
ProximiTEE: Hardened SGXAttestation by
Proximity Verification

Aritra Dhar
ETH Zurich

Ivan Puddu
ETH Zurich

Kari Kostiainen
ETH Zurich

Srdjan Čapkun
ETH Zurich

ABSTRACT

Intel SGX enables protected enclaves on untrusted computing plat-
forms. An important part of SGX is its remote attestationmechanism
that allows a remote verifier to check that the expected enclave was
correctly initialized before provisioning secrets to it. However, SGX
attestation is vulnerable to relay attacks where the attacker, using
malicious software on the target platform, redirects the attestation
and therefore the provisioning of confidential data to a platform that
he physically controls. Although relay attacks have been known for
a long time, their consequences have not been carefully examined.
In this paper, we analyze relay attacks and show that redirection
increases the adversary’s abilities to compromise the enclave in sev-
eral ways, enabling for instance physical and digital side-channel
attacks that would not be otherwise possible.

We propose ProximiTEE, a novel solution to prevent relay at-
tacks. Our solution is based on a trusted embedded device that is
attached to the target platform. Our device verifies the proximity
of the attested enclave, thus allowing attestation to the intended
enclave regardless of malicious software, such as a compromised OS,
on the target platform. The device also performs periodic proximity
verification which enables secure enclave revocation by detaching
the device. Although proximity verification has been proposed as
a defense against relay attacks before, this paper is the first to ex-
perimentally demonstrate that it can be secure and reliable for TEEs
like SGX. Additionally, we consider a stronger adversary that has
obtained leaked SGX attestation keys and emulates an enclave on
the target platform. To address such emulation attacks, we propose
a second solution where the target platform is securely initialized
by booting it from the attached embedded device.

1 INTRODUCTION

Trusted execution environments (TEEs) like Intel’s SGX enable to
securely execute applications on untrusted computing platforms.
Remote attestation is a key feature of SGX, and other similar TEE
architectures, as it allows a remote verifier to check that the attested
enclave was correctly constructed before provisioning secrets to it.

Relay attacks.While SGX’s remote attestation guarantees that the
attested enclave runs the expected code, it does not, however, guar-
antee that the enclave runs on the expected computing platform.
An adversary that controls the OS (or other software) on the target
platform can relay incoming attestation requests to another plat-
form. Such relay attacks are a long-standing open problem in trusted
computing, as already a decade ago Parno identified such attacks in
the context of TPM attestation [25].

Upon a first look, it might seem that relay attacks do not pose a
problem for TEEs. If the attacker relays the attestation to another
machine, the same security guarantees should hold since the data
will only be available within the remote TEE and the enclave code

that can access the provisioned secrets is verified. However, such
simple reasoning is incorrect.

In this paper, we provide the first careful analysis of the implica-

tions of relay attacks on SGX and show that by relaying, the adver-
sary increases his capabilities to attack the attested enclave signifi-
cantly. One example of increased adversarial capabilities is physical
side-channel attacks. If the adversary redirects the attestation to a
platform that he physically controls, he can mount various phys-
ical side-channel attacks, like [12, 13, 31, 33], that would not have
been possible without the relay. Another example are enhanced
side-channel attacks.While controlling theOS is in the SGX attacker
model, it is not unrealistic that an adversarymight be in the situation
of controlling only user-privileged code on the target platforms. This
degree of control however allows him to redirect attestation to an-
other platformwhere he controls theOS,which allows him to launch
software-based side-channel attacks, such as [7, 14, 24], that leverage
system privileges to attack enclaves. In Section 3, we explain further
examples of attacks that are enabled by attestation redirection.

A typical “solution” to relay attacks is to assume trust on first use
(TOFU). However, in many application scenarios, TOFU is neither
secure nor practical. For example, solutions, where attestation is per-
formed immediately after a fresh OS installation, cannot be applied
to settingswhereOS reinstallation is simply not possible. Besides, all
TOFU variants assume that the target platform OS is trusted, even
if momentarily, which violates the SGX’s trust model.

The SGX attestation protocol is designed to be anonymous. The
protocol is based on EPID group signatures [15] and thus the remote
verifier cannot distinguish whether the correct enclave on the target
platform was attested or if the attestation was redirected to another
platform. Upon first inspection, it may seem like relay attacks are
only possible because of such anonymity features and that relaying
could be easily prevented if attestation protocols were designed to
be non-anonymous. However, such simple reasoning is incorrect
as well. We show that all SGX attestation variants, including the
“linkable” attestation mode and the recently introduced Data Center
Attestation Primitives (DCAP) [28] are vulnerable to relay attacks.
We also explain why relay attacks would remain possible, even if all
anonymity features would be removed from the attestation.

Our solution.We propose a new solution, called ProximiTEE, that
prevents relay attacks by leveraging a simple embedded device that
is attached to the attested target platform. Our solution is best suited
to scenarios where i) the deployment cost of such an embedded
device is minor compared to the benefit of more secure attestation,
and ii) TOFU solutions are not acceptable. Attestation of servers at
cloud computing platforms and setup of SGX-based permissioned
blockchains are two such examples.

In ProximiTEE, the remote verifier establishes a secure connec-
tion to the embedded device whose public key it knows through

1



Submission, ACSAC, 2019 Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Čapkun

standard device certification. The device performs normal SGX attes-
tation and additionally verifies the proximity of the attested enclave
using a simple distance-bounding protocol [6]. After the initial at-
testation, the device performs periodic distance-bounding measure-
ments and the communication channel created during the attesta-
tion stays active only as long as the device is connected to the same
platform. Thus, the physical act of attaching the device to an SGX
platform enables secure attestation (enrollment) while detaching the
devicewill prevent further communicationwith the attested enclave
(revocation). Neither enrollment nor revocation requires interaction
with a trusted authority. This property is useful in applications like
permissioned blockchains where validator nodes are separate orga-
nizations assigned by a trusted authority. The authority can issue
one device per organization, and each organization is free tomanage
their computing resources (e.g., detach the device from one platform
and attach it to another) without interaction with the authority.

Mainresults.Parno [25] identifieddistanceboundingasacandidate
solution to TPM relay attacks already ten years ago, but concluded
that it could not be realized securely as the slow TPM identification
operations (signatures) make a local and relayed attestation indis-
tinguishable. Our evaluation shows that proximity verification is

possible for SGX assuming very fast adversaries. The main reason
why distance bounding protocols work for SGX, but not with TPMs,
is that SGX is a programmable TEE where it is possible to use pre-
established security associations and efficient challenge-response
protocols based on simple operations such as XOR.

ToevaluateProximiTEE,we implemented it usingaUSB3.0proto-
typing board. The main purpose of our evaluation is to demonstrate
that the adversary cannot redirect the attestation over the Internet to
an adversary-controlled platformwithout being detected. We focus
on such re-direction, as it offers the most increased capabilities to
the adversary (e.g., physical attacks). The secondary purpose of our
evaluation is to determine whether proximity verification can pre-
vent redirection to a co-located platform, like another server on the
same server rack. Such relays are typically less harmful, but ideally,
they should be prevented as well.

