly this was given by Pippenger [34], but this algorithm is
non-oblivious. A näıve approach to make this algorithm oblivious introduces a logarithmic time
overhead [9]. While this is too expensive as is, we still use this procedure as a subroutine that we
can apply on lists of size roughly n/ log2 n (since n/ log2 n · log(n/ log2 n) = O(n)). We additionally
observe that for lists of very short size, around log n, we can also implement Pippenger’s algorithm
in linear time in the input (in our case, around log n) by “compacting” many nodes into one word
and acting on them “in parallel”. Another important observation is that the computation of the
matching can be done on “metadata” and does not involve the actual moves of the balls. Let us
see why these are useful.
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Recall that to perform loose compaction, all we need is to compute the above matching but it
is not known how to do this in linear time. Consider again the input array I for loose compaction.
We break it up into n/ log2 n major bins each containing log2 n elements. Our first goal is to
extract all the major bins that are very dense, and add them to the output array. Towards this
end, we treat every major bin as a single element and mark it if it contains many real elements. We
perform loose compaction on the major bins (which we can afford, as we can implement Pippenger’s
algorithm obliviously on input size n/ log2 n in linear time in n), and we move all the dense major
bins to the output array. Our second goal is to extract all real elements from the sparse major
bins. We do the same trick again. We break each major bin of log2 n elements into log n sub-bins
each containing log n elements. We perform loose compaction on each such sub-bin independently
(which we can since we can implement Pippenger’s algorithm obliviously on such tiny, log n, length
inputs in linear time in n) adding all the dense sub-bins to the output array. Still, we have to
perform compaction on the sparse sub-bins, each of which is of size log n. Here, we can again run
Pippenger’s algorithm obliviously, and to extract all the real elements in the sparse sub-bins to the
output array. Combining all these steps together requires some fine tuning of the parameters and
the compaction factor, and the reader is referred to Section 5 for further details and for a formal
description of our tight compaction algorithm.

2.5 Paper Organization

In Section 3, we provide the definitions of oblivious simulation. In Section 4, we present other
building blocks that we use in our construction (some are new and some are known). In Section 5,
we present our optimal oblivious tight compaction and in Section 6, we present a procedure that
randomly shuffles two given a-priori randomly shuffled arrays. In Section 7, we present our basic
construction of an oblivious hash table and in Section 8 we present another oblivious hash table
that has optimal parameters for very small input lists. A combination of these hash tables is then
used in Section 9, where we present our final construction of the ORAM scheme.

3 Preliminaries

Throughout this work, the security parameter is denoted λ, and it is given as input to algo-
rithms in unary (i.e., as 1λ). A function negl : N → R+ is negligible if for every constant c > 0
there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc. Two sequences of ran-
dom variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for any
probabilistic polynomial-time algorithm A, there exists a negligible function negl(·) such that∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ ≤ negl(λ) for all λ ∈ N. We say that X ≡ Y for such
two sequences if they define identical random variables for every λ ∈ N. The statistical dis-
tance between two random variables X and Y over a finite domain Ω is defined by SD(X,Y ) ,
1
2 ·
∑

x∈Ω |Pr[X = x]− Pr[Y = x]|. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. By ‖
we denote the operation of string concatenation.

3.1 Oblivious Machines

We define oblivious simulation of (possibly randomized) functionalities. We provide a unified
framework that enables us to adopt composition theorems from secure computation literature (see,
for example, Canetti and Goldreich [6, 7, 17]), and to prove constructions in a modular fashion.
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Random-access machines. A RAM is an interactive Turing machine that consists of a memory
and a CPU. The memory is denoted as mem[N,w], and is indexed by the logical address space
[N ] = {1, 2, . . . , N}. We refer to each memory word also as a block and we use w to denote
the bit-length of each block. The CPU has an internal state that consists of O(1) words. The
memory supports read/write instructions (op, addr, data), where op ∈ {read,write}, addr ∈ [N ] and
data ∈ {0, 1}w∪{⊥}. If op = read, then data = ⊥ and the returned value is the content of the block
located in logical address addr in the memory. If op = write, then the memory data in logical address
addr is updated to data. We use standard setting that w = Θ(logN) (so a word can store an address)
and N = poly(λ) as in literature, and we may use the direct implication that w = Θ(log λ); We
follow the convention that the CPU performs one word-level operation per unit time, i.e., arithmetic
operations (addition, subtraction, or multiplication), bitwise operations (AND, OR, NOT, or shift),
memory accesses (read or write), or evaluating a pseudorandom function [8, 18,20,25,26,32].

Oblivious simulation of a (non-reactive) functionality. We consider machines that interact
with the memory via read/write operations. We are interested in defining sub-functionalities such as
oblivious sorting, oblivious shuffling of memory contents, and more, and then define more complex
primitives by composing the above. For simplicity, we assume for now that the adversary cannot see
memory contents, and does not see the data field in each operation (op, addr, data) that the memory
receives. That is, the adversary only observes (op, addr). One can extend the constructions for the
case where the adversary can also observe data using symmetric encryption in a straightforward
way.

We define oblivious simulation of a RAM program. Let f : {0, 1}∗ → {0, 1}∗ be a (possibly
randomized) functionality in the RAM model. We denote the output of f on input x to be f(x) = y.
Oblivious simulation of f is a RAM machine Mf that interacts with the memory, has the same
input/output behavior, but its access pattern to the memory can be simulated. More precisely, we
let (out,Addrs) ← Mf (x) be a pair of random variable that corresponds to the output of Mf on
input x and where Addrs define the sequence of memory accesses during the execution. We say that
the machine Mf implements the functionality f if it holds that for every input x, the distribution
f(x) is identical to the distribution out, where (out, ·) ← Mf (x). In terms of security, we require
oblivious simulation which we formalize by requiring the existence of a simulator that simulates
the distribution of Addrs without knowing x.

Definition 3.1 (Oblivious simulation). Let f : {0, 1}∗ → {0, 1}∗ be a functionality, and let Mf be
a machine that interacts with the memory. We say that Mf obliviously simulates the functionality
f , if there exists a probabilistic polynomial time simulator Sim such that the following holds:

{(out,Addrs) : (out,Addrs)←Mf (x)}x ≈
{(
f(x),Sim(1λ, 1|x|)

)}
x
.

Depending on whether ≈ refers to computational, statistical, or perfectly indistinguishability, we
say Mf is computationally, statistically, or perfectly oblivious, respectively.

Intuitively, the above definition requires indistinguishability of the joint distribution of the
output of the computation and the access pattern, similarly to the standard definition of secure
computation in which the joint distribution of the output of the function and the view of the
adversary is considered (see the relevant discussions in Canetti and Goldreich [6,7,17]). Note that
here we handle correctness and obliviousness in a single definition. As an example, consider an
algorithm that randomly permutes some array in the memory, while leaking only the size of the
array. Such a task should also hide the chosen permutation. As such, our definition requires that
the simulation would output an access pattern that is independent of the output permutation itself.
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Parametrized functionalities. In our definition, the simulator receives no input, except the
security parameter and the length of the input. While this is very restricting, the simulator knows
the description of the functionality and therefore also its “public” parameters. We sometimes
define functionalities with explicit public inputs and refer to them as “parameters”. For instance,
the access pattern of a procedure for sorting of an array depends on the size of the array; a
functionality that sorts an array will be parameterized by the size of the array, and this size will
also be known by the simulator.

3.2 Modeling Reactive Functionalities

We further consider functionalities that are reactive, i.e., proceed in stages, where the functionality
preserves an internal state between stages. Such a reactive functionality can be described as a
sequence of functions, where each function also receives as input a state, updates it, and outputs
an updated state for the next function. We extend Definition 3.1 to deal with such functionalities.

We consider a reactive functionality F as a reactive machine, that receives commands of the
form (commandi, inpi) and produces an output outi, while maintaining some (secret) internal state.
An implementation of the functionality F is defined analogously, as an interactive machine MF
that receives commands of the same form (commandi, inpi) and produces outputs outi. We say that
MF is oblivious, if there exists a simulator Sim that can simulate the access pattern produced by
MF while receiving only commandi but not inpi. Our simulator Sim is also a reactive machine that
might maintain a state between execution.

In more detail, we consider an adversary A (i.e., the distinguisher or the “environment”) that
participates in either a real execution or an ideal one, and we require that its view in both exe-
cution is indistinguishable. The adversary A chooses adaptively in each stage the next command
(commandi, inpi). In the ideal execution, the functionality F receives (commandi, inpi) and computes
outi while maintaining its secret state. The simulator is then being executed on input commandi
and produces an access pattern Addrsi. The adversary receives (outi,Addrsi). In the real execution,
the machine M receives (commandi, inpi) and has to produce outi while the adversary observes
the access pattern. We let (outi,Addrsi) ← Mf (commandi, inpi)) denote the join distribution of
the output and memory accesses pattern produced by M upon receiving (commandi, inpi) as input.
The adversary can then choose the next command, as well as the next input, in an adaptive manner
according to the output and access pattern it received.

Definition 3.2 (Oblivious simulation of a reactive functionality). We say that a reactive machine
MF is an oblivious implementation of the reactive functionality F if there exists a PPT simulator
Sim, such that for any non-uniform PPT (stateful) adversary A, the view of the adversary A in the

following two experiments Exptreal,M
A (1λ) and Exptideal,F

A,Sim (1λ) is computationally indistinguishable:

Exptreal,M
A (1λ):

Let (commandi, inpi)← A
(
1λ
)

Loop while commandi 6= ⊥:
outi,Addrsi ←M

(
1λ, commandi, inpi

)
(commandi, inpi)← A

(
1λ, outi,Addrsi

)

Exptideal,F
A,Sim (1λ):

Let (commandi, inpi)← A
(
1λ
)

Loop while commandi 6= ⊥:
outi ← F(commandi, inpi).

Addrsi ← Sim
(
1λ, commandi

)
.

(commandi, inpi)← A
(
1λ, outi,Addrsi

)
Definition 3.2 can be extended in a natural way to the cases of statistical security (in which A

is unbounded and its view in both worlds is statistically close), or perfect security (A is unbounded
and its view is identical).
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An example: ORAM. An example of a reactive functionality is an ordinary ORAM, imple-
menting logical memory. Functionality 3.3 is a reactive functionality in which the adversary can
choose the next command (i.e., either read or write) as well as the address and data according to
the access pattern it has observed so far.

Functionality 3.3: FORAM

The functionality is reactive, and holds an internal state – N memory blocks, each of size w. Denote
the internal state X[1, . . . , N ].

• Access(op, addr, data): where op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.

1. If op = read, set data∗ := X[addr].

2. If op = write, set X[addr] := data and data∗ := data.

3. Output data∗.

Definition 3.2 requires the existence of a simulator that on each Access command only knows
that such a command occurred, and successfully simulates the access pattern produced by the real
implementation. This is a strong notion of security since the adversary is adaptive and can choose
the next command according to what it have seen so far.

Hybrid model and composition. We sometimes describe executions in a hybrid model. In
this case, a machine M interacts with the memory via read/write-instruction and in addition can
also send F-instruction to the memory. We denote this model as MF . When invoking a function
F , we assume that it only affects the address space on which it is instructed to operate; this is
achieved by first copying the relevant memory locations to a temporary position, running F there,
and finally copying the result back. This is the same whether F is reactive or not. Definition 3.2
is then modified such that the access pattern Addrsi also includes the commands sent to F (but
not the inputs to the command). When a machine MF obliviously implements a functionality G in
the F-hybrid model, we require the existence of a simulator Sim that produces the access pattern
exactly as in Definition 3.2, where here the access pattern might also contain F-commands.

Concurrent composition follows from [7], since our simulations are universal and straight-line.
Thus, if (1) some machine M obliviously simulates some functionality G in the F-hybrid model,
and (2) there exists a machine MF that obliviously simulate F in the plain model, then there exists
a machine M ′ that obliviously simulate G in the plain model.

Input assumptions. In some algorithms, we assume that the input satisfies some assumption.
For instance, we might assume that the input array for some procedure is randomly shuffled or that
it is sorted according to some key. We can model the input assumption X as an ideal functionality
FX that receives the input and “rearranges” it according to the assumption X . Since the mapping
between an assumption X and the functionality FX is usually trivial and can be deduced from
context, we do not always describe it explicitly.

We then prove statements of the form: “The algorithm A with input satisfying assumption X
obliviously implements a functionality F”. This should be interpreted as an algorithm that receives
x as input, invokes FX (x) and then invokes A on the resulting input. We require that this modified
algorithm implements F in the FX -hybrid model.
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4 Oblivious Building Blocks

Our ORAM construction uses many building blocks, some of which new to this work and some of
which are known from the literature. The building blocks are listed next. We advise the reader to
use this section as a reference and skip it during a first read.

• Oblivious Sorting Algorithms (Section 4.1): We state the classical sorting network of
Ajtai et al. [2] and present a new oblivious sorting algorithm that is more efficient in settings
where each memory word can hold multiple elements.

• Oblivious Tight Compaction (Section 4.2): We present an oblivious tight compaction
algorithm that has O(1) overhead. This procedure allows, given an array of elements where
some elements are marked, to permute the elements in the array so that all marked elements
end up in the front of the array.
We extend our tight compaction algorithm to distribution with O(1) overhead. This solves
the following problem: Given an array of n elements, some of which are marked and a set
A ⊆ [n] where |A| is equal to the number of marked elements in n, obliviously permute
the elements in the array so that all marked elements end up in the locations given by the
assignment A.

• Oblivious Random Permutations (Section 4.3): We show how to perform efficient obliv-
ious random permutations in settings where each memory word can hold multiple elements.

• Oblivious Bin Placement (Section 4.4): We state the known results for oblivious bin
placement of Chan et al. [8, 10].

• Oblivious Hashing (Section 4.5): We present the formal functionality of a hash table that
is used throughout our work. We also state the resulting parameters of a simple oblivious
hash table that is achieved by compiling a non-oblivious hash table inside an existing ORAM
construction.

• Oblivious Cuckoo Hashing and Assignment (Section 4.6): We present and overview the
state-of-the-art constructions of oblivious Cuckoo hash tables. We state their complexities
and also make minor modifications that will be useful to us later.

• Oblivious Dictionary (Section 4.7): We present and analyze a simple construction of a
dictionary that is achieved by compiling a non-oblivious dictionary (e.g., a red-black tree)
inside an existing ORAM construction.

4.1 Oblivious Sorting Algorithms

The elegant work of Ajtai et al. [2] shows that there is a comparator-based circuit with O (n · log n)
comparators that can sort any array of length n.

Theorem 4.1 (Ajtai et al. [2]). There is a deterministic oblivious sorting algorithm that sorts n
elements in O (n · log n) time.

Packed oblivious sort. We consider a variant of the oblivious sorting problem on a RAM, which
is useful when each memory word can hold up to B elements. The following theorem assumes that
the RAM can perform only word-level addition, subtraction, and bitwise operations in unit cost
(as defined in Section 3.1).

Theorem 4.2 (Packed oblivious sort). There is a deterministic packed oblivious sorting algorithm
that sorts n elements in O

(
n
B · log2 n

)
time, where B denotes the number of elements each memory

word can pack.
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Proof. We use a variant of bitonic sort, introduced by Batcher [4]. It is well known that, given
a list of n elements, bitonic sort runs in O

(
n · log2 n

)
time. The algorithm, viewed as a sorting

network, proceeds in O
(
log2 n

)
iterations, where each iteration consists of n

2 comparators (see
Figure 1). In each iteration, the comparators are totally parallelizable, but our goal is to perform
the comparators efficiently using standard word-level operation, i.e., to perform each iteration in
O
(
n
B

)
standard word-level operations. The intuition is to pack sequentially O (B) elements into

each word and then apply SIMD (single-instruction-multiple-data) comparators, where a SIMD
comparator emulates O(B) standard comparators using only constant time. We will show the
following facts: (1) each iteration runs in O

(
n
B

)
SIMD comparators and O

(
n
B

)
time, and (2) each

SIMD comparator can be instantiated by a constant number of word-level subtraction and bitwise
operations.

Figure 1: A bitonic sorting network for 8 inputs. Each horizontal line denotes an input from the
left end and output to the right end. Each vertical arrow denotes a comparator such that compares
two elements and then swaps the greater one to the pointed end. Each dashed box denotes an
iteration in the algorithm. The figure is modified from [39].

To show fact (1), we first assume without loss of generality that n and B are powers of 2. We
refer to the packed array which is the array of n

B words, where each word stores B elements. Then,
for each iteration, we want a procedure that takes as input the packed array from the previous
iteration, and outputs the packed array that is processed by the comparators prescribed in the
standard bitonic sort. To use SIMD comparators efficiently and correctly, for each comparator, the
input pair of elements has to be aligned within the pair of two words. We say that two packed
arrays are aligned if and only if the offset between each two words is the same. Hence, it suffices
to show that it takes O(1) time to align O(B) pairs of elements. By the definition of bitonic sort,
in the same iteration, the offset between any compared pair is the same power of 2 (see Figure 1).
Since B is also a power of 2, one of the following two cases holds:

(a) All comparators consider two elements from two distinct words, and elements are always
aligned in the input.

(b) All comparators consider two elements from the same word, but the offset t between any
compared pair is the same power of 2.

In case (a), the required alignment follows immediately. In case (b), it suffices to do the following:

1. Split one word into two words such that elements of the offset t are interleaved, where the
two words are called odd and even, and then

2. Shift the even word by t elements so the comparators are aligned to the odd word.

The above procedure takes O(1) time. Indeed, there are two applications of the comparators, and
thus it blows up the cost of the operation by a factor of 2. Thus, the algorithm of an iteration
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aligns elements, applies SIMD comparators, and then reverses the alignment. Every iteration runs
O
(
n
B

)
SIMD comparators plus O

(
n
B

)
time.

For fact (2), note that to compare k-bit strings it suffices to perform (k+1)-bit subtraction (and
then use the sign bit to select one string). Hence, the intuition to instantiate the SIMD comparator
is to use “SIMD” subtraction, which is the standard word subtraction but the packed elements are
augmented by the sign bit. The procedure is as follows. Let k be the bit-length of an element such
that B · k bits fit into one memory word. We write the B elements stored in a word as a vector
~a = (a1, . . . , aB) ∈ ({0, 1}k)B. It suffices to show that for any ~a = (a1, . . . , aB) and ~b = (b1, . . . , bB)
stored in two words, it is possible to compute the mask word ~m = (m1, . . . ,mB) such that

mi =

{
1k if ai ≥ bi
0k otherwise.

For binary strings x and y, let xy be the concatenation of x and y. Let ∗ be a wild-card bit. Assume
additionally that the elements are packed with additional sign bits, i.e., ~a = (∗a1, ∗a2, . . . , ∗aB).
This can be done by simply splitting one word into two. Consider two input words ~a = (1a1,
1a2, . . . , 1aB) and ~b = (0b1, 0b2, . . . , 0bB) such that ai, bi ∈ {0, 1}k. The procedure runs as follows:

1. Let ~s′ = ~a −~b, which has the format
(
s1∗k, s2∗k, . . . , sB∗k

)
, where si ∈ {0, 1} is the sign bit

such that si = 1 iff ai ≥ bi. Keep only sign bits and let ~s =
(
s10k, . . . , sB0k

)
.

2. Shift ~s and get ~m′ =
(
0ks1, . . . , 0

ksB
)
. Then, the mask is ~m = ~s− ~m′ =

(
0sk1, . . . , 0s

k
B

)
.

The above takes O(1) subtraction and bitwise operations. This concludes the proof.

4.2 Oblivious Tight Compaction

Oblivious tight compaction solves the following problem: given an input array containing n elements
each of which marked with a 1-bit label that is either 0 or 1, output a permutation of the input array
such that all the 1-elements are moved to the front of the array. Several earlier works [27,29] showed
how to construct randomized oblivious tight compaction algorithms running in time O(n · log logn).
We give an O(n) time, deterministic oblivious tight compaction algorithm. The proof of this
theorem appears in Section 5.

Theorem 4.3 (Restatement of Theorem 1.3). There exists a deterministic oblivious tight com-
paction algorithm that takes O(n) time to compact any input array of length n.

It is known that any oblivious tight compaction algorithm that makes o(n · log n) element
movements cannot preserve stability. Here, stability means that all the 0-elements in the output
must preserve their relative ordering in the input, and so do all the 1-elements. In particular, Lin
et al. [27] showed a Ω(n · log n) time lower bound for oblivious tight stable compaction suffers in
the balls and bins model. Indeed, all known upper bounds that overcome the O(n · log n) barrier
are not stable [27,29].

Oblivious distribution. Let I be an array containing n balls where each ball is labeled as either
0 or 1, and let A be a subset of [n] bits such that the number of 0-balls in I equals to |A|. The goal
of oblivious distribution is to permute I into an output O such that for all i ∈ [n], O[i] is a 0-ball
in I if and only if i ∈ A.

Note that oblivious distribution implies oblivious tight compaction by counting 0-balls and
then writing A as an array of 0s at the front. Our construction of deterministic oblivious tight
compaction can be adjusted to achieve the stronger notion of oblivious distribution. See detail in
Section 5.

14



Theorem 4.4 (Oblivious distribution). There exists a deterministic oblivious distribution algo-
rithm that takes O(n) time to permute an input array of length n.

4.3 Oblivious Random Permutations

Let A = (a1, . . . , an) be an array of n elements. We say that an algorithm ORP implements a
permutation if it outputs an array A′ = (aπ(1), aπ(2), . . . , aπ(n)) for some permutation π : [n] 7→ [n].
We say that ORP implements a statistically oblivious random permutation if the distribution over
the permutation π is the uniform one and the access pattern of the algorithm is statistically close
for all A and π.

Simple oblivious random permutation. A straightforward way to implement ORP, is to
sample random keys ri ∈ {0, 1}` for each ai, perform oblivious sort (see Section 4.1) by random keys
ri on the augmented array ((ri, ai))i∈[n], and then output the ai’s in the sorted array. Taking ` =
ω(log λ), the collision probability of any pair of ri’s is negl(λ), and thus the output permutation is
completely uniform. In the standard RAM model, where word size is Θ(log λ), we set ` = α(λ)·log λ
for any super-constant function α(·) (for example, log log(·)). Then, the comparator of ` bit strings
takes Θ(α(λ)) time, and using the standard AKS sort, the ORP runs in O (α(λ) · n · log n) time.

Theorem 4.5. There exists an algorithm that implements a statistically oblivious random permuta-
tion in O (α(λ) · n · log n) time, where α(·) is any super-constant function (for example, log log(·)).

Packed oblivious random permutation. In the simple oblivious random permutation, the
size of random keys ` is ω(log λ) which implies that the collision probability is negligible. An
alternative way is to choose a smaller ` such that the number of collision is a constant fraction of
n with overwhelming probability, solve the permutation of collided elements recursively, and then
run the simple ORP in the base case when the subproblem is small enough. Using this alternative,
several random keys of size ` is short enough to be packed in to one memory word, and thus we
gain the efficiency of packed oblivious sort if the elements are also short in bits. We consider the
following variant of the oblivious random permutation problem on a RAM, which is useful when
each memory word can hold up to B elements.

Theorem 4.6 (Packed oblivious random permutation). Let w be the number of bits in a memory
word. Assume that n ≥ log5 λ and that elements consist of at most ` = O (log n · log log λ) bits.
There exists a statistically oblivious random permutation algorithm for any array of n elements
that requires O

(
n
B · log2 n

)
time, where B = w/` is the number of elements each memory word can

pack.

