
Proofs of Ignorance

and Applications to 2-Message Witness Hiding

Apoorvaa Deshpande∗ Yael Kalai†

September 25, 2018

Abstract

We consider the following paradoxical question: Can one prove lack of knowledge? We define the
notion of Proofs of Ignorance, construct such proofs, and use these proofs to construct a 2-message
witness hiding protocol for all of NP.

More specifically, we define a proof of ignorance (PoI) with respect to any language L ∈ NP and
distribution D over instances in L. Loosely speaking, such a proof system allows a prover to generate
an instance x according to D along with a proof that she does not know a witness corresponding to x.
We construct construct a PoI protocol for any random self-reducible NP language L that is hard on
average. Our PoI protocol is non-interactive assuming the existence of a common reference string.

We use such a PoI protocol to construct a 2-message witness hiding protocol for NP with adap-
tive soundness. Constructing a 2-message WH protocol for all of NP has been a long standing open
problem. We construct our witness hiding protocol using the following ingredients (where T is any
super-polynomial function in the security parameter):

1. T -secure PoI protocol,

2. T -secure non-interactive witness indistinguishable (NIWI) proofs,1

3. T -secure rerandomizable encryption with strong KDM security,2

where the first two ingredients can be constructed based on the T -security of DLIN.
At the heart of our witness-hiding proof is a new non-black-box technique. As opposed to previous

works, we do not apply an efficiently computable function to the code of the cheating verifier, rather
we resort to a form of case analysis and show that the prover’s message can be simulated in both cases,
without knowing in which case we reside.

1 Introduction

Cryptography has always challenged the limits of what we believe is possible. With the elegant work
of zero knowledge proofs [GMR89], it is possible to prove that a statement is true without revealing
anything except its validity. Furthermore, with zero knowledge proofs-of-knowledge [FFS88, GMR89] it
is also possible to prove knowledge of some secret without revealing anything about the secret.

In this work, we try to answer the following paradoxical question:

Can one prove lack of knowledge?

Intuitively, it seems impossible, since one can always pretend to be ignorant. We explore the settings
in which one could give a convincing proof of ignorance. As a thought experiment, suppose that Alice

∗Brown University, email: acdeshpa@cs.brown.edu. Part of this work was done at Microsoft Research.
†Microsoft Research, email: yael@microsoft.com.
1By NIWI we mean a one message WI proofs without a CRS.
2By strong KDM security we mean that for any possibly inefficient function f , it is computationally hard to distinguish

between Enc(f(pk)) and Enc(0).

1

holds a locked box and wants to convince Bob that she does not know the contents inside the box. In
general, Bob has no reason to believe Alice unless Alice provides some evidence on how she got the box
in the first place. Suppose Bob trusts that Charlie gives locked boxes without revealing its contents and
suppose that Alice is able to prove that she got the box from Charlie, then Bob might be convinced of
Alice’s assertion.

In the context of NP languages, a proof of ignorance (PoI) for an instance x being in an NP language
L should convince the verifier that indeed x is in L and yet that the prover does not know a witness
corresponding to x. The main question that we need to tackle is where does the instance x come from?
Note that if the verifier generates a random instance x for the prover, and the language is hard on average,
then a PoI is not needed. Moreover, if the prover and verifier generate x together through a two-party
computation protocol, then again a PoI is not needed.

We are interested in the setting where a prover can generate an instance x along with a corresponding
proof of ignorance on her own. For example, suppose there is a way for Alice to sample an instance x
through a “provably random process”. Then Alice can convince a verifier that she does not know a witness
for x (assuming the language is hard on average). In some sense, a proof of ignorance is a proof that the
instance x has been generated correctly with “good” randomness.

1.1 Proofs of Ignorance

We define proofs of ignorance (PoI) for any NP language L with respect to a distribution D over instances
in L. We consider the setting where the prover generates an instance x on her own according to D, and
gives a proof that she generated x without knowing a corresponding witness.

Note that in the random oracle model [BR93], it is easy to construct a PoI for any L ∈ NP w.r.t. any
distribution D over instances in L for which given a random u it is hard to find a witness corresponding
to x = D(u). To generate an instance x distributed according to D together with a PoI do the following:
Choose r at random, compute u = H(r), and set x = D(u) to be the instance and r to be the PoI. Since
H is modeled as a random oracle, knowledge of r (even if r is adversarially chosen) convinces the verifier
that the prover uses a random u to generate x and thus does not know a witness corresponding to x,
assuming our hardness assumption on L w.r.t. D.

A PoI is impossible to achieve in the standard model without any interaction, since the prover can
simply hardwire an instance-witness pair together with a PoI. We show that this is possible (for some NP
languages) if the verifier sends a single message, in the form of a common reference string (CRS).

PoI have been used implicitly in prior works for special cases; Mateus and Vaudenay [MV09] show
that using secure hardware it is possible to prove ignorance of a secret key corresponding to a given public
key. Damgard and Nielsen [DN00a] introduce the notion of oblivious key generation in the context of
non committing encryption where it is possible to sample public keys without knowing the corresponding
secret keys. We define the notion of proofs of ignorance for all of NP, construct such proofs for random
self-reducible languages and use them to build 2-message witness hiding protocols.

1.1.1 Defining Proofs of Ignorance

We define proofs of ignorance (PoI) with respect to a language L ∈ NP and a distribution D over instances
in L. A PoI proof system for (L,D), consists of a triplet of PPT algorithms (Setup,Gen,Verify), such that
Setup generates a common reference string (CRS). Any party can use the algorithm Gen, together with
the CRS, to sample an instance x together with a PoI π, such that x is distributed according to D.

The soundness guarantee we want is that if the verification algorithm Verify on input (CRS, x, π)
outputs 1 then the prover who generated (x, π) does not know a witness corresponding to x. This is
formalized by defining a computationally indistinguishable common reference string CRS′ such that for
any (x, π) if the algorithm Verify accepts (x, π) with respect to CRS′, then it must be the case that x /∈ L.
Our intuition here is that since given CRS′ one cannot generate a valid PoI together with a witness (since
a witness does not exit), and since CRS′ is computationally indistinguishable from CRS, it follows that

2

given CRS one cannot generate a valid PoI together with a witness. We refer the reader to Definition 16
for the formal definition.

We also provide an alternative definition, which we refer to as Trapdoor PoI. In this definition, the
CRS is generated together with a trapdoor td such that given (x, π, td) where π is a valid PoI with respect
to x, it is easy to compute a valid witness w corresponding to x. The soundness guarantee is that given
only the CRS (without the trapdoor), it is computationally infeasible for an adversary to output (x, π, w)
such that π is a valid PoI for x and w is a witness for x. We refer the reader to Definition 17 for the
formal definition. Jumping ahead, we note that we use a trapdoor PoI in our 2-message witness hiding
protocol.

1.1.2 Constructing Proofs of Ignorance

Let us start by giving a proof of ignorance protocol for the DDH language LDDH. This language consists
of elements of the form x = (gy, gz, gyz), where g is a fixed generator of a primed order group G, and
where the corresponding witness is w = (y, z). We construct a proof of ignorance for LDDH with respect
to the uniform distribution UDDH, which samples an element in LDDH by choosing at random y, z ← Zp
where p = |G| and outputting x = (gy, gz, gyz).

The CRS of our PoI protocol is simply a random element in LDDH; namely, CRS = (gy, gz, gyz) for
randomly chosen y, z ← Zp. To generate a random element in LDDH together with a PoI, simply choose at
random r, s← Zp, and let x = (gyr, gzs, gyzrs) and the PoI be π = (r, s). To check the validity of π simply
check that indeed x =

(
(gy)r, (gz)s, (gyz)rs

)
. It is easy to see that by the discrete log assumption, if a

prover given CRS generates an accepting (x, π) then the prover does not know a valid witness corresponding
to x.

What enabled us to construct a proof of ignorance protocol for LDDH is the fact that LDDH is a random
self-reducible language. More generally, we construct a proof of ignorance protocol for any random self-
reducible language, where a language L ∈ NP is said to be random self-reducible if there exists a PPT
algorithm f that converts any x ∈ L into a uniformly distributed x′ = f(x, r) ∈ L.

Theorem 1 (Informal). If a language L is hard on average and is random self-reducible with respect to
a distribution D = {Dλ}λ∈N then there exists a proof of ignorance protocol for (L,D).

We also construct a trapdoor PoI (which is the primitive we use in our 2-message witness hiding
protocol) for any random self-reducible language that is witness preserving. Loosely speaking, we say
that a random self-reducible language L ∈ NP is witness preserving, if given a valid witness w for x,
and given x′ and r such that x′ = f(x, r), one can efficiently compute a valid witness for w′ for x′,
and similarly, given x, x′, r, w′ such that x′ = f(x, r) and such that w′ is a valid witness for x′, one can
efficiently compute a valid witness w for x. It is easy to see that LDDH is a witness preserving random
self-reducible language with respect to the uniform distribution UDDH.

Theorem 2 (Informal). If a language L is hard-to-extract with respect to a distribution D,3 and is
witness-preserving random self-reducible with respect to D, then there exists trapdoor proof of ignorance
protocol for (L,D).

We prove these theorems in Section 5.

1.2 Witness Hiding from Proofs of Ignorance

Witness hiding proofs were introduced by Feige and Shamir [FS90]. Intuitively, an interactive proof for
an NP language L is said to be witness hiding if participating in the protocol does not help the verifier

3Namely, for every poly-size adversaryA, the probability that A outputs the witness for an instance drawn from D is
negligible.

3

find a witness corresponding to the underlying instance. Witness hiding is a natural weakening of the
security requirement of zero-knowledge, and can replace zero knowledge (ZK) in several applications.

Despite the fact that witness-hiding is a weaker requirement than ZK, almost all our candidate con-
structions of witness hiding protocols for NP are themselves zero-knowledge (or weak zero-knowledge).
In particular, it is known that there do not exist 2-message zero-knowledge protocols for NP [GO94], and
indeed constructing a 2-message witness hiding protocol for NP remained an important open problem.

In this work, we construct a 2-message witness hiding protocol for NP, using the following ingredients.
Fix any super-polynomial function T = λω(1), where λ is the security parameter. The ingredients are:

1. T -secure trapdoor proof of ignorance protocol.

2. T -secure non-interactive witness indistinguishable (NIWI) proofs.4

3. T -secure rerandomizable encryption with strong KDM security, where by strong KDM security we
mean that for any possibly inefficient function f , it is computationally hard to distinguish between
Enc(f(pk)) and Enc(0).

Remark 1. The definition of strong KDM security was recently given in [CCRR18]. However, they
require that Enc(f(pk)) and Enc(0) are indistinguishable with respect to an exponential size adversary,
whereas we only require that they are indistinguishable with respect to a polynomial size adversary.

Theorem 3 (Informal). Assuming the existence of the ingredients above, there exists a 2-message witness
hiding protocol with adaptive soundness for NP.

We note that Groth, Ostrovsky and Sahai [GOS06] construct a T -secure NIWI from the T security of
the DLIN assumption. In this work, we construct a T -secure trapdoor proof-of-ignorance protocol under
the same assumption. Thus, we obtain the following corollary.

Corollary 1. There exists a 2-message witness hiding protocol with adaptive soundness for NP assuming
that DLIN is T -secure and assuming a T -secure rerandomizable encryption with strong KDM security.

Remark 2. We have several constructions of T -secure rerandomizable encrypton schemes from standard
assumptions, such as the T -security of DDH, or the T -security of quadratic residuosity. We do not know
how to prove that these schemes are strong KDM secure under standard assumptions, but we do not have
any evidence that they are not.

1.2.1 Related Work on Witness Hiding Protocols

3-Message Protocols Most witness hiding protocols in the literature are also zero-knowledge. It is
known that 3-message ZK protocols with black-box simulation do not exist [GK96]. Several 3-message
ZK protocols with non-black-box simulation were constructed: Most known constructions are based
on auxiliary-input knowledge assumptions [BP04, HT98, CD09, BCC+17],5 and very recently Bitan-
ski et. al. [BKP18] gave a construction based on multi-collision-resistant hash functions. 3-message ZK
protocols have also been constructed under standard assumptions in restricted adversarial models, where
either the verifier or the prover is assumed to be uniform [BCPR16, BBK+16].

The only example of a 3-message WH protocol which is not ZK, is by Bitansky and Paneth [BP12].
They rely on the assumption that there exist auxiliary input point-function obfuscators that satisfy a
distributive requirement.6

4By NIWI we mean a one message WI proofs without a CRS.
5These assumptions are believed to be false assuming that indistinguishability obfuscation exists [BCPR16].
6This assumption is believed to be false assuming that Virtual Grey Box obfuscation exists [BCKP17].

4

2-Message Protocols It is well known that 2-message zero-knowledge protocols do not exist [GO94].
Indeed, constructing a 2-message witness hiding protocol for all of NP remained an elusive task. However,
significant progress on this question has been made.

