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Abstract

We show that any multi-party functionality can be evaluated using a two-round protocol with
perfect correctness and perfect semi-honest security, provided that the majority of parties are
honest. This settles the round complexity of information-theoretic semi-honest MPC, resolving a
longstanding open question (cf. Ishai and Kushilevitz, FOCS 2000). The protocol is efficient for
NC1 functionalities. Furthermore, given black-box access to a one-way function, the protocol can
be made efficient for any polynomial functionality, at the cost of only guaranteeing computational
security.

Our results are based on a new notion of multi-party randomized encoding which extends and
relaxes the standard notion of randomized encoding of functions (Ishai and Kushilevitz, FOCS
2000). The property of a multi-party randomized encoding (MPRE) is that if the functional-
ity g is an encoding of the functionality f , then for any (permitted) coalition of players, their
respective outputs and inputs in g allow them to simulate their respective inputs and outputs
in f , without learning anything else, including the other outputs of f . We further introduce a
new notion of effective algebraic degree, and show that the round complexity of a functionality
f is characterized by the degree of its MPRE. We construct degree-2 MPREs for general func-
tionalities in several settings under different assumptions, and use these constructions to obtain
two-round protocols. Our constructions also give rise to new protocols in the client-server model
with optimal round complexity.

1 Introduction

Secure multi-party computation (MPC) is perhaps the most generic cryptographic task. A col-
lection of n parties, each with its own input xi, wish to jointly compute function of all of their
inputs (y1, . . . , yn) = f(x1, . . . , xn) so that each party learns its yi and nothing else, and even a
coalition of adversarial players should not learn more than the collection of outputs of its members.
Throughout this work, we will be concerned with the most basic variant of this problem, which is
often called private computation, where even adversarial parties are assumed to follow the protocol
but try to learn as much as they can from their view (a.k.a semi-honest adversaries). Unless stated
otherwise, we further assume that the adversary is computationally unbounded, and consequently
require information-theoretic (perfect) privacy.
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The seminal works of Ben-Or, Goldwasser and Wigderson [BGW88] and Chaum, Crépeau and
Damg̊ard [CCD88] established that in this setting security for non-trivial functions can only be
achieved if the adversarial coalition includes strictly less than half of the total number of parties
(a.k.a honest majority). They showed that in the presence of honest majority, any function f can
be privately computed, thus existentially resolving the problem.

However, as with all computational tasks, one wishes to minimize the resources required to
carry out an MPC protocols. A resource that received much attention is the round complexity: the
number of rounds of communication required to carry out the protocol. We consider the standard
simultaneous communication model where at each round each party can send a message to any
other party, but these messages can only depend on information received in previous rounds. The
aforementioned [CCD88, BGW88] solutions depend on the (multiplicative) depth of (the arithmetic
representation of) the function f . For depth d, they require d rounds of communication (and the
communication and computational complexity are polynomial in the number of parties n and the
circuit size of f). In terms of lower bound, it is not hard to show that most functions cannot be
privately computed with less than two rounds, but no better lower bound is known.

Constant-round information-theoretic protocols were first constructed by Bar-Ilan and Beaver
[BB89] and were later extended in several works (cf. [FKN94]). Ishai and Kushilevitz [IK00, IK02]
approached the 2-round lower bound: They presented a 3-round protocol, and in fact showed that
a 2-round protocol is possible if instead of honest majority one requires that more than two-thirds
of the parties are honest. Ishai and Kushilevitz note that their methods fall short of achieving the
ultimate result and leave it as an open problem to resolve whether it is possible to achieve 2-round
honest-majority protocol for all functions [IK00, Section 6]:

“An open question of a somewhat different flavor is that of finding the exact number of rounds
required for privately evaluating an arbitrary (i.e., a worst-case) function f with an optimal
privacy threshold. Using randomizing polynomials, an upper bound of 3 was obtained. If this
bound is tight (i.e., 2 rounds are not enough) then, in a very crude sense, the randomizing

polynomials approach is non-restrictive.”

In this work, we resolve this open question. We show that indeed any functionality can be
privately computed in a 2-round protocol that only requires honest majority. The communication
and computational complexity are asymptotically comparable to previous solutions.

Theorem 1.1 (2-round unconditional MPC). At the presence of honest majority, privately com-
puting any functionality with perfect correctness and perfect privacy reduces non-interactively to the
task of privately computing a degree-2 functionality. Consequently, in this setting, any function f
can be privately computed in two rounds with polynomial efficiency in the number of parties and in
the size of the formula (or even branching program) that computes f .1

Furthermore, under the assumption that one-way functions exist, it is possible to improve the
computational and communication complexity to polynomial in the size of the circuit computing
f (rather than its formula size or exponential in the circuit depth), at the cost of only achieving
computational security. Note that the honest majority condition cannot be lifted in this setting
(unless one-way functions imply oblivious transfer).

1Branching programs (BP) are believed to be more powerful than formulas since the latter are restricted to
computing NC1 functions whereas the former can compute (possibly strictly) richer classes, including LOGSPACE
and beyond.
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Theorem 1.2 (2-round MPC in minicrypt). Assume the existence of one-way functions. Then,
privately computing any polynomial-time functionality with computational privacy and honest ma-
jority reduces non-interactively to the task of privately computing a polynomial-time computable
degree-2 functionality. Consequently, in this setting, any function f can be privately computed
in two rounds with polynomial efficiency in the number of parties and the circuit size of f . The
protocol makes only black-box use of the one-way function.

Prior to this work, Beaver, Micali and Rogaway [BMR90, Rog91] (henceforth BMR) constructed
the first constant-round computationally private MPC assuming honest majority and one-way func-
tions. A careful analysis of their construction leads to 3 rounds.2

See Section 1.3 below for comparison with recent related results such as [ACGJ18, GIS18].

The Client-Server Setting. Our results extend to the so-called client-server setting [DI05],
which considers a communication graph of the following form: A set of n clients that have inputs
send messages (in a single round) to a set of m servers, the servers perform local computation and
send messages (in a single round) back to the clients, who can then recover their outputs.

Ideally we would like to only require semi-honest security whenever we have honest majority
among servers (and allow arbitrary corruption of clients). A straightforward extension of our meth-
ods from above achieves semi-honest security either information theoretically or computationally
relying on one-way functions, but only so long as there is an honest majority among servers and
and an honest majority among clients. We proceed to show how to achieve the stronger notion
(with computational privacy) based on non-black-box use of oblivious transfer. (This point will be
further discussed towards the end of Section 1.1.)

Theorem 1.3 (2-round MPC in the client-server model). Any n-party functionality f can be
privately computed with two rounds in the client-server model with n clients and any number of m
servers with each of the following guarantees:

• Perfect correctness and perfect privacy against any adversary that corrupts a minority of the
clients and a minority of the servers. The complexity is polynomial in the formula size (or
branching program size) of f and in n and m.

• Perfect correctness and computational privacy against any adversary that corrupts a minority
of the clients and a minority of the servers. The protocol makes a black-box use of one-way
functions and the complexity is polynomial in the circuit size of f and in n and m.

• Perfect correctness and computational privacy against any adversary that corrupts an arbi-
trary subset of the clients and a minority of the servers. The protocol makes a non-black-box
use of (possibly multi-round) oblivious-transfer and the complexity is polynomial in the circuit
size of f and in n and m.

The concurrent work of [GIS18] shows that the last item can be strengthened to arbitrary subset
of the clients and the servers at the expense of relying (in a non-black-box way) on the existence
of a two-round oblivious transfer protocol. This result is therefore incomparable to the last item of
Theorem 1.3.

2Throughout the paper, we refer to the simplified version of the BMR protocol that appears in Rogaway’s the-
sis [Rog91].
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1.1 Our Techniques

Ishai and Kushilevitz introduced the notion of randomizing polynomials, which was since general-
ized to the notion of randomized encoding (RE) [AIK04]. A function f is encoded by a function
g if the output of g allows to reconstruct the output of f but nothing more. The [IK00] result
essentially shows that any function f can be encoded by a function g of multiplicative degree 3
(over the binary field). Thus, instead of applying the [CCD88, BGW88] protocol to compute the
function f directly, it is possible to apply it to compute g (the encoding of f). Since degree 3
functions can be computed in 3 rounds with honest majority, or in 2 rounds if more than two-
thirds of the parties are honest, the encoding of [IK00, IK02] implies MPC protocols with these
properties for all functions. We note that the computational complexity and output length of the
encoding g may be significantly larger than those of f and indeed scale (roughly) polynomially with
its formula size. An additional minor caveat is that the encoding g is a randomized function, even
if f was deterministic. This is resolved using the standard technique of secret sharing the random
tape between all users, i.e. each user holds private randomness and the function g is computed
with a random tape that is the XOR of all private tapes. This transformation does not effect the
multiplicative degree and therefore does not change the round complexity of the resulting protocol
(though it incurs a poly(n) factor in computational and communication complexity).

It is evident from the above outline that if one could find a RE with multiplicative degree 2, the
round complexity of MPC will be resolved. However, it was shown in [IK00] that such randomized
encodings do not exist, at least if perfect correctness and security are sought (we recall that our
solution achieves perfect correctness and security). The quotation above therefore suggests that
the resolution of the round complexity of MPC will also resolve the question of optimality of the
RE approach to the problem.

In this work, we show that indeed RE is too restrictive to resolve the round complexity prob-
lem. We present a natural generalization that we call multi-party randomized encoding (MPRE).
This object allows to analyze randomized encodings in the specific context of MPC, and natu-
rally translate it to protocols similarly to RE. While RE encodes a computation and ignores the
partitioning of inputs between the parties, an MPRE takes into account the way that inputs and
outputs are distributed among parties. Correspondingly, this notion of encoding allows to encode
a multiparty functionality by another multiparty functionality (in contrast to the RE notion which
allows to encode a function by another function). In this sense MPRE is much closer in spirit
to MPC protocols, and one can easily go from protocols to MPREs and back. Being a multiparty
functionality, in MPRE inputs are split between different parties who may also employ private local
randomness (which does not make sense in the context of standard RE). The round complexity of
the protocol induced by the MPRE depends on the effective degree, which allows preprocessing of
local randomness. Theorem 1.1 follows by showing that any functionality has MPRE with effective
degree 2 which is private against adversarial minority.