Proof. The intuition is to instantiate the straightforward ORP from Theorem 4.5 using the packed
oblivious sort from Theorem 4.2. The only subtlety is that when n = poly log λ, random keys of
length O (log n · log log λ) bits have a non-negligible collision probability. Nevertheless, we show
that a constant fraction of keys do not collide and hence we are left to permute the remaining
elements, which we do recursively.

Let n be the size of the original problem, m be the problem size in the recursion, and the
permutation starts with ORPSmalln,λ(A,n, n).

Algorithm 4.7: ORPSmalln,λ(A,m, k) — oblivious random permutation of small array

• Input: An array A = (a1, . . . , am) of size m and an integer k ≤ m.

• Public parameters: n, λ.
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• The algorithm:

1. If m ≤ n
log3 λ

, perform the straightforward oblivious random permutation and output the

result. Otherwise, do the following.

2. For i = 1, . . . , k, sample random key ri ∈ {0, 1}` uniformly at random, where ` =
log n · log log λ. For i = k + 1, . . . ,m, let ri =∞.

3. Run packed oblivious sort on ((ri, ai))i∈[m] such that elements are sorted by the ri’s.
Let S be the sorted array.

4. Mark colliding elements in S: any consecutive elements that have the same random key
ri are marked. Let k′ be the number of marked elements.

5. Run tight compaction (Theorem 5.1) that copies all elements from S to S′ such that all
k′ marked elements are moved to the front of S′; record every movement of an element
in an auxiliary array.

6. Randomly permute the marked elements in S′ by recursing on the first m/2 elements of
S′, i.e., ORPSmalln,λ(S′,m/2, k′).

7. Reverse the procedures of the tight compaction to put marked elements back (using the
recorded movements in the tight compaction from Step 5).

• Output: The array S.

We first show that ORPSmalln,λ requires O
(
n
B · log2 n

)
time. Each iteration takes O

(
n
B · log2 n

)
time, the problem size shrinks by a factor of 2, and the base case takes O(n) time since m ≤ n

log3 λ

is a small fraction of n.
To prove the security, observe that the output is a perfectly uniform permutation conditioned

on the event that the number of marked elements is at most m/2 at Step 6. Let Xi be a random
variable indicating that the i-th element is marked as colliding at Step 4. Then, it suffices to prove
that for m > n/ log3 λ, it holds that

∑m
i=1Xi ≤ m/2 with all but negl(λ) probability. For every

set S ⊆ [m], the Xi’s satisfy the negative dependence such that Pr
[∧

i∈S Xi = 1
]
≤ µ|S|, where

µ = n1−log log λ is an upper bound on the marginal probability Pr[Xi = 1]. Hence, applying the
generalized Chernoff’s inequality [12,31], Pr [

∑m
i=1Xi > (1 + ε)mµ] ≤ e−2m(εµ)2 , taking ε = 1

2µ − 1,
we have

Pr

[
m∑
i=1

Xi >
m

2

]
≤ e−2m( 1

2
−µ)2 = e−Ω(m).

Since m > n
log3 λ

≥ log2 λ, the above probability is negligible in λ.

As a special case, if n = Θ(logc λ), where c ≥ 5 is a constant, the size of a word is Θ(log λ) bits

(as the standard RAM model, Section 3.1) and B = O
(

log λ
log2 log λ

)
, then the ORPSmalln,λ requires

O(n) total time.

4.4 Oblivious Bin Placement

Let I be an input array containing real and dummy elements. Each element has a tag from
{1, . . . , |I|} ∪ {⊥}. It is guaranteed that all the dummy elements are tagged with ⊥ and all real
elements are tagged with distinct values from {1, . . . , |I|}. The goal of oblivious bin placement is to
create a new array I′ of size |I| such that a real element that is tagged with the value i will appear
in the i-th cell of I′. If no element was tagged with a value i, then I′[i] = ⊥. The values in the tags
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of real elements can be thought of as “bin assignments” where the elements want to go to and the
goal of the bin placement algorithm is to route them to the right location obliviously.

Oblivious bin placement can be accomplished with O(1) number of oblivious sorts (Section 4.1),
where each oblivious sort operates over O(|I|) elements [8, 10]. In fact, these works [8, 10] describe
a more general oblivious bin placement algorithm where the tags may not be distinct, but we only
need the special case where each tag appears at most once.

4.5 Oblivious Hashing

An oblivious (static) hashing scheme is a data structure that supports three operations Build,
Lookup, and Extract that realizes the following (ideal) reactive functionality. The Build procedure
is the constructor and it creates an in-memory data structure from an input array I containing
real and dummy elements where each real element is a (key, value) pair. It is assumed that all real
elements in I have distinct keys. The Lookup procedure allows a requestor to look up the value of
a key. A special symbol ⊥ is returned if the key is not found or if ⊥ is the requested key. We say
a (key, value) pair is visited if the key was searched for and found before. Finally, Extract is the
destructor and it returns a list containing unvisited elements padded with dummies to the same
length as the input array I.

An important property that our construction relies on is that if the input array I is randomly
shuffled to begin with (with a secret permutation), the outcome of Extract is also randomly shuffled
(in the eyes of the adversary). In addition, we will need obliviousness to hold only when the Lookup
sequence is non-recurrent, i.e., the same real key is never requested twice (but dummy keys can be
looked up multiple times). The functionality is formally given next.

Functionality 4.8: Fn,NHT – Hash Table Functionality for Non-Recurrent Lookups

• Fn,NHT .Build(I):

– Input: an array I = (ai, . . . , an) containing n elements, where each ai is either dummy
or a (key, value) pair denoted (ki, vi) ∈ {0, 1}logN × {0, 1}∗.

– The procedure:
1. Initialize the state state to (I,P), where P = ∅.

– Output: The Build operation has no output.

• Fn,NHT .Lookup(k):

– Input: The procedure receives as input a key k (that might be ⊥, i.e., dummy).

– The procedure:
1. Parse the internal state as state = (I,P).

2. If k ∈ P (i.e., k is a recurrent lookup) then halt and output fail.

3. If k = ⊥ or k /∈ I, then set v∗ = ⊥.

4. Otherwise, set v∗ = v, where v is the value that corresponds to the key k in I.

5. Update P = P ∪ {(k, v)}.
– Output: The element v∗.

• Fn,NHT .Extract():

– Input: The procedure has no input.
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– The procedure:
1. Parse the internal state state = (I,P).

2. Define an array I′ = (a′i, . . . , a
′
n) as follows. For i ∈ [n], set a′i = ai if ai = (k, v) /∈ P.

Otherwise, set a′i = dummy.

3. Shuffle I′ uniformly at random.

– Ouptut: The array I′.

Construction näıveHT. A näıve, perfectly secure oblivious hashing scheme can be obtained
directly from a perfectly secure ORAM construction [9, 11]. Indeed, we can use a perfectly secure
ORAM scheme to compile a standard, balanced binary search tree data structure (e.g., a red-black
tree). Finally, Extract can be performed in linear time if we adopt the perfect ORAM scheme
by Chan et al. [9] which incurs constant space blowup. In more detail, we flatten the entire in-
memory data structure into a single array, and apply oblivious tight compaction (Theorem 5) on
the array, moving all the real elements to the front. We then truncate the array at length |I|,
apply a perfectly random permutation on the truncated array, and output the result. This gives
the following construction.

Theorem 4.9 (näıveHT). Assume that each memory word is large enough to store at least Θ(log n)
bits where n is an upper bound on the total number of elements that exist in the data structure.
There exists a perfectly secure, oblivious hashing scheme that consumes O(n) space; further,

• Build and Extract each consumes n · poly log n time;

• Each Lookup request consumes poly log n time.

Later in our paper, whenever we need an oblivious hashing scheme for a small poly log(λ)-sized
bin, we will adopt näıveHT since it is perfectly secure — in comparison, schemes whose failure
probability is negligible in the problem size (poly log(λ) in this case) may not yield negl(λ) failure
probability. In particular, almost all known computationally secure [16, 18, 20, 25] or statistically
secure [35,37,38] ORAM schemes have a (statistical) failure probability that is negligible in the prob-
lem’s size and thus are unsuited for small, poly-logarithmically sized bins. In a similar vein, earlier
works also employed perfectly secure ORAM schemes to treat poly-logarithmic size inputs [35].

4.6 Oblivious Cuckoo Hashing and Assignment

A Cuckoo hashing scheme [30] is a hashing method with very efficient lookup. The input consists
of n balls, each tagged with a key, and we assign them into two tables, each consisting of ccuckoo ·n
bins, where ccuckoo > 1 is an appropriate fixed constant. Each bin can hold at most one ball. The
assignment of balls into bins is done by letting each ball choose one independent random bin in each
table (e.g., by evaluating a PRF on the ball’s associated key), and attempting to place itself into
one of these two bins. It is known that with all but inverse polynomial probability in the number
of balls (over the bin choices), each ball will succeed in placing itself in one of the two associated
bins.

To make this failure probability negligible, a well known solution is to introduce a secondary
array S of size s, called a stash, for “stashing” problematic elements that cannot be otherwise
stored [24]. After running the initialization procedure of the Cuckoo hashing scheme, except with
O (n−s) probability, every ball is either in one of the two bins of its choice or in the stash. Thus, to
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look up a ball identified by a given key, unless the ball is in the stash S, lookup can be accomplished
simply by examining the ball’s two bin choices.

Absent any privacy concerns, it is known that building a Cuckoo hash table over n balls takes
O(n) time with high probability. However, it is also known that the standard procedure for building
a Cuckoo hash table leaks information through the algorithm’s access patterns [8,20,36]. We would
like to obliviously build the Cuckoo hash table. Goodrich and Mitzenmacher [20] (see also the
recent work of Chan et al. [8]6) showed that a Cuckoo hash table containing n ≥ log8 λ balls can
be obliviously built in O (n · log n) total time.

Oblivious Cuckoo assignment. To obtain an oblivious Cuckoo hashing scheme it is sufficient
to solve the Cuckoo assignment problem obliviously. Let n be the number of balls to be put into
the Cuckoo hash table, let I = ((u1, v1), . . . (un, vn)) be the array of the two choices of the n balls,
where ui, vi ∈ [ccuckoo · n] for i ∈ [n]. In the Cuckoo assignment problem, given as input I, the
goal is to output an array A = {a1, . . . an}, where ai ∈ {ui, vi, stash} denotes that the i-th ball
ki is assigned either to bin ui or bin vi, or to the secondary array of stash. We say that a Cuckoo
assignment A is correct iff it holds that (i) each bin is assigned to at most one ball, and (ii) the
number of balls in the stash is minimized. Given a correct assignment A, the Cuckoo hash table
can be built by running oblivious bin placement algorithm (Section 4.4) that places each ball to its
assigned bin or the stash.7

Theorem 4.10 (Obliviously Cuckoo assignment [8, 20]). Let α(·) be any arbitrarily small, fixed
super-constant function. Given a uniformly random input array I = ((u1, v1), . . . (un, vn)) of length
n ≥ log8 λ. There exists a procedure cuckooAssign such that, except with negl(λ) failure probabil-
ity, is oblivious and computes a correct Cuckoo assignment with an O(n)-sized main table and a
O (log λ)-sized stash.

Moreover, cuckooAssign proceeds in iterations such that each iteration performs only O(1) num-
ber of oblivious sorts and additionally a linear scan of an array. Instantiating the oblivious sort
with Theorem 4.1, cuckooAssign runs in O (n · log n) time. In addition, for every input I, the output
of cuckooAssign is a deterministic function of I.

At a high level, the algorithm proceeds in quasi-logarithmic number of iterations. It is parametrized
by two constants β < 1 and c such that the length of the array handled in the current iteration
shrinks as follows:

• For each k ∈ [c · log n], the k-th iteration is performed on an array of Θ(n · βk) elements.

• For each k ∈ [c · log n+ 1, α(λ) · log λ], the k-th iteration is performed on an array of Θ(n0.87)
elements.

For completeness, we provide additional details about the construction of cuckooAssign in Ap-
pendix A.

Oblivious Cuckoo hashing. To obtain an oblivious hashing (Build, Lookup,Extract) as defined
in Section 4.5, the construction (which includes cuckooAssign) given by Chan et al. [8] implements

6Chan et al. [8] is a re-exposition and slight rectification of the elegant ideas of Goodrich and Mitzenmacher [20];
also note that the Cuckoo hashing appears only in the full version of Chan et al., http://eprint.iacr.org/2017/924.

7The description here slightly differs from previous works (e.g., [8]). In previous works, the Cuckoo assignment A
was allowed to depend not only on the two bin choices I, but also on the balls and keys themselves. In our work, the
fact that the Cuckoo assignment is only a function of I is crucial – see Section 4.6.1 for a discussion on this property
that we call indiscrimination.
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Build, but read-only Lookup and no Extract. We augment the construction as follows. To construct
Lookup on a query q, we perform the standard Cuckoo hash Lookup that first scans the stash S, if q
is a dummy query or q is found in S, then read two random choices in the Cuckoo table; otherwise,
evaluate the PRF (that is used in Build) on q and then read the two choices of q in the table. If the
key is found (in S or the table), we also remove the element. To perform Extract, we obliviously
shuffle all unvisited elements using oblivious random permutation (Theorem 4.5), which runs in
O (α(λ) · n · log n) time, where α(λ) = O (log log λ). We denote the resulting scheme cuckooHT and
state its properties next.

Corollary 4.11 (cuckooHT). Let α(λ) = O (log log λ) be a fixed super-constant function, n be a
number such that log8 λ ≤ n ≤ poly(λ). Assume that one-way functions exist. Then, cuckooHT =
(Build, Lookup,Extract) is a computationally secure oblivious hashing scheme that supports n ele-
ments and has the following properties:

• Build takes as input I, outputs a Cuckoo table T and a stash S. It requires O (n · log n) time.

• Lookup queries the table T a constant number of times O(1) and perfoms a linear scan of the
stash S, which requires O (log λ) time.

• Extract requires O
(
n · log2 n

)
time.

Dummy elements. The above algorithms, including cuckooHT and cuckooAssign, naturally ex-
tend to input lists that consists of dummy elements. That is, some ki’s in the array K = (k1, . . . , kn)
(or correspondingly some (ui, vi)’s in the array I = ((u1, v1), . . . , (un, vn))) could be dummy ele-
ments. This follows directly from the construction of cuckooAssign (see Appendix A for details).

4.6.1 Packing and Indiscriminating

We will use the oblivious Cuckoo hashing cuckooHT in a black-box way, but we will also use
cuckooAssign to construct another instantiation of Cuckoo hashing. This instantiation is more
efficient whenever the input list I is short (e.g., poly-logarithmic in λ). To this end, we observe
that the time of cuckooAssign is dominated by a sequence of oblivious sorts. Thus, for small input
size n, we can use the packed oblivious sort (Section 4.1) to achieve better efficiency. Recall that the
word size is Θ(log λ) bits in the standard RAM model, the two choices of each element is O (log n)
bits, and the algorithm of Cuckoo assignment works only on the array I of two choices. Hence, a

word can pack B = O
(

log λ
logn

)
choices, and thus packed oblivious sort runs in O

(
n

log λ · log3 n
)

time.

For n = poly log λ, such cuckooAssign runs in O(n) time. However, this does not imply that we
have an oblivious Cuckoo hashing runs in O(n) time. Indeed, oblivious bin placement still takes
O (n · log n) time because packed oblivious sorting is not efficient for large balls.

Handling dummies: cuckooAssign. We extend the cuckooAssign algorithm to handle input ar-
rays that also include dummy elements. For readability, we extend the Cuckoo assignment such
that it handles O(n) dummy elements in the input, and, if A[i] is stash, it outputs the offset in
the stash. Let ncuckoo = 2 · ccuckoo · n+ log λ be the size of I such that I consists of n real elements
and ncuckoo − n dummy elements, the set [2 · ccuckoo · n] be the indices of the main table in Cuckoo
hash, the set Sstash = [2 · ccuckoo ·n+ 1, ncuckoo] be the indices of the stash. The following algorithm
cuckooAssign takes as input I and outputs the required assignment by cuckooAssign and oblivious
sort.
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1. For every i ∈ [ncuckoo], label the element I[i] with a tag t = i. Run oblivious sort on I such
that all real elements are in the front and any tie is resolved by putting the smaller tag in the
front. Let Ĩ be the result.

2. Run cuckooAssign (Theorem 4.10) on the first n elements of array Ĩ and let A be the result
(for all i ∈ [n], A[i] is either one choice of Ĩ[i] or the symbol stash).

3. In one linear scan on A, replace the i-th stash symbol with the value 2 ·ccuckoo ·n+i. Append
ncuckoo − n dummy elements, ⊥, to the end of A.

4. Run oblivious bin placement (Section 4.4) on the appended A such that for each i ∈ [ncuckoo],
A[i] is placed to the ti-th position of a newly created array Assign.

5. Output the array Assign.

Indiscrimination. A property of the cuckooAssign algorithm (that we will use in our proof of
security) is what we call “indiscriminate hashing” (we hinted to this property in Footnote 7 above).

Definition 4.12 (Indiscriminate hashing). For any i such that I[i] corresponds to a real ball, the
bin assignment of the i-th ball is a function fully determined by the index i and I.

This property is useful since it allows us to swap the randomness that corresponds to two
elements i and j that two real balls receive (while fixing all other randomness), thereby causing the
i-th element and the j-th element to swap their positions in the Cuckoo hash table. This property
holds directly by the fact that the output of cuckooAssign is a function of the input I in the above
abstraction.8

Proposition 4.13. Given the array I of length ncuckoo = 2 · ccuckoo · n+ log λ such that n = log8 λ,
the algorithm cuckooAssign obliviously computes a valid Cuckoo assignment Assign, except with
probability negl(λ), where the probability is taken over the randomness of the input array I. In
addition, the algorithm requires O(n) time and satisfies the indiscriminate hashing property.

Proof. The O(n) time follows by the fact that any element in the procedure is O(log n) in bits, which
implies that packed oblivious sorting (Theorem 4.2), cuckooAssign (Theorem 4.10, instantiated by
packed oblivious sort), and oblivious bin placement (Section 4.4, instantiated by packed oblivious

sort) all run in O
(

n
log λ · log3 n

)
time, which is bounded by O(n) since n = log8 λ. The security

follows directly by the security of the underlying building blocks and correctness follows since the
only point of failure is cuckooAssign which fails with probability at most negl(λ).

To show the indiscriminate hashing property, recall that the result of cuckooAssign is determined
by its input, the first n elements of Ĩ (Theorem 4.10). Moreover, Ĩ is determined by I, which implies
that Assign is also determined by I. It follows that for every i such that I[i] is real, Assign[i] is
fully determined by i and I.

4.7 Oblivious Dictionary

As opposed to the oblivious hash table from Section 4.5, which is a static data structure, an
oblivious dictionary is an extension of oblivious hashing, which allows to add only one element at
a time into the structure using an algorithm Insert, where Insert is called at most n times for a pre-
determined capacity n. Also, the dictionary supports Lookup and Extract procedures as described
in oblivious hashing. Note that there is no specific order in which Insert and Lookup requests have

8This property is not guaranteed to hold in previous works [8,20] since the tie resolution of oblivious sorting there
depended also on the data of input balls instead of only the two choices. See Appendix A for details.
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to be made and they could be mixed arbitrarily. Another difference between our hashing notion
and the dictionary notion is that the Extract operation outputs all elements, including “visited”
elements (while Extract of oblivious hashing outputs only “unvisited” elements). In summary, an
oblivious dictionary realizes Functionality 4.14 described below.

Functionality 4.14: FnDict – Dictionary Functionality

• FnDict.Init():

– Input: The procedure has no input.

– The procedure:
1. Allocate an empty set S and an empty table T .

– Output: The operation has no output.

• FnDict.Insert(k, v):

– Input: A key-value pair denoted (k, v).

– The procedure:
1. If |S| < n, add k to the set S and set T [k] = v.

– Output: The operation has no output.

• FnDict.Lookup(k):

– Input: The procedure receives as input a key k (that might be ⊥, i.e., dummy).

– The procedure:
1. Initialize v∗ := ⊥.

2. If q ∈ S, set v∗ := T [q].

– Output: The element v∗.

• FnDict.Extract():

– Input: The procedure has no input.

– The procedure:
1. Initialize an empty array L.

2. Iterate over S and for each k ∈ S, add (k, T [k]) to L.

3. Pad L to be of size n.

4. Randomly shuffle L and denote the output by L′.

– Output: The array L′.

Corollary 4.15 (Perfectly secure oblivious dictionary). For every capacity n, there exists a per-
fectly secure oblivious dictionary (Init, Insert, Lookup,Extract) such that the time of each operation
is O

(
n · log3 n

)
, O
(
log4 n

)
, O

(
log4 n

)
, O
(
n · log3 n

)
, respectively.

Proof. The realization of the oblivious dictionary is very similar to the näıveHT. Without security,
the functionalities can be realized in O(n) or O(log n) time using a standard, balanced binary search
tree data structure (e.g., red-black tree) and the standard linear-time Fisher-Yates shuffle [13]. To
achieve obliviousness, it suffices to compile the algorithms and the data structure using a perfect
ORAM [9], which incurs an O

(
log3 n

)
time overhead factor.
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5 Oblivious Tight Compaction

In this section we describe a procedure which solves the tight compaction problem: given an input
array containing n balls each of which marked with a 1-bit label that is either 0 or 1, output a
permutation of the input array such that all the 1 balls are moved to the front of the array. Our
main result is an optimal deterministic algorithm to achieve this.

Theorem 5.1 (Restatement of Theorems 1.3 and 4.3). There exists a deterministic oblivious tight
compaction algorithm that takes O(n) time to compact any input array of length n.

Note that our algorithm is not stable. Stability means that all the 0-balls in the output must
preserve their relative ordering in the input, and so do all the 1 balls. Indeed, it is known that any
oblivious tight compaction algorithm that makes o(n · log n) element movements cannot preserve
stability. Lin et al. [27] showed a Ω(n · log n) time lower bound for oblivious tight stable compaction
in the balls and bins model. As a result, all known upper bounds that overcome the O(n · log n)
barrier are not stable [27,29].

In addition to tight compaction, our approach extends to distribution: Given an array containing
n balls and an assignment array A of n bits such that each ball is marked with a 1-bit label that is
either 0 or 1 and the number of 0-balls equals to the number of 0-bits in A, output a permutation
of the input balls such that all the 0-balls are moved to the positions of 0-bits in A.

Roadmap. Our algorithm relies (in multiple parts) on the existence of expander graphs and is
presented by a sequence of modular steps. In Section 5.1, we give the required preliminaries on
expander graphs. Then, in Section 5.2 we reduce the problem of tight compaction to a weaker
abstraction called loose compaction. In Section 5.3, we present an efficient algorithm for loose
compaction. The algorithm of distribution is presented in Section 5.4.

5.1 Preliminaries on Expanders

Our construction relies on bipartite expander graphs where the entire edge set can be computed in
linear time in the number of nodes.

Theorem 5.2. For any constant ε ∈ (0, 1), there exists a family of bipartite graphs {Gε,n}n∈N and
a constant dε ∈ N, such that for every n ∈ N being a power of 2, Gε,n = (L,R,E) has |L| = |R| = n
vertices on each side, it is dε-regular, and for every sets S ⊆ L, T ⊆ R, it holds that∣∣∣∣e(S, T )− dε

n
· |S| · |T |

∣∣∣∣ ≤ ε · dε ·√|S| · |T |,
where e(S, T ) is the set of edges (s, t) ∈ E such that s ∈ S and t ∈ T .

Furthermore, there exists a (uniform) linear-time algorithm that on input 1n outputs the entire
edge set of Gε,n.