Loosely speaking, Feige and Shamir [FS90] observed that if a language has two independent witnesses
then witness indistinguishability implies witness hiding. Importantly, constructing a 2-message witness
indistinguishable (WI) protocol, and even a non-interactive WI protocol, is known for all of NP under
various (standard) assumptions [DN00b, BOV05, GOS06]. Pass [Pas03] used this observation to construct
a 2-message ZK protocol with quasi-polynomial simulation for all of NP. Roughly speaking, his protocol
follows the following blueprint: The verifier sends y = f(r) where r is a random string and f is one-way
function that is invertible in quasi-polynomial time, and such that every element in the range has a pre-
image. The prover then sends a commitment c and gives a WI proof that x ∈ L or that c commits to
r′ such that f(r′) = y. Simulation works by inverting y in quasi-polynomial time and using that as a
witness in the WI proof.

We note that this protocol is WH for super-polynomial hard languages. More generally, any protocol
that is ZK with T -time simulation is WH for T -hard languages. The reason is that if (by contradiction)
the resulting protocol is not WH, then one can find a witness in time roughly T , by simulating the prover
(in time T) and then extracting a witness from the simulated transcript (in polynomial time). This
contradicts the T -hardness of the language.

In this work, we construct a WH protocol for all of NP. We follow the blue-print of Pass, where we
use our proof of ignorance protocol to construct an independent witness, and as a result avoid putting
any restrictions on the hardness of L. We refer to Section 2 for details.

Other WH Protocols Jain et. al. [JKKR17] construct 2-message WH protocols (and distributional
ZK) under standard assumptions, in the delayed input setting, where the instance is only determined by
the prover in the last round.

There have been several works on witness hiding protocols for languages where each instance has a
unique witness. Haitner, Rosen and Shaltiel [HRS09] showed that such languages do not have constant
round public-coin witness hiding protocols which are based on standard assumptions via some restricted
types of black-box reductions. Deng et al. [DSYC17] showed that for any such language L, and for any
distribution D over L that has an indistinguishable counterpart distribution over a relation with multiple
witnesses, it holds that any witness indistinguishable protocol is witness hiding with respect to D. Bellare
and Palacio [BP02] showed that the Schnorr and Guillou-Quisquater 3-message identification protocols
are witness hiding under the assumptions of one-more Discrete Log and one-more RSA.

2 Technical Overview: Witness Hiding Arguments

The main technical contribution of this work is a 2-message witness hiding protocol from proofs of ig-
norance. This protocol, as well as its analysis, contain a novel non-black-box technique, which is of
conceptual interest. Starting with the seminal work of Barak [BGI+01], most non-black-box techniques
use the code of the cheating verifier V ∗ in an “efficient manner” (eg., the simulator commits to the code
of V ∗ and proves that this code satisfies a desired property). To prove that our protocol is witness hiding,
we do not use the code of V ∗ in an efficient manner; rather, we resort to a form of case analysis. We
argue that either it is possible to efficiently generate some trapdoor, in which case we can simulate the
prover’s message in a certain way, or the trapdoor cannot be generated efficiently, in which case we can
simulate the prover’s message in a different way. However, we do not know in which case we reside. This
is what distinguishes our WH proof from a ZK proof.

In what follows we give an overview of our construction and proof of security. At a very high-level,
we follow the approach of Pass [Pas03]. Our starting point is the observation of [FS90] that if a language
L has two independent witnesses then a WI proof for L is also WH. We use this observation to construct

5

a 2-message WH protocol for any language L ∈ NP and use our proof of ignorance protocol to generate
an additional independent witness (corresponding to an independent instance).

The basic blueprint of our protocol is the following: The prover will generate an independent instance
x′ and prove that either x′ ∈ L or x ∈ L, using a 2-message WI proof. This 2-message protocol is definitely
witness hiding, but it is not sound, since the prover can cheat and prove that x ∈ L (even though this
is false) by generating x′ ∈ L and using a witness w′ for x′ to convince the verifier. We overcome this
obstacle by using a proof-of-ignorance; the prover will send x′ together with a proof of ignorance, and will
then prove that either x ∈ L or x′ ∈ L.

The problem here is that we do not have proof of ignorance (PoI) protocol for all of NP. This problem
can be bypassed quite easily by choosing some language L′ ∈ NP that has a PoI protocol, and now the
prover will generate x′ ∈ L′ together with a PoI, and will add a WI proof that x ∈ L or x′ ∈ L′.

Attempt 1. Our first attempt at constructing a 2-message WH protocol is the following:

− Verifier’s message: Verifier samples CRS corresponding to the PoI proof system for L′, and
sends it to the prover.

− Prover’s message: The prover samples x′ ∈ L′ with a proof of ignorance π′, and send (x′, π′)
along with a WI proof for the following language:

LWI = {(x, x′) | ∃ w such that (x,w) ∈ RL ∨ (x′, w) ∈ RL′}

Intuitively, this 2-message protocol seems to be sound, since if x /∈ L and if the prover generates a
valid PoI for x′ then he does not know a witness to x (since one does not exist) nor to x′, and thus cannot
cheat. The actual proof is quite subtle, and in particular requires using a trapdoor PoI, and relying on
super-polynomial hardness assumptions. Subsequently, we elaborate on these subtleties.

However, a more serious problem here is that adding the PoI seems to damage the WH property. For
example, the (cheating) verifier can generate CRS maliciously in a way that if π′ is a valid PoI for x′ then
it must be the case that x′ /∈ L′, and thus we do not have two independent witnesses, and hence the WI
property may not protect us at all.

We fix this problem by having the verifier not only send the CRS for the PoI, but also prove that it is
“well formed”. Namely, he proves that there exists randomness that “explains” this CRS. There are two
issues with adding this proof of correctness: First, it seems like we need a PoI with the strong property
that for every well formed CRS, if the prover is honest then he generates a randomly distributed x′ ∈ L′,
independent of CRS, whereas our PoI have this property only for an honestly generated CRS. Here again,
the trapdoor PoI comes to the rescue (as we explain in more detail below).

The other issue is that for soundness it is crucial that the prover does not learn sensitive information
about the CRS (in particular, how it was generated). Thus, it seems that to maintain soundness, the
verifier will need to use a zero-knowledge proof, or at least a witness-hiding proof, which brings us back
to where we started from in the first place!

We solve the latter problem using the same blueprint that we started with. Rather than sending
a single CRS, the verifier will send two independent copies CRS0 and CRS1 and will give a WI proof
that at least one of them is well formed. Since the verifier sends the first message we need to rely on a
non-interactive WI (NIWI) proof. The prover will then send (x′0, π

′
0) corresponding to CRS0 and (x′1, π

′
1)

corresponding to CRS1, and will give a NIWI proof that either x ∈ L or x′0 ∈ L′ or x′1 ∈ L′.

Attempt 2. Our second attempt at constructing a 2-message WH protocol is the following:

6

− Verifier’s message: Verifier independently samples CRS0 and CRS1 corresponding to the PoI
proof system for L′, and generates a NIWI proof πNIWI that at least one of them is well-formed.
He sends (CRS0,CRS1, πNIWI) to the prover.

− Prover’s message: The prover first checks that the NIWI proof πNIWI is valid, and if not
aborts. Otherwise, for every b ∈ {0, 1}, the prover samples x′b ∈ L′ with its proof of ignorance
π′b, and sends (x′0, π

′
0), (x′1, π

′
1), along with a NIWI proof that (x ∈ L) or (x′0 ∈ L′) or (x′1 ∈ L′).

Intuitively, the soundness of this protocol follows from the fact that if x /∈ L then the only way to cheat
is by using either a witness for x′0 or a witness for x′1, and the PoI guarantees that a cheating prover does
not know such a witness. However, to argue this formally, a NIWI does not suffice and we need a NIWI
proof of knowledge. This is the case since the PoI only guarantees that it is hard to find a witness, and
not that a witness does not exist. We achieve this proof-of-knowledge property by resorting to complexity
leveraging. Namely, the prover will also send a (statistically binding) commitment c and will prove that
either x ∈ L or that there exists b ∈ {0, 1} such that c is a commitment to a valid witness of x′b. Suppose
this commitment can be broken in time T , then we can extract from the cheating prover a witness w′b
to x′b, and argue that this breaks the soundness of the underlying PoI, (which asserts that given CRSb it
is hard to generate (x′b, π

′
b, w

′
b)). However, to argue this formally, one needs to assume T -security of the

PoI protocol, and T -security of the WI protocol. Then we can prove that the following protocol is indeed
sound.

Attempt 3. Our third attempt at constructing a 2-message WH protocol is the following:

− Verifier’s message: Verifier samples independently CRS0 and CRS1 corresponding to the PoI
proof system for L′, and generates a NIWI proof πNIWI that at least one of them is well-formed.
He sends (CRS0,CRS1, πNIWI) to the prover.

− Prover’s message: The prover does the following:

1. Check that the NIWI proof πNIWI is valid, and if not abort.

2. For every b ∈ {0, 1}, use CRSb to sample x′b ∈ L′ along with a proof of ignorance π′b.

3. Compute c which is a commitment to 0.

4. Compute a NIWI proof π′NIWI that x ∈ L or that there exists b ∈ {0, 1} for which c is a
commitment to a valid witness corresponding to x′b.

− Send
(
(x′0, π

′
0), (x

′
1, π
′
1), c, π

′
NIWI

)
.

We can formally argue that this protocol is sound. However, it is still not clear how to argue that
it is WH. As mentioned before, the problem is that the CRS could still be maliciously chosen (albeit
well-formed). Our first observation is that this protocol is WH against cheating verifiers who “know” a
valid trapdoor tdb corresponding to CRSb (for some b ∈ {0, 1}). This is true because given tdb one can
efficiently compute w′b from (x′b, π

′
b), and thus simulate the NIWI proof of the prover efficiently.

Thus, restating the problem: What if the cheating verifier managed to construct a valid NIWI proof
without knowing a valid trapdoor to CRS0 or CRS1? Again, this would have been solved with a NIWI

7

proof-of-knowledge. However, for one-message NIWI PoK we would need complexity leveraging and the
use of complexity leveraging here would result in a WH protocol only for T -hard languages.7

Our Non-Black-Box Technique: We overcome the hurdle described above by instructing the verifier
to encrypt the trapdoors of each CRS and prove that one of these encryptions indeed encrypts a valid
trapdoor. Namely, the verifier does the following: Sample two fresh and independent public keys (pk0, pk1)
corresponding to a semantically secure encryption scheme, and send {(CRSb, pkb, ctb)}b∈{0,1}, where ctb ←
Encpkb(tdb), along with a NIWI proof that there exists b ∈ {0, 1} such that ctb is an encryption of a valid
tdb corresponding to CRSb.

As explained above, we cannot afford to extract a trapdoor from the ciphertexts (since this may take
super-polynomial time). Instead, we instruct the prover to give its proof of ignorance π′b encrypted under
pkb. This allows us to prove witness hiding using the following non-black-box approach. We distinguish
between the following two cases:

− Case 1: The verifier “knows” a trapdoor corresponding to CRS0 or CRS1. In this case, one can
efficiently simulate the prover’s message using this trapdoor, and thus WH holds (as was argued
before).

− Case 2: The verifier does not know a trapdoor to CRS0 or to CRS1. In this case, we argue that the
verifier cannot distinguish between the case that the prover encrypts a valid PoI π′b corresponding
to x′b, or encrypts 0, and thus again one can efficiently simulate the prover’s message by encrypting
0, and generating x′b together with a valid witness w′b. To argue that indeed the verifier cannot
distinguish between Encpkb(π

′
b) and Encpkb(0) we rely on an encryption scheme that is rerandom-

izable. However, we need something stronger: Namely, we need to argue that the verifier cannot
distinguish between Encpkb(π

′
b) and Encpkb(0) given the NIWI proof π′NIWI. To prove this we need the

assumption that this encryption scheme is strong KDM secure. We defer the details to Section 6.

Attempt 4. Our fourth (and almost final) attempt is the following.

− Verifier’s message: The verifier does the following:

1. Sample independently two public keys pk0 and pk1 (corresponding to a rerandomizable
T -secure strong KDM secure encryption scheme).

2. Sample independently CRS0 and CRS1, together with corresponding trapdoors td0 and td1.

3. Generate ct0 ← Encpk0(td0) and ct1 ← Encpk1(td1).

4. Generate a NIWI proof πNIWI that there exists b ∈ {0, 1} for which ctb encrypts a valid
trapdoor corresponding to CRSb.

Send
(

(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
to the prover.

− Prover’s message: The prover does the following:

1. Check that the NIWI proof πNIWI is valid, and if not abort.

2. For every b ∈ {0, 1}, use CRSb to sample x′b ∈ L′ along with a proof of ignorance π′b.

3. For every b ∈ {0, 1}, generate ct′b ← Encpkb(π
′
b).

4. Compute c which is a commitment to 0.

7This approach was used by Pass in [Pas03].

8

5. Compute a NIWI proof π′NIWI that x ∈ L or that there exists b ∈ {0, 1} for which c is a
commitment to a valid witness corresponding to x′b.

− Send
(

(x′0, ct
′
0), (x

′
1, ct

′
1), c, π

′
NIWI

)
.

We can indeed argue that this protocol is WH, as argued above. However, to argue soundness recall
that we need to extract from the cheating prover a tuple (x′b, w

′
b, π
′
b). Previously, π′b was given in the

clear, and w′b was extracted in time T from the commitment. However, now we also need to extract π′b,
which will take more time, since the encryption is T -secure. Instead, we instruct the prover to generate
a commitment c′b = Com(π′b; r

′
b), in addition to ct′b, and compute a NIWI proof π′NIWI that x ∈ L or that

there exists b ∈ {0, 1} for which c is a commitment to a valid witness corresponding to x′b and ct′b is an
encryption to a pair (π′b, r

′
b) such that c′b = Com(π′b; r

′
b).

