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Abstract—Intel’s Software Guard Extensions (SGX) enables
isolated execution environments, called enclaves, on untrusted
operating systems (OS), and thus it can improve the security for
various applications and online services. However, SGX has also
well-known limitations. First, its remote attestation mechanism
is vulnerable to relay attacks that allow the attacker to redirect
attestation and the following provisioning of secrets to an unin-
tended platform. Second, attestation keys have been shown to leak
thus enabling attackers to fake the secure attested environment
by emulating it. Third, there exists no secure way to let enclaves
communicate with the I/O devices and as a consequence the user.

To address these shortcomings, we propose a hardened
variant of SGX attestation using proximity verification. We
design and implement a system called PROXIMITEE, where a
simple embedded device with a low TCB is attached to the target
platform. The embedded device verifies the proximity of the
attested enclave by using distance bounding and secure boot-time
initialization, thus allowing secure attestation regardless of a
compromised OS or leaked attestation keys. Our boot-time
initialization can be seen as a novel variant of “trust on first
use” (TOFU) that makes deployment of secure attestation
easier, reduces the system’s attack surface and enables secure
revocation. We further leverage the embedded device to build
a trusted I/O path between peripherals (e.g., keyboards,
displays) and enclaves, by letting it securely mediate every I/O
communication between them. Our prototype implementation
shows that such proximity verification is reliable in practice.

I. INTRODUCTION

Trusted execution environments like Intel’s SGX [6] enable
secure applications and services on untrusted computing plat-
forms. In essence, SGX isolates small security-critical applica-
tions, called enclaves, from all the other software running on
the same platform, including the privileged Operating System
(OS). The primary security guarantees of SGX are enclave’s
data confidentiality and code integrity. Although recent re-
search has demonstrated that information may leak from en-
clave’s execution through digital side-channels [11], [20], [27],
or by leveraging platform vulnerabilities [13], [15], correctly
implemented enclaves on timely patched platforms remain a
valuable security enabler for many applications and services.

Limitations of SGX. Remote attestation is a mechanism
that allows a remote verifier to ensure that an enclave was
constructed as expected. When an enclave is created, the
CPU measures its code and securely stores the measurement.
During remote attestation, the CPU signs the measurement
using a processor-specific key. The signed attestation statement
can be bound to the enclave’s public key which allows the
remote verifier to establish a secure connection to the enclave.

While remote attestation guarantees that the attested en-
clave runs the expected code, it does not guarantee that the en-
clave runs on the expected computing platform. The untrusted
OS can relay incoming attestation requests to another platform,
as was previously observed in the context of TPM attesta-
tion [29]. Such relay attacks weaken the security guarantees
of SGX in many deployment scenarios. For example, servers
at data centers are typically well maintained (e.g., regularly
patched) and physically guarded. If the attestation is redirected
to another SGX platform that is outside the data center and in
the physical control of the adversary, he has increased capa-
bilities to attack the user’s data, including physical attacks and
software attacks that leverage vulnerable platform versions.

In a more severe attack, an adversary that has obtained
leaked, but not yet revoked, attestation keys can emulate an
SGX-enabled CPU on any platform. The emulated enclaves
would successfully pass remote attestation, thus making it
impossible for the remote verifier to distinguish between real
and emulated enclaves. Emulation attacks allow the attacker
to obtain any secrets provisioned to the attested enclave
and control its execution, hence breaking the two primary
security guarantees of SGX: data confidentiality and code
integrity. The extraction of attestation keys could be achieved
through physical attacks or, as recently demonstrated, by
exploiting platform vulnerabilities [13]. Emulation attacks are
particularly concerning because with just one or few leaked
keys the adversary can emulate enclaves on many platforms.

A straightforward solution to emulation and relay attacks
is to simply assume Trust On First Use (TOFU) [26]. That is,
at the time of attestation the remote verifier assumes that the
target OS is not compromised and it routes the communication
to the legitimate enclave, with which a secret can be shared
to securely. Unfortunately, OS compromise is common. A
commonly suggested and more secure TOFU variant is to
perform the attestation immediately after a fresh installation
of the OS. However, such solution has significant drawbacks.
In many application scenarios, reinstallation of the OS is
impractical. For instance, service providers like banks cannot
force their customers to reset their computers for secure
attestation. Even if the platform owner, like a cloud platform
provider, can reset servers at will, this approach is limited to
enclaves that are known at the time of platform initialization.
In Section III, we review such limitations in more detail.

Another well-known limitation of SGX is its lack of trusted
path, that is, a secure communication channel between a user
and an enclave. Since in SGX the untrusted OS mediates all
enclave’s communication with the I/O devices, e.g., keyboard



and display, the OS can read or modify any messages sent
between the enclave and the user. The lack of trusted path
prevents secure implementation of many useful applications
that require, e.g., password input from the user to the enclave.

Prior research has proposed to overcome this problem by
using a trusted hypervisor that handles all I/O operations [35].
The main drawback of this approach is that general-purpose
hypervisors have a significant Trusted Computing Base (TCB)
size and thus expose a large runtime attack surface.

Our solution. In this paper, we propose a system called
PROXIMITEE that uses a small trusted embedded device and
proximity verification for more secure and easy-to-deploy
remote attestation. An additional benefit of our approach is
that it enables automated platform revocation. We design and
implement two variants of our solution.

Our first variant leverages distance bounding [10] to
prevent relay attacks. During attestation, the remote verifier
establishes a secure connection to the embedded device which
performs the standard SGX attestation and verifies the prox-
imity of the attested enclave. After this, the remote verifier can
establish a secure connection to the enclave. The connection
is mediated by the attached device that performs periodic
distance bounding measurements and the channel stays active
only as long as the device is connected to the same platform.

Proximity verification alone cannot address emulation
attacks, as a perfect locally emulated enclave would pass
any proximity test. Therefore, our second variant uses a
combination of secure boot-time initialization and distance
bounding. The target platform loads a small, single-purpose
kernel from the attached embedded device and launches
an enclave that seals a secret key known by the embedded
device. After this initialization, the target platform can reboot
onto regular OS. Subsequently, when attestation is needed,
the enclave can verify the proximity of other enclaves on the
same platform using SGX’s local attestation. As above, using
distance bounding, the embedded device guarantees that the
attested connection stays alive only as long as the device is
connected. Our second variant can be seen as a novel variant
of trust on first use and it protects against relay and emulation
attacks, and thus enables secure attestation regardless of a
potentially compromised OS or leaked attestation keys.

Similar to second-factor authentication tokens, our
embedded device acts as an authenticator of the platform that
is being attested. The physical act of attaching the device
enables secure attestation (enrollment) while detaching the
device will prevent further communication with the attested
enclave (revocation). Neither enrollment nor revocation
require interaction with a trusted authority, and thus through
the use of periodic proximity verification, our solution enables
secure offline enrollment and revocation.

We also extend our approach to a trusted path mechanism,
where the trusted embedded device can be attached as a
bridge between I/O devices and the target platform. The
embedded device verifies the proximity of the enclave using
either of our two variants and securely mediates user input
and output to and from them.

Main results. We implemented complete prototype of our
solution using an Arduino Due microcontroller prototyping

board. Our prototype shows that the TCB of such device can
be made small: our implementation is 3.9 KLoC.

To evaluate the security of our proximity verification
scheme, we simulated a powerful relay-attack adversary that
can perform the required protocol computation instantly and is
connected to the target platform with a fast and short network
connection (one meter Ethernet cable). Our experiments and
analysis show that against such adversary proximity verifi-
cation can be made secure, efficient and reliable at the same
time. The adversary’s probability of performing a successful
relay attack is negligible (1.24 × 10−54), while legitimate
verification succeeds with a very high probability (0.9999998).
Importantly, the adversary cannot increase his success
probability with repeated attempts, as attestation is triggered by
the benign remote verifier and proximity verification performed
by the trusted embedded device. In terms of efficiency, the
initial proximity verification adds only a minor delay of 25
ms to the attestation protocol and the periodic proximity
verification consumes only 0.26% of the available channel
capacity between the embedded device and the enclave.

In comparison to previous TOFU solutions, our approach
has noteworthy benefits. The first is easier deployment, as the
target platform does not need to be reinstalled or manually
configured. The second is increased security, as in our
solution only a simple embedded device needs to be trusted
instead of a regular OS kernel. The third benefit is improved
platform management, as previously enrolled platforms can be
easily and securely revoked without interaction with trusted
authorities. In comparison to hypervisor-based trusted path
solutions, we provide a lower attack surface.