Multi-Party Randomized Encoding (MPRE). The definition of MPRE is inspired by that
of RE, but with the emphasis that inputs and outputs can belong to different players. If we consider
a multi-party functionality f(x1, . . . , xn) = (y1, . . . , yn), then an MPRE of f would be a randomized
functionality

g((x1, r1), . . . , (xn, rn); s) = (z1, . . . , zn),

where s is a global random string (which, we bear in mind, will be shared among users when a
protocol is to be derived) and ri is the local random string of player i. Decoding requires that
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for each i, yi can be recovered from zi. The privacy requirement is that for any “legitimate”
adversarial coalition A ⊆ [n], the r and z values of all players in A can be simulated given their
x and y values. In the context of honest majority we can consider protecting against all A of
cardinality strictly less than n/2, but the MPRE notion is more general and allows some function
classes to be encoded while allowing any adversarial A ⊆ [n] (indeed we show such an encoding for a
useful class). It is possible to show the expected composition theorem, arguing that if g is MPRE of
f which is private against some class of adversarial coalitions A1 ⊆ 2[n], and there is a protocol that
privately computes g against some class of adversarial coalitions A2 ⊆ 2[n], then the same protocol
(augmented with local decoding) can be used to compute f , and is private against A1 ∩ A2. It
thus follows that if g is MPRE of f which is private against all adversarial minorities, and if g
has effective degree 2 (allowing preprocessing of local randomness), then f has a 2-round protocol
which is private against any adversarial minority.3 Showing that all functions have such encoding
will be our goal towards proving Theorem 1.1. For formal definitions of MPRE, composition and
relation to other notions see Section 3.

How to Encode Any Function. As explained above, our goal is to show that any functionality
f(x1, . . . , xn) = (y1, . . . , yn) has an encoding that is both secure against all adversarial minorities
and has effective degree 2. We do this in a sequence of steps. The first step is noticing that we can
get a “friendly” MPRE from any protocol for computing f , even one with many rounds. We stress
that this will not be our final MPRE. The definition of this MPRE g is straightforward: the output
of party i is simply its view in the protocol, augmented with all the intermediate values computed
locally by i. Note that this new functionality now requires local randomness of the parties. The
fact that these views were generated by a protocol will be of particular use to us since the outputs
of g can be viewed as wires of a boolean circuit, where each wire belongs to a different party in
the computation. The view of each party in the protocol (i.e. its output in the functionality g)
consists of values that it received from other parties, and values that it computed locally. We
can thus envision a circuit whose gates are “owned” by players, and there are additional syntactic
“transmission gates” that represent a message passing from one player to the other. Transmission
gates do not have any functionality but rather represent change of ownership, still they will be
useful for our next step. We call such MPREs “protocol compatible” and describe their properties
formally in Section 4. Specifically, we will consider the MPRE induced (essentially) by the 3-round
protocol that is based on a combination of [IK02] and [BGW88].

By employing a composition theorem for MPRE, it suffices to encode the functionality g by
an MPRE h of effective degree 2. Indeed, we show that any protocol-compatible functionality g
(i.e. one whose outputs can be represented as local views of parties in a multi-party protocol, or
equivalently as wires of a circuit of the structure described above), can be encoded with effective
degree-2 and privacy against any adversarial coalition. The MPRE takes great resemblance to the
well known RE scheme that is based on information-theoretic garbled circuit [IK02]. (Specifically,
it is based on the point-and-permute variant of Yao’s garbled circuit [Yao86, BMR90, Rog91].)
This randomized encoding scheme takes a circuit, and for each wire it samples two wire keys and a
permutation bit, and its output is a list of “garbled tables” together with the permutation bits of
the output wires. Expressing this in algebraic form leads to degree 3 randomized encoding. More
generally, the degree of each garbled gate G is deg(G) + 1.

3In fact, we show that the computation of f privately reduces to g via a non-interactive reduction that makes a
single call to g.
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In our MPRE, the wire keys will be sampled using the global randomness (which down the line
is shared between all parties). Crucially, the permutation bits will be generated using the local
randomness of the party that “owns” this wire, as per the protocol compatible functionality. One
can verify that this description results in an encoding with effective degree 2. Indeed, the encoding
consists of two type of gates: local-computation gates and transmission gates. In local-computation
gates G, the input and output wires of the gate are owned by the same party, thus this party can
preprocess the permutation bits and reduce the degree to 2. In the case of transmission gates, the
fan-in is 1, and so the degree is only 2. The same proof as in [BMR90, Rog91, IK02, AIK06] can
be used to show MPRE privacy. The construction is described in detail in Section 5.

Putting the two components together results in an MPRE h for every f which is secure against
all adversarial minorities and has effective degree 2, giving rise to our final 2-round protocol. The
computational and communication complexity are analyzed in the respective sections. Section 7
contains the proof of Theorem 1.1, putting together all relevant components.

The Computational Setting. Theorem 1.1 yields an inefficient protocol when applied to a
general functionality which is computed by a polynomial-size circuit. Recall that the proof consists
of two main steps: (1) encoding f by a protocol-compatible functionality g; and (2) encoding g
by an MPRE with effective degree of 2. While the first step extends to arbitrary polynomial-size
functionalities, the second part incurs a super-polynomial overhead due to the use of information-
theoretic garbled circuits whose complexity is exponential in the depth of the encoded functionality.

We avoid this blow-up by replacing the information-theoretic garbled-circuit with a computa-
tional garbled circuit [Yao86, BMR90] (that can be viewed as a computational randomized en-
coding [AIK06]). Just like the information-theoretic setting, we modify this computational RE
into a degree-2 MPRE by generating the permutation bit of each gate locally by the party who
“owns” the gate. For more details see Section 6 (which is devoted to the construction of degree-2
computational MPRE) and Section 7 (which includes the proof of Theorem 1.2).

The Client-Server Setting and an Open Problem. MPREs are applicable to the client-
server setting in an immediate manner. Let g be an MPRE of f which is secure against some class
of adversarial coalitions A over n players. Assume that g can be computed in the client-server
setting, with n clients and m servers, with security against a class C of client coalitions and a class
S of server coalitions. Then f is computable in the client-server setting with security against A∩C
client coalitions and S server coalitions.

In our setting, we show that all functions f have g with effective degree 2 and security against
dishonest minority. One can verify that the protocols of [BGW88, CCD88], when applied to degree 2
functions, imply client-server protocols with security against arbitrary client collusion and dishonest
server minority. The conclusion is that security is achieved if there is honest majority of both clients
and servers. The first two items of Theorem 1.3 therefore follow immediately from the constructions
of information-theoretic and computational degree-2 MPREs.

In order to remove the requirement for honest majority of clients in the client-server setting it
suffices to construct a degree-2 MPRE security against an arbitrary collusion. Indeed, the third
item of Theorem 1.3 is derived by providing such an MPRE based on a (non-black-box use) of an
oblivious transfer protocol. Roughly speaking, the idea is to replace the first step of the MPRE
construction with a protocol-compatible encoding g that is induced by a fully-secure protocol π
for computing f . Since π employs oblivious-transfer, the MPRE g also depends on the code of

6



the oblivious transfer protocol. The second part of the reduction (encoding g via a computational
MPRE based on garbled circuits) remains unchanged. (The construction of the MPRE appears in
Theorem 7.3, and the full proof of Theorem 1.3 appears in Section 7.)

The question of constructing MPRE with effective degree-2 and security against arbitrary coali-
tions based on a black-box use of oblivious transfer or on a weaker assumption remains an interesting
open problem.

1.2 Broader Perspective: Degree vs. Round Complexity

Since the pioneering constructions of perfect MPC [BGW88, CCD88], there appears to be a tight
relation between the round complexity of privately computing a functionality f at the presence of
honest majority to its algebraic degree. This relation was refined by [IK00], who showed that instead
of considering the degree of f , one should focus on the degree of a RE f̂ of f . Our work further
replaces the notion of RE-degree with the effective degree of an MPRE f̂ of f , and shows that
this notion leads to an optimal round complexity. This finally proves that, when instantiated with
the “right” notion of degree, the degree-based approach is indeed “non-restrictive” as suggested by
Ishai and Kushilevitz.

It is instructive to take a closer look at the notion of effective degree and see how it relates to
existing notions. Recall that effective degree essentially allows the parties to apply arbitrary local-
preprocessing of their private randomness (and inputs) “for free”, without charging it towards the
degree. This relaxation is crucial for our results. Indeed, it can be shown that degree-d MPRE
directly imply degree-d RE (see Remark 3.5). Also observe that the notion of effective degree
inherently requires to treat the encoding f̂ as a multiparty functionality, and therefore effective
degree becomes meaningless in the case of RE. In this sense, MPRE is a convenient intermediate
point between a protocol to RE; It takes into account the views of different players (which is crucial
for defining effective degree) while being a non-interactive (and therefore easy to manipulate) object.

Let us further note that the methodology of degree-reduction via local preprocessing is not new.
In particular, it is crucially employed in classical constant-round MPC protocols including Yao’s
two-party protocol [Yao86] and its multiparty variant [BMR90, Rog91]. Using our terminology,
these protocols implicitly yield computational MPRE of constant effective degree. In particular,
assuming one-way functions, Yao’s protocol yields a computational MPRE of effective degree 2
for any efficiently computable 2-party functionality, and the BMR protocol yields a computational
MPRE of effective degree 3 for any efficiently computable n-party functionality. Indeed, an im-
portant part of our conceptual contribution is to provide a formal, easy-to-handle, framework that
captures this use of degree-reduction via preprocessing.