The formal protocol and the proof can be found in Section 6.

3 Preliminaries

Notation: We denote the security parameter by λ. We use PPT to denote that an algorithm is proba-
bilistic polynomial time. Suppose A is a probabilistic algorithm, then we denote by y ← A(x) the event

that y is generated by sampling randomness r
$← {0, 1}∗ and setting y = A(x; r).

We say that a function ν : N→ N is negligible (sometimes denoted by negl) if for every polynomial p
there exists λ0 ∈ N such that for all λ > λ0, ν(λ) < 1/p(λ). For any language L, we denote by L = {Lλ}λ∈N
where Lλ = L ∩ {0, 1}λ. We use the notation of {Xλ}λ∈N ≈c {Yλ}λ∈N, and {Xλ}λ∈N ≈s {Yλ}λ∈N,
to denote that the distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are computationally and statistically
indistinguishable, respectively.

3.1 Witness Hiding and Witness Indistinguishable Proofs

Definition 1 (Interactive proofs). An interactive proof system for an NP language L, with a corre-
sponding NP-relation RL, is a protocol 〈P, V 〉, between a PPT prover P and a PPT verifier V , at the end
of which V outputs a bit b, and such that the following two properties are satisfied.

− Completeness. There exists a negligible function µ such that for every λ ∈ N and every (x,w) ∈
RL,

Pr[b← 〈P (w), V 〉(1λ, x) : b = 1] ≥ 1− µ(λ)

where the probability is over the random coin tosses of P and V .

− Soundness. For any cheating prover P ∗ there exists a negligible function µ such that for every
λ ∈ N and every x /∈ L,

Pr[b← 〈P ∗, V 〉(1λ, x) : b = 1] ≤ µ(λ),

where the probability is over the random coin tosses of V .

We say that 〈P, V 〉 has perfect soundness if the soundness condition holds with µ = 0 (for any P ∗).

Definition 2 (Interactive Arguments). An interactive argument system for a language L is a protocol
〈P, V 〉 as in Definition 1, where the completeness property is as before, but the soundness property is
relaxed as follows.

9

− Computational Soundness. For any poly-size cheating prover P ∗ there exists a negligible function
µ, such that for every λ ∈ N, and every x ∈ {0, 1}poly(λ) \ L,

Pr[b← 〈P ∗, V 〉(1λ, x) : b = 1] ≤ µ(λ)

where the probability is over the random coin tosses of V .

A 2-message argument system 〈P, V 〉 for a language L is one that consists of only two messages, the
first sent from the verifier to the prover and the second sent from the prover to the verifier. In a 2-message
argument system, we often denote the verifier by V = (V1, V2), where V1 generates the message to be sent
to the prover, and V2 checks the validity of the proof given by the prover. If the message of the verifier V1
does not depend on the instance x (and depends only on the security parameter), then we often denote
(pp, st)← V1(1

λ), where pp is the message sent to the prover and st is the secret state used by V2 to verify
the proof.8

Definition 3 (2-Message Arguments with Adaptive Soundness). A 2-message argument system 〈P, V 〉
for an NP language L, where the message sent by the verifier is independent of the instance x, is said
to have adaptive soundness if for any poly-size cheating prover P ∗ there exists a negligible function µ
such that

Pr
[
(x,msgP) = P ∗(1λ, x, pp) s.t.

(
x /∈ L

)
∧
(
V2(1

λ, x, pp, st,msgP) = 1
)]
≤ µ(λ)

where the probability is over (pp, st)← V1(1
λ) and over the random coin tosses of V2.9

Definition 4 (Witness Hiding [FS90]). Let L ∈ NP and let RL be the corresponding NP witness relation.
Let D = {Dλ}λ∈N be a PPT distribution ensemble over instances in RL. An interactive proof system
〈P, V 〉 for L is witness hiding with respect to D if the following holds:
For every poly-size V ∗ there exists a negligible function µ such that for every λ ∈ N,

Pr
(x,w)←Dλ

[〈P (w), V ∗〉(1λ, x) ∈ RL(x)] = µ(λ)

Definition 5 (Non Interactive Witness Indistinguishable (NIWI) proofs). Let L ∈ NP and let RL be
the corresponding NP relation. A pair of algorithms (Prove,Verify) is called a non-interactive witness
indistinguishable (NIWI) [FS90, GOS06] proof system (or argument system) for L if it satisfies complete-
ness and soundness as in Definition 1 (or Definition 2), and in addition it satisfies the following witness
indistinguishability property:
For every poly-size adversary A, there exists a negligible function ν such that for every λ ∈ N, the
probability that b′ = b in the following game is at most 1/2 + ν(λ):

1. (state, x, w0, w1) = A(1λ)

2. Choose b
$← {0, 1}. If RL(x,w0) 6= 1 or RL(x,w1) 6= 1 then output ⊥. Else, set π ← Prove(1λ, x, wb).

3. b′ = A(state, π)

Theorem 4 ([GOS06]). There exists a perfectly sound NIWI proof system based on the DLIN assumption
(defined below).

Assumption 1 (Decisional Linear Assumption). A bilinear group generation algorithm G on input the
security parameter 1λ outputs (p,G,GT , e, g), where G and GT are groups of order p, e : G×G→ GT is

8If st = ∅ then such an argument system is said to be publicly verifiable.
9Usually, in such argument systems V2 is deterministic.

10

a bilinear map, and g is a generator of G. The Decisional Linear (DLIN) Assumption holds for a bilinear
group generator G if the following distributions are computationally indistinguishable:

{(p,G,GT , e, g)← G(1λ) ; (x, y)
$← Z∗p ; (r, s)

$← Zp : (p,G,GT , e, g, g
x, gy, gxr, gys, gr+s)}λ∈N and

{(p,G,GT , e, g)← G(1λ) ; (x, y)
$← Z∗p ; (r, s, d)

$← Zp : (p,G,GT , e, g, g
x, gy, gxr, gys, gd)}λ∈N

Definition 6 (T -secure NIWI). A NIWI proof system (Prove,Verify) for L as in Definition 5 is said to
be T -secure if witness indistinguishability holds for all adversaries of size poly(T).

3.2 Encryption Schemes

Definition 7 (T -secure Encryption). A bit-wise encryption scheme (Gen,Enc,Dec) is said to be T -secure
if semantic security holds for all adversaries of size poly(T). Namely, for every poly(T)-size adversary D,
there exists a negligible function ν such that for every λ ∈ N,

P[D(pk, ct) = b] ≤ 1/2 + ν(T (λ)),

where the probability is over (pk, sk)← Gen(1λ), b
$← {0, 1} and ct← Encpk(b).

Remark 3. For the simplicity of notation, we assume that |pk| = λ, for every pk generated by Gen(1λ),
and we assume that Encpk uses λ bits of randomness. We note that one can use a bit-wise encryption
scheme to encrypt longer messages. Namely, for any k = poly(λ) one can encrypt any message m =
(m1, . . . ,mk) ∈ {0, 1}k as follows:

Encpk(m) =
(
Encpk(m1), . . . ,Encpk(mk)

)
.

The following lemma follows from a standard hybrid argument.

Lemma 1. If a bit-wise encryption scheme (Gen,Enc,Dec) is T -secure then it is T -secure with respect
to messages of length poly(T (λ)). More concretely, for every adversary A of size poly(T), there exists a
negligible function ν such that for every λ ∈ N, the probability that b′ = b in the following game is at most
1/2 + ν(T (λ)):

1. (state,m0,m1)← A(1λ)
2. If |m0| 6= |m1| then output ⊥.

3. Else, compute (pk, sk) ← Gen(1λ), choose b
$← {0, 1}, and let ~ct = (ct1, . . . , ct|mb|), where cti ←

Encpk(mb,i) for i ∈ [|mb|].
4. b′ ← A(state, pk, ct)

Definition 8 (Rerandomizable Encryption). A T -secure bit-wise public-key encryption scheme (Gen,Enc,Dec),
is said to be rerandomizable if there exists a PPT algorithm Rand that on input any pair (pk, ct) outputs
a ciphertext ct

′
with the following property: For every poly(T)-size adversary A there exists a negligible

function ν such that for every λ ∈ N, the probability that b′ = b in the following game is at most
1/2 + ν(T (λ)):

1. A(1λ) = (state, pk, ct,m, r).
2. If ct 6= Encpk(m; r) then output ⊥.

3. Else, choose b
$← {0, 1}. If b = 0, choose at random r′ ← {0, 1}λ and output ct′ = Encpk(m; r′).

Else if b = 1, output ct′ = Rand(pk, ct).
4. b′ ← A(state, ct′)

11

Lemma 2. Let (Gen,Enc,Dec) be a poly-secure rerandomizable bit-wise public-key encryption scheme.
For any poly-size distinguisher D and any polynomial q = poly(λ), there exists a non-uniform PPT
distinguisher D∗, such that for any λ ∈ N and any public key pk such that |pk| = λ, the following holds:
If

Pr[D(pk,Encpk(b)) = b] ≥ 1

2
+

1

q(λ)
(1)

where the probability is over b
$← {0, 1} and over the randomness of Encpk, then for every b ∈ {0, 1} and

every r ∈ {0, 1}λ,

Pr[D∗(pk,Encpk(b; r)) = b] ≥ 1− 2−λ (2)

where the probability is over the random coin tosses of D∗.
Proof. Fix any poly-size distinguisher D and any polynomial q. We construct a non-uniform PPT dis-
tinguisher D∗ as follows. Fix any pk that satisfies Equation (1) (w.r.t. D and q). Let Eb(ct) denote the
event that there exists randomness r such that ct = Encpk(b; r) and D(pk, ct) = b. Denote by

pb = Pr[Eb(ct)],

where the probability is over ct← Encpk(b). By Equation (1), we have that

p0 + p1
2

≥ 1

2
+

1

q(λ)
or equivalently,

p0 + p1 − 1

2
≥ 1

q(λ)

We now construct a non-uniform PPT distinguisher D∗, that on input (pk, ct), where ct = Encpk(b
∗; r),

does the following:

1. Choose N = λ · 4q(λ)2. For each i ∈ [N], compute ct′i ← Rand(pk, ct) and bi = D(pk, ct′i).

2. Let T = p1−p0+1
2 N . If

∑N
i=1 bi < T then output 0, and else output 1.

By the definition of rerandomizable encryption (Definition 8), for every b ∈ {0, 1} there exists a
negligible function νb such that

Pr[D(pk, ct′i) = b∗ | b∗ = b] ≥ pb − νb(λ) =: p′b (3)

where the probability is over ct′i ← Rand(pk, ct).

Now we prove that Equation (2) holds for b∗ = 1.

Pr[D∗(pk, ct) = b∗ | b∗ = 1]

= Pr
[N∑
i=1

bi ≥
p1 − p0 + 1

2
N
]

= 1− Pr
[N∑
i=1

bi <
p1 − p0 + 1

2
N
]

= 1− Pr
[N∑
i=1

bi < Np′1 −Nδ′
]

for δ′ =
p0 + p1 − 1

2
− ν1(λ)

≥ 1− Pr
[N∑
i=1

bi < Np′1 −Nδ
]

for δ =
1

2q(λ)
< δ′

≥ 1− 2−δ
2N

≥ 1− 2
− N

4q(λ)2

≥ 1− 2−λ

12

where the fifth equation follows from Chernoff bound.

A similar calculation shows that

Pr[D∗(pk, ct) = b∗ | b∗ = 0] > 1− 2−λ.

Hence, we proved that Equation (2) holds for every b∗ ∈ {0, 1} and every r ∈ {0, 1}λ.

The following lemma follows from Lemma 2, together with a straightforward union bound.

Lemma 3. Let (Gen,Enc,Dec) be a a poly-secure rerandomizable bit-wise public-key encryption scheme.
For any poly-size distinguisher D and any polynomials q, k = poly(λ), there exists a non-uniform PPT
distinguisher D∗ such that for any λ ∈ N and any public key pk such that |pk| = λ, the following holds: If

Pr[D(pk,Encpk(b)) = b] ≥ 1

2
+

1

q(λ)
,

where the probability is over b
$← {0, 1} and over the randomness of Encpk, then for any message m =

(m1, . . . ,mk) ∈ {0, 1}k and any r1, .., rk ∈ {0, 1}λ,

Pr[D∗(pk, ~ct) = m] ≥ 1− negl(λ)

where ~ct = (ct1, . . . , ctk) and cti = Encpk(mi; ri) for i ∈ [k], and where the probability is over the random
coin tosses of D∗.

Definition 9 (Strong KDM Security). A semantically secure public-key encryption scheme (Gen,Enc,Dec)
is said to be strong KDM secure if for every PPT distribution D used to (maliciously) sample public
keys, if (

pk∗,Encpk∗(0)
)
≈c
(
pk∗,Encpk∗(1)

)
where pk∗ ← D(1λ), then for every (not necessarily efficient) function f such that f(pk∗) ∈ {0, 1}poly(λ),(

pk∗,Encpk∗(f(pk∗))
)
≈c
(
pk∗,Encpk∗

(
0poly(λ)

))
where pk∗ ← D(1λ).