Contributions. To summarize, in this paper we make the
following contributions:

1. New approach. We propose a novel approach for hardened
SGX remote attestation based on a simple trusted embedded
device and proximity verification.
2. Two attestation variants. We design and implement two

attestation schemes. Our first solution uses distance bounding
to prevent relay attacks. Our second solution combines secure
boot-time initialization with proximity verification to prevent
emulation attacks that use leaked SGX attestation keys.
3. Trusted path. We extend our attestation mechanisms to

build a trusted I/O path, where the trusted embedded device
acts as a bridge between peripherals and enclaves.
4. Evaluation. We built prototypes of our solutions using a

microcontroller prototyping board. We demonstrate that our
hardened attestation is secure and reliable with small overhead.

Outline. The rest of this paper is structured as follows.
Section II provides background on SGX. Section III explains
remote attestation attacks and defines adversary model.
Section IV outlines our approach and describes two attestation
variants. In Section V we analyze the security of our solutions.
Section VI extends our approach for a trusted path. Section VII
describes our implementation and evaluation. Section VIII
reviews related work and Section IX concludes the paper.

II. SGX BACKGROUND

Intel’s SGX isolates application enclaves from all other
software running on the system, including the privileged
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OS [16]. Enclave’s data resides in plain-text inside the CPU
but is encrypted and integrity protected whenever it is moved
outside the CPU chip (e.g., to DRAM). Although untrusted,
the OS is responsible for the enclave creation. Initialization
actions taken by the OS to start enclaves are recorded
securely inside the CPU, essentially creating a measurement
that captures the enclave’s code. The enclave measurement
is used later as part of the attestation process. Furthermore,
enclaves have the ability to seal data to disk, which essentially
allows them to securely store confidential data into non-
volatile memories with the guarantee that only the same
enclave running in the same CPU will be able to retrieve it
later. Enclaves cannot directly execute system calls, therefore
whenever these are required developers must carefully design
their applications into two logical parts. Protected processing
takes place within the enclave part, and an unprotected part
(normal user-level process) handles non-sensitive operations
such as file system access and I/O through the OS.

Local attestation. SGX allows one enclave to authenticate
another enclave on the same platform [7], [8]. An enclave can
ask the CPU to generate a report data structure, which includes
the enclave’s measurement and a cryptographic proof that the
enclave exists on the platform. This report can be given to
another enclave who can verify that the enclave report was
generated on the same platform. The authentication mechanism
uses a symmetric key system where only the enclave verifying
the report and the enclave creating the report know the key.

Remote attestation. Remote attestation is a procedure,
where an external verifier checks that certain enclave code
is correctly initialized. Attestation is an interactive protocol
between three parties: (i) the remote verifier, (ii) the attested
SGX platform, and (iii) Intel Attestation Service (IAS), an
online service operated by Intel. During manufacturing each
SGX processor is equipped with a unique attestation key
that IAS uses for attestation verification. Each SGX platform
includes a system service called Quoting Enclave that has
exclusive access to this key. In attestation, the remote verifier
sends a random challenge to the attested platform that returns
a QUOTE structure (capturing the enclave’s measurement
from its creation) signed by the attestation key which can
be forwarded to the IAS. The IAS then verifies the signed
QUOTE, checks that the attestation key has not been revoked,
and in case of successful attestation signs the QUOTE.

The attestation key is a part of a group signature scheme
called EPID (Enhanced Privacy ID) [14] that supports two
signature modes. The default mode is privacy-preserving
and it does not uniquely identify the processor to IAS;
the signature only identifies a group like certain processor
manufacturing batch. The linkable signature mode allows
IAS to verify if the currently attested CPU is the same as
previously attested CPU. If a linkable mode of attestation is
used, IAS reports the same pseudonym every time the same
service provider requests attestation of the same CPU [6].

Vulnerabilities. Recent research has demonstrated that the
SGX architecture can be vulnerable to side-channel leakage.
Secret-dependent data and code access patterns can be
observed by monitoring shared physical resources such as
CPU caches [11], [20], [27] or the branch prediction unit [23].
The OS can also infer enclave’s execution control flow or data
accesses by monitoring page fault events [36]. Many such
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Fig. 1: Attestation model and attacks. The attacker controls
the OS of the target platform and can relay attestation requests
to another platform or emulate SGX processor on the target
platform.

attacks can be addressed by hardening the enclave’s code,
e.g., using cryptographic implementations where the data or
code access patterns are independent of the key.

The recently discovered vulnerabilities Spectre [22] and
Meltdown [24] allow application-level code to read memory
content of privileged processes across separation boundaries
by exploiting subtle side-effects of speculative execution. The
Meltdown attack has been already adapted for attacking SGX
enclaves [15]. The Foreshadow attack [13] demonstrates how
to extract SGX attestation keys from processors by leveraging
the Meltdown vulnerability.

III. PROBLEM STATEMENT

In this section, we specify a model for remote attestation,
review attestation attacks, explain the lack of trusted path and
outline limitations of known approaches.

A. Remote Attestation Model and Attacks

We consider a remote attestation model shown in Figure 1
that consists of three parties:

¬ Remote verifier is connected to the attested target
platform either over network channel or local interface. We
consider the remote verifier trusted.
 Target platform has a compromised OS that the attacker

controls fully. The processor and its SGX protections are
trusted, that is, we assume that the adversary cannot extract
attestation or sealing keys from the target platform. We also
assume that the BIOS (or UEFI) on the target is trusted.1.
The adversary may have leaked attestation or sealing keys
from other SGX processors and therefore is able to emulate
another SGX processor. The attacker has no physical access
to the target platform. The target platform is connected to a
network that is controlled by the adversary.
® Attacker’s platform. The adversary has another SGX

processors. All privileged software in this platforms is in

1This condition is not necessary for our first attestation variant presented
in Section IV-D

3



permanent control of the adversary, and the adversary has
physical access to the platform. The adversary may be able
to extract the attestation and sealing keys from this CPU.

Relay attack. In a relay attack, the adversary reroutes attes-
tation requests to his own platform, as illustrated in Figure 1.
Anonymous attestation (cf. Section II) prevents identification
of the physical platform from the signed attestation response
received from the IAS server. Such lack of TEE identification
is a long-standing open problem in the trusted computing
literature [29]. SGX’s linkable attestation mode allows the
remote verifier to link two attestations of the same platform,
but it does not prevent relay attacks during the first attestation.

Even if the adversary has not fully compromised the SGX
protections on his own platform (i.e., managed to extract
encryption and signing keys), relay attacks have undesirable
implications including the fact that the adversary has an
indefinite amount of time to execute physical or software-
based side-channel attacks. Also, if platform vulnerabilities
similar to Spectre and Meltdown [22], [24] are found after
the attestation, the adversary can attack the attested enclave,
and any secrets provisioned to it, through the vulnerability.

Emulation attack. The second attack that we consider applies
to adversaries that have obtained at least one valid (i.e., not
revoked by Intel) attestation key from other platforms. In
this attack, the adversary emulates an SGX-processor on the
attestation target platform using the leaked attestation key from
another CPU (see Figure 1). Since the IAS successfully attests
the emulated enclave, it is impossible for a user to distinguish
between the emulated enclave and the real one. This allows the
adversary to fully control the attested execution environment
which means she can obtain any secrets that are provisioned to
the emulated enclave and arbitrarily modify its execution. Em-
ulation attacks break the two fundamental security guarantees
of SGX: enclave’s data confidentiality and code integrity.

B. Limitations of Known Attestation Solutions

To address such attacks on attestation, a common approach
in recent research papers and systems is to assume some
form of Trust On First Use (TOFU). For example, ROTE [25]
assumes that the OS is installed in isolation before the start
of the protocol; VC3 [32] uses a special-purpose enclave,
Cloud QE (quoting enclave), in conjunction of SGX QE that
generates a public/private key pair, outputs the public key and
seals the private key which never leaves the Cloud QE before
a new platform enters into service; SCONE [9] assumes a
trusted OS at the time the Linux container is deployed; and
SecureKeeper [12] assumes trust on first use while deploying
the entry enclave that maintains client connections and
encrypts all the messages between the clients and the enclave.