In our evaluation, we simulate a strong adversary that i) is only
a single network hop away from the target, ii) performs the required
protocol computations instantaneously, iii) has infinitely fast hard-
ware interface, and iv) has enabled software-based packet forward-
ing optimizations on the target platform.We measure the legitimate
challenge-response latency on our prototype to be 185µs on average.
In the case of the simulated relay attack, the average latency is about
264µs . These two latency distributions are distinguishable and allow
us to set our proximity verification protocol parameters such that
the adversary’s probability of performing a successful relay attack is
negligible (3.55×10−34), while legitimate verification succeeds with
a very high probability (0.999999977). Importantly, the adversary
cannot increase his success probability with repeated attempts, as
attestation is triggered by the trusted remote verifier. Our experi-
ments also show that enclave revocation using periodic proximity
verification is both secure and practical.

The performance overhead of proximity verification is small: the
initial proximity verification adds only a small delay to the attesta-
tion protocol, and the periodic proximity verification consumes only
a very minor fraction of the available USB 3.0 channel capacity. Our

implementation shows that the complexity of such a device can be
small: the software TCB of our prototype is 3.8 KLoC.

Emulation attacks. Additionally, we consider a stronger adver-
sary that has obtained leaked, but not yet revoked, attestation keys
and can emulate an SGX-enabled processor. Proximity verification
alone cannot prevent emulation attacks, as a perfectly emulated en-
clavewould pass any proximity test. Therefore, we propose a second
attestation mechanism based on boot-time initialization.

In this solution, the target platform loads a small, single-purpose
kernel from the attached device and launches an enclave that seals
a secret key known by the device. Subsequently, when attestation
is needed, the enclave can verify the proximity of other enclaves
on the same platform using SGX’s local attestation. This enables
secure attestation regardless of potentially leaked attestation keys.
Our second solution can be seen as a novel variant of thewell-known
TOFU principle. The main benefits over previous variants are easier
adoption (e.g., no OS re-installation) and increased security (e.g., OS
not trusted even temporarily). Due to space constraints, we provide
the full details of this second solution in Appendix A.

Contributions and outline. This paper contributions are orga-
nized as follows:
1. Analysis of relayattacks.While relayattackshavebeenknownfor

more than a decade, their implications have not been fully analyzed.
InSection3,weprovide thefirst suchanalysis and showhowrelaying
amplifies the adversary’s capabilities for attacking SGX enclaves.
2. ProximiTEE: Addressing relay attacks. In Section 4, we propose a

hardened SGX attestation mechanism based on an embedded device
and proximity verification to prevent relay attacks. ProximiTEE
does not rely on the common TOFU assumption, and hence, our
solution improves the security of previous attestation approaches.
3. Experimental evaluation.We implement a complete prototype

of ProximiTEE and evaluate it against a very strong and fast adver-
sary. Our evaluation in Section 5 is the first to show that proximity
verification can be both secure and reliable for TEEs like SGX.
4. Addressing emulation attacks.We also propose another attesta-
tion mechanism based on boot-time initialization to prevent emu-
lation attacks. This mechanism, described in Appendix A, is a novel
variant of TOFU with deployment, security and revocation benefits.

2 SGX BACKGROUND

Intel SGX is a TEE architecture that isolates application enclaves
from all other software running on the system, including the priv-
ileged OS [9]. Enclave’s data is encrypted and integrity protected
whenever it is moved outside the CPU chip. The untrusted OS is
responsible for the enclave creation and its initialization actions
are recorded securely inside the CPU, creating ameasurement that
captures the enclave’s code. Enclaves can perform local attestation,
which allows one enclave to ask the CPU to generate a signed report
that includes its measurement. Another enclave on the same plat-
form can verify the validity of the report without interacting with
any other external services. Enclaves can seal data to disk, which
allows them to securely store confidential data such that only the
same enclave running in the sameCPUwill be able to retrieve it later.

2



ProximiTEE Submission, ACSAC, 2019

2.1 Remote Attestation

Remote attestation enables an external verifier to check whether a
specific enclave has been correctly instantiated in a SGX protected
environment. In the following, we describe the two main classes
of remote attestation supported by Intel: i) “enhanced privacy ID”
(EPID) attestation [15], and ii) the recently introduced “data center
attestation primitives” (DCAP) [28].

EPID attestation. The EPID remote attestation is an interactive
protocol between three parties: the remote verifier; the attested SGX
platform; and the Intel Attestation Service (IAS), an online service
operatedby Intel. EachSGXplatform includes a systemservice called
Quoting Enclave (QE) that has exclusive access to an attestation key.
The remote verifier sends a random challenge to the attested plat-
form,which replieswith aQUOTE structure, capturing the enclave’s
measurement from its creation, signed with the attestation key. The
verifier can then send the QUOTE to the IAS that verifies its signa-
ture and correctness, checks that the attestation key has not been
revoked, and in case of successful attestation signs the QUOTE.

The attestation key used by the QE is part of a group signature
scheme called EPID that supports two signature modes: random
base mode and name base mode, also called “linkable” mode. Both
signaturemodesdonotuniquely identify theprocessor to the IAS;but
only a group, like a particular processor manufacturing batch. The
difference between them is that the linkable signature mode allows
to check whether two attestation requests came from the same CPU.

DCAP attestation.Whereas the EPID attestation variant requires
connectivity to an Intel-operated attestation service, and is limited
to pre-defined signature algorithms, the main goal of the DCAP
attestation variant is to enable corporations to run their own local at-
testation serviceswith freely chosen signature types. To achieve this,
each SGXplatforms is, at the time ofmanufacturing, equippedwith a
unique Platform Provisioning ID (PPID) and Provisioning Certification
Key (PCK). Intel also provides a trusted Provisioning Certification
Enclave (PCE) that acts as a local CAand certifies customQuotingEn-
claves that can use freely-chosen attestation services and signatures.

DCAP attestation requires a trusted enrollment phase, where the
enrolled SGXplatform sends its PPID (in encrypted format) to a local
corporate key management system that obtains a PCK certificate
for the enrolled platform from an Intel-operated DCAP service. Af-
ter that, the custom Quoting Enclave can create a new attestation
key that is certified by the PCE enclave on the same platform. The
certified attestation key can then be delivered to the corporate key
management system that verifies it using the previously obtained
PCK certificate. Once such enrollment phase is complete, the custom
QE can sign attestation statements that can be verified by a local
corporate attestation service without contacting Intel.

2.2 Side-Channel Leakage

Recent research has demonstrated that the SGX architecture is sus-
ceptible to side-channel leakage. Secret-dependent data and code
access patterns can be observed by monitoring shared physical re-
sources such as CPU caches [7, 14, 24] or the branch prediction
unit [17]. The OS can also infer enclave’s execution control flow
or data accesses by monitoring page fault events [35]. Many such

Fully Compromised Trusted Subject to side channels

A Standard side channels B Enhanced side channels

Service provider

EnclaveOS

Processor

A
App

Target platform 1 Target platform 2

1
User

Internet

Remote attacker’s platform2

EnclaveOS

Processor

B
App

Relay

Attestation
EnclaveOS

Processor

A
App

Figure 1: Relay attack. The adversary redirects attestation to

his own platform which gives him increased (side-channel

and kernel-level) abilities to attack the attested enclave.

attacks can be addressed by hardening the enclave’s code, e.g., us-
ing cryptographic implementations where the data or code access
patterns are independent of the key.