3.3 Commitment Schemes

Definition 10 (Statistically Binding Commitments). A statistically binding commitment scheme over a
message space M consists of PPT algorithm Com which on input a message m ∈ M and randomness
r ∈ {0, 1}λ outputs a commitment Com(m; r).
We require the following properties from the commitment scheme:

Statistically Binding: For every λ ∈ N, every m0,m1 ∈ M such that m0 6= m1, and every r0, r1 ∈
{0, 1}λ,

Com(m0; r0) 6= Com(m1; r1)

Computationally Hiding: For every non uniform PPT adversary A, there exists a negligible function
ν such that for every λ ∈ N, the probability that b′ = b in the following game is at most 1/2 + ν(λ):

1. (state,m0,m1)← A(1λ)

2. If |m0| 6= |m1| or if m0,m1 /∈M then output ⊥. Choose b
$← {0, 1} and sample c← Com(mb).

3. b′ ← A(state, c)

13

4 Random Self-Reducible Languages

In this section we define random self-reducible (RSR) languages and witness-preserving random self-
reducible languages, and provide examples of such languages.

4.1 Definitions

Definition 11 (Hard on Average). A language L is said to be hard on average with respect to a
distribution D = {Dλ}λ∈N, where Dλ is over {0, 1}λ ∩ L, if there exists a distribution D̄ = {D̄λ}λ∈N,
where D̄λ is over {0, 1}λ \ L, such that D ≈c D̄.

Definition 12 (Hard-to-Extract on Average). A language L ∈ NP, with a corresponding NP relation RL,
is said to be hard-to-extract with respect to a distribution D = {Dλ}λ∈N if for any poly-size A there
exists a negligible function ν such that for all λ ∈ N,

Pr
x←Dλ

[w = A(x) : (x,w) ∈ RL] ≤ ν(λ)

In what follows we define the notion of a random self-reducible language.

Definition 13 (Random Self Reducibility). An NP language L with a corresponding NP relation RL is
said to be random self-reducible (RSR) with respect to distribution D = {Dλ}λ∈N, where Dλ is over
{0, 1}λ ∩ L, if there exists a polynomial p and a poly-time computable function family f = {fλ}λ∈N such
that for every λ ∈ N,

fλ : {0, 1}λ × {0, 1}p(λ) → {0, 1}λ,

and the following two conditions hold.

− For every x ∈ {0, 1}λ ∩ L and for r
$← {0, 1}p(λ), fλ(x, r) ≈s y, where y ← Dλ.

− For every x ∈ {0, 1}λ \ L and for every r ∈ {0, 1}p(λ), fλ(x, r) /∈ L.

Definition 14 (Witness Preserving Random Self Reducibility). An NP language L with a corresponding
NP relation RL is said to be witness-preserving random self-reducible with respect to distribution
D = {Dλ}λ∈N, where Dλ is over {0, 1}λ ∩ L, if there exists a polynomial p and a poly-time computable
function family f = {fλ}λ∈N such that for every λ ∈ N,

fλ : {0, 1}λ × {0, 1}p(λ) → {0, 1}λ

and the following two conditions hold.

− For any x ∈ {0, 1}λ ∩ L and for r
$← {0, 1}p(λ), fλ(x, r) ≈s y, where y ← Dλ.

− Let q(λ) be the length of w for (x,w) ∈ RLλ. There exist poly-time computable function families
g = {gλ}λ∈N and h = {hλ}λ∈N, where for every λ ∈ N

gλ : {0, 1}λ×{0, 1}p(λ)×{0, 1}q(λ) → {0, 1}q(λ) and hλ : {0, 1}λ×{0, 1}p(λ)×{0, 1}q(λ) → {0, 1}q(λ),

such that the following holds.

– For any x ∈ {0, 1}λ ∩ L, any r ∈ {0, 1}p(λ) and any w′ ∈ {0, 1}q(λ), if (fλ(x, r), w′) ∈ RL then
(x, gλ(x, r, w′)) ∈ RL.

– For any x ∈ {0, 1}λ ∩ L and any w ∈ {0, 1}q(λ) such that (x,w) ∈ RL, it holds that for every
r ∈ {0, 1}p(λ) , (fλ(x, r), hλ(x, r, w)) ∈ RL.

14

Note: We will refer to f, g, h as the reduction functions.

Remark 4. We note that the notions of witness-preserving RSR and RSR are incomparable.

Definition 15 (Instance-Witness Distribution). Let L ∈ NP, let RL be the corresponding NP relation,
and let D = {Dλ}λ∈N be a distribution, where Dλ is over Lλ. A distribution E = {Eλ}λ∈N is said to be
an instance-witness distribution corresponding to D if for every (x,w) in the support of Eλ it holds that
(x,w) ∈ RLλ, and

{(x,w)← Eλ : x}λ∈N ≡ {y ← Dλ : y}λ∈N (4)

4.2 Examples of Random Self-Reducible Languages

4.2.1 Decisional Diffie Hellman

Let LDDH = {LDDH,λ}λ∈N be the following language, where for each λ ∈ N the language LDDH,λ is
parameterized by a group G of prime order p ∈ [2λ−1, 2λ] and a generator g ∈ G:

LDDH,λ = {(X,Y, Z) | ∃ x, y ∈ Z∗p such that X = gx ∧ Y = gy ∧ Z = gxy}

Theorem 5. LDDH is a random self-reducible language (Definition 13) and a witness-preserving random
self-reducible language (Definition 14), with respect to the distribution UDDH = {UDDH,λ}λ∈N, where for

each λ ∈ N, the distribution UDDH,λ generates (gx, gy, gxy) for x, y
$← Z∗p.

Proof. Consider the poly-time computable function fλ : LDDH,λ × (Z∗p)
2 → LDDH,λ defined by

fλ((X,Y, Z), (r, s)) = (Xr, Y s, Zrs).

For any (gx, gy, gxy) ∈ LDDH,λ and for r, s
$← Z∗p, the tuple (gxr, gys, gxyrs) is distributed according to

UDDH,λ. Moreover, for every (gx, gy, gz) where z 6= xy it holds that for every (r, s) ∈ Z∗p,

f((gx, gy, gz), (r, s)) = (gxr, gys, gzrs) /∈ LDDH,λ

since zrs 6= xyrs. This proves that LDDH is random self-reducible.
Also consider poly-time computable functions gλ, hλ : LDDH,λ × Z∗p × Z∗p → Z∗p, defined as follows:

gλ((X,Y, Z), (r, s), (a, b)) = (ar−1, bs−1), hλ((X,Y, Z), (r, s), (x, y)) = (xr, ys)

For every (A,B,C) = fλ((X,Y, Z), (r, s)) = (Xr, Y s, Zrs), if ((A,B,C), (a, b)) ∈ RLDDH
then ((X,Y, Z),

(ar−1, bs−1)) ∈ RLDDH
. Similarly, for every ((X,Y, Z), (x, y)) ∈ RLDDH

and every (r, s) ∈ Z∗p, it holds
that (fλ((X,Y, Z), (r, s)), (xr, ys))) ∈ RLDDH

, giving us witness-preserving random self-reducibility, as
desired.

4.2.2 Discrete Log

Let LDL = {LDL,λ}λ∈N be the following language, where for each λ ∈ N the language LDL,λ is parameterized
by a group G of prime order p ∈ [2λ−1, 2λ] and a generator g ∈ G, and is defined by

LDL,λ = {X | ∃ x ∈ Z∗p such that X = gx}

Theorem 6. LDL is a witness-preserving random self-reducible language (as per Definition 14) with
respect to the uniform distribution UDL = {UDL,λ}λ∈N, where for each λ ∈ N the distribution UDL,λ

generates gx for x
$← Z∗p.

15

Proof. Consider the poly-time computable functions fλ : LDL,λ×Z∗p → LDL,λ and gλ, hλ : LDL,λ×Z∗p×Z∗p →
Z∗p, defined as follows:

fλ(X, r) = X · gr

and
gλ(X, r, y) = y − r, hλ(X, s, z) = z + s

Note that for every λ and every X ∈ LDL,λ, and for r
$← Z∗p, it holds that fλ(X, r) = X · gr is distributed

according to UDL,λ. Moreover, for every Y = fλ(X, r) = X · gr if (Y, y) ∈ RLDL
then (X, y − r) ∈ RLDL

.
Similarly, for every (X, z) ∈ RLDL

and every s ∈ Zp, for Y = f(X, s) = X ·gs it holds that (Y, z+s) ∈ RLDL
,

as desired.

Remark 5. LDL has an instance-witness distribution EDL = {EDL,λ}λ∈N, defined as follows: For each

λ ∈ N, the distribution EDL,λ outputs (gw, w) for w
$← Z∗p. Note that gw is distributed according to UDL,λ.

5 Proofs of Ignorance

In this section, we define proofs of ignorance and construct proof of ignorance protocols for random
self-reducible languages.

5.1 Definition

We now define the notion of proof-of-ignorance (PoI) and trapdoor PoI for NP languages. Intuitively we
want a proof of ignorance π for x ∈ L to convince the verifier that the prover does not know a witness
corresponding to x.

Definition 16 (Proof of Ignorance). Let L ∈ NP, let RL be the corresponding NP-relation, and let D be
a distribution on the instances of L. A proof-of-ignorance (PoI) proof system for (L,D) consists of a
triplet of PPT algorithms (Setup,Gen,Verify) with the following syntax:

Setup CRS ← Setup(1λ): The setup algorithm takes as input the security parameter and outputs a
common reference string CRS.

Instance Generation (x, π)← Gen(CRS): The generation algorithm takes as input the CRS and outputs
an instance x ∈ L and a proof-of-ignorance π.

Verification 0/1← Verify(CRS, x, π): The verification algorithm takes as input the CRS, instance x, and
proof π, and outputs 0 or 1.

We require the following properties to hold.

Completeness. We require:

− {CRS← Setup(1λ) ; (x, π)← Gen(CRS) : x}λ∈N ≈s {y ← Dλ : y}λ∈N.
− For all λ ∈ N,

Pr[CRS← Setup(1λ) ; (x, π)← Gen(CRS) : Verify(CRS, x, π) = 1] = 1.

Soundness. There exists a PPT algorithm Setup′ such that

− {CRS← Setup(1λ) : CRS}λ∈N,≈c {CRS′ ← Setup′(1λ) : CRS′}λ∈N
− For any all-powerful A∗, there exists a negligible function ν such that for all λ ∈ N,

Pr[CRS′ ← Setup′(1λ) ; (x, π)← A∗(CRS′) : Verify(CRS′, x, π) = 1 ∧ x ∈ L] ≤ ν(λ)

16

Definition 17 (Trapdoor Proof of Ignorance). Let L ∈ NP, let RL be the corresponding NP-relation,
and let D be a distribution over instances in L. A trapdoor proof-of-ignorance (td-PoI) proof system
for (L,D) consists of a tuple of PPT algorithms (Setup,Gen,Verify,Witness) with the following syntax (we
note that Gen and Verify are identical to those defined in Definition 16):

Setup (CRS, td) ← Setup(1λ): The setup algorithm takes as input the security parameter and outputs a
common reference string CRS together with a corresponding trapdoor td.

Instance Generation (x, π)← Gen(CRS): The generation algorithm takes as input the CRS and outputs
an instance x ∈ L and a proof of ignorance π.

Verification 0/1← Verify(CRS, x, π): The verification algorithm takes as input the CRS, instance x, and
proof π, and outputs 0 or 1.

Witness Generation w ← Witness(CRS, td, x, π): The witness generation algorithm takes as input the
CRS together with a corresponding trapdoor, along with an instance x and a proof π, and outputs a
string w.

We require the following properties to hold.

Completeness We require:

− {(CRS, td)← Setup(1λ) ; (x, π)← Gen(CRS) : x}λ∈N ≈s {y ← Dλ : y}λ∈N.
− For all λ ∈ N,

Pr[CRS← Setup(1λ) ; (x, π)← Gen(CRS) : Verify(CRS, x, π) = 1] = 1.

− For every (CRS, td) in the image of Setup(1λ) and for any (x, π), if Verify(CRS, x, π) = 1 then

Witness(CRS, td, x, π) ∈ RL(x).

Soundness For any poly-size A∗, there exists a negligible function ν such that for all λ ∈ N,

Pr[CRS← Setup(1λ) ; (x,w, π)← A∗(CRS) : Verify(CRS, x, π) = 1 ∧ (x,w) ∈ RL] ≤ ν(λ)

Remark 6. We note that the notions of PoI and trapdoor PoI are incomparable.

Definition 18 (T -security). A trapdoor proof of ignorance (td-PoI) proof system for (L,D) (as in Defi-
nition 17) is said to be T -secure if soundness holds for all adversaries of size poly(T).

5.2 Constructions

We now construct a PoI protocol for random self-reducible languages and trapdoor PoI protocol for
witness-preserving random self-reducible languages.
Proof of Ignorance for RSR Languages: Let L be hard on average and random self-reducible with
respect to distribution D = {Dλ}λ∈N (as per Definitions 11 and 13, respectively). Let

fλ : {0, 1}λ × {0, 1}p(λ) → {0, 1}λ

be the corresponding reduction function. The PoI protocol for L is described as follows:

Setup(1λ): Choose z ← Dλ. Output CRS = (z, fλ).

