
ProximiTEE: Hardened SGX Attestation Using
an Embedded Device and Proximity Verification

Aritra Dhar, Ivan Puddu,Kari Kostiainen, Srdjan Čapkun
aritra.dhar@inf.ethz.ch

ETH Zurich

ABSTRACT
Intel SGX enables protected enclaves on untrusted computing plat-
forms. An important part of SGX is its remote attestation mech-
anism that allows a remote verifier to check that an enclave was
correctly instantiated before provisioning secrets to it. However,
SGX attestation is vulnerable to relay attacks where the attacker, by
controlling a malicious OS, redirects the attestation and therefore
the provisioning of confidential data to a platform that he physi-
cally controls. Such redirection increases the adversary’s abilities
to compromise the enclave, arming her with physical and digital
side-channel attacks that would not be otherwise possible.

In this paper, we propose ProximiTEE, a novel solution to pre-
vent relay attacks. Our solution is based on a simple embedded
device, and it is best suited to scenarios where the deployment
cost of such a device is minor compared to its security benefit.
During attestation, the embedded device that is attached to the
target platform verifies the proximity of the attested enclave using
distance bounding, thus allowing secure attestation regardless of
a compromised OS. The device also performs periodic proximity
verification which enables secure enclave revocation by simply
detaching the device. Our evaluation shows that proximity verifi-
cation is secure and reliable for SGX, even using a slow prototype
device and assuming very fast adversaries.

Additionally, we consider a stronger adversary that has a leaked,
but not yet revoked, SGX attestation key and emulates an enclave on
the target platform. To address such emulation attacks, we propose a
solution where the target platform is securely initialized by booting
it from the attached embedded device. Finally, we show how our
hardened attestation can be used to build a trusted path for SGX.

1 INTRODUCTION
Trusted execution environments (TEEs) like Intel’s SGX [3] enable
secure applications on untrusted computing platforms. SGX isolates
enclaves from all the other software running on the same platform,
including the privileged OS. The primary security guarantees of
SGX are enclave’s data confidentiality and code integrity. The re-
mote attestation mechanism allows a remote verifier to check that
an enclave was constructed correctly. When an enclave is created,
the CPU measures its code and during attestation signs the mea-
surement using its attestation key. The signed attestation statement
can be bound to the enclave’s public key which allows the remote
verifier to establish a secure connection to the attested enclave.
Relay attacks. While remote attestation guarantees that the at-
tested enclave runs the expected code, it does not, however, guar-
antee that the enclave runs on the expected computing platform.
As shown in Figure 1, an adversary that controls the OS on the
target platform can relay incoming attestation requests to another
platform under his possession. Relay attacks are a long-standing

Processor

Enclave
OS

Network
Processor

EnclaveOSRelayed

Remote verifier
1

Target platform2
Remote attacker’s platform3

Fully Compromised Trusted Subject to side channels

BA

A Standard side channels B Enhanced side channels

Figure 1: Relay attack. The adversary redirects attestation to
his own platform which gives him increased side-channel
abilities to attack the attested enclave and its secret data.

open problem in trusted computing, as already a decade ago Parno
identified such attacks in the context of TPM attestation and called
them “cuckoo attacks” [33].

Upon a first look, it might seem that relay attacks do not pose
a problem for TEEs. If the attacker relays to another machine, the
same security guarantees should hold since the data will only be
available within the remote TEE and the code that is executing is at-
tested. However, this reasoning is not correct, as we demonstrate by
performing a careful analysis of the consequences of relay attacks
and showing that relaying increases the adversary’s capabilities to
compromise the attested enclave significantly.

By relaying data from a platform in which the attacker has priv-
ileged software control to one where he has physical and full soft-
ware control, the primary (and intuitive) benefit for the attacker is
that she can employ various physical side-channel attacks, which
have been shown to be both effective and inexpensive [21, 22, 39, 41].
The secondary, and more subtle, benefit is that relaying also enables
certain digital side-channel attacks that would not be possible oth-
erwise. For example, assume that the enclave is hardened against
all known digital side-channels at the time of attestation and secret
provisioning. Then, after attestation, the OS compromise in the
target platform is detected and disinfected, and later a new side-
channel is discovered. If redirection took place during attestation,
the adversary could leverage the new side channel to extract the
enclave’s secrets. Without the relay, the new side channel cannot
be exploited.

A typical “solution” to relay attacks is to assume trust on first
use (TOFU). In a simple TOFU approach, the attestation is per-
formed immediately after a fresh OS installation. However, in many
application scenarios re-installation of the OS (for every attesta-
tion request) is impractical. In another common TOFU scheme,
an enclave creates a key pair during an initialization phase that
is assumed trusted. The key is signed by a trusted authority that
allows remote clients to establish secure connections to the enclave
later. The main problems with this approach are that it is limited to
enclaves that are known at the time of initialization and that the
OS needs to be trusted, even if only momentarily.

Our solution. In this paper, we propose a solution, called Proximi-
TEE, that prevents relay attacks by leveraging a simple and auxiliary
embedded device that is attached to the attested target platform.
Our solution is best suited to scenarios where i) the deployment
cost of such an embedded device is minor compared to the benefit
of more secure attestation, and ii) TOFU solutions are infeasible as
reinstalling OS before every deployment is impractical. Attestation
of servers at cloud computing platforms and setup of SGX-based
permissioned blockchains are two examples of such deployments.

In our solution, the device performs proximity verification to
prevent relay attacks. During attestation, the remote verifier estab-
lishes a secure connection to a specific device whose public key it
knows through standard device certification. The device performs
normal SGX attestation and additionally verifies the proximity of
the attested enclave using a distance-bounding protocol [11].

After the initial attestation, the device performs periodic distance-
bounding measurements and the communication channel created
during the attestation stays active only as long as the device is con-
nected to the same platform. Thus, the physical act of attaching the
device to an SGX platform enables secure attestation (enrollment)
while detaching the device will prevent further communication
with the attested enclave (revocation). Neither enrollment nor revo-
cation requires interaction with a trusted authority. This property is
useful in applications like permissioned blockchains where valida-
tor nodes are separate organizations assigned by a trusted authority.
The authority can issue one device per organization, and each orga-
nization is free to manage their computing resources (e.g., detach
the device from one platform and attach it to another) without
interaction with the authority. Another interesting application for
our solution is implementing flexible access control policies for
HSM-protected keys using an attested enclave that is guaranteed
to be located in the proximity of the HSM.

Main results. Parno identified distance bounding as a candidate
solution to TPM relay attacks already ten years ago [33], but con-
cluded that it could not be realized securely as the slow TPM identi-
fication operations (signatures) make a local and relayed attestation
indistinguishable. Our evaluation shows that proximity verification
is possible for SGX assuming very fast adversaries. The main reason
why distance bounding protocols work for SGX, but not with TPMs,
is that SGX is a programmable TEE where it is possible to use pre-
established security associations and efficient challenge-response
protocols based on simple operations such as XOR.

To experimentally evaluate proximity verification on SGX, we
implemented a prototype of our solution using an Arduino Due
microcontroller prototyping board that is connected to the target de-
vice over the USB 2.0 interface. We simulated a powerful adversary
that can perform the required protocol computation instantly and
is connected to the target platform with a fast and short network
connection (1m Ethernet cable). In our test setup, the adversary’s
average latency is 120µs (less than ping). Our experiments and
analysis show that against such an adversary the initial proximity
verification during attestation is secure and reliable. The adver-
sary’s probability of performing a successful relay attack is negligi-
ble (2.71×10−67), while legitimate verification succeeds with a very
high probability (0.999999965). Importantly, the adversary cannot

increase his success probability with repeated attempts, as attes-
tation is triggered by the trusted remote verifier. Additionally, we
show that even if the adversary would have infinitely fast network
interfaces, secure proximity verification would still be possible.

Our experiments also show that enclave revocation using pe-
riodic proximity verification is practical. The probability that the
device is disconnected but the enclave is not revoked is negligible
(2.71 × 10−67). The probability that the connection is halted when
the device is connected is very small (translating to 2 minutes of
downtime in 10 years of operation).

The performance overhead of proximity verification is small:
the initial proximity verification adds only a minor delay of 25
ms to the attestation protocol, and the periodic proximity verifica-
tion consumes 0.0011% of the available USB 2.0 channel capacity.
Our implementation also shows that the complexity of such a de-
vice can be small: the software TCB of our unoptimized prototype
implementation is 3.6 KLoC.

Addressing emulation attacks. We then consider a stronger ad-
versary that has obtained leaked, but not yet revoked, attestation
keys and can emulate an SGX-enabled processor.

Proximity verification alone cannot prevent the emulation at-
tacks, as a perfectly emulated enclave would pass any proximity
test. Therefore, we propose a second attestation mechanism based
on boot-time initialization. In this solution, the target platform
loads a small, single-purpose kernel from the attached device and
launches an enclave that seals a secret key known by the device.
Subsequently, when attestation is needed, the enclave can verify the
proximity of other enclaves on the same platform using SGX’s local
attestation. This enables secure attestation regardless of potentially
leaked attestation keys. Our second solution can be seen as a novel
variant of the well-known TOFU principle. The main benefits over
previous variants are easier adoption (e.g., no OS re-installation or
pre-defined enclaves) and increased security (e.g., no need to trust
the standard OS even temporarily).

Trusted path. Finally, we show how our attestation mechanisms
can be used as a building block for trusted path. The term trusted
path refers to a secure communication channel between a user
and enclave, and such property is missing from SGX, since the OS
can manipulate any I/O between peripherals and enclaves. In our
trusted path solution, the embedded device functions as a bridge
between the I/O devices and the SGX platform. The device attests
the local enclave, shows its identity to the user, and then securely
mediates communication between the peripherals and the enclave.

Contributions.To summarize, in this paper wemake the following
main contributions:
1. Analysis of relay attack implications.While relay attacks
have been known for more than a decade, their consequences re-
garding the adversary’s attack space have not been analyzed in
detail, and are often overlooked. In this paper, we provide the first
analysis in this direction and show how relaying amplifies the
adversary’s capabilities for attacking enclaves.
2. ProximiTEE: Addressing relay attacks. The main contribu-

tion of this paper is that we design and implement a hardened SGX
attestation mechanism based on an embedded device and proximity
verification to prevent relay attacks. The attestation security of

2

ProximiTEE does not rely on the common TOFU assumption, and
hence requires only a small TCB. Our experimental evaluation is
the first to show that proximity verification is secure and reliable
for SGX.
3. Addressing emulation attacks. We also propose another at-
testation mechanism based on boot-time initialization to prevent
emulation attacks. This mechanism is a novel variant of TOFU with
deployment, security and revocation benefits.
4. Trusted path. We show how our attestation mechanisms can

be used to build a trusted path for SGX.
The rest of this paper is organized as follows. Section 2 describes

relay attacks and their implications. Section 3 presents our solution,
ProximiTEE. Section 4 explains our implementation and evaluation.
Section 5 explains how to address emulation attacks and Section 6
focuses on trusted path. Section 7 provides discussion, Section 8
reviews related work, and Section 9 concludes the paper.