All of these approaches have noteworthy limitations that
we discuss next by using a simple scheme as a straw-man
solution. In our straw-man solution, a fresh OS installation is
performed on the target platform to make sure that at the time
of initialization and attestation there is no code injected by
the attacker which would enable relay attacks or emulation.
While protection against relay attacks could be obtained by
physically detaching all the network interfaces,2 emulation

2If the platform has a wireless interface, it could be placed in a Faraday
cage to make sure that communication is disabled.

Enclave 2
OS

Trusted processor

Rerouted

User1 Target platform2

I/O

I/O manipulation

Enclave 1

Fig. 2: Trusted path model and attacks. The OS can see
and manipulate all the I/O operations done by the user.
Additionally, the attacker can reroute user input to another
enclave than the user intended.

prevention can only be achieved if the OS is in a known,
non-compromised state (e.g., clean installation). Once the
target platform is started after installation, the platform’s
owner inputs a credential (e.g., a key certified by a trusted CA)
that allows the remote verifier to authenticate the platform
and perform remote attestation on it. The enclaves that require
attestation can seal the credential for later use. Such solution
has the following security and deployment limitations:

1. OS reinstallation: The increased security comes at the
expense of practicality and ease of deployment, as the target
platform OS needs to be reinstalled. For instance, service
providers like banks cannot force their customer to reinstall
the OS for adoption of more secure attestation.
2. Manual configuration: To enable secure attestation, a

platform-specific credential needs to be provisioned to the
target platform. Such manual interaction complicates platform
enrollment, especially in scenarios like data centers where the
number of enrolled platforms can be high.
3. Pre-defined enclaves: This approach only works for

enclaves that are known and installed at the time of installation,
as they need to securely seal the provided credential. However,
in many scenarios, such as in cloud computing platforms,
users need to install new enclaves after platform installation.
4. Large temporary TCB: Modern operating systems in

which SGX enclaves run have a large TCB. Although the OS
is exposed to attacks only for a short period of time (the first
use), a large TCB is nonetheless undesirable.
5. Online CA for revocation: If the target platform needs to

be revoked at a later point in time, interaction with the CA is
again required. Therefore, the CA cannot be fully offline to
reduce its attack surface.

C. Lack of Trusted Path

Another limitation of SGX is the lack of trusted path. As
defined in [18], a trusted path (i) isolates the input and output
channels of different applications to preserve the integrity and
confidentiality of data exchanged with the user, (ii) assures
the user of a computer system that she is truly interacting
with the intended software, and (iii) assures the running
applications that user inputs truly originate from the actions
of a human (as opposed to being injected by other software).

As shown in Figure 2, an adversary which controls the OS
can trivially read and modify all user’s inputs, read and modify
all enclave’s outputs intended to the user, and direct user’s
inputs to a different enclave from the one intended by the user.
Under the SGX security model, lack of trusted path prevents
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the user from providing sensitive information like passwords to
enclaves or confirming transactions performed by the enclave.

Limitations of known solutions. The commonly suggested
solution for the trusted path is to leverage a trusted hypervisor
to mediate all I/O [35]. The main drawback of general-purpose
(commercial) hypervisors is their significant complexity and
attack surface. While the research community has produced
also small and formally-verified hypervisors, like the seL4
project [33], their adoption in practice can be problematic. In
addition to the secure hypervisor itself, realization of a trusted
path requires secure device drivers which can be difficult to
implement and increase the TCB size. Formally-verified hyper-
visors are also typically severely restricted in terms of function-
ality and adding new functionality to can be very slow, as each
new update needs to be formally verified (a process that can
take years). For these reasons, minimal and formally-verified
hypervisors are not commonly used in consumer devices or
corporate systems that require rich functionality and updates.

D. Goals

Our main goal is to enable remote attestation and trusted
path in a way that is more secure than current solutions and
practical to deploy at the same time.

1. Security. Our attestation solution should address
adversaries that control the OS and have leaked attestation
keys. Our solution should not increase TCB of enclaves
significantly (recall that in SGX’s security model only the
CPU is trusted besides the enclave’s code) and it should
minimize interaction with trusted authorities like CAs. Our
trusted path mechanisms should have smaller attack surface
than current hypervisor-based solutions.
2. Deployment. We focus on target platforms like consumer

devices and corporate servers that should provide rich
functionality and frequent updates similar to commercial off-
the-shelf operating systems. We want to avoid solutions where
the target platform owner has to reinstall the OS or perform
manual configuration with each enrolled computing platform.

IV. PROXIMITEE ATTESTATION

In this section, we describe our solution PROXIMITEE
for hardened remote attestation. We start with an overview,
explain our security assumptions, then outline example use
cases, and finally present our two attestation variants.

A. Approach Overview

We propose a hardened SGX attestation scheme based
on the intuitive idea of enclave proximity verification.3 The
overview of our approach is shown in Figure 3. Our solution
utilizes the standard SGX remote attestation as a primitive,
while enhancing it by performing proximity verification
through a trusted embedded device (PROXIMIKEY) that is
physically attached to the target platform, e.g., over a USB
interface. PROXIMIKEY then facilitates the creation of a secure
channel (e.g., TLS) between the remote verifier and the attested
enclave. The operating system of the PROXIMIKEY-connected
platform relays all the data to and from the PROXIMIKEY.

After the initial attestation, PROXIMIKEY periodically
checks proximity to the attested enclave. Thus, the established
secure channel is contingent on the physical presence of the
embedded device on the target machine and it stays active
only as long as the device is plugged-in. The physical act
of detaching the device automatically revokes the attested
platform without any interaction with a trusted authority. Thus,
our solution enables secure offline enrollment and revocation.

To use our solution, enclave developers add function calls
to a simple PROXIMITEE API that facilitates communications
between the enclave and the PROXIMIKEY and executes the
proximity verification protocol.

B. Security assumptions

The embedded device PROXIMIKEY is a trusted component
in our solution. We deem this choice reasonable since
PROXIMIKEY implements only the strictly necessary
functions and therefore it a has significantly smaller software
TCB, attack surface, and hardware complexity compared to
the host operating system and hypervisor solutions like [35].
We assume that its issuer certifies each embedded device.
This certification takes place prior to the PROXIMIKEY
deployment, and therefore it can happen entirely offline.
PROXIMIKEY has a public and private key hardcoded into it,
and it can store the issuer’s certificate for its public key.

Concerning the security of the PROXIMIKEY device we
employ the same adversary model introduced in Section III
for the SGX enclaves. While the user’s device and its private
keys are never exposed to the attacker, another PROXIMIKEY
can be in the physical possession of the attacker, which has
as much time as she wants to fully compromise it (that is, for
instance, get it to run arbitrary code, and extract its keys).

C. Example Use Cases

Figure 4 shows three example use cases for our solution.

¬ User identification in online services. In the first use
case, we consider a remote verifier such as a bank or a
company. The remote verifier issues a certified PROXIMIKEY
to the owner of the attested target platform, such as a customer

3We note that the idea of proximity verification for remote attestation has
been proposed in the previous literature in the context of TPM attestation
(see, e.g., [19], [34]), but never realized as a fully-functional system. In
Section VIII we review these previous works in more detail.
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of a bank4 or an employee of a company. We call this type of
attestation identity-based attestation as it enables the remote
verifier to verify the owner of the attested platform. Binding
the user’s identity to a computing platform can be realized
by plugging in the trusted embedded device to the platform.
Our approach guarantees the attested user can communicate
with the bank if and only if the PROXIMIKEY is physically
attached to the user’s platform. If the user switches to a new
computing platform, the act of moving PROXIMIKEY to the
new platform automatically revokes the old platform.
 Outsourcing data to remote infrastructures. In the

second use case, the issuer of the trusted embedded device
also physically enforces the location in which it can be
deployed. For instance, a cloud platform provider can attach
PROXIMIKEY to a server in a specific data center and publish
the public key of the attached device to the users of the
service. Such attestation enables the user to ensure that he is
outsourcing data and computation to a server that resides in a
specified location, thus providing location-based attestation.
Similar to example ¬, the enrollment of a platform can be
done by just attaching the PROXIMIKEY to the platform and
enforcing that PROXIMIKEY never leaves the facility of the
location to which it is bound. Revocation (e.g., when a server
is relocated to another data center or function) can be realized
by merely detaching the PROXIMIKEY.
® Initialization of permissioned blockchains. As our third

example we consider a trusted authority that initializes
a set of validators for a permissioned, SGX-hardened
blockchain. The trusted authority issues one PROXIMIKEY

4Note that it is common for banks and to distribute hardware tokens to
account holders, and by authenticating the user’s input this new device could
replace existing solutions.
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for each organization that operates one of the validator nodes
which allows secure attestation of the validator platforms.
Organizations are free to upgrade their computing platforms
by attaching the PROXIMIKEY to a new platform which
automatically revokes the old platform without the need
to interact with the trusted authority. Furthermore, since
PROXIMIKEY can only be active on one platform at the time,
such a deployment enables the trusted authority to bound the
“voting power” (e.g., identities in Byzantine consensus) of
each validator organization in the blockchain consensus.