Such theorems are well known (c.f. Pippenger [34]) and we provide a proof below for complete-
ness. Note that the property that the entire edge set can be computed in linear time is crucial for
us (but to the best of our knowledge has not been used before).

Given G = (V,E) and a set of vertices U ⊂ V , we let Γ(U) be the set of all vertices in V which
are adjacent to a vertex in U (namely, Γ(U) = {v ∈ V | ∃u ∈ U, (u, v) ∈ E}).

To prove Theorem 5.2 we need several standard definitions and results.
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Definition 5.3 (The parameter λ(G) [3, Definition 21.2]). Given a d-regular graph G on n vertices,
we let A = A(G) be the matrix such that for every two vertices u and v of G, it holds that Au,v
is equal to the number of edges between u and v divided by d. (In other words, A is the adjacency
matrix of G multiplied by 1/d.) The parameter λ(A), denoted also as λ(G), is:

λ(A) = max
v∈1⊥,‖v‖2=1

‖Av‖2,

where 1⊥ = {v |
∑

vi = 0}.

Lemma 5.4 (Expander mixing lemma [3, Definition 21.11]). Let G = (V,E) be a d-regular n-vertex
graph. Then, for all sets S, T ⊆ V , it holds that∣∣∣∣e(S, T )− d

n
· |S| · |T |

∣∣∣∣ ≤ λ(G) · d ·
√
|S| · |T |,

Proof of Theorem 5.2. Recall the bipartite graph of Margulis [28]. Fix a positive M ∈ N. The left
and right vertex sets L = R = [M ]× [M ]. A left node (x, y) is connected to (x, y), (x, x+y), (x, x+
y + 1), (x + y, y), (x + y + 1, y) (all arithmetic is modulo M). We let GN be the resulting graph
that has N vertices on each side.

It is known (Margulis [28], Gabber and Galil [14], and Jimbo and Maruoka [23]) that for every
n which is a square (i.e., of the form n = i2 for some i ∈ N), Gn is 5-regular and λ(Gn) ∈ (0, 1) is
constant. Also, the neighbors of each vertex can be computed via O(1) elementary operations so the
entire edge set of Gn can be computed in linear time in n. To boost λ(Gn) to satisfy λ(Gn) < ε, we
consider the k-th power of Gn. This yields a 5k-regular graph Gkn on n vertices whose λ parameter
is λ(Gn)k. By choosing k to be a sufficiently large constant such that λ(Gn)k < ε, we obtain the
resulting (5k)-regular graph. The entire edge set of this graph can also be computed in O(1) time
since moving from the (i− 1)-th to the i-th power requires O(1) operations for each of the 5 edges
that replace an edge – so the total time per vertex is

∑k
i=1O(5i) = O(5k) = O(1).

This completes the required construction for sizes 22, 24, 26, . . . (i.e., for even powers of 2). We
can fill in the odd powers by padding. Given the graph Gkn, we can obtain the required graph for
2n vertices on each side by considering 4 copies of Gkn and connecting them, that is, performing
direct product of Gkn with the complete bipartite graph on two sets of two vertices. The resulting
graph Gk2n has 2n vertices on each side, it is (2 · 5k)-regular and λ(Gk2n) = λ(Gn) < ε. The theorem
now follows by applying the Expander Mixing Lemma (Lemma 5.4).

5.2 Reducing Tight Compaction to Loose Compaction

In this section, we reduce the problem of tight compaction in linear time to loose compaction in
linear time. Recall that in tight compaction, given an input array I where all balls are marked with
either 0 or 1, the goal is to reorder the balls such that all 0 balls will appear in the front of the
array, and all 1 balls will appear at the end.

A loose compaction algorithm is parametrized by a sufficiently large constant ` (which will be
chosen in Section 5.3), and the input is an array I of size n that has real and dummy balls. It is
guaranteed that the number of reals is at most n/`. The expected output of the procedure is an
array of size n/2 that contains all the real balls.

From SwapMisplaced to TightCompaction. The first observation for our tight compaction algo-
rithm is that some balls already reside in the correct place, and only some balls have to be moved.
In fact, the number of 0-balls that are “misplaced” exactly equals to the number of 1-balls that are

24



misplaced. Specifically, assume that there are c balls marked 0; all 1 balls in the subarray I[1, . . . , c]
are misplaced, and all 0 balls in I[c+ 1, . . . , n] are also misplaced. Notice that the number of mis-
placed 0 balls equals to the number of misplaced 1 balls. Therefore, we have reduced the problem
of tight compaction to the problem of swapping misplaced 0 balls with the misplaced 1 balls. This
reduction is described as Algorithm 5.5.

Algorithm 5.5: TightCompaction(I):

• Input: an array I of n balls, each ball is labeled as 0 or 1.

• The algorithm:

1. Count the number of 0-balls in I, let c be the number.

2. For i = 1, 2, . . . , n, do the following.
(a) If I[i] is a 1-ball and i ≤ c, mark I[i] as blue.

(b) If I[i] is a 0-ball and i > c, mark I[i] as red.

(c) Otherwise, mark I[i] as ⊥.

3. Run SwapMisplaced(I), let O be the result.

• Output: The array O.

From LooseSwapMisplaced and LooseCompaction to SwapMisplaced. In SwapMisplaced, we are
given n balls, each is labeled as either red, blue or ⊥. It is guaranteed that the number of blue
balls is equal to the number of red balls. Our goal is to obliviously swap the locations of the blue
balls with the red balls. To implement SwapMisplaced we use two subroutines, LooseCompaction`
and LooseSwapMisplaced`, parametrized with a number ` > 2 that have the following input-output
guarantees:

• The algorithm LooseCompaction` receives as input an array I consisting of n balls, where at
most 1/` fraction are real and the rest are dummies. The output is an array of size n/2 that
contains all the real balls. We implement this procedure in Section 5.3.

• The algorithm LooseSwapMisplaced` receives the same input as SwapMisplaced: n balls, each
is labeled as either red, blue or ⊥, and the number of blues is equal to the number of reds. This
procedure swaps the locations of all the red-blue balls except 1/` fraction. All the swapped
balls are labeled with ⊥. We implement this procedure below in this subsection.

Using these two procedures, SwapMisplaced works by first running LooseSwapMisplaced` which
makes all the necessary swaps except for at most 1/` fraction. We then perform LooseCompaction`
on the resulting array, moving all the remaining red and blue balls to the first half of the ar-
ray. Then, we continue recursively and perform SwapMisplaced on the first half of the array. To
be able to facilitate the recursion, we record the original placement of the balls and their move-
ments, and revert them in the end. Given a linear time algorithm for LooseCompaction` and
LooseSwapMisplaced` (that we will achieve below), the recursive formula for the running time of
the algorithm is T (n) = T (n/2) +O(n), and therefore is linear. The description of SwapMisplaced
is given in Algorithm 5.7 and we have the following claim.

Claim 5.6. Let I be any input where the number of balls marked red equals to the number of balls
marked blue, and let O = SwapMisplaced(I). Then, O is a permutation of the balls in I, where each
red ball in I swaps its position with one blue ball in I. Moreover, the runtime of SwapMisplaced(I)
is linear in |I|.
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Algorithm 5.7: SwapMisplaced(I)

• Input: an array I of n balls, each ball is labeled as red, blue, or ⊥, where the number of balls
marked red equals the number of balls marked blue.

• The algorithm:

1. Run LooseSwapMisplaced`(I), let I′ be the result.

2. Replace all balls marked as ⊥ in I′ with dummies. Run LooseCompaction`(I
′) while

relating to all balls marked with blue or red as real. Let Ireal be the result of the
procedure, where |Ireal| = n/2, and record all moves in an array Aux.
At the end of this step, we are guaranteed that all blue and red balls appear in Ireal.

3. Run SwapMisplaced recursively on Ireal and let I′real be the result. In I′real, every red ball
is swapped with some blue ball and vise versa.

4. Reverse route of all real balls from I′real to I′ using Aux, let O be the resulting array
after such routing.

• Output: The array O.

Implementing LooseSwapMisplaced`. The access pattern of the algorithm is determined by a
(deterministically generated) expander graph Gε,n = (L,R,E), where the allowed swaps are vertices
of distance 2. That is, we interpret L = R = [n]; if two vertices i, k ∈ R have some common neighbor
j ∈ L, and I[i], I[k] are both marked with different colors, then we swap them and change their
mark to ⊥. Choosing the expansion parameters of the graph appropriately guarantees that after
performing these swaps, there are at most n/` misplaced balls. As the graph is d-regular, there are
at most

(
d
2

)
n neighbors of distance 2, and the running time is O(n) since d = O(1).

Algorithm 5.8: LooseSwapMisplaced`(I)

• Input: An array I of n balls, each ball is labeled as red, blue or ⊥. The number of balls
marked as red equals to the number of balls marked blue.

• Parameters: A parameter ` ∈ N.

• The algorithm:

1. Generate a bipartite graph Gε,n = (L,R,E) with vertex set L = R = [n] such that
ε ≤ 1

2
√
`

(see Theorem 5.2).

2. For j = 1, . . . , n, do:
(a) For all edges (j, i) ∈ E and (j, k) ∈ E do the following: If (I[i], I[k]) are marked

(blue, red) or (red, blue), then swap between I[i] and I[k]. Mark both as⊥. Otherwise,
perform dummy swap.

• Output: The array I

Claim 5.9. Let I be an input array in which the number of balls marked blue equals to the number
of balls marked red. Denote as O the output array. Then, O is a permutation of all n balls in I
such that the following holds for every i = 1, . . . , n:

1. If I[i] is marked ⊥, then O[i] = I[i].
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2. If I[i] is marked red (resp. blue), then O[i] is either
(a) I[i] and marked red (resp. blue) or; (b) I[j] element marked blue (resp. red) for some j.

In O, the number of balls marked red equals to the number of balls marked blue, and there are at
most 1/` fraction of marked balls.

Proof. The algorithm only performs swaps between red and blue balls and therefore O is a permu-
tation of I, the three conditions hold, and the number of balls marked red equals to the number
of balls marked blue. It remain to show that the number of red/blue balls in O is at most n/`.
In the end of the execution of the algorithm, let Rred be the set of all vertices in R that are
marked red, and let Rblue be the set of vertices in R that are marked blue. Then, it must be that
Γ(Rred)∩Γ(Rblue) = ∅, as otherwise the algorithm would have swapped an element in Rred with an
element in Rblue. Since the number of balls in Rred and in Rblue is equal, it suffices to show that
for every subset R′ ⊂ R of size greater than n/(2`), it holds that |Γ(R′)| > n/2. This implies that
|Rred| = |Rblue| ≤ n/(2`), as otherwise Γ(Rred) ∩ Γ(Rblue) 6= ∅. The fact that every set of vertices
is expanding follows generically by the equivalence between spectral expansion (the definition of
expanders we use) and vertex expansion. We give a direct proof below.

Let R′ ⊂ R with |R′| > n/2` and let L′ = Γ(R′) be its set of neighbors. Since the graph is
dε-regular for some dε ∈ O(1), it holds that e(L′, R′) = dε · |R′|. Thus, by the guarantee on the
expander graph (Theorem 5.2) and by ε ≤ 1

2
√
`
, it holds that

dε ·
∣∣R′∣∣ = e(L′, R′) ≤ dε |L′| |R′|

n
+

dε

2
√
`
·
√
|L′| |R′|.

Dividing by dε · |R′| and rearranging, we get

1− |L
′|
n
≤

√
|L′|

4` · |R′|
.

Since |R′| > n/(2`), we have

1− |L
′|
n

<

√
|L′|
2n

.

Solving the above by squaring and rearranging,
(

1− |L
′|
n

)2
− |L

′|
2n < 0, we have |L′| > n/2.

5.3 Loose Compaction

The algorithm LooseCompaction` receives as input an array I consisting of n balls, where at most n/`
are real and the rest are dummies. The goal is to return an array of size n/2 where all the real
balls reside in the returned array. The intuition of using bipartite expander graph and matching
is known in [9], but we present it for completeness and then show our novel improvements. The
main idea of the procedure is to first distribute the real balls to many bins, while ensuring that no
bin consists of too many real balls. Particularly, we will show, for some B = O(1), a method to
distribute all real balls to 2n/B bins such that each bin will have at most B/4 real balls (and the
rest are dummies). At this point, as all bins have small load, we can merge 4 bins together easily
and compact the array by “folding” it.
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Compacting the array after balanced distribution. In more details, given an input array I,
we first interpret it as n/B bins of size B each, simply by considering the array I[(i−1)·B+1, . . . , iB]
as the i-th bin, for i = 1, . . . , n/B. If a bin contains more than B/4 real balls, then we say that
the bin is “dense”, and otherwise we call the bin “sparse”. Our goal is to distribute all dense bins
in I. Towards this end, we allocate another set of n/B bins of size B each, denoted as an array
I′ of dummy balls. As we will show below, there is a way to compute which target bins in I′ we
should distribute each one of the dense bins in I, such that, the distribution would be balanced.
In particular, the balanced distribution guarantees that no bin in I′ receives more than B/4 real
balls.

After this balanced distribution, we can compact the arrays I, I′ into an array of size n/2 by
“folding”: Interpret I = (I0, I1), I′ = (I′0, I

′
1) where |I0| = |I1| = |I′0| = |I′1| and each array consists of

n/(2B) bins of size B; Then, for every i = 1, . . . , n/(2B), we merge all real balls in (I0,i, I1,i, I
′
0,i, I

′
1,i)

into a bin of size B. As no bin consists of more than B/4 real balls, there is enough “room” in I0

to perform this folding. We then just output the concatenation of all these n/(2B) bins, i.e., we
return an array of size n/2.

Balanced distribution of the dense bins. The distribution of dense bins in I into I′ relies again
on expander graphs. Fixing a proper constant ε, we consider a dε-regular graph Gε,n/B = (L,R,E)
with |L| = |R| = n/B, where L corresponds to I, R corresponds to I′ and we let B = dε/2. Let
S ⊂ L be the set of dense bins in L. We then look for a (B,B/4)-matching for S: We look for a
set of edges M ⊆ E such that, on one hand, from every bin in S there are at least B out edges,
and on the other hand, for every bin in R there are at most B/4 incoming edges. Given such a
matching M , every dense bin in I can be distributed to I′ while guaranteeing that no bin in I′ will
have load greater than B/4, while the access pattern corresponds to the edges of the graph, which
is public, linear, and known to the adversary.

Computing the matching. So far we showed how one can perform loose compaction once the
(B,B/4)-matching is given. However, we still did not discuss whether such a matching exists, and
if so, how to find it – obliviously. To this end, we now turn to show how to find the matching
obliviously (which implies the existence directly).

We first describe a non-oblivious algorithm for finding the matching by Pippenger [34]. For
the following, we let m = |L| = |R|.9 The algorithm proceeds in rounds, where initially all dense
vertices in L are “unsatisfied”, and in each round:

1. Each unsatisfied dense vertex u ∈ L: Send a request to each one of the neighbors of u.

2. Each vertex v ∈ R: If v receives more than B/4 requests in this round, it replies with
“negative” to all the requests it received in this round. Otherwise, it replies “positive” to all
requests it received.

3. Each unsatisfied dense vertex u ∈ L: If u received more than B positive replies then
take these edges to the matching and change the status to “satisfied”.

The output is the edges in the matching. In each round, there are O(m) transmitted messages,
where each message is in fact just a single bit. Using properties of the expander graphs, we will
show that in each round the number of unsatisfied vertices decreases by a factor of 2. Thus, the

9Note that we are working here with a parameter m and not n, as m is the number of vertices in the graph G –
e.g., the number of bins and not the number of balls.
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algorithm proceeds in O(logm) rounds, and the total runtime of the algorithm is O(m).10 However,
the algorithm is non-oblivious.

Making it oblivious: Slow matching. One way to make this algorithm oblivious is by sending
from each vertex in L to all vertices in R in each round, that is, once a vertex becomes satisfied it
still sends fictitious messages in the proceeding rounds. In particular, in each round the algorithm
hides whether a vertex v ∈ L is in the set of satisfied vertices (v /∈ L′) or is still unsatisfied (v ∈ L′),
and in fact, we run each iteration on the entire graph. However, this results in algorithm that takes
overall O(m · logm) time. The above algorithm is previously known in [9], and we present our new
contribution in the following.

Oblivious fast matching for small m. A new important observation is that when m is “small”,
i.e., m ≤ w

logw where w is the word size, then all the information required for the algorithm can be
packed into O(1) words. In particular, when accessing information related to one node u ∈ L, we
also access at the same time all information regarding to all other nodes in L. This enables us to
hide which node is being visited, i.e., whether a node is in L′ or not, and therefore the algorithm
can now just visit the nodes in L′ and does not have to make fictitious accesses on the entire graph.
As a result, when m is small (i.e., of a logarithmic size) we are able to compute the matching in
O(m) word-level operations.

Our word-level arithmetics support simply additions, multiplication, and bitwise operations
(such as AND, OR, NOT, shift). As an example, when a word a encodes data on m = w/ logw
nodes v1, . . . , vm, accessing the data with respect to the ith node involves shifts and extracting the
data using AND operations, and costs O(1). Note that we cannot access all vertices simultaneously
(this will result in O(m) operations), but the adversary cannot infer which node among the set
{v1, . . . , vm} we are accessing.

Another important observation is that matching algorithm works only on “metadata” (i.e., it
suffices just to consider the number of bins and which bins are dense for computing the matching)
and it does not involve moving balls around.

Putting it all together. So far, we showed how one can perform the loose compaction given the
matching. However, computing the matching is possible in linear time only for very small instances
of the problem (i.e., when m is roughly the size of the word size, w), and for large instances, our
best algorithm computes the matching in O(m · logm) time. As we next show, these two ingredients
enable us to achieve loose compaction for every input problem n:

• Given the array I of size n and word size w = Ω(log n), we first break it into blocks of
size p2 = (w/ logw)2, and our goal is to move all “dense” blocks to the beginning of the
array. We find the matching obliviously using the “slow” matching algorithm, that takes

O(m · logm) = O
(
n
p2
· log n

p2

)
time, which is linear. Then, compaction given the matching

(by folding) takes O(n). By running this compaction twice we get an output of size n/4,
consisting of all dense blocks of size p2.

• At this point, we want to run compaction on each one of the sparse blocks in I (where again,
blocks are of size p2) independently, and then take only the result of the compaction of each
block for the remaining part of the output array.

10 The set of unsatisfied vertices (in L) and its neighboring set (in R) are both stored in double-linked lists to visit
and remove efficiently.
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In order to run the compaction on each block of size p2, we perform the same trick again. We
break each instance into p sub-blocks of a smaller size p, and mark each sub-block as dense
or sparse. As the number of sub-blocks we have in each instance is p = w/ logw, we can find
the matching using the fast matching algorithm. Note that as previously, we did not handle
the real balls in the sparse sub-blocks.

• Finally, we have to solve compaction of all sparse sub-blocks of the previous step. Each sparse
sub-block is of size p = w/ logw, and thus can be solved in linear time using the fast matching
algorithm.

The final output consists of the following: (i) The output of compaction of the dense block in I
(to total size n/4), and (ii) a compaction of each one of the sparse blocks in I (sums up together
to n/4). Note that each one of these sparse blocks (of size p2), by itself, is divided to p sub-blocks
(each of size p) and its compaction consists of (i) a compaction of its dense sub-blocks; and (ii) a
compaction of each one of its sparse sub-blocks.

Roadmap. We describe the algorithms in the same ordering as the above overview. In Sec-
tion 5.3.1 we describe the algorithm CompactionFromMatching – compacting an array given the
matching via folding. In Section 5.3.2 we show how to compute the matching, both for the case
where m is “big” (and therefore computing the matching is slow SlowMatch) and when m is “small”
(FastMatch). In Section 5.3.3, we present the loose compaction algorithm.

5.3.1 Compaction from Matching

Here we show that with the appropriate notion of matching (given below), one can “fold” an
array A, with density of real balls being small enough, such that all the real balls reside in the
output array of size n/2.

Definition 5.10 ((B,B/4)-Matching). Let G = (L,R,E) be a bipartite graph, and let S ⊆ L and
M ⊆ E. Given any vertex u ∈ L ∪ R, define ΓM (u) := {v ∈ L ∪ R | (u, v) ∈ M} as the subset of
neighboring vertices in M . We say that M is a (B,B/4)-matching for S, iff (i) for every u ∈ S,
|ΓM (u)| ≥ B, and; (ii) for every v ∈ R, |ΓM (v)| ≤ B/4.

In the following Algorithm 5.11, we show how to compact (via folding) an array given a
(B,B/4)-matching for the set of all dense bins S, where a bin is said to be dense if it contains
more than B/4 real balls. We assume that the matching itself is given to us via an algorithm
ComputeMatchingw,G(S). The implementation of Algorithm ComputeMatching is given later in
Section 5.3.2. Note that for any problem size m < 2B, it suffices to perform oblivious sorting (e.g.,
Theorem 4.1) instead of the following algorithm as B is a constant.

Algorithm 5.11: CompactionFromMatchingw,µ(A)

• Public parameters: word size w and µ - the size of each ball (in words).

• Input: An array A of m balls, in which at most m/128 are real.

• The Procedure:

1. Let ε = 1/64 and let dε be the constant regularity of the graph Gε,? guaranteed by The-
orem 5.2, and set B = dε/2.

2. Interpret the array A as m/B bins, where each bin consists of B balls. Let S be the set
of indexes i such that A[i] consists of more than B/4 real balls (the “dense” bins in A).
Let D be an array of m/B empty bins, where the capacity of a bin is B balls.
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3. Let Gε,m/B = (L,R,E) be the dε-regular bipartite graph guaranteed by Theorem 5.2,
where |L| = |R| = m/B.

4. Invoke M ← ComputeMatchingw,Gε,m/B (S). M is a (B,B/4)-matching for S.

5. Distribute: For all i ∈ |E|, get the edge (u, v) = E[i] (where u ∈ L, v ∈ R).
(a) If M [i] = 1, move a ball from bin A[u] to bin D[v].

(b) If M [i] = 0, access A[u] and D[v] but move nothing.

6. Fold: Let O be an array of size m/(2B) empty bins, each of capacity of B balls. For
i ∈ [m/(2B)], move all real balls in (A[i], A[m/(2B) + i]), (D[i], D[m/2B + i]) to bin
O[i], pad O[i] with dummy balls if there are less than B real balls.

• Output: The array O.

Given that |E| = O(m) and B is a constant, the running time is linear in m. Also, there are
at most m

B ·
1
32 dense bins as the total number of real balls is at most m

128 , thus |S| ≤ m
32B , then it

implies that M is a (B,B/4)-matching by ComputeMatching as we will show later in Claim 5.18.
Hence the correctness holds. The following claim is immediate.

Claim 5.12. Let A be an array of m balls, where each ball is of size µ words, and where at most
m/128 balls are marked real. Then, CompactionFromMatchingw,µ(A) is an array of m/2 balls that
contains all real balls in A. The total running time of the algorithm is O(µ ·m) plus the running
time of ComputeMatchingw,Gε,m/B .

5.3.2 Computing the Matching

Our next goal is to compute the matching. We have two cases to consider, depending on the size
of the input, where each algorithm results in different running time.

Algorithm 5.13: ComputeMatchingw,Gε,m/B (S)

• Public parameters: Word size w, ε = 1
64 , dε, B, m and a graph Gε,m/B = (L,R,E).

• Input: a set S ⊂ L such that |S| ≤ m
32B .

• Procedure:

1. If m
B > w

logw , then let M ← SlowMatchw,Gε,m/B (S).