1.3 Other Related Works

Benhamouda and Lin [BL18] and Garg and Srinivasan [GS18] have recently constructed 2-round
computationally-private protocols for arbitrary (efficiently computable) functions. This result is
incomparable to Theorem 1.2: It does not require honest majority (i.e., privacy holds against
arbitrary coalitions), but relies on a stronger computational assumption (the existence of two-
message Oblivious Transfer, which is necessary in this setting). We further note that our high level
approach shares some similarities with these works. Indeed, our notion of MPRE abstracts and
generalizes the notion of garbled protocols, introduced by Garg and Srinivasan [GS17], which plays
a key role in both [BL18] and [GS18].
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Independently of our work, two recent papers study the notion of minimal round complexity
for MPC in the honest majority setting. Ananth et al. [ACGJ18] focus on secure computation
in the presence of certain types of active (malicious) adversaries, and present protocols under
the assumption of honest majority in addition to some computational and/or setup assumptions.
Most relevant to our work is a consequence of one of their result showing that based on one-way
functions there is a 2-round protocol against semi-honest adversarial minority (in fact, they achieve
a stronger notion called “security with abort”). Contrary to our work, the [ACGJ18] protocol is not
applicable in the information theoretic setting, and therefore does not have bearing on the question
of MPC with perfect security. Furthermore, our approach shows a reduction from the computation
of general functionalities to the computation of degree-2 functionalities, which is not achieved by
[ACGJ18] (even implicitly, as far as we can tell).

Garg, Ishai and Srinivasan [GIS18] study the construction of information theoretic security for
semi-honest MPC in various settings. Most relevant to this work is their construction of a 2-round
protocol with perfect security for formulas. However, in their protocol, unlike ours, communication
complexity grows super-polynomially with the number of players. One can again attribute this to
falling short of reducing the general MPC task to the task of computing degree-2 functionalities.

Subsequent work. The techniques of this paper were extended in [ABT19] to the malicious set-
ting (i.e., to the case of active adversaries). This shows that degree-2 functionalities are “complete”
under non-interactive reductions for maliciously-secure MPC. Consequently, [ABT19] derive new
round-efficient (and in some cases round-optimal) maliciously-secure protocols for various settings
(e.g., perfect, statistical and computational depending on the privacy threshold).

Acknowledgements. We are grateful to Yuval Ishai, Akshayaram Srinivasan, Muthuramakrish-
nan Venkitasubramaniam, and Hoteck Wee for valuable discussions and to the anonymous referees
of TCC 2018 for carefully reading this paper and for providing us with helpful feedback.

1.4 Paper Organization

We begin with some general background on multiparty functionalities and secure multiparty com-
putation in Section 2. In Section 3, we introduce the notion of multipatry randomized encoding,
and discuss its properties. In Section 4 we show how to use MPC protocols (in particular [BGW88])
to obtain “protocol-compatible” MPRE, and in Section 5 show how to transform such an encoding
into a degree-2 MPRE based on information-theoretic garbled circuits. The latter transformation
suffers from an exponential dependency in the depth of the encoded function which is removed in
Section 6 by relying on computationally-private garbled circuits. Section 7 uses these tools to prove
our main theorems.

2 Preliminaries

This section defines multiparty functionalities and provides some basic background on secure com-
putation. It will convenient to use a somewhat non-standard notation for functionalities, and so
even an expert reader may want to read this part carefully. (In contrast, the MPC subsection can
be safely skipped.)
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2.1 Multi-Party Functionalities

An n-party functionality is a function that maps the inputs of n parties to a vector of outputs
that are distributed among the parties. Without loss of generality, we assume that the inputs of
each party are taken from some fixed input domain X (e.g., bit strings of fixed length). It will
be convenient to represent a functionality by a pair f : Xn → {0, 1}m and P : [m] → 2[n]. The
function f maps the joint inputs of all parties x = (x1, . . . , xn) to an output vector y = (y1, . . . , ym),
and the mapping P : [m] → 2[n] determines the distribution of outputs between the parties, i.e.,
the i-th output yi should be delivered to the parties in the set P (i). By default (and without loss
of generality), we assume that P (i) is always a singleton and therefore think of P as a mapping
from [m] to [n]. Sometimes the output partition function P will be implicit, and refer to f as a
functionality. We further use the convention that, for a string y = f(x) and a subset of parties
T ⊆ [n], the restriction of y to the coordinates held by the parties is denoted by y[T ] = (yj)j:P (j)∈T .
When T = {i} is a singleton, we simply write y[i].

We will also make use of randomized functionalities. In this case, we let f take an additional
random input r0 and view r0 as an internal source of randomness that does not belong to any party.
We typically write f(x1, . . . , xn; r0) and use semicolon to separate the inputs of the parties from
the internal randomness of the functionality.

Finally, a central notion in this work is that of effective degree of a functionality, which gen-
eralizes the standard notion of degree. A multi-output functionality f has degree D if each of its
outputs can be written as an F2-polynomial of degree D over the deterministic and random inputs.
Intuitively, the effective degree is the degree of the functionality if the parties are allowed arbitrary
local preprocessing. A formal definition follows.

Definition 2.1 (Effective degree). A (possibly randomized) n-party functionality f : Xn × R′ →
{0, 1}m has effective degree d if there exists a tuple of local preprocessing functions (h1, . . . , hn) and
a degree-d function h such that

h(h1(x1), . . . , hn(xn); r′) = f(x1, . . . , xn; r′), (1)

for every x1, . . . , xn and internal randomness r′.

2.2 Standard Background on Secure Computation

Through the paper, we assume a fully-connected network with point-to-point private channels. We
focus on semi-honest (aka passive) secure computation hereafter referred to as private computation.
(See, e.g., [Can00, Can01, Gol04], for more detailed and concrete definitions.)

Definition 2.2. (Private computation) Let f(x1, . . . , xn) be a (possibly randomized) n-party
functionality. Let π be an n-party protocol. We say that the protocol τ -privately computes f
with perfect privacy if there exists an efficient randomized simulator Sim for which the following
holds. For any subset of corrupted parties T ⊆ [n] of size at most τ , and every tuple of inputs
x = (x1, . . . , xn) the joint distribution of the simulated view of the corrupted parties together with
output of the honest parties in an ideal implementation of f ,

Sim(T, x[T ], y[T ]), y[T̄ ], where y = f(x) and T̄ = [n] \ T,

is identically distributed to
Viewπ,T (x), Outputπ,T̄ (x),
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where Viewπ,T (x) and Outputπ,T̄ (x) are defined by executing π on x with fresh randomness and
concatenating the joint view of the parties in T (i.e., their inputs, their random coin tosses, and all
the incoming messages), with the output that the protocol delivers to the honest parties in T̄ . The
computational variant of the definition is obtained by settling for computational indistinguishability
with respect to non-uniform polynomial-time adversaries.

Secure Reductions. To define secure reductions, consider the following hybrid model. An n-
party protocol augmented with an oracle to the n-party functionality g is a standard protocol in
which the parties are allowed to invoke g, i.e., a trusted party to which they can securely send
inputs and receive the corresponding outputs. The notion of τ -security generalizes to protocols
augmented with an oracle in the natural way.

Definition 2.3. Let f and g be n-party functionalities. A τ perfectly-private reduction from f to g
is an n-party protocol that given an oracle access to the functionality g, τ -privately realizes the func-
tionality f with perfect security. We say that the reduction is non-interactive if it involves a single
call to f (and possibly local computations on inputs and outputs), but no further communication.
The notions of τ computationally-private reduction is defined analogously.

Appropriate composition theorems, e.g. [Gol04, Thms. 7.3.3, 7.4.3] and [Can00], guarantee that
the call to g can be replaced by any protocol that τ -privately realize g, without violating the security
of the high-level protocol for f .

3 Multi-Party Randomized Encodings

In this section we formally present the notion of multi-party randomized encodings (Section 3.2),
relate it to MPC protocols (Section 3.4), and study its properties (Section 3.5). As discussed in
the introduction, this new notion can be viewed as a relaxation of the more standard notion of
randomized encoding of functions. (See Section 3.1).

3.1 Randomized Encoding of Functions

We begin with the standard notion of randomized encoding (RE) [IK00, AIK04]. In the following
let X,Y, Z, and R be finite sets.

Definition 3.1 (Randomized Encoding [AIK04, AIK06]). Let f : X → Y be a function. We say
that a function f̂ : X×R→ Z is a δ-correct, (t, ε)-private randomized encoding of f if the following
hold:

• δ-Correctness: There exist a deterministic decoder Dec such that for any input x ∈ X,

Pr
r

$←R
[Dec(f̂(x; r)) 6= f(x)] ≤ δ.

• (t, ε)-Privacy: There exists a randomized simulator Sim such that for any x ∈ X and any
circuit Adv of size t∣∣∣∣∣Pr[Adv(Sim(f(x))) = 1]− Pr

r
$←R

[Adv(f̂(x; r)) = 1]

∣∣∣∣∣ ≤ ε.
10



We refer to the second input of f̂ as its random input, and a use semicolon (;) to separate deter-
ministic inputs from random inputs.

An encoding f̂ is useful if it is simpler in some sense than the original function f . In the context
of MPC the main notion of simplicity is the degree of the encoding, where the each output of f̂ is
viewed as a polynomial over (x, r). Other notions of simplicity have been used in other contexts.
(See [Ish13, App17] for surveys on REs.)

3.2 MPRE Definition

Inspired by the notion of randomized encoding of functions [IK00, AIK04], we define the notion of
multiparty randomized encoding (MPRE). Syntactically, we encode a functionality f(x1, . . . , xn)
by a randomized functionality

f̂((x1, r1), . . . , (xn, rn); r0)

that employs internal randomness r0 ∈ R and augments the input of each party by an additional
random input ri ∈ R, for some fixed domain R (by default bit-string of fixed length). Roughly
speaking, the view of the encoding f̂((x1, r1), . . . , (xn, rn); r0) that is available to a subset T of
parties (i.e., the parties inputs, randomness and outputs) should contain the same information that
is revealed to the subset T by the functionality f(x) (i.e., the inputs and outputs).

The following heavily relies on our (somewhat non-standard) formalization of multi-party func-
tionalities, see Section 2.1.