Gen(CRS): Choose r
$← {0, 1}p(λ) and compute x = fλ(z, r). Output (x, π) where π = r.

17

Verify(CRS, x, π): Output 1 if and only if x = fλ(z, π) where z is part of the CRS.

Theorem 7. Let L be hard on average and random self-reducible with respect to distribution D = {Dλ}λ∈N
(as per Definitions 11 and 13, respectively). The protocol described above is a Proof-of-Ignorance proof
system for (L,D) as per Definition 16.

Proof. Completeness is straightforward: Gen(CRS) outputs (x, π) where x = fλ(z, r) and π = r, and
Verify(CRS, x, π) checks that indeed x = fλ(z, π). Also from the definition of random self-reducibility of

L, for every x ∈ {0, 1}λ ∩ L and for r
$← {0, 1}p(λ), fλ(x, r) ≈s y where y ← Dλ, as desired.

Now we prove soundness. By definition, the fact that L is hard on average with respect to distribution
D = {Dλ}λ∈N, implies that there exists a distribution D̄ = {D̄λ}λ∈N, where D̄λ is over {0, 1}λ \ L, such
that D ≈c D̄. Define Setup′ as follows: On input the security parameter λ, output CRS′ = (z̄, fλ) where
z̄ ← D̄λ and fλ is the reduction function of L as before. Suppose for contradiction, there exists A∗ and
polynomial s such that for infinitely many λ ∈ N,

Pr[(x, π) = A∗(CRS′) : Verify(CRS′, x, π) = 1 ∧ x ∈ L] >
1

s(λ)

where the probability is over CRS′ ← Setup′(1λ). This implies that for infinitely many λ ∈ N,

Pr[(x, π) = A∗(z̄, fλ) : x = fλ(z̄, r) ∧ x ∈ L] >
1

s(λ)

where the probability is over z̄ ← D̄λ, contradicting the fact that for every z̄ ∈ {0, 1}λ \ L and every
r ∈ {0, 1}p(λ), fλ(z̄, r) /∈ L.

Trapdoor Proof of Ignorance for Witness-preserving RSR Languages: Let L be hard-to-extract
and witness-preserving random self-reducible with respect to distribution D = {Dλ}λ∈N (as per Defini-
tions 12 and 14, respectively). Let E = {Eλ}λ∈N be a corresponding instance-witness distribution on RL
as per Definition 15. Let

fλ : {0, 1}λ × {0, 1}p(λ) → {0, 1}λ and gλ, hλ : {0, 1}λ × {0, 1}p(λ) × {0, 1}q(λ) → {0, 1}q(λ)

be the corresponding reduction functions. The trapdoor PoI protocol for L is described as follows:

Setup(1λ): Choose (z, w)← Eλ. Output CRS = (z, fλ, hλ) and td = w.

Gen(CRS): Choose r
$← {0, 1}p(λ) and compute x = fλ(z, r). Output (x, π) where π = r.

Verify(CRS, x, π): Output 1 if and only if x = fλ(z, π) where z is part of the CRS.

Witness(CRS, td, x, π) : Output hλ(x, π, td).

Theorem 8. Let L be hard-to-extract and witness-preserving random self-reducible with respect to dis-
tribution D = {Dλ}λ∈N (as per Definition 12 and 14, respectively). Assume that there exists an instance
witness distribution E = {Eλ}λ∈N corresponding to D that is efficiently sampleable. Then the protocol
described above is a Trapdoor Proof of Ignorance proof system for (L,D) as per Definition 17.

Proof. Completeness is straightforward, we thus focus on proving soundness. To this end, suppose for
contradiction that there exists a poly-size A∗ and a polynomial s such that for infinitely many λ ∈ N,

Pr[(x,w, π) = A∗(CRS) : Verify(CRS, x, π) = 1 ∧ (x,w) ∈ RL] >
1

s(λ)
(5)

18

where the probability is over CRS ← Setup(1λ). The fact that L is hard-to-extract with respect to the
distribution D implies that for every poly-size B∗ there exists a negligible function µ such that for all
λ ∈ N,

Pr
z←Dλ

[w = B∗(z) : (z, w) ∈ RL] ≤ µ(λ) (6)

We use A∗ from Equation (5) to construct a poly-size B∗ that contradicts Equation (6). B∗ on input z,
sets CRS = (z, fλ, hλ), computes (x, π, w) = A∗(CRS), and outputs gλ(x, π, w). By Equation (5), for
infinitely many λ ∈ N,

Pr[(x,w, π) = A∗(CRS) : x = fλ(z, π) ∧ (x,w) ∈ RL] >
1

s(λ)

where CRS = (z, fλ, hλ) and the probability is over z ← Dλ. By the definition of witness preserving
random self-reducibility, if (fλ(z, π), w) ∈ RL then (z, gλ(x, π, w)) ∈ RL. Hence, we conclude that for
infinitely many λ ∈ N,

Pr
z

$←Dλ
[w = B∗(z) : (z, w) ∈ RL] >

1

s(λ)
,

contradicting Equation (6).

6 Witness Hiding Arguments from Proofs of Ignorance

In this section, we show how to use a PoI proof system to construct a 2-message witness hiding argument
for NP with adaptive soundness.

6.1 Ingredients

We first describe the ingredients we use in our witness hiding protocol. We assume that there exists a
super-polynomial function T = T (λ), for which the following primitives exists:

− A T -secure Trapdoor Proof of Ignorance (td-PoI) system for any (L′,D′), as defined in Definition 17
(Section 5.1), denoted by

(PoI.Setup,PoI.Gen,PoI.Verify,PoI.Witness).

− A T -secure non-interactive witness indistinguishable (NIWI) proof system with perfect soundness,10

as defined in Definition 6 (Section 3.1), denoted by

(NIWI.Prove,NIWI.Verify)

− A T -secure bit-wise rerandomizable encryption scheme that is strong KDM secure, as defined in
Definitions 7, 8, and 9 (Section 3.2), denoted by

(PKE.Gen,PKE.Enc,PKE.Dec).

− A non-interactive statistically binding commitment scheme, as defined in Definition 10 (Section 3.2),
denoted by Com.

We assume that the hiding property of Com can be broken in time T = T (λ). Namely, we assume
that in time poly(T) one can brute-force break the commitment scheme; i.e., there exist a T -time

adversary A such that for every m ∈M and every r
$← {0, 1}λ,

A(Com(m, r)) = (m, r′) s.t. Com(m, r′) = Com(m, r).

10The requirement of perfect soundness is not needed, and is only made for simplicity. We note that the NIWI proof
system based on DLIN [GOS06] indeed has perfect soundness.

19

Theorem 9. Assuming the ingredients above there exists a two-message WH argument for NP with
adaptive soundness.

Corollary 2. Let T = nω(1). There exists a two-message WH protocol for NP with adaptive soundness,
assuming the existence of a T -secure rerandomizable encryption that is strong KDM secure, and assuming
the T -security of DLIN.

6.2 The Protocol Description

We next describe our 2-message witness hiding argument for any L ∈ NP and any distribution D over
pairs in RL.

− The verifier’s message: On input 1λ, the verifier V1 does the following:

1. For every b ∈ {0, 1}, do the following: Sample (pkb, skb) ← PKE.Gen(1λ), choose
at random r1b , r

2
b ← {0, 1}λ, and compute (CRSb, tdb) = PoI.Setup(1λ; r1b) and ctb =

PKE.Encpkb(tdb; r
2
b).

2. Consider the NP language

L∗ , {(CRS, pk, ct) : ∃(td, r1, r2) s.t.(CRS, td) = PoI.Setup(1λ, r1) ∧ ct = PKE.Encpk(td, r
2)}

and consider the NP language

L∗OR , {(x∗1, x∗2) : ∃w∗ s.t. (x∗1, w
∗) ∈ L∗ ∨ (x∗1, w

∗) ∈ L∗}

3. For every b ∈ {0, 1}, let x∗b = (CRSb, pkb, ctb). Choose b∗
$← {0, 1} and let w∗ =

(tdb∗ , r
1
b∗ , r

2
b∗). Generate a NIWI proof πNIWI ← NIWI.Prove((x∗0, x

∗
1), w

∗).

Output (pp, st) where

pp = (x∗0, x
∗
1, πNIWI) =

(
{(CRSb, pkb, ctb)}b∈{0,1}, πNIWI

)
and st = (sk0, sk1).

− The prover’s message:

On input (1λ, x, w), and public parameters

pp = (x∗0, x
∗
1, πNIWI) =

(
{(CRSb, pkb, ctb)}b∈{0,1}, πNIWI

)
,

the prover does the following:

1. Check that NIWI.Verify((x∗0, x
∗
1), πNIWI) = 1. If this condition is not satisfied then abort.

2. For every b ∈ {0, 1}, compute (x′b, π
′
b)← PoI.Gen(CRSb), choose at random r′b, s

′
b ← {0, 1}λ

and compute c′b = Com(π′b; r
′
b) and ct′b = PKE.Encpkb((π

′
b, r
′
b); s

′
b).

3. Compute c′ ← Com(0).

20

4. Consider the language

LPoI =
{

(x, x′0, x
′
1, c
′) | ∃(w, b, w′, r) s.t.

(
(x,w) ∈ RL

)
∨((

c′ = Com(w′; r)
)
∧
(
(x′b, w

′) ∈ RL′
))}

.

Generate a NIWI proof π′NIWI for (x, x′0, x
′
1, c
′) ∈ LPoI, using a witness w for x.

5. Output
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

− The verifier’s verdict: V2 on input
(
1λ, pp, st, (x,msg)

)
outputs 1, where

msg =
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
if and only if the all the following checks pass.

1. For every b ∈ {0, 1}, compute (π′b, r
′
b) = PKE.Decskb(ct

′
b), and check that c′b = Com(π′b; r

′
b)

and PoI.Verify(x′b, π
′
b,CRSb) = 1.

2. Check that NIWI.Verify
(
(x, x′0, x

′
1, c
′), π′NIWI

)
= 1.

6.3 The Analysis

In this section we prove that the protocol defined in Section 6.2 satisfies Theorem 9.

Proof of Theorem 9. In what follows, we prove that the protocol defined in Section 6.2 satisfies the
completeness, soundness and witness hiding properties.

Completeness. Completeness follows directly from the completeness of the underlying primitives.

Adaptive Soundness. Assume for contradiction that there exists a non-uniform poly-size cheating
prover P ∗, a polynomial s, and an infinite set Λ ⊆ N, such that for every λ ∈ Λ,

Pr
[(

(P ∗, V)(1λ) = 1
)
∧
(
x /∈ L

)]
>

1

s(λ)
. (7)

where the probability is over pp← V (1λ) and where (x,msg) = P ∗(pp). Parse

msg =
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

We use P ∗ to construct a poly(T)-size adversary A that takes as input CRS generated according to
PoI.Setup(1λ), and outputs a tuple (x′, w′, π′) such that (x′, w′) ∈ L′ and PoI.Verify(CRS, x′, π′) = 1,
contradicting the T -security of the td-PoI system. The algorithm A on input CRS, does the following:

1. Choose at random b∗ ← {0, 1}, and set CRS1−b∗ = CRS.

2. Choose at random r1b∗ ← {0, 1}λ and compute (CRSb∗ , tdb∗) = PoI.Setup(1λ; r1b∗).

3. Generate (pk0, sk0), (pk1, sk1)← PKE.Gen(1λ).

4. Choose at random r2b∗ ← {0, 1}λ and compute ct′b∗ = PKE.Encpkb∗ (tdb∗ ; r
2
b∗).

5. Generate ct′1−b∗ ← PKE.Encpk1−b∗ (0).

21

6. Let x∗0 = (CRS0, pk0, ct0) and x∗1 = (CRS1, pk1, ct1), and let w∗ = (tdb∗ , r
1
b∗ , r

2
b∗)

7. Compute πNIWI ← NIWI.Prove(x∗0, x
∗
1, w

∗).

8. Let pp = (x∗0, x
∗
1, πNIWI).

9. Compute
(
x,msg

)
= P ∗ (pp) , and parse msg =

(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

10. Run in time poly(T) to find (w′, r′) such that c′ = Com(w′; r′), and to find (π′1−b∗ , r
′
1−b∗) such that

c′1−b∗ = Com(π′1−b∗ ; r
′
1−b∗).

11

11. Output (x′1−b∗ , w
′, π′1−b∗).

We prove that there exists a polynomial q such that for every λ ∈ Λ,

Pr
[
A(CRS) = (x′, w′, π′) s.t.

(
(x′, w′) ∈ RL′

)
∧
(
PoI.Verify(CRS, x′, π′) = 1

)]
≥ 1

q(λ)
, (8)

contradicting the T -security of the PoI scheme.
To this end, consider the following dishonest verifier VA,b∗ that generates his first message with the

same distribution as A, while fixing his random bit choice to be b∗. Moreover, it outputs 1 if and only if
the NIWI proof given by the prover is accepting, and for (π′b∗ , r

′
b∗) = PKE.Decskb∗ (ct

′
b∗) it holds that

c′b∗ = Com(π′b∗ ; r
′
b∗) and PoI.Verify(x′b∗ , π

′
b∗ ,CRSb∗) = 1.