2. If m
B ≤

w
logw , then let M ← FastMatchw,Gε,m/B (S).

• Output: M .

Case I: SlowMatch
(
m
B
> w

logw

)
. We transform the non-oblivious algorithm described in the

overview, that runs in time O(m), into an oblivious algorithm, by performing fake accesses.
This results in an algorithm that requires O(m · logm) time [9]. The bolded instructions in
SlowMatchw,Gε,m/B (S) are the ones where we pay the extra logm factor in efficiency; these accesses
will be avoided in Case II (FastMatch).

Algorithm 5.14: SlowMatchw,Gε,m/B (S)

• Public parameters: Word size w, ε = 1
64 , dε, B, m and a graph Gε,m/B = (L,R,E).
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• Input: a set S ⊂ L such that |S| ≤ m
32B and m

B > w
logw .

• The procedure:

1. Let M be a bit-array of length m/B that is filled by 0.

2. Let L′ = S be the “dense” vertices in L, and let R′ = Γ(L′): initialize R′ as an array of
m/B 0s; for every edge (u, v) ∈ E, if L′[u] = 1 then assign R′[v] = 1. Note that each
L′, R′ is stored as an array of m/B indicators.

3. Repeat the following for log(m/B) iterations.
(a) For each vertex u ∈ L, if u ∈ L′, send one request to every neighboring vertex

v ∈ Γ(u). (If u 6∈ L′, perform fake accesses)

(b) For each vertex v ∈ R, if v ∈ R′, do the following (perform fake accesses if
v ∈ R \R′):

i. Let the number of received requests be c.

ii. If c ≤ B/4, then reply positive to every request. Otherwise, reply negative to
every request.

(c) For each vertex u ∈ L, if v ∈ L′, do the following (perform fake accesses to
u ∈ L \ L′).

i. Let the number of received positives be c.

ii. If c ≥ B, then add to M every edge that replied positive, and remove vertex u
from L′. (Otherwise, perform fake accesses to M).

(d) Recompute R′ = Γ(L′) from the updated L′.

• Output: The array M .

We prove the following claim, then it implies that |L′| = 0 after log(m/B) iterations, and then
SlowMatch outputs a correct (B,B/4)-matching for S in time O(m · logm).

Claim 5.15. Let S ⊂ L such that |S| ≤ m/32B, and let ε = 1
64 . In each iteration of Algorithm 5.14,

the number of unsatisfied vertices |L′| decreases by a factor of 2.

Proof. Let L′ be the set of unsatisfied vertices at beginning of any given round, let R′neg ⊆ R′ ⊆
Γ(L′) be the set of neighbors such that reply negative, and let m′ = m/B. Then, e(L′, R′neg) >
|R′neg| · B/4. From the expansion property in Theorem 5.2, we obtain |R′neg| · B/4 < e(L′, R′neg) ≤
dε |L′|

∣∣R′neg

∣∣ /m′+εdε√|L′| ∣∣R′neg

∣∣; dividing by
∣∣R′neg

∣∣ dε and rearranging this becomes ε
√
|L′| /

∣∣R′neg

∣∣ >
B/(4dε) − |L′| /m′. We chose B as the largest power of 2 that is no larger than dε/2, and so
B/dε > 1/4. Since |L′| /m′ ≤ 1/32 (recall that L′ is initially S, and the number of dense vertices,
|S|, is at most m/(32B)), and since ε = 1

64 , we have that:√
|L′| /

∣∣R′neg

∣∣ > 1

ε
· B

4dε
− 1

ε
· |L

′|
m′

>
1

ε
·
(

1

16
− 1

32

)
,

then
√
|L′| /

∣∣R′neg

∣∣ ≥ 64/16− 64/32, i.e.,
∣∣R′neg

∣∣ ≤ |L′| /4.

We conclude that the number of vertices in R′ that reply negatively is at most |L′| /4. As L′

has dε |L′| outgoing edges, and R′neg has at most dε
∣∣R′neg

∣∣ ≤ dε |L′| /4 incoming edges, at most one
quarter of edges in L′ lead to R′neg and yield a negative reply. Since dε = B/2 and every vertex
in L′ sends dε requests and all negative are from R′neg, there are at most dε |L′| /4 negative replies,
and therefore at most |L′| /2 nodes in L′ get more than B = dε/2 negatives. We conclude that at
least |L′| /2 nodes become satisfied.
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Claim 5.16. Let S ⊂ L such that |S| ≤ m/32B, and let ε = 1
64 . Then, SlowMatchw,Gε,m/B takes

as input S, runs obliviously in time O(m · logm), and outputs a (B,B/4)-matching for S.

Proof. The runtime follows by there are log m
B iterations and each iteration takes O(m) time. The

obliviousness follows as the access pattern is a deterministic function of the graph Gε,m/B, which
depends only on the size m (but not the input S). The correctness is argued as follows. By
Step 3(c)ii, every removal of vertex u from L′ has at least B edges in the output M . Also, the
edge added to M must have a an vertex in R′ such that has at most B/4 requests at Step 3(b)ii.
Observing that the set of received requests at Step 3(b)ii is non-increasing over iterations, it follows
that for every v ∈ R, ΓM (v) ≤ B/4. By Claim 5.15, after log(m/B) iterations, we have L′ = ∅,
and hence every u ∈ S have at least B edges in M .

Case II: FastMatch
(
m
B
≤ w

logw

)
. Here, to improve the time, we rely on the fact that for such

instances of the problem, the number of words needed to encode the whole graph is constant.
Hence, the obliviousness is obtained “for free” by accessing the whole graph data. The algorithm is
fully described as Algorithm 5.17. Note that whenever we write, e.g., “access Reply[v]”, we actually
access the whole array Reply as it is O(1) words, and do not reveal which vertex we actually access.
Thus, in each iteration we make O(|L′|+ |R′|) time, and since the size of |L′| is reduced by a factor
of 2 in each iteration (and since |R′| ≤ dε|L′|), we perform O(m) time in total. Note that we store
the set L′ as a set (i.e., a list) and not as a bit vector, as we cannot afford the O(m) time required
to run over all balls of L and then ask whether the element is in L′.

Algorithm 5.17: FastMatchw,Gε,m/B (S)

• Public parameters: Word size w, ε = 1
64 , dε, B, m and a graph Gε,m/B = (L,R,E).

• Input: a set S ⊂ L such that |S| ≤ m
32B and m

B ≤
w

logw .

• The procedure:

1. Represent Gε,m/B and initialize internal variables as follows:
(a) Represent L = R = {0, . . . ,m/B− 1}, where each identifier requires logw bits. The

set of edges E is represented as dε arrays E1, . . . , Edε . For a given node u ∈ L, let
v1, . . . , vdε ∈ R be its set of neighbors. We write E1[u] = v1, . . . , Edε = vdε . Each
array Ei can be stored in a single word.

(b) Initialize an array of counters ctr = (ctr[0], . . . , ctr[m/B − 1]), i.e., a counter for
every v ∈ R. Initialize an array of lists Req = (Req[0], . . . ,Req[m/B − 1]), each
item Req[v] for v ∈ R is a list of at most B/4 identifiers of nodes in L that sent
a request. Initialize an array of lists Reply = (Reply[0], . . . ,Reply[m/B − 1]), where
each item Reply[v] for v ∈ L is a list of at most dε identifiers of nodes in R that
replied positively to a request. Observe that ctr,Req and Reply requires O(1) words.

(c) Given the set S of marked nodes in L, we put all identifiers in a single word L′. The
set R′ is also a set of identifiers. Initially, R′ is the set of all neighbors of L′. The
set M is an array of indicators.

2. Repeat the following for i = log(m/B), . . . , 1 iterations.
(a) For each vertex u ∈ L′: (in the i-th iteration, make exactly 2i accesses; i.e., perform

fake accesses to L′ if necessary)
i. Let (v1, . . . , vdε) = (E1[u], . . . , Edε [u]). Append u to the lists Req[v1], . . . ,Req[vdε ].

ii. Increment the counters ctr[v1], . . . , ctr[vdε ].

(b) For each v ∈ R′, do the following: (in the i-th iteration, make exactly 2i ·dε accesses;
i.e., make fake accesses to R′ if necessary)
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i. Access ctr[v]. If ctr[v] ≤ B/4, then iterate over all identifiers Req[v] and for each
node u ∈ Req[v] add v to Reply[u]. This corresponds to answering positive to
requests.

(c) For each vertex u ∈ L′, do the following (perform total 2i total accesses).
i. Let the number of received positive be c.

ii. If c ≥ B, then add to M every edge that replied positive, and remove vertex u
from L′. Otherwise, do nothing.

(d) Recompute R′ = Γ(L′) from the updated L′, and initialize again the counters.

• Output: The array M .

Claim 5.18. Given the public dε-regular bipartite graph Gε,m/B = (L,R,E) such that B = dε/2,
let S ⊆ L be a set such that |S| ≤ m

32B . Then, ComputeMatchingw,Gε,m/B (S) outputs a (B,B/4)-

matching for S, where the running time is O(m) if m
B ≤

w
logw , and O(m · logm) otherwise.

Proof. The correctness is followed by Claim 5.16 and the time is followed by the time of FastMatch
and SlowMatch in the two cases.

5.3.3 Putting It All Together

By combining Claim 5.18 and Claim 5.12 we get the following corollary.

Corollary 5.19. The total running time of CompactionFromMatchingw,µ is O(µ ·m) if m ≤ w
logw ,

or O(µ ·m+m · logm) otherwise.

The next algorithm finally shows how to compute LooseCompaction`(I) for any input array I in
which there are at most |I|/` elements that are marked.

Algorithm 5.20: LooseCompaction`(I)

• Public parameters: problem size n, word size w, maximum acceptable sparsity ` (= 238).

• Input: An array I with n balls, in which at most n/` are real and the rest are dummy.

• The procedure: Let p =
(

w
logw

)
. We have three cases:

Case I: Compaction for big arrays, i.e., n ≥ p2 :

1. Let µ = p2. Represent I as another array A that consists of n/µ blocks: for each
i ∈ [n/µ], let A[i] be the block consists of all balls I[(i− 1) · µ+ 1], . . . , I[i · µ].

2. For each i ∈ [n/µ], label A[i] as dense if A[i] consists of more than µ/
√
` real balls.

3. Run O1 = CompactionFromMatchingw,µ(A). O1 is of size n/2, and consists of all dense
blocks in A.

4. Repeat the above process, this time on the array O1: interpret it as n/2µ blocks, mark
dense blocks as before, and let O′1 = CompactionFromMatchingw,µ(O1). O′1 is of size
n/4.

5. Replace all dense blocks in A with dummy blocks. For every i ∈ [n/µ], run O2,i ←
LooseCompaction√`/2(A[i]), and then run again O′2,i ← LooseCompaction√`/2(O2,i). Note

that |A[i]| = µ and
∣∣∣O′2,i∣∣∣ = µ/4.

6. Output: O′1‖O′2,1‖ . . . ‖O′2,n/µ (of total size n/2, as |O′1| = n/4 and
∑n/µ

i=1

∣∣∣O′2,i∣∣∣ = n/4).

34



Case II: Compaction for moderate arrays, i.e., p ≤ n < p2 :

Similar to Case I, where this time we work with µ = p instead of p2.

Case III: Compaction for small arrays, i.e., n < p :

1. Run O = CompactionFromMatchingw,1(A).

2. Output: O.

Theorem 5.21. Let ` = 238. For any input array I with |I| = n and with at most n/` real balls in
I, the procedure LooseCompaction`(I) outputs an array of size n/2 consisting of all real balls in I,
and runs in time O(n).

Proof. To show the correctness, we check that in all cases, both CompactionFromMatching and
LooseCompaction` are called with an input array I such that at most |I|/128 balls are real (henceforth
said as the 128-rule). We proceed by checking the 128-rule for each case in LooseCompaction`. Note
that 238 = (2 · (2 · 128)2)2.

• Case I: It is always called with ` = 238. At Step 2, note that the number of dense
blocks is at most n

µ ·
1√
`

as the total number of real balls is at most n
` . Hence, the two

CompactionFromMatching takes as input at most (nµ)/
√
` and then ( n2µ)/(

√
`/2) dense blocks,

and the 128-rule holds as
√
`/2 = (2 · 128)2 > 128. The two LooseCompaction√`/2 takes at

most µ/
√
` and (µ2 )/(

√
`/2) real balls as each block is not dense, and then the 128-rule holds

for
√
` and

√
`/2 similarly.

• Case II: It can be either called directly with ` = 238, or called indirectly from Case I with
` = (2 · 128)2. Hence, the number of real is at most n/(2 · 128)2. By the same calculation as
Case I, the two CompactionFromMatching and two LooseCompaction√`/2 take an input array

such that the sparsity is at least
√

(2 · 128)2/2 = 128, and the 128-rule holds.

• Case III: Similar to Case II, it can be called directly, indirectly from Case I, or indirectly
from Case II with ` = 238, (2 · 128)2, or 128 respectively. Hence, the given sparsity ` is at
least 128, and hence the 128-rule holds directly for CompactionFromMatching.

To show the time complexity, observe that, except for CompactionFromMatching, all other pro-
cedures run in time O(n). Recall that in Corollary 5.19, running CompactionFromMatching on m
items of size µ takes O(µ ·m) time if m ≤ w

logw , or O(µ ·m + m · logm) otherwise. Observe that
in all three cases, it holds that the O(µ ·m) term from CompactionFromMatching is O(n). Hence,
by the depth of the recursive call to LooseCompaction is at most 2, it suffices to show that in every
case, every CompactionFromMatching run in O(n) time. We proceed from Case III back to I.

• Case III: Note that n < w
logw . It implies the subsequent CompactionFromMatching takes an

input size m = n < w
logw runs in linear time by Corollary 5.19.

• Case II: Given that n <
(

w
logw

)2
, the subsequent CompactionFromMatching takes input size

m = n
p <

w
logw . Hence, CompactionFromMatching runs in linear time as in Case III.

• Case I: For arbitrary n, the subsequent invocation of CompactionFromMatching, in Steps 3
and 4, takes an input size m = n/p2 and then m/2. By Corollary 5.19, the procedure runs in
time O(µ ·m+m · logm). (If it holds that m ≤ w

logw , then it is already linear.) Fortunately,
as Case I is the top-level problem in the recursion, we have that w = Ω(log n) by the word
size in the RAM model, which implies that m = n/p2 = O(n/ log n) as p = w

logw . Thus, the
total time is bounded by O(m · logm) = O(n).
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5.4 Oblivious Distribution

In oblivious distribution (mentioned in Section 4.2), the input is an array I of n balls and a set
A ⊆ [n] such that each ball in I is labeled as 0 or 1 and the number of 0-balls equals to |A|. The
output is a permutation of I such that for each i ∈ [n], the i-th location is a 0-ball if and only if
i ∈ A. By marking red, blue, or ⊥ correspondingly, SwapMisplaced achieves oblivious distribution
as elaborated in Algorithm 5.22, where the set A is represented as an array of n indicators such
that i ∈ A iff A[i] = 0.

Algorithm 5.22: Distribution(I, A)

• Input: an array I of n balls and an array A of n bits, where each ball is labeled as 0 or 1,
and the number of 0-balls in I equals to the number of 0s in A.

• The algorithm:

1. For each i ∈ [n], mark the ball I[i] as follows:
(a) If I[i] is tagged with 1 and A[i] = 0, mark I[i] as red.

(b) If I[i] is tagged with 0 and A[i] = 1, mark I[i] as blue.

(c) Otherwise (I[i] is tagged with A[i]), mark I[i] as ⊥.

2. Run SwapMisplaced(I) and let O be the result.

• Output: The array O.

The correctness, security, and time complexity of Distribution follow directly from those of
SwapMisplaced, and this gives the following theorem.

Theorem 5.23 (Oblivious distribution, restatement of Theorem 4.4). There exists a deterministic
oblivious distribution algorithm that takes O(n) time on input arrays of size n.

6 Interspersing Randomly Shuffled Arrays

6.1 Interspersing Two Arrays

We first describe a building block called Intersperse that allows us to randomly merge two randomly
shuffled arrays. Informally, we would like to realize the following abstraction:

• Input: An array I := I0‖I1 of size n and two numbers n0 and n1 such that |I0| = n0 and
|I1| = n1 and n = n0 + n1.

• Output: An array B of size n that contains all elements of I0 and I1. Each position in B
will hold an element from either I0 or I1, chosen uniformly at random and the choices are
concealed from the adversary.

Looking ahead, we will invoke the procedure Intersperse with arrays I0 and I1 that are al-
ready randomly and independently shuffled (each with a hidden permutation). So, when we apply
Intersperse on such arrays the output array B is guaranteed to be a random permutation of the
array I := I0‖I1 in the eyes of an adversary.
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The intersperse algorithm. The idea is to first generate a random auxiliary array of 0’s and 1’s,
denoted Aux, such that the number of 0’s in the array is exactly n0 and the number of 1’s is exactly
n1. This can be done obliviously by sequentially sampling each bit depending on the number of 0’s
we sampled so far (see Algorithm 6.1). Aux is used to decide the following: if Aux[i] = 0, then the
i-th position in the output will pick up an element from I0, and otherwise, from I1.

Next, to obliviously route elements from I0 (and I1, respectively) to the i-th position such
that Aux[i] = 0 (and Aux[i] = 0, respectively), it is performed using the deterministic oblivious
distribution given in Section 5.4 — mark every element in I0 as 0-balls, mark every element in I1 as
1-balls, and then run Distribution (Algorithm 5.22) on the marked array I = I0‖I1 and the auxiliary
array Aux.

The formal description of the algorithm for interspersing two arrays is given in Algorithm 6.1.
The functionality that it implements (assuming that the two input arrays are randomly shuffled)
is given in Functionality 6.2 and the proof that the algorithm implements the functionality is given
in Claim 6.3.

Algorithm 6.1: Interspersen(I0‖I1, n0, n1) – Shuffling an Array via Interspersing Two
Randomly Shuffled Subarrays

• Input: An array I := I0‖I1 that is a concatenation of two arrays I0 and I1 of sizes n0 and
n1, respectively.

• Public parameters: n := n0 + n1.

• Input assumption: Each one of the arrays I0, I1 is independently randomly shuffled.

• The algorithm:

1. Sample an auxiliary array Aux uniformly at random among all arrays of of size n with
n0 0’s and n1 1’s:
(a) Initialize m0 := n0 and m1 := n1.

(b) For every position 1, 2, . . . , n, flip a random coin that results in heads with proba-
bility m1

m0+m1
. If heads, write down 1 and decrement m1. Else, write down 0 and

decrement m0.

2. For every i ∈ [n], mark I[i] as 0 if i ≤ n0, otherwise mark I[i] as 1.

3. Run Distribution(I,Aux), let B be the resulting array.

• Output: The array B.

Functionality 6.2: Fn
Shuffle(I) – Randomly Shuffling an Array

• Input: An array I of size n.

• Public parameters: n.

• The functionality:

1. Choose a permutation π : [n]→ [n] uniformly at random.

2. Initialize an array B of size n. Assign B[i] = I[π(i)] for every i = 1, . . . , n.

• Output: The array B.

Claim 6.3. Let I0 and I1 be two arrays of size n0 and n1, respectively, that satisfies the input
assumption as in the description of Algorithm 6.1. The Algorithm Interspersen(I0‖I1, n0, n1) obliv-
iously implements functionality FnShuffle(I0‖I1). The implementation has O(n) time.
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Proof. We build a simulator that receives only n := n0 + n1 and simulates the access pattern of
Algorithm 6.1. The simulating of the generation of the array Aux is straightforward, and consists
of modifying two counters (that can be stored at the client side) and just a sequential write of
the array Aux. The rest of the algorithm is deterministic and the access pattern is completely
determined by the size n. Thus, it is straightforward to simulate the algorithm deterministically.

We next prove that the output distribution of the algorithm is identical to that of the ideal
functionality. In the ideal execution, the functionality simply outputs an array B, where B[i] =
(I0‖I1)[π(i)] and π is a uniformly random permutation on n elements. In the real execution, we
assume that the two arrays were first randomly permuted, and let π0 and π1 be the two permuta-
tions.11 Let I′ be an array define as I′ := π0(I0)‖π1(I1). The algorithm then runs the Distribution
on I′ and Aux, where Aux is a uniformly random binary array of size n that has n0 0’s and n1 1’s,
and ends up with the output array B such that for all positions i, the label of the element B[i] is
Aux[i]. Note that Distribution is not a stable, so this defines some arbitrary mapping ρ : [n] → [n].
Hence, the algorithm outputs an array B such that B[i] = ρ−1(I′[i]). We show that if we sample
Aux, π0, and π1, as above, the resulting permutation is a uniform one.

To this end, we show that (1) Aux is distributed according to the distribution above, (2) the
total number of different choices for (Aux, π0, π1) is n! (exactly as for a uniform permutation),
and (3) any two choices of (Aux, π0, π1) 6= (Aux′, π′0, π

′
1) result with a different permutation. This

completes our proof.
For (1) we show that the implementation of the sampling of the array in Step 1 in Algorithm 6.1

is equivalent to uniformly sampling an array of size n0 + n1 among all arrays of size n0 + n1 with
n0 0’s and n1 1’s. Fix any array X ∈ {0, 1}n that consists of n0 0’s followed by n1 1’s. It is enough
to show that

Pr [∀i ∈ [n] : Aux[i] = X[i]] =
1(
n
n0

) .
This equality holds since the probability to get the bit b = X[i] in Aux[i] only depends on i and on
the number of b’s that happened before iteration i. Concretely,

Pr [∀i ∈ [n] : Aux[i] = X[i]] =

(
n0!

n · . . . · (n− n0)

)
·
(

n1!

(n− n0 − 1) · . . . · 1

)
=

n0! · n1!

n!
=

1(
n
n0

) .
For (2), the number of possible choices of (Aux, π0, π1) is(

n

n0

)
· n0! · n1! =

(n0 + n1)!

n0! · n1!
· n0! · n1! = n! .

For (3), consider two different triples (Aux, π0, π1) and (Aux′, π′0, π
′
1) that result with two permu-

tations ψ and ψ′, respectively. If Aux(i) 6= Aux′(i) for some i ∈ [n] and without loss of generality
Aux(i) = 0, then ψ(i) ∈ {1, . . . , n0} while ψ′(i) ∈ {n0 + 1, . . . , n}. Otherwise, if Aux(i) = Aux′(i)
for every i ∈ [n], then there exist b ∈ {0, 1} and j ∈ [nb] such that πb(j) 6= π′b(j). Since the tight
compaction circuit Cn is fixed given Aux, the jth input in Ib is mapped in both cases to the same

11Recall that according to our definition, we translate an “input assumption” to a protocol in the hybrid model
in which the protocol first invoke a functionality that guarantee that the input assumption holds. In our case, the
functionality receives the input array I0‖I1 and the parameters n0, n1, chooses two random permutations π0, π1 and
permute the two arrays I0, I1.
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location of the bit b in Aux. Denote the index of this location by j′. Thus, ψ(j′) = πb(i) while
ψ′(j′) = π′b(i) which means that ψ 6= ψ′, as needed.

The implementation hasO(n) time since there are three main steps and each can be implemented
in O(n) time. Step 1 has time O(n) since there are n coin flips and each can be done with O(1)
time (by just reading a word from the random tape). Steps 2 is only marking n elements, and
Step 3 can be implemented in O(n) time by Theorem 5.23.

6.2 Interspersing Multiple Arrays

We generalize the Intersperse algorithm to work with k ∈ N arrays as input. The algorithm is called
Intersperse(k) and it implements the following abstraction:

• Input: An array I1‖ . . . ‖Ik consisting of k different arrays of lengths n1, . . . , nk, respectively.
The parameters n1, . . . , nk are public.