Definition 3.2 (Multi-Party Randomized Encoding (MPRE)). Let f : Xn → {0, 1}m be an n-
party deterministic functionality with an output partition P : [m] → [n]. We say that an n-party
randomized functionality f̂ : (X × R)n × R → {0, 1}s with output partition Q is a multi-party
randomized encoding of f with privacy threshold of τ if the following hold:

• Perfect Correctness: There exists a deterministic decoder Dec such that for every party
i ∈ [n], and every tuple of input-randomness pairs

((x1, r1), . . . , (xn, rn)) ∈ (X ×R)n

and every internal randomness r0 ∈ R it holds that

Dec (i, ŷ[i], xi, ri) = y[i],

where y = f(x1, . . . , xn), ŷ = f̂((x1, r1), . . . , (xn, rn); r0), and, recall that ŷ[i] is the restriction
of ŷ to the coordinates delivered to party i by (f̂ , Q), and y[i] is the restriction of y to the
coordinates delivered to party i by (f, P ).4

• (τ, t, ε)-Privacy: There exists a randomized simulator Sim such that for every set T ⊆ [n]
of parties of size at most τ and every set of inputs x = (x1, . . . , xn) it holds that the random
variable

Sim(T, x[T ], y[T ]), where y = f(x1, . . . , xn)

and the random variable
(x[T ], r[T ], ŷ[T ]),

4As in the case of RE, one can relax correctness and allow a small decoding error. Since all our constructions
natively achieve perfect correctness, we do not define this variant.
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where
ŷ = f̂((x1, r1), . . . , (xn, rn); r0), and (r0, r1, . . . , rn)

$← Rn+1,

cannot be distinguished by a t-size circuit with advantage better than ε.

We say that privacy is perfect if (τ, t, ε)-privacy holds for any t and ε = 0. We always represent
an MPRE f̂ by a Boolean circuit that computes f̂ , and define the size and depth of f̂ to be the size
and depth of the corresponding circuit. We refer to the randomness r0 as the internal randomness
of the encoding. When such randomness is not used, we refer to f̂ as an MPRE with no internal
randomness.

Observe that any functionality trivially encodes itself. Indeed, MPRE f̂ becomes useful only if
it is simpler in some sense than f . Jumping ahead, our main notion of simplicity will be effective
degree.

Remark 3.1 (Perfect and Computational encodings of infinite functionalities). Definition 3.2
naturally extends to an infinite sequence of functionalities f = {fλ}λ∈N where fλ is an n(λ)-party
functionality whose domain, range, and complexity may grow polynomially with λ. We say that a
sequence of n(λ)-party functionalities f̂ = {f̂λ}λ∈N is a perfectly correct (τ(λ), t(λ), ε(λ))-private
MPRE of f if there exists an efficient algorithm (compiler) which gets as an input 1λ and outputs (in
time polynomial in λ) three circuits (f̂λ,Decλ, Simλ) which form a perfectly correct (τ(λ), t(λ), ε(λ))-
private MPRE of fλ. We refer to an MPRE as perfect (abbreviated pMPRE) if the above holds
for any function t(·) and for ε = 0, and refer to it as being computational (abbreviated cMPRE)
if the above holds for t(λ) = λω(1) and ε(λ) = 1/λω(1). Similar extensions applies to REs (as was
done in previous works). Throughout this work, we mainly ignore uniformity issues and treat all
functionalities as finite. However, all our MPRE constructions satisfy strong uniformity properties.
That is, the encoder, decoder, and simulator can be all constructed efficiently given the description of
the encoded functionality (say as a circuit). Hence, the encoding inherits the uniformity properties
of the encoded functionality.

Remark 3.2. The parameter λ is being used to quantify both the complexity of f (circuit size
and input length) and the security level (computational privacy). When describing some of our
constructions, it will be convenient to separate between these two different roles and treat λ solely
as a security parameter (independently from the complexity of f). Computational privacy will be
guaranteed (in the sense of the above definition) as long as λ is set to be polynomial in the complexity
of f .

3.3 MPRE vs. RE

Remark 3.3 (MPRE: equivalent formulation). Let f : Xn → {0, 1}m be an n-party deterministic
functionality let f̂ : (X×R)n×R→ {0, 1}s be an n-party randomized functionality. For a coalition
T , consider the T -restricted function fT (x) that computes y = f(x) and outputs (x[T ], y[T ]), i.e.,
the input and output information that belongs to the coalition T . Similarly, let f̂T (x; (ri)i∈[n], r0)

denote the randomized function that computes ŷ = f̂((xi, ri)i∈[n]; r0) and outputs (x[T ], r[T ], ŷ[T ]),

i.e., all the information that belongs to the coalition T . It is not hard to show that f̂ is an MPRE
of f with perfect correctness and (τ, t, ε)-privacy if and only if for every coalition T of size at
most τ , the randomized function f̂T is a perfectly-correct (t, ε)-private randomized encoding of the
function fT . Indeed, the privacy property of the MPRE for a coalition T is identical to the privacy
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property for f̂T . Similarly, for a singleton T , the correctness property of the MPRE is identical to
the correctness property for the RE f̂T . Finally, for every lager coalition T , the correctness of f̂T
follows from the correctness over singletons.

In order to carry this equivalence to the case of uniform MPRE for a collection of functions
(as in Remark 3.1) one has to require a uniformity property over the encodings f̂T . Specifically,
we require the existence of an efficient compiler that gets as an input a security parameter 1λ and
outputs (in time polynomial in λ) three circuits (f̂λ,Decλ, Simλ) such that for every τ -bounded T , the
T -restricted MPRE f̂λ,T forms a perfectly-correct (τ(λ), t(λ), ε(λ))-private RE of the T -restricted
function fλ,T with decoder Decλ(T, ·) and simulator Simλ(T, ·) .

Remark 3.4 (RE as a special case of MPRE). The notion of RE forms a strong special case of
MPRE. Consider an n-party functionality F (x1, . . . , xn) in which all the parties receive the same
output denoted by f(x1, . . . , xn). Suppose that we have an MPRE F̂ for F with the following
special properties: (1) F̂ employs only internal randomness r0 and the parties do not use private
randomness at all; (2) All parties get from F̂ the same output, denoted by f̂(x1, . . . , xn; r0); (3)
The decoder of each party i recovers F (x1, . . . , xn) solely based on f̂(x1, . . . , xn; r0) without using
the input xi. Then, the MPRE F̂ induces an RE f̂ for the function f (underlying the functionality
F ). In fact, the converse direction also holds and any RE f̂ can be used to derive an MPRE
with the above syntactic properties. (This leads to an alternative definition of REs). Observe that
properties 1–3 guarantee two important semantic properties: (a) the MPRE achieves a maximal
privacy threshold of n; and (b) such an MPRE F̂ is insensitive to the way that the input x =
(x1, . . . , xn) is distributed between the parties.

Remark 3.5 (Extracting RE from MPRE). Given a function f : X → Y , we can always extract
an RE f̂ from an MPRE F̂ for a related functionality F . Fix an arbitrary integer n ≥ 2, and
define an n-party functionality F in which the input x ∈ X is arbitrarily partitioned between the
first n−1 parties, and the output to all parties (including the last one) is f(x). Consider an MPRE
F̂ for F with privacy threshold 1, and let F̂i denote the output that is delivered to the i-th party.
Then, the function f̂(x; (r0, . . . , rn)) := (F̂n(x; r0, . . . , rn), rn) is an RE of f . (That is, f̂ maps the
collective input x, the randomness ri of each party, and the internal randomness r0, to the output
of the last player in F̂ together with its randomness.) Indeed, MPRE correctness guarantees that
f(x) can be decoded from f̂(x; r) and MPRE privacy guarantees that the distribution f̂(x; r) can be
simulated given f(x). One interesting conclusion of the above is that, in terms of standard degree,
MPRE is not more expressive than RE. In particular, if every finite functionality has a degree-d
perfect MPRE then any finite function has a degree-d perfect RE. (The reverse implication also
holds). Hence, in order to benefit from the more expressive power of MPRE one has to resort to
other notions of degree (like effective degree).5

3.4 From MPRE to MPC Protocol

The main motivation for studying MPRE’s is the following simple observation.

Proposition 3.1. Let f be an n-party functionality. Let g be a perfect (resp., computational)
MPRE of f with privacy threshold of τ . Then, the task of τ -privately computing f with perfect
privacy (resp., computational privacy) reduces non-interactively to the task of τ -privately computing
g with perfect privacy (resp., computational privacy).

5We thank Akshayaram Srinivasan for a discussion that lead to this point.
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In particular, by using standard composition theorems any protocol π that τ -privately computes
g with perfect (resp., computational) privacy can be turned into a protocol π′ with the same
complexity and round complexity that τ -privately computes f with perfect (resp., computational)
privacy.

Proof. Let f : Xn → {0, 1}m be an n-party functionality. Let g : (X × R)n × R → {0, 1}s be a
perfect (resp., computational) MPRE of f with privacy threshold of τ , and let Decg and Simg be
the decoder and simulator for g. We describe a τ -private non-interactive protocol π for f in which
the parties make a single call to a g-oracle (with no further interaction). Recall that g may have
internal randomness, and so it is viewed as an n-party randomized functionality that takes from
each party an input (xi, ri), samples r0, computes ŷ = g((xi, ri)i∈[n], r0) and delivers ŷ[i] to the i-th
party.

The protocol π proceeds as follows. At the beginning, the i-th party, who holds an input xi,

samples local randomness ri
$← R. Then, the parties jointly call the functionality g with the private

inputs ((x1, r1), . . . , (xn, rn)), and each party i ∈ [n] receives the value ŷ[i] as a result. At the end,
the i-th party outputs the value Decg(i, xi, ri, ŷ[i]).

We prove that π privately realizes f . Since f is a deterministic functionality, it suffices to
establish correctness and privacy separately (cf. [Gol04, Section 7.2.2]). We begin with correct-
ness. Consider an execution of π over some arbitrary vector of inputs (x1, . . . , xn) ∈ Xn. By the
correctness of g, it holds that, for every choice of internal randomness r0, the value computed by
the i-th party Decg(xi, ri, ŷ[i]) where ŷ = g((x1, r1), . . . , (xn, rn), r0), equals to the i-th output of
f(x1, . . . , xn).

