Differential cryptanalysis in ARX ciphers, Application to SPECK

Ashutosh Dhar Dwivedi, Paweł Morawiecki
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract

We propose a new algorithm inspired by Nested to find differential path in ARX ciphers. To enhance the decision process of our algorithm and to reduce the search space of our heuristic nested tool, we used the concept of partial difference distribution table (pDDT) along with the algorithm. The algorithm is applied on reduced round variants of SPECK block cipher family. In our previous paper we applied naive algorithm with a large search space of values and presented the result only for one block size variant of SPECK. Our new approach in this paper provide the results within a simpler framework and within a very short period of time (few minutes) for all bigger block size variants of SPECK. More specifically, we report the differential path for up to $8,9,11,10$ and 11 rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively. To construct a differential characteristics for large number of rounds, we divide long characteristics into short ones, say constructing a large characteristics from two short characteristics. Instead of starting from first round we start from the middle and run experiment in forward as well as reverse direction. Using this method we improved our results and report the differential path for up to $9,10,12,13$ and 15 rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively.

Keywords: Differential path, Nested Monte-Carlo Search, ARX ciphers, SPECK Cipher, Differential Cryptanalysis

1 Introduction

ARX (Addition/Rotation/XOR) is a class of cryptographic algorithm which uses three simple arithmetic operations: modular addition, bitwise rotation and exclusive-OR. In both industry and academia, ARX cipher has gained more interest and attention in last few years. By using combined linear (XOR, bit shift, bit rotation) and non-linear (modular addition) operation and iterating them for many rounds, ARX algorithms become more resistance against differential and linear cryptanalysis. ARX has a lack of look-up table, associated with S-box based algorithms and therefore increase the resistance against side channel attacks. Due to simplicity of operations, ARX algorithms exhibit excellent performance, especially for software platforms.

In our analysis we focus on SPECK [2]. SPECK is a secure, flexible and light weight block cipher designed by researchers from National Security Agency (NSA) of the USA in June 2013. It has great performance both on software and hardware. Its design is similar to Threefish- the block cipher used in the hash function Skein [7]. SPECK is a pure ARX cipher with a Feistel-like structure in which both branches are modified at every round. SPECK consist of 5 variants SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128 with block sizes 32, 48, 64, 96 and 128 bits, respectively.

The cryptanalysis of ARX design is more difficult. Since a typical S-box consist of 4 or 8-bit words, the differential or linear properties can be evaluated by computing its difference distribution table (DDT) or linear approximation table (LAT) respectively. But in case of ARX, for a 32-bit word it is clearly infeasible to calculate these tables. Although a partial difference distribution table (pDDT) containing few fraction of all differentials that has a probability greater than a fixed threshold is still possible. This is possible due to the fact that the probabilities of XOR (resp. ADD) differentials
through the modular addition (resp. XOR) operation are monotonously decreasing with the bit size of the word.

In this paper we propose a method for finding good differential paths in ARX ciphers. Finding a differential trail is a kind of problem where we face huge state space and there is no clear and obvious way how we should make a next step. This kind of problem are also available in many different areas but we were inspired with single-player games such as Morpion solitaire, SameGame and Sudoku. The heuristics called Nested Monte-Carlo Search works very well for these games [6]. We can treat a search for good differential paths also as a single-player game and we argue that this approach could be a base for more sophisticated heuristics. However we modified algorithm depends on the technical complexity of our problem but it is somehow inspired by Nested Monte-Carlo Search.

In our previous paper [1] we already applied naive approach of algorithm to all variant of SPECK but we found good result only for one variant with smallest state size SPECK32. For bigger variants, our algorithm was demanding to reduce the search space to enhance the random decision process and therefore we used the the partial difference distribution table (pDDT) [3] to reduce the search space of our algorithm.

Beside the concept of pDDT we were inspired by the highways and country roads analogy proposed by Biryukov et al [3] [9]. We relate the problem of finding high probability differential trails in a cipher to the problem of finding fast routes between two cities on a road map, then differentials that have high probability (w.r.t. a fixed threshold) can be thought of as highways and conversely differentials with low probability can be viewed as slow roads or country roads. Therefore in our algorithm firstly tries to find a probability which has probability above the threshold probability and if such probability does not exist then it uses the low probability values. Using this concept algorithm do not take completely random decision in iteration and hence it improves the random decision process by using smaller search space.