The recently discovered system vulnerabilities Spectre [16] and
Meltdown [19] allow application-level code to readmemory content
of privileged processes across separation boundaries by exploiting
subtle side-effects of transient execution. The Foreshadow attack [8]
demonstrates how to extract SGX attestation keys from processors
by leveraging the Meltdown vulnerability.
Microcode updates.During manufacturing, each SGX processor
is equipped with hardware keys. When SGX software is installed on
the CPU for the first time, the platform runs a provisioning protocol
with Intel. In this protocol, the platform uses one of the hardware
keys to demonstrates that it is a genuine Intel CPU running a specific
microcode version and it then then joins amatching EPID group and
obtains an attestation key [15] (or a signing key for the PCE enclave).

Microcode patches issued by Intel can be installed to processors
that are affected by known vulnerabilities such as the above men-
tioned Foreshadow attack. When a new microcode version is in-
stalled, the processor repeats the provisioning procedure and joins
a new group that corresponds to the updated microcode version
and obtains a new attestation key which allows IAS to distinguish
attestation signatures that originate from patched processors from
attestation signatures made by unpatched processors [15].

3 RELAYATTACKANALYSIS

In this section, we provide an analysis of relay attacks on SGX.

3.1 Relay Attacks

We consider a systemmodel shown in Figure 1 that consists of three
parties: the target platform, the remote verifier, and the attacker’s
platform.The remote verifier is a trustedparty thatwishes to connect
and attest to a specific SGX platform. The target platform is the SGX
platform to which the remote verifier intends to connect. Finally,
the attacker’s platform is a platform owned by the attacker that is
connected to the target platform through the Internet.
Adversarymodel.Weconsider the following adversarymodel that
we call the relay attacker. The relay attacker controls the OS and all
other privileged software on the target platform at least temporarily,
in particular at the time of the remote attestation. The OS compro-
mise on the target platformmay be later detected and disinfected.
We consider the case in which the target platform resides in a data

3



Submission, ACSAC, 2019 Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Čapkun

SGX attacks

Attacks enabled by
leaked attestation keys [8]

Side-Channels
on application enclave

Software/digital

Privilege
escalation

Case (A) in Figure 3:
Complement of Case (B)

Case (B) in Figure 3:
Target platform: secure

Attacker’s platform: vulnerable

Physical

Power analysis [33]
EM radiation [12]
Acoustic [31]

Page fault [35]
Cache [7, 10, 14, 24]

Branch prediction [17]

Enabled by relay

Independent of relay

Figure 2: Relay attack implications. The tree shows the types

of attacks that are enabled by redirection and ones that are

independent of relay.

center or otherwise in a facility with restricted physical access. The
attacker hence does not have physical access to the target platform
(or any other co-located platform in the same facility).

The relay attacker controls the OS and all other privileged soft-
ware on the attacker’s platform permanently and has physical access
to that platform. The attacker also controls the network between
the target platform and his platform. At the time of the attestation,
the adversary has not been able to extract attestation or sealing keys
from his platform or any other SGX processor.

The relay attack. The relay attacker can redirect the attestation
requests intended for the target platform to his platform, as shown
in Figure 1. This is a realistic attack for two reasons. First, in the
SGX attacker’s model the adversary is allowed to control the OS and
can hence easily redirect any network request the target platform
receives. Second, even if the attacker cannot compromise the OS in
the target platform, it might be able to exploit some vulnerability of
the untrusted application managing the enclave. The exploit might
allow the attacker to manipulate the application’s control flow to
redirect attestation request to any platform he desires.

3.2 Relay Attack Implications

Although relay attacks have been known for a long time [25], their
implications to modern TEEs like SGX have not been carefully an-
alyzed. Next, we perform the first such analysis.

Themain consequence of attestation redirection is that it increases
the adversary’s ability to attack the attested enclave through side-
channels which are a well-known limitation of SGX (see Section 2.2).
In Figure 2 we highlight two major classes of attacks: those that are
only possible by first performing a relay attack, which we denote
as “enabled by relay”, and those that can be done whether or not the
attacker also does a relay attack,whichwe call “independent of relay.”

Attacks using leaked attestation keys. Our first observation is
that attacks based on leaked attestation keys (e.g., ones obtained
through the Foreshadow attack [8]) are independent of relaying. If
the adversary has obtained a valid and non-revoked attestation key,
he can emulate an SGX processor on the target platform and obtain
any secrets provisioned to it. We revisit such emulation attacks and
propose a solution for addressing them in Appendix A.

Target Attacker

OS compromised

Relay Attest enclave

New attack
discovery

New attack
discovery

Secret
provisioning

OS cleanup

Independent of relay

Case (A)
Time

Target Attacker

OS compromised

Relay Attest enclave

Secret
provisioning

OS cleanup

New attack
discovery

New attack
discovery

Enabled by relay

Case (B)

Figure 3: Example sequences of events. In Case A the at-

tack success is independent of relay. In Case B attestation

redirection enables the attack.

Physical side channels.One major benefit of the relay, from the
adversary’s point of view, is that it enables physical side-channel
attacks against application enclaves. Once a secret has been provi-
sioned to the attacker’s platform, she has asmuch time as she likes to
perform the attack. Some examples of physical side-channel attacks
are acoustic, electric and electromagnetic monitoring, which have
been shown to be both effective and inexpensive means to extract
secrets frommodern PC platforms (see [13] for a summary of known
attacks). Since the adversary does not have physical access to the
target platform, such attacks are clearly not possible without relay.
Hardening programs like enclaves against physical side channels is
difficult and currently an open problem [13]. Therefore, developers
cannot easily defend their enclaves against physical side channels
that are enabled by attestation redirection.
Privilege escalation for digital side channels.Another possible
benefit of relay attacks is that it may enable privilege escalation. In
cases where the adversary has only compromised the user-space
application thatmanages the enclave, and not theOS, the application
can redirect the attestation to the attacker’s remote platform where
he controls the OS as well. In such cases, the relay enables digital
side-channel attacks that require system privileges. Several such
attacks have been recently demonstrated against SGX [7, 14, 24].
Attacks that depend on timing of events. The third, and per-
haps the most subtle, implication of relay is that it can also enable
software-based side-channel attacks that would not be possible to
launch on the target platform due to timing of certain events. These
events include, but are not restricted to the provisioning of secrets
to the enclave, the possible disinfection of the target platform from
malicious software, and the discovery of a new side-channel attack.