D. Attestation Variant I: Distance-Bounding

Next, we describe our first hardened attestation variant.
The main idea behind this form of attestation is to use the
trusted embedded device to perform both a standard remote
attestation on the target enclave and then verify the proximity
of the attested enclave using distance bounding. If both steps
succeed, the embedded device enables the remote verifier to
establish a secure connection to the enclave.

Attestation protocol. Figure 5 illustrates the attestation
protocol that proceeds as follows:

¬ The remote verifier establishes a secure channel (e.g.,
TLS) to the certified PROXIMIKEY. An assisting but untrusted
user-space application facilitates the connection on the target
platform acting as a transport channel between the remote
verifier and the PROXIMIKEY (and later also the enclave).
As part of this first step, the remote verifier specifies which
enclave should be executed.
 The untrusted application creates and starts the attestation

target enclave.
® PROXIMIKEY performs the standard remote attestation

protocol to verify the code configuration of the enclave with
the help of the IAS server (see Section II for attestation
protocol details). In the attestation protocol, the device learns
the public key of the attested enclave.
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Fig. 6: Sliding window. The figure shows an example of
sliding windows for periodic proximity verification.

¯ PROXIMIKEY establishes a secure channel (e.g., TLS)
to the enclave using that public key.
° PROXIMIKEY performs a distance-bounding protocol

that consists of n rounds, where each round is formed by
steps ° to ³. At the beginning of each round PROXIMIKEY
generates a random challenge r and sends it to the enclave
over the TLS channel.
± The enclave increments the received challenge by one.
² The enclave sends a response (r + 1) back to the

PROXIMIKEY over the TLS channel.
³ PROXIMIKEY verifies that the response value is as

expected (i.e., r+1) and checks if the latency of the response
is below a threshold (Tcon). Successful proximity verification
requires that the latency is below the threshold for a sufficient
fraction (k, at least k.n out of n) of responses.
´ If proximity verification is successful, the PROXIMIKEY

notifies the remote verifier over the TLS channel (constructed
in step ¬). The verifier starts using the PROXIMIKEY TLS
channel to send messages to the enclave.

Periodic proximity verification. After the initial connection
establishment, PROXIMIKEY performs periodic proximity
verification on the attested enclave. The PROXIMIKEY device
sends a new random challenge r at frequency f , verifies the
correctness of the received response and measures its latency.
The latest w latencies are stored to a sliding window data
structure, as shown in Figure 6.

As described in Section VII we generally observe three
types of latencies in the presence of relay attacks. The first
type of response is received faster than the threshold Tcon
(green in Figure 6), these responses can only be produced
if no attack is taking place. In the second type of response
the latency exceeds Tcon, but it is below another, higher
threshold Tdetach (yellow), these are sometimes observed
during legitimate connections and sometimes during relay
attacks. And third, the latency is equal to or exceeds Tdetach
(red), these latencies are only observed while a relay attack
is being performed. Given such a sliding window of periodic
challenge-response latencies, we define the following rules
for halting or terminating the connection:

1. Successful window: no action. If at least k responses have
latency≤Tcon and none of the response have latency≥Tdetach,
we consider the current window legitimate. PROXIMIKEY
keeps the established connection active, i.e., no action.
2. Halt window: prevent communication. If one of the
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Emulated	processor
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Enclave

Remote	verifier

PROXIMIKEY

Target	platform

3 Local	Attestation

2 App	enclave

4 Approve

PROXIMITEE
Enclave

5 Communication

1 Sealed	
key

Fig. 7: Attestation variant 2: boot-variant attestation.
After the boot-time initialization (refer to Figure 8) the
PROXIMITEE enclave executes a local attestation with the
verifier uploaded application-specific enclave.

responses have latency ≥Tdetach, we consider the current
window a “halt window” and the PROXIMIKEY stops
forwarding further communication to the enclave until the
current window is legitimate again.
3. Failed window: terminate channel. If two or more

responses have latencies ≥Tdetach, we consider the current
window a “failed window” and the PROXIMIKEY terminates
the communication and revokes the attested platform.

E. Attestation Variant II: Boot-Time Initialization

The usage of distance bounding prevents relay attacks.
However, proximity verification alone cannot protect against
processor emulation attack, as PROXIMIKEY cannot distin-
guish between the enclave running on the physical processor
versus the enclave running on the emulated processor.

Now, we describe our second hardened attestation variant
that is based on the idea of secure boot-time initialization.
This solution can be seen as a novel variant of trust on first
use that simplifies deployment (e.g., no OS reinstall) and
increases security (e.g., reduced attack surface). Additionally,
usage of the trusted device enables additional properties such
as offline revocation.

Figure 7 illustrates an overview of this solution. During
initialization, that is depicted in Figure 8, the target platform is
booted from the attached PROXIMIKEY that loads a minimal
kernel (PROXIMITEE kernel) on the target device. In partic-
ular, this kernel includes no network functionality. The kernel
starts an enclave (PROXIMITEE enclave) that shares a secret
with the device. This shared secret later bootstraps the secure
communication between PROXIMIKEY and the PROXIMITEE
enclave. The security of the bootstrapping relies on the fact
that the minimal kernel will not perform enclave emulation
at boot time. The PROXIMITEE enclave will later be used as
a proxy to attest whether other (application-specific) enclaves
in the system are real or emulated and on the same platform.

Boot-time initialization. The boot-time initialization process
needs to be performed only once. This process is depicted in
Figure 8 and it proceeds as follows:

¬ The platform owner plugs PROXIMIKEY to the target
platform, restarts it to BIOS and selects the option to boot
from PROXIMIKEY.
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Fig. 8: Boot-time initialization. The PROXIMIKEY uses a
minimal kernel Linux image to boot and load PROXIMITEE
enclave on the target platform and seal a platform specific
secret to the PROXIMIKEY memory.

 PROXIMIKEY loads the PROXIMITEE kernel and boots
from it. The PROXIMITEE kernel starts the PROXIMITEE
enclave.
® The user presses a button on PROXIMIKEY to confirm

that this is a boot-initialization process. This step is necessary
to prevent an attack where the compromised operating system
emulates a system boot.
¯ PROXIMIKEY sends a randomly generated key K to the

PROXIMITEE enclave.
° The enclave returns the sealed key S corresponding to

the key K (S ← Seal(K)) to PROXIMIKEY that stores the
key and the seal pair (K,S) on its flash storage.
± PROXIMIKEY blocks further initializations, sends a

restart signal and boots the platform with the normal OS.

Attestation process. After initialization the target platform
runs a regular OS. The attestation process is depicted in
Figure 7 and proceeds as follows:

¬ PROXIMIKEY sends the seal S to the PROXIMITEE
enclave that unseals it and retrieves the key K. PROXIMIKEY
and the PROXIMITEE enclave establish a secure channel
(TLS) using K.
 The remote verifier uploads a new application-specific

enclave on the target platform.
® The PROXIMITEE enclave performs local attestation

(cf. Section II) on the application-specific enclave that binds
its public key to the attestation.
¯ The PROXIMITEE enclave sends the measurement

and the public key of the application-specific enclave to
PROXIMIKEY. PROXIMIKEY establishes a secure channel to
the application-specific enclave and sends the measurement of
the enclave to the remote verifier. The remote verifier then ap-
proves the communication to the application-specific enclave.
° The remote verifier checks that the measurement of the

application-specific enclave is as expected. If this is the case,
it can communicate with the enclave through PROXIMIKEY.

PROXIMIKEY
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Boot 
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2 Variant II: boot-time initialization

Fig. 9: Security analysis overview. Attestation is successful,
if the remote verifier establishes a secure communication
channel to the correct enclave.

Following communication. Similar to our previous variant,
after the initial attestation all the communication between
a remote verifier and the enclave is mediated by the
PROXIMIKEY that periodically checks the proximity of the
attested enclave and terminates the communication channel
in case the embedded device is detached.