2 Related Cryptanalysis

Biryukov et al.[4] published a paper where they analyzed ARX cipher SPECK and by introducing the concept of partial difference distribution table (pDDT) they extend Matsuis algorithm, originally proposed for DES-like ciphers, to the class of ARX ciphers. They found differential trail of 9,10 and 13 rounds for 3 variant SPECK32, SPECK48 and SPECK64, respectively.

Biryukov et al. [5] again presented a paper in FSE 2016 where they propose the adaptation of Matsuis algorithm for finding the best differential and linear trails to the class of ARX ciphers. It was based on a branch-and-bound search strategy, does not use any heuristics and returns optimal results. They report the probabilities of the best differential trails for up to $10,9,8,7$ and 7 rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively.

Song et al. [10] presented a paper where they develop Mouha et al.'s framework for finding differential characteristics by adding a new method to construct long characteristics from short ones. They report the probabilities of the best differential trails of SPECK for up to $10,11,15,17$, and 20 rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively.

3 Description of SPECK

SPECK is a family of lightweight block ciphers with the Fiestel-like structure in which each block is divided in two branches and both branches are modified at every round. It has 5 variants, SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, where a number in the name denotes a block size in bits. Each block size is divided in two parts, left half and right half.

3.1 Round Function

SPECK uses 3 basic operations on n-bit word for each round:

- bitwise XOR, \oplus,
- addition modulo 2^{n}, \boxplus
- left and right circular shifts by r_{2} and r_{1} bits, respectively.

Left half n-bit word is denoted by $X_{r-1, L}$ and right half n-bit word is denoted by $X_{r-1, R}$ to the r-th round and n-bit round key applied in the r-th round is denoted by $k_{r} . X_{r, L}$ and $X_{r, R}$ denotes output words from round r which are computed as follows:

$$
\begin{gather*}
X_{r, L}=\left(\left(X_{r-1, L} \ggg r_{1}\right) \boxplus X_{r-1, R}\right) \oplus k_{r} \tag{1}\\
X_{r, R}=\left(\left(X_{r-1, R} \lll r_{2}\right) \oplus X_{r, L}\right) \tag{2}
\end{gather*}
$$

Fig. 1: The round function of SPECK

Different key size have been used by several instances of SPECK family and the total number of rounds depends on key size. The value of rotation constant r_{1} and r_{2} are specified as: $r_{1}=7, r_{2}=2$ for SPECK32 and $r_{1}=8, r_{2}=3$ for all other variants. Parameters for all variants represented in the Table 1.

Variant	Block Size(2n)	Word Size(n)	Key Size	Rounds
SPECK32	32	16	64	22
SPECK48	48	24	72	22
			96	23
SPECK64	64	32	96	26
			144	29
SPECK96	96	48	96	28
			144	29
SPECK128	128	64	128	32
			192	33
			256	34

Table 1: SPECK Parameters

4 Calculating Differential Probabilities

In [8], Moriai and Lipmaa studied the differential properties of addition. Let $x d p^{+}(a, b \rightarrow c)$ be the XOR-differential probability of addition modulo 2^{n}, with input differences a and b and the output difference c. Moriai and Lipmaa proved that the differential $(a, b \rightarrow c)$ is valid if and only if:

$$
\begin{equation*}
e q(a \ll 1, b \ll 1, c \ll 1) \wedge(a \oplus b \oplus c \oplus(b \ll 1))=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
e q(p, q, r):=(\neg p \oplus q) \wedge(\neg p \oplus r) \tag{4}
\end{equation*}
$$

For every valid differential $(a, b \rightarrow c)$, we define the weight $w(a, b \rightarrow c)$ of the differential as follows:

$$
\begin{equation*}
w(a, b \rightarrow c)=-\log _{2}\left(x d p^{+}(a, b \rightarrow c)\right) \tag{5}
\end{equation*}
$$

The weight of a valid differential can then be calculated as:

$$
\begin{equation*}
w(a, b \rightarrow c):=h(\neg e q(a, b \rightarrow c)), \tag{6}
\end{equation*}
$$

where $h(x)$ denotes the number of non-zero bits in x, not counting $x[n-1]$.
A differential characteristic defines not only the input and output differences, but also the internal differences after every round of the iterated cipher. In our analysis, we follow a common assumption that the probability of a valid differential characteristic is equal to the multiplication of the probabilities of each addition operation. The XOR operation and the bit rotation are linear in GF(2), therefore for these two operations for every input difference there is only one valid output difference.