We move on to prove that the protocol is private. Fix some adversarial set T ⊆ [n] of size at most
τ . We use the MPRE simulator Simg(T, x[T ], y[T ]) to map an input/output pair (x[T ], y[T ]) of the
coalition T to its view (xT , rT , ŷ[T ]) in π. The perfect privacy (resp., computational privacy) of the
MPRE guarantees that for every fixing of x = (x1, . . . , xn), the simulated view Simg(T, x[T ], y[T ])
where y = f(x), is perfectly indistinguishable (resp., computationally indistinguishable) from the
actual view of T in π (induced by the randomness of the honest parties and the internal randomness
of g).

3.5 Manipulating MPRE

One can always get rid of the internal randomness r0 of an MPRE

f̂((x1, r1), . . . , (xn, rn); r0)

by extending the randomness of each party with an additional random string r′i and applying the

functionality f̂ with r0 set to
∑

i r
′
i. Here, we assume that the randomness domain R is a set of

fixed length strings and so addition stands for bit-wise XOR. (More generally, this transformation
works as long as “addition” forms a group operation over the randomness space R.) Formally, the
following holds.

Proposition 3.2 (Removing internal randomness). Suppose that the functionality f̂((x1, r1), . . . , (xn, rn); r0)
is a perfectly correct (τ, t, ε)-private MPRE of (f, P ). Then the functionality

g((x1, r1, r
′
1), . . . , (xn, rn, r

′
n)) := f̂((x1, r1), . . . , (xn, rn);

∑
i

r′i)

is a perfectly correct (τ, t, ε)-private MPRE of (f, P ).
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Note that g has the same algebraic degree and the same effective degree as f̂ over F2. (A
multi-output functionality f has degree D if each of its outputs can be written as an F2-polynomial
of degree D over the deterministic and random inputs. For effective degree see Definition 2.1.)

Composition (Re-Encoding MPRE). The composition property of REs ([AIK04, AIK06])
asserts that if we take an encoding g(x; r) of f(x), view it as a deterministic function g′(x, r) over
x and r, and re-encode this function by a another RE h(x, r; r′), then the function h′(x; (r, r′)) is
an encoding of f . We prove a similar statement regarding MPRE’s.

Lemma 3.3 (Composition). Let (f(x1, . . . , xn), P ) be an n-party functionality and assume that the
functionality (g((x1, r1) . . . , (xn, rn)), Q) perfectly encodes f with threshold τ1 and no internal ran-
domness. Further assume that the functionality (h(((x1, r1), r′1) . . . , ((xn, rn), r′n); r′0),M) perfectly
encodes the functionality (g,Q) (viewed as a deterministic functionality over the domain (X ′)n

where X ′ = (X ×R) with threshold τ2). Then, the functionality (h′,M), where

h′((x1, (r1, r
′
1)), . . . , (xn, (rn, r

′
n)); r′0) := h(((x1, r1), r′1) . . . , ((xn, rn), r′n)),

is a perfect MPRE of f with threshold min(τ1, τ2).

(Observe that h′ is defined identically to h except each party i treats xi as its deterministic
input of i and (ri, r

′
i) as its randomness.)

Proof. For inputs x1, . . . , xn and random strings r1, . . . , rn and r′1, . . . , r
′
n, we let y = f(x1, . . . , xn),

z = g((x1, r1) . . . , (xn, rn)) and w = h(((x1, r1), r′1) . . . , ((xn, rn), r′n)). For any party i, we denote
by y[i] (resp., z[i], w[i]) the restriction of the string to the indices which are delivered to the i-th
party by the corresponding functionality.

Correctness: Fix some party i. We decode y[i] from ((i, xi, (ri, r
′
i)), w[i]) in two steps: (1) Call

the h-decoder on ((i, (xi, ri), r
′
i), w[i]) to obtain z[i]; and (2) Call the g-decoder on ((i, ri, xi), z[i])

to obtain y[i]. The perfect correctness of the two decoders implies that, for any ~x,~r, ~r′, the new
decoder decodes properly.

Privacy: Fix some coalition T of size at most min(τ1, τ2). Given x[T ] and y[T ], we use the
g-simulator to sample the random variables (x[T ], r[T ], z[T ]) and feed them to the h-simulator that
generates the random variables (x[T ], r[T ], r′[T ], w[T ]). By the perfect privacy of the simulators,
for every input x, the simulated random variable is identically to the real MPRE distribution
(x[T ], r[T ], r′[T ], w[T ]) induced by a uniform choice of r and r′.

A similar lemma holds in the computational setting as well.

Lemma 3.4 (Composition (Computational version)). Let f = {fλ} be an infinite family of n(λ)-
party functionalities which is computationally encoded by the families of functionalities g = {gλ}
with privacy threshold τ(λ) and with no internal randomness. Suppose that h = {hλ} computa-
tionally encode g with privacy threshold of τ ′(λ). Then, (h′, P ), defined as in Lemma 3.3, forms a
computational encoding of f with privacy threshold of min(τ, τ ′).

4 Encoding via Protocol-Compatible Functionalities

In this section we show that any functionality f can be encoded by a so-called protocol compatible
functionality g that enjoys “nice” syntactic properties.
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4.1 From MPC Protocol to MPRE

We begin by noting that any protocol naturally induces an MPRE as shown below.

Definition 4.1 (The view functionality). Let π be an n-party protocol in which the i-th party holds
a deterministic input xi and private randomness ri. The n-party view functionality gπ is defined
as follows:

• The input of the i-th party is (xi, ri).

• The output of the i-th party consists of all the messages that are sent to her in an execution
of π (on the inputs (x1, r1), . . . , (xn, rn)).

We also consider the extended view functionality in which, in addition to the above, gπ delivers to
each party i all intermediate values that are computed locally by i, where the local computation of
every party is viewed as a Boolean circuit.

Note that the view and extended view can deterministically be derived from each other.

Proposition 4.1. Let π be a protocol that implements the n-party functionality f(x1, . . . , xn) with
perfect correctness and perfect (resp., computational) privacy against a passive adversary that may
corrupt up to τ players. Then the view functionality and the extended view functionality of π encode
the functionality f with perfect correctness and perfect (resp., computational) privacy threshold τ .

Proof. The proposition follows immediately from the fact that π privately implements f as per
Definition 2.2. The correctness of π translates into correctness of gπ and the τ -privacy of the
protocol immediately translates into τ -privacy of the MPRE.

An extended view functionality gπ has several useful syntactic properties. These are captured
by the following notion of protocol compatible functionality.

Definition 4.2. A protocol compatible functionality (f, P ) is a functionality with no internal
randomness that can be represented by a Boolean circuit C as follows.

• The circuit C takes the same inputs as f . The outputs y = (y1, . . . , ym) of f(x) consist of the
values of all the wires in the circuit (including internal wires and input wires) sorted under
some topological order (inputs are first).

• The computation in C is performed via two types of gates.

– A transmission gate delivers a value from one party to another, i.e. it maps a single
input ya to a single output yb such that ya = yb and possibly P (a) 6= P (b).

– A local computation gate (wlog, NAND gate) maps two inputs (ya, yb) to a single output
yc, where P (a) = P (b) = P (c).

Proposition 4.2. Let π be an n-party protocol and let gπ be its extended view functionality. Then,
gπ is protocol compatible.

Proof. By definition, every output bit of gπ is either an input bit, the result of some local compu-
tation, or some incoming message.
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Remark 4.1 (Extended view in a hybrid model). Consider a protocol π operates in a h-hybrid
model where h is some n-party functionality. (Recall that this means that the parties can invoke a
call to an ideal version of h.) In this case, the view functionality and the extended view functionality
(which are still well defined) still form an MPRE of f just like in Proposition 4.1. However it will
not satisfy the syntax of Definition 4.2.

4.2 BGW-based MPRE

The extended view functionality of the semi-honest protocol from [BGW88], henceforth denoted
BGW, gives rise to the following MPRE.

Theorem 4.3 (BGW-based protocol-compatible encoding). Every n-party functionality f can be
perfectly encoded with threshold privacy of τ =

⌊
n−1

2

⌋
by a protocol-compatible MPRE g of size

O(S · poly(n)) and depth O(D · log n) where S denotes the circuit size of f and D denotes the
multiplicative depth of f .

Jumping ahead, we mention that in order to derive our main theorem with complexity which
grows polynomially in the number of parties, it is crucial to make sure that the depth of g is at
most logarithmic in n.

Proof. We consider the BGW protocol π for computing f against a passive adversary that corrupts
up to τ parties. By Propositions 4.1 and 4.2, it suffices to show that π can be implemented so that
its extended-view functionality gπ is of size O(S · poly(n)) and depth O(D · log n).

Recall that π interprets f as an arithmetic circuit over a sufficiently large field F of size |F| > n
and that each party i is associated with a fixed public field element αi ∈ F (as a property of the
protocol and independently of the input). Thus the first n powers of each αi are to be treated
as pre-computed constants. The local computation L of every party for each multiplication gate
(and for the input gates) can be implemented by a poly(n)-size arithmetic circuit of constant depth
whose addition gates have unbounded fan-in and the multiplication gates have fan-in 2. (Indeed, all
local computation can be written as matrix-vector multiplications.) This gives rise to an arithmetic
circuit with bounded fan-in gates, poly(n) size, O(log n) depth and constant multiplicative depth.

We continue by showing that such an arithmetic circuit L can be realized by a Boolean NC1

circuit (of size poly(n), depth O(log n) and bounded-fan gates). Indeed, letting F = GF[2O(logn)] be
a binary extension field, we can trivially implement field addition by a Boolean circuit of constant
depth and O(log n) size (and bounded-fan gates). Field multiplication can be implemented by an
AC0[⊕] circuit of size polylog(n) [HV06], and therefore by a Boolean circuit of size polylog(n),
depth log(polylog(n)) and bounded-fan gates. It follows that L is in NC1.

Finally, we note that in BGW addition gates require only local computation. This local com-
putation consists of O(n) parallel fan-in-2 additions of field elements. Since F is a binary extension
field this can be implemented by a constant depth (NC0) circuit of size O(n log n). We conclude
that the extended view functionality gπ has the desired complexity.

5 Degree-2 pMPRE for Protocol-Compatible Functionalities

In this section we show that any protocol-compatible functionality f can be encoded by a function-
ality f̂ with effective degree 2. That is, each output of f̂ can be computed as a degree-2 function
over n values that can be computed by the parties locally (see Definition 2.1).
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The following theorem will be proved in Section 5.1.

