
Differential cryptanalysis in ARX ciphers, Application to
SPECK

Ashutosh Dhar Dwivedi, Pawe l Morawiecki

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract

In this paper, we propose a new algorithm inspired by Nested to find a differential path in ARX
ciphers. In order to enhance the decision process of our algorithm and to reduce the search space of
our heuristic nested tool, we use the concept of partial difference distribution table (pDDT) along
with the algorithm. The algorithm itself is applied on reduced round variants of the SPECK block
cipher family. In our previous paper, we applied a naive algorithm with a large search space of values
and presented the result only for one block size variant of SPECK. In this new approach, we provide
the results within a simpler framework and within a very short period of time for all bigger block size
variants of SPECK. More specifically, we report the differential path for up to 8, 9, 11, 10 and 11
rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively. To construct a
differential characteristics for large number of rounds, we divide long characteristics into short ones,
by easily constructing a large characteristic from two short ones. Instead of starting from the first
round, we start from the middle and run the experiments forwards as well as in the reverse direction.
Using this method, we were able to improve our previous results and report the differential path for
up to 9, 10, 12, 13 and 15 rounds of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128,
respectively.

Keywords: Differential path, Nested Monte-Carlo Search, ARX ciphers, SPECK Cipher, Differential
Cryptanalysis

1 Introduction

ARX (Addition/Rotation/XOR) is a class of cryptographic algorithms which use three simple arith-
metic operations: namely modular addition, bitwise rotation and exclusive-OR. In both industry and
academia, ARX cipher has gained a lot more interest and attention in last few years. By using com-
bined linear (XOR, bit shift, bit rotation) and non-linear (modular addition) operations and iterating
them for many rounds, ARX algorithms have become more resistance against differential and linear
cryptanalysis. ARX lacks a look-up table, associated with S-box based algorithms and therefore has
an increased resistance against side channel attacks. Due to simplicity of operations, ARX algorithms
exhibit excellent performance, especially for software platforms.

In our analysis, we focus on SPECK [1]. SPECK is a secure, flexible and light weight block cipher
designed by researchers from the National Security Agency (NSA) of the United States of America
(USA) in June 2013. It has great performance both in software and hardware applications. Its design
is similar to Threefish - the block cipher used in the hash function Skein [6]. SPECK is a pure ARX
cipher with a Feistel-like structure in which both branches are modified at every round. SPECK consist
of 5 variants SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128 with block sizes 32, 48, 64,
96 and 128 bits, respectively.

The cryptanalysis of ARX design is more difficult. Since a typical S-box consist of 4 or 8-bit
words, the differential or linear properties can be evaluated by computing its difference distribution
table (DDT) or linear approximation table (LAT) respectively. But with regards to ARX, for a 32-
bit word it is clearly infeasible to calculate these tables. Although a partial difference distribution

table (pDDT) containing few fractions of all differentials that has a probability greater than a fixed
threshold is still possible. This becomes possible due to the fact that the probabilities of XOR (resp.
ADD) differentials through the modular addition (resp. XOR) operation are monotonously decreasing
with the bit size of the word.

In this paper we propose a method for finding good differential paths in ARX ciphers. Finding a
differential trail becomes a problem since a huge state space exists and there is no clear and obvious
way to take the next step. This kind of problem exists in different areas but our inspiration comes from
single-player games such as Morpion solitaire, SameGame and Soduku. The heuristics called Nested
Monte-Carlo Search works very well for these games [4]. We can treat a search for good differential
paths also as a single-player game and argue that this approach could be a base for more sophisticated
heuristics. However, our modified algorithm depends on the technical complexity of this problem but
it is also strongly inspired by Nested Monte-Carlo Search.

In our previous paper [5], we applied a naive approach algorithm to all variants of SPECK and
found good results only for one variant with smallest state size in SPECK32. For bigger variants, our
algorithm was demanding to reduce the search space to enhance the random decision process and
therefore we used the the partial difference distribution table (pDDT) [2] to reduce the search space
of our algorithm.