2 PROBLEM STATEMENT
In this section, we explain our system model, analyze the impli-
cations of relay attacks, and explain the limitations of previous
solutions.

2.1 System Model
We consider a simple systemmodel, shown in Figure 1, that consists
of three parties:
① Remote verifier is a trusted party, connected to the attested

target platform either over network channel or local interface.
② Target platform is the attested SGX platforms that is the

target of the attack.
③ Attacker’s platform is similar to the target platform and

connected to it over a network such as Internet.

2.2 Relay Attacks

Adversary model. In the first part of this paper, we consider the
following adversary model that we call the relay attacker. The relay
attacker controls the OS and all other privileged software on the
target platform temporarily, in particular at the time of the remote
attestation. The OS compromise on the target platform may be later
detected and disinfected. The attacker does not have physical access
to the target platform and cannot extract attestation or sealing keys
from the target platform.

The relay attacker controls the OS and all other privileged soft-
ware on his platform permanently and has physical access to that
platform. The attacker also controls the network between the tar-
get platform and his platform. At the time of the attestation, the
adversary has not been able to extract attestation or sealing keys
from his platform or any other SGX processor.

The relay attack. Since the adversary controls the OS on the tar-
get platform, he can redirect the attestation requests intended for
the target platform to his platform, as shown in Figure 1. SGX’s
attestation protocol is based on EPID group signatures and anony-
mous in the sense that it prevents identification of the physical
platform from the signed attestation response received from the

SGX attacks

Attacks enabled by
leaked attestation keys [14]

Side-Channels
on application enclave

Software/digital

Case (A) in Figure 3:
Complement of Case (B)

Case (B) in Figure 3:
Target platform: secure

Attacker’s platform: vulnerable

Physical

Power analysis [41]
EM radiation [21]
Acoustic [39]

Page fault [44]
Cache [12, 17, 23, 31]

Branch prediction [26]

Enabled by relay

Independent of relay

Figure 2: Relay attack implications. The tree shows the types
of attacks that are enabled by redirection and ones that are
independent of relay.

OS compromised

Attest enclave Relay

New attack discovery

Secret provisioning

OS cleanup

Independent of relay

Case (A)

OS compromised

Attest enclave Relay

Secret provisioning

OS cleanup

New attack discovery

Enabled by relay

Case (B)

Figure 3: Example sequences of events where attestation
redirection either enables digital side-channel attacks (B) or
where the attack success is independent of relay (A).

Intel Attestation Service (IAS) server.1 Appendix A provides more
details on SGX’s attestation.
Relay attack implications. The main consequence of attestation
redirection is that it increases the adversary’s ability to attack the
attested enclave. In Figure 2 we highlight two major classes of
attacks: those that are only possible by first performing a relay
attack, which we denote as “enabled by relay”, and those that can
be done whether or not the attacker also does a relay attack, which
we call “independent of relay.”

Our first observation is that attacks based on leaked attestation
keys (e.g., ones obtained through the Meltdown platform vulnerabil-
ity as demonstrated in the Foreshadow attack [14]) are independent
of relaying. If the adversary has obtained a valid and non-revoked
attestation key, he can emulate an SGX processor on the target
platform and obtain any secrets provisioned to it. We revisit such
emulation attacks in Section 5.

The main benefit of the relay, from the adversary’s point of view,
is that it enables physical side-channel attacks against third-party
application enclaves. Once a secret has been provisioned to the
attacker’s platform, she has as much time as she likes to perform

1Although the EPID signatures do identify the group of the attested processor (e.g.,
manufacturing batch), such grouping alone is not an effective defense against relay
attacks, since nothing prevents the adversary from obtaining one or more processors
from the same batch. SGX also supports a linkable attestation mode that allows the
remote verifier to link two attestations of the same platform, but it does not prevent
relay attacks during the first attestation.

3

the attack. Some examples of physical side-channel attacks are
acoustic, electric and electromagnetic monitoring, which have been
shown to be both effective and inexpensive means to extract secrets
from modern PC platforms (see [22] for a good summary of known
attacks and their capabilities). Since the adversary does not have
physical access to the target platform, such attacks are not possible
without relay. Hardening programs like enclaves against physi-
cal side channels is difficult and currently an open problem [22].
Therefore, developers cannot easily defend their enclaves against
physical side channels enabled by relay.

The second, and more subtle, implication of relay is that it can
also enable digital side-channel attacks, such as ones that extract en-
clave secrets by monitoring page faults [44], caches [12, 17, 23, 31]
or branch prediction [26]. Whether a digital side-channel attack is
enabled by relaying or not, depends on the sequence in which par-
ticular events occur. These events include, but are not restricted to:
the provisioning of secrets to the enclave, the possible disinfection
of the target platform frommalicious software, and the discovery of
a new side-channel attack. We group the relative ordering of these
events into two cases: A and B. Case A covers event sequences that
only lead to attacks which are independent of relay and Case B
covers event sequences in which redirection gives extra capabilities
to the adversary. Below, and in Figure 3, we provide examples of
sequences belonging to these two cases:
Case A: independent of relay. A digital side-channel is inde-
pendent of relay if the adversary could perform it on the target
platform as well. An example of such case is shown in Figure 3,
where a new attack is discovered after secret provisioning but be-
fore the target platform OS is disinfected.
Case B: attack enabled by relay. Case B is reached whenever

it occurs that by using a side channel the enclave is exploitable on
the attacker’s platform, but not on the target platform. An example
of such a case is shown in Figure 3, where at the time of attesta-
tion and secret provisioning, the enclave is hardened against all
known digital side-channel attacks (using tools like Raccoon [34],
ZeroTrace [36] or Obfscuro [9]). After secret provisioning, the OS
compromise is detected and cleaned. Later, a new side-channel at-
tack vector (that is not prevented by the used tools) is discovered.
If the adversary performed redirection and the secret was provi-
sioned to the attacker’s machine, the new side channel is exploitable.
Without the relay, the attack is not possible.

2.3 Limitations of Known Solutions
To address attestation attacks, a common approach in the literature
is to assume trust on first use (TOFU) [43]. Typical simple solutions
assume that the OS is clean at the time of attestation or perform
attestation only immediately after fresh OS installation. Both of
these approaches have obvious security and deployment problems.

Recent research papers use slightly better TOFU variants [10,
13, 29, 37]; however their descriptions of the used attestation pro-
cedures are not always very accurate, as these papers focus on
other problems than attestation. For example, the Rote system [29]
requires secure connections to enclaves on specific platforms to
establish an enclave group. The proposed solution assumes fresh OS
installation at system initialization time and for each used platform
it requires a local administrator to input a credential to the enclaves.

Target platform

Distance
bounding

Remote
verifier

Verify

PROXIMIKEY

OS

SGX processor

PROXIMITEE
API

APP Enclave

Figure 4: Approach overview. A trusted embedded device
ProximiKey is attached to the target platform, verifies the
proximity of the attested enclave, and enables a secure con-
nection to it.

As another example, in the VC3 system [37] enclaves generate a
public/private key pair at the time of trusted initialization, output
the public key and seal the private key. The public key can be sent
to a trusted authority for certification, which then enables clients
to securely connect to enclaves.

Both of these solutions essentially avoid insecure attestation by
pre-authorizing known enclaves during a setup phase that is as-
sumed trusted. Such TOFU solutions have the following limitations:
1. OS re-installation: Forcing users or administrators to re-install

the OS is not always possible.
2. Manual configuration:Manual interaction tasks, such as an

administrator that needs to enter credentials to enclaves during ini-
tialization, complicates platform enrollment, especially in scenarios
like data centers with many enrolled platforms.
3. Pre-defined enclaves: Solutions that only work with enclaves
that are known at the time of initialization are not applicable to
scenarios like cloud computing platformswhere users need to install
new enclaves after platform installation.
4. Large temporary TCB: Modern operating systems have a

large TCB and trusting the OS even temporarily is unideal.
5. Online authorities: Solutions where a trusted authority needs
to either certify or revoke new enclaves typically require that the
authorities are online, which increases their attack surface.

3 PROXIMITEE: ADDRESSING RELAY
ATTACKS

Our goal in this paper is to design a solution that addresses the
above limitations of previous solutions. In short, our solution should
be secure (small TCB, no online authorities) and easy to deploy (no
OS re-installation, manual configuration or pre-defined enclaves).
In this section, we provide an overview of our approach, outline
possible use cases, describe an attestation solution against relay
attacks and analyze its security.

3.1 Approach Overview
We propose a hardened SGX attestation scheme, called ProximiTEE,
based on a simple and auxiliary embedded device that we call
ProximiKey. The embedded device is attached to the target platform
over a local communication interface, such as USB, as shown in
Figure 4.

Our main idea is to use the combination of such trusted device
and proximity verification to prevent relay attacks. In our solution,

4

the ProximiKey device verifies the proximity of the attested en-
clave and after successful proximity verification it facilitates the
creation of a secure channel between the remote verifier and the
attested enclave. After the initial attestation, the device periodically
checks proximity to the attested enclave. The established secure
channel is contingent on the physical presence of the embedded
device on the target machine and it stays active only as long as the
device is plugged-in. The act of detaching the device automatically
revokes the attested platformwithout any interaction with a trusted
authority. Thus, our solution enables secure offline enrollment and
revocation.

To use our solution, enclave developers add function calls to a
simple API that facilitates communications between the enclave
and the device (see Figure 4).

Security assumptions. In our solution, the ProximiKey device
is a trusted component. We deem this choice reasonable since it
implements only the strictly necessary functions and therefore
it a has significantly smaller software TCB, attack surface, and
complexity compared to the host OS. We assume that its issuer
certifies each embedded device prior to its deployment and such
certification can take place fully offline.

Concerning the security of the ProximiKey device we employ
the same adversary model introduced in Section 2 for enclaves.
While the user’s device and its private keys are never exposed to
the attacker, another similar device can be in the physical posses-
sion of the attacker, which has as much time as she wants to fully
compromise it (run arbitrary code and extract keys).

3.2 Example Use Cases
Our solution is targeted to scenarios where the benefits of more
secure attestation outweigh the deployment cost of a simple em-
bedded device. Here, we outline four of such cases.

Data center. In our first example, we consider a cloud platform
provider that attaches ProximiKey to a server in a specific data
center and makes the public key of the connected device known to
the users of the service. Our approach is particularly well suited
to cloud computing models where customers rent dedicated com-
puting resources like entire servers. In such a setting, our solution
ensures that the cloud platform customer outsources data and com-
putation to a server that resides in a specified location. Enforcing
location may be desirable to meet increasing data protection reg-
ulation that defines how and where data can be stored, even if
protected by TEEs such as SGX. Revocation (e.g., when a server
is relocated to another data center or function) can be realized by
merely detaching ProximiKey.