• Output: An array B of size
∑k

i=1 ni that contains all elements of I1, . . . , Ik. Each position
in B will hold an element from one of the arrays, chosen uniformly at random and the choices
are concealed from the adversary.

As in the case of k = 2, we will invoke the procedure Intersperse(k) with arrays I1, . . . , Ik that
are already randomly and independently shuffled (with k hidden permutations). So, when we apply
Intersperse(k) on such arrays the output array B is guaranteed to be a random permutation of the
array I := I1‖ . . . ‖Ik in the eyes of an adversary.

The algorithm. To intersperse k arrays I1, . . . , Ik, we intersperse the first two arrays using
Interspersen1+n2

, then intersperse the result with the third array, and so on. The precise description
is given in Algorithm 6.4.

Algorithm 6.4: Intersperse(k)n1,...,nk
(I1‖ . . . ‖Ik) – Shuffling an Array via Interspersing k

Randomly Shuffled Subarrays

• Input: An array I := I1‖ . . . ‖Ik consisting of k arrays of sizes n1, . . . , nk, respectively.

• Public parameters: n1, . . . , nk.

• Input assumption: Each input array is independently randomly shuffled.

• The algorithm:

1. Let I′1 := I1.

2. For i = 2, . . . k, do:
(a) Execute Intersperse∑i

j=1 nj
(I′i−1‖Ii,

∑i−1
j=1 nj , ni). Denote the result by I′i.

3. Let B := I′k.

• Output: The array B.

We prove that this algorithm obliviously implements a uniformly random shuffle.

Claim 6.5. Let k ∈ N and let I1, . . . , Ik be k arrays of n1, . . . , nk elements, respectively,
that satisfy the input assumption as in the description of Algorithm 6.4. The Algorithm

Intersperse
(k)
n1,...,nk(I1‖ . . . ‖Ik) obliviously implements the functionality FnShuffle(I). The implemen-

tation requires O
(∑k−1

i=1 (k − i) · ni
)

time.
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Proof. The simulator that receives n1, . . . , nk runs the simulator of Intersperse for k − 1 times
with the right lengths, as in the description of the algorithm. The indistinguishability follows
immediately from the indistinguishability of Intersperse. For functionality, note that whenever
Intersperse is applied, it holds that both of its inputs are randomly shuffled which means that
the input assumption of Intersperse holds. Thus, the final array B is a uniform permutation of
I1‖ . . . ‖Ik.

Since the time of Interspersen is linear in n, the time required in the i-th iteration of

Intersperse
(k)
n1,...,nk is O

(∑i
j=1 nj

)
. Namely, we pay O(n1) in k − 1 iterations, O(n2) in k − 2

iterations, and so on. Overall, the time is O
(∑k−1

i=1 (k − i) · ni
)

, as required.

6.3 Interspersing Reals and Dummies

We describe a related algorithm, called IntersperseRD, which will also serve as a useful building
block. Here, the abstraction we implement is the following:

• Input: An array I of n elements, where each element is tagged as either real or dummy. The
real elements are distinct. We assume that if we extract the subset of all real elements in the
array, then these elements appear in random order. However, there is no guarantee of the
relative positions of the real elements with respect to the dummy ones.

• Output: An array B of size |I| containing all real elements in I and the same number of
dummy elements, where all elements in the array are randomly permuted.

In other words, the real elements are randomly permuted, but there is no guarantee regarding
their order in the array with respect to the dummy elements. In particular, the dummy elements
can appear in arbitrary (known to the adversary) positions in the input, e.g., appear all in the
front, all at the end, or appearing in all the odd positions. The output will be an array where all
the real and dummy elements are randomly permuted, and the random permutation is hidden from
the adversary.

The implementation of IntersperseRD is done by first running the deterministic tight compaction
procedure on the input array such that all the real balls appear before the dummy ones. Next, we
count the number of real elements in this array run the Intersperse procedure from Algorithm 6.1
on this array with the calculated sizes. The formal implementation appears as Algorithm 6.6.

Algorithm 6.6: IntersperseRDn(I) – Shuffling an Array via Interspersing Real and
Dummy

• Input: An array I of n elements, where each element is tagged as either real or dummy. The
real elements are distinct.

• Public parameters: n.

• Input assumption: The input I restricted to the real elements is randomly shuffled.

• The algorithm:

1. Run the deterministic oblivious tight compaction algorithm on I (see Section 4), such
that all the real balls appear before the dummy ones. Let I′ denote the output array of
this step.

2. Count the number of reals in I′ by a linear scan. Let nR denote the result.

3. Invoke Interspersen(I′, nR, n− nR) and let B be the output.

• Output: The array B.
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We prove that this algorithm obliviously implements a uniformly random shuffle.

Claim 6.7. Let I be an array of n elements that satisfies the input assumption as in the descrip-
tion of Algorithm 6.6. The Algorithm IntersperseRDn(I) obliviously implements the functionality
FnShuffle(I). The implementation has O(n) time.

Proof. We build a simulator that receives only the size of I and simulates the access pattern of
Algorithm 6.6. The simulation of the first and second steps is immediate since they are completely
deterministic. The simulating of the execution of Interspersen is implied by Claim 6.3.

The proof that the output distribution of algorithm is identical to that of the ideal functionality
follows immediately from Claim 6.3. Indeed, after compaction and counting the number of real
elements, we execute Interspersen with two arrays I′R and I′D of total size n, where I′R consists of
all the nR real elements and I′D consists of all the dummy elements. The array I′R is uniformly
shuffled to begin with by the input assumption, and the array I′D consists of identical elements, so
we can think of it as if they are randomly permuted. So, the input assumption of Interspersen (see
Algorithm 6.1) holds and thus the output is guaranteed to be randomly shuffled (by Claim 6.3).

The implementation runs in O(n) time since the first two steps take O(n) time (by Theorem 5.1)
and Interspersen itself runs in O(n) time (by Claim 6.3).

7 BigHT: Oblivious Hashing for Non-Recurrent Lookups

Our final ORAM construction will be based on the hierarchical ORAM of Goldreich and Ostro-
vsky [18]. A core building block in that construction (to implement different “levels”) is an oblivious
hashing scheme for non-recurrent requests [8, 18].

The construction we describe in this section is the first step towards the oblivious hash table
we use in our final ORAM construction since this construction suffers from poly log log extra mul-
tiplicative factor (which lead to similar overhead in the final ORAM construction). Nevertheless,
this hash table already captures and simplifies many of the ideas in the oblivious hash table of
Patel et al. [32] and can be used to get an ORAM with similar overhead to that of Patel et al. In
the next Section 8, we describe how to optimize the hash table and get rid of the extra poly log log
factor.

As defined in Section 4.5, an oblivious hashing scheme has three algorithms, Build, Lookup, and
Extract with the following syntax:

• Build takes in an array of length n, where each coordinate is either a dummy or a real element
tagged with a numerical key. It is guaranteed that all real elements have distinct keys.12 The
Build algorithm outputs a memory data structure T .

• Lookup takes in a key or ⊥. The former is referred to as a real request and the latter is a
dummy request. Operating on the in-memory data structure T , the algorithm outputs an
element associated with the requested key (consistent with the input provided to the Build
algorithm), or outputs ⊥ if not found or if the request is of the form ⊥; and

• Extract outputs an array of length n containing a list of elements that have not been looked
up, padded with dummies to the maximum length n.

During the lifecycle of the hashing scheme, Build acts as a constructor and is called once upfront
to initialize the hash table’s data structure. Afterwards, Lookup may be called multiple times and to

12Looking forward, in our ORAM construction, the key of an element will be its logical address.
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guarantee obliviousness, it is assumed that Lookup does not query the same real key twice (although
dummy lookups can be made multiple times). Finally, Extract is a destructor that is called when
the hash table may be destructor.

In this section, we implement an oblivious hashing scheme, according to Functionality 4.8, where
the input to Build is assumed to be randomly shuffled. In other words, as long as the input array I
provided to the Build algorithm is randomly shuffled (with a hidden permutation) and keys provided
to Lookup are non-recurring, the algorithm (1) preserves obliviousness, i.e., the joint distribution of
access patterns encountered in the Build, Lookup, and Extract phases are indistinguishable regardless
of the inputs to these algorithms, and (2) the output of Extract consists of an array of I elements
which include the unvisited elements and they are completely shuffled within (with hidden locations
and order).

7.1 Intuition and Overview of the Construction

Let I denote the input array provided to the Build algorithm and suppose that |I| = n. We think
of elements here as balls. Our goal is to hash the n balls of I into n

log8 λ
bins, where λ denotes a

security parameter.
The assignment of balls into bins is determined by a pseudo-random function (PRF). Recall

that each real ball in the input I is associated with a distinct key denoted k. We use PRFsk(k) to
determine the bin, where this ball should land in and where sk is a secret key known only to the
CPU and is freshly sampled upfront in the Build algorithm.

Due to standard Chernoff bound, the load of each bin does not exceed O(log8 λ), except with
negl(λ) probability. Since each bin is poly-logarithmically sized, for the time being we will think
of each bin as a small, perfectly secure oblivious hash table implemented via näıveHT (Section 4.5).
For poly log(λ)-sized bins, each Lookup request consumes poly log log λ time. In Section 8, we
describe how to optimize the data structure within each small poly-logarithmically sized bin to get
rid of the poly log log factor.

A flawed strawman. To aid understanding, we first describe a strawman scheme. Intuitively,
we assume that the input array I provided to Build has been secretly randomly shuffled. Due to
this assumption, it would seem safe to directly place balls into their destined bins in the clear. The
dummy balls are also placed in the bins randomly. During the Lookup phase, whenever we receive
a real request, we evaluate the PRF outcome over the requested key to determine which bin to
look up. If we receive a dummy request, we sample a random bin and pretend to perform look up.
To simplify this overview, we ignore the details of how to realize the Extract procedure. Instead
we focus on understanding the (in)security of this strawman scheme only based on the Build and
Lookup phases. Further, for simplicity, we pretend that the PRF acts like a random oracle.

Indeed, since the input array I has been secretly and randomly shuffled, the marginal access
pattern of the Build phase is simulatable. Indeed, the access pattern is distributed like a random
“balls and bins” process, i.e., throwing n balls into n

log8 λ
bins. Similarly, the marginal access

pattern observed in the Lookup phase is simulatable too, and follows another independent balls and
bins process. However, the joint distribution of access patterns encountered in both the Build and
Lookup phases leak information.13 To illustrate the point, consider a special case where all elements
of the input array I are reals. In this case, the Build phase reveals how many times each bin is
hit (henceforth called the bin loads). In the Lookup phase, if we query all the keys that appeared

13Formally, this scheme does not satisfy Definition 3.2. While each operation is simulatable by itself, there are
sequences of operations that leak non-trivial information.

42



in the input I one by one, then the bin loads revealed in the Lookup phase would be identical to
the Build phase. Otherwise, if all requests in the Lookup phase are dummy (or alternatively, if all
requests are real but not contained in I), the bin loads leaked in the Lookup phase would be an
independent sample and would most likely differ from that of the Build phase.

Breaking the correlations. In the strawman scheme above, although the marginal access pat-
tern distribution of the Build and Lookup phase alone each follows a random balls and bins process,
correlating the two distributions leaks information. Towards fixing this problem, the idea is to
make sure that the “balls and bins” process revealed in the Build and Lookup phases are indepen-
dent (no matter what inputs were used in both phases). To explain the idea, let us pretend for
a moment that the input array I contains n real balls and no dummies (later we will get rid of
this assumption and support dummy items as well). Recall that we assume that the input array is
secretly randomly shuffled. Here is the main idea of the construction:

1. Build, step 1: revealed balls and bins process. We first throw the n real balls in I into
B := n

log8 λ
bins. Let Bin1, . . . ,BinB denote the balls that land in each of the bins, and

|Bin1|, |Bin2| . . . , |BinB| denote the revealed bin loads. By Chernoff’s bound, Pr[||Bini| − µ| ≥
δµ] ≤ 2e−µδ

2/3, where µ = log8 λ is the expectation of |Bini|. Choosing δ = 1
2 log2 λ

, we have

that each |Bini| must be log8 λ± 0.5 log6 λ with overwhelming probability.

2. Build, step 2: sample secret independent loads. We sample independent loads L1, L2, . . . , LB

by throwing n′ =
(

1− 1
log2 λ

)
· n balls into B bins. We keep L1, L2, . . . , LB secret from the

adversary. With overwhelming probability, we have that each Li must be
(
log8 λ− log6 λ

)
±

0.5 log6 λ. Therefore, with overwhelming probability, |Bini| ≥ log8 λ − 0.5 log6 λ ≥ Li for
every i ∈ [B]. If this does not hold, then the Build operation would fail, which happens with
negligible probability. We call this bad event Overflow.

3. Build, step 3: form major bins and overflow pile. We duplicate the bins into another identical
structure. In the first structure, for each Bini from Step 1, we obliviously truncate it to
contain only Li real balls and we pad the bin with dummies to a capacity of log8 λ (this keeps
the Li’s private). This structure is henceforth called the major bins.

In the second structure, we replace all the real balls in the major bins with dummies. Then,
there are exactly n − n′ = n

log2 λ
real balls remaining in this structure. We merge all the

elements in the structure into a single list and perform oblivious tight compaction (Theo-
rem 5.1) so that the real elements appear before the dummies. Then, we employ a standard
oblivious Cuckoo hashing scheme (Corollary 4.11). This structure is henceforth called the
overflow pile.

4. Lookup: overflow pile first and then the major bins. To look up each requested (real) key, we
first search for the key in the overflow pile. If the key is already found in the overflow pile, we
make a dummy lookup in the major bins; otherwise, we perform a real lookup in the major
bins.

Overview of security. We condition on the Overflow event not happening (recall that it happens
only with negligible probability). The crux of the proof is showing that after having observed the
Build phase bin loads |Bin1|, . . . , |BinB|, the random bin choice made by each of the n′ balls in the
second balls and bins process have a joint distribution that is negligibly apart from uniform at
random. Obviously, if the Lookup is for dummy or requesting an item not contained in the union of
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the major bins, the bin choices revealed are random (even when conditioned on the access patterns
revealed in the Build phase and in the Lookup phase so far). The key observation is that a request
for a ball existing in the major bins also, in the eyes of the adversary, visits a random bin, even
when conditioned on the access patterns of the Build phase. This stems from the fact that the
Lookup phase balls and bins process was prepared in secret during the Build phase and was never
revealed.

We will turn the above intuition into a formal proof in Section 7.3 (after we present the full
details of the construction in Section 7.2) and the proof there will additionally take into account
the possibility of dummy items in the input array.

7.2 The Full Construction

In Construction 7.2 we give the implementation of Functionality 4.8. As a subroutine, we use a
procedure (see Algorithm 7.1) to sample bin loads of a random balls-into-bins process.

Algorithm 7.1: SampleBinLoad – Sample bin load of “n balls into B bins” process

• Input: Two numbers n ∈ N and B ∈ N.

• The Algorithm:

1. Let m := n. For each i = 1, 2, . . . , B, perform:

(a) Sample Li = Binomial
(
m, 1

n−i+1

)
, where Binomial(m, p) denotes the number of

heads from m random coins each coming up heads with probability p.

(b) Set m := m− Li.
• Output: L1, . . . , LB.

Construction 7.2: Hash Table for Shuffled Inputs

Procedure BigHT.Build(I):

• Input: An array I = (a1, . . . , an) containing n elements, where each ai is either dummy or a
(key, value) pair denoted (ki, vi).

• Input assumption: The elements in the array are uniformly shuffled.

• The algorithm:

1. Let µ := log8 λ and B := n/µ.

2. Sample PRF key. Sample a random PRF secret key sk.

3. Directly hash into major bins. Throw the real ai = (ki, vi) into B bins using PRFsk(ki).
If ai = dummy, throw it to a uniformly random bin. Let Bin1, . . . ,BinB be the resulted
bins.

4. Sample an independent smaller loads. Execute Algorithm 7.1 to obtain (L1, . . . , LB)←
SampleBinLoad(n′, B), where n′ = n ·

(
1− 1

log2 λ

)
. If there exists i ∈ [B] such that

||Bini| − µ| > 0.5 log6 λ or
∣∣∣Li − n′

B

∣∣∣ > 0.5 log6 λ, then abort.

5. Create major bins. Allocate new arrays (Bin′1, . . . ,Bin′B), each of size µ. For every i,
iterate in parallel on both Bini and Bin′i, and copy the first Li elements in Bini to Bin′i.
Fill the rest elements of Bin′i with dummy. (Li is not revealed during this process, by
continuing iterating over Bini after we cross the threshold Li.).
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6. Create overflow pile. Obliviously merge all of the last |Bini| − Li elements in each bin
Bin1, . . . ,BinB into an overflow pile:

– For each i ∈ [B], replace the first Li positions with dummy.

– Concatenate all of the resulting bins and perform oblivious tight compaction on the
resulting array such that the real balls appear in the front. Truncate the outcome
to be of length n

log2 λ
.

7. Prepare an oblivious hash table for elements in the overflow pile by calling the Build
algorithm of an oblivious Cuckoo hashing scheme (Corollary 4.11). Let OF = (OFT,OFS)
denote the outcome data structure. Henceforth, we use the notation OF.Lookup to denote
lookup operations to this standard oblivious Cuckoo hashing scheme.

8. Prepare data structure for efficient lookup. For i = 1, . . . , B, call näıveHT.Build(Bini) on
each major bin to construct an oblivious hash table, and let OBini denote the outcome
for the i-th bin.

• Output: The algorithm stores in the memory a state that consists of (OBin1, . . . ,OBinB,OF,
sk).

Procedure BigHT.Lookup(k):

• Input: The secret state (OBin1, . . . ,OBinB,OF, sk), and a key k to look for (that may be ⊥,
i.e., dummy).

• The algorithm:

1. Call v ← OF.Lookup(k).

2. If k = ⊥, choose a random bin i
$←[B] and call OBini.Lookup(⊥).

3. If k 6= ⊥ and v 6= ⊥ (i.e., v was found in OF), choose a random bin i
$←[B] and call

OBini.Lookup(⊥).

4. If k 6= ⊥ and v = ⊥ (i.e., v was not found in OF), let i := PRFsk(k) and call v ←
OBini.Lookup(k).

• Output: The value v.

Procedure BigHT.Extract():

• Input: The secret state (OBin1, . . . ,OBinB,OF, sk).

• The algorithm:

1. Let T = OBin1.Extract()‖OBin2.Extract()‖ . . . ‖OBinB.Extract()‖OF.Extract().

2. Perform oblivious tight compaction on T , moving all the real balls to the front. Truncate
the resulting array at length n. Let X be the outcome of this step.

3. Call X′ ← IntersperseRDn(X), i.e., to Algorithm 6.6.

• Output: X′.

7.3 Efficiency and Security Analysis

We prove that our construction obliviously implements Functionality 4.8 for every sequence of
instructions with non-recurrent lookups between two Build operations. Towards this goal, we view
our construction in a hybrid model, in which we have ideal implementations of the underlying
building blocks: an oblivious hash table for each bin (implemented via näıveHT, as in Section 4.5),
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an oblivious Cuckoo hashing scheme (Section 4.6) and an oblivious tight compaction algorithm
(Section 5).

Theorem 7.3. Construction 7.2 obliviously implements Functionality 4.8 for all n ≥ log12 λ,
assuming that the input array I for Build is randomly shuffled, and assuming one-way functions.
Moreover, the construction consumes O(n · poly log log λ) time for the Build and Extract phases.
Lookup has O(poly log log λ) time in addition to linearly scanning a stash of size O(log λ).

Remark 7.4. As we mentioned, Construction 7.2 is only the first step towards the final oblivious
hash table that we use in the final ORAM construction. We make significant optimizations in
Section 8. We show how to improve upon the Build and Extract procedures from O(n ·poly log log λ)
to O(n) by replacing the näıveHT hash table with an optimized version (we call SmallHT) that is
more efficient for small lists. Note that while it may now seem that the overhead of Lookup is
problematic, we will “merge” the stashes across different levels in our final ORAM construction
and store them again in an oblivious hash table.

We start with the efficiency analysis. In our oblivious hashing construction from Construc-
tion 7.2, there are n/ log8 λ major bins and each is of size O(log8 λ). The size of the overflow pile
is O(n/ log2 λ). We employed a naive hash table näıveHT (see Section 4.5) for each major bin, and
thus their initialization incurs

n

log8(λ)
·O
(
log8 λ · poly log log λ

)
= O(n · poly log log λ)

time. The overflow pile is implemented via an oblivious Cuckoo hashing scheme (Corollary 4.11)
so its initialization incurs O(n) time. (This is where we use the fact that n ≥ log12 λ as this implies
that the overflow pile is at least of size log8 λ.) Each access incurs O(poly log log λ) time from the
major bins and O(log λ) time from the linear scan of OFS the stash of the overflow pile (searching
in OFT incurs O(1) time). The overhead of Extract is the same as that of Build.

In total, our oblivious hashing scheme consumes O(n · poly log log λ) time for the Build phase
and Extract phases. Lookup has O(poly log log λ) time in addition to linearly scanning a stash of
size O(log λ).

We proceed with the proof of security. Towards this end, we present a simulator Sim that
simulates the access patterns of the Build, Lookup, and Extract operations:

• Simulating Build. Upon receiving an instruction to simulate Build with security parameter
1λ and a list of size n, the simulator runs the real algorithm Build on input 1λ and a list
that consists of n dummy elements. It outputs the access pattern of this algorithm. Let
(OBin1, . . . ,OBinB,OF, sk) be the output state. The simulator stores this state.

• Simulating Lookup. When the adversary submits a Lookup command with a key k, the
simulator simulates an execution of the algorithm Lookup on input ⊥ (i.e., a dummy element)
with the state (OBin1, . . . ,OBinB,OF, sk) (which was generated while simulating the the Build
operation).

• Simulating Extract. When the adversary submits an Extract command, the simulator exe-
cutes the real algorithm with its stored internal state (OBin1, . . . ,OBinB,OF, sk).

We prove that no adversary can distinguish between the real and ideal executions. Recall that in
the ideal execution, with each command that the adversary outputs, it receives back the output of
the functionality and the access pattern of the simulator, where the latter is simulating the access
pattern of the execution of the command on dummy elements. On the other hand, in the real
execution, the adversary sees the access pattern and the output of the algorithm that implements
the functionality. The proof is via a sequence of hybrid experiments.
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Experiment Hyb0(λ). This is the real execution. With each command that the adversary submits
to the experiment, the real algorithm is being executed, and the adversary receives the output of
the execution together with the access pattern as determined by the execution of the algorithm.

Experiment Hyb1(λ). This experiment is the same as Hyb0, except that instead of choosing a
PRF key sk, we use a truly random function O. That is, instead of calling to PRFsk(·) in Step 3 of
Build and Step 4 of the function Lookup, we call O(sk‖·).

The following claim states that due to the security of the PRF, experiments Hyb0 and Hyb1 are
computationally indistinguishable. The proof of this claim is standard.

Claim 7.5. For any PPT adversary A, there is a negligible function negl(·) such that

|Pr [Hyb0(λ) = 1]− Pr [Hyb1(λ) = 1]| ≤ negl(λ).

Experiment Hyb2(λ). This experiment is the same as Hyb1(λ), except that with each command
that the adversary submits to the experiment, both the real algorithm is being executed as well as
the functionality. The adversary receives the access pattern of the execution of the algorithm, yet
the output comes from the functionality.