Beside the concept of pDDT our inspiration is drawn from the highways and country roads analogy
proposed by Biryukov et al. [2] [3]. We relate the problem of finding high probability differential trails
in a cipher to the problem of finding fast routes between two cities on a road map, then differentials
that have high probability (w.r.t. a fixed threshold) can be thought of as highways and conversely
differentials with low probability can be viewed as slow roads or country roads. Therefore, our algo-
rithm first tries to find a probability above the threshold probability and if such a probability does
not exist then it uses the low probability values. Using this concept, the algorithm does not take a
completely random decision in iterations and hence improves the random decision process by using a
much smaller search space.

2 Related Cryptanalysis

Biryukov et al.[2] published a paper where they analyzed ARX cipher SPECK and by introducing
the concept of partial difference distribution table (pDDT) they extend Matsuis algorithm, originally
proposed for DES-like ciphers, to the class of ARX ciphers. They found differential trails of 9, 10 and
13 rounds for 3 variant SPECK32, SPECK48 and SPECK64, respectively.

Biryukov et al. [3] again presented a paper where they proposes the adaptation of Matsuis algorithm
for finding the best differential and linear trails to the class of ARX ciphers. It was based on a branch-
and-bound search strategy which does not use any heuristics and returns optimal results. They report
the probabilities of the best differential trails for up to 10, 9, 8, 7 and 7 rounds of SPECK32, SPECK48,
SPECK64, SPECK96 and SPECK128, respectively.

Song et al. [8] presented a paper where they develop Mouha et al.’s framework for finding differential
characteristics by adding a new method to construct long characteristics from short ones. They report
the probabilities of the best differential trails of SPECK for up to 10, 11, 15, 17, and 20 rounds of
SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively.

3 Description of SPECK

SPECK is a family of lightweight block ciphers with the Fiestel-like structure in which each block is
divided in two branches and both branches are modified at every round. It has 5 variants, SPECK32,
SPECK48, SPECK64, SPECK96 and SPECK128, where a number in the name denotes the block size
in bits. Each block size is divided in two parts, left half and right half.

3.1 Round Function

SPECK uses 3 basic operations on n-bit word for each round:

– bitwise XOR, ⊕,
– addition modulo 2n,�
– left and right circular shifts by r2 and r1 bits, respectively.

Left half n-bit word is denoted by Xr−1,L and right half n-bit word is denoted by Xr−1,R to the
r-th round and n-bit round key applied in the r-th round is denoted by kr. Xr,L and Xr,R denotes
output words from round r which are computed as follows:

Xr,L = ((Xr−1,L≫ r1)�Xr−1,R)⊕ kr (1)

Xr,R = ((Xr−1,R≪ r2)⊕Xr,L) (2)

Fig. 1: The round function of SPECK

Different key sizes have been used by several instances of the SPECK family and the total number
of rounds depends on the key size. The value of rotation constant r1 and r2 are specified as: r1 = 7,
r2 = 2 for SPECK32 and r1 = 8, r2 = 3 for all other variants. Parameters for all variants represented
in the Table 1.

4 Calculating Differential Probabilities

In [7], Moriai and Lipmaa studied the differential properties of addition. Let xdp+(a, b → c) be the
XOR-differential probability of addition modulo 2n, with input differences a and b and the output
difference c. Moriai and Lipmaa proved that the differential (a, b→ c) is valid if and only if:

eq(a� 1, b� 1, c� 1) ∧ (a⊕ b⊕ c⊕ (b� 1)) = 0 (3)

where
eq(p, q, r) := (¬p⊕ q) ∧ (¬p⊕ r) (4)

For every valid differential (a, b→ c), we define the weight w(a, b→ c) of the differential as follows:

Variant Block Size(2n) Word Size(n) Key Size Rounds
SPECK32 32 16 64 22
SPECK48 48 24 72 22

96 23
SPECK64 64 32 96 26

144 29
SPECK96 96 48 96 28

144 29
SPECK128 128 64 128 32

192 33
256 34

Table 1: SPECK Parameters

w(a, b→ c) = − log2(xdp+(a, b→ c)) (5)

The weight of a valid differential can then be calculated as:

w(a, b→ c) := h(¬eq(a, b→ c)), (6)

where h(x) denotes the number of non-zero bits in x, not counting x[n− 1].