Theorem 5.1. Let (f, P ) be a protocol-compatible n-party functionality of depth d and output length
m. Then, f has a perfect n-private MPRE f̂ of effective-degree 2 and total complexity poly(2d,m).6

Remark 5.1 (Other properties of the MPRE). The encoding f̂ constructed in Theorem 5.1 satisfies
several additional properties that will not be used in our work, but may be useful elsewhere.

1. The encoding f̂ is fully-decomposable and affine in x, that is for any fixing of the private
randomness the residual functionality f̂(x) is a degree-1 function in x and each output bit of
f̂ depends on at most a single bit of the input x.

2. The preprocessing functions (h1, . . . , hn) that achieve effective degree of 2 only manipulate the
private randomness. That is, we construct hi(xi, ri) s.t. hi(xi, ri) = (xi, h

′
i(ri)), where h′i is a

degree-2 function.

5.1 Proof of Theorem 5.1

Let f : Xn → {0, 1}m be a protocol-compatible functionality of depth d. We now show how to
encode f via a functionality

f̂ : (X ×R)n ×R′ → Y ′

with effective degree of 2. In addition to the private randomness ri of each party, the functionality
f̂ uses internal randomness r′. (The latter can be removed via Proposition 3.2 while keeping an
effective degree of 2.)

Notation. Let C be the Boolean circuit that represents f (as per Definition 4.2). Recall that
the circuit C has m wires and it contains gates of two types: local computation gates and trans-
mission (identity) gates. We prove the theorem with respect to circuits C in which the fan-out of
transmission gates is one and the fan-out of local computation gates is two. This is without loss of
generality, since any circuit C can be transformed to satisfy these restrictions while preserving the
size (up to a constant factor), and at the expense of increasing the depth to d′ = d logm; we may
ignore this overhead since poly(2d

′
,m) = poly(2d,m). For every i ∈ [m], let P (i) ∈ [n] denote the

party that holds the value of the ith wire in C.

Randomness. Our MPRE employs the following random bits. For every wire i ∈ [m], the party
P (i) samples a random masking bit αi. In addition, for every wire i, the functionality uses the
internal randomness to sample a pair of random strings (keys) s0

i , s
1
i of length ωi. The length ωi

of an “output wire” (i.e., a wire that does not enter any gate) is set to zero and the length of all
other keys will be defined recursively (from top-to bottom) later. We assume that both strings,
s0
i , s

1
i , are partitioned to two equal-size blocks, and index these blocks by a bit b ∈ {0, 1}, where

sa,bi denotes the bth block of sai .

6Note that the circuit size of f does not appear explicitly in this statement, however for protocol-induced func-
tionalities, the circuit size of f is equal to the output length m.
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The outputs of the MPRE. We traverse the circuit C gate-by-gate in reverse topological order
(from the output gates to the input wires), and let the functionality f̂ deliver the following outputs
to all parties.

• For every local computation gate g with incoming wires i, j and outgoing wires k, `, we
output four values (known as the gate table) defined as follows. For every βi, βj ∈ {0, 1}, set

γ = G(αi ⊕ βi, αj ⊕ βj), (2)

where G(·, ·) is the function computed by the gate, and output the value

Q
βi,βj
g :=

(
(sγk‖γ ⊕ αk)‖(s

γ
` ‖γ ⊕ α`)

)
(3)

⊕ s
αi⊕βi,βj
i ⊕ s

αj⊕βj ,βi
j .

One should view Q
βi,βj
g as a ciphertext where the message is associated with the outgoing

wires (first line of Eq. 3) is encrypted using a one-time pad under the combination of the keys
associated with the incoming wires (second line of Eq. 3). Correspondingly, we set the length
ωi (resp., ωj) of the keys s0

i , s
1
i (resp., s0

j , s
1
j ) to be 2(ωk + 1 + ω` + 1).

• Transmission gates are treated analogously. That is, for every transmission (identity) gate
g with incoming wire i and outgoing wire k, we output the following two values. For every
βi ∈ {0, 1}, set γ = βi ⊕ αi and output the value

Qβig := (sγk‖γ ⊕ αk) ⊕ sαi⊕βi
i .

Correspondingly, we set the length ωi of the keys s0
i , s

1
i to be ωk + 1.

• For every input wire i, output the masked value xi ⊕ αi and the active key sxii .

Effective degree and complexity. Observe that a term of the form sa can be written as a
degree-2 function of a and s (i.e., a · s1 + (1 − a) · s0). Hence, all the outputs of the encoding
are of degree 2 except for ciphertexts that correspond to local computation gates as in Eq. (3) in

which the selection bit γ itself is a degree-2 function (and so the overall degree of Q
βi,βj
g increases

to 3). However, since the party p = P (i) = P (j) knows both αi and αj , the value γ can be locally
pre-computed and so the effective degree of the encoding is 2.

The complexity of the encoding is polynomial in the circuit size and the size of the largest key.
A proof by induction shows that the length ωi of the ith key is at most O(4hi) where hi is the
height of the ith wire (i.e., the length of the longest path from i to an “output wire” that does not
enter any gate). Following this analysis, the complexity of f̂ is bounded by poly(2d,m).

Correctness. Fix some input x = (x1, . . . xn) ∈ Xn and let yi denote the value induced by x
on the ith wire. We show that the party P (i) can recover yi from the encoding ŷ and its private
randomness. Since the ith mask αi is given to P (i) as part of its private randomness, it suffices to
show that P (i) can recover the masked value ŷi := yi ⊕αi. Indeed, as in standard garbled circuits,
every party can recover the masked bit ŷk := yk ⊕ αk together with the active key sykk , for every
wire k. This is done by traversing the circuit from the inputs to the outputs as follows. For input
wires the pair ŷk, s

yk
k is given explicitly as part of the encoding. For an internal wire k, that leaves a
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local computation gate g with incoming wires i, j this is done by using the masked bits ŷi, ŷj of the

input wires to select the ciphertext Q
ŷi,ŷj
k and then decrypting (i.e., XOR-ing) it with s

yi,ŷj
i ⊕ syj ,ŷij

that can be computed based on the active keys of the incoming wires. One can verify that this
procedure recovers the desired values correctly. The case of transmission gates is treated similarly.

Privacy. We first claim that an external observer (that does not see the private randomness) can
perfectly simulate the encoding given the list of masked values (ŷk)k∈[m].

Claim 5.2. There exists a simulator Sim′ that takes as an input an m-bit vector ŷ = (ŷi)i∈[m],

runs in time poly(m, 2d) and satisfies the following guarantee. For every input x and every fixing
of α = (αi)i∈[m], the random variable

Sim′(y1 ⊕ α1, . . . , ym ⊕ αm),

where yi is the value induced by x on the ith wire, is distributed identically to the encoding f̂(x)
conditioned on the above fixing of α.

The claim is implicit in the standard proof of information-theoretic garbled circuit (cf. [IK02]);
it is proved in Subsection 5.1.1 for completeness.

Based on Claim 5.2, we define a perfect simulator Sim for the MPRE. Fix an arbitrary coalition
T ⊆ [n] and let I be the set of wires owned by parties in T , i.e., I = {i : P (i) ∈ T}. Given the
inputs x[T ] of T , and a vector of output values (yi)i∈I , the simulator does the following. For i ∈ I,
sample uniformly the local randomness αi and set ŷi = yi ⊕ αi. For i /∈ I sample ŷi uniformly at
random. Next invoke the simulator Sim′ on ŷ = (ŷi)i∈[m] and output the result.

We prove that the simulation is perfect. Fix some input x, some αI = (αi)i∈I , and let y = f(x)
and yI = (yi)i∈I . We claim that the distribution sampled by Sim(T, x[T ], αI , yI) is identical to the
joint distribution of the encoding f̂(x) induced by the choice of α[m]\I , (s

0
i , s

1
i )i∈[m] (and conditioned

on the above fixing of αI). Indeed, since the marginal distribution of the vector of masked bits
(ŷ1, . . . , ŷm) is perfectly simulated, this follows from Claim 5.2.

5.1.1 Proof of Claim 5.2

Given ŷ the simulator Sim′ does the following.

1. Uniformly sample an active key syii for every wire i ∈ [m]. (Note that this can be done
without knowing yi.)

2. For every local computation gate g with incoming wires i, j and outgoing wires k, ` set the
“active ciphertext”

Q
ŷi,ŷj
g :=

(
(sykk ‖ŷk)‖(s

y`
` ‖ŷ`)

)
⊕ s

yi,ŷj
i ⊕ s

yj ,ŷi
j .

The other three “inactive” ciphertexts Qa,bg , (a, b) 6= (ŷi, ŷj) are sampled uniformly at random.

3. For every transmission gate g with incoming wire i and outgoing wire k, set the “active
ciphertext” to be

Qŷig := (sykk ‖ŷk) ⊕ syii .

Sample uniformly the other ciphertext Q1⊕ŷi
g .
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4. For every input wire i output syii and ŷi.

Fix x, α = (αi)i∈[m] and let (y1, . . . , ym) = f(x) and ŷi = yi ⊕ αi. We prove that the simulator
satisfies the claim. First observe that the marginal distribution of the simulated active keys is
identical to their distribution in the encoding. Next observe that the value of all active ciphertexts
is fully determined by α and by the value of the active keys, and it is computed in the simulation
just like it is in the encoding. To complete the analysis, it suffices to show that, conditioned on
any fixing of the active keys and α, in the encoding f̂(x) the inactive ciphertexts of every gate are
distributed uniformly and independently. To this end, we observe that for every inactive ciphertext
Q we can associate a unique inactive (sub-)key s so that Q = h ⊕ s where h is independent of s
(and may depend on all other inputs/randomness). Indeed, for a transmission gate g with incoming

wire i, the inactive ciphertext Q1⊕ŷi
g is associated with s1⊕yi

i . For a local computation gate g with

incoming wires i, j, the inactive ciphertext Qa,bg for (a, b) 6= (ŷi, ŷj) is associated with sai [b] if a 6= ŷi
and with sbj [a], otherwise (note that in this case b 6= ŷj). This mapping from inactive ciphertexts
to inactive keys satisfies the above requirements.