We group the relative ordering of these events into two cases: A
and B. Case A covers event sequences that only lead to attackswhich
are independent of relay andCase B covers event sequences inwhich
redirectiongives extra capabilities to the adversary.Below, and inFig-
ure3,weprovide examplesof sequencesbelonging to these twocases:
Case A: independent of relay. Adigital side-channel is independent
of relay if the adversary could perform it on the target platform
as well. An example of such case is shown th timeline depicted in

4



ProximiTEE Submission, ACSAC, 2019

Figure 3, where a new attack is discovered after secret provisioning
but before the target platform OS is disinfected.
Case B: attack enabled by relay. Case B is reached whenever it oc-
curs that by using a side channel the enclave is exploitable on the
attacker’s platform, but not on the target platform. A timeline of
such case is shown in Figure 3, where at the time of attestation and
secret provisioning, the enclave is hardened against all knowndigital
side-channel attacks (using tools like Raccoon [26], ZeroTrace [27]
or Obfscuro [4]). After secret provisioning, the OS compromise is
detected and cleaned. Later, a new side-channel attack vector (that is
not prevented by the used tools) is discovered. If the adversary per-
formed redirection and the secret was provisioned to the attacker’s
machine, the new side channel is exploitable. Without the relay, the
attack is not possible.

3.3 Limitations of Known Solutions

Next,we review commonly suggested solutions and their limitations.
Trust on first use.A common “solution” in the research literature
is to rely on trust on first use (TOFU) [34]. Simple TOFU solutions
assume that the OS is clean at the time of attestation or perform at-
testation only immediately after fresh OS installation. Both of these
approaches have obvious security and deployment problems. OS
re-installation is not always possible and trusting the OS, even if
momentarily, is undesirable (and violates the SGX’s trust model).
SGX attestation variants.As we explain in Section 2.1, SGX sup-
ports different variants of remote attestation. Unfortunately, none
of these schemes prevents relay attacks without some form of TOFU
assumption.
1. The EPID attestation scheme is based on group signatures, and
thus the remote verifier cannot distinguish between attestation re-
sponses that are received from the expected target platform or the
adversary’s platform. To accept a successful attestation, the remote
verifier must rely on trust on first use.
2. The linkable EPID attestation mode allows the remote verifier
to check if he has attested the same platform before, but the first
attestation protocol run is vulnerable to relay attacks, and therefore
also in this case the remote verifier must assume TOFU.
3. The DCAP scheme allows corporations to operate their own lo-
cal attestation services after an enrollment phase. However, if the
adversary controls the target platform during the enrollment, he can
replace the enrolled platform identifier PPID with the identifier of
his own platform PPID’ and enroll the adversary’s platform instead.
Thus, also the DCAP variant scheme requires trust on first use. In ad-
dition, the entire corporate keymanagement systemmust be trusted
at the time of the enrollment (and after it).

Non-anonymous attestation. Because SGX’s attestation proto-
col support anonymity features, like the EPID signature scheme,
one may think that relay attacks are caused by such privacy protec-
tion mechanism. However, such reasoning is incorrect. Even if all
anonymity featureswould be removed from attestation, the problem
of relay attacks would still persist. The root cause of relay attacks is
that certified keys can be securely installed to processors at the time
of manufacturing, but the processor ownership by private individ-
uals or companies is established much later. Therefore, common PKI
mechanism do not eliminate relay attacks — unless the processor

manufacturing and distribution model is completely changed such
that factories start to manufacture and certify customers-specific
processors batches on demand (which would be very expensive).

OtherTOFUvariants.Recent researchpapersuse slightlydifferent
TOFU variants. For example, the Rote system [21] assumes fresh OS
installation at system initialization time and for each used platform
it requires a local administrator to input a credential to the enclaves.
As another example, in the VC3 system [29] enclaves generate a
public/private key pair at the time of trusted initialization, output
the public key and seal the private key. The public key can be sent to
a trusted authority for certification, which then enables clients to se-
curely connect to enclaves. Both of these solutions essentially avoid
insecure attestation by pre-authorizing known enclaves during a
setup phase that is assumed trusted.

In general, TOFU solutions suffer from the following limitations:
1. OS re-installation: Forcing users or administrators to re-install

the OS is not always possible.
2. Manual configuration:Manual interaction tasks, such as an ad-
ministrator that needs to enter credentials to enclaves during ini-
tialization, complicates platform enrollment, especially in scenarios
like data centers with many enrolled platforms.
3. Pre-defined enclaves: Solutions that onlyworkwith enclaves that

are known at the time of initialization are not applicable to scenarios
like cloud computing platforms where users need to install new
enclaves after platform installation.
4. Large temporary TCB:Modern operating systems have a large

TCB and trusting the OS even temporarily is unideal.
5. Online authorities: Solutions where a trusted authority needs
to either certify or revoke new enclaves typically require that the
authorities are online, which increases their attack surface.

4 PROXIMITEE

Ourgoal is to designa solution that addresses the above limitationsof
previous solutions. In short, our solution should be secure (no TOFU
assumption, small TCB, no online authorities) and easy to deploy (no
OS re-installation, manual configuration or pre-defined enclaves). In
this section,weprovideanoverviewofourapproach,outlinepossible
use cases, describe our solution in detail and analyze its security.

4.1 Approach Overview

We propose a hardened SGX attestation scheme, called Proximi-
TEE, based on a simple embedded device that we call ProximiKey.
The embedded device is attached to the target platform over a local
communication interface such as USB.

Ourmain idea is to use the combination of such trusted device and
proximity verification to prevent relay attacks. In our solution, the
ProximiKey device verifies the proximity of the attested enclave and
after successful proximity verification it facilitates the creation of a
secure channel between the remote verifier and the attested enclave.
After the initial attestation, the device periodically checks proximity
to the attested enclave. The established secure channel is contin-
gent on the physical presence of the embedded device on the target
machine and it stays active only as long as the device is plugged-in.
The act of detaching the device automatically revokes the attested

5



Submission, ACSAC, 2019 Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Čapkun

platformwithout any interaction with a trusted authority. Thus, our
solution enables secure offline enrollment and revocation.

To use our solution, enclave developers use a simple API that
facilitates communications between the enclave and the device.

Security assumptions. In our solution, the ProximiKey device is
a trusted component. We deem this choice reasonable since it im-
plements only the strictly necessary functions and therefore it a has
significantly smaller software TCB, attack surface, and complexity
compared to a general-purpose commodity OS. We assume that its
issuer certifies each embedded device prior to its deployment and
such certification can take place fully offline.

Concerning the security of the ProximiKey device we employ the
same adversary model introduced in Section 3 for enclaves. While
the user’s device and its private keys are never exposed to the at-
tacker, another similar device can be in the physical possession of the
attacker, which has as much time as she wants to fully compromise
it (run arbitrary code and extract keys).

4.2 Example Use Cases

Our solution is targeted to scenarios where the benefits of more se-
cure attestation outweigh the deployment cost of a simple embedded
device. Here, we outline three example cases.

Data center. In our first example, we consider a cloud platform
provider that attaches ProximiKey to a server in a specific data
center and makes the public key of the connected device known to
the users of the service. Our approach is particularly well suited to
cloud computingmodelswhere customers rent dedicated computing
resources like entire servers. In such a setting, our solution ensures
that the cloudplatformcustomeroutsourcesdata andcomputation to
a server that resides in a specified location. Enforcing locationmaybe
desirable to meet increasing data protection regulation that defines
how and where data can be stored, even if protected by TEEs such
as SGX. Revocation (e.g., when a server is relocated to another data
center or function) can be realized bymerely detaching ProximiKey.