5 Partial Difference Distribution Tables (pDDT)

The Partial difference distribution table (pDDT) proposed by Biryukov et al. [3] is a table that contains all XOR differentials $(a, b \rightarrow c)$ whose differential probabilities (DP) are greater than or equal to pre-defined threshold $p_{\text {thres }}$.

$$
\begin{equation*}
(a, b, c) \in p D D T \Leftrightarrow D P(a, b \rightarrow c) \geq p_{\text {thres }} \tag{7}
\end{equation*}
$$

To compute pDDT efficiently we will use following proposition: The differential probability of XOR of addition modulo 2^{n} is monotonously decreasing with the word size.

$$
\begin{equation*}
p_{n} \leq \ldots \ldots . \leq p_{k} \leq p_{k-1} \leq \ldots \leq p_{1} \leq p_{0} \tag{8}
\end{equation*}
$$

where $p_{k}=D P\left(a_{k}, b_{k} \rightarrow c_{k}\right), n \geq k \geq 1, p_{0}=1$ and x_{k} denotes the k LSB's of the difference x that is, $x_{k}=x[k-1: 0]$. The algorithm is defined in a recursive fashion. For each bit position $k: n>k>0$ check if probability of partially constructed $(k+1)$ - bit differential is greater than threshold $p_{\text {thres }}$. If yes, then move to the next bit, otherwise go back and assign different values to $a[k], b[k]$ and $c[k]$. Repeat the process until $k=n$ and once $k=n$ add $\left(a_{k}, b_{k} \rightarrow c_{k}\right)$ to the pDDT. The initial value of k is 0 and $a_{0}, b_{0}, c_{0}=\phi$.

```
Algorithm 1 Computation of a pDDT for XOR
    Input: \(n, p_{\text {thres }}, k, p_{k}, a_{k}, b_{k}, c_{k}\).
    Output: \(\mathrm{pDDT} D:(a, b, c) \in \mathrm{D}: \operatorname{DP}(a, b \rightarrow c) \geq p_{\text {thres }}\).
    function COMPUTEPDDT \(\left(n, p_{\text {thres }}, k, p_{k}, a_{k}, b_{k}, c_{k}\right)\)
        if \(\mathrm{n}==\mathrm{k}\) then
            \(\operatorname{Add}(a, b, c) \longleftarrow\left(a_{k}, b_{k}, c_{k}\right)\) to D
        end if
        return D
        for \(x, y, z \in 0,1\) do
            \(a_{k+1} \longleftarrow x\left|a_{k}, b_{k+1} \longleftarrow y\right| b_{k}, c_{k+1} \longleftarrow z \mid c_{k}\)
            \(p_{k+1}=D P\left(a_{k+1}, b_{k+1} \rightarrow c_{k+1}\right)\)
            if \(p_{k+1} \geq p_{\text {thres }}\) then
                \(\operatorname{computepddt}\left(n, p_{\text {thres }}, k+1, p_{k+1}, a_{k+1}, b_{k+1}, c_{k+1}\right)\)
            end if
        end for
    end function
```


6 Nested Monte Carlo Search

Our algorithm is inspired by Nested Monte Carlo Search algorithms. The Monte Carlo method is a heuristic based random sampling method. An application to game-tree search based on Monte Carlo method was proposed by Remi Coulom in 2008 named as Monte Carlo Tree Search (MCTS). This algorithm was useful to games where it is hard to formulate an evaluation function, such as the game of Go. Later for a single player games, a variant called Nested Monte Carlo Search has been proposed [6].

Lets take a tree like structure to understand the Nested Monte-Carlo Search algorithm. At each step the NMCS algorithm tries all possible moves and memorizes the move associated to the best score of the lower level searches, that is, a nested of level 1 makes a playout for every possible move and choose to play the move of the best playout. A nested of level 2 does the same thing except that is replaces the playout by a nested of level one.