Permissioned blockchain. Our second case is a setting in which
a trusted authority initializes a set of validator nodes for a per-
missioned and SGX-hardened blockchain. The trusted authority
issues one ProximiKey for each organization that operates one of
the validator nodes which allows secure attestation of the valida-
tor platforms. Organizations are free to upgrade their computing
platforms by attaching the ProximiKey to a new platform which
automatically revokes the old platform without the need to interact
with a trusted authority. Furthermore, since ProximiKey can only
be active on one platform at the time, such a deployment enables

Enclave

6 Compute

Intel SGX processorUntrusted OS

Target platform

PROXIMIKEY

2 Spawns Enclave

4 Establish TLS

3 Remote attestation

Intel Attestation Server

5 PROXIMITEE challenge

Calculate latency8

Response7

Trusted remote
verifier

1
Establish
TLS

Network

Response to the
verifier

9

Untrusted App

Figure 5: ProximiTEE attestation. The remote verifier estab-
lishes a secure channel to the ProximiKey device that per-
forms standard attestation and verifies the proximity of the
attested enclave.

the authority to bound the “voting power” (e.g., identities in Byzan-
tine consensus) of each validator organization in the blockchain
consensus.
Trusted path. Our third example is trusted path – an important
property that is lacking from SGX. Our attestation approach pro-
vides the means to establish trusted path between I/O peripherals
and enclaves. We discuss this solution in more detail in Section 6.
HSM-protected keys. Our last case is the management of HSM-
protected keys from an attested enclave. Such deployment enables
the secure and flexible realization of various access control policies,
implemented as attested enclaves. ProximiTEE guarantees that only
an enclave in the proximity of the HSM can control its keys. Such
solution provides a high level of protection because, at no point in
time, the HSM keys are directly accessible by the enclave (which
may be vulnerable to side-channel attacks) or by the untrusted OS.

3.3 Solution Details
Now, we explain the ProximiTEE attestation mechanism in detail.
I. Attestation protocol. Figure 5 illustrates the attestation proto-
col that proceeds as follows:
① The remote verifier establishes a secure channel (e.g., TLS) to
the certified ProximiKey. An assisting but untrusted user-space
application facilitates the connection on the target platform acting
as a transport channel between the remote verifier and the Prox-
imiKey (and later also the enclave). As part of this first step, the
remote verifier specifies which enclave should be executed.
② The untrusted application creates and starts the attestation

target enclave.
③ ProximiKey performs the standard remote attestation to verify

the code configuration of the enclave with the help of the IAS server
(see Appendix A). In the attestation protocol, the device learns the
public key of the attested enclave.
④ ProximiKey establishes a secure channel (e.g., TLS) to the

enclave using that public key.
⑤ ProximiKey performs a distance-bounding protocol that con-
sists of n rounds, where each round is formed by steps ⑤ to ⑧.
At the beginning of each round ProximiKey generates a random
challenge r and sends it to the enclave over the TLS channel.

5

Successful window

Halt window

Failed window

≤ 𝑇𝑐𝑜𝑛

< 𝑇𝑑𝑒𝑡𝑎𝑐ℎ𝑇𝑐𝑜𝑛 <

𝑇𝑑𝑒𝑡𝑎𝑐ℎ ≤

Platform disconnected

… …

Figure 6: Sliding window for periodic proximity verification
with three different types of challenge-response latencies.

⑥ The enclave increments the received challenge by one.
⑦ The enclave sends a response (r + 1) back to the ProximiKey

over the TLS channel.
⑧ ProximiKey verifies that the response value is as expected

(i.e., r + 1) and checks if the latency of the response is below a
threshold (Tcon). Successful proximity verification requires that the
latency is below the threshold for a sufficient fraction (k , at least
k × n out of n) of responses.
⑨ If proximity verification is successful, the ProximiKey noti-
fies the remote verifier over the TLS channel (constructed in step
①). The verifier starts using the ProximiKey TLS channel to send
messages to the enclave.

II. Periodic proximity verification. After the initial connection
establishment, the ProximiKey device performs periodic proxim-
ity verification on the attested enclave. ProximiKey sends a new
random challenge r at frequency f , verifies the correctness of the
received response and measures its latency. The latestw latencies
are stored to a sliding window data structure, as shown in Figure 6.

As elaborated in Section 4 there are three types of latencies in
the presence of relay attacks. The first type of response is received
faster than the threshold Tcon (green in Figure 6), these responses
can only be produced if no attack is taking place. In the second type
of response the latency exceedsTcon , but it is below another, higher
threshold Tdetach (yellow), these are sometimes observed during
legitimate connections and sometimes during relay attacks. And
third, the latency is equal to or exceedsTdetach (red), these latencies
are only observed while a relay attack is being performed. Given
such a sliding window of periodic challenge-response latencies, we
define the following rules for halting or terminating the connection:
1. Successful window: no action. If at least k responses have

latency ≤Tcon and none of the response have latency≥Tdetach , we
consider the current window legitimate. ProximiKey keeps the
connection active (i.e., no action).
2. Halt window: prevent communication. If one of the re-

sponses have latency ≥Tdetach , we consider the current window a
“halt window,” and ProximiKey stops forwarding data to the enclave
until the current window is legitimate again.
3. Failedwindow: terminate channel. If two ormore responses

have latencies ≥Tdetach , we consider the current window a “failed
window” and ProximiKey terminates the communication and re-
vokes the attested platform.

3.4 Security Analysis

Attestation security. To analyze the security of our hardened
attestation mechanism, we must first define successful attestation.
We say that the attestation is successful when the remote verifier
establishes a connection to the correct enclave that (i) has the
expected codemeasurement and (ii) runs on the computing platform
to which the ProximiKey device is attached.

The task of establishing a secure channel to the correct enclave
can be broken into two subtasks. The first subtask is to establish a
secure channel to the correct ProximiKey device. This is achieved
using standard device certification. We assume that the adversary
cannot compromise the specific ProximiKey used. If the adversary
manages to extract keys from other ProximiKey devices, he cannot
trick the remote verifier to connect to awrong enclave, as the remote
verifier will only communicate with a pre-defined embedded device.

The second subtask is to establish a secure connection from
ProximiKey to the correct enclave. For this, we use proximity veri-
fication. ProximiKey verifies the proximity of the attested enclave
through steps ⑤ to ⑧ of the protocol. These steps essentially check
two things. First, through step ⑦, whether the messages are re-
ceived from the correct enclave. This verification is performed by
checking the correctness of the decrypted message, and it relies
on the assumption that the attacker cannot break the underlying
encryption and hence only the enclave that has access to the key
that was bound to the attestation could have produced a valid reply.
Second, through step ⑧, whether the ProximiKey and the enclave
are in each other’s proximity. This check relies on the assumption
that a reply from a remote enclave will take more time to reach the
ProximiKey than a reply from the local enclave.

We evaluate the second aspect experimentally. In particular, we
simulate a powerful relay-attack adversary that is connected to
the target platform with short and fast network connection (1m
Ethernet cable). Since the attacker’s platform might be faster than
the target platform, we simulate an adversary that can perform
instantly all computation needed to participate in the proximity
verification protocol. However, even this adversary cannot break
cryptographic hardness assumptions.We define adversary’s success
as the event where the proximity verification succeeds with an
enclave that resides on the above-defined adversary’s platform and
denote the probability of such event Padv . We define legitimate
success as the event that proximity verification succeeds with a
local enclave and denote its probability Pleдit .

In Section 4 our experiments and analysis show that example
parameter values n = 50, k = 0.4 and Tcon = 470µs enable reli-
able, secure and fast proximity verification. Proximity verification
takes 25 ms, and therefore it adds only a minor delay to the ini-
tial attestation. The adversary’s success probability is negligible:
Padv = 2.71 × 10−67. With the same parameters, proximity verifi-
cation with the legitimate local enclave succeeds with a very high
probability: Pleдit = 0.999999965.

Revocation security. To analyze the security of the periodic prox-
imity verification that we use for platform revocation, we must
first define what it means for the attacker to break the periodic
proximity verification. The purpose of the periodic proximity verifi-
cation is to prevent cases where the user detaches the ProximiKey
device from the attested target platform and attaches it to another

6

SGX platform before the previously established connection is termi-
nated. Since we consider an adversary who does not have physical
access to the target platform (recall Section 2.1), we focus on benign
users and exclude scenarios where the ProximiKey would be con-
nected to multiple SGX platforms with custom wiring or rapidly
and repeatedly plugged in and out of two SGX platforms.

We define the periodic proximity verification as broken if the ad-
versary can manage to not terminate the previously established con-
nection within a “short delay” after the ProximiKey was detached
from the attested target platform. For most practical purposes we
consider a delay of 1 ms as sufficiently short. We denote the ad-
versary’s success probability in breaking the periodic proximity
verification as P ′adv . A false positive for periodic attestation is the
event where the connection to the legitimate enclave is terminated,
and the attested platform is revoked despite the ProximiKey being
connected to the target platform. We denote the probability that
this happens during a “long period” as P ′f p . We consider an example
period of 10 years sufficiently long for most practical deployments.

In Section 4 evaluate this experimentally, again by simulating a
similar powerful relay attacker. We show that there exists a set of
parameters that provide secure, reliable and inexpensive channel
termination and platform revocation. The attacker’s success proba-
bility can be made negligible: P ′avd = 2.71 × 10−67, while keeping
the false positive probability low: P ′f p = 5 × 10−5. Such periodic
proximity verification consumes only 0.0011% of the available chan-
nel capacity (USB 2.0 has a channel capacity of 480MBits/s) between
ProximiKey and the enclave, so we consider its cost minor.

4 EVALUATION OF PROXIMITEE
In this section, we describe our ProximiTEE prototype implemen-
tation and experimental evaluation.

4.1 Implementation
We implemented a complete prototype of the ProximiTEE system.
Our implementation consists of two components: (i) ProximiKey
prototype, and (ii) ProximiTEE enclave API which enables any
application-specific enclave to communicate with the ProximiKey
device and execute our protocols.

ProximiKey. Our prototype consists of one Arduino Due proto-
typing board equipped with an 84 MHz ARM Cortex-M3 microcon-
troller. The board communicated with the target platform over a
native USB 2.0 connection that provides 480 Mbps of bandwidth. We
use the Arduino cryptographic library [2] for the TLS. The limited
set of cipher suites in our implementation uses 128-bit AES (CTR
mode) for encryption, AES-HMAC as the message authentication
code, Curve25519 for Diffie-Hellman key exchange and SHA256 as
the hash function. Our prototype implementation is approximately
200 lines of code, and the code size of the TLS library is around 3.6
KLoC.

ProximiTEE enclave API. The ProximiTEE API for application-
specific enclaves is written in C++ using the Intel SGX API. The
API uses native SGX crypto library for the TLS implementation.
The prototype is around 200 lines of code.

ProximiKey

Target
platform

Attacker’s
platform

1m Ethernet cableUSB 2.0 interface

Figure 7: Our experimental setup consists of the Prox-
imiKey device prototype, the target platform, the attacker’s
platform and the connection interfaces between them.

4.2 Experimental Setup: Simulated Attackers
We conducted our experiments on three SGX platforms: two In-
tel NUC NUC6i7KYK mini-PCs and one Dell Latitude laptop, all
equipped with SGX-enabled Skylake core i7 processors and Ubuntu
16.04 LTS installed on them.