A differential characteristic defines not only the input and output differences, but also the internal
differences after every round of the iterated cipher. In our analysis, we follow a common assumption
that the probability of a valid differential characteristic is equal to the multiplication of the probabili-
ties of each addition operation. The XOR operation and the bit rotation are linear in GF(2), therefore
for these two operations for every input difference there is only one valid output difference.

5 Partial Difference Distribution Tables (pDDT)

The Partial difference distribution table (pDDT) proposed by Biryukov et al. [2] is a table that
contains all XOR differentials (a, b → c) whose differential probabilities (DP) are greater than or
equal to pre-defined threshold pthres.

(a, b, c) ∈ pDDT ⇔ DP (a, b→ c) ≥ pthres (7)

To compute pDDT efficiently we will use following proposition: The differential probability of XOR
of addition modulo 2n is monotonously decreasing with the word size.

pn ≤ ≤ pk ≤ pk−1 ≤ ≤ p1 ≤ p0 (8)

where pk = DP (ak, bk → ck), n ≥ k ≥ 1, p0 = 1 and xk denotes the k LSB’s of the difference x that
is, xk = x[k−1 : 0]. The algorithm is defined in a recursive fashion. For each bit position k : n > k > 0
check if probability of partially constructed (k + 1)− bit differential is greater than threshold pthres.
If yes, then move to the next bit, otherwise go back and assign different values to a[k], b[k] and c[k].
Repeat the process until k = n and once k = n add (ak, bk → ck) to the pDDT. The initial value of k
is 0 and a0, b0, c0 = φ.

Algorithm 1 Computation of a pDDT for XOR

1: Input: n, pthres, k, pk, ak, bk, ck.
2: Output: pDDT D : (a, b, c) ∈ D : DP(a, b→ c) ≥ pthres.
3: function computepddt(n, pthres, k, pk, ak, bk, ck)
4: if n==k then
5: Add (a, b, c)←− (ak, bk, ck) to D
6: end if
7: return D
8: for x, y, z ∈ 0, 1 do
9: ak+1 ←− x|ak, bk+1 ←− y|bk, ck+1 ←− z|ck

10: pk+1 = DP (ak+1, bk+1 → ck+1)
11: if pk+1 ≥ pthres then
12: computepddt(n, pthres, k + 1, pk+1, ak+1, bk+1, ck+1)
13: end if
14: end for
15: end function

Table 2: Timings on the computation of pDDT for XOR on 32-bit words using Algorithm 1

Threshold Probability Elements in pDDT Time

0.1 3951388 1.23 min
0.07 3951388 2.29 min
0.06 167065948 44.36 min
0.01 ≥ 72589325174 ≥ 29 days.

6 Nested Monte Carlo Search

Our algorithm is inspired by Nested Monte Carlo Search (NMCS) algorithms. The Monte Carlo method
is a heuristic based random sampling method. An application to game-tree search based on Monte
Carlo method was proposed by Remi Coulom in 2008 named as Monte Carlo Tree Search (MCTS).
This algorithm was useful to games where it is hard to formulate an evaluation function, such as the
game of Go. Later for a single player games, a variant called Nested Monte Carlo Search has been
proposed [4].

Let us take a tree like structure to understand the Nested Monte-Carlo Search algorithm. At each
step the NMCS algorithm tries all possible moves and memorizes the move associated to the best
score of the lower level searches. In other words, a nested of level 1 makes a playout for every possible
move and choose to play the move of the best playout. A nested of level 2 does the same thing except
that is replaces the playout by a nested of level one.

During the first iteration the initial state (root) is selected and for the selected state all legal
actions are determined (Figure 2). Therefore at level 0 it play random game for all possible moves
valid for selected state (root). Then it moves one step ahead to the next level with greatest associated
score.