Namely, VA,b∗ does the same checks as the honest verifier, except that he does not check the conditions
corresponding to 1− b∗.

Claim 1. For every poly-size adversary B, there exists a negligible function ν such that for every λ ∈ Λ,∣∣∣ Pr
[
B(pp, (x,msg), b, skb, w

′, r) = 1
]
− Pr

[
B(ppA,b, (x,msg), b, skb, w

′, r) = 1
] ∣∣∣ ≤ ν(λ)

where the left probability is over pp = (x∗0, x
∗
1, πNIWI) ← V (1λ), where (x,msg) = P ∗(pp), and b ∈ {0, 1}

is such that πNIWI is generated with a witness corresponding to x∗b , and where skb is the secret key cor-

responding to pkb where x∗b = (CRSb, pkb, ctb). The right probability is over b
$← {0, 1} and ppA,b =

(x∗0, x
∗
1, πNIWI) ← VA,b(1

λ), where (x,msg) = P ∗(ppA,b), and where skb is the secret key corresponding to
pkb where x∗b = (CRSb, pkb, ctb). In both probabilities (w′, r) satisfies c′ = Com(w′; r), where c′ is part of
msg.12

Proof. Suppose for contradiction there exists a poly-size adversary B, polynomial p such that for infinitely
many λ ∈ Λ

Pr
[
B(pp, (x,msg), b, skb, w

′, r) = 1
]
− Pr

[
B(ppA,b, (x,msg), b, skb, w

′, r) = 1
]
>

1

p(λ)
(9)

We use B to construct a poly(T)-size adversary M that contradicts the T -security of the encryption
scheme as per Lemma 1.

Algorithm M(1λ) does the following:

1. For every b ∈ {0, 1}, choose r1b
$← {0, 1}λ and compute (CRSb, tdb) = PoI.Setup(1λ; r1b).

11We note that the randomness computed in this step may not be the actual randomness used by P ∗. This abuse of
notation (or notational overload) is only to avoid cluttering on notation, and is of no significance.

12Recall that msg =
(
{(x′b, c

′
b, ct

′
b)}b∈{0,1}, c′, π′NIWI

)
.

22

2. Choose at random d
$← {0, 1}, set m0 = 0 and m1 = td1−d such that |m0| = |m1|, and send m0 and

m1 as challenge messages.

3. Upon receiving from the challenger a pair (pk, ct), where ct = PKE.Encpk(md∗) for a random d∗
$←

{0, 1}, do the following:

(a) Generate (pkd, skd)← PKE.Gen(1λ), and let pk1−d = pk.

(b) Choose r2d
$← {0, 1}λ, compute ctd = PKE.Encpkd(tdd; r

2
d), and let ct1−d = ct.

(c) Let w = (tdd, r
1
d, r

2
d), and compute πNIWI ← NIWI.Prove

(
{(CRSb, pkb, ctb)}b∈{0,1}, w

)
.

(d) Let pp = ({(CRSb, pkb, ctb)}b∈{0,1}, πNIWI), compute (x,msg) = P ∗(pp), and parse

msg =
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

(e) Run in time poly(T) to find (w′, r) such that c′ = Com(w′; r).

(f) Output B(pp, (x,msg), d, skd, w
′, r).

Note that if d∗ = 1 then the input to B is distributed exactly as in the left side of Equation (9),
whereas if d∗ = 0 the input to B is distributed exactly as in the right side of Equation (9).

Pr
[
M(pk, ct) = d∗

]
=

Pr
[
B(pp, (x,msg), d, skd, w

′, r) = d∗
]

=

1

2
· Pr

[
B(pp, (x,msg), d, skd, w

′, r) = d∗
∣∣∣ d∗ = 1

]
+

1

2
· Pr

[
B(pp, (x,msg), d, skd, w

′, r) = d∗
∣∣∣ d∗ = 0

]
=

1

2
· Pr

[
B(pp, (x,msg), d, skd, w

′, r) = 1
]

+
1

2
· Pr

[
B(ppA,d, (x,msg), d, skd, w

′, r) = 0
]

=

1

2
· Pr

[
B(pp, (x,msg), d, skd, w

′, r) = 1
]

+
1

2
·
(

1− Pr
[
B(ppA,d, (x,msg), d, skd, w

′, r) = 1
])

=

1

2
+

1

2
·
(

Pr
[
B(pp, (x,msg), d, skd, w

′, r) = 1
]
− Pr

[
B(ppA,d, (x,msg), d, skd, w

′, r) = 1
])
≥

1

2
+

1

2p(λ)

where the last inequality follows from Equation (9) (for infinitely many λ ∈ Λ). This contradicts the
T -semantic security of the underlying encryption, as desired.

Let ppA,b∗ ← VA,b∗(1
λ) and let (x,msg) ← P ∗(ppA,b∗). Parse msg =

(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

For every b ∈ {0, 1} let Eb be the event that there exists (w′, r) such that

c′ = Com(w′; r) and (x′b, w
′) ∈ RL′ .

Claim 2. There exists a polynomial p such that for every λ ∈ Λ,

Pr
[(
E0 ∨ E1

)
∧
(
(P ∗, VA,b∗)(1

λ) = 1
)]
≥ 1

p(λ)
,

where the probability is over b∗
$← {0, 1} and over the randomness of VA,b∗.

23

Proof. By our contradiction assumption (Equation (7)), and by the soundness of the NIWI proof system,
there exists a negligible function µ such that for every λ ∈ Λ,

Pr
[(
E0 ∨ E1

)
∧
(
(P ∗, V)(1λ) = 1

)]
≥ 1

s(λ)
− µ(λ),

where the probability is over the randomness of V . This, together with Claim 1, implies that there exists
a negligible function ν such that for every λ ∈ Λ,

Pr
[(
E0 ∨ E1

)
∧
(
(P ∗, VA,b∗)(1

λ) = 1
)]
≥ 1

s(λ)
− ν(λ),

where the probability is over b∗
$← {0, 1} and over the randomness of VA,b∗ , as desired.

Claim 3. There exists a polynomial q such that for every λ ∈ Λ,

Pr
[
E1−b ∧

(
(P ∗, VA,b)(1

λ) = 1
)]
≥ 1

q(λ)
,

where the probability is over b
$← {0, 1} and the randomness of VA,b.

Proof. Suppose for contradiction that there exists a negligible function µ and an infinite set Λ0 ⊆ Λ such
that for every λ ∈ Λ0,

Pr
[
E1−b ∧

(
(P ∗, VA,b)(1

λ) = 1
)]

= µ(λ). (10)

This, together with Claim 2, implies that for every λ ∈ Λ0,

Pr
[
Eb ∧

(
(P ∗, VA,b)(1

λ) = 1
)]
>

1

p(λ)
− µ(λ). (11)

Consider the verifier Vb that is identical to the honest verifier V , except that it uses the witness wb
to generate the NIWI, where wb is the witness corresponding to x∗b , and similarly to VA,b, it does not do
the check corresponding to 1− b, rather only checks the NIWI of the prover and the check corresponding
to b. In other words, Vb is identical to VA,b except that he generates x∗1−b honestly (as opposed to VA,b
who generates x∗1−b = (CRS1−b, pk1−b, ct1−b) where ct1−b is an encryption of 0).

By Claim 1, Equations (10) and (11) imply that there exists a negligible function ν such that for every
λ ∈ Λ0,

Pr
[
E1−b ∧

(
(P ∗, Vb)(1

λ) = 1
)]

= ν(λ) (12)

and

Pr
[
Eb ∧

(
(P ∗, Vb)(1

λ) = 1
)]
>

1

p(λ)
− 2ν(λ), (13)

where the probabilities are over b
$← {0, 1} and over the randomness of Vb.

We next argue that these two equations contradict the T -security of the NIWI proof system. To this
end, we construct a poly(T)-size adversary M that wins the WI game as described in Definition 5 with
non-negligible advantage, as follows.

1. For every b ∈ {0, 1} do the following:

(a) Choose at random r1b
$← {0, 1}λ and compute (CRSb, tdb) = PoI.Setup(1λ, r1b).

(b) Generate (pkb, skb)← PKE.Gen(1λ).

(c) Choose at random r2b
$← {0, 1}λ and compute ctb = PKE.Encpkb(tdb, r

2
b).

24

(d) Let x∗b = (CRSb, pk0, ctb), and let wb = (tdb, r
1
b , r

2
b).

2. Choose (x∗0, x
∗
1) to be the instance in the WI game (w.r.t. the NP language L∗OR), and w0 and w1

to be the two witnesses.

3. Let πNIWI be the challenge proof generated with respect to witness wb∗ for a randomly chosen

b∗
$← {0, 1}.

4. Compute (x,msg) = P ∗(pp), where pp = (x∗0, x
∗
1, πNIWI).

5. Parse msg =
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

6. Compute (w′, r) such that c′ = Com(w′, r).

7. If there exists b ∈ {0, 1} such that the following three conditions are satisfied:

− π′NIWI is accepting,

− π′b = PKE.Decskb(c
′
b) satisfies that PoI.Verify(CRSb, x

′
b, π
′
b) = 1,

− (x′b, w
′) ∈ RL′ ,

then output b. Otherwise, output a randomly chosen bit b
$← {0, 1}.

We next argue that for every λ ∈ Λ0,

Pr[b = b∗] ≥ 1

2
+

1

3p(λ)
,

contradicting the T -security of the WI property.
To this end, denote by GOOD the event that the following three conditions hold:

− π′NIWI is accepting.

− π′b∗ = Decskb∗ (c
′
b∗) satisfies PoI.Verify(CRSb∗ , x

′
b∗ , π

′
b∗) = 1.

− There exists b such that (x′b, w
′) ∈ RL′ .

Equations (12) and (13) imply that for every λ ∈ Λ0,

Pr[GOOD] ≥ 1

p(λ)
− ν(λ)

and
Pr[GOOD]− Pr

[
(b = b∗) ∧ GOOD

]
≤ ν(λ).

Therefore,

Pr[b = b∗] =

Pr
[
(b = b∗) ∧ GOOD

]
+ Pr

[
(b = b∗) ∧ ¬GOOD

]
≥

Pr[GOOD]− ν(λ) +
1

2
·
(
1− Pr[GOOD]

)
≥

1

2
+

1

2
· Pr[GOOD]− ν(λ) ≥

1

2
+

1

2p(λ)
− 2ν(λ) ≥

1

2
+

1

3p(λ)

Contradicting the T -security of the NIWI proof system, as desired.

25

Denote by Z the event that both (P ∗, VA,b)(1
λ) = 1 and E1−b. By Claim 3, for every λ ∈ Λ,

Pr[Z] ≥ 1

q(λ)

By the definition of A, and the definition of the event E1−b, it holds that

Pr
[
A(CRS) = (x′, w′, π′) s.t.

(
(x′, w′) ∈ RL′

)
∧
(
PoI.Verify(CRS, x′, π′) = 1

)
| Z
]

= 1

Thus, we conclude that

Pr
[
A(CRS) = (x′, w′, π′) s.t.

(
(x′, w′) ∈ RL′

)
∧
(
PoI.Verify(CRS, x′, π′) = 1

)]
≥ Pr[Z] ≥ 1

q(λ)
,

contradicting the T -security of PoI.

Witness Hiding. Suppose for the sake of contradiction that there exists a poly-size cheating verifier
V ∗ = (V ∗1 , V

∗
2), a polynomial s, and an infinite set Λ ⊆ N, such that for every λ ∈ Λ,

Pr
[
V ∗2
(
x, V ∗1 (1λ, x),msgP

)
= w s.t. (x,w) ∈ RL

]
≥ 1

s(λ)
, (14)

where the probability is over (x,w) ← Dλ and over msgP ← P (1λ, x, w, pp), where (pp, st) = V ∗(1λ, x),
and where pp is the message that V ∗ sends the prover and st is a secret state that is used by V ∗2 to extract w.

Remark 7. Note that in the description of the protocol, V2 takes as input
(
1λ, V1(1

λ), (x,msgP)
)
. In the

proof of witness hiding, we change the order to elements, to emphasize that the cheating V ∗1 can choose
(pp, st) depending on x. Moreover, for the sake of succinctness, V ∗2 does not take 1λ as input. Rather, we
assume (without loss of generality) that st includes 1λ.

Remark 8. We assume without loss of generality that V ∗1 always generates an accepting NIWI proof
πNIWI. Loosely speaking, this is without loss of generality since P aborts if the NIWI proof πNIWI is
rejected, and hence the cheating verifier (V ∗1 , V

∗
2) does not gain anything by generating a rejecting πNIWI.

Formally, this is argued as follows: Replace (V ∗1 , V
∗
2) with the following (V ∗h1 , V

∗
h2

):

− V ∗h1: On input (1λ, x), compute (pp, st) = V ∗1 (1λ, x). Parse pp = (x∗0, x
∗
1, πNIWI). If

NIWI.Verify(x∗0, x
∗
1, πNIWI) = 1

output pph = pp. Else, compute pph as the honest verifier and output pph.

− V ∗h2: On input (x, V ∗h1(1λ, x),msgP), compute (pp, st) = V ∗1 (1λ, x), and parse pp = (x∗0, x
∗
1, πNIWI). If

NIWI.Verify(x∗0, x
∗
1, πNIWI) = 1

output V ∗2 (x, V ∗1 (1λ, x),msgP) where msgP ← P (1λ, x, w, pp). Else, output V ∗2 (x, V ∗1 (1λ, x),⊥).