Permissioned blockchain.Our second case is a setting in which
a trusted authority initializes a set of validator nodes for a permis-
sioned and SGX-hardened blockchain. The trusted authority issues
oneProximiKey for eachorganization thatoperatesoneof thevalida-
tor nodes which allows secure attestation of the validator platforms.
Organizations are free to upgrade their computing platforms by
attaching the ProximiKey to a new platformwhich automatically
revokes the old platform without the need to interact with a trusted
authority. Furthermore, since ProximiKey can only be active on one
platform at the time, such a deployment enables the authority to con-
trol the identities used in (Byzantine) blockchain consensus process.

HSM-protected keys. Our last case is the management of HSM-
protected keys from an attested enclave. Such deployment enables
the secure and flexible realization of various access control policies,
implemented as attested enclaves. ProximiTEE guarantees that only
an enclave in the proximity of the HSM can control its keys. Such
solution provides a high level of protection because, at no point in
time, the HSM keys are directly accessible by the enclave (which
may be vulnerable to side-channel attacks) or by the untrusted OS.

Enclave

6 Compute

Intel SGX processorUntrusted OS

Target platform

PROXIMIKEY

2 Spawns Enclave

4 Establish TLS

3 Remote attestation

Intel Attestation Server

5 PROXIMITEE challenge

Calculate latency8

Response7

Trusted remote 
verifier

1
Establish 
TLS

Network

Response to the 
verifier

9

Untrusted App

Figure 4: ProximiTEE attestation. The remote verifier estab-

lishes a secure channel to the ProximiKey device that first

attests the enclave and then verifies its proximity.

4.3 Solution Details

Now, we explain the ProximiTEE attestation mechanism in detail.
I. Attestationprotocol. Figure 4 illustrates the attestation protocol
that proceeds as follows:
① The remote verifier establishes a secure channel (e.g., TLS) to

the certified ProximiKey. An assisting but untrusted user-space ap-
plication facilitates the connection on the target platform acting as a
transport channel between the remote verifier and the ProximiKey
(and later also the enclave). As part of this first step, the remote
verifier specifies which enclave should be executed.
② The untrusted application creates and starts the attestation

target enclave.
③ ProximiKey performs the standard remote attestation to verify

the code configuration of the enclave with the help of the IAS server
or using a customDCAP procedure (see Section 2). In the attestation
protocol, the device learns the public key of the attested enclave.
④ ProximiKey establishes a secure channel (e.g., TLS) to the en-

clave using that public key.
⑤ ProximiKey performs a distance-bounding protocol that con-

sists ofn rounds,where each round is formed by steps⑤ to⑧. At the
beginning of each round ProximiKey generates a random challenge
r and sends it to the enclave over the TLS channel.
⑥ The enclave increments the received challenge by one (r+1).
⑦ The enclave sends a response (r +1) back to the ProximiKey

over the TLS channel.
⑧ ProximiKey verifies that the response value is as expected (i.e.,

r+1) and checks if the latency of the response is below a threshold
(Tcon ). Successful proximity verification requires that the latency is
below the threshold for at least k×n responses, where k ∈ (0,1] is a
percentage of the total number of responses n.
⑨ If proximity verification is successful, the ProximiKey notifies

the remote verifier over the TLS channel (constructed in step①). The
verifier starts using the ProximiKey TLS channel to send messages
to the enclave.

II. Periodic proximity verification.After the initial connection
establishment, the ProximiKey device performs periodic proxim-
ity verification on the attested enclave. ProximiKey sends a new

6



ProximiTEE Submission, ACSAC, 2019

Successful window

Halt window

Failed window
≤ 𝑇𝑐𝑜𝑛

< 𝑇𝑑𝑒𝑡𝑎𝑐ℎ𝑇𝑐𝑜𝑛 <

𝑇𝑑𝑒𝑡𝑎𝑐ℎ ≤

Platform disconnected

… …

Figure 5: Sliding window for periodic proximity verification

with three different types of challenge-response latencies.

random challenge r at frequency f , verifies the correctness of the
received response and measures its latency. The latestw latencies
are stored to a sliding window data structure, as shown in Figure 5.

As elaborated in Section 5 there are three types of latencies in
the presence of relay attacks. The first type of response is received
faster than the thresholdTcon (green in Figure 5), these responses
can only be produced if no attack is taking place. In the second type
of response the latency exceedsTcon , but it is below another, higher
thresholdTdetach (yellow), these are sometimes observed during
legitimate connections and sometimes during relay attacks. And
third, the latency is equal to or exceedsTdetach (red), these latencies
are only observed while a relay attack is being performed. Given
such a sliding window of periodic challenge-response latencies, we
define the following rules for halting or terminating the connection:
1. Successful window: no action. If at least k responses have latency
≤Tcon and none of the response have latency≥Tdetach , the current
window legitimate and ProximiKey keeps the connection active.
2. Halt window: prevent communication. If one of the responses

have latency ≥Tdetach , we consider the current window a “halt win-
dow,” and ProximiKey stops forwarding data to the enclave until
the current window is legitimate again.
3. Failed window: terminate channel. If two or more responses

have latencies ≥Tdetach , we consider the current window a “failed
window” and ProximiKey terminates the communication and thus
revokes the attested platform.

4.4 Security Analysis

Attestation security.To analyze the security of our hardened attes-
tationmechanism,wemust first define successful attestation.We say
that the attestation is successful when the remote verifier establishes
a connection to the correct enclave that i) has the expected code
measurement and ii) runs on the computing platform to which the
ProximiKey device is attached.

The task of establishing a secure channel to the correct enclave
can be broken into two subtasks. The first subtask is to establish a
secure channel to the correct ProximiKey device. This is achieved
using standard device certification. We assume that the adversary
cannot compromise the specific ProximiKey used. If the adversary
manages to extract keys from other ProximiKey devices, he cannot
trick the remote verifier to connect to awrong enclave, as the remote
verifier will only communicate with a pre-defined embedded device.

The second subtask is to establish a secure connection from Prox-
imiKey to the correct enclave. For this, we use proximity verification.
ProximiKey verifies the proximity of the attested enclave through
steps ⑤ to ⑧ of the protocol. These steps essentially check two
things. First, through step ⑦, whether the messages are received

from the correct enclave. This verification is performed by checking
the correctness of the decrypted message, and it relies on the as-
sumption that the attacker cannot break the underlying encryption
and hence only the enclave that has access to the key that was bound
to the attestation could have produced a valid reply. Second, through
step⑧, whether the ProximiKey and the enclave are in each other’s
proximity. This check relies on the assumption that a reply from a
remote enclave will take more time to reach the ProximiKey than
a reply from the local enclave.