V. SECURITY ANALYSIS

In this section, we provide an information security analysis.
We analyze attestation security, revocation security, and attack
surface, respectively. Full details on our experimental
evaluation, including proximity verification parameters and
system performance, are provided in Section VII.

A. Attestation Security

To analyze the security of the initial attestation, we must
first define successful attestation. We say that the attestation is
successful when the remote verifier establishes a connection
to the “correct” enclave that (i) has the expected code
measurement and (ii) runs on the computing platform to
which PROXIMIKEY is connected to.

Attestation variant I. In our first attestation variant, the task
of establishing a secure channel to the correct enclave can
be broken into two subtasks (see the top in Figure 9). The
first subtask is to establish a secure channel to the correct
PROXIMIKEY device. In our solution, this is achieved using
standard device certification. We assume that the adversary
cannot compromise the specific PROXIMIKEY used. If the
adversary manages to extract keys from other PROXIMIKEY
devices, he cannot trick the remote verifier to connect to a
wrong enclave, as the remote verifier will only communicate
with a pre-defined embedded device.

The second subtask is to establish a secure connection
from PROXIMIKEY to the correct enclave. For this, we use
proximity verification. PROXIMIKEY verifies the proximity of
the attested enclave through steps ° to ³ of the protocol.
These steps essentially check two things. First, through step ²,
whether the messages are received from the correct enclave.
This verification is performed by checking the correctness of
the decrypted message, and it relies on the assumption that
the attacker cannot break the underlying encryption and hence
only the enclave that has access to the key that was bound
to the attestation could have produced a valid reply. Second,
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through step ³, whether the PROXIMIKEY and the enclave are
in each other’s proximity. This check relies on the assumption
that a reply from a remote enclave will take more time to
reach the PROXIMIKEY than a reply from the local enclave.

We evaluate the second aspect experimentally. In
particular, we simulate a powerful relay-attack adversary that
is connected to the target platform with short and fast network
connection (e.g. a one meter long Ethernet cable). Since the
attacker’s platform might be faster than the target platform,
we simulate an adversary that can perform instantly all the
needed computation to participate in the proximity verification
protocol.5 We define adversary’s success as the event where
the proximity verification succeeds with an enclave that
resides on the above-defined adversary’s platform and denotes
the probability of such event Padv . We define legitimate
success as the event that proximity verification succeeds with
a local enclave and denote its probability Plegit.

In Section VII our experiments and analysis show that
example parameter values n=50, k=0.3 and Tcon =461µs
enable reliable, secure and fast proximity verification.
Proximity verification takes 25 ms, and therefore it adds only
a minor delay to the initial attestation. The adversary’s success
probability is negligible: Padv =1.24×10−54. With the same
parameters, legitimate proximity verification with a local
enclave succeeds with high probability: Plegit=0.9999998.

Since perfectly emulated SGX environment can pass any
proximity test, this variant does not prevent emulation attacks
enabled by leaked SGX attestation keys from other CPUs.

Attestation variant II. Our second variant also prevents
emulation attacks. This variant relies on the integrity of
the BIOS / UEFI to run once per platform the correct
PROXIMITEE kernel which initializes the PROXIMITEE
enclave.6 The PROXIMITEE kernel is a single-purpose kernel
that only supports a minimal set of features that is essential
to run SGX which makes its attack surface small.

In this variant, the task of establishing a secure
communication channel to the correct enclave is broken
into three subtasks (see the bottom in Figure 9). The first
subtask is the same as above.

The second subtask is to establish a secure communication
channel from PROXIMIKEY to the PROXIMITEE enclave.
For this, we use a secure boot-time initialization (i.e., trust
on first use). PROXIMIKEY shares a key with an enclave
that is started by the trusted PROXIMITEE kernel, hence at
a time in which the attacker could not emulate any enclave.
PROXIMIKEY knows when secure initialization takes place
because the user (platform owner) indicates this by pressing
a button which is an operation that the adversary cannot
perform. The PROXIMITEE enclave seals the key during
initialization. Different SGX CPUs cannot unseal each other’s
data, and therefore even if the adversary has extracted sealing
keys from other SGX processors, she cannot unseal the key
and masquerade as the legitimate PROXIMITEE enclave.

5A computationally-bounded attacker cannot break cryptographic primitives
such as encryption, hash, and signature.

6There exist methods (e.g., [31]) to verify the integrity of the BIOS /
UEFI in hardware, if for a particular scenario the administrator believes this
prerequisite is not met.

The third subtask is to establish a secure communication
channel from the PROXIMITEE enclave to the application-
specific enclave. The security of this step relies on SGX’s
built-in local attestation functionality (cf. Section II). An
adversary that has obtained leaked sealing attestation keys
from other SGX processors, cannot produce a local attestation
report that the PROXIMITEE enclave would accept, and
therefore the adversary cannot trick the remote verifier to
establish a secure communication channel to a wrong enclave.

B. Periodic Proximity Verification Security

To analyze the security of the periodic proximity
verification that is used for platform revocation, we must first
define what it means for the attacker to break the periodic
proximity verification. The purpose of the periodic proximity
verification is to prevent cases where the user detaches the
PROXIMIKEY from the attested target platform and attaches
it to another SGX platform before the previously established
connection is terminated. Since we consider an adversary
who does not have physical access to the target platform
(recall Section III-A), we focus on benign users and exclude
scenarios where the PROXIMIKEY would be connected to
multiple SGX platforms with custom wiring or rapidly and
repeatedly plugged in and out of two SGX platforms.

We define that adversary breaks the periodic proximity
verification if the previously established connection is not
terminated within a “short delay” after the PROXIMIKEY was
detached from the attested target platform. For most practical
purposes we consider an example delay of 1 ms sufficiently
short. We denote the adversary’s success probability in
breaking the periodic proximity verification as P ′adv .

We define as false positive for periodic attestation the
event where the connection to the legitimate enclave is
terminated and the attested platform is revoked despite the
PROXIMIKEY being connected to the platform. We denote
the probability that this happens during a “long period” of
usage as P ′fp. We consider an example period of 10 years
sufficiently long for most practical usages.

In Section VII evaluate this experimentally, again by
simulating a similar relay-attack adversary. We show that there
exists at least a set of parameters that provide secure, reliable
and inexpensive channel termination and platform revocation.
The attacker’s success probability can be made negligible:
P ′avd=1.6×10−50, while keeping the false positive probability
low: P ′fp =1.12×10−8. Such periodic proximity verification
consumes only 0.0011% of the available channel capacity
(USB 2.0 has a channel capacity of 480 MBits/s) between
PROXIMIKEY and the enclave, so we consider its cost minor.

C. TCB and Attack Surface

Figure 10 illustrates a comparison of trusted components
and attack surface between our straw-man solution
(cf. Section III-B) and our hardened attestation variants.
In the straw-man solution, the Trusted Computing Base
consists of the target platform hardware, a regular operating
system that needs to be trusted only at the time of first use,
and a standard certification authority (CA). In our Variant
I (distance-bounding), the TCB contains the target platform
hardware, the embedded device (PROXIMIKEY), and a CA
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Fig. 10: TCB comparison. We illustrate the components
that need to be trusted in our straw-man solution and two
hardened attestation variants.

that can be fully offline. The OS is untrusted. In our Variant II
(boot-time initialization), the TCB contains the target platform
hardware, the embedded device, an offline CA and a small
kernel that needs to be trusted at the time of first use. This
small kernel requires no network functionality, and thus this
component can be considered offline.

In Section VII we show that the complexity of our
prototype implementation is small (3.9 KLoC) and thus both
of our variants can provide significantly reduced TCB and
attack surface over typical trust on first use solutions.

VI. PROXIMITEE TRUSTED PATH

In this section, we extend our attestation techniques to
build a trusted path between the user and an enclave. Our
main idea is to use the PROXIMIKEY trusted embedded
device as a bridge to securely mediate all user inputs and
outputs between I/O devices and enclaves.

For trusted path we require that the embedded device
has at least two communication interfaces, one for the target
platform and additional ones for the I/O device(s), and
minimal user interaction capabilities, e.g., a small display and
a button. We also assume that the embedded device is either (i)
pre-installed with a list of human-readable names for enclave
code measurements, or (ii) it can fetch such mappings from
a trusted server, similar to property-based attestation [30].