Therefore, we changed the original NMCS algorithm to eliminate this problem for our cipher and
presented a new algorithm based on NMCS with an example in the next paragraph. Instead of trying
all possible moves, we try only one random move.

The problem of finding a differential path in a cipher with high probability could be treated as
the problem of finding fast routes between two cities on a road map. Let us try to understand the

15 10 30

20 30 10

10 30 10

Fig. 2: Nested Monte Carlo Search.

algorithm with this example. Our goal is to find shortest path from one city to another city. We
represent all possible paths as a tree. The root of the tree is considered as the starting point and all
leaves are ending points reached by different paths (nodes). Each edge between nodes is associated with
a number which represents distance between two nodes. Initially, we have two lists named as BestPath
andCurrentPath. They represent the best available path from previous searches and a random path
which is under investigation, respectively. The last element in both lists represents total distance
travelled. Both the lists are initially empty.

Fig. 3: Different paths from the root (base node) to the destination (leaf nodes)

Initially the algorithm takes a random moves from base node to leaf node and savse the path
in Current Path list. Let us say that the random path selected by the algorithm is {a, b, d, i} with
distance score 18. Since initially there was no better path available (BestPath is empty), then we save
the current path and its distance as BestPath (See Figure 4).

Again we move one level down in BestPath and start a new random move from the node. Therefore
in our example we will start from node b, and we found a new random path {b, e, k}. The new path score
(including the distance above b) is 10, which is better than the previous best path score. Therefore
we update BestPath by CurrentPath a, b, e, k and update the score also (See Figure 5).

Fig. 4: Random path from the base node to the leaf node.

Fig. 5: A random path from the b node to the leaf node.

Again in the BestPath we go one step down and repeat the same process. We play a random move
from e and find the new path is {e, j}(See Figure 6.) The score for CurrentPath is 15, which is not
better than the previous best path. Hence, we do not update BestPath.

Fig. 6: Random path from node e to leaf node.

Once we reach the leaf node we repeat the whole process again from the base node. Yet this time
BestPath would not be empty, as there would be some result from the previous search.

In this kind of problem, we often face the exploration versus exploitation dilemma when searching
for a new path. In our algorithm, by letting it investigate completely new paths (starting randomly
from the base node), the algorithm ‘cares’ about exploration. On the other hand, by investigating
BestPath on the subsequent levels of the tree, we exploit BestPath and hope to improve it.

7 Formal description of Algorithm

To formally describe the algorithm, let us first define two functions, which are main building blocks
of the algorithm. The first function RandomPath(node position) is the function, which for a given
node walks a random path in the search tree until it reaches the leaf node. The function RandomPath
returns a list of nodes (from the base node to the leaf) and the cost corresponding to the path.

Algorithm 2 A basic function to generate a random path

1: function randomPath(node position)
2: while node position 6= leaf do
3: go randomly to the next node
4: end while
5: return path, cost
6: end function

The second function Nested(node position) is a recursive function, which calls itself on every
level of the tree search until it reaches the leaf node. The pseudo-code of the function is given in
Algorithm 2. In the given pseudo-code we use two global variables, which keep a list of nodes in the
best path (best path) and its corresponding cost (best cost). Initially, best path is empty and best cost
is initialized with some big value. (Here we assume that a lower cost means a better solution.)

Algorithm 3 The recursive function Nested

function Nested(node position)
while node position 6= leaf do

path, cost = RandomPath(node position)
if (cost < best cost) then

best cost = cost
best path = path

end if

update node position
by going a level below in best path

if node position 6= leaf then
Nested (node position)

end if
end while

end function

The Nested function can be called iteratively in a loop until we meet our criterion. The criterion
could be, for example, a number of iterations, time limit or the maximum cost of the best path. The
algorithm could also be easily run in parallel. Either with completely independent instances or with
a small overhead to communicate best solutions between instances.