The fact that msgP = ⊥ when the NIWI proof of the verifier is rejected implies that the output of V ∗h2
is identically distributed to the output of V ∗2 . Hence, for every λ ∈ Λ,

Pr[V ∗h2(x, V ∗h1(1λ, x),msgP) ∈ RL(x)] = Pr[V ∗2 (x, V ∗1 (1λ, x),msgP) ∈ RL(x)] ≥ 1

s(λ)
.

where the last inequality holds by Equation (14), and where the probability is over (x,w) ← Dλ and
msgP ← P (1λ, x, w, pp).

26

Remark 9. In what follows, we often abuse notation, and denote by x← Dλ to denote that x is sampled
by sampling (x,w)← Dλ and outputting x.

Subset GOOD: We define the set GOOD ⊆ L, where x ∈ GOOD if and only if

Pr[V ∗2
(
x, V ∗1 (1λ, x),msgP

)
= w s.t. (x,w) ∈ RL] ≥ 1

2s(λ)
,

where the probability is over msgP ← P (1λ, x, w, pp).

Claim 4. For every λ ∈ Λ,

Pr[x ∈ GOOD] ≥ 1

2s(λ)

where the probability is over x← Dλ.

Proof.

Pr[V ∗2 (x, V ∗1 (1λ, x),msgP) ∈ RL(x)] = Pr[V ∗2 (x, V ∗1 (1λ, x),msgP) ∈ RL(x) | x ∈ GOOD] · Pr[x ∈ GOOD]

+ Pr[V ∗2 (x, V ∗1 (1λ, x),msgP) ∈ RL(x) | x /∈ GOOD] · Pr[x /∈ GOOD]

≤ Pr[x ∈ GOOD] +
1

2s(λ)
· Pr[x /∈ GOOD]

≤ Pr[x ∈ GOOD] +
1

2s(λ)

Hence, for every λ ∈ Λ, the fact that Pr[V ∗2 (x, V ∗1 (1λ, x),msgP) ∈ RL(x)] > 1
s(λ) implies that Pr[x ∈

GOOD] ≥ 1
2s(λ) , as desired.

Trapdoor Set of x: For every x we define the trapdoor set of x, denoted by td(x), as follows:

td(x) = {td : ∃b ∈ {0, 1} ∃(r1b , r2b) s.t.
(
(CRSb, td) = PoI.Setup(1λ; r1b)

)
∧
(
ctb = Encpkb(td, r

2
b)
)
}

where V ∗1 (1λ, x) = ({(CRSb, pkb, ctb)}b∈{0,1}, πNIWI). By the perfect soundness of the NIWI,

VNIWI

(
{(CRSb, pkb, ctb)}b∈{0,1}, πNIWI

)
= 1 =⇒ td(x) 6= ∅.

We distinguish between the following two cases:

Case 1. There exists a poly-size computable function f such that for infinitely many λ ∈ Λ,

Pr[f(x) ∈ td(x)] ≥ 1

poly(λ)
, where x← Dλ|GOOD. (15)

In this case we construct a poly-size A that given x← Dλ outputs a valid witness w with non-negligible
probability (breaking the hardness of the language L). A, on input x, does the following:

1. Compute V ∗1 (1λ, x) =
(
{(CRSb, pkb, ctb)}b∈{0,1}, πNIWI

)
.

2. Compute f(x) = td.

If td is an invalid trapdoor with respect to both CRS0 and CRS1 then abort.

27

3. Otherwise, td is a valid trapdoor corresponding to CRSb∗ for some b∗ ∈ {0, 1}. Namely, there exists
(r1b∗ , r

2
b∗) for which(

(CRSb∗ , td) = PoI.Setup(1λ; r1b∗)
)
∧
(
ctb∗ = PKE.Encpkb∗ (td, r

2
b∗)
)
.

4. Compute {(x′b, c′b, ct′b)}b∈{0,1} as the honest prover does. Namely, do the following computations for
every b ∈ {0, 1}:

− Sample (x′b, π
′
b)← PoI.Gen(CRSb),

− Sample r′b, s
′
b

$← {0, 1}λ and compute c′b = Com(π′b; r
′
b) and ct′b = PKE.Encpkb((π

′
b, r
′
b); s

′
b).

5. Compute wb∗ = PoI.Witness(CRSb∗ , td, x
′
b∗ , π

′
b∗).

6. Choose at random u← {0, 1}poly(λ), and compute c′ = Com(wb∗ ;u).

7. Generate a NIWI proof π′NIWI for (x, x′0, x
′
1, c
′) ∈ LPoI, using the witness (0, b∗, wb∗ , u).

8. Output V ∗2
(
x, V ∗1 (1λ, x), ({(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI)

)

Pr
x←D

[A(x) ∈ RL(x)] ≥

Pr
x←D

[A(x) ∈ RL(x) | x ∈ GOOD] · Pr
x←D

[x ∈ GOOD] ≥

1

2s(λ)
· Pr
x←D

[A(x) ∈ RL(x) | x ∈ GOOD] ≥

1

2s(λ)
· Pr
x←D

[
A(x) ∈ RL(x) |

(
x ∈ GOOD

)
∧
(
f(x) ∈ td(x)

)]
· Pr
x←D

[f(x) ∈ td(x) | x ∈ GOOD] ≥

1

2s(λ) · poly(λ)
· Pr
x←D

[
A(x) ∈ RL(x) |

(
x ∈ GOOD

)
∧
(
f(x) ∈ td(x)

)]
≥

1

2s(λ) · poly(λ)

contradicting the hardness of L, where the second inequality follows from Claim 4, the fourth inequality
follows from Equation (15) (for infinitely many λ ∈ Λ), and the last inequality follows from the witness
indistinguishability property of the NIWI proof, since A(x) runs V ∗2 on input(

x, V ∗1 (1λ, x), ({(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI)
)
,

where the message ({(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI) is distributed identically as a message generated by the
honest prover, except that the NIWI proof π′NIWI is generated using an alternative witness).

Case 2. For every poly-size computable function f there exists a negligible function µ and for every
λ ∈ Λ

Pr[f(x) ∈ td(x)] = µ(λ) (16)

where the probability is over x← Dλ|GOOD.

Claim 5. For every λ ∈ Λ there exists bλ ∈ {0, 1} such that the following holds: For every poly-size
adversary B there exists a negligible function ν such that for every λ ∈ Λ,

Pr
[
B(x, V ∗1 (1λ, x),PKE.Encpkbλ

(d)) = d
]
≤ 1

2
+ ν(λ),

28

where the probability is over x← Dλ|GOOD, d
$← {0, 1}, and over the randomness of PKE.Encpkbλ

, where
pkbλ is computed by (

(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI, st
∗
)

= V ∗1 (1λ, x).

Proof. Suppose for contradiction that there exists a poly-size algorithm B, a polynomial q, and an infinite
set Λ0 ⊆ Λ, such that for every λ ∈ Λ0 and for every b ∈ {0, 1},

Pr
[
B
(
x, V ∗1 (1λ, x),PKE.Encpkb(d)

)
= d
]
≥ 1

2
+

1

q(λ)
(17)

where the probability is over x← Dλ|GOOD, d
$← {0, 1}, and over the randomness of PKE.Encpkb , where

pkb is computed by (
(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
= V ∗1 (1λ, x).

For every λ ∈ Λ0 and every b ∈ {0, 1} we define a set Sλ,b in the image of Dλ|GOOD, where x ∈ Sλ,b
if and only if

Pr
[
B
(
x, V ∗1 (1λ, x),PKE.Encpkb(d)

)
= d
]
≥ 1

2
+

1

2q(λ)
(18)

where the probability is over a randomly chosen d
$← {0, 1} and over the randomness of PKE.Encpkb , and

where pkb is computed by(
(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
= V ∗1 (1λ, x).

Note that for every λ ∈ Λ0 and every b ∈ {0, 1},

Pr
[
B
(
x, V ∗1 (1λ, x),PKE.Encpkb(d)

)
= d
]

=

Pr
[
B
(
x, V ∗1 (1λ, x),PKE.Encpkb(d)

)
= d

∣∣∣ x ∈ Sλ,b] · Pr
[
x ∈ Sλ,b

]
+

Pr
[
B
(
x, V ∗1 (1λ, x),PKE.Encpkb(d)

)
= d

∣∣∣ x /∈ Sλ,b] · Pr
[
x /∈ Sλ,b

]
≤

Pr
[
x ∈ Sλ,b

]
+

(
1

2
+

1

2q(λ)

)
· Pr

[
x /∈ Sλ,b

]
≤

Pr
[
x ∈ Sλ,b

]
+

(
1

2
+

1

2q(λ)

)
.

This, together with Equation (17), implies that for every λ ∈ Λ0 and every b ∈ {0, 1},

Pr
x←Dλ|GOOD

[x ∈ Sλ,b] ≥
1

2q(λ)
. (19)

By Lemma 3 (in Section 3.2) and by Equation (18), there exists a non-uniform PPT algorithm E∗,
and a negligible function µ such that for for every λ ∈ Λ0, every b ∈ {0, 1}, every x ∈ Sλ,b, and every
m = (m1, . . . ,mλ) ∈ {0, 1}λ and r1, . . . , rλ ∈ {0, 1}poly(λ),

Pr
[
E∗(x, V ∗1 (1λ, x), ct) = m

]
≥ 1− µ(λ) (20)

where ct =
(
PKE.Encpkb(m1; r1), . . . ,PKE.Encpkb(mλ; rλ)

)
.

We use E∗ to construct a non-uniform PPT f such that Pr[f(x) ∈ td(x)] is non-negligible, contradicting
Equation (16). The function f , on input x in support of Dλ, does the following:

29

− Compute V ∗1 (1λ, x) =
(
{(CRSb, pkb, ctb)}b∈{0,1}, πNIWI

)
.

− Choose a random b
$← {0, 1} and output td′b = E∗(x, V ∗1 (1λ, x), ctb).

We next argue that for every λ ∈ Λ0,

Pr
[
f(x) ∈ td(x)

]
≥ 1

5q(λ)
,

where the probability is over x← Dλ|GOOD, contradicting Equation (16).

Let Eb,x be the event that for V ∗1 (1λ, x) =
(

(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
∃(r1b , r2b) s.t.

(
(CRSb, td) = PoI.Setup(1λ; r1b)

)
∧
(
ctb = PKE.Encpkb(td, r

2
b)
)

Since we assumed without loss of generality that πNIWI is always accepting (see Remark 8), by the
perfect soundness of the NIWI proof system it holds that

Pr
x←Dλ|GOOD

[
E0,x ∨ E1,x

]
= 1. (21)

Therefore,

Pr
x←Dλ|GOOD

[
f(x) ∈ td(x)

]
=

1

2
· Pr
x←Dλ|GOOD

[
E∗(x, V ∗1 (1λ, x), ct0) ∈ td(x)

]
+

1

2
· Pr
x←Dλ|GOOD

[
E∗(x, V ∗1 (1λ, x), ct1) ∈ td(x)

]
≥

1

2
· Pr
x←Dλ|GOOD

[
E∗(x, V ∗1 (1λ, x), ct0) ∈ td(x)

∣∣∣ x ∈ Sλ,0] · Pr[x ∈ Sλ,0
]
+

1

2
Pr

x←Dλ|GOOD

[
E∗(x, V ∗1 (1λ, x), ct1) ∈ td(x)

∣∣∣ x ∈ Sλ,1] · Pr
[
x ∈ Sλ,1

]
≥

1

4q(λ)
· Pr
x←Dλ|GOOD

[
E∗(x, V ∗1 (1λ, x), ct0) ∈ td(x)

∣∣∣ x ∈ Sλ,0]+
1

4q(λ)
· Pr
x←Dλ|GOOD

[
E∗(x, V ∗1 (1λ, x), ct1) ∈ td(x)

∣∣∣ x ∈ Sλ,1] ≥
1

5q(λ)

(
Pr

x←Dλ|GOOD

[
E0,x

]
+ Pr
x←Dλ|GOOD

[
E1,x

])
=

1

5q(λ)
,

as desired, where the third equation follows from Equation (19), the forth equation follows from Equa-
tion (20), and the last equation follows from Equation (21).

In what follows we construct five non-uniform PPT provers, P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 , P

∗
5 , where P ∗5 is the honest

prover. We argue that for every i ∈ [5], for every non-uniform PPT adversary B, there exists a negligible
function ν such that for every λ ∈ Λ,

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗i (1λ, x, w, pp∗)

)
= w

]
≤ ν(λ) (22)

30

where the probability is over (x,w) ← Dλ|GOOD and over the random coin tosses of P ∗i , and where
(pp∗, st∗) = V ∗1 (x). Note that this contradicts Equation (14), since Equation (14) implies that:

1

s(λ)
≤

Pr
x←D

[V ∗2 (x, V ∗1 (x), P ∗(x, V ∗1 (x))) ∈ RL(x)] =

Pr
x←D

[V ∗2 (x, V ∗1 (x), P ∗(x, V ∗1 (x))) ∈ RL(x) | GOOD] · Pr[GOOD]+

Pr
x←D

[V ∗2 (x, V ∗1 (x), P ∗(x, V ∗1 (x))) ∈ RL(x) | ¬GOOD] · Pr[¬GOOD] ≤

Pr
x←D

[V ∗2 (x, V ∗1 (x), P ∗(x, V ∗1 (x))) ∈ RL(x) | GOOD]+

Pr
x←D

[V ∗2 (x, V ∗1 (x), P ∗(x, V ∗1 (x))) ∈ RL(x) | ¬GOOD] ≤

Pr
x←D

[V ∗2 (x, V ∗1 (x), P ∗(x, V ∗1 (x))) ∈ RL(x) | GOOD] +
1

2s(λ)
,

which in turn implies that

Pr
x←D

[V ∗2 (x, V ∗1 (x), P ∗(x, V ∗1 (x))) ∈ RL(x) | GOOD] ≥ 1

2s(λ)
,

contradicting Equation (22) for P ∗i = P ∗5 = P .