We performed two types of experiments. First, we tested legiti-
mate attestation of an enclave on the target platform (i.e., the SGX
platform to which our ProximiKey prototype was connected to).
Second, we simulated a relay-attack adversary whose platform was
connected to the target platform via a direct Ethernet cable (see
Figure 7). Since the adversary might have a faster processor than
the one of the target platform, we simulate the worst case scenario,
where the adversary’s computation needed for the proximity verifi-
cation protocol happens instantly. Instant replies were simulated by
fixing the randomness for the challenges and having precomputed
responses for that randomness on the attacker’s machine.

For the relay attack, we tested three different Ethernet cables of
length 1m, 7m and 10m to evaluate the effect on the latency. For
the legitimate proximity verification, we used a standard USB cable
of length 1m and a USB extender cable or length 2m to evaluate the
effect of USB cable length on the latency.We also tested two different
SGX platforms and two different embedded device prototypes.

We experimented with the possible software optimizations that
the adversary could perform, since he controls the OS on the tar-
get platform. First, we tested the standard ping tool which gave a
latency of around 380 µs for one-meter Ethernet connection. Af-
ter that, we used the ping tool in so called flood mode [27] and
measured a reduced average network latency of around 153 µs
(command ping -s 300 -af). Flood mode achieves faster round-
trip time as the it forces the OS to fill up the network queue of
the kernel. Based on these measurements, we chose to simulate an
attacker that fills the kernel’s network queues (on both platforms)
similar to the flood mode to minimize latency.

Additionally, we consider an adversary that performs hardware
optimizations on his platform. To consider the worst case, we as-
sume an adversary who has an infinitely fast network interface.
Assuming that the transmission time spent on the wire is negligible
and most the the round-trip latency is due to processing the in the
network interface, such an adversary can be safely approximated
by cutting down our measured latencies by half, because in our test
setup both platforms have identical network interfaces.

To measure latencies we used Arduino’s native micros() that
provides (10s of) microsecond level accuracy. To achieve more ac-
curate time measurements, we also used a high precision 8 Ghz
Keysight Infinium oscilloscope. We performed a total of 27.8million

7

ProximiKey latency

time (µs)
400 500 600 700 8000.

00
0.

03

Rerouting over Ethernet(1m)
Local USB interface

Tcon

Tdetach

Figure 8: Latency distributions for legitimate local USB con-
nection and simulated 1m Ethernet relay attack. Tcon and
Tdetach thresholds are placed at 470 µs and 510 µs.

ProximiKey latency

time (µs)
400 500 600 700 8000.

00
0.

03 Rerouting over Ethernet(1m)
Local USB interface

Tcon

Figure 9: Latency distributions for legitimate local USB con-
nection and relay adversary with infinitely fast network in-
terface (latency is 72µs). Tcon threshold is placed at 442 µs.

rounds of the protocol for normal attestations and 15million rounds
for simulated attacks and measured the challenge-response laten-
cies for each. We measure all of them inside the Arduino code. For
cross-validation, we tested the ProximiKey with the high precision
oscilloscope and witnessed identical timing patterns.

4.3 Latency Distributions
Figure 8 shows our main experimental result for the 1m Ethernet
and 1m USB case. The left histogram represents challenge-response
latencies in the benign case, and the right histogram represents the
latencies in the simulated attack. As can be seen from the figure,
the vast majority of benign round-trips take from 394 to 647 µs
(average is 459 µs , 95% samples are in between 400 µs and 497 µs).
The vast majority of the round-trip times in the simulated attack
take from 451 to 1251 µs (average is 579 µs , 95% samples are in
between 490 µs and 655 µs). The difference between the averages
of the benign and attack scenarios is 120 µs which is less than the
previously tested flood mode ping latency (153 µs).

Figure 9 shows the latency distributions for the local enclave
and the adversary with an infinitely fast network interface (i.e.,
latencies reduced to half).

We report additional results for different Ethernet and USB cable
lengths, SGX platforms, ProximiKey prototypes, effects of loads on
the CPU cores, and effect of application pinning to a specific CPU
cores in Appendix D.

4.4 Initial Proximity Verification Parameters
As explained in Section 3.3, the initial proximity verification is
successful when at least fraction k of the n challenge-response
latencies are below the thresholdTcon . Now, we explain our strategy
for setting these parameters based on the above results.

There are five interlinked parameters that one needs to con-
sider: (i) the legitimate connection latency threshold Tcon , (ii) total
number of challenge-response rounds n, (iii) the fraction k , (iv)
attacker’s success probability Padv that should be negligible, and

Attacker's avg network latency ~153 µs

1e
−

13
7

1e
−

53

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0.
94

0.
97

1.
00

1 2 5 10 20 50 100
Rounds

Platform in proximity
AttackerS

uc
ce

ss
 p

ro
ba

bi
lit

y

Figure 10: Distinguishing relay attack. The attacker’s suc-
cess probability Padv and the legitimate success probabil-
ity Pleдit in proximity verification for different number of
rounds (n) given a fixed k = 0.4.

Attacker's avg latency ~ 72 µs

1e
−

87
1e

−
33

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0.
4

0.
8

1 5 10 50 100 500
Rounds

Platform in proximity
Attacker

Figure 11: Distinguishing relay attack for adversary with in-
finitely fast network interface. The attacker’s success prob-
ability Padv and the legitimate success probability Pleдit for
different number of rounds (n) given a fixed k = 0.4.

(v) the legitimate success probability Pleдit that should be high. We
find suitable values for these parameters in the following order:
1. We start with the thresholdTcon . The higherTcon is, the higher

the legitimate success probability Pleдit becomes, on the other hand,
a too high value for Tcon also makes Padv , the attacker’s success
probability, high. Therefore, we are after a suitable value for Tcon
that keeps Pleдit high while minimizing Padv over a varied number
of rounds n. Figure 18 in Appendix C shows effects of differentTcon
values.
2. Based on suchTcon , we pick a fraction k such that it maximizes

the legitimate success probability Pleдit and reduces the attacker’s
success probability Padv . Figure 20 in Appendix C illustrates the
effect of different values of k on the legitimate enclave and the
attacker’s success probability.
3. Given Tcon and k , we evaluate Padv and Pleдit over a varied
number of rounds n and choose the minimum number of rounds
that provides the required probabilities, since the fewer rounds, the
faster the initial attestation is.

Main result. Figure 10 shows the legitimate enclave’s success
probability Pleдit and the attacker’s success probability Padv with
different number of rounds. Based on our experiments we set
Tcon = 470µs , the threshold fraction k = 0.4 and the number
of rounds n = 50 which yields a legitimate success probability
Pleдit = 0.999999965 and an attacker’s success probability Padv =
2.71× 10−67. We provide the full details of of this parameter tuning
process in Appendix C.1.

Figure 11 shows the success probability of legitimate enclave and
the adversary with infinitely fast network interface. With around
n = 1000 rounds, the attacker’s success probability is 0.9999993278
while the attacker’s success probability is only 2.3 × 10−85.

8

4.5 Periodic Proximity Verification Params
For periodic proximity verification we have two main requirements.
First, the attacker’s success probability P ′adv must be negligible.
Recall that P ′adv refers to an event where the device is detached
but the connection is not terminated sufficiently fast. Second, the
probability of false positives P ′f p should be very low. Recall that
P ′f p refers to an event where the connection is terminated when
the device is still attached.

Next, we explain the three-step process to set up parameters
Tdetach , w and f for the periodic proximity verification. (Recall
Figure 6 for the sliding window strategy.) We proceed as follows:
1. We find out a suitable latency Tdetach that define the yellow
or red round in Figure 6. The yellow window defines the round
of challenge response latency between Tcon and Tdetach , while
the red window defines a latency more than Tdetach . Hence, the
probabilities Pr[Tcon ≤ Lleдit ≤ Tdetach] = Pr[leдit ∈ yellow],
and Pr[Lleдit ≥ Tdetach] = Pr[leдit ∈ red] should be very low.
Lleдit andLA denote the latency of the legitimate enclave running
on the platform in proximity and remote attacker platform’s latency
respectively.
2. Based on the threshold Tdetach , we select a suitable sliding

window sizew to minimize the attacker success probability P ′adv
to a negligible quantity.
3. We fix a suitable frequency f for the periodic challenges. A

high f value terminate the communication very fast, leaving very
small attacking window.

Main result. Based on our results and the above strategy, we set the
periodic proximity verification parameters to the following values:
Pr[A ∈ success window] = P ′adv = P ′f n = 2.71 × 10−67, Pr[leдit ∈
success window] = 0.999999965 and Pr[leдit ∈ failed window] =
P ′f p = Pr[leдit ∈ red]2 = 5 × 10−5. If at least two latencies ≥ 510µs
(Tdetach) are received, the ProximiKey terminates the connection
and revokes the platform. The average downtime due to false posi-
tives occurring during a connection of 10 years is around 2minutes.
We provide the full details of this parameter tuning process in
Appendix C.2.

4.6 Performance
Finally, we evaluated the performance of our solution.
1. Start-up latency of our solution is less than 1 second (to es-

tablish a TLS channel and execute the distancy-bounding protocol).
The initial proximity verification takes approximately 25 ms.
2. Operational latency and data overhead. The operation la-

tency is defined as the additional latency our solution adds to nor-
mal communication from the remote verifier to the attested enclave.
The operational latency is also minimal. Our solution adds around
200µs for TLS and transport over the native USB interface of the
Arduino. The data overhead is around 80 bytes per packet for the
header and the MAC. Execution of the periodic ProximiTEE proto-
col with 83 rounds/second requires around 6.48 KBytes/s of data
which is only 0.0011% of the USB 2.0 channel capacity.

Trusted processor

App
Enclave

Attacker’s
Enclave

Remote verifier

PROXIMIKEY

Target platform

3 Local Attestation

2 App enclave

4 Approve

PROXIMITEE

Enclave

5 Communication

1
Sealed

key

Emulated processor

Figure 12: ProximiTEE boot-time attestation. After the boot-
time initialization (refer to Figure 13) the ProximiTEE en-
clave executes a local attestation with the verifier uploaded
application-specific enclave.

5 ADDRESSING EMULATION ATTACKS
In this section, we consider a stronger adversary model that we call
the emulation attacker and present a hardened attestation solution
based on boot-time initialization.

5.1 Emulation Attack
Adversary model. The emulation attacker has all the capabilities
of the relay attacker (cf. Section 2) and additionally has obtained
at least one valid (i.e., not revoked by Intel) attestation key from
any SGX platforms but the target platform. The adversary might
obtain an attestation key by attacking one of his processors or by
purchasing an extracted key from another party.