We evaluate the second aspect experimentally. In particular, we
simulate a powerful relay-attack adversary that is connected to the
target platformwith fast network connection. To consider the best
case for the adversary, wemake several assumptions in his favor. For
example, we assume that he can instantly perform all computations
needed toparticipate in theproximityverificationprotocol.However,
he cannot break cryptographic hardness assumptions. We define
the adversary’s success as the event in which proximity verification
succeeds with an enclave that resides on the attacker’s platform and
denote the probability of such event Padv . We define the legitimate
success as the event inwhichproximity verification succeedswith an
enclave that resides in the target platform and denote its probability
Pleдit .

In Section 5 we show that it is possible to find parameters (n=50,
k = 0.3 and Tcon = 186µs) that make proximity verification very
secure (Padv =3.55×10−34) and reliable (Pleдit =0.999999977).

Revocation security. To analyze the security of the periodic prox-
imity verification which we use for platform revocation, we must
first define what it means for the attacker to break the periodic prox-
imity verification. The purpose of the periodic proximity verification
is to prevent cases where the user detaches the ProximiKey device
from the attested target platform and attaches it to another SGX
platform before the previously established connection is terminated.
Sincewe consider an adversarywho does not have physical access to
the target platform (recall Section 3.1), we focus on benign users and
exclude scenarioswhere theProximiKeywould be connected tomul-
tiple SGX platforms with customwiring or rapidly and repeatedly
plugged in and out of two SGX platforms.

We define the periodic proximity verification as broken if the
adversary canmanage to keep the previously established connection
alive within a “short delay” after the ProximiKeywas detached from
the attested target platform. Formost practical purposeswe consider
a delay of 10 ms as sufficiently short. We denote the adversary’s
success probability in breaking the periodic proximity verification as
P ′adv . A false positive for periodic attestation is the event where the
connection to the legitimate enclave is terminated, and the attested
platform is revoked despite the ProximiKey being connected to the
target platform. We denote the probability that this happens during
a “long period” as P ′f p . We consider an example period of 10 years
sufficiently long for most practical deployments.

In Section 5 we experimentally shows that revocation can be
secure (P ′avd = 3.55× 10

−34) and reliable (P ′f p = 1.6× 10
−4) while

consuming only a minor fraction of the available channel capacity.

5 EXPERIMENTAL EVALUATION

In this section, we describe our implementation and evaluation.
7



Submission, ACSAC, 2019 Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Čapkun

5.1 Implementation

We implemented a complete prototype of the ProximiTEE system.
Our implementation consists of two components: i) ProximiKey
embedded device prototype, and ii) ProximiTEE enclave API which
enables any application enclaves to communicate with the Prox-
imiKey device and execute the proximity verification protocols.

ProximiKey.Our embedded device prototype is based on Cypress
EZ-USB FX3 USB 3.0 prototyping board that is equipped with an
32-bit 200MHzARM9 core. The board communicateswith the target
platform over a native USB 3.0 connection that provides up to 5 Gbps
of bandwidth. FX3 provide direct memory access (DMA) out of the
box through its API for efficient communication with the connected
platform.We use the ARMmbed TLS [18] cryptographic library for
the TLS. The limited set of cipher suites in our implementation uses
128-bit AES (CTRmode) for encryption, AES-HMAC as the message
authentication code, Curve25519 for Diffie-Hellman key exchange
and SHA256 as the hash function. Our prototype implementation is
approximately 200 lines of code, and the code size of the TLS library
is around 3.6 KLoC.

ProximiTEE enclave API. The ProximiTEEAPI for application-
specific enclaves is written in C++ using the Intel SGX API. The API
uses native SGX crypto library for the TLS implementation, and it
is around 200 lines of code.

5.2 Evaluation Focus: Internet Relay

For the purposes of our evaluation, wemake the distinction between
two types of relay attacks. In the first type, the adversary redirects
the attestation over the Internet to another platform that is under his
physical control, and therefore in adifferent location. Asweexplained
in Section 3.2, such relay attack amplifies the adversary’s capabilities
the most, as he can now attack the attested enclave using physical
side-channels, he has unlimited time to launch digital side-channels,
or he can wait for the discovery of new attack vectors.

In the second type of relay attack, the adversary redirects the
attestation to another co-located platform, like another server on
the same server rack. In most cases, attestation relay to a co-located
platform does not improve the adversary’s chances of attacking the
enclave, because typically the adversary has similar control over the
co-located platform. The only exception is privilege escalation in
cases where the adversary has user privileged on the target platform
and system privileges on the co-located platform.

Next, we focus on demonstrating that an inexpensive Proximi-
TEE prototype can be configured to prevent the first (and typically
more dangerous) type of relay attacks with very strong security and
robustness. Later, in Section 5.8, we discuss the second type of relay.

5.3 Experimental Setup

To demonstrate that ProximiTEE prevents relay attacks (over the
Internet)weperformed two types of experiments. First,we tested the
legitimate attestation executionwith ProximiTEE andmeasured the
challenge-response latencies between our prototype and the target
platform. Second, we simulated a relay attack, where the adversary
redirects the attestation to another platform.

Assumptions and optimizations. To consider the best possible
case for the adversary, wemade several generous assumptions in his

ProximiKey

Target 
platform

Attacker’s 
platform

1m Ethernet cableUSB 3.0 interface

Figure 6:Our experimental setup consists of theProximiKey

deviceprototype, the targetplatform, theattacker’splatform

and the connection interfaces between them.

favor, when designing our experimental setup and post-processing
of our measurement:
1. Single network hop. Since we do not want to make any assump-
tions about the precise network path that the relayed attestation
needs to travel, we connected the adversary’s platform to the target
platform via a direct 1-meter Ethernet cable as seen in Figure 6.With
such setup, our goal is to simulate the most direct connectivity and
the best possible latency that the adversary could achieve in relay
attacks that take place over the Internet. Inmost realistic attacks, the
adversary would need to relay the attestation over multiple network
hops which increases the round-trip latency significantly.
2. Instant protocol computation. Since the adversary might have
a faster processor on his platform than the one the one we used in
our experiments, we simulated an adversary who is able to perform
all computations needed for the proximity verification protocol in-
stantly. Instant replies were simulated by fixing the randomness for
the challenges and having precomputed responses for that random-
ness on the attacker’s machine.
3. Packet forwarding optimizations.Since the adversary controls the

OS on the target platform, he can perform software-based optimiza-
tions to reduce the packet forwarding delay. We experimented with
several such optimizations. First, we tested the standard ping tool
which gave a latency of around 380 µs for one-meter Ethernet con-
nection. After that, we used the ping tool in so called floodmode and
measured a reduced average network latency of around 153 µs (com-
mand ping -s 300 -af). Floodmode achieves faster round-trip time
as the it forces theOS tofill up thenetworkqueueof the kernel. Based
on these measurements, we chose to simulate an attacker that fills
the kernel’s network queues (on both platforms) similar to the flood
mode to minimize latency.We also tested other possible OS-level op-
timizations, butdidnotobservematerial reduction inmeasured laten-
cies, and thus in our experimentswe only use the kernel queue filling.
4. Infinitely fast network interface. Since the adversary’s platform
might have a faster network interface hardware than the one used
in our experiments, we chose to simulate an adversary that has
infinitely fast network interface. In our experimental setup, both
the target platform and the adversary’s platform have identical net-
work interfaces. We assume (in the favor of the adversary) that the
transmission time spent on the wire is negligible and most the the
round-trip latency is due to processing the in the network interface.
This allows us to simulate an adversary with infinitely fast network
interface by first performing latency measurements and then in a
post-processing phase cutting down all the measured latencies by

8



ProximiTEE Submission, ACSAC, 2019

ProximiKey latency

time (µs)
150 200 250 300 3500.