In the following claim, we show that the initial secret permutation and the random oracle,
guarantee that experiments Hyb1 and Hyb2 are identical.

Claim 7.6. Pr [Hyb1(λ) = 1] = Pr [Hyb2(λ) = 1].

Proof. Recall that we assume that the lookup queries of the adversary are non-recurring. Our goal
is to show that the output distribution of the extract procedure is a uniform permutation of the
unvisited items even given the access patter of the previous Build and Lookup operations. By doing
so, we can replace the Extract procedure with the ideal Fn,NHT .Extract functionality which is exactly
the difference between Hyb1(λ) and Hyb2(λ).

Consider a sequence of operations that the adversary makes. Let us denote by I the set of
elements with which it invokes Build and by k∗1, . . . , k

∗
m the set of keys with which it invokes

Lookup. Finally, it invokes Extract. We first argue that the output of Fn,NHT .Extract consists of the

same elements as that of Extract. Indeed, both Fn,NHT .Lookup and Lookup mark every visited item
so when we execute Extract, the same set of elements will be in the output.

We need to argue that the distribution of the permutation of unvisited items in the input of
Extract is uniformly random. This is enough since Extract performs IntersperseRD which shuffles
the reals and dummies to obtain a uniformly random permutation overall (given that the reals were
randomly shuffled to begin with). Fix an access pattern observed during the execution of Build and
Lookup. We show, by programming the random oracle and the initial permutation appropriately
(while not changing the access pattern), that the permutation of the unvisited elements is uniformly
distributed.

Consider tuples of the form (πin,O, R,T, πout), where (1) πin is the permutation performed on I
by the input assumption (prior to Build), (2) O is the random oracle, (3) R is the internal random-
ness of all intermediate functionalities and of the balls into bins choices of the dummy elements; (4)
T is the access pattern of the entire sequence of commands (Build(I), Lookup(k∗1), . . . , Lookup(k∗m)),
and (5) πout is the permutation on I′ = {(k, v) ∈ I | k /∈ {k∗1, . . . , k∗m}} which is the input to Extract.
The algorithm defines a deterministic mapping ψR(πin,O)→ (T, πout).

To gain intuition, consider arbitrary R, πin, and O such that ψR(πin,O)→ (T, πout) and two dis-
tinct existing keys ki and kj that are not queried during the Lookup stage (i.e., ki, kj /∈ {k∗1, . . . , k∗m}).
We argue that from the point of view of the adversary, having seen the access pattern and all query
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results, he cannot distinguish whether πout(i) < πout(j) or πout(i) > πout(j). The argument will
naturally generalize to arbitrary unqueried keys and an arbitrary ordering.

To this end, we show that there is π′in and O′ such that ψR(π′in,O′)→ (T, π′out), where π′out(`) =
πout(`) for every ` /∈ {i, j}, and π′out(i) = πout(j) and π′out(j) = πout(i). That is, the access pattern is
exactly the same and the output permutation switches the mappings of ki and kj . The permutation
π′in is the same as πin except that π′in(i) = πin(j) and π′in(j) = πin(i), and O′ is the same as O except
that O′(ki) = O(kj) and O′(kj) = O(ki). This definition of π′in together with O′ ensure, by our
construction, that the observed access pattern remains exactly the same. The mapping is also
reversible so by symmetry all permutations have the same number of configurations of πin and O.

For the general case, one can switch from any πout to any (legal) π′out by changing only πin and
O at locations that correspond to unvisited items. We define

π′in(i) = πin(πout
−1(π′out(i))) and O′(ki) = O(kπin(πout

−1(π′out(i)))
).

This choice of π′in and O′ do not change the observed access pattern and result with the output
permutation π′out, as required. By symmetry, the resulting mapping between different (π′in,O′) and
π′out is regular (i.e., each output permutation has the same number of ways to reach to) which
completes the proof.

Experiment Hyb3(λ). This experiment is the same as Hyb2(λ), except that we modify the def-
inition of Extract to output a list of dummy elements. This is implemented by modifying each
Obini.Extract() to return a list of dummy elements (for each i ∈ [B]), as well as OF.Extract(). We
also stop marking elements that were searched for during Lookup.

Recall that in this hybrid experiment the output of Extract is given to the adversary by the
functionality, and not by the algorithm. Thus, the change we made does not affect the view of the
adversary which means that experiments Hyb2 and Hyb3 are identical.

Claim 7.7. Pr [Hyb2(λ) = 1] = Pr [Hyb3(λ) = 1].

Experiment Hyb4(λ). This experiment is identical to experiment Hyb3(λ), except that when
the adversary submits the command Lookup(k) with key k, we run OBini.Lookup(⊥) instead of
OBini.Lookup(k).

Recall that the output of the procedure is determined by the functionality and not the algorithm.
In the following claim we show that the access pattern observed by the adversary in this experiment
is statistically close to the one observed in Hyb3(λ).

Claim 7.8. For any (unbounded) adversary A, there is a negligible function negl(·) such that

|Pr [Hyb3(λ) = 1]− Pr [Hyb4(λ) = 1] | ≤ negl(λ).

Proof. Consider a sequence of operations that the adversary makes. Let us denote by I = {k1, k2,
. . . , kn : k1 < k2 < . . . < kn} the set of elements with which it invokes Build, by π the secret input
permutation such that the i-th element I[i] = kπ(i), and by Q = {k∗1, . . . , k∗m} the set of keys with
which it invokes Lookup. We first claim that it is suffices to consider only the joint distribution of
the access pattern of Step 3 in Build(I), followed by the access pattern of Lookup(k∗i ) for all k∗i ∈ I.
In particular, in both hybrids, the outputs are determined by the functionality, and the access
pattern of Extract() is identically distributed. Moreover, the access pattern in Steps 4 through 6
in Build is deterministic and is a function of the access pattern of Step 3. In addition, in both
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executions Lookup(k) for keys such that k 6∈ I, as well as Lookup(⊥) cause a linear scan of the
the overflow pile followed by an independent visit of a random bin (even when conditioning on
the access pattern of Build) – we can ignore such queries. Finally, even though the adversary is
adaptive, we essentially prove in the following that the entire view of the adversary is close in both
experiment, and therefore the ordering of how the view is obtained cannot help distinguishing.

Let X ← BallsIntoBins(n,B) denote a sample of the access pattern obtained by throwing n balls
into B bins. It is convenient to view X as a bipartite graph X = (Vn ∪ VB, EX), where Vn are the
n vertices representing the balls, VB are B vertices representing the bins, and EX are representing
the access pattern. Note that the output degree of each balls is 1, whereas the degree of each bin
is its load, and the expectation of the latter is n/B. For two graphs that share the same bins VB,
we define the union of two graphs X = (Vn1 ∪ VB, EX) and Y = (Vn2 ∪ VB, EY ), denoted X ∪ Y ,
by X ∪ Y = (Vn1 ∪ Vn2 ∪ VB, EX ∪ EY ).

Consider the following two distributions

Distribution AccessPtrn3(λ): In Hyb3(λ), the joint distribution of the access pattern of
Step 3 in Build(I), followed by the access pattern of Lookup(ki) for all ki ∈ I, can be described by
the following process follows:

1. Sample X ← BallsIntoBins(n,B). Let (n1, . . . , nB) be the loads obtained in the process
and µ = n

B be the expectation of ni for all i ∈ [B].

2. Sample an independent Z ← BallsIntoBins(n′, B), where n′ = n ·
(

1− 1
log2 λ

)
. Let (L1, . . . ,

LB) be the loads obtained in this process and µ′ = n′

B be the expectation of Li for all i ∈ [B].

3. Overflow: If for some i ∈ [B] we have that |ni − µ| > 0.5 · log6 λ or |Li − µ′| > 0.5 · log6 λ,
then abort the process.

4. Consider the graph X = (Vn ∪ VB, EX), and for every bin i ∈ [B], remove from EX exactly
ni − Li edges arbitrarily (these correspond to the elements that are stored in the overflow
pile). Let X ′ = (Vn ∪ VB, E′X) be the resulting graph. Note that X ′ has n′ edges, each bin
i ∈ [B] has exactly Li edges, and n− n′ vertices in Vn have no output edges.

5. Recall that π is the input permutation on I. Let Ẽ′X = {(π(i), vi) : (i, vi) ∈ E′X} be the
set of permuted edges, Ṽn′ ⊂ Vn be the set of nodes that have an edge in Ẽ′X , and X̃ ′ =
(Ṽn′ ∪ VB, Ẽ′X). Note that there are n′ vertices in Ṽn′ .

6. For the n − n′ remaining vertices in Vn but not in Ṽn′ that have no output edges (i.e., the
balls in the overflow pile), sample new and independent output edges, where each edge is
obtained by choosing independent bin i ← [B]. Let Z ′ be the resulting graph (corresponds
to the access pattern of Lookup(ki) for all ki that appear in OF and not in the major bins).
Let Y = X̃ ′∪Z ′. (The graph Y contains edges that correspond to the “real” elements placed
in the major bins which were obtained from the graph X̃ ′, together with fresh “noisy” edges
corresponding to the elements stored in the overflow pile).

7. Output (X,Y ).

Distribution AccessPtrn4(λ): In Hyb4(λ), the joint distribution of the access pattern of
Step 3 in Build(I), followed by the access pattern of Lookup(⊥) for all ki ∈ I, is described by the
following (simpler) process:

1. Sample X ← BallsIntoBins(n,B). Let (n1, . . . , nB) be the loads obtained in the process
and µ = n

B be the expectation of ni for all i ∈ [B].
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2. Sample an independent Z ← BallsIntoBins(n′, B), where n′ = n ·
(

1− 1
log2 λ

)
. Let (L1, . . . ,

LB) be the loads obtained in this process and µ′ = n′

B be the expectation of Li for all i ∈ [B].

3. Overflow: If for some i ∈ [B] we have that |ni − µ| > 0.5 · log6 λ or |Li − µ′| > 0.5 · log6 λ,
then abort the process.

4. Sample an independent Y ← BallsIntoBins(n,B). (Corresponding to the access pattern of
Lookup(⊥) for every command Lookup(k).)

5. Output (X,Y ).

By the definition of our distributions and hybrid experiments, we need to show

|Pr [Hyb3(λ) = 1]− Pr [Hyb4(λ) = 1] | ≤ SD (AccessPtrn3(λ),AccessPtrn4(λ)) ≤ negl(λ).

Towards this goal, first, by a Chernoff bound per bin and union bound over the bins, it holds
that

Pr
AccessPtrn3

[Overflow] = Pr
AccessPtrn4

[Overflow] ≤ negl(λ).

Thus, we condition on Overflow not occurring and show that both distributions output two inde-
pendent graphs, i.e., two independent samples of BallsIntoBins(n,B), and thus they are equivalent.

This holds in AccessPtrn4 directly by definition. As for AccessPtrn3, consider the joint distri-
bution of (X, X̃ ′) conditioning on Overflow not happening. For any graph G = (Vn′ ∪ VB, EG) that
corresponds to a sample of BallsIntoBins(n′, B), we have that X̃ ′ = G if and only if (i) the loads of
X̃ ′ equals to the loads of G and (ii) Ẽ′X = EG, where the loads of G are defined as the degrees of
nodes v ∈ VB. Observe that, by definition, the loads of X̃ ′ are exactly the loads of Z: (L1, . . . , Ln),
and hence the loads of X̃ ′ are independent of X. Also, since Overflow does not happen, X, and the
event of (i), the probability of Ẽ′X = EG is exactly the probability of the n′ vertices in X̃ ′ matching
those in G, which is 1

n′! by the uniform input permutation π. It follows that

Pr[X ′ = G | X ∧ ¬Overflow] = Pr[loads of G = (L1, . . . , Ln) | ¬Overflow] · 1

n′!
= Pr[Z = G | ¬Overflow]

for all G, which implies that X ′ is independent of X. Moreover, in Step 6, we sample a new
graph Z ′ = BallsIntoBins(n − n′, B), and output Y as X̃ ′ augmented by Z ′. In other words,
we sample Y as follows: we sample two independent graphs Z ← BallsIntoBins(n′, B) and Z̃ ′ ←
BallsIntoBins(n−n′, B), and output the joint graph Z ∪Z ′. This has exactly the same distribution
as an independent instance of BallsIntoBins(n,B). We therefore conclude that

SD (AccessPtrn3(λ) | ¬Overflow,AccessPtrn4(λ) | ¬Overflow) = 0.

Thus, following a fact on statistical distance,14

SD (AccessPtrn3(λ),AccessPtrn4(λ))

≤ SD (AccessPtrn3(λ) | ¬Overflow,AccessPtrn4(λ) | ¬Overflow) + Pr [Overflow] ≤ negl(λ).

Namely, the access patterns are statistically close. The above analysis assumes that all n elements
in the input I are real and the m Lookups visit all real keys in I. If the number of real elements is less

14The fact is that for every two random variables X and Y over a finite domain, and any event E such that
PrX [E] = PrY [E], it holds that SD(X,Y ) ≤ SD(X | E, Y | E) + PrX [¬E]. This fact can be verified by a direct
expansion.
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than n (or even less than n′), then the construction and the analysis go through similarly; the only
difference is that the Lookups reveal a smaller number of edges in X̃ ′, and thus the distributions
are still statistically close. The same argument follows if the m Lookups visit only a subset of real
keys in I. Also note that fixing any set Q = {k∗1, . . . , k∗m} of Lookup, every ordering of Q reveals
the same access pattern X̃ ′ as X̃ ′ is determined only by I, π,X,Z, and thus the view is identical
for every ordering. This completes the proof of Claim 7.8.

Experiment Hyb5. This experiment is the same as Hyb4, except that we run Build in input I
that consists of only dummy values.

Recall that in this hybrid experiment the output of Extract and Lookup is given to the adversary
by the functionality, and not by the algorithm. Moreover, the access pattern of Build, due to the
random function, each O(sk||ki) value is distributed uniformly at random, and therefore the random
choices made to the real elements are similar to those made to dummy elements. We conclude that
the view of the adversary in Hyb4(λ) and Hyb5(λ) is identical.

Claim 7.9. Pr [Hyb4(λ) = 1] = Pr [Hyb5(λ) = 1].

Experiment Hyb6. This experiment is the same as Hyb5, except that we replace the random
oracle O(sk‖·) with a PRF key sk.

Observe that this experiment is identical to the ideal execution. Indeed, in the ideal execution
the simulator runs the real Build operation on input that consists only of dummy elements and has
an embedded PRF key. However, this PRF key is never used since we input only dummy elements,
and thus the two experiments are identical.

Claim 7.10. Pr [Hyb5(λ) = 1] = Pr [Hyb6(λ) = 1].

By combining Claims 7.5–7.10 we conclude the proof of Theorem 7.3.

8 SmallHT: Oblivious Hashing for Small Bins

Recall that the warmup oblivious hashing scheme in Section 7 consumes O(n·poly log log λ) time for
Build and Extract phase, and O(poly log log λ) time for each Lookup request in addition to linearly
scanning a stash of size O(log λ). To achieve our optimal ORAM result, we need to get rid of the
extra poly log log λ factors (and we will handle the linear scanning of the stash separately).

In this section, we will describe a constant-overhead oblivious hashing scheme for bins of poly-
logarithmic size. At a high level, the idea is that each major bin will no longer be implemented
using a näıveHT (Section 4.5), but rather as an efficient oblivious hashing scheme, where Build and
Extract consume linear amount of time and each Lookup consumes constant time (not including
a linear scan of a small stash that we are going to handle separately). The functionality that we
implement here is the same as in the previous section, i.e., Functionality 4.8.

8.1 Intuition and Overview of the Construction

We refer to Section 4.6 for background information on Cuckoo hashing. Here, we recall that,
by [8, 20], a Cuckoo hash table containing n ≥ log8 λ balls can be obliviously constructed in
O(n · log n) total time. For n = poly log λ, the total time would be O(n · log log λ) and we would
like to get rid of the extra log log λ factor.
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Remark 8.1. For the time being, the reader need not worry about how to perform lookup in the
stash. Later, when we apply our oblivious Cuckoo hashing scheme to the major bins in an oblivious
hash table, we will merge the stashes for all major bins into a single one and treat the merged stash
specially.

Our approach. We are only concerned about Cuckoo hashing for lists of polylogarithmic size.
In linear time, the n = poly log(λ) elements in the input array can each evaluate the PRF on its
associated key, and write down its two bin choices. One important observation is that the index of
each item and its two bin choices can be expressed in O(log log λ) bits. This means that a single

memory word (which is log λ bits long) can hold O
(

log λ
log log λ

)
many elements’ metadata. Specifically,

for each element, we store only its index and its two bin choices, but not the actual element which
we intend to move into the Cuckoo hash table eventually.

As mentioned earlier in Section 4, if a single memory word can pack B elements, then obliv-
ious sorting and oblivious random permutation can both be conducted in a “packed” fashion, by
performing SIMD operations on multiple items at a time, where each SIMD operation on a batch
of B elements can be expressed with O(1) number of word-level addition, subtraction, and bitwise
boolean operations. A packed oblivious sorting scheme and packed oblivious random permutation
consume only O

(
n
B · poly log n

)
time. In particular, when n = poly log λ, packed oblivious sorting

and oblivious random permutation can be accomplished in O(n) time.
Our algorithm, called SmallHT, is inspired by this observation. Suppose that we receive an

input array I, where |I| = poly log λ. The input I contains both real and dummy elements, and it is
guaranteed that the real elements in I appear in random order, where the randomness is concealed
from the adversary. We would like to build a Cuckoo hash table containing a main table and a
stash, and the total length of the two is O(n) elements. At a high level, our idea is the following:

1. Add dummies and shuffle. Create a secretly and randomly shuffled array of length ncuckoo =
ccuckoo · n + log λ, for some constant ccuckoo > 0 (that we will define below) containing all
the nR real balls from the input I and ncuckoo − nR dummies, where each dummy receives a
distinct random dummy-index from {1, 2, . . . , ncuckoo − nR}, where ncuckoo is the total space
of the Cuckoo hashing including the main table ccuckoo · n and the stash log λ. Henceforth, a
dummy with the dummy-index i is said to be the i-th dummy. Let X denote the outcome of
this step.

In Section 8.2.1, we describe how to achieve this in linear total time using a combination of
IntersperseRD, as well as packed oblivious sort and packed oblivious permutation.

2. Evaluate assignment with metadata only. Now, we emulate the Cuckoo hashing procedure
obliviously operating only on metadata. At the end of this step, every element in the array X
should learn which bin (either in the main table or the stash) it is destined for. Specifically,
we require the following:

• Every real element in X receives a bin number consistent with Cuckoo hashing scheme;
and

• The i-th dummy receives the bin number of the i-th empty bin in the Cuckoo hash table
(including the main table and the stash).

This step establishes a bijection between the elements in X and each position in the Cuckoo
hash table (including the main table and the stash). In Section 8.2.2, we describe how to
achieve this using packed oblivious sorts and packed oblivious random permutations.
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3. Actual routing of the balls into the Cuckoo hash table. Once the metadata phase completes,
each element in the array X routes itself to the destined position in the Cuckoo hash table and
this takes O(n) total time. At this point, the building of the Cuckoo hash table completes.

4. Lookup. In the lookup phase, every lookup request will visit two bins in the main table
and also search for the requested item in the stash. If the request is dummy, two random
bins in the main table are visited; otherwise, we evaluate the PRF on the requested key to
determine which two bins are visited. During lookup, if the requested key is found, we mark
the corresponding position as dummy and thus removing the item from the hash table. For
obliviousness, even when the requested key is not in some location that is visited during
lookup, we make a dummy write anyway.

Although looking up the item in the stash may take super-constant time, we will later treat
the stash specially by merging multiple stashes into a single overflow pile; so the reader need
not worry about the overhead of accessing the stash right now.

5. Extract. Concatenate the main hash table and the stash, run oblivious tight compaction
(Theorem 5.1) on the concatenated array. Truncate the outcome and output only the first n
elements (note that with each Lookup we replace the retrieved real key with dummy).

Overview of security. Note that we make the routing of all balls into their final destination
“in the clear”, which might seem insecure. However, since in the input array I, the real elements
appear in random order, after the initial IntersperseRD procedure, the resulting array X is secretly
and randomly permuted. Therefore, the routing of the elements in X into their destined bins in
the Cuckoo hash table reveals a uniformly random permutation that is independent of the input
one. Further, even conditioned on having observed this random permutation, the two bin choices
each element makes remain uniformly random.

The hardest part in the proof is to argue why the Extract procedure outputs an array where
real elements are permuted in random order. For this property to be preserved, we need a special
“indiscriminate” property from the hash table construction procedure. This property says that
the procedure does not discriminate balls based on the order in which they are added, their keys,
or their positions in the input array. More specifically, imagine that in the input array I, every
real ball is associated with a sequence of random bits, including the random bits representing its
two bin choices as well as any additional randomness that the algorithm needs. Denote by ρi the
random bits received by the i-th element in I.

Indiscriminate hash table construction: For any i such that I[i] is a real ball, its bin assignment
is a function fully determined by (ρi, ρ−i) where ρ−i denotes the set of random bits received by
all other real balls besides i — importantly, ρ−i is a set that is insensitive to ordering.

This property allows us to swap the randomness ρi and ρj of two real balls (while fixing all other
randomness), thereby resulting with the i-th element and the j-th element swapping their positions
in the Cuckoo hash table. Thus, a coupling argument will show that in the outcome of Extract, the
position of each real ball is equally likely and the order is completely random (where the randomness
here stems from the randomness corresponding to unvisited real items in the input).

The question is whether this property holds. It is not hard to verify that it does hold throughout
the algorithm except one possible place: the Cuckoo hash table construction algorithm. A-priori
it is not clear that the bin assignments are “indiscriminate”, namely, they are independent of the
elements themselves or from the order in which they appear. Nevertheless, in Section 4.6, we
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showed how to slightly modify the Cuckoo hashing bin assignment procedure of [8, 20] to achieve
this property, and we formally restated this property in Proposition 4.13.

We formalize the above intuition and present a detailed proof in Section 8.3, after we present
the full details of the construction in Section 8.2.

8.2 The Full Construction

In this section we give the full description of our hash table, following the high-level overview given
in Section 8.1. We start with formally describing the first two steps from the overview (Steps 1
and 2) in Sections 8.2.1 and 8.2.2, respectively. Then, in Section 8.2.3 (Construction 8.7), we give
the full description of the Build, Lookup, and Extract procedures.

8.2.1 Step 1 – Add Dummies and Shuffle

We are given an array I of length n that contains real and dummy elements. The output of this
procedure (described in Algorithm 8.2) is an array of size ncuckoo = ccuckoo ·n+log λ, where ccuckoo is
the constant required for Cuckoo hashing, which contains all the real elements from I and the rest
are dummies. Furthermore, each dummy receives a distinct random index from {1, . . . , ncuckoo−nR},
where nR is the number of real elements in I. Assuming that the real elements in I are a-priori
uniformly shuffled, then the output array is randomly shuffled.

Algorithm 8.2: Shuffle the Real and Dummy Elements

• Input: An input array I of length n consisting of real and dummy elements.

• Input Assumption: The real elements among I are randomly shuffled.

• The algorithm:

1. Count the number of real elements in I. Let nR be the output.

2. Write down a metadata array MD of length ncuckoo, where the first nR elements contain
only a symbol real, and the remaining ncuckoo − nR elements are assigned to dummy-
indexes (⊥, 1), (⊥, 2), . . . , (⊥, ncuckoo − nR).