We consider key extraction from SGX processors difficult and ex-
pensive, in contrast to the previously considered relay attacks that
require only OS control, but not impossible. The recently demon-
strated Foreshadow attack [14] that exploited the Meltdown vul-
nerability [28] showed how to extract attestation keys from SGX
processors. Intel has the possibility to issue microcode patches that
address processor vulnerabilities like Meltdown and the processor’s
microcode version is reflected in the SGX attestation signature (see
Appendix A). However, new vulnerabilities may be discovered and
before microcode patches are deployed, leaked but not revoked
attestation keys may be available.
The emulation attack. In the attack, the adversary uses a leaked
attestation key to emulate an SGX-processor on the target platform.
Since the IAS successfully attests the emulated enclave, it is impos-
sible for the remote verifier to distinguish between the emulated
enclave and the real one.
Emulation attack implications. The emulation attack allows
the adversary to fully control the attested execution environment
and thus break the two fundamental security guarantees of SGX,
enclave’s data confidentiality and code integrity, and to access any
secrets provisioned to the emulated enclave. Since the OS is also
under the control of the attacker, any attempted communication
with the real enclave will always be redirected to the emulated
enclave.

5.2 Boot-Time Initialization Solution
Proximity verification alone cannot protect against the emulation
attacker, as the locally emulated enclave would pass the proximity
test. Therefore, we describe a second hardened attestation mecha-
nism that leverages secure boot-time initialization and is designed
to prevent emulation attacks. This solution can be seen as a novel

9

PROXIMIKEY Platform owner Target Platform

Restart

BIOSBoot USB

Plug USB

PROXIMITEE kernel
PROXIMITEE enclave

PROXIMITEE

kernel

Boot

PROXIMITEE

enclave

Loads

Seals
key

Stores
seal

Sends sealed key

Restart

Sends key

Key
gen

Press button

1

2

3

4

5
6

Figure 13: Boot-time initialization. The ProximiKey uses a
minimal kernel Linux image to boot and load ProximiTEE
enclave on the target platform and seal a platform specific
secret to the ProximiKey memory.

variant of the well-known TOFU principle and the main benefits of
our solution over previous variants is that it simplifies deployment
and increases security. Additionally, when such attestation is used
in combination with our previously described periodic proximity
verification, our solution enables secure offline revocation.

Security assumptions. Our security assumptions regarding the
target platform are as described in Section 2. The only difference is
that in this case we assume that the UEFI (or BIOS) on the target
platform is trusted.

Solution overview. Figure 12 illustrates an overview of this solu-
tion. During initialization, that is depicted in Figure 13, the target
platform is booted from the attached device that loads a minimal
and single-purpose ProximiTEE kernel on the target device. In par-
ticular, this kernel includes no network functionality. The kernel
starts the ProximiTEE enclave, which shares a secret with the de-
vice. This shared secret later bootstraps the secure communication
between ProximiKey and the ProximiTEE enclave. The security of
the bootstrapping relies on the fact that the minimal kernel will not
perform enclave emulation at boot time. The ProximiTEE enclave
will later be used as a proxy to attest whether other (application-
specific) enclaves in the system are real or emulated and on the
same platform.

Boot-time initialization. The boot-time initialization process is
performed only once. This process is depicted in Figure 13 and it
proceeds as follows:
① The platform owner plugs ProximiKey to the target platform,

restarts it to BIOS and selects the option to boot from ProximiKey.
② ProximiKey loads the ProximiTEE kernel and boots from it.

The ProximiTEE kernel starts the ProximiTEE enclave.
③ The user presses a button on ProximiKey to confirm that this

is a boot-initialization process. This step is necessary to prevent an
attack where the compromised OS emulates a system boot.
④ ProximiKey sends a randomly generated key K to the Prox-

imiTEE enclave.

⑤ The enclave returns the sealed key S corresponding to the
key K (S ← Seal(K)) to ProximiKey that stores the key and the
seal pair (K,S) on its flash storage.
⑥ ProximiKey blocks further initializations, sends a restart sig-

nal and boots the platform with the normal OS.

Attestation process. After initialization the target platform runs
a regular OS. The attestation process is depicted in Figure 12 and
proceeds as follows:
① ProximiKey sends the seal S to the ProximiTEE enclave that

unseals it and retrieves the keyK . ProximiKey and the ProximiTEE
enclave establish a secure channel (TLS) using K .
② The remote verifier uploads a new application-specific enclave

on the target platform.
③ The ProximiTEE enclave performs local attestation (cf. Ap-

pendix A) on the application-specific enclave that binds its public
key to the attestation.
④ The ProximiTEE enclave sends the measurement and the

public key of the application-specific enclave to ProximiKey. Prox-
imiKey establishes a secure channel to the application-specific en-
clave and sends the measurement of the enclave to the remote
verifier. The remote verifier then approves the communication to
the application-specific enclave.
⑤ The remote verifier checks that themeasurement of the application-

specific enclave is as expected. If this is the case, it can communicate
with the enclave through ProximiKey.

Following communication. Similar to our previous solution, af-
ter the initial attestation all the communication between a remote
verifier and the enclave is mediated by the ProximiKey that periodi-
cally checks the proximity of the attested enclave and terminates the
communication channel in case the embedded device is detached.

5.3 Security Analysis
In this attestation mechanism, the task of establishing a secure
communication channel to the correct enclave can be broken into
three subtasks. The first subtask is to establish a secure channel
to the correct ProximiKey device. In our solution, this is achieved
using standard device certification. Recall that the adversary cannot
compromise the specific ProximiKey used.

The second subtask is to establish a secure communication chan-
nel from ProximiKey to the ProximiTEE enclave. ProximiKey
shares a key with an enclave that is started by the trusted Proximi-
TEE kernel, hence at a time in which the attacker could not emulate
any enclave. ProximiKey knows when secure initialization takes
place because the user (platform owner) indicates this by pressing
a button which is an operation that the adversary cannot perform.
The ProximiTEE enclave seals the key during initialization. Differ-
ent SGX CPUs cannot unseal each other’s data, and therefore even
if the adversary has extracted sealing keys from other SGX proces-
sors, she cannot unseal the key and masquerade as the legitimate
ProximiTEE enclave.

The third subtask is to establish a secure communication channel
from the ProximiTEE enclave to the application-specific enclave.
The security of this step relies on SGX’s built-in local attestation.
An adversary in possession of leaked sealing attestation keys from

10

HW

Standard
Kernel

HW

PROXIMITEE

Kernel

Untrusted Trusted Trust on first use

Online CA

Standard
Kernel

Strawman
Solution (TOFU)

Offline CA

Boot-time Initialization +
attestation

BIOS

Figure 14: TCB comparison. Trusted components in a com-
mon TOFU solution and our boot-time solution.

other SGX processors, cannot produce a local attestation report that
the ProximiTEE enclave would accept, and therefore the adversary
cannot trick the remote verifier to establish a secure communication
channel to a wrong enclave.

5.4 Comparison to TOFU
Our second attestation mechanism is a novel variant of the well-
known “trust on first use” principle. In this sectionwe briefly explain
the main benefits of our solution over common TOFU variants.

Smaller TCB size and attack surface. Figure 14 illustrates a com-
parison of trusted components and attack surface between a com-
mon TOFU solution where a trusted authority (CA) certifies enclave
keys (cf. Section 2.3) and our boot-time initialization mechanism.
In the TOFU solution, the standard and general-purpose OS needs
to be trusted on first use and the CA needs to remain online for
enrollment of new SGX platforms. In our solution, a significantly
smaller and single-purpose kernel needs to be trusted on first use.
Additionally, we require trust on the BIOS (or UEFI). In our solution,
the CA can remain offline when a new platform is enrolled.

Reboot instead of re-install. Our solution requires that the tar-
get platform is rebooted once from ProximiKey. In most TOFU
solutions, the target platform requires a clean state which is difficult
to achieve without reinstall that makes deployment difficult.

Secure offline revocation. When boot-time initialization is com-
bined with the previously explained periodic proximity verification,
our solution provides an additional property of secure offline revo-
cation that requires no interaction with the CA. Such property is
missing from previous TOFU solutions.

5.5 Implementation
We implemented a complete prototype of our second attestation
mechanism. On top of our previous ProximiTEE implementation
(see Section 4.1), the boot-time initialization solution requires the
ProximiTEE kernel. We have modified an image of Tiny Core
Linux [8] and used it as the boot image for our boot-time initializa-
tion. The image size of our modified Linux distribution is 14 MB
(in contrast to 2 GB standard 64 bit Linux images build on the stan-
dard kernel). Our image supports bare minimum functionality and
includes libusb, gcc, Intel SGX SDK, Intel SGX platform software
(PSW), and Intel SGX Linux driver. The ProximiTEE enclave is a
minimal enclave that uses a simple serial library to communicate
with the ProximiKey and local attestation mechanism to attest any
application-specific enclave.

Untrusted OS

Untrusted
App

Local platformIO Devices

PROXIMIKEY

3 I/O

1 User initialization

App
Enclave2 Attestation + TLS

Figure 15: Trusted path to local enclave. The IO devices are
connected to ProximiKey that is connected to the local plat-
form. The ProximiKey performs attestation using one of
our mechanisms and then mediates all IO communication.

6 BUILDING TRUSTED PATH
Another important limitation of SGX is the lack of trusted path.
As defined in [18], a trusted path (i) isolates the input and output
channels of different applications to preserve the integrity and
confidentiality of data exchanged with the user, (ii) assures the user
of a computer system that she is truly interacting with the intended
software, and (iii) assures the running applications that user inputs
truly originate from the actions of a human, as opposed to being
injected by other software.

In SGX, an adversary which controls the OS can trivially read
and modify all user’s inputs, read and modify all enclave’s outputs
intended to the user, and direct user’s inputs to a different enclave
from the one intended by the user. Under the SGX security model,
lack of trusted path prevents the user from providing sensitive
information like passwords to enclaves or confirming transactions
performed by the enclave.

The commonly suggested solution for the trusted path problem
is to leverage a trusted hypervisor to mediate all I/O [42]. The main
drawback of general-purpose (commercial) hypervisors is their
significant complexity and attack surface. While the research com-
munity has produced also small and formally-verified hypervisors,
like the seL4 project [38], their adoption in practice can be prob-
lematic. In addition to the secure hypervisor itself, realization of a
trusted path requires secure device drivers which can be difficult to
implement and increase the TCB size. Formally-verified hypervisors
are also typically severely restricted in terms of functionality and
adding new functionality to it, and can be very slow, as each new
update needs to be formally verified (a process that can take years).
For these reasons, minimal and formally-verified hypervisors are
not commonly used in consumer devices or corporate systems that
require rich functionality and updates.

Our approach. In this section, we explain how our attestation
mechanisms can be used to build a trusted path between the user
and an enclave. Our main idea is to use the ProximiKey device as
a bridge that attests the local enclave and then securely mediate
all user inputs and outputs between I/O devices and enclaves, as
shown in Figure 15. Trusted path can be realized using either of
our two attestation mechanisms as a building block.