Algorithm 4 Iterative calls to the function Nested

1: best-score = 9999999, node position = base node
2: while i < number of iterations do
3: Nested (node position)
4: i = i+ 1
5: end while

Finding differential paths in SPECK

In SPECK cipher the only source of non-linearity is modular addition and its complete differential
properties (differential distribution tables) are infeasible to calculate. Therefore, we have used our
heuristics algorithm to circumvent this limitation and to find the best differential trails. As described
earlier, the algorithm took a random decision from the search space. For larger variant of SPECK this
random property of the algorithm is not enough to produce good results. Therefore, we decided to
reduce the search space of the algorithm by introducing partial difference distribution table (pDDT).
This table is used in our algorithm and instead of taking random inputs for SPECK, we take the
initial inputs from pDDT table, which contains valid differentials above the threshold value. Each
time SPECK starts the next round, the algorithm initially checks the values in the pDDT table. If it
does not find such a value in the pDDT set it simply calculates a valid differential output for given
inputs, without any threshold condition. In our experiment with SPECK cipher, modular addition for
each round is treated as a node where we need to take a decision of required output (valid differential)
and the weight of a valid differential is treated as a score. Our aim is to find a differential path for a
given number of rounds with lower weight.

The basic FIND-BEST-PATH function runs the cipher for a given number of rounds. The function
checks the differential values in the pDDT table having probability greater than some threshold value.
In case the algorithm does not find such a value in the table then it calculatse a valid differential
output by XOR-ing the two inputs, which gives highest probability with given inputs (best possible
path for given differences). We have not mentioned the SPECK encryption operations in the algorithm
for simplicity, it is trivial that after each round of encryption st0 and st1 changes its value and every
time we check these two values in the pDDT table list.

Algorithm 5 Function to find differential path

1: function int FIND-BEST-PATH(st0, st1, rounds)
2: while not end of the rounds do
3: if (st0 and st1) ∈ pDDT then
4: Add differential output and the weight to the path and weight
5: list, respectively
6: else
7: op = st1 ⊕ st0
8: wt = weight(st0, st1, op) (Calculate the weight using method described
9: in section)

10: Add differential output op and the weight wt to the path and weight
11: list, respectively
12: end if
13: SPECK Encryption operations
14: end while
15: return path, weight
16: end function

To calculate the differential path by our algorithm using the pDDT table, we are using the main
function in Algorithm 6. The calculated weight from round 1 to current round is represented by
weight above. The two lists weight list and best path list saves the weight and list of the path for
each decision from one round onwards. Both lists are initially empty and the value of weight above and
best weight given to algorithm is 0 and 9999 respectively. Every time the weight list and best path list
is updated with the newly found sequence and the best move is played. The total number of rounds
for which we are trying to find lowest weight is represented by rounds. The first and second half block
of SPECK cipher is represented by st0 and st1.

Algorithm 6 Finding differential paths in SPECK through Nested Monte-Carlo Search

1: function int Nested(st0, st1, rounds, best weight, weight above)
2: while round <= rounds do
3: temp path list, temp weight = FIND-BEST-PATH(st0, st1, rounds)
4: if (temp weight + weight above < best weight) then
5: best weight = temp weight + weight above
6: update best path list by temp path list (from current round to end of the
7: round)
8: update weight list by temp weight (from current round to end of the
9: round)

10: end if
11: update st0 and st1 from best path list with the decision for current rounds
12: weight above = weight from first round to current speck round
13: round = round + 1
14: end while
15: return best weight
16: end function

We can now call NESTED in a loop until a criterion is met (e.g. best weight threshold).

Algorithm 7 Searching a differential path with NESTED

1: while best weight > weight threshold do
2: Take the ith indexed value of st0, st1 from pDDT list
3: path, best weight = Nested (st0, st1, rounds, best weight, weight above)
4: i = i+ 1
5: end while

8 Obtaining a long characteristic from two short ones

It is easier to find a short characteristic (for small number of rounds) instead of a long characteristic.
Therefore, we use the start-in-the-middle approach to find a long characteristic from two shorter ones.
In this method, we start our algorithm from the middle of the rounds in two directions, forward and
backward. In this experiment, we apply internal difference inputs from in the middle of the given
number of rounds. For example, if we want to find a path for 14 rounds then we pass inputs to our
algorithm and let it run for 7 rounds in the forward direction and 7 rounds in backwards (reverse)
direction. Once results from both are achieved, we combine them together to get a long characteristic
of 14 rounds. This method also increases time efficiency and provides better results.