3. Run packed oblivious random permutation (Theorem 4.6) on MD, packing O
(

log λ
logn

)
elements into a single memory word. Run oblivious tight compaction (Theorem 5.1) on
the resulting array, moving all the dummy elements to the end.

4. Run tight compaction (Theorem 5.1) on the input I to move all the real elements to the
front.

5. Obliviously write down an array I′ of length ncuckoo, where the first nR elements are
the first nR elements of I and the last ncuckoo − nR elements are the last ncuckoo − nR
elements of MD, decompressed to the original length as every entry in the input I.

6. Run IntersperseRD on I′ (Algorithm 6.6) mixing the reals and dummies at random. Let
X denote the outcome array.

• Output: The array X.

Claim 8.3. If n = log12 λ, then Algorithm 8.2 has O(n) total time.

Proof. All steps but 3 incur O(n) time by description. Note that each element in MD can be

expressed with O(log n) = O(log log λ) bits. Thus, in Step 3, we pack O
(

log λ
log log λ

)
elements into a
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single memory word, so the oblivious random permutation incurs O
(

n
log λ/ log log λ · log2 n

)
≤ O(n)

time.

8.2.2 Step 2 – Evaluate Assignment with Metadata Only

We obliviously emulate the Cuckoo hashing procedure, but doing it directly on the input array is
too expensive (as it incurs oblivious sorting inside) so we do it directly on metadata (which is short
since there are few elements), and use the packed version of oblivious sort (Theorem 4.2). At the
end of this step, every element in the input array should learn which bin (either in the main table
or the stash) it is destined for. Recall that the Cuckoo hashing consists of a main table of ccuckoo ·n
bins and a stash of log λ bins.

Our input for this step is an array MDX of length ncuckoo which consists of pairs of bin choices
(choice1, choice2), where each choice is an element from [ccuckoo · n] ∪ {⊥}. The real elements have
choices in [ccuckoo · n] while the dummies have ⊥. This array corresponds to the bin choices of the
original elements in X (using a PRF) which is the original array I after adding enough dummies
and randomly shuffling that array.

To compute the bin assignments we start with obliviously assigning the bin choices of the real
elements in MDX. Next, we obliviously assign the remaining dummy elements to the remaining
available locations. We do so by a sequence of oblivious sort algorithms. See Algorithm 8.4.

Algorithm 8.4: Evaluate Cuckoo Hash Assignment on Metadata

• Input: An array MDX of length ncuckoo = ccuckoo · n + log λ, where each element is either
dummy or a pair (choicei,1, choicei,2), where choicei,b ∈ [ccuckoo · n] for every b ∈ {1, 2}, and
the number of real pairs is at most n.

• The algorithm:

1. Run the indiscriminate oblivious Cuckoo assignment, cuckooAssign (Proposition 4.13),
and let AssignX be the result. For every i for which MDX[i] = (choicei,1, choicei,2), we
have that AssignX[i] = assignmenti where assignmenti ∈ {choicei,1, choicei,2} ∪ Sstash,
i.e., either one of the two choices or the stash Sstash = [ncuckoo] \ [ccuckoo · n]. For every i
for which MDX[i] is dummy we have that AssignX[i] = ⊥.

2. Run oblivious bin placement (Section 4.4) on AssignX, and let Occupied be the output
array (of length ncuckoo). For every index j we have Occupied[j] = i if AssignX[i] = j
for some i. Otherwise, Occupied[j] = ⊥.

3. Label the i-th element in AssignX[i] with a tag t = i for all i. Run oblivious sorting on

AssignX and let Ãssign be the resulted array, such that all real elements appear in the
front, and all dummies appear at the end, and ordered by their respective dummy-index
(i.e. given in Algorithm 8.2, Step 2).

4. Label the i-th element in Occupied with a tag t = i for all i. Run oblivious sorting on

Occupied and let ˜Occupied be the resulted array, such that all occupied bins appear
in the front and all empty bins appear at the end (where each empty bin contains an
index (i.e., a tag t) of an empty bin in Occupied).

5. Scan both arrays Ãssign and ˜Occupied in parallel, updating the destined bin of each

dummy element in Ãssign with the respective tag in ˜Occupied (and each real element
pretends to be updated).

6. Run oblivious sorting of the array Ãssign (back to the original ordering in the array
AssignX) according to the tag labeled in Step 3. Update the assignments of all dummy
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elements in AssignX according to the output array of this step.

• Output: The array AssignX.

Claim 8.5. If n = log8 λ, then Algorithm 8.4 has O(n) total time.

Proof. The input arrays is of size ccuckoo · n + log λ and each entry is of size O(log n). By Propo-
sition 4.13, Step 1 runs in O(n) time. Steps 2 through 6 consist of a constant number of packed
oblivious sorting (Theorem 4.2) invocations so they consume altogether O(n) time.

Remark 8.6 (On the indiscriminate property). This property of indiscriminate hashing (Defi-
nition 4.12) is necessary in our construction of SmallHT (Theorem 8.8), but was not needed in
previous works that use oblivious Cuckoo hashing [8, 20, 32]. This is since we reveal AssignX in
SmallHT, and then we have to prove that the joint distribution of the access pattern and the output
remains indistinguishable given this information. Thus, we need it to hold that AssignX does not
depend on any real key value in the original array I (except for the evaluation PRF on such keys).
Otherwise, the security proof does not go through, e.g., the output of Extract would not be uniform.

8.2.3 Combining it All Together

The full description of the construction is given next. It invokes Algorithms 8.2 and 8.4.

Construction 8.7: SmallHT – Hash table for Small Bins

Procedure SmallHT.Build(I):

• Input: An input array I of length n consisting of real and dummy elements.

• Input Assumption: The real elements among I are randomly shuffled.

• The algorithm:

1. Run Algorithm 8.2 (prepare real and dummy elements) on input I, and receive back an
array X.

2. Choose a PRF key sk where PRF maps {0, 1}logN → [ccuckoo · n].

3. Create a new metadata array MDX of length n. Iterate over the the array X and for
each real element X[i] = (ki, vi) compute two values (choicei,1, choicei,2) ← PRFsk(ki),
and write (choicei,1, choicei,2) in the i-th location of MDX. If X[i] is dummy, write
(⊥,⊥) in the i-th location of MDX.

4. Run Algorithm 8.4 on MDX to compute the assignment for every element in X. The
output of this algorithm, denoted AssignX, is an array of length n, where in the i-th
position we have the destination location of element X[i].

5. Route the elements of X, in the clear, according to AssignX, into an array Y of size
ccuckoo · n and into a stash S.

• Output: The algorithm stores in the memory a secret state consists of the array Y, the
stash S and the secret key sk.

56



Procedure SmallHT.Lookup(k):

• Input: A key k that might be dummy ⊥. It receives a secret state that consists of an array
Y, a stash S, and a key sk.

• The algorithm:

1. If k 6= ⊥:
(a) Evaluate (choice1, choice2)← PRFsk(k).

(b) Visit Ychoice1 ,Ychoice2 and the stash S to look for the key k. If found, remove the
element by overwriting ⊥. Let v∗ be the corresponding value (if not found, set
v∗ := ⊥).

2. Otherwise:
(a) Choose random (choice1, choice2) independently at random from [ccuckoo · n].

(b) Visit Ychoice1 ,Ychoice2 and the stash S and look for the key k. Set v∗ := ⊥.

• Output: Return v∗.

Procedure SmallHT.Extract().

• Input: The algorithm has no input; It receives the secret state that consists of an array Y,
a stash S, and a key sk.

• The algorithm:

1. Perform oblivious tight compaction (Theorem 5.1) on Y‖S, moving all the real elements
to the front. Truncate the resulting array at length n. Let X be the outcome of this
step.

2. Call X′ ← IntersperseRDn(X) (Algorithm 6.6).

• Output: The array X′.

8.3 Efficiency and Security Analysis

We prove that our construction obliviously implements Functionality 4.8 for every sequence of
instructions with non-recurrent lookups between two Build operations. As in Section 7, we view
our construction in a hybrid model, in which we have ideal implementations of the underlying
building blocks.

Theorem 8.8. Construction 8.7 obliviously implement Functionality 4.8, assuming that the input
for Build is randomly shuffled, and assuming one-way functions. Moreover, on input lists of size
n = log8 λ, Build incurs O(n) time, Lookup has constant time in addition to linearly scanning a
stash of size O(log λ), and Extract incurs O(n) time.

We start with the efficiency analysis. The Build operation executes Algorithm 8.2 that consumes
O(n) time (by Claim 8.3), then performs additional O(n) time, then executes Algorithm 8.4 that
consumes O(n) time (by Claim 8.5), and finally performs additional O(n) time. Thus, the total
time is O(n). For Lookup, by construction, we perform in constant time in addition to lookup in
the stash S which is of size O(log λ). The time of Extract is O(n) by construction.

For security, we present a simulator Sim that simulates Build, Lookup and Extract procedures of
SmallHT.
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• Simulating Build. Upon receiving an instruction to simulate Build with security parameter
1λ and a list of size n, the simulator Sim runs the real SmallHT.Build algorithm on input 1λ

and a list that consists of n dummy elements. It outputs the access pattern of this algorithm.
Let (Y, S, sk) be the output state, where Y is an array of size ccuckoo · n, S is a stash of size
O(log λ), and sk is a secret key used to generate pseudorandom values. The simulator stores
this state.

• Simulating Lookup. When the adversary submits a Lookup command with a key k, the
simulator Sim simulates an execution of the algorithm SmallHT.Lookup on input ⊥ (i.e., a
dummy element) with the state (Y, S, sk) (which was generated while simulating the the Build
operation).

• Simulating Extract. When the adversary submits an Extract command, the simulator Sim
executes the real SmallHT.Extract algorithm with its stored internal state (Y,S, sk).

We proceed to show that no adversary can distinguish between the real and ideal executions.
Recall that in the ideal execution, with each command that the adversary outputs, it receives
back the output of the functionality and the access pattern of the simulator, where the latter is
simulating the access pattern of the execution of the command on dummy elements. On the other
hand, in the real execution, the adversary sees the access pattern and the output of the algorithm
that implements the functionality. The proof is via a sequence of hybrid experiments.

Experiment Hyb0(λ). This is the real execution. With each command that the adversary submits
to the experiment, the real algorithm is being executed, and the adversary receives the output of
the execution together with the access pattern as determined by the execution of the algorithm.

Experiment Hyb1(λ). This experiment is the same as Hyb0, except that instead of choosing a
PRF key sk, we use a truly random function O. That is, instead of calling to PRFsk(·) in Step 3 of
Build and Step 4 of the function Lookup, we call O(sk‖·).

The following claim states that due to the security of the PRF, experiments Hyb0 and Hyb1 are
computationally indistinguishable. The proof of this claim is standard.

Claim 8.9. For any PPT adversary A, there is a negligible function negl(·) such that

|Pr [Hyb0(λ) = 1]− Pr [Hyb1(λ) = 1]| ≤ negl(λ).

Experiment Hyb2(λ). This experiment is the same as Hyb1(λ), except that with each command
that the adversary submits to the experiment, both the real algorithm is being executed as well as
the functionality. The adversary receives the access pattern of the execution of the algorithm, yet
the output comes from the functionality.

In the following claim, we show that the initial secret permutation and the random oracle,
guarantee that experiments Hyb1 and Hyb2 are identical.

Claim 8.10. Pr [Hyb1(λ) = 1] = Pr [Hyb2(λ) = 1].

Proof. Recall that we assume that the lookup queries of the adversary are non-recurring. Our goal
is to show that the output distribution of the extract procedure is a uniform permutation of the
unvisited items even given the access patter of the previous Build and Lookup operations. By doing
so, we can replace the Extract procedure with the ideal Fn,NHT .Extract functionality which is exactly
the difference between Hyb1(λ) and Hyb2(λ).
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Consider a sequence of operations that the adversary makes. Let us denote by I the set of
elements with which it invokes Build and by k∗1, . . . , k

∗
m the set of keys with which it invokes

Lookup. Finally, it invokes Extract. We first argue that the output of Fn,NHT .Extract consists of the

same elements as that of Extract. Indeed, both Fn,NHT .Lookup and SmallHT.Lookup remove every
visited item so when we execute Extract, the same set of elements will be in the output.

We need to argue that the distribution of the permutation of unvisitied items in the output of
Extract is uniformly random. This is enough since Extract performs IntersperseRD which shuffles
the reals and dummies to obtain a uniformly random permutation overall (given that the reals were
randomly shuffled to begin with). Fix an access pattern observed during the execution of Build and
Lookup. We show, by programming the random oracle and the initial permutation appropriately
(while not changing the access pattern), that the permutation is uniformly distributed.

Consider tuples of the form (πin,O, R,T, πout), where (1) πin is the permutation performed
on I by the input assumption (prior to Build), (2) O is the random oracle, (3) R is the internal
randomness of all intermediate procedures (such as IntersperseRD, Algorithms 8.2 and 8.4, etc); (4)
T is the access pattern of the entire sequence of commands (Build(I), Lookup(k∗1), . . . , Lookup(k∗m)),
and (5) πout is the permutation on I′ = {(k, v) ∈ I | k /∈ {k∗1, . . . , k∗m}} which is the input to Extract.
The algorithm defines a deterministic mapping ψR(πin,O)→ (T, πout).

To gain intuition, consider arbitrary R, πin, and O such that ψR(πin,O)→ (T, πout) and two dis-
tinct existing keys ki and kj that are not queried during the Lookup stage (i.e., ki, kj /∈ {k∗1, . . . , k∗m}).
We argue that from the point of view of the adversary, having seen the access pattern and all query
results, he cannot distinguish whether πout(i) < πout(j) or πout(i) > πout(j). The argument will
naturally generalize to arbitrary unqueried keys and an arbitrary ordering.

To this end, we show that there is π′in and O′ such that ψR(π′in,O′)→ (T, π′out), where π′out(`) =
πout(`) for every ` /∈ {i, j}, and π′out(i) = πout(j) and π′out(j) = πout(i). The permutation π′in is the
same as πin except that π′in(i) = πin(j) and π′in(j) = πin(i), and O′ is the same as O except that
O′(ki) = O(kj) andO′(kj) = O(ki). The fact that the access pattern after this modification remains
the same stems from the indiscriminate property of the hash table construction procedure which
says that the Cuckoo hash assignments are a fixed function of the two choices of all elements (i.e.,
MDX), independently of their real key value (i.e., the procedure does not discriminate elements
based on their keys in the input array). Note that the mapping is also reversible so by symmetry
all permutations have the same number of configurations of πin and O.

For the general case, one can switch from any πout to any (legal) π′out by changing only πin and
O at locations that correspond to unvisited items. We define

π′in(i) = πin(πout
−1(π′out(i))) and O′(ki) = O(kπin(πout

−1(π′out(i)))
).

Due to the indiscriminate property, this choice of π′in and O′ do not change the observed access
pattern and result with the output permutation π′out, as required. By symmetry, the resulting
mapping between different (π′in,O′) and π′out is regular (i.e., each output permutation has the same
number of ways to reach to) which completes the proof.

Experiment Hyb3(λ). This experiment is the same as Hyb2(λ), except that we modify the defi-
nition of Extract to output a list of n dummy elements. We also stop marking elements that were
searched for during Lookup.

Recall that in this hybrid experiment the output of Extract is given to the adversary by the
functionality, and not by the algorithm. Thus, the change we made does not affect the view of the
adversary which means that experiments Hyb2 and Hyb3 are identical.
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Claim 8.11. Pr [Hyb2(λ) = 1] = Pr [Hyb3(λ) = 1].

Experiment Hyb4(λ). This experiment is identical to experiment Hyb3(λ), except that when the
adversary submits the command Lookup(k) with key k, we ignore k and run Lookup(⊥).

Recall that the output of the procedure is determined by the functionality and not the algorithm.
By construction, the access pattern observed by the adversary in this experiment is identical to
the one observed from Hyb3(λ) (recall that we already switched the PRF to a completely random
choices).

Claim 8.12. Pr [Hyb3(λ) = 1] = Pr [Hyb4(λ) = 1].

Experiment Hyb5. This experiment is the same as Hyb4, except that we run Build in input I
that consists of only dummy values.

Recall that in this hybrid experiment the output of Extract and Lookup is given to the adversary
by the functionality, and not by the algorithm. Moreover, the access pattern of Build, due to the
random oracle and the obliviousness of all the underlying building blocks (oblivious Cuckoo hash,
oblivious random permutation, oblivious tight compaction, IntersperseRD, oblivious bin assignment,
and oblivious sorting), the view of the adversary in Hyb4(λ) and Hyb5(λ) is identical.

Claim 8.13. Pr [Hyb4(λ) = 1] = Pr [Hyb5(λ) = 1].

Experiment Hyb6. This experiment is the same as Hyb5, except that we replace the random
oracle O(sk‖·) with a PRF key sk.

Observe that this experiment is identical to the ideal execution. Indeed, in the ideal execution
the simulator runs the real Build operation on input that consists only of dummy elements and has
an embedded PRF key. However, this PRF key is never used since we input only dummy elements,
and thus the two experiments are identical.

Claim 8.14. Pr [Hyb5(λ) = 1] = Pr [Hyb6(λ) = 1].

By combining Claims 8.9–8.14 we conclude the proof of Theorem 8.8.

8.4 CombHT: Combining BigHT with SmallHT

We use SmallHT in place of näıveHT for each of the major bins in the BigHT construction from
Section 7. Since the load in the major bin in the hash table BigHT construction is indeed n = log8 λ,
this modification is valid. Note that we still assume that the number of elements in the input to
CombHT, is at least log12 λ (as in Theorem 7.3).

However, we make one additional modification that will be useful for us later in the construction
of the ORAM scheme (Section 9). Recall that each instance of SmallHT has a stash S of size O(log λ)
and so Lookup will require, not only searching an element in the (super-constant size) stash OFS

of the overflow pile from BigHT, but also linearly scanning the super-constant size stash of the
corresponding major bin. It will be convenient for us to merge the different S stashes of the major
bins and store the merged list in an oblivious Cuckoo hash (Section 4.6). (A similar idea has also
been applied in several prior works [10, 20, 21, 25].) This results with a new hash table scheme we
call CombHT.

Looking ahead, in our ORAM construction we will have O(logN) levels, where each (non-
empty) level has a merged stash and also a stash from the overflow pile OFS, both of size O(log λ).
We will employ the “merged stash” trick once again, merging the stashes of every level in the
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ORAM into a single one, resulting with a total stash size O(logN · log λ) = O(log2N). We will
store that merged stash in a dictionary, and accessing this merged stash would cost O(log logN)
total time.

Construction 8.15: CombHT: combining BigHT with SmallHT

Procedure CombHT.Build(I): Run Steps 1–7 of Procedure BigHT.Build in Construction 7.2,
where in Step 7 let OF = (OFT,OFS) denote the outcome structure of the overflow pile. Then,
perform:

8. Prepare data structure for efficient lookup. For i = 1, . . . , B, call SmallHT.Build(Bini) on each
major bin to construct an oblivious hash table, and let {(OBini,Si)}i∈[B] denote the outcome
bins and the stash.

9. Merge all the stashes S1, . . . ,SB from all small hash tables together. If the combined set of
all stashes consists of less than log8 λ elements, then pad it to log8 λ with dummies. Call the
Build algorithm of an oblivious Cuckoo hashing scheme on the combined set (Section 4.6),
and let CombS = (CombST,CombSS) denote the output data structure, where CombST is the
main table and CombSS is the stash.

Output: Output (OBin1, . . . ,OBinB,OF,CombS, sk).

Procedure Lookup(ki): The procedure is the same as in Construction 7.2, except that whenever
visiting some bin OBinj for searching for a key ki, instead of visiting its stash to look for ki, we
visit CombS.

Procedure Extract(). The procedure Extract is the same as in Construction 7.2, except that
T = OBin1.Extract()‖ . . . ‖OBinB.Extract()‖OF.Extract()‖CombS.Extract().

Theorem 8.16. Construction 8.15 obliviously implement Functionality 4.8, assuming that the
input for CombHT.Build is randomly shuffled, and assuming one-way functions. Assuming that
|I| = n and n ≥ log12 λ, procedures CombHT.Build(I) and CombHT.Extract perform O(n) time, and
CombHT.Lookup runs in constant time in addition to searching in two stashes of size O(log λ).

Proof. We start with the analysis of the overhead of the procedures. Since each stash Si is of
size O(log λ) and there are n/ log8 λ major bins, the merged stash CombS has maximum size
O(n/ log7 λ). The size of the overflow pile OF is O(n/ log2 λ). Thus, storing each of them with a
oblivious Cuckoo hashing schemes requires O(n/ log2 λ) space (resulting with OFT and CombST)
plus an additional stash of size O(log λ) (resulting with OFS and CombSS).

Thus, by construction, CombHT.Build(I) and CombHT.Extract performs in O(|I|) time. Regard-
ing CombHT.Lookup, it needs to perform a linear scan in two stashes (OFS and CombSS) of size
O(log λ) plus constant time to search in the main Cuckoo hash tables (OFT and CombST).

We prove obliviousness via a sequence of constructions, showing that each one of them oblivi-
ously implements Functionality 4.8.

• Construction I: This construction is the same as Construction 7.2, except that we replace
each näıveHT with SmallHT. Let S1, . . . ,SB denote the small stash of the bins OBin1, . . . ,OBinB,
respectively.

• Construction II: This construction is the same as Construction I, except the following
(inefficient) modification. Instead of searching for the key ki in the small stash Si of one of
the bins of SmallHT, we search for ki in all small stashes S1, . . . ,SB in order.
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• Construction III: This construction is the same as Construction II, except that we modify
Build as follows. We merge all the small stashes S1, . . . ,SB into one long list. As in Construc-
tion II, when we have to access one of the stashes and look for a key ki, we perform a linear
scan in this list, searching for ki.

• Construction IV: This construction is the same as Construction III, except that we make
the search in the merged set of stashes more efficient. In CombHT.Build we construct an
oblivious Cuckoo hashing scheme as in [8] on the elements in the combined set of stashes.
The resulting structure is called CombS = (CombST,CombSS) and it is composed of a main
table and a stash. Observe that this construction is identical to Construction 8.15.

As follows from Theorems 7.3 and 8.8, Construction I obliviously implements Functionality 4.8
assuming that the input array for Build is randomly shuffled. Construction II is the same as
Construction I, except that there is a blowup in the access pattern of each Lookup by performing a
linear scan of all elements in all stashes. In terms of functionality, by construction the input/output
behavior of the two constructions is exactly the same. For obliviousness, one can simulate the linear
scan of all the stashes by performing a fake linear scan. More formally, there exists a 1-to-1 mapping
between access pattern provided by Construction I and an access pattern provided by Construction
II. Thus, Construction II obliviously implements Functionality 4.8.

Construction III and Construction II are the same, except for a cosmetic modification in the lo-
cations where we put the elements from the stashes. Thus, Construction III obliviously implements
Functionality 4.8. Finally, Construction IV is the same as Construction III, except that we apply an
oblivious Cuckoo hash on the merged set of hashes ∪i∈[B]Si to improve on Lookup time (compared
to a linear scan). In terms of functionality, since an oblivious Cuckoo hash implements the same
functionality as a linear scan, Construction IV implements functionality 4.8. The obliviousness of
Construction IV stems directly from the obliviousness of the oblivious Cuckoo hash. We conclude
that Construction II obliviously implements Functionality 4.8, as well.

9 Oblivious RAM

In this section we present our final ORAM construction.