6 Degree-2 cMPRE for Protocol-Compatible Functionalities

Theorem 5.1 has an exponential dependency on the depth of the encoded function. In this section
we show that this dependency can be removed at the expense of relaxing privacy to computational.
The transformation is based on computationally-private garbled circuits and is closely related to
the construction of [BMR90].

Theorem 6.1. Assuming the existence of one-way functions, any protocol-compatible n-party func-
tionality (f, P ) with output length m has a computational n-private MPRE f̂ of effective-degree 2
and total complexity poly(m,λ), where λ is the security parameter.7

Moreover, the one-way function is only used in the preprocessing phase and in a black-box
manner and the properties of Remark 5.1 apply here as well.

6.1 Proof of Theorem 6.1

The setting is similar to Section 5.1, but we do not use internal randomness. Let f : Xn → {0, 1}m
be a protocol-compatible functionality. We now show how to encode f via a functionality

f̂ : (X ×R)n → Y ′

with effective degree of 2. We use the same notational conventions with respect to the topology of
the circuit as in Section 5.1, where internal gates have two inputs and two outputs, and transmission
gates have one input and one output. Recall that we define P : [m] → [n] s.t. P (i) denotes the
party that holds the value of the ith wire in C.

Let λ denote the security parameter and let PRG : {0, 1}λ → {0, 1}4nλ+2 be a pseudorandom
generator. If one-way functions exist, then such PRG exists as well, and computing PRG requires
only black-box use of the one-way function.

7As in Theorem 5.1, the circuit size of f is equal to the output length m and thus it does not appear explicitly.
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Randomness. Our MPRE employs the following random bits. For every wire i ∈ [m], the
party P (i) samples a random masking bit αi. In addition, for every wire i, every party ν samples

four random strings denoted by sb,ci,ν ∈ {0, 1}λ for b, c ∈ {0, 1}. For b ∈ {0, 1}, the string sbi,ν =

(sb,0i,ν‖s
b,1
i,ν ) ∈ {0, 1}2λ is viewed as the ν-share of the b-key of wire i. Party ν then computes,

as a preprocessing step, the values wb,ci,ν = PRG(sb,ci,ν) ∈ {0, 1}4nλ+2 for all i, b and c. Note that

this only requires black-box use of PRG. We let Sbi ∈ {0, 1}2nλ denote the b-th key of wire i,
and define it to be the in-order concatenation of the strings (sbi,ν)nν=1. For b, c ∈ {0, 1}, denote

W b,c
i =

⊕n
ν=1w

b,c
i,ν ∈ {0, 1}4nλ+2, and furthermore let us define W b

i = W b,0
i ‖W

b,1
i to be the b-th pad

of wire i.

The outputs of the MPRE. We traverse the circuit C gate-by-gate in reverse topological order
(from the output gates to the input wires), and let the functionality f̂ deliver the following outputs
to all parties.

• For every local computation gate g with incoming wires i, j and outgoing wires k, `, we
output four values (known as the gate table) defined as follows. For every βi, βj ∈ {0, 1}, set

γ = G(αi ⊕ βi, αj ⊕ βj), (4)

where G(·, ·) is the function computed by the gate, and output the value

Q
βi,βj
g :=

(
(Sγk‖γ ⊕ αk)‖(S

γ
` ‖γ ⊕ α`)

)
(5)

⊕ W
αi⊕βi,βj
i ⊕ W

αj⊕βj ,βi
j .

As in Section 5.1, one should view Q
βi,βj
g as a ciphertext where the message is associated with

the seeds of the outgoing wires (first line of Eq. 5), and it is encrypted using a mask which is
the XOR of PRG outputs of all parties on keys associated with the incoming wires (second
line of Eq. 5).

• Transmission gates are treated analogously. That is, for every transmission (identity) gate
g with incoming wire i and outgoing wire k, we output the following two values. For every
βi ∈ {0, 1}, set γ = βi ⊕ αi and output the value

Qβig := (Sγk‖γ ⊕ αk‖0
2nλ+1) ⊕ Wαi⊕βi,0

i ,

where the zero padding is only a matter of formality to match the length of the Wi string.

• For every input wire i, output the masked value xi ⊕ αi and the active key set Sxii .

Effective degree and complexity. This is again very similar to the information theoretic con-
struction. Observe that a terms of the form Sa,W a can be written as a degree-2 function of a and
S,W respectively, and that S,W themselves are linear functions in the precomputed strings s, w.
Hence, all the outputs of the encoding are of degree 2 except for ciphertexts that correspond to
local computation gates as in Eq. (5) in which the selection bit γ itself is a degree-2 function (and

so the overall degree of Q
βi,βj
g increases to 3). However, since the party p = P (i) = P (j) knows

both αi and αj , the value γ can be locally pre-computed and so the effective degree of the encoding
is 2.

The complexity of the encoding is polynomial in the circuit size, as any gate requires a gadget
of length O(nλ). The complexity of f̂ is therefore O(mnλ).
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Analysis. Both correctness and privacy can be analyzed directly following standard proofs of
garbled circuits. Instead, we show here how to deduce the MPRE analysis from the analysis of
the GC-based randomized encoding from [AIK06]. Following Remark 3.3, it suffices to prove that
for any coalition T ⊆ [n] the T -restricted function fT is encoded by the T -restricted randomized
function f̂T . Recall that fT (x) denotes the function that computes the functionality f and outputs
all the values that are held by the parties in T , and that f̂T (x) is a randomized function whose
internal randomness consists of all the (private) randomness used in f̂ and its output consists of
the output of f̂(x) concatenated with the internal randomness of the players in T . Formally, let

fT (x) := ((xi)i∈T , (yi)i∈I) where y = f(x) and I = {i : P (i) ∈ T}

and let
f̂T (x; sT , sT , αT , αT ) = ((xi)i∈T , f̂(x; sT , sT , αT , αT ), sT , αT ),

where sT := (s0
i,ν , s

1
i,ν)i∈[m],ν∈T , sT := (s0

i,ν , s
1
i,ν)i∈[m],ν /∈T , αT := (αi)i∈I and αT := (αi)i/∈I .

By abuse of notation, we identify fT with the same circuit that computes f except that the output
wires are taken to be all the wires whose index is in I and all the input wires that are held by T
(that correspond to xT ).

It suffices to prove the following claim:

Claim 6.2. The randomized function f̂T is a (standard) computationally-private perfectly-correct
randomized encoding of fT . Moreover, there exists an efficient algorithm that given the circuit f ,
and security parameter 1λ, outputs a pair of circuits Decλ(·, ·) and Simλ(·, ·) such that (Decλ(T, ·),Simλ(T, ·))
is a decoder/simulator pair for the encoding f̂T .

Proof. We prove a stronger claim, namely, that f̂T encodes fT even when sT is arbitrarily fixed.8

Fix sT and let n′ = |T̄ | denote the number of uncorrupted players. Assume that n′ > 0 (i.e.,
that T is a strict subse of [n]), since otherwise the claim trivially holds. We show that, when
viewed correctly, f̂T simplifies into the construction of computational randomized encoding (CRE)
from [AIK06]. First, observe that we can remove the entries (xi)i∈T from the output of f̂T since
each such xi can be derived from αi and from xi ⊕ αi which are already present in the encoding.
Next, we describe the CRE of [AIK06] and explain its correspondence to f̂T :

• Randomness: For each wire i, the CRE samples a mask bit, together with a zero-key S0
i and

a one-key S1
i . Each of these keys consists of two equal-length sub-keys, i.e., Sbi = (Sb,0i ‖S

b,1
i ),

for b ∈ {0, 1}. In our context, we let αi take the role of the mask bit and let Sb,ci ∈ {0, 1}n
′λ

denote the in-order concatenation of the strings (sb,ci,ν)ν∈T̄ . (Note that unlike the notation used

in the construction, here Sb,ci consists only of the keys that are being held by the uncorrupted
parties.)

• For each input wire i the encoding outputs the masked value xi ⊕ αi and the active key set
Sxii . These values are also outputted by f̂T .

• For each output wire i the encoding outputs the mask αi. These are exactly the values (αi)i∈I
that are outputted by f̂T (since we defined the set of output wires to be the set of wires held
by the partes in T ).

8One can further show that this is true even when both sT and αT are arbitrarily fixed. We omit the proof since
it will not be needed for our results.
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• In addition, for each gate g with incoming wires i, j and outgoing wires k, `, the encoding

outputs four ciphertexts (C0,0
g , C0,1

g , C1,0
g , C1,1

g ). For βi, βj ∈ {0, 1} we let C
βi,βj
g = EK(M),

where
M =

(
(Sγk‖γ ⊕ αk)‖(S

γ
` ‖γ ⊕ α`)

)
, K = S

αi⊕βi,βj
i ⊕ S

αj⊕βj ,βi
j , (6)

and γ is defined as in (4).

It is shown in [AIK06] that if E is a (possibly randomized) one-time computationally-secure en-
cryption scheme that admits perfectly-correct decryption algorithm D, the resulting encoding is
a CRE of the function fT . Hence, to complete the proof it suffices to show that the expression

Q
βi,βj
g defined in (5) can be written as a ciphertext of the form C

βi,βj
g . Indeed, letting M and K

be defined as in (6), we can write Q
βi,βj
g (possibly after reordering its coordinates) as

EK(M) := (M‖M ′)⊕ PRG′(K)⊕K ′,

where M ′ and K ′ are constants that depend on the constant sT , and PRG′ parses its seed K ∈
{0, 1}n′λ into n′ blocks (K1, . . . ,Kn′) of length λ each, and outputs PRG(K1) ⊕ · · · ⊕ PRG(Kn′)).
Observe that PRG′ is a pseudorandom generator, and therefore the encryption function E is one-
time semantically-secure (with a straightforward decryption algorithm). We conclude that f̂T fits
the construction from [AIK06] and is itherefore a CRE of fT .