00
0.

03
0.

06

Rerouting over Ethernet
Local USB interface

Tcon

Tdetach

Figure 7: Latency distributions for legitimate challenge-

response rounds (left) and simulated relay attack (right).

half. Note that the target platform’s network interface cannot be
replaced by the attacker has he does not have physical access to it.

Experiments.We conducted our experiments on three SGX plat-
forms: two Intel NUC NUC6i7KYKmini-PCs and one Dell Latitude
laptop, all equippedwithSGX-enabledSkylakecore i7processorsand
Ubuntu 16.04 LTS installed on them. To measure latencies we used
FX-3’s GPIO pins that provides 100 nanosecond level accuracy. We
performeda total of20million roundsof theprotocol fornormalattes-
tations and simulated attacks and measured the challenge-response
latencies for each. We measure all of them inside the EZ-USB FX3
code. For cross-validation, we tested the ProximiKeywith the high
precision oscilloscope and witnessed identical timing patterns.

5.4 Latency Distributions

Figure 7 shows our main experimental result. The histogram on the
left represents the challenge-response latencies in the legitimate
proximity verification. The histogram on the right shows latencies
in a simulated attack (including a post-processing phase where we
reduce the adversary’s measured network latencies to half to ac-
commodate the assumption of the attacker’s infinitely fast network
interface).

As can be seen from Figure 7, the vast majority of the benign
challenge-responses take from 145 to 250µs (average is 185µs , 95%
of samples are in between 150µs and 200µs). The vast majority of
the round-trip times in the simulated attack take from 200 to 750 µs
(average is 264µs , 95% of samples are in between 209µs and 650 µs).
Hence, the average delay of our simulated adversary is only 80µs .
To put this into perspective, even the highly-optimized network
connections between major data centers in the same region exhibit
latencies from one millisecond upwards [3] which is one order of
magnitude more than in our simulated setup.

Besides the latency observed on the side of the embedded device,
we measured the time required to compute responses to received
challenges on the side of the target platform.We repeated these test
on three different SGX platforms and observed results that varied
from 6 to 10 µs. We also measured if the computational load of the
target platform influences the time required to compute responses.
Under maximum system load (all 8 cores busy), the maximum ob-
served time increased to 20 µs. Under moderate system load (1 or
2 cores busy), we experience no notable increase in the required
computation time. For completeness, we provide such additional
measurement results in Appendix B.

Attacker's avg latency ~79.904 µs

S
uc

ce
ss

 p
ro

ba
bi

lit
y

1e
−

66
1e

−
24

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0.
92

0.
98

1 2 5 10 20 50 100

Platform in proximity
Attacker

Rounds

Figure 8: Parameter tuning: the attacker’s success proba-

bility Padv and the legitimate success probability Pleдit for

different number of rounds n given a fixed k .

5.5 Initial Proximity Verification Parameters

As explained in Section 4.3, the initial proximity verification is suc-
cessful when at least fraction k of then challenge-response latencies
are below the thresholdTcon . Now, we explain our strategy for set-
ting these parameters based on the above results.

There are five interlinked parameters that one needs to consider:
(i) the legitimate connection latency thresholdTcon , (ii) total number
of challenge-response rounds n, (iii) the fraction k , (iv) attacker’s
success probability Padv that should be negligible, and (v) the legiti-
mate success probability Pleдit that should be high.We find suitable
values for these parameters in the following order:
1. We start with the thresholdTcon . The higherTcon is, the higher

the legitimate success probability Pleдit becomes, on the other hand,
a too high value for Tcon also makes Padv , the attacker’s success
probability, high. Therefore, we are after a suitable value forTcon
that keeps Pleдit high while minimizing Padv over a varied number
of rounds n.
2. Based on suchTcon , we pick a fraction k such that it maximizes

the legitimate success probability Pleдit and reduces the attacker’s
success probability Padv .
3. Given Tcon and k , we evaluate Padv and Pleдit over a varied
number of rounds n and choose the minimum number of rounds
that provides the required probabilities, since the fewer rounds, the
faster the initial attestation is.

Main result. Figure 8 shows the legitimate enclave’s success prob-
ability Pleдit and the attacker’s success probability Padv with dif-
ferent number of rounds. Based on our experiments we setTcon =
186µs (see Figure 7), the threshold fractionk=0.3 and the number of
roundsn=50which yields a very high legitimate success probability
Pleдit =0.999999977 and a negligible attacker’s success probability
Padv =3.55×10−34. For completeness, we provide the full details of
of this parameter tuning process in Appendix B.

5.6 Periodic Proximity Verification Parameters

For periodic proximity verification we have two main requirements.
First, the attacker’s success probability P ′adv must be negligible. Re-
call that P ′adv refers to an event where the device is detached but the
connection is not terminated sufficiently fast. Second, the probabil-
ity of false positives P ′f p should be very low. P ′f p refers to an event
where the connection is terminated when the device is still attached.
Next,we explain the three-step process to set up parametersTdetach ,
w and f for the periodic proximity verification:

9



Submission, ACSAC, 2019 Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Čapkun

1. We find out a suitable latency Tdetach that define the yellow
or red round in Figure 5. The yellow window defines the round of
challenge response latency betweenTcon andTdetach , while the red
windowdefinesa latencymore thanTdetach .Hence, theprobabilities
Pr[Tcon ≤ Lleдit ≤Tdetach ]= Pr[leдit ∈ yellow], and Pr[Lleдit ≥
Tdetach ]=Pr[leдit ∈ red] should be very low.Lleдit andLA denote
the latency of the legitimate enclave running on the platform in
proximity and remote attacker platform’s latency respectively.
2. Based on the thresholdTdetach , we select a suitable sliding win-
dow sizew to minimize the attacker success probability P ′adv to a
negligible quantity.
3. We fix a suitable frequency f for the periodic challenges. A high
f value terminate the communication very fast, leaving very small
attacking window.

Main result. Based on the above strategy, we set the periodic prox-
imity verification parameters as follows: Pr[A∈ success window]=
P ′adv =P

′
f n =3.55×10

−34,Pr[leдit ∈ success window]=0.999999977
and Pr[leдit ∈ failed window] = P ′f p = Pr[leдit ∈ red]

2 = 1.6×10−4

andTdetach = 205µs (see Figure 7). If at least two latencies above
Tdetach are received, theProximiKey terminates the connection and
revokes the platform. The average downtime due to false positives
occurring during a connection of 10 years is around 2minutes. We
provide the full details of the parameter tuning in Appendix B.