Fig. 2: Nested Monte Carlo Search.

During the first iteration the initial state (root) is selected and for the selected state all legal actions are determined (Figure 2). Therefore at level 0 it play random game for all possible moves valid for selected state (root). Then it moves one step ahead to next level with greatest associated score.

Therefore we changed the original NMCS algorithm to eliminate this problem for our cipher and presented a new algorithm based on NMCS with an example in the next paragraph. Instead of trying all possible moves, we try only one random move.

Problem of finding differential path in a cipher with high probability could be treated as the problem of finding fast routes between two cities on the road map. Let us understand the algorithm with this example. Our goal is to find shortest path from a city to other city. We represent all possible paths as a tree. Root of the tree is considered as starting point while all the leaves are ending point reached by different paths (nodes). Each edge between nodes is associated with a number which represent distance between two nodes. Initially we have two lists named as BestPath and CurrentPath represent the best available path from previous search and random path which is under investigation, respectively. The last element in both the list represents total distance traveled. Both the lists are initially empty.

Fig. 3: Different paths from the root (base node) to the destination (leaf nodes)

Initially algorithm takes a random moves from base node to leaf node and save the path in Current Path list. Lets say random path selected by algorithm is $\{a, b, d, i\}$ with distance score 18 . Since initially there was no better path available (BestPath is empty), then we save the current path and its distance as BestPath (See Figure 4).

Fig. 4: Random path from the base node to the leaf node.

Again we move one level down in BestPath and start a new random move from the node. Therefore in our example we will start from node b, and we found a new random path $\{b, e, k\}$. The new path score (including the distance above b) is 10 , which is better than the previous best path score. Therefore we update BestPath by CurrentPath a, b, e, k and update the score also (See Figure 5).

Fig. 5: A random path from the b node to the leaf node.

Again in the BestPath we go one step down and repeat the same process. We play a random move from e and find the new path is $\{e, j\}$ (See Figure 6.) The score for CurrentPath is 15 , which is not better than the previous best path. Hence, we do not update BestPath.

Fig. 6: Random path from node e to leaf node.

Once we reach the leaf node we repeat the whole process again from the base node. Yet this time BestPath would not be empty, as there would be some result from the previous search.

In this kind of problems like in our example, we often face the exploration vs. exploitation dilemma when searching for a new path. In our algorithm by letting investigate a completely new paths (starting randomly from the base node), the algorithm 'cares' about exploration. On the other hand, by investigating BestPath on the subsequent levels of the tree, we exploit BestPath and hope to improve it.

Finding differential paths in SPECK

In SPECK cipher the only source of non-linearity is modular addition and its complete differential properties (differential distribution tables) are infeasible to calculate, therefore we used our heuristics
algorithm to circumvent this limitation and to find the best differential trails. As we described above, the algorithm took a random decision from the search space. For larger variant of SPECK this random property of algorithm is not enough to produce good results and therefore we decided to reduce the search space of algorithm by introducing partial difference distribution table. We used this table in our algorithm and instead of taking random inputs for SPECK we are taking the initial inputs from pDDT table, which contains valid differentials above the threshold value. Each time when SPECK start the next round, the algorithm initially check the values in pDDT table. If it does not find such value in the pDDT set it simply calculate a valid differential output for given inputs, without any threshold condition. In our experiment with SPECK cipher, modular addition for each round is treated as node where we need to take decision of required output (valid differential) and the weight of a valid differential is treated as score. Our aim is to find a differential path for a given number of round with lower weight.

The basic FIND-BEST-PATH function just run the cipher for a given number of round. Function check the differential values in pDDT table having probability greater than some threshold value. In case if algorithm could not find such value in the table then it calculate a valid differential output by XOR-ing the two inputs, which gives highest probability with given inputs (best possible path for given differences). We have not mentioned SPECK encryption operations in the algorithm for simplicity, it is trivial that after each round of encryption $s t_{0}$ and $s t_{1}$ changes its value and every time we check these two values in the pDDT table list.

```
Algorithm 2 Function to find differential path
    function INT FIND-BEST-PATH \(\left(s t_{0}\right.\), st \(t_{1}\), speck_round)
        while not end of the round do
            if \(\left(s t_{0}\right.\) and \(\left.s t_{1}\right) \in \mathrm{pDDT}\) then
                    Add differential output and the weight to the path and weight
                    list, respectively
            else
                    \(o p=s t_{1} \oplus s t_{0}\)
                    \(w t=\) weight \(\left(s t_{0}, s t_{1}, o p\right)\) (Calculate the weight using method described
                    in section 4)
                    Add differential output op and the weight \(w t\) to the path and weight
                    list, respectively
            end if
            SPECK Encryption operations
        end while
    return path, weight
    end function
```