For trusted path, we require that the ProximiKey device has at
least two communication interfaces, one for the target platform and
additional ones for the I/O device(s), and minimal user interaction
capabilities, e.g., a small display and a button. We also assume that

11

Arduino
Due for

prototyping

Arduino LCD-keypad shield for debugging

To target
platform Application Enclave identityProximity

verification

Figure 16: Trusted path implementation. Arduino Due pro-
totype board that is used as an I/O hub with a small LCD
display to show the identity of the SGX enclave.

the embedded device is either (i) pre-installed with a list of human-
readable names for enclave code measurements, or (ii) it can obtain
certified mappings from the platform that it is connected to, similar
to property-based attestation [35].

We assume that the user activates the trusted path by selecting
the enclave with which she wishes to communicate using a button
on the device and the enclave name is shown on the device screen.
Local trusted path.Now, we describe the process of establishing a
trusted path to an enclave on a local platform. As shown in Figure 15,
the I/O devices are connected to the ProximiKey that is attached
to a local computing platform. The trusted path creation proceeds
as follows:
① The user selects which enclave to use using a button and

display on ProximiKey.
② ProximiKey performs attestation of the chosen enclave using
either of our two attestation mechanisms. ProximiKey verifies
that the measurement of the attested enclave matches the user’s
selection. ProximiKey establishes a secure channel (TLS) to the
correct enclave.
③ ProximiKey captures all the input from the I/O devices and
sends them to the enclave via the secure channel. Similarly, the
enclave can send output to the user over the same channel.

In Appendix B we explain how such trusted path can be extended
to an enclave that resides on a remote platform.
Implementation. Figure 16 shows our trusted path implementa-
tion that is based on a Arduino Due prototyping board. We im-
plement a minimal prototype that handles keyboard communica-
tion using Ardubnio’s native keyboardcontroller library that
intercepts keyboard traffic. All the keystrokes are relayed to the
application-specific enclave over the TLS channel. We additionally
attach a LCD shield on the Arduino board that shows the enclave
identity (name) with which it is currently communicating. This
identity is obtained from a certificate that is embedded to the en-
clave.

7 DISCUSSION
Faster future adversaries. We implemented ProximiTEE on a
commercially available and easily programmable Arduino Due
hardware using USB 2.0. Such relatively slow prototype shows that
proximity verification works securely for SGX enclaves against a
fast adversary (1m Ethernet, 120 or 72 µs network latency).

Other networking technologies, such as the InfiniBand [4], could
enable even faster adversaries. To address such attacks, the Prox-
imiKey device could be implemented using a USB 3.0 which supports

latencies in the order of 5µs or Thunderbolt 3 interfaces which uses
direct memory access and communicates over PCI Express. Such
ProximiKey device would provide significantly faster responses
compared to InfiniBand networks. In general, as long as the local
transfer technology is faster than the remote one and the computa-
tional overhead of responses is minor compared to communication,
distinguishing relay attacks remains possible.

Extension to other TEEs. Our approach could be applied to other
TEEs as well. The critical requirements for the TEE is that it must
support programmable operations that can be executed sufficiently
fast. One TEE that meets these requirements is ARM TrustZone.

8 RELATEDWORK

TPM proximity verification. Parno has argued that TPM prox-
imity verification using distance bounding is not secure, as TPM
identification operations (signatures) take at least half a second
which makes it difficult to reliably distinguish a relayed protocol
run from a legitimate one [33]. Despite such compelling reasoning,
previous literature has proposed to use distance-bounding proto-
cols for identification of local TPM [20]. However, the provided
evaluation is based on a software TPM emulator [1, 7]. Another
paper has suggested equipping TPMs with NFC interfaces for se-
cure connection establishment [40], but such solutions are hard to
deploy in practice.

DRTM proximity verification. Presence attestation [45] enables
proximity verification of a TEE that is created using dynamic root
of trust (DRTM) [30]. The DRTM-based TEE shows an image that is
captured by a camera and then communicated to a remote verifier
in a small time interval. The same approach cannot not be applied
to SGX that lacks trusted path for integrity-protected image output.
Additionally, the assumed attacker model is weaker than ours, as
emulation attacks with leaked keys cannot be prevented.

Trusted path. SGXIO [42] provides trusted path to Intel SGX using
a trusted hypervisor. SGXIO uses seL4 [38] microkernel as hypervi-
sor and requires additional device drivers to communicate with the
I/O devices and requires also TPM-based trusted boot. The main
problem of formally-verified minimal hypervisors and kernels is
their functional restrictions and complicated updates that make
deployment difficult in practice.

UTP [19] describes a unidirectional trusted path from the user
to a remote server using dynamic root of trust based on Intel’s
TXT technology [30, 32]. The system suspends the execution of the
OS and loads a minimal protected application for execution. This
loading is measured and stored to a TPM and proved to a remote
verifier using attestation. The protected application creates a secure
channel, records user input and sends them securely to the server.
UTP is limited to VGA-based text UIs to keep the TCB small and it
does not apply to TEEs like Intel SGX.

Zhou et al. [46] realize a trusted path for TXT-based TEEs, again
relying on a small trusted hypervisor. In this solution, also device
drivers are included in the TCB. Wimpy kernel [47] is a small
trusted kernel that manages device drivers for secure user input.
Our approach requires no trusted hypervisor or kernel and it applies
to the latest TEE architectures like SGX.

12

9 CONCLUSION
In this paper we have analyzed attestation redirection and shown
that it increases the adversary’s ability to attack an attested SGX
enclave. We have proposed ProximiTEE, a novel solution against
relay attacks using proximity verification and a trusted embedded
device that is attached to the target platform. Our experimental
evaluation is the first to show that proximity verification is secure
and reliable for SGX and the performance overhead of such verifica-
tion is minor. As additional contributions, we have also presented
a novel boot-time initialization solution for addressing a stronger
emulation attacker and explained how our attestation mechanisms
can be used for building a trusted path for SGX.

REFERENCES
[1] 2008. TrouSerS. https://sourceforge.net/projects/trousers/.
[2] 2017. Arduino Cryptography Library. https://rweather.github.io/arduinolibs/crypto.html.

[3] 2017. Intel SGX homepage. https://software.intel.com/en-us/sgx.
[4] 2018. Infiniband Trade Association. https://www.infinibandta.org/.
[5] 2018. Local Attestation. https://software.intel.com/en-us/sgx-sdk-dev-reference-

local-attestation.
[6] 2018. Local (Intra-Platform) Attestation. https://software.intel.com/en-

us/node/702983.
[7] 2018. Software TPM Introduction. http://ibmswtpm.sourceforge.net/.
[8] 2018. Tiny Core Linux, Micro Core Linux, 12MB Linux GUI Desktop, Live, Frugal,

Extendable. https://distro.ibiblio.org/tinycorelinux/.
[9] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungy-

oung Lee. 2019. OBFSCURO: A Commodity Obfuscation Engine on Intel SGX.
NDSS.

[10] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Mar-
tin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark
Stillwell, et al. 2016. SCONE: Secure Linux Containers with Intel SGX.. In OSDI.

[11] Stefan Brands and David Chaum. 1993. Distance-Bounding Protocols. In EURO-
CRYPT ’93, Tor Helleseth (Ed.).

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIX WOOT17.

[13] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,
Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper: confi-
dential ZooKeeper using intel SGX. In Middleware 2016.

[14] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Foreshadow: Extracting
the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security 18.

[15] Chandler, Matt, and Intel. 2017. Intel Enhanced Privacy ID (EPID) Security
Technology. https://software.intel.com/en-us/articles/intel-enhanced-privacy-id-
epid-security-technology.

[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086.

[17] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. 2018. Cachequote: Efficiently
recovering long-term secrets of sgx epid via cache attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2018, 2 (2018), 171–191.

[18] Atanas Filyanov, Jonathan M McCuney, Ahmad-Reza Sadeghiz, and Marcel
Winandy. 2011. Uni-directional trusted path: Transaction confirmation on just
one device. In IEEE/IFIP DSN 2011.

[19] A. Filyanov, J. M.McCuney, A. R. Sadeghiz, andM.Winandy. 2011. Uni-directional
trusted path: Transaction confirmation on just one device. In IEEE/IFIP DSN 2011.

[20] Russell A. Fink, Alan T. Sherman, Alexander O. Mitchell, and David C. Challener.
2011. Catching the Cuckoo: Verifying TPM Proximity Using a Quote Timing
Side-Channel. In Trust and Trustworthy Computing.

[21] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic
analysis: Concrete results. In International workshop on cryptographic hardware
and embedded systems. Springer, 251–261.

[22] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and Eran Tromer.
2016. Physical key extraction attacks on PCs. Commun. ACM 59, 6 (2016).

[23] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security.

[24] Simon Johnson and Intel. 2017. Intel SGX: EPID Provisioning and Attesta-
tion Services. https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-
provisioning-and-attestation-services.

[25] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (2018).
arXiv:1801.01203

[26] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In USENIX Security 2017.

[27] Linux. 2017. ping(8) - Linux man page. https://linux.die.net/man/8/ping.
[28] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv e-prints (2018).

[29] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution.. In USENIX Security 17.

[30] Jonathan MMcCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi
Isozaki. 2008. Flicker: An execution infrastructure for TCB minimization. In ACM
SIGOPS Operating Systems Review.

[31] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer.

[32] Cong Nie. 2007. Dynamic root of trust in trusted computing. In TKK T1105290
Seminar on Network Security. Citeseer.

[33] Bryan Parno. 2008. Bootstrapping Trust in a" Trusted" Platform.. In HotSec.
[34] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital

Side-Channels through Obfuscated Execution.. In USENIX Security Symposium.
431–446.

[35] Ahmad-Reza Sadeghi and Christian Stüble. 2004. Property-based Attestation for
Computing Platforms: Caring About Properties, Not Mechanisms. In Proceedings
of the 2004 Workshop on New Security Paradigms.

[36] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. 2017. ZeroTrace:
Oblivious memory primitives from Intel SGX. In Symposium on Network and
Distributed System Security (NDSS).

[37] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In IEEE S&P 2015.

[38] seL4. 2017. seL4/seL4. https://github.com/seL4/seL4.
[39] Adi Shamir and Eran Tromer. 2004. Acoustic cryptanalysis. presentation available

from http://www. wisdom. weizmann. ac. il/ tromer (2004).
[40] Ronald Toegl. 2009. Tagging the Turtle: Local Attestation for Kiosk Computing.

In Advances in Information Security and Assurance, Jong Hyuk Park, Hsiao-Hwa
Chen, Mohammed Atiquzzaman, Changhoon Lee, Tai-hoon Kim, and Sang-Soo
Yeo (Eds.).

[41] Zhenghong Wang and Ruby B Lee. 2006. Covert and side channels due to proces-
sor architecture. In Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual. IEEE.

[42] Samuel Weiser and Mario Werner. 2017. SGXIO: Generic Trusted I/O Path for
Intel SGX (CODASPY ’17).

[43] Dan Wendlandt, David G. Andersen, and Adrian Perrig. 2008. Perspectives:
Improving SSH-style Host Authentication with Multi-path Probing. In USENIX
2008 Annual Technical Conference (ATC’08). USENIX Association.

[44] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In IEEE
S&P 2015.