Delta 1

D

D

Delta 2

Delta 1

Delta 2

r-1 rounds

r-2 rounds

r-1+ r-2
rounds

Searching Backward

Searching Forward Connecting

Fig. 7: Algorithm applying on SPECK Cipher

9 Results

In this paper we used our naive algorithm extended with the partial difference distribution table
(pDDT) for finding the best differential trails in ARX cipher SPECK. We showed the practical ap-
plication of the new method on round reduced variants of block cipher from the SPECK family. For
the 32-bit state of the cipher, it only make sense to analyse the differential paths with probability
higher than 2−32. It is because a path with lower probability would not lead to any meaningful attack,
which would be faster than exhaustive search in the 32-bit state. Similarly for SPECK48, SPECK64,
SPECK96 and SPECK128 probability should be higher than 2−48, 2−64, 2−96 and 2−128 respectively.
We run the experiments for long characteristics starting from the first round. We report the dif-
ferential path for up to 8, 9, 11, 10 and 11 rounds of SPECK32, SPECK48, SPECK64, SPECK96
and SPECK128 respectively. In the table left and right part of the state are denoted by ∆L and
∆R, respectively. Differences are encoded as hexadecimal numbers (Probability for a given weight is
2−weight).

Table 3: Differential trails for SPECK32, SPECK48, SPECK64
SPECK32 SPECK48 SPECK64

Round ∆L ∆R weight ∆L ∆R weight ∆L ∆R weight
1 0014 0800 2 100082 120000 3 08000000 00000000 1
2 2000 0000 1 901000 001000 3 00080000 00080000 2
3 0040 0040 1 008010 000010 3 00080800 00480800 4
4 8040 8140 2 100090 100010 3 00480008 02084008 6
5 0040 0542 4 801010 001090 5 0a080808 1a4a0848 9
6 8542 904a 6 109080 101400 5 12400040 c0104200 5
7 1540 546a 7 900490 10a490 8 80020200 80801206 5
8 d440 85e9 7 803494 051014 8 80001004 84008030 5
9 919020 b91080 9 80808020 a08481a4 8
10 80040124 84200c01 7
11 a0a00800 81a0680c 9

weight 30 47 63

Table 4: Differential trails for SPECK96, SPECK128
SPECK96 SPECK128

Round ∆L ∆R weight ∆L ∆R weight
1 000000000080 000000000000 00 0000000000000060 0000000000000000 02
2 800000000000 800000000000 01 2000000000000000 2000000000000000 02
3 808000000000 808000000004 03 2020000000000000 2020000000000001 04
4 800080000004 840080000020 05 2000200000000001 2100200000000008 06
5 808080800020 a08480800124 09 2020202000000008 2821202000000049 10
6 800400008124 842004008801 09 2001000020000049 6108010020000200 10
7 a0a000008880 81a02004c88c 12 2828000020200200 2068080120201203 14
8 01008004c804 0c0180228c60 14 2040200120003201 230060082100a218 18
9 080080a288a8 680c81b6eba8 21 222020282020a22a 3a2320692825b2eb 27
10 c00481364920 80608c811463 18 1001004900059249 c118030041280510 17
11 8808020008280082 80c81a0201682804 15

weight 92 125

In the second part we also perform the experiment starting from the middle round and run our
tool in both directions, reverse as well as forward. Using this method we improved our results and
report the differential path for up to 9, 10, 12, 13 and 15 rounds of SPECK32, SPECK48, SPECK64,
SPECK96 and SPECK128 respectively. For variants with larger block size, say 96 or 128, we achieved
better results.