We consider the following mode of user interaction. The
user must explicitly activate the trusted path and select the
enclave with which she wishes to communicate. This can be
done, for example, using the button and enclave names shown
on the device screen. Alternatively, the interaction can be
initiated by an untrusted application or the OS. In this case,
the embedded device can show the human-readable enclave
name on its screen that the user can verify.

Trusted path to local enclave. Now we describe the process
of establishing a trusted path to an enclave on a local platform.
As shown in Figure 11, the I/O devices are connected to the
PROXIMIKEY that is attached to a local computing platform.
The trusted path creation proceeds as follows:

¬ The user activates the trusted path. The user selects which
enclave to use using a button and display on PROXIMIKEY.
 PROXIMIKEY performs attestation of the chosen enclave

using either of our two attestation variants. PROXIMIKEY
verifies that the measurement of the attested enclave matches

Untrusted OS

Untrusted 
App

Local platformIO Devices

PROXIMIKEY

3 I/O

1 User initialization

App 
Enclave2 Attestation + TLS

Fig. 11: Trusted path to local enclave. The IO devices are
connected to PROXIMIKEY that is connected to the local
platform. The PROXIMIKEY performs attestation using one
of our variants and then mediates all IO communication.
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Local terminal
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2 PROXIMITEE attestation

Fig. 12: Trusted path to remote enclave. This setup uses two
embedded devices. The local PROXIMIKEY is connected to
the local platform and the remote PROXIMIKEY is connected
with the remote platform.

the user’s selection. PROXIMIKEY establishes a secure
channel (TLS) to the correct enclave.
® PROXIMIKEY captures all the input from the I/O devices

and sends them to the enclave via the secure channel. Similarly,
the enclave can send output to the user over the same channel.

Trusted path to remote enclave. Next, we describe how
such trusted path can be extended to an enclave that resides
on a remote platform from a local and untrusted platform.
Figure 12 illustrates this scenario. Both the local and the
remote platform have a PROXIMIKEY device attached to
them. The I/O devices are attached to the local PROXIMIKEY.
Trusted path creation proceeds as shown in Figure 12:

¬ The user initiates the trusted path by selecting an enclave
as explained above.
 The local PROXIMIKEY acts as the remote verifier

in remote attestation using using one of our attestation
variants. As the end result of the attestation process, the local
PROXIMIKEY has established a secure channel to the correct
enclave via the remote PROXIMIKEY.
® The user can securely communicate with the enclave.

VII. EVALUATION

In this section, we describe our prototype implementation
and experiments. Then we analyze suitable parameters for
proximity verification.
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Fig. 13: PROXIMIKEY prototype. Our prototype is build
on an Arduino Due prototyping board with LCD-keypad for
indicating currently active enclave.

A. Implementation

We implemented a complete prototype of the PROXIMI-
TEE system. Our implementation consists of three primary
components: (i) PROXIMIKEY prototype, (ii) PROXIMITEE
enclave API which enables any application-specific enclave to
communicate with the PROXIMIKEY and execute the PROX-
IMITEE protocol, and (iii) PROXIMITEE kernel prototype.

PROXIMIKEY. Our PROXIMIKEY prototype consists of
one Arduino Due prototyping board equipped with an
84 MHz ARM Cortex-M3 microcontroller, as shown in
Figure 13. The board communicated with the target platform
over native USB 2.0 connection that provides high-speed
480 Mbps connection.7. We use the Arduino cryptographic
library [2] for the TLS. The limited set of cipher suites in our
implementation uses 128-bit AES (CTR mode) for encryption,
AES-HMAC for message authentication code, Curve25519
for Diffie-Hellman for key exchange and SHA256 for the
hash function. Our prototype implementation is approximately
200 lines of code, and the code size of the TLS and LCD
controller is around 3.9 KLoC.

PROXIMITEE kernel. We have modified an image of Tiny
Core Linux [3], and used it as the boot image for our
attestation variant II (cf. Section IV-E). The image size of our
modified Linux distribution is 14 MB (in contrast to 2 GB
standard 64 bit Linux images build on the standard kernel).
Our image supports bare minimum functionality and includes
libusb, gcc, Intel SGX SDK, Intel SGX platform software
(PSW), and Intel SGX Linux driver.

PROXIMITEE enclave API. The PROXIMITEE API for
application-specific enclaves is written in C++ using the Intel
SGX API. The API uses native SGX crypto library for TLS
implementation. The prototype is around 200 lines of code.

B. Experimental Setup and Simulated Relay Attack

We conducted our experiments on three SGX platforms:
two Intel NUC NUC6i7KYK mini-PCs and one Dell Latitude
laptop, all equipped with SGX-enabled Skylake core i7
processors and Ubuntu 16.04 LTS installed on them.

We performed two types of experiments. First, we tested
legitimate attestation of an enclave on the target platform
(i.e., SGX platform to which our PROXIMIKEY prototype

7According to the USB specification [5], the speed between the host and
the USB device is negotiated dynamically.
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Fig. 14: Challenge-response latency. Latency frequency
distributions when PROXIMIKEY prototype is connected to
the target platform over the USB interface and for the simulated
relay attack over a short Ethernet connection. Tcon and Tdetach
thresholds are placed at 461µs and 649µs, respectively.

device was connected to). Second, we simulated a relay-
attack adversary whose platform was connected to the target
platform via a direct Ethernet cable. Since the adversary might
have a faster processor than the one of the target platform,
we simulate the worst case scenario, where the adversary’s
computation needed for the proximity verification protocol
happens instantly. Instant replies were simulated by fixing
the randomness for the challenges and having precomputed
responses for that randomness on the attacker’s machine. While
on the one hand, we tried to make the adversary as powerful as
possible, by placing her as close as possible to the victim and
simulating high computational resources, we are aware that the
OS kernel network stack can be optimized for network latency,
and since the attacker has control over the OS, it would be in
her interest to optimize it for minimum latency. However, given
the space of parameters to play with, and since optimizing for
latency is not trivial, we report results for a default Linux
kernel configuration. Nevertheless, when possible we also
present results for simulated minimum point-to-point latencies.

For the relay-attack case, we tested three different Ethernet
cables of length 1m, 7m and 10m to evaluate the effect on
the latency. For the legitimate proximity verification, we used
a standard USB cable of length 1m and a USB extender cable
or length 2m to evaluate the effect of USB cable length on
the latency. We also tested two different SGX platforms and
two different embedded device prototypes.

To measure latencies we used Arduino’s native micros()
that provides (10s of) microsecond level accuracy. To achieve
more accurate time measurements, we also used a high
precision 8 Ghz Keysight Infinium oscilloscope. We
performed a total of 22 million rounds of the protocol for
normal attestations and 15 million rounds for simulated
attacks and measured the challenge-response latencies for
each. We measure all of them inside the Arduino code. For
cross-validation, we tested the PROXIMIKEY with the high
precision oscilloscope and witnessed identical timing patterns.

C. Main Experimental Result

Figure 14 shows our main experimental result for the
1 meter Ethernet and 1 meter USB cables case. The left
histogram represents challenge-response latencies in the
benign case, and the right histogram represents the latencies
in the simulated attack. As can be seen from the figure, the
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vast majority of benign round-trips take from 394 to 647
µs (average is 459 µs, 95% samples are in between 400 µs
and 497 µs). The vast majority of the round-trip times in the
simulated attack take from 530 to 2496 µs (average is 777
µs, 95% samples are in between 650 µs and 1500µs). The
difference between the averages of the benign and attacking
scenario is 318µs which corresponds to the average ping
latency we observed between the two computers. However, the
Linux kernel might queue some of the network packets. Thus
we simulated an ideal kernel configuration by running ping in
flood mode. This mode effectively fills all the network queues,
hence providing an intuition of the latencies experienced with
a kernel network stack optimized for minimum latency. We
observed a minimum latency of 50µs and an average latency of
103µs, in flood mode. While in the following sections we build
on the results presented in Figure 14, we also show that our
scheme still protects against an attacker who can achieve the
latencies observed with ping in flood mode. We further report
additional experiment results including the effects of different
Ethernet and USB cable lengths, different SGX platforms, and
different PROXIMIKEY prototypes in Appendix A.