Finally, the simulator and decoder of the CRE of [AIK06] are efficiently constructible by a
compiler A that takes 1λ and the circuit fT as inputs. We can therefore define an efficient algorithm
A′ that, given 1λ, the circuit f , and (a representation of) a set T ⊂ [n], (1) computes the circuit
fT , (2) applies A to this circuit, and (3) outputs a decoder and simulator circuits for f̂T . By
embedding steps (1–3) of the algorithm into the decoder and simulator circuits, we derive the
“moreover” statement.

7 Putting It All Together

In this section we prove the following theorems using the tools we developed in previous sections.

Theorem 7.1. Every n-party functionality f can be encoded by a perfect MPRE g with privacy
threshold of τ =

⌊
n−1

2

⌋
, effective degree 2 and complexity polynomial in n and S where S is the size

of the branching program that computes f .

Theorem 7.2. Assuming the existence of one-way functions, every n-party functionality f can be
encoded by a computational MPRE g with privacy threshold of τ =

⌊
n−1

2

⌋
, effective degree 2 and

complexity polynomial in n and S where S is the size of the circuit that computes f . Moreover, the
MPRE makes use of one-way functions in a black-box way only as part of the local preprocessing
step.

Theorem 7.3. Assuming the existence of (possibly multi-round) oblivious transfer, every n-party
functionality f can be encoded by a computational MPRE g with privacy threshold of τ = n, effective
degree 2 and complexity polynomial in n and S where S is the size of the circuit that computes f .
The MPRE makes a non-black-box use of the oblivious transfer protocol.

Theorems 7.1, 7.2 and 7.3 (whose proofs are deferred to Sections 7.1, 7.2 and 7.3) can be used
to derive our main results (Theorems 1.1, and 1.2).
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Proof of Theorem 1.1 and 1.2. We prove Theorem 1.1 (resp., Theorem 1.2): Given an n-party
functionality f that is computable by a branching program of size S (resp., computable by a
Boolean circuit of size S), construct the perfect MPRE g promised by Theorem 7.1 (resp., the
computational MPRE g promised by Theorem 7.2). By Proposition 3.1, f non-interactively

⌊
n−1

2

⌋
-

reduces to g with perfect privacy (resp., computational privacy). Since g has an effective degree
2, the functionality g itself n-privately reduces to a degree-2 functionality g′ (in a trivial way). A
composition of these reductions yields the desired reduction.

To prove the second (“Consequently”) part of the theorem, we employ the BGW protocol πg′ to
privately compute g′ in 2 rounds (since its degree is 2) and complexity of poly(n, S) at the presence
of honest majority. Plugging this protocol into the above reduction and using standard composition
theorems (cf. [Can00]), we get a 2-round protocol for f with similar complexity and perfect (resp.,
computational) privacy.

To prove our results in the client-server model (Theorem 1.3) we will need the following lemma
whose proof is deferred to Section 7.4.

Lemma 7.4. Let f be an n-party functionality and let g be a perfectly-correct MPRE for f with
effective degree-2, complexity T , privacy threshold τ and perfect privacy (resp., computational pri-
vacy). Then, f can be computed in the client-server model in two rounds with n clients, an arbitrary
number m of servers, and perfect (respectively, computational) privacy against any adversary that
corrupts a minority of the servers and at most τ -fraction of the clients. The complexity of the
protocol is polynomial in n,m and T .

Theorem 1.3 follows immediately by combining Theorems 7.1, 7.2 and 7.3 with Lemma 7.4.

7.1 Perfect MPRE for Branching Programs (Proof of Theorem 7.1)

Let f be an n-party functionality that is computable by a branching program of size S. By [IK00],
such a function has degree-3 perfect randomized encoding g1(x; r) of poly(S) size. Recall that
such an RE yields an n-private MPRE, and let us get rid of the private randomness by applying
Proposition 3.2. This gives us a degree-3 MPRE g2 of f whose complexity is poly(S) with privacy
threshold of n. Next, we encode g2 by the BGW-based protocol-compatible encoding (Theorem 4.3)
and get a protocol-compatible perfect MPRE g3 of size O(S · poly(n)), depth O(log n) and privacy
threshold of τ =

⌊
n−1

2

⌋
. Using our information-theoretic encoding from Theorem 5.1 (based on

garbled circuits), we get a τ -private perfect MPRE g4 of g3 with complexity poly(n, S) and effective
degree 2. By the composition lemma (Lemma 3.3), the MPRE g4 perfectly encode f with privacy
threshold of τ .

7.2 Computational MPRE for Circuits (Proof of Theorem 7.2)

Let f be an n-party functionality that is computable by a circuit of size S. By Theorem 4.3,
we can apply the BGW-based protocol-compatible encoding (Theorem 4.3) and get a protocol-
compatible perfect MPRE g1 of size O(S · poly(n)), and privacy threshold of τ =

⌊
n−1

2

⌋
. Using

our computational encoding from Theorem 6.1 (based on garbled circuits), we get a τ -private
computational MPRE g2 of g1. This MPRE has complexity poly(n, S), effective degree 2, and
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it makes a black-box use of the one-way function. By the composition lemma (Lemma 3.3), the
MPRE g2 computationally encode f with privacy threshold of τ .9

7.3 Computational n-private MPRE for Circuits (Proof of Theorem 7.3)

Let f be an n-party functionality that is computable by a circuit of size S. Assuming the exis-
tence of oblivious transfer, the GMW protocol [GMW87] computes f with computational privacy,
complexity of poly(n, S), and privacy threshold of τ = n. By applying Proposition 4.1, we derive a
GMW-based protocol-compatible encoding g1 of circuit size poly(n, S), computational privacy, and
privacy threshold of τ .10 Since the existence of oblivious transfer implies the existence of one-way
functions, we can use the computational encoding from Theorem 6.1 (based on garbled circuits),
and get a τ -private computational MPRE g2 of g1 with complexity poly(n, S), and effective degree
2. By the composition lemma (Lemma 3.3), the MPRE g2 computationally encode f with privacy
threshold of τ .

7.4 Client-Server Protocols for MPRE with effective degree-2 (Proof of Lem. 7.4)

We need the following fact that is based on a client-server variant of the standard protocol
of [BGW88, CCD88]. (A related observation was made in [IKP10].)

Fact 7.5. Any n-party degree-2 functionality q can be perfectly computed with n clients an arbitrary
number of m servers and perfect security against any semi-honest adversary that corrupts a minority
of the servers and any subset of the clients.

sketch. We sketch the protocol for completeness, focusing on the case of a deterministic functionality
q that delivers a single output to a single party. (Multi-output functionalities can be handled by
repeating the above process in parallel, and randomized functionalities reduces to deterministic
ones via standard degree-preserving reduction; cf. Proposition 3.2.)

Let F be the field GF(2dlogme). For each input xi the corresponding party selects a random
degree-bm/2c polynomial Pi over F whose free coefficient equals to xi and sends xi,j = Pi(j) to the
j-th server. In addition, each party i selects a random degree-m polynomial Ri and sends to the
j-the server the share ri,j = Ri(j). The j-th server locally computes the output of the degree-2
functionality on the shares q(x1,j , . . . , xn,j), adds the zero shares r1,j + . . .+rn,j , and sends back the
result to the client who owns the output. This client interpolates the received points and outputs
the free coefficient of the corresponding degree-m polynomial. The analysis of the protocol follows
the standard analysis of the BGW/CCD protocol [BGW88, CCD88].

Let
g((x1, r1), . . . , (xn, rn), r0) = q(h1(x1, r1), . . . , (xn, rn); r0)

be the MPRE for f where hi denotes the preprocessing function of the i-th party and q is a degree-2
functionality. We use the protocol π promised by Fact 7.5 to securely compute g and show that
the resulting protocol realizes f . (This is essentially similar to the reduction proved in Prop. 3.1,
except that here we are dealing with the client-server model.)

The protocol for f proceeds as follows.

9One can obtain an alternative proof that does not rely on Theorem 6.1, and instead employs the constant-degree
MPRE that is induced by the constant-round multiparty protocol of [BMR90, Rog91]. (See the conference version
of this paper for details.)

10This MPRE makes a non-black box use of the oblivious transfer that is employed by the GMW protocol.
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• Each client i samples its local randomness ri for the MPRE g and locally preprocess its input
(xi, ri) into zi = hi(xi, ri).

• The parties invoke the client-server protocol π for the randomized functionality q with the
inputs zi, and apply their decoders on the result.

The complexity of the protocol is polynomial in n,m and the complexity of the MPRE g. We
prove that the protocol privately realizes f . By Proposition 3.2, we may assume, without loss
of generality, that the functionality f is a deterministic functionality. In this case, it suffices to
establish correctness and privacy separately (cf. [Gol04, Section 7.2.2]).

Correctness follows immediately from the correctness of π and the correctness of the MPRE.
(Just like in the proof of Proposition 3.1.) Privacy follows by composing the simulators of the
protocol π with the MPRE simulator. Formally, consider an adversary that corrupts a τ -subset T1

of the clients and a minority T2 of the servers. Let Simπ be the simulator of the protocol π that
takes as an input the set of corrupted parties (T1, T2), the inputs of the corrupted clients z[T1],
and their output ŷ[T1] and perfectly samples the joint view of the corrupted parties (in T1 and T2).
Let Simg be the simulator of the MPRE that takes as an input the set of corrupted parties T1,
their inputs x[T1] and their final outputs y[T1], and samples perfectly (resp., computationally) the
joint MPRE view (x[T1], r[T1], ŷ[T1]). We define the simulator Sim(T1, T2, x[T1], y[T1]) as follows:
(1) Apply Simg(T1, x[T1], y[T1]) and get (x[T1], r[T1], ŷ[T1]); (2) Compute zi = hi(xi, ri) for every
i ∈ T1; (3) Compute the π-view Simπ((T1, T2), z[T1], ŷ[T1]) of the parties in T1 and T2, and output
the result concatenated with (x[T ], r[T ]).

The perfect privacy (resp., computational) of the simulator follows from the perfect privacy of
π and the perfect (resp., computational) privacy of the MPRE. This completes the proof of the
lemma.
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[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Simon [Sim88], pages 11–19.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, pages 378–394, 2005.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In Frank Thomson Leighton and Michael T. Goodrich, editors,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
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