Prover P ∗1 : We start by defining the non-uniform PPT prover P ∗1 that on input (1λ, x, w, pp∗), where
pp∗ = V ∗1 (1λ, x) = (x∗0, x

∗
1, πNIWI) and where x∗b = (CRSb, pkb, ctb), ignores the witness w, and does the

following:

1. Let b∗ = bλ, where bλ is the bit from Claim 5.13

2. Compute (x′1−b∗ , π
′
1−b∗)← PoI.Gen(CRS1−b∗), choose at random r′1−b∗ , s

′
1−b∗ ← {0, 1}λ and compute

c′1−b∗ = Com(π′1−b∗ ; r
′
1−b∗) and ct′1−b∗ = PKE.Encpk1−b∗ ((π

′
1−b∗ , r

′
1−b∗); s

′
1−b∗).

3. Generate a pair (x′b∗ , w
′
b∗) ∈ RL′ such that x′b∗ is distributed according to D′.

4. Generate c′b∗ ← Com(0) and ct′b∗ ← PKE.Encpkb∗ (0).

5. Choose at random v′ ← {0, 1}λ and compute c′ = Com(w′b∗ ; v
′).

6. Generate a NIWI proof for π′NIWI for (x, x′0, x
′
1, c
′) ∈ LPoI, using witness (b∗, w′b∗ , v

′).

7. Output
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

Claim 6. For every non-uniform PPT adversary B, there exists a negligible function ν such that for every
λ ∈ Λ,

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗1 (1λ, x, w, pp∗)

)
= w

]
≤ ν(λ)

and

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗1 (1λ, x, w, pp∗),PKE.Encpkb∗ (d)

)
= d
]
≤ 1

2
+ ν(λ),

where the probabilities are over x ← Dλ|GOOD, d
$← {0, 1}, and over the randomness of P ∗1 , where

(pp∗, st∗) = V ∗1 (1λ, x). In addition, the second probability is also over PKE.Encpkb∗ where

pp∗ =
(

(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
.

13P ∗1 has the bit bλ hard-wired into it.

31

Proof. The first equation follows from the fact that the messages of V ∗1 and P ∗1 are efficiently computable
given only (1λ, x). The second equation follows from Claim 5, together with the fact that P ∗1 is efficiently
computable given only (1λ, x).

Prover P ∗2 : We next define a non-uniform PPT algorithm P ∗2 , which is identical to P ∗1 except that P ∗2
uses the witness w corresponding to x in the NIWI proof.

Claim 7. For every non-uniform PPT adversary B, there exists a negligible function ν such that for every
λ ∈ Λ,

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗2 (1λ, x, w, pp∗)

)
= w

]
≤ ν(λ)

and

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗2 (1λ, x, w, pp∗),PKE.Encpkb∗ (d)

)
= d
]
≤ 1

2
+ ν(λ),

where the probability is over (x,w) ← Dλ|GOOD and over the random coin tosses of P ∗2 , and where
(pp∗, st∗) = V ∗1 (x). In addition, the second probability is also over PKE.Encpkb∗ where

pp∗ =
(

(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
.

Claim 7 follows from Claim 6, together with the security property of the NIWI.

Prover P ∗3 : We next define a non-uniform PPT algorithm P ∗3 , which is identical to P ∗2 except that P ∗3
generates c′ ← Com(0) as opposed to c′ ← Com(w′b∗). In more detail, P ∗3 on input (1λ, x, w, pp∗) does the
following:

1. For every b ∈ {0, 1}, compute (x′b, π
′
b)← PoI.Gen(CRSb).

2. Choose at random r′1−b∗ , s
′
1−b∗ ← {0, 1}λ and compute c′1−b∗ = Com(π′1−b∗ ; r

′
1−b∗) and ct′1−b∗ =

PKE.Encpk1−b∗ ((π
′
1−b∗ , r

′
1−b∗); s

′
1−b∗).

3. Generate c′b∗ ← Com(0) and ct′b∗ ← PKE.Encpkb∗ (0).

4. Generate c′ ← Com(0).

5. Generate a NIWI proof for π′NIWI for (x, x′0, x
′
1, c
′) ∈ LPoI, using the witness w.

6. Output
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

Claim 8. For every non-uniform PPT adversary B, there exists a negligible function ν such that for every
λ ∈ Λ,

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗3 (1λ, x, w, pp∗)

)
= w

]
≤ ν(λ)

and

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗3 (1λ, x, w, pp∗),PKE.Encpkb∗ (d)

)
= d
]
≤ 1

2
+ ν(λ),

where the probability is over (x,w) ← Dλ|GOOD and over the random coin tosses of P ∗3 , and where
(pp∗, st∗) = V ∗1 (x). In addition, the second probability is also over PKE.Encpkb∗ where

pp∗ =
(

(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
.

Claim 8 follows from Claim 7, together with the hiding property of the commitment scheme.

Prover P ∗4 : We next define a non-uniform PPT algorithm P ∗4 , which is identical to P ∗3 except that P ∗4
generates c′b∗ ← Com(π′b∗) as opposed to c′b∗ ← Com(0). In more detail, P ∗4 on input (1λ, x, w, pp∗) does
the following:

32

1. For every b ∈ {0, 1}, compute (x′b, π
′
b)← PoI.Gen(CRSb).

2. Choose at random r′1−b∗ , s
′
1−b∗ ← {0, 1}λ and compute c′1−b∗ = Com(π′1−b∗ ; r

′
1−b∗) and ct′1−b∗ =

PKE.Encpk1−b∗ ((π
′
1−b∗ , r

′
1−b∗); s

′
1−b∗).

3. Generate c′b∗ ← Com(π′b∗) and ct′b∗ ← PKE.Encpkb∗ (0).

4. Generate c′ ← Com(0).

5. Generate a NIWI proof for π′NIWI for (x, x′0, x
′
1, c
′) ∈ LPoI, using the witness w.

6. Output
(
{(x′b, c′b, ct′b)}b∈{0,1}, c′, π′NIWI

)
.

Claim 9. For every non-uniform PPT adversary B, there exists a negligible function ν such that for every
λ ∈ Λ,

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗)

)
= w

]
≤ ν(λ)

and

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗),PKE.Encpkb∗ (d)

)
= d
]
≤ 1

2
+ ν(λ),

where the probability is over (x,w) ← Dλ|GOOD and over the random coin tosses of P ∗4 , and where
(pp∗, st∗) = V ∗1 (x). In addition, the second probability is also over PKE.Encpkb∗ where

pp∗ =
(

(CRS0, pk0, ct0), (CRS1, pk1, ct1), πNIWI

)
.

Claim 9 follows from Claim 8, together with the hiding property of the commitment scheme.

Prover P ∗5 : Finally, we define P ∗5 to be the honest prover. Note that the only difference between P ∗5 and
P ∗4 is in the way ctb∗ is generated: P ∗5 generates ct′b∗ as ct′b∗ ← PKE.Encpkb∗ (π

′
b∗ , r

′
b∗) (where r′b∗ was the

randomness used to commit to π′b∗), whereas P ∗4 generates it as ct′b∗ ← PKE.Encpkb∗ (0).

Claim 10. For every non-uniform PPT adversary B, there exists a negligible function ν such that for
every λ ∈ Λ,

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗5 (1λ, x, w, pp∗)

)
= w

]
≤ ν(λ)

where the probability is over (x,w) ← Dλ|GOOD and over the random coin tosses of P ∗5 , and where
(pp∗, st∗) = V ∗1 (x).

Proof. Claim 9, together with the KDM security of the underlying encryption scheme, implies that(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗),PKE.Encpkb∗ (0)

)
≈
(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗),PKE.Encpkb∗ (π

′
b∗ , r

′
b∗)
)

(23)
Suppose for the sake of contradiction that there exists a non-uniform PPT adversary B and a polynomial p
such that for infinitely many λ ∈ Λ,

Pr
[
B
(
x, V ∗1 (1λ, x), P ∗5 (1λ, x, w, pp∗)

)
= w

]
≥ 1

p(λ)
(24)

where the probability is over (x,w) ← Dλ|GOOD and over the random coin tosses of P ∗5 , and where
(pp∗, st∗) = V ∗1 (x). We use B to construct a non-uniform PPT adversary A that contradicts Equation (23).

AlgorithmA, on input
(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗), ct

)
, runs B on input

(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗)

)
,

while replacing the encryption ct′b∗ generated by P ∗4 with the ciphertext ct. If B outputs w then A out-

puts 1 and otherwise A outputs a random guess b
$← {0, 1}. Note that if ct ← PKE.Encpk∗(0) then the

input fed to B is generated identically to P ∗4 (1λ, x, w, pp∗), whereas if ct← PKE.Encpk∗(πb∗ , r
′
b∗) then the

33

input fed to B is generated identically to P ∗5 (1λ, x, w, pp∗). Therefore, by Equation (24) for infinitely
many λ ∈ Λ,

Pr
[
A
(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗),PKE.Encpkb∗ (πb∗ , r

′
b∗)
)

= 1
]
−

Pr
[
A
(
x, V ∗1 (1λ, x), P ∗4 (1λ, x, w, pp∗),PKE.Encpkb∗ (0)

)
= 0
]
≥

1

p(λ)
+

(
1− 1

p(λ)

)
1

2
− 1

2
− negl(λ) ≥ 1

3p(λ)
,

contradicting Equation (23), where the first inequality follows from the definition of B together with
Equation (24) and Claim 9.

7 Acknowledgements

Authors would like to thank Omer Paneth for collaboration at an early stage of this project.

References

[BBK+16] Nir Bitansky, Zvika Brakerski, Yael Kalai, Omer Paneth, and Vinod Vaikuntanathan. 3-
message zero knowledge against human ignorance. In Theory of Cryptography Conference,
pages 57–83. Springer, 2016.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the snark. Journal of Cryptology, 30(4):989–1066, 2017.

[BCKP17] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box
obfuscation for general circuits. Algorithmica, 79(4):1014–1051, 2017.

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. SIAM Journal on Computing, 45(5):1910–1952, 2016.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. Cryptology ePrint Archive,
Report 2001/069, 2001. http://eprint.iacr.org/.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: A paradigm
for keyless hash functions. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 671–684. ACM, 2018.

[BOV05] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. IACR
Cryptology ePrint Archive, 2005:365, 2005.

[BP02] Mihir Bellare and Adriana Palacio. Gq and schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In Annual International Cryptology
Conference, pages 162–177. Springer, 2002.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Annual International Cryptology Conference, pages 273–289. Springer,
2004.

34

[BP12] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In Theory of
Cryptography Conference, pages 190–208. Springer, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the 1st ACM conference on Computer and communications
security, pages 62–73. ACM, 1993.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and correlation
intractability from strong kdm-secure encryption. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, pages 91–122, 2018.

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable functions. In Theory
of Cryptography Conference, pages 595–613. Springer, 2009.

[DN00a] Ivan Damg̊ard and Jesper Nielsen. Improved non-committing encryption schemes based on
a general complexity assumption. In Advances in CryptologyCrypto 2000, pages 432–450.
Springer, 2000.

[DN00b] Cynthia Dwork and Moni Naor. Zaps and their applications. In Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on, pages 283–293. IEEE, 2000.

[DSYC17] Yi Deng, Xuyang Song, Jingyue Yu, and Yu Chen. On instance compression, schnorr/guillou-
quisquater, and the security of classic protocols for unique witness relations. IACR Cryptology
ePrint Archive, 2017:390, 2017.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of Cryp-
tology, 1(2):77–94, 1988.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
416–426. ACM, 1990.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems.
SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, February 1989.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7:1–32, 1994.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
nizk. In CRYPTO, volume 4117, pages 97–111. Springer, 2006.

[HRS09] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (im) possibility of arthur-merlin
witness hiding protocols. In Theory of Cryptography Conference, pages 220–237. Springer,
2009.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
Annual International Cryptology Conference, pages 408–423. Springer, 1998.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum. Distinguisher-
dependent simulation in two rounds and its applications. In Annual International Cryptology
Conference, pages 158–189. Springer, 2017.

35

[MV09] Paulo Mateus and Serge Vaudenay. On tamper-resistance from a theoretical viewpoint. In
Cryptographic Hardware and Embedded Systems-CHES 2009, pages 411–428. Springer, 2009.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition.
In International Conference on the Theory and Applications of Cryptographic Techniques,
pages 160–176. Springer, 2003.

36