9.1 Overview and Intuition

Recall that Sections 7 and 8 together provided a construction for CombHT, an oblivious hash table
for non-recurrent lookups. In this section, we utilize CombHT in the hierarchical framework of
Goldreich and Ostrovsky [18] to construct our ORAM scheme. We first give a brief overview of
the hierarchical ORAM framework. Then, we describe the challenges in adapting CombHT in this
framework and describe how we overcome these challenges. Finally, we describe our ORAM scheme
in detail. Recall that λ is the security parameter and N = poly(λ) is the capacity of ORAM. For
simplicity, we assume N is a power of 2.

Hierarchical ORAM. A hierarchical ORAM consists of O(logN) levels of geometrically in-
creasing sizes. In particular, a level l is capable of storing 2l blocks of data and the largest level
(l = logN) can store the entire data. Each level in this framework is an oblivious hash table capable
of supporting non-recurrent requests. Initially, all the blocks are stored in the largest level and all
other levels are empty. In order to access a block with address addr, we sequentially query levels of
the hierarchy starting at the smallest level. If addr is found at some level i, then for all subsequent
levels a dummy block is queried instead. When a requested block (addr, data) is found in a specific
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level, it is marked as deleted in that level and is written back (possibly updated if it was a write
request) to the smallest level of the hierarchy. Every 2i accesses, all the logical blocks in levels
smaller than i are merged to rebuild level i. In a hierarchical ORAM, obliviousness is guaranteed
as long as a block is not looked up twice at a given level. The hierarchical ORAM guarantees this
by (i) ensuring that a queried block is moved to a smaller level, and (ii) once a block is found in a
level, only dummy blocks are queried in subsequent levels.

Our final goal is to achieve a hierarchical construction with an (amortized) O(logN) time
overhead per access. In the hierarchical ORAM framework, if an oblivious hash table can perform
lookup with O(1) time, then the cost to read from logN levels is O(logN). Similarly, if the level
can be built in linear time, the amortized cost per access to perform a rebuild operation is O(logN).
Indeed, CombHT does satisfy these requirements of an oblivious hash table except (1) CombHT can
be used only for tables of size Ω(log12 λ), and (2) CombHT achieves O(1) time lookup if we ignore
the cost to access O(log λ) sized stashes. We now describe how these issues can be resolved to use
CombHT in our scheme.

1. The smallest level. CombHT provides an O(1) lookup time; however, it can only be used
for levels of size Ω(log12 λ). Typically, the smallest level in a hierarchical ORAM is O(log λ)
sized, but it also requires O(log λ) time to access. Thus, if we use the latter construction for
the first 12 log logN levels (until the expected number of elements in a level is Ω(log12 λ)),
the access cost would exceed our budget. Moreover, for levels of size n ≤ log8 λ, it is not
clear if there is an oblivious hash table construction that achieves O(1) time lookup and
linear time build. Specifically, the known candidate O(1) constructions, oblivious Cuckoo
hashing and two-tier hashing, do not seem to be secure in this range [8]. We address this
issue by using a larger smallest level such that the expected capacity of this level is log12 λ.
We then employ a näıveHT based oblivious dictionary for the smallest level, but use CombHT
for subsequent levels. The smallest level thus incurs a poly log log λ blowup (Corollary 4.15),
but this is incurred only at the smallest level and hence is an additive factor. We stress
that although the capacity constraint of CombHT is satisfied, it still cannot be used at the
smallest level. This is because blocks in the smallest level are added one-by-one, and not
all at once. Moreover, for n = poly log λ, almost all known computationally and statistically
secure schemes are either insecure or inefficient.

2. CombHT stashes. Accessing a stash of size log λ at a level requires O(log λ) time, which
exceeds our budget. We address this by using the same technique as in Kushilevitz et al. [25].
Essentially, we merge all stashes to create a common stash of size O(log2 λ), which is added
to the smallest level at the end of a rebuild operation.

Finally, our scheme differs from a standard hierarchical ORAM in the ordering of elements
when a level rebuild is started. Typically, a level rebuild is performed using a sequence of expensive
oblivious sorts which introduce fresh randomness for the blocks at that level. In order to achieve an
overall O(logN) blowup, we are inspired by the technique of reusing unused randomness that was
introduced by Patel et al. [32]. Thus, while building a level i, we apply CombHT.Extract() to levels
j < i; the outputs at each of these levels retain the randomness from the previous build operation.
We then use our linear time Intersperse procedure (Section 6) to create a single randomly-shuffled
array of blocks.

9.2 The Construction

ORAM Initialization. Let N be the memory size. Our structure consists of one dictionary D
(see Section 4.7), and O(logN) levels numbered `+ 1, . . . , L respectively, where ` = d12 log log λe,
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and L = dlogNe is the maximal level.

• The dictionary D is an oblivious dictionary storing 2`+1 elements. Every element in D
is of the form (levelIndex,whichStash, data), where levelIndex ∈ {`, . . . , L}, whichStash ∈
{overflow, stashes} and data ∈ {0, 1}w.

• Each level i ∈ {` + 1, . . . , L} consists of an instance, called Ti, of the oblivious hash table
CombHT from Section 8.4 that has capacity 2i.

Additionally, each level is associated with an additional bit fulli, where 1 stands for full and 0 stands
for available. Available means that this level is currently empty and does not contain any blocks,
and thus one can rebuild into this level. Full means that this level currently contains blocks, and
therefore an attempt to rebuild into this level will effectively cause a cascading merge. In addition,
there is a global counter ctr that is initialized to 0.

Construction 9.1: Oblivious RAM Access(op, addr, data).

• Input: op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.

• Secret state: The dictionary D, levels T`+1, . . . , TL, the bits full`+1, . . . , fullL and counter
ctr.

• The algorithm:

1. Initialize found := false, data∗ := ⊥, levelIndex := ⊥ and whichStash := ⊥.

2. Perform fetched := D.Lookup(addr). If fetched 6= ⊥:
(a) Interpret fetched as (levelIndex,whichStash, data∗).

(b) If levelIndex = `, then set found := true.

3. For each i ∈ {`+ 1, . . . , L} in increasing order, do:
(a) If found = false:

i. Run fetched := Ti.Lookup(addr) with the following modifications:
– Instead of visiting the stash of OF, namely OFS, in Construction 8.15, check

whether levelIndex = i and whichStash = overflow, and in that case use the
value data∗ as the fetched element from OF. Otherwise, use ⊥.

– Instead of visiting the stash of CombS, namely CombSS, check whether levelIndex =
i and whichStash = stashes, and in that case use the value data∗ as the fetched
value. Otherwise use ⊥.

ii. If fetched 6= ⊥, let found := true and data∗ := fetched.

(b) Else, Ti.Lookup(⊥).

4. Let (k, v) := {(addr, data∗)} if this is a read operation; else let (k, v) := {(addr, data)}.
Insert (k, (`,⊥, v)) into oblivious dictionary D using D.Insert(k, (`,⊥, v)).

5. Increment ctr by 1. If ctr ≡ 0 mod 2`, perform the following.
(a) Let j be the smallest level index such that fullj = 0 (i.e., available). If all levels are

marked full, then j := L. In other words, j is the target level to be rebuilt.

(b) Let U := D.Extract()‖T`+1.Extract()‖ . . . ‖Tj−1.Extract() and set j∗ := j − 1. If all
levels are marked full, then additionally let U := U‖TL.Extract() and set j∗ := L.

(c) Run Intersperse
(j∗−`)
2`+1,2`+1,2`+2,...,2j∗

(U) (Algorithm 6.4). Denote the output by Ũ. If

j = L, then additionally do the following to shrink Ũ to size N = 2L:
i. Run the tight compaction on Ũ moving all real elements to the front. Truncate

Ũ to length N .

ii. Run Ũ← IntersperseRDN (Ũ) (Algorithm 6.6).
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(d) Rebuild the jth hash table with the 2j elements from Ũ via Tj := CombHT.Build(Ũ)
(Construction 8.15) and let OFS,CombSS be the associated stashes (of size O(log λ)
each). Mark fullj := 1.

i. For each element (k, v) in the stash OFS, run D.Insert(k, (j, overflow, v)).

ii. For each element (k, v) in the stash CombSS, run D.Insert(k, (j, stashes, v)).

(e) For i ∈ {l, . . . , j − 1}, reset Ti to be empty structure and set fulli := 0.

• Output: Return data∗.

9.3 Efficiency and Security Analysis

We prove that our construction obliviously implements the ORAM functionality (Functionality 3.3)
and its amortized overhead is logarithmic.

Theorem 9.2 (Restatement of Theorem 1.1). Construction 9.1 obliviously implements Function-
ality 3.3. Moreover, the construction has O(logN) amortized time overhead.

Proof. We start with the analysis of time. For the sake of amortization, let t ≥ N be the number of
requests to Access. For each Access, Step 1–4 perform a single Lookup and Insert operation on the
oblivious dictionary, and one Lookup on each T`, . . . , TL. These operations require O(log4 log λ) +
O(logN) time. In Step 5, for every 2` requests of Access, one Extract and at most O(log2N) Insert
operations are performed on the oblivious dictionary D, and at most one CombHT.Build on T`+1.
These require O

(
2` · log3(2`+1) + log2N · log4(2`+1) + 2`+1

)
= O(2` · log4 log λ) time. In addition,

for each j ∈ {`+ 1, . . . , L}, for every 2j requests of Access, at most one Extract is performed on Tj ,

one Build on Tj+1, one Intersperse
(j−`)
2`+1,2`+1,2`+2,...,2j

, one IntersperseRDN , and one tight compaction,

all of which require linear time and thus the total time is O(2j). Hence, over t requests, the
amortized time is

1

t

 t

2`
·O
(

2` · log4 log λ
)

+
L∑

j=`+1

t

2j
·O
(
2j
) = O

(
log4 log λ+ logN

)
= O (logN) .

We prove obliviousness via a sequence of construction, and show that each one of them oblivi-
ously implements Functionality 3.3.

Construction 1. Our starting point is a construction in the (FHT,FDict,FShuffle,Fcompaction)-
hybrid model which is slightly different from Construction 9.1. In this construction, each level
T`+1, . . . , TL is implemented using the ideal functionality FHT (of the respective size). The dictio-
nary D is implemented using the ideal functionality FDict. Steps 5c and 5(c)ii are implemented using
FShuffle of the respective size, and the compaction in Step 5(c)i is implemented using Fcompaction.
Note that in this construction, Step 5(d)ii is invalid, as the FHT functionality is not necessarily im-
plemented using stashes. This construction boils down to the construction of Goldreich Ostrovsky
using ideal implementations of (FHT,FDict,FShuffle,Fcompaction). For completeness, we provide a full
description:

The construction: Let ` = 12 log log λ and L = logN . The internal state include an handle
D to F2`

Dict, handles T`+1, . . . , TL to FHT
2`+1,N , . . . ,FHT

2L,N , respectively, a counter ctr and flags
full`+1, . . . , fullL. Upon receiving a command Access(op, addr, data):
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1. Initialize found := false, data∗ := ⊥, levelIndex := ⊥ and whichStash := ⊥.

2. Perform fetched := D.Lookup(addr). If fetched 6= ⊥:

(a) Interpret fetched as (levelIndex,whichStash, data∗).

(b) If levelIndex = `, then set found := true.

3. For each i ∈ {`+ 1, . . . , L} in increasing order, do:

(a) If found = false, run fetched := Ti.Lookup(addr). If fetched 6= ⊥, let found = true and
data∗ := fetched.

(b) Else, Ti.Lookup(⊥).

4. Let (k, v) := {(addr, data∗)} if op = read operation; else let (k, v) := {(addr, data)}. Insert
(k, (`,⊥, v)) into oblivious dictionary D using D.Insert(k, (`,⊥, v).

5. Increment ctr by 1. If ctr ≡ 0 mod 2`, perform the following.

(a) Let j be the smallest level index such that fullj = 0 (i.e., empty). If all levels are marked
full, then j := L. In other words, j is the target level to be rebuilt.

(b) Let U := D.Extract()‖T`+1.Extract()‖ . . . ‖Tj−1.Extract() and set j∗ := j− 1. If all levels
are marked full, then additionally let U := U‖TL.Extract() and set j∗ := L.

(c) Run FShuffle(U). Denote the output by Ũ. If j = L, then additionally do the following
to shrink Ũ to size N = 2L:

i. Run Fcompaction(Ũ) moving all real elements to the front. Truncate Ũ to length N .

ii. Run Ũ← FNShuffle(Ũ)

(d) Rebuild the jth hash table with the 2j elements from Ũ by calling FHT.Build(Ũ). Mark
fullj := 1.

(e) For i ∈ {l, . . . , j − 1}, reset Ti to empty structure and set fulli := 0.

6. Output data∗.

Claim 9.3. Construction 1 obliviously implements Functionality 3.3.

Proof. Since the functionality FORAM is deterministic, it suffices to show that the construction is
correct (i.e., it computes the same output as the ideal functionality), and to present a simulator
that produces an access pattern that is computationally-indistinguishable from the one produced
by the real construction. The simulator Sim runs the algorithm Access on dummy values. In more
detail, it maintains an internal secret state that consists of handles to ideal implementations of the
dictionary D, the hash tables T`+1, . . . , TL, bits full`+1, . . . , fullL and counter ctr exactly as the real
construction. Upon receiving a command Access(⊥,⊥,⊥), the simulator runs Construction 1 on
input (⊥,⊥,⊥).

By definition of the algorithm, the access pattern (in particular, which ideal functionalities are
being invoked with each Access) is completely determined by the internal state ctr, full`+1, . . . , fullL.
Moreover, the change of these counters is deterministic and is the same in both real and ideal
executions. As a result, the real algorithm and the simulator perform the exact same calls to the
internal ideal functionalities with each Access. In particular, it is important to note that Lookup
is invoked on all levels regardless of which level the element was found, and the level that is being
rebuild is completely determined by the value of ctr. Moreover, the construction preserves the
restriction of the functionality FHT in which any key is being searched for only once between two
calls to Build.

For completeness, we show that the algorithm outputs the exact same output as the functional-
ity. Here, we rely on the correctness of the ideal functionalities of the building blocks. In particular,
if some address addr has been written to the ORAM, it is never deleted. Moreover, only a single
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copy of the data appears in the system, as whenever an addr is been accessed, it is being deleted
from its level and written to a higher level.

Give that Construction 1 obliviously implement Functionality 3.3, we proceed with a sequence of
constructions and show that each and one of them obliviously implements Functionality 3.3 as well.
The constructions are listed next.

• Construction 2. This is the same as in Construction 1, where we instantiate FShuffle and
Fcompaction with the real implementations. Explicitly, we instantiate FShuffle in Step 5c with

Intersperse(j∗−`) (Algorithm 6.4), instantiate FShuffle in Step 5(c)ii with IntersperseRD (Algo-
rithm 6.6, and instantiate Fcompaction in Step 5(c)i with an algorithm for tight compaction
(Theorem 5.1). Note that at this point, the hash tables T`+1, . . . , TL are still implemented
using the ideal functionality FHT, as well as D that uses FDict.

• Construction 3. In this construction, we follow Construction 2 but instantiate FHT with
Construction 8.15 (i.e., CombHT from Theorem 8.16). Note that we do not combine the
stashes yet. That is, we simply replace Step 5d (as Build), Step 3 (as Lookup) and Step 5b
(as Extract()) in Construction 1 with the implementation of Construction 8.15 instead of the
ideal functionality FHT.

• Construction 4. In this construction, we follow Construction 3 but change Step 5d as in
Construction 9.1: We add all elements in OFS and CombSS into D, marked with their level
index and what stash they are coming from (where whichStash = overflow in case that the
element comes from OFS, and whichStash = stashes in case that the element comes from
CombSS).

• Construction 5. In this construction, we follow Construction 4, but make the following
change: In Step 3, we modify the Lookup procedure of Construction 8.15, and whenever
accessing OFS and CombSS, we perform lookup at the stored values levelIndex and whichStash.

• Construction 6. This is the same as Construction 5, where we replace the ideal imple-
mentation FDict of the dictionary D with a real implementation. Note that this is exactly
Construction 9.1.

The theorem is obtained using a sequence of simple claims, given that Construction 1 obliviously
implements Functionality 3.3.

Claim 9.4. Construction 2 obliviously implements Functionality 3.3.

Proof. This follows by composing Claims 6.7,6.5 and Theorem 5.1. It is important to note that the
input assumptions are preserved, and therefore we can replace the functionality with the respective
algorithm:

• We invoke Intersperse(j∗−`) (in Step 5c instead of FShuffle) on arrays that are output of Extract
and therefore are randomly shuffled, maintaining the input assumption of Algorithm 6.4.

• We invoke IntersperseRD (in Step 5(c)ii on an array in which the real elements are randomly
shuffled, as this is an output of compaction on a randomly shuffled array. Therefore, this
maintains the input assumption of Algorithm 6.6.

Claim 9.5. Construction 3 obliviously implements Functionality 3.3

Proof. This follows from Theorem 8.16 and using composition. In particular, the input for Build
in Step 5d is always randomly permuted, as this is an output of IntersperseRD.
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Claim 9.6. Construction 4 obliviously implements Functionality 3.3.

Proof. The difference from Construction 3 is only by adding more elements into D, however, note
that the size of D never exceeds its capacity 2`+1 = O(log12 λ). This is because there are O(logN)
levels and we add at most O(log λ) elements from each level. Moreover, note that we do not consider
these added elements when we perform lookups in D. In terms of functionality, we compute exactly
the same input/output behavior as in Construction 3. As for the access pattern, the change is just
by adding more accesses into D which can be trivially simulated. We therefore conclude that
Construction 4 obliviously implements Functionality 3.3.

Claim 9.7. Construction 5 obliviously implements Functionality 3.3.

Proof. The construction is just as Construction 4, where instead of searching in each level for the
elements in the stashes OFS and CombSS, we look at the stored values levelIndex and whichStash and
data∗. In case one of the elements appear in one of the stashes, it also appears in the dictionaryD. In
terms of functionality, the construction has the exact same input/output behavior as Construction
4. In terms of the access pattern, we skip visiting of the stashes in each level, which is just omitting
(a deterministic and well defined) part of the access pattern and therefore is simulatable.

Claim 9.8. Construction 6 obliviously implements Functionality 3.3

Proof. As Construction 5 is a construction in the FDict-hybrid model, the claim follows by using
composition.

This completes the proof of Theorem 9.2.

Remark 9.9 (Using More CPU Registers). Our construction can be slightly modified to obtain
optimal amortized time overhead (up to constant factors) for any number of CPU registers, as
given by the lower bound of Larsen and Nielsen [26]. Specifically, if the number of CPU registers
is m, then we can achieve a scheme with O(log(N/m)) amortized time overhead.

If m ∈ N1−ε for ε > 0, then the lower bound still says that Ω(logN) amortized time overhead
is required so we can use Construction 9.1 without any change (and only utilize a constant number
of CPU registers). For larger values of m (e.g., m = O(N/ logN)), we slightly modify Construc-
tion 9.1 as follows. Instead of storing levels ` = d12 log log λe through L = dlogNe in the memory,
we utilize the extra space in the CPU to store levels ` through `m , blogmc while the rest of the
levels (i.e., `m + 1 through L) are stored in the memory, as in the above construction. The number
of levels that we store in the memory is O (logN − logm)) = O (log(N/m)) which is the significant
factor in the overhead analysis (as the amortized time overhead per level is O(1)).
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A Details on Oblivious Cuckoo Assignment

Recall that the input of Cuckoo assignment is the array of the two choices, I = ((u1, v1), . . . (un, vn)),
and the output is an array A = {a1, . . . an}, where ai ∈ {ui, vi, stash} denotes that the i-th ball
ki is assigned to either bin ui, or bin vi, or the secondary array of stash. We say that a Cuckoo
assignment A is correct iff it holds that (i) each bin is assigned to at most one ball, and (ii) the
number of balls in the stash is minimized.

To compute A, the array of choices I is viewed as a bipartite multi-graph G = (U ∪ V,E),
where U = {ui}i∈[n], V = {vi}i∈[n], E is the multi-set {(ui, vi)}i∈[n], and the ranges of ui and vi
are disjoint. Given G, the Cuckoo assignment algorithm performs an oblivious breadth-first search
(BFS) such that traverses a tree for each connected component in G. In addition, the BFS performs
the following for each edge e ∈ E: e is marked as either a tree edge or a cycle edge, e is tagged
with the root r ∈ U ∪V of the connected component of e, and e is additionally marked as pointing
toward either root or leaf if e is a tree edge. Note that all three properties can be obtained in the
standard tree traversal. Given such marking, the idea to compute A is to assign each tree edge
e = (ui, vi) toward the leaf side, and there are three cases for any connected component:

(1) If there is no cycle edge in the connected component, perform the following. If e = (ui, vi)
points toward a leaf, then assign ai = vi; otherwise, assign ai = ui.

(2) If there is exactly one cycle edge in the connected component, traverse from the cycle edge
up to the root using another BFS, reverse the pointing of every edge on the path from the
cycle edge to the root, and then apply the assignment of (1).

(3) If there are two or more cycle edges in the connected component, throw extra cycle edges to
the stash by assigning ai = stash, and then apply the assignment of (2).
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The above operations take constant passes of sorting and BFS, and hence it remains to implement
an oblivious BFS efficiently.

Recall that in a standard BFS, we start with a root node r and expand to nodes at depth
1. Then, iteratively we expands all nodes at depth i to nodes of depth i + 1 until all nodes are
expanded. Any cycle edges is detected when two or more nodes expand to the same node (because
any cycle in a bipartite graph must consist of a even number of edges). We say the nodes at depth
i is the i-th front and the expanding is the i-th iteration. To do it obliviously, the oblivious BFS
performs the maximum number of iterations, and, in the i-th iteration, it touches all nodes, yet
only the i-th front is actually expanded. Each iteration is accomplished by sorting and grouping
adjacent edges and then updating the marking within each group.15 Note that the oblivious BFS
does not need to know any connected components in advance. It simply expands all nodes in the
beginning, and then, a front “includes” nodes in another front when the two meet and the first
front has a root node that precedes the other root. Such BFS is not efficient as the maximum
number of iterations is n, and each iteration takes several sorting on O(n) elements.

To achieve efficiency, the intuition is that in the random bipartite graph G, with overwhelming
probability, (i) the largest connected component in G is small, and (ii) there are many small
connected components such that the BFS finishes in a few iterations. The intuition is informally
stated by the following two tail bounds, where γ < 1 and β < 1 are constants such that depends
only on the Cuckoo constant, ccuckoo.

• For every integer k, the size of the largest connected component of G is greater than k with
probability O(γ−k)

• For every integer k, let Ck be the total number of edges of all components such that the size
is at least k. Then, for every integer k such that nβk > Θ(n0.87), it holds that Ck is at most
O(nβk) with overwhelming probability (in the security parameter λ).

Using the second tail bound, in each iteration, the BFS is pre-programmed to eliminate a constant
fraction of edges such that is in a small component until the problem size is only Θ(n0.87); then,
using the first tail bound, the BFS works on the array of Θ(n0.87) edges for additional O(α(λ)·log λ)
iterations, where α(λ) = O(log log λ).

Therefore, the access pattern of the oblivious BFS is pre-determined and does not depend on
the input I. The tail bounds incurs failure in correctness for a negligible fraction among all I,
and then it is fixed by checking and applying perfectly correct but non-oblivious algorithm, which
incurs loss in obliviousness. This concludes the construction of cuckooAssign at a very high level.

15 If there is a tie in the sorting of edges, we resolve it by the ordering of edges in I. This resolution was arbitrary
in Chan et al. [8], which is insufficient in our case. Here, we want it to be decided based on the original ordering as it
implies that the assignment A is determined given (only) the input I. We called this the indiscrimination property
in Section 4.6.1.
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