To calculate the differential path by our algorithm using pDDT table we are using main function in Algorithm 3. The calculated weight from round 1 to current round is represented by weight_above. The two lists weight_list and best_path_list saves the weight and list of path for each decision from one round to other. Both list are empty initially and the value of weight_above and best_weight given to algorithm is 0 and 9999 respectively. Every time the weight_list and best_path_list is updated with the newly found sequence and the best move is played. The total number of round for which we are trying to find lowest weight is represented by speck_round. The first and second half block of SPECK cipher is represented by $s t_{0}$ and $s t_{1}$.

```
Algorithm 3 Finding differential paths in SPECK through Nested Monte-Carlo Search
    function int \(\operatorname{NeSTED}\left(s t_{0}, s t_{1}\right.\), speck_round, best_weight, weight_above)
        while round \(<=\) speck_round do
            temp_path_list, temp_weight \(=\) FIND-BEST-PATH \(\left(s t_{0}\right.\), st \(t_{1}\), speck_round \()\)
            if (temp_weight + weight_above < best_weight) then
                    best_weight \(=\) temp_weight + weight_above
                update best_path_list by temp_path_list (from current round to end of the
                    round)
                    update weight_list by temp_weight (from current round to end of the
                    round)
            end if
            update \(s t_{0}\) and \(s t_{1}\) from best_path_list with the decision for current speck_round
            weight_above \(=\) weight from first round to current speck round
            round \(=\) round +1
        end while
    return best_weight
    end function
```

The algorithm can be made anytime with iterative calls:

```
Algorithm 4 Function for iterative calls
    best_weight \(=9999\), weight_above \(=0\), speck_round \(=9\)
    while best_weight \(>31\) do
        Take the \(i^{t h}\) indexed value of \(s t_{0}, s t_{1}\) from pDDT list
        path, best_weight \(=\) Nested \(\left(s t_{0}, s t_{1}\right.\), speck_round,best_weight, weight_above)
        \(i=i+1\)
    end while
    PRINT best_weight, path
```


7 Obtaining a long characteristic from two short ones

It is a well known fact that it is easier to find a short characteristic (for a small number of rounds) instead of a long characteristic. Therefore, we use the start-in-the-middle approach to find a long characteristic from two short ones. In this method, we start our algorithm from the middle of the rounds in two directions, forward toward the end and at the same time backwards towards the beginning. In this experiment we apply internal difference inputs from the middle of the given number of rounds. For example, if we want to find a path for 14 rounds then we pass inputs to our algorithm and let it run for 7 rounds forwards and 7 rounds backwards (reverse). Once we acquire the result for both directions, we combine them together to get a long characteristic for the 14 rounds (see Figure 7). This method also saves time by not needing to search long characteristics and in the end provides us with a better result.

Fig. 7: Algorithm applying on SPECK Cipher

8 Results

In this paper we used our naive algorithm extended with the partial difference distribution table (pDDT) for finding the best differential trails in ARX cipher SPECK. We showed the practical application of the new method on round reduced variants of block cipher from the SPECK family. For the 32 -bit state of the cipher, it only make sense to analyse the differential paths with probability higher than 2^{-32}. It is because a path with lower probability would not lead to any meaningful attack, which would be faster than exhaustive search in the 32 -bit state. Similarly for SPECK48, SPECK64, SPECK96 and SPECK128 probability should be higher than $2^{-48}, 2^{-64}, 2^{-96}$ and 2^{-128} respectively. We run the experiment for long characteristics starting from the first round. We report the differential path for up to $8,9,11,10$ and 11 rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128 respectively. In the table left and right part of the state are denoted by Δ_{L} and Δ_{R}, respectively. Differences are encoded as hexadecimal numbers (Probability for a given weight is $2^{- \text {weight }}$).