[45] Zhangkai Zhang, Xuhua Ding, Gene Tsudik, Jinhua Cui, and Zhoujun Li. 2017.
Presence Attestation: The Missing Link in Dynamic Trust Bootstrapping. In CCS
’17.

[46] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. 2012. Building Verifiable
Trusted Path on Commodity x86 Computers. In IEEE S&P 2012.

[47] Z. Zhou, M. Yu, and V. D. Gligor. 2014. Dancing with Giants: Wimpy Kernels for
On-Demand Isolated I/O. In IEEE S&P 2014.

A SGX BACKGROUND
In this appedix we provide background on SGX architecture, attes-
tation, leakage and software updates.

SGX basics. Intel’s SGX is a TEE architecture that isolates appli-
cation enclaves from all other software running on the system,
including the privileged OS [16]. Enclave’s data is encrypted and
integrity protected whenever it is moved outside the CPU chip. The
untrusted OS is responsible for the enclave creation. Initialization
actions taken by the OS to start enclaves are recorded securely
inside the CPU, creating a measurement that captures the enclave’s
code. Furthermore, enclaves have the ability to seal data to disk,

13

http://arxiv.org/abs/1801.01203

which essentially allows them to securely store confidential data
into non-volatile memories with the guarantee that only the same
enclave running in the same CPU will be able to retrieve it later.
Enclaves cannot directly execute system calls, therefore develop-
ers must typically design their applications into two logical parts.
Protected processing takes place within the enclave part, and an
unprotected part (normal user-level process) handles non-sensitive
operations such as file system access and I/O through the OS.
Local attestation. SGX allows one enclave to authenticate another
enclave on the same platform [5, 6]. An enclave can ask the CPU
to generate a report data structure, which includes the enclave’s
measurement and a cryptographic proof that the enclave exists on
the platform. This report can be given to another enclave who can
verify that the enclave report was generated on the same platform.
The authentication mechanism uses a symmetric key system where
only the enclave verifying the report and the enclave creating the
report know the key.
Remote attestation. Remote attestation is a procedure, where an
external verifier checks that certain enclave code is correctly initial-
ized. Attestation is an interactive protocol between three parties:
(i) the remote verifier, (ii) the attested SGX platform, and (iii) Intel
Attestation Service (IAS), an online service operated by Intel. Each
SGX platform includes a system service called Quoting Enclave that
has exclusive access to this key. In attestation, the remote verifier
sends a random challenge to the attested platform that returns a
QUOTE structure (capturing the enclave’s measurement from its
creation) signed by the attestation key which can be forwarded
to the IAS. The IAS then verifies the signed QUOTE, checks that
the attestation key has not been revoked, and in case of successful
attestation signs the QUOTE. The processors microcode version is
included to the signed attestation response.

The attestation key is a part of a group signature scheme called
EPID (Enhanced Privacy ID) [15] that supports two signaturemodes.
The default mode is privacy-preserving and it does not uniquely
identify the processor to IAS; the signature only identifies a group
like certain processor manufacturing batch. The linkable signature
mode allows IAS to verify if the currently attested CPU is the same
as previously attested CPU. If a linkable mode of attestation is
used, IAS reports the same pseudonym every time the same service
provider requests attestation of the same CPU [3].
Limitations and vulnerabilities. Recent research has demon-
strated that the SGX architecture can be susceptible to side-channel
leakage. Secret-dependent data and code access patterns can be
observed by monitoring shared physical resources such as CPU
caches [12, 23, 31] or the branch prediction unit [26]. The OS can
also infer enclave’s execution control flow or data accesses by mon-
itoring page fault events [44]. Many such attacks can be addressed
by hardening the enclave’s code, e.g., using cryptographic imple-
mentations where the data or code access patterns are independent
of the key.

The recently discovered vulnerabilities Spectre [25] and Melt-
down [28] allow application-level code to read memory content
of privileged processes across separation boundaries by exploit-
ing subtle side-effects of speculative execution. The Foreshadow
attack [14] demonstrates how to extract SGX attestation keys from
processors by leveraging the Meltdown vulnerability.

Intel SGX
processor

Untrusted OS

Untrusted App

Remote platform

Enclave

IO Devices

Local terminal

Local
PROXIMIKEY

Remote
PROXIMIKEY

3 IO

1 User initialization

2 PROXIMITEE attestation

Figure 17: Trusted path to remote enclave. This setup uses
two embedded devices. The local ProximiKey is connected
to the local platform and the remote ProximiKey is con-
nected with the remote platform.

Microcode updates. During manufacturing each SGX processor
is equipped with hardware keys. When SGX software is installed on
the CPU for the first time, the platform runs a provisioning protocol
with Intel. In this protocol, the platform uses one of the hardware
keys to demonstrates that it is a genuine Intel CPU running a
specific microcode version and it then then joins a matching EPID
group and obtains an attestation key [24].

Microcode patches issued by Intel can be installed to proces-
sors that are affected by known vulnerabilities such as the above
mentioned Foreshadow attack. When a newmicrocode version is in-
stalled, the processor repeats the provisioning procedure and joins a
new EPID group that corresponds to the updated microcode version
and obtains a new attestation key which allows IAS to distinguish
attestation signatures that originate from patched processors from
attestation signatures made by unpatched processors [24].

B TRUSTED PATH TO REMOTE ENCLAVE
In this appendix we describe how a local trusted path, described in
Section 6, can be extended to an enclave that resides on a remote
platform, as shown in Figure 17. Both the local and the remote
platform have a ProximiKey device attached to them. The I/O
devices are attached to the local ProximiKey. Trusted path creation
proceeds as follows:
① The user initiates the trusted path by selecting an enclave as

explained above.
② The local ProximiKey acts as the remote verifier in remote

attestation using using one of our attestation mechanisms. As the
end result of the attestation process, the local ProximiKey has
established a secure channel to the correct enclave via the remote
ProximiKey.
③ The user can securely communicate with the enclave.

C DETAILS ON PARAMETER SETTING
In this appendix we provide further details on how we find suitable
parameter values for initial and periodic proximity verification.

14

0.1 0.2 0.3 0.4 0.50.
75

1

No rerouting attack

(n
=

10
)

0.1 0.2 0.3 0.4 0.50.
75

1
(n

=
20

)

0.1 0.2 0.3 0.4 0.50.
75

1
(n

=
50

)

0.1 0.2 0.3 0.4 0.50.
75

1

k

(n
=

10
0)

459 460 462 465 470

Figure 18: Effect of different threshold latencies (Tcon). The
figure shows the success probability when no relay attack
takes place. The threshold latency Tcon = 470 µs reaches to
0.999999965 success probability for number of trials at least
20 (k .n, k = 0.4) out of n = 50 challenge-response protocol.

400 450 500 550

0.
0

0.
6

CDF of Leatency

TIme(µs)C
um

ul
at

iv
e

pr
ob

1.
0

470 µs

Figure 19: Cumulative distribution function for latencies.
We set the threshold Tcon at 470 µs which has a cumula-
tive probability of 0.75 in the experiment where no rerout-
ing attack takes place with an extremely low probability
(9.73 × 10−5).

C.1 Initial Proximity Verification
In Section 4.4, we outlined a three-step approach to determine suit-
able parameter values for proximity verification. Here, we provide
further details on each of these steps.
1. Finding suitable threshold Tcon . Finding a suitable latency
thresholdTcon is a non-trivial task. A low threshold requires a high
number of the challenge-response rounds, since the protocol (cf.
Section 3) requires at least a fraction k of the observed responses
to be less or equal to Tcon and the lower threshold has very low
cumulative probability value in the latency distribution (see Fig-
ure 8). Conversely, a high threshold value enables some latencies
measured during an attack to be classified as legitimate local replies,
hence increasing the chances of the attacker to break the proxim-
ity verification. To address this challenge, we perform a trial over
multiple threshold candidates to evaluate their viability.

Figure 18 shows the legitimate success probability Pleдit for dif-
ferent number of rounds (n ∈ {10, 20, 50, 100}). We iterate through
multiple threshold times (Tcon ∈ {459µs, 460µs, 462µs, 465µs, 470µs}),
and 470µs provides high success ratio for different values of k
(Pleдit = 0.9{7}652 (n = 50) and Pleдit = 0.9{13}71 (n = 100)).
We chose to test Tcon up until 470µs because as can be observed in
figure 8 for these values we observe extremely small occurrences
(9.73 × 10−2) of latency responses during an attacking scenario. It
20.9{n }x denotes 0.n-times 9 followed by x .

0.2 0.3 0.4 0.5 0.6

1e
−

24
9

1e
−

41

Rerouting attack (Tcon=470 μs)

1e
−

24
9

1e
−

41

0.2 0.3 0.4 0.5 0.6

0.
90

0.
96

No rerouting attack (T con=470 μs)

k

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0.
90

0.
96

10 20 30 40 50 100

Figure 20: Finding suitable fraction k . The graph shows the
legitimate enclave’s success probability in an ideal scenario
and the attacker’s success probability in rerouting attack sce-
nario with varying k .

is possible to increment the latency further to improve the success
probability, but doing so will start increasing the probability for the
attacker as well. After that, we estimate that any latency value less
than or equals to the threshold Tcon appears with the cumulative
probability of pc = Pr[396 ≤ x ≤ 470] =

∑470
i=396 Pr[x = i] = 0.75

(where 396 µs is the smallest latency experienced).
The attacker’s success probability for a single round is the cu-

mulative probability sampled from the attacker’s distribution (the
grey histogram in Figure 8) pA = Pr[x ≤ 470] =

∑470
i=451 Pr[x =

i] = 9.73 × 10−5.
Now, for both cases (simulated attack and benign case) we can

model the complete challenge-response protocol of n rounds as a
Bernoulli’s trial where we look for at least kn responses within
470 µs out of n. We can write this cumulative probability as a
binomial distribution:

Pr[x ≥ nk] =
n∑

i=nk

(
n

i

)
(p)i (1 − p)n−i ; where p ∈ {pH,pA }

2. Choosing a suitable fractionk . The next step of the evaluation
is to find a suitable fraction k based on the threshold timeTcon . Note
that both the success probability of the attacker and the legitimate
enclave is calculated as the cumulative probability from a binomial
distribution (from nk to n). Hence, we require to choose a suitable
value of k that maximizes Pleдit while minimizing Padv .

We calculate two graphs that are depicted in Figure 20 where
the x-axis denotes k , and the y-axis denotes attacker’s success prob-
ability Padv and legitimate success probability Pleдit , respectively,
while usingTcon = 470µs . We observe a sharp decrease in the legit-
imate success probability at k = 0.4. Hence, fix k = 0.4 to achieve
the maximum Pleдit . Additionally, in the graph of attacker’s suc-
cess probability, the blue horizontal line is placed at 10−40 ≈ 2−133.
Hence we propose to choose any round configuration bellow this
horizontal line, where n ≥ 25. With number of rounds set to n = 50
and k = 0.4, we have Pleдit = 0.999999965 and Padv = 2.71×10−67.
Similar result could be also observed in Figure 20 where the success
probability of the legitimate enclave decreases significantly after
k = 0.55 for Tcon = 470µs .