D. Initial Proximity-Verification Parameters

In Section IV-D we explained that the initial proximity
verification is successful when at least fraction k of the n
challenge-response latencies are below the threshold Tcon.
Now, we explain how to set these parameters based on
the above experimental results. There are five interlinked
parameters that one needs to consider: (i) the legitimate
connection latency threshold Tcon, (ii) total number of
challenge-response rounds n, (iii) the fraction k , (iv) attacker’s
success probability Padv that should be negligible, and (v) the
legitimate success probability Plegit that should be high. We
find suitable values for these parameters in the following order:

1. First we focus on the threshold Tcon. The higher Tcon is,
the higher the legitimate success probability Plegit becomes,
on the other hand, a too high value for Tcon also makes Padv ,
the attacker’s success probability, high. Therefore, we are
after a suitable value for Tcon that keeps Plegit high while
minimizing Padv over a varied number of rounds n.
2. Based on such Tcon, we pick a fraction k such that

it maximizes the legitimate success probability Plegit and
reduces the attacker’s success probability Padv .
3. Given Tcon and k, we evaluate Padv and Plegit over a

varied number of rounds n and choose the minimum number
of rounds that provides the required probabilities, since the
fewer rounds, the faster the initial attestation is.

Finding suitable threshold Tcon. Finding a suitable latency
threshold Tcon is a non-trivial task. A low threshold requires
a high number of the challenge-response rounds, since the
protocol (cf. Section IV) requires at least a fraction k of
the observed responses to be less or equal to Tcon and the
lower threshold has very low cumulative probability value
in the latency distribution (see Figure 14). Conversely, a
high threshold value enables some latencies measured during
an attack to be classified as legitimate local replies, hence
increasing the chances of the attacker to break the proximity
verification. To address this challenge, we perform a trial over
multiple threshold candidates to evaluate their viability.
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Fig. 15: Effect of different threshold latencies (Tcon). The
figure shows the success probability when no relay attack
takes place. The threshold latency Tcon value 461µs reaches
to 0.99999985 success probability for number of trials at least
15 (k.n) out of 50 (n) challenge-response protocol. The red
line denotes k=0.3.

Figure 15 shows the legitimate success probability Plegit

for different number of rounds (n ∈ {10, 20, 50, 100}).
We iterate through multiple threshold times (Tcon
∈ {450µs, 453µs, 456µs, 458µs, 460µs, 461µs}), and 461µs
provides high success ratio for different values of k (Plegit=
0.9999998 (n= 50) and Plegit = 0.99999999908 (n= 100)).
We chose to test Tcon up until 461µs because as can be
observed in figure 14 for these values we almost never observe
any latency response during an attacking scenario. It is possible
to increment the latency further to improve the success proba-
bility (at Tcon 471µs, Plegit=0.999999999997 (n=50)), but
doing so will start increasing the probability for the attacker as
well. After that, we estimate that any latency value less than
or equals to the threshold Tcon appears with the cumulative
probability of pc = 0.6461 (pc =Pr[396≤ x≤ 461] = 0.6461
where 396µs is the smallest latency experienced). Using the
standard error of the mean, we estimated the error in our
model, which is approximately pe = 1/(2

√
N ) 8 where N

denotes the number of samples drawn in our experiment.
We have around N = 27 million samples to construct the
distribution. This makes the sampling error probability
pe ≈ 1.06 × 10−4. The attacker’s success probability pA
for a single round is simply the sampling error, i.e.,
pA= pe =1.06×10−4 due to the standard error of the mean
as in our experiment we encounter zero samples within 461
µs for attack distribution. The legitimate enclave’s success
probability pH for a single round is the cumulative probability
above, i.e., pH=pc=0.6461, as can be seen from Figure 16.

Now, for both cases (simulated attack and benign case)
we can model the complete challenge-response protocol of
n rounds as a Bernoulli’s trial where we look for at least
kn responses within 461µs out of n. We can write this

8Hoeffding’s inequality [21] describes that one needs at least log(2/α)

2t2

samples to acquire (1−α)-confidence interval E(X̄)±t, we set 1−α=95%.
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Fig. 16: Cumulative distribution function for latencies.
We set the threshold Tcon at 461 µs which has a cumulative
probability of 0.6461 in the experiment where no rerouting
attack takes place.
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Fig. 17: Finding suitable fraction k. The graph shows the
legitimate enclave’s success probability in an ideal scenario
and the attacker’s success probability in rerouting attack
scenario while the threshold time is Tcon =461µs. The x-axis
of the graph shows the threshold k that denotes that at least
nk challenge-response out of n has to be less or equal to
461µs. The blue line in the upper graph denotes negligible
success probability (10−48≈2−128) for the attacker.

cumulative probability as a binomial distribution:

Pr[x≥nk]=
n∑

i=nk

(
n

i

)
(p)i(1−p)n−i

where p∈{pH,pA}.

Choosing a suitable fraction k. The next step of the
evaluation is to find a suitable fraction k based on the
threshold time Tcon. Note that both the success probability
of the attacker and the legitimate enclave is calculated as the
cumulative probability from a binomial distribution (from nk
to n). Hence, we require to choose a suitable value of k that
maximizes Plegit while minimizing Padv .

We calculate two graphs that are depicted in Figure 17
where the x-axis denotes k, and the y-axis denotes attacker’s
success probability Padv and legitimate success probability
Plegit, respectively, while using Tcon = 461µs. We observe
a sharp decrease in the legitimate success probability at
k = 0.3. Hence, fix k = 0.3 to achieve the maximum Plegit.
Additionally, in the graph of attacker’s success probability, the
horizontal line is placed at 10−48≈2−128. Hence we propose
to choose any round configuration bellow this horizontal line,
where n ≥ 30. With number of rounds set to n = 50 and
k=0.3, we have Plegit=0.9999998 and Padv=1.24×10−54.
Similar result could be also observed in Figure 15 where
the sucess probability of the legitimate enclave decreases
significantly after k=0.3 for Tcon =461µs.
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Fig. 18: Attacker’s success and legitimate success. The
plots shows the attacker’s success probability Padv and the
legitimate success probability Plegit in proximity verification
for different number of rounds n given a fixed fraction k=0.3
in two scenarios where the attacker’s network latency is
318µs and 103µs respectively.

Generalizing the number of rounds n. Figure 18 extends this
analysis to the general number of challenge-response rounds
spanning from n=2 to 100 and 500 in two scenarios where
the attacker’s network latencies are 318µs and 103µs (ping
flood mode) respectively. Here we compute the probability of
attacker returning the reply within 461µs for at least k=0.3
fraction of challenges. The y-axis denotes the attacker’s
success probability which diminishes overwhelmingly with the
increasing number of challenges (keeping the fraction constant
at k=0.3). Notice that, by merely choosing a higher number
of rounds, satisfying values for the legitimate and attacker’s
success probabilities can be achieved even in the case in which
the attacker manages to optimize the kernel for minimum net-
work latency. Hence, PROXIMITEE can distinguish legitimate
enclave and the attacker despite the lower latency. As long as
the network latency is not negligible even smaller attacker’s
latencies than we could measure can be protected against by
employing a higher number of challenge-response rounds.

On the selection of the parameters for different settings.
Note that in general, our ad hoc method for selecting the
parameters involved in the protocol might not be optimal. An
optimal solution is one that minimizes the number of rounds,
to make the initial attestation faster, while having some lower
bound constraint on Plegit and an upper bound constraint on
Padv . Nevertheless, for the system that we tested, we were
able to find satisfying values for the parameters, for instance,
50 rounds can be performed in 25ms. It is important to
observe that different systems might exhibit slightly different
USB and network latencies. Therefore, if the reduction of the
initial attestation time is a key requirement for the system in
which PROXIMIKEY is being deployed, a platform profiling
step9 might allow reducing further the time required for the
initial attestation for a particular system.

E. Parameters for Periodic Proximity Verification

We set the periodic proximity verification parameters based
on our experimental results following two main requirements.

9essentially collecting the data presented in Figure 14 for the target system
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First, the attacker’s success probability P ′adv must be
negligible. Second, the probability of false positives P ′fp
should be very low. Next, we explain the three-step process
to set up the parameters: Tdetach, w and f for the periodic
proximity verification. We refer to figure 6 in Section IV-D
where we discussed the sliding window strategy for the
continuous proximity verification. We proceed as follows:

1. We find out a suitable latency Tdetach that define the yel-
low or red round in Figure 6. Yellow window define the round
of challenge response latency between Tcon and Tdetach, while
the red window define a latency more than Tdetach. Hence,
the probabilities Pr[Tcon ≤ Llegit ≤ Tdetach] = Pr[yellow],
and Pr[Llegit≥Tdetach] =Pr[red] should be very low. Llegit

and LA denote the latency of the legitimate enclave running
on the platform in proximity and remote attacker platform’s
latency respectively.
2. Based on the threshold Tdetach, we select a suitable

sliding window size w to minimize the attacker success
probability P ′adv to a negligible quantity.
3. We fix a suitable frequency f for the periodic challenges.