Table 5: Differential trails for SPECK32, SPECK48, SPECK64
SPECK32 SPECK48 SPECK64

Round ∆L ∆R weight ∆L ∆R weight ∆L ∆R weight
1 14ac 5209 7 020888 5a4208 7 02080888 1a4a0848 9
2 0a20 4205 5 d24000 005042 6 92480040 40184200 8
3 0211 0a04 4 008202 020012 4 008a0a00 0481a021 8
4 2800 0010 2 000090 100000 1 00489008 02084018 8
5 0040 0000 0 800000 000000 1 0a080888 1a4a0848 9
6 8000 8000 1 008000 008000 2 92400040 40104200 6
7 8100 8102 2 008080 048080 3 00820200 00001202 4
8 8000 840a 4 848000 a08400 4 00009000 00000010 2
9 850a 9520 6 a00080 a42085 7 00000080 00000000 0
10 248085 0584a8 8 80000000 80000000 1
11 80800000 80800004 3
12 80008004 84008020 5

weight 31 43 63

Table 6: Differential trails for SPECK96, SPECK128
SPECK96 SPECK128

Round ∆L ∆R weight ∆L ∆R weight
1 a22a20200800 013223206808 14 0096492440040124 0420144304600c01 18
2 019009004800 080110030840 10 2020820a20200800 0120201203206808 14
3 0800800a0808 480800124a08 10 0100009009004800 0801000010030840 10
4 400000924000 004000001042 06 08000000800a0808 4808000000124a08 10
5 000000008202 020000000012 04 4000000000924000 0040000000001042 06
6 000000000090 100000000000 01 0000000000008202 0200000000000012 04
7 800000000000 000000000000 01 0000000000000090 1000000000000000 01
8 800000000000 008000000000 02 8000000000000000 0000000000000000 01
9 008080000000 048080000000 04 0080000000000000 0080000000000000 02
10 048000800000 208400800000 06 0080800000000000 0480800000000000 04
11 208080808000 24a084808001 10 0480008000000000 2084008000000000 06
12 248004000081 018420040088 09 2080808080000000 24a0848080000001 10
13 80a0a0000088 8c81a02004c8 12 2480040000800001 0184200400800008 10
14 00a0a00000808008 0c81a02004808048 14
15 04810080048000c8 608c018020840288 17

weight 89 127

Conclusion

By applying our algorithm based on Nested and by reducing the search space using the partial dif-
ference distribution table (pDDT) to all five instances of block cipher SPECK, we obtained better
results for all variansts. Another method we attempted was starting from the middle and working in
both directions. This method produced good results for bigger state sizes. By changing the threshold
we can increase or decrease the size of pDDT table. For a bigger threshold value, pDDT size is small
and speed of experiment is fast because of smaller search space.However, the trade off is that we may
miss a few values which are necessary to make good differential path. On the other hand, for smaller
threshold values, pDDT table is large and resulting experiment speed is slow because of bigger search
space. That being said, the larger search space might include the values which are necessary to making
a good differential path.

Acknowledgement

Project was financed by Polish National Science Centre, project DEC-2013/09/D/ST6/03918.

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

2. Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in arx ciphers. In Josh
Benaloh, editor, Topics in Cryptology – CT-RSA 2014, pages 227–250, Cham, 2014. Springer International
Publishing.

3. Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search for the best trails in ARX:
application to block cipher speck. In Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages 289–310, 2016.

4. Tristan Cazenave. Nested monte-carlo search. In IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 456–461, 2009.

5. Ashutosh Dhar Dwivedi, Pawe l Morawiecki, and Sebastian Wójtowicz. Finding differential paths in arx
ciphers through nested monte-carlo search. International Journal of electronics and telecommunications,
64(2):147–150, 2018.

6. N. Ferguson, B. Schneier S. Lucks, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The Skein
Hash Function Family. Submission to the NIST SHA-3 Competition (Round 2), 2009.

7. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential properties of addition. In
FSE, volume 2355 of Lecture Notes in Computer Science, pages 336–350. Springer, 2001.

8. Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential analysis of ARX block ciphers with
application to SPECK and LEA. In ACISP (2), volume 9723 of Lecture Notes in Computer Science, pages
379–394. Springer, 2016.