15

3. Generalizing the number of rounds n. Figure 10 extends this
analysis to the general number of challenge-response rounds span-
ning from n = 2 to 100 where the attacker uses ping in food mode
and achieves 153µs average network latency. Here we compute the
probability of attacker returning the reply within 470µs for at least
k = 0.4 fraction of challenges. The y-axis denotes the attacker’s
success probability which diminishes overwhelmingly with the
increasing number of challenges (keeping the fraction constant
at k = 0.4). Notice that, by merely choosing a higher number of
rounds, satisfying values for the legitimate and attacker’s success
probabilities can be achieved even in the case in which the attacker
manages to optimize the kernel for minimum network latency.
Hence, ProximiTEE can distinguish legitimate enclave and the at-
tacker despite the lower latency. As long as the network latency
is not negligible even smaller attacker’s latencies than we could
measure can be protected against by employing a higher number
of challenge-response rounds.

C.2 Periodic Proximity Verification
In Section 4.5 we outlined a three-step approach for finding suitable
parameters for the periodic proximity verification that we use for
revocation. Here, we provide further details on each of these steps.
1. Finding suitable thresholdTdetach .We set the thresholdTdetach
to 510 µs . We choose this value as we experience zero sample
from the timing distribution (refer to the ‘yellow’ distribution
Figure 8) where no rerouting attack takes place. While in the at-
tacker’s distribution, the cumulative probability of the response
occurring between Tcon and Tdetach is Pr [Tcon ≤ LA ≤Tdetach
] =

∑510
i=451 Pr[LA = i] = 1.4 × 10−2. Using Tdetach , we can now

define the challenge response rounds in Figure 6 for a single round
as following:

Pr[Lleдit ≤ Tcon] = Pr[leдit ∈ green] = 0.75
Pr[Tcon < Lleдit < Tdetach] = Pr[leдit ∈ yellow] = 0.237

Pr[Lleдit ≥ Tdetach] = Pr[leдit ∈ red] = 7.09 × 10−3

Pr[LA ≤ Tcon] = Pr[A ∈ green] = 9.73 × 10−5

Pr[Tcon < LA < Tdetach] = Pr[A ∈ yellow] = 1.4 × 10−2

Pr[LA ≥ Tdetach] = Pr[A ∈ red] = 0.985

2. Finding suitable sliding window sizew . Sliding window size
is analogous to that of the number of rounds n. We keep the size
of the sliding window asw = n = 50 as it only requires the Prox-
imiKey to remember the past 50 interactions and achieve high
probability for the legitimate enclave and negligible success prob-
ability for the attacker. Similar to the previous approach, only if
20 out of 50 (k = 0.4) challenge-response round where responses
are within 470 µs , ProximiTEE yields success probabilities as the
following:

Pr[A ∈ success window] = P ′adv = P ′f n = 2.71 × 10−67

Pr[A ∈ failed window] = Pr[A ∈ red]2 = 0.970
Pr[leдit ∈ success window] = 0.999999965

Pr[leдit ∈ failed window] = P ′f p = Pr[leдit ∈ red]2 = 5 × 10−5

ProximiTEE SGX latency

time (µs)
6 8 10 12 14

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Intel NUC 1
Intel NUC 2
Dell laptop

Different ProximiKey latency

time (µs)
400 450 500 5500.

00
0.

02
0.

04
0.

06

ProximiKey 1
ProximiKey 2
ProximiKey 3

Figure 21: Different target platforms/ProximiKey.We evalu-
ates latencies using three different SGX platforms. The Intel
NUCs were few microseconds faster. Additionally, we eval-
uated latencies using three different Arduino boards. The
latencies are consistent.

The probability that a halt window event occurs for a legitimate
application-specific enclave running on the platform in proximity
is Pr[leдit ∈ red] ≈ 7.09 × 10−3. The ProximiKey halts all the
data communication to the target platform until the next periodic
proximity verification.

If two or more than two latencies ≥ 510µs (Tdetach) are received,
the ProximiKey terminates the connection and revoke the platform.
The downtime that can happen as a result of false positive during a
connection of 10 years is around 2 minutes.
3. Finding suitable frequency f . The frequency f determines
how fast the connection is terminated in case the ProximiKey
device is detached. Note that the ProximiKey takes around 12ms
on average to issue a new random challenge (by reading out the
noise of the analog pins of the Arduino board) in the legitimate
case. Hence, by performing a round of the protocol as soon as
the previous is over, we achieve the maximum attainable average
frequency of ∼ 83 rounds per second. We use this frequency as
it consumes only 6.48 KB (0.0011% of the channel capacity) and
allows the communication channel to be halted on average after
12ms of the start of a relay attack and terminated in 24ms .

D ADDITIONAL EXPERIMENTAL RESULTS
In this appendix we provide results from additional experiments.

We evaluated the consistency of measured latencies across differ-
ent computing platforms. Figure 21 shows the frequency distribu-
tion of latencies across three SGX platforms and three ProximiKey
devices.We conclude thatmeasurements are consistent result across
devices. The two Intel NUCs are few microseconds faster than the
Dell Latitude laptop. Additionally, we evaluated the effect of two
different USB cable lengths (3m and 1m) and three different Ethernet
cables (lengths of 1m, 7m, and 10m). Figure 22 shows (on the right)
that the USB cable has very small effect on the latency (around 10
µs average difference). It also shows (on the left) no significant
differences between the different Ethernet cable lengths.

Figure 24 shows the challenge-response timing trace that we
captured from the oscilloscope.

Effects of core pinning.We executes the ProximiTEE enclave
application pinning to specific CPU cores (using the command
taskset [COREMASK] [EXECUTABLE]). Core pinning forces the
operating system to use a specific set of CPU core(s) to execute

16

Different Ethernet cable length

time (µs)
500 600 700 800 900 10000.

00
0

0.
01

0
0.

02
0

1m
7m
10m

Different USB cable length

time (µs)
400 420 440 460 480 5000.

00
0.

02
0.

04
0.

06
0.

08

USB Cable + Extender (3m)
USB Cable (1m)

Figure 22: Different Ethernet/USB cables. We evaluated la-
tencies two different USB cables: one with an USB cable (1m)
and another with an USB extender of length 2m attached. Ad-
ditionally, we evaluated latencies using three different Eth-
ernet cables (1, 7 and 10 m). Latencies are consistent. Note,
that the latency is sampled in the experiment conducted
with non-ping flood mode.

Effect of CPU core pinning

time (µs)
400 420 440 460 480 5000.

00
0.

04
0.

08 Core pinned
No pinning

Figure 23: Effect ofCPU core pinning on the running enclave
application. We evaluated the effect of core pinning. Core
pinning restricts the application running on a specific core,
eliminating the chance of switching CPU cores by the OS.
Switching of the CPU cores has very negligible effect on the
latency as shown by the figure.

Length of each square
(200 𝜇𝑠)

450 𝜇𝑠Sending a challenge
[low-high]

Receiving a response
[high-low]

Trigger voltage to
record a event

Figure 24: Latency measurement on oscilloscope. We use a
high precision oscilloscope to measure the latency of Prox-
imiTEE. The figure annotates the sending and the receiving
of the challenge response messages that is activated by the
GPIOs on the Arduino board.

a program. CPU pinning may significantly bring down execution
time due to the elimination of core switching and ability to reuse L1
and L2 cache. Figure 23 illustrates the effect of CPU core pinning vs.
no pinning. We experience negligible effect by core pinning. Hence
we conclude that the attacker won’t gain any advantage by CPU
core pinning.

Effects of CPU load. Figure 25 and 26 shows the challenge re-
sponse latencies and the enclave execution times respectively with
varying degree of CPU stress testing. We used stress-ng to stress
different number of CPU cores. We experienced a minor slowdown
with the increasing number of busy CPU cores. But the slowdown
is insignificant. For example, as shown in the Figure 26, we experi-
enced a shift of 12µs when all the 8 CPU cores are busy executing
the benchmark software. Also, note that the load introduced by
the benchmark is a sustained load on all the CPU cores which is
much more demanding for the CPUs compared to the CPU loads
introduced by real-life applications. In that scenarios, the deviation
would be even lesser.

We conclude that proximity verification for SGX enclaves is reli-
able even under high system load. In rare cases of extreme system
load, proximity verification might fail, but this is an availability
concern, but a security threat.

17

400 440 4800.
00

0.
06

0.
12

No load
1 core

400 440 4800.
00

0.
06

0.
12

No load
2 cores

400 440 4800.
00

0.
06

0.
12

No load
3 cores

400 440 4800.
00

0.
06

0.
12

No load
4 cores

time (µs)
400 440 4800.

00
0.

06
0.

12

No load
5 cores

time (µs)
400 440 4800.

00
0.

06
0.

12

No load
6 cores

time (µs)
400 440 4800.

00
0.

06
0.

12

No load
7 cores

time (µs)
400 440 4800.

00
0.

06
0.

12

No load
8 cores

Figure 25: Effect on latency experienced by the ProximiKeywith different number of stressed CPU cores. We evaluated laten-
cies while running CPU intensive benchmark on different number of cores. Note that with higher number of busy cores, the
means of the distributions start to shift towards right but stayed within Tcon = 470µs. We used stress-ng Linux stress-testing
application.

5 10 20 300.
0

0.
4

0.
8 No load

1 core

5 10 20 300.
0

0.
4

0.
8 No load

2 cores

5 10 20 300.
0

0.
4

0.
8 No load

3 cores

5 10 20 300.
0

0.
4

0.
8 No load

4 cores

time (µs)
5 10 20 300.

0
0.

4
0.

8 No load
5 cores

time (µs)
5 10 20 300.

0
0.

4
0.

8 No load
6 cores

time (µs)
5 10 20 300.

0
0.

4
0.

8 No load
7 cores

time (µs)
5 10 20 300.

0
0.

4
0.

8 No load
8 cores

Figure 26: Effect on enclave execution time with different number of stressed CPU cores. We evaluated the enclave running
time (computing the challenge-response protocol) while running CPU intensive benchmark on different number of cores.

18

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 System Model
	2.2 Relay Attacks
	2.3 Limitations of Known Solutions

	3 ProximiTEE: Addressing Relay Attacks
	3.1 Approach Overview
	3.2 Example Use Cases
	3.3 Solution Details
	3.4 Security Analysis

	4 Evaluation of ProximiTEE
	4.1 Implementation
	4.2 Experimental Setup: Simulated Attackers
	4.3 Latency Distributions
	4.4 Initial Proximity Verification Parameters
	4.5 Periodic Proximity Verification Params
	4.6 Performance

	5 Addressing Emulation Attacks
	5.1 Emulation Attack
	5.2 Boot-Time Initialization Solution
	5.3 Security Analysis
	5.4 Comparison to TOFU
	5.5 Implementation

	6 Building Trusted Path
	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A SGX Background
	B Trusted Path to Remote Enclave
	C Details on Parameter Setting
	C.1 Initial Proximity Verification
	C.2 Periodic Proximity Verification

	D Additional Experimental Results