A high f value terminate the communication very fast,
leaving very small attacking window.

Finding suitable threshold Tdetach. We set the threshold
Tdetach to 649 µs. We choose this value as we experience zero
sample from the timing distribution (refer to the ‘yellow’ distri-
bution Figure 14) where no rerouting attack takes place. While
in the attacker’s distribution, Pr[530≤ x≤ 649] = 4×10−4.
We account for the experimental error in our model using the
standard error of the mean as pe ≈ 1.06× 10−4. The value
pe signifies that a legitimate enclave running on the platform
in proximity may take more than 649 µs to respond. Using
Tdetach, we can now define the challenge response rounds in
Figure 6 for a single round as following:

Pr[Llegit≤Tcon]=Pr[legit∈green]=0.6461

Pr[Tcon<Llegit<Tdetach]=Pr[legit∈yellow]=1.06×10−4

Pr[Llegit≥Tdetach]=Pr[legit∈ red]=1.06×10−4

Pr[LA≤Tcon]=Pr[A∈green]=1.06×10−4

Pr[Tcon<LA<Tdetach]=Pr[A∈yellow]=4×10−4

Pr[LA≥Tdetach]=Pr[A∈ red]=0.99996

Finding suitable sliding window size w. Sliding window
size is analogous to that of the number of rounds n. We
keep the size of the sliding window as w = n = 50 as it
only requires the PROXIMIKEY to remember the past 50
interactions and achieve high probability for the legitimate
enclave and negligible success probability for the attacker.
Similar to the previous approach, only if 15 out of 50 (k=0.3)
challenge-response round where responses are within 461 µs,
PROXIMITEE yields success probabilities as the following:

Pr[A∈success window]=P ′adv=1.6×10−50

Pr[A∈ failed window]=P ′fp=1.16×10−8

Pr[legit∈success window]=0.99999623

leading to false negative for the legitimate enclave of
3.77×10−6) for the ideal scenario (refer to Figure 17).

The probability that a halt window event occurs for a
legitimate application-specific enclave running on the platform
in proximity is ≈ 1.06 × 10−4. The PROXIMIKEY halts all
the data communication to the target platform until the next
periodic proximity verification.

If two or more than two latencies ≥ 649µs (Tdetach) are
received, the PROXIMIKEY terminates the connection and
revoke the platform. The downtime that can happen as a result
of false positive during a connection of 10 years is 720ms.

Finding suitable frequency f . The frequency f determines
how fast the connection is terminated in case the PROXIMIKEY
device is detached. Note that the PROXIMIKEY takes around
12 ms on average to issue a new random challenge in the
legitimate case. Hence, by performing a round of the protocol
as soon as the previous is over, we achieve the maximum
attainable average frequency of ∼ 83 rounds per second. We
use this frequency as it consumes only 6.48 KB (0.0011% of
the channel capacity) and allows the communication channel
to be halted on average after 12ms of the start of a relay
attack and terminated in 24ms.

F. Performance

Finally, we evaluate the PROXIMITEE prototype
performance based on the following metrics.

1. Start up latency. The start-up latency of the PROXIMIKEY
is less than 1 second for the PROXIMIKEY to establish a TLS
channel and execute the PROXIMITEE protocol. The initial
proximity verification takes 25 ms in the case of Variant I.
2. Operational latency and data overhead. The operation

latency is defined as the additional latency PROXIMITEE adds
to the trusted path, such as sending a keystroke to the target
platform from the keyboard. The operational latency is also
minimal. It adds around 200µs for TLS and transport over
the native USB interface of the Arduino. The data overhead
is around 80 bytes per packet for the header and the MAC.
Execution of the periodic PROXIMITEE protocol with 83
rounds/second only requires around 6.48 KBytes/s of data
which is only 0.0011% of the USB 2.0 channel capacity. Note
that our implementation of the PROXIMIKEY uses an USB
2.0 connection, one can implement the PROXIMIKEY on USB
3.0 based platform to gain more performance.

VIII. RELATED WORK

Proximity verification of TEEs. Previous literature has
proposed to use distance bounding protocols for identification
of TMP chip on a local platform [19]. The evaluation is based
on a software TPM emulator [1], [4]. Bryan Parno has pointed
out that TPM identification using distance bounding would be
unreliable, as the attestation operations take half a second or
more [29]. Previous literature has also suggested equipping
TPM chips with NFC interfaces for secure connection estab-
lishment [34], but such solutions are hard to deploy in practice.

Presence attestation [37] provides a solution to bootstrap
trust into her own device and ensures that the user is
communicating with the genuine dynamic root of trust
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(DRTM) [26]. This is achieved by showing an image
from DRTM-based trusted execution environment (prover)
and capture the image by a camera. Then this image is
communicated to a remote verifier (e.g., server) in a small
time interval. The attacker model does not assume neither
physical attacks on the TEEs (extracting private key from
any DRTM) nor emulation of broken TEEs on the victim’s
platform. Moreover, the approach is not suitable for Intel
SGX as the authors assume to have a secure IO form the
TEEs peripherals like camera which is not available in SGX.

Trusted path. SGXIO [35] provides a system to enable a
trusted path to Intel SGX. This is achieved by using a trusted
hypervisor. SGX IO uses seL4 [33] microkernel as hypervisor
and requires additional device drivers to communicate with
the I/O devices and requires also TPM-based trusted boot. The
main problem of formally-verified minimal hypervisors and
kernels is their functional restrictions and complicated updates
that deployment difficult in practice (see Section III-C).

UTP [17] describes a unidirectional trusted path from the
user to a remote server using dynamic root of trust based on
Intel’s TXT technology [26], [28]. The system suspends the
execution of the OS and loads a minimal protected application
for execution. This loading is measured and stored to a TPM
and proved to a remote verifier using remote attestation. The
protected application creates a secure channel, records user
input and sends them securely to the server. UTP is limited
to VGA-based text UIs to keep the TCB small and it does
not apply to TEEs like Intel SGX.

Zhou et al. [38] realize a trusted path for TXT-based TEEs,
again relying on a small trusted hypervisor. In this solution,
also device drivers are included in the TCB. Wimpy kernel [39]
is a small trusted kernel that manages device drivers for secure
user input. Our approach requires no trusted hypervisor or
kernel and it applies to the latest TEE architectures like SGX.

IX. CONCLUSION

In this paper, we have presented PROXIMITEE, a system
where an attached trusted embedded device enables hardened
SGX attestation. Our system more secure and easier to
deploy than previous solutions and it enables interesting new
properties such as secure and automated revocation. We have
also shown how the same approach can be extended to a
trusted path solution.
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APPENDIX A
FURTHER EXPERIMENTAL RESULTS

Here we provide additional experimental results of
PROXIMITEE. We evaluated the consistency of measured
latencies across different prototype platforms. Figure 19
shows the frequency distribution of latencies across three
SGX platforms and three PROXIMIKEY’s. We conclude that
measurements are consistent result across devices. The two
Intel NUCs are few microseconds faster than the Dell Latitude
laptop. Additionally, we evaluated the effect of two different
USB cable lengths (3m and 1m) and three different Ethernet
cables (lengths of 1m, 7m, and 10m). Figure 20 shows that
the USB cable has very small effect on the latency (around
10 µs average difference). It shows no significant differences
between the different cable lengths.

ProximiTEE SGX latency

time (µs)
6 8 10 12 14

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Intel NUC 1
Intel NUC 2
Dell laptop

Different ProximiKey latency

time (µs)
400 450 500 5500.

00
0.

02
0.

04
0.

06

ProximiKey 1
ProximiKey 2
ProximiKey 3

Fig. 19: Different target platforms/PROXIMIKEY. We
evaluates latencies using three different SGX platforms. The
Intel NUCs were few microseconds faster. Additionally, we
evaluated latencies using three different Arduino boards. The
latencies are consistent.
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Fig. 20: Different Ethernet/USB cables. We evaluated
latencies two different USB cables: one with an USB cable
(1m) and another with an USB extender of length 2m attached.
Additionally, we evaluated latencies using three different
Ethernet cables (1, 7 and 10 m). Latencies are consistent.
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