Table 2: Differential trails for SPECK32, SPECK48, SPECK64

	SPECK32	SPECK48	SPECK64
Round	$\Delta_{L} \quad \Delta_{R} \quad \log _{2} p$	$\Delta_{L} \quad \Delta_{R} \quad \log _{2} p$	$\Delta_{L} \quad \Delta_{R} \quad \log _{2} p$
1	001408002	1000821200003	08000000000000001
2	200000001	9010000010003	00080000000800002
3	004000401	0080100000103	00080800004808004
4	804081402	1000901000103	00480008020840086
5	004005424	8010100010905	0a080808 1a4a0848 9
6	8542 904a 6	1090801014005	12400040 c 01042005
7	1540 546a 7	900490 10a490 8	80020200808012065
8	d440 85e9 7	8034940510148	80001004840080305
9		919020 b91080 9	80808020 a08481a4 8
10			80040124 84200c01 7
11			a0a00800 81a0680c 9
$\Sigma_{r} p_{r}$	-30	-47	-63

Table 3: Differential trails for SPECK96, SPECK128

| | SPECK96 | | | SPECK128 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round | Δ_{L} | Δ_{R} | $\log _{2} p$ | Δ_{L} | Δ_{R} | $\log _{2} p$ |
| 1 | 000000000080 | 000000000000 | 00 | 0000000000000060 | 0000000000000000 | 02 |
| 2 | 800000000000 | 800000000000 | 01 | 2000000000000000 | 2000000000000000 | 02 |
| 3 | 808000000000 | 808000000004 | 03 | 2020000000000000 | 2020000000000001 | 04 |
| 4 | 800080000004 | 840080000020 | 05 | 2000200000000001 | 2100200000000008 | 06 |
| 5 | 808080800020 | a08480800124 | 09 | 2020202000000008 | 2821202000000049 | 10 |
| 6 | 800400008124 | 842004008801 | 09 | 2001000020000049 | 6108010020000200 | 10 |
| 7 | a0a000008880 | 81a02004c88c | 12 | 2828000020200200 | 2068080120201203 | 14 |
| 8 | 01008004 c 804 | $0 c 0180228 c 60$ | 14 | 2040200120003201 | 230060082100 a 218 | 18 |
| 9 | 080080 a 288 a 8 | $680 \mathrm{c} 81 \mathrm{~b} 6 \mathrm{eba8}$ | 21 | $222020282020 a 22 \mathrm{a}$ | 3 a 2320692825 b 2 eb | 27 |
| 10 | c00481364920 | 80608 c 811463 | 18 | 1001004900059249 | c118030041280510 | 17 |
| 11 | | | 8808020008280082 | 80 c 81 a 0201682804 | 15 | |
| $\Sigma_{r} p_{r}$ | | -92 | | -125 | | |

In the second part we also perform the experiment starting from the middle of round and run our tool in both direction, reverse as well as forward. Using this method we improved our results and report the differential path for up to $9,10,12,13$ and 15 rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128 respectively. For variant with larger block size say 96 or 128, we got better results compared to previous results.

Table 4: Differential trails for SPECK32, SPECK48, SPECK64

	SPECK32	SPECK48	SPECK64
Round	$\Delta_{L} \quad \Delta_{R} \quad \log _{2} p$	$\Delta_{L} \quad \Delta_{R} \quad \log _{2} p$	$\Delta_{L} \quad \Delta_{R} \quad \log _{2} p$
1	14ac 52097	0208885 a 42087	02080888 1a4a0848 9
2	0a20 42055	d24000 0050426	92480040401842008
3	0211 0a04 4	0082020200124	008a0a00 0481a021 8
4	280000102	0000901000001	00489008020840188
5	004000000	8000000000001	0a080888 1a4a0848 9
6	800080001	0080000080002	92400040401042006
7	810081022	0080800480803	00820200000012024
8	8000 840a 4	848000 a08400 4	00009000000000102
9	850a 95206	a00080 a42085 7	00000080000000000
10		2480850584 a 88	80000000800000001
11			80800000808000043
12			80008004840080205
$\Sigma_{r} p_{r}$	-31	-43	-63

Table 5: Differential trails for SPECK96, SPECK128

| | SPECK96 | | | SPECK128 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round | Δ_{L} | Δ_{R} | $\log _{2} p$ | Δ_{L} | Δ_{R} | $\log _{2} p$ |
| 1 | a22a20200800 | 013223206808 | 14 | 0096492440040124 | 0420144304600 c 01 | 18 |
| 2 | 019009004800 | 080110030840 | 10 | $2020820 a 20200800$ | 0120201203206808 | 14 |
| 3 | 0800800 a 0808 | 480800124 a 08 | 10 | 0100009009004800 | 0801000010030840 | 10 |
| 4 | 400000924000 | 004000001042 | 06 | $08000000800 a 0808$ | 4808000000124 a 08 | 10 |
| 5 | 000000008202 | 020000000012 | 04 | 4000000000924000 | 0040000000001042 | 06 |
| 6 | 000000000090 | 100000000000 | 01 | 0000000000008202 | 0200000000000012 | 04 |
| 7 | 800000000000 | 000000000000 | 01 | 0000000000000090 | 1000000000000000 | 01 |
| 8 | 800000000000 | 008000000000 | 02 | 8000000000000000 | 0000000000000000 | 01 |
| 9 | 008080000000 | 048080000000 | 04 | 0080000000000000 | 0080000000000000 | 02 |
| 10 | 048000800000 | 208400800000 | 06 | 0080800000000000 | 0480800000000000 | 04 |
| 11 | 208080808000 | $24 a 084808001$ | 10 | 0480008000000000 | 2084008000000000 | 06 |
| 12 | 248004000081 | 018420040088 | 09 | 2080808080000000 | $24 a 0848080000001$ | 10 |
| 13 | $80 a 0 a 0000088$ | 8 c 81 a 02004 c 8 | 12 | 2480040000800001 | 0184200400800008 | 10 |
| 14 | | | $00 a 0 a 00000808008$ | $0 c 81 \mathrm{a} 02004808048$ | 14 | |
| 15 | | | $04810080048000 c 8$ | 608 c 018020840288 | 17 | |
| $\Sigma_{r} p_{r}$ | | | | | -127 | |

Conclusion

By applying our algorithm based on Nested by reducing the search space using the partial difference distribution table (pDDT) to all five instances of block cipher SPECK with 32, 48, 64, 96 and 128 bit block sizes respectively we obtained result for all variant. Another method we tried is starting from the middle provide more good result for bigger state sizes. By changing threshold we can increase or decrease size of pDDT table. For a bigger threshold value pDDT size is small and speed of experiment is fast because of smaller search space but we can miss few values which are necessary to make good differential path, on the other hand for smaller threshold value pDDT table is large and experiment speed is slow because of bigger search space but it might include the values which are necessary to make the good differential path.

Acknowledgement

Project was financed by Polish National Science Centre, project DEC-2013/09/D/ST6/03918.

References

1. Paweł Morawiecki Ashutosh Dhar Dwivedi and Sebastian Wójtowicz. Finding differential paths in arx ciphers through nested monte-carlo search. International Journal of electronics and telecommunications, 64(2):147-150, 2018.
2. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.
3. Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in ARX ciphers. In Josh Benaloh, editor, Topics in Cryptology - CT-RSA 2014-The Cryptographer's Track at the RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings, volume 8366 of Lecture Notes in Computer Science, pages 227-250. Springer, 2014.
4. Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in arx ciphers. In Josh Benaloh, editor, Topics in Cryptology - CT-RSA 2014, pages 227-250, Cham, 2014. Springer International Publishing.
5. Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search for the best trails in ARX: application to block cipher speck. In Peyrin [9], pages 289-310.
6. Tristan Cazenave. Nested monte-carlo search. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 456-461, 2009.
7. N. Ferguson, B. Schneier S. Lucks, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The Skein Hash Function Family. Submission to the NIST SHA-3 Competition (Round 2), 2009.
8. Mitsuru Matsui, editor. Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers, volume 2355 of Lecture Notes in Computer Science. Springer, 2002.
9. Thomas Peyrin, editor. Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science. Springer, 2016.
10. Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In Joseph K. Liu and Ron Steinfeld, editors, Information Security and Privacy - 21st Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceedings, Part II, volume 9723 of Lecture Notes in Computer Science, pages 379-394. Springer, 2016.