5.7 Performance Analysis

In addition, we evaluated the following two performance metrics:
1. Start-up latency. The initial proximity verification takes 2ms.

The complete connection establishment including attestation and
TLS handshake takes less than 1 second.
2. Operational latency and data overhead.Our solution adds around

200µs of additional latency for TLS and transport over the native USB
interface of the FX3. The data overhead is around 80 bytes per packet
for the header and the MAC. Execution of the periodic ProximiTEE
protocol with 83 rounds/second requires around 156.14 KBytes/s of
data which is only 2.4×10−3% of the USB 3.0 channel capacity.

5.8 Preventing Relay to Co-Located Platform

The main purpose of our experimental evaluation was to show that
our inexpensive ProximiTEE prototype can effectively prevent relay
attacks where the adversary redirects the attestation to another plat-
form that is under his physical control in a different location. Next,
we discuss whether ProximiTEE can prevent attestation redirection
a co-located platform, like another server on the same server rack.

If the two co-located platforms are connected through traditional
networking technologies like Ethernet (as in our experiments), our
evaluation already shows that such relay attacks can be effectively
prevented, using a simple and inexpensive embedded device like our
prototype. However, in some modern data centers, computing plat-
forms are connected with faster inter-connect technologies like In-
finiBand connections [1] that can enable latencies as lows as 7µs [20].

The ability to distinguish relay attacks depends on three key fac-
tors. The first is the latency of the channel throughwhich the relay is
performed(e.g.,7µs for InfiniBand).Thesecond is the timerequired to
compute responses to challenges on the target platform (e.g., 6−10µs

in the SGXplatforms thatwe tested). And the third is howmuch vari-
ance the round-trip times between the embedded device and the tar-
get platform have (e.g., 10−20µs in our USB 3.0 prototype). The local
communication variance and the response computation time should
be less than the relay latency, to enable robust proximity verification.

We conclude that our simple prototype cannot prevent all possible
relays to co-located platforms when very fast inter-connect tech-
nologies like InfiniBand are used. To address such relay attacks, one
needs a faster and more accurate embedded device that exhibits less
variance. For example, PCIe connected FPGAs can have latencies as
lows 1µs [5]. Besides better embedded device, one can also increase
the number of distance-bounding protocol rounds and reduce the
success probability for legitimate attestation Pleдit .

6 DISCUSSIONANDRELATEDWORK

Addressingemulationattacks.Duringthe lastyear, severalmicro-
architectural attacks like Spectre [16] and Meltdown [19] that lever-
aged subtle side effects of transient execution optimizations onmod-
ern CPUs were discovered. ForeShadow [8], a Meltdown variant,
was the first attack that managed to extract production attestation
keys from SGX processors.

AfterMeltdown and Foreshadow, Intel issued amicrocode update
that addressed them, but soonafter that other attacksnamedmicroar-
chitectural data sampling (MDS) by Intelwere discovered [23, 30, 32].
Although the authors of the MDS attacks have not yet been able
to verify their attack against the production Quoting Enclaves, it
appears [30, 32] that the MDS attacks may enable attestation key
extraction. Given such recent history of several micro-architectural
attacks, leakage of attestation keys from SGX processors becomes
a threat that should be considered. Proximity verification alone is
not sufficient to prevent relay attacks against an adversary that has
leaked but not yet revoked attestation keys, as such adversary can
emulate a valid enclave locally on the target platform. To prevent
such attacks, one must prevent the adversary’s ability to emulate
enclaves on the target platform.

In Appendix A we present a solution that does this using a secure
boot-time initializationwith the help of the trusted embedded device.
In our solution,we combine secure initialization and local attestation
with periodic proximity verification to enable convenient revocation.
Our solution can be seen as a novel variant of the well-known TOFU
principle with security, deployment and renovation benefits. Due to
space constraints, we defer the details of this solution to Appendix A.
Trusted path. Recent research has proposed trusted path solutions
like Fidelius [11] where a trusted embedded device is used to capture
user input and send it securely to an attested local enclave. Such so-
lutions are vulnerable to relay attacks where confidential user input
is sent to a remote enclave on the adversary’s platform. ProximiTEE
could be integrated to solution like Fidelius to prevent relay attacks
and to improve their security.
Extension to other TEEs.Our approach could be applied to other
TEEs as well. The critical requirements for the TEE is that it must
support programmable operations that can be executed sufficiently
fast. One TEE that meets these requirements is ARM TrustZone.
DRTMproximity verification. Presence attestation [36] enables
proximity verification DRTM-based TEEs [22]. The TEE shows an
image that is captured by a trusted camera and communicated to a

10



ProximiTEE Submission, ACSAC, 2019

remote verifier. The same approach cannot be used with SGX since
it lacks trusted path for secure image output.

7 CONCLUSION

Relay attacks have been known for a decade, but their implications to
modernTEEs likeSGXhavenotbeencarefully analyzed. In thispaper
we have presented the first such analysis and shown that attestation
redirection increases the adversary’s ability to attack an attested
enclave.We have also proposed ProximiTEE as a solution to prevent
relay attacks using proximity verification. Our experimental evalua-
tion is thefirst to showthatproximityverificationcanbemade secure
andreliable forTEEs likeSGX.Asanadditional contribution,wehave
also presented a novel boot-time initialization solution for address-
ing a stronger emulation attacker who has leaked attestation keys.

REFERENCES

[1] 2018. Infiniband Trade Association. https://www.infinibandta.org/.
[2] 2018. Tiny Core Linux, Micro Core Linux, 12MB Linux GUI Desktop, Live, Frugal,

Extendable. https://distro.ibiblio.org/tinycorelinux/.
[3] Sachin Agarwal. 2018. Public Cloud Inter-region Network Latency as Heat-maps.

https://medium.com/@sachinkagarwal/public-cloud-inter-region-network-
latency-as-heat-maps-134e22a5ff19

[4] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungy-
oung Lee. 2019. OBFSCURO: A Commodity Obfuscation Engine on Intel SGX.
NDSS’19.

[5] Inc. Algo-Logic Systems. 2019. Low Latency PCIe Solutions for FPGA.
https://www.algo-logic.com/sites/default/files/PCIe.pdf.

[6] Stefan Brands and David Chaum. 1993. Distance-Bounding Protocols. In
EUROCRYPT ’93.

[7] Ferdinand Brasser, Urs Muller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIXWOOT’17.

[8] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Foreshadow: Extracting
the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security’18.

[9] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086.

[10] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. 2018. Cachequote: Efficiently
recovering long-term secrets of SGXEPID via cache attacks. TCHES 2018, 2 (2018).

[11] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh ChangWei Brandon,
Dillon Franke, Forest Fraser, Gaspar Garcia Jr, Eric Gong, Hung T Nguyen,
Taresh K Sethi, et al. 2019. Fidelius: Protecting User Secrets from Compromised
Browsers. In S&P’19.

[12] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic
analysis: Concrete results. In CHES’01.

[13] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and Eran Tromer.
2016. Physical key extraction attacks on PCs. Commun. ACM 59, 6 (2016).

[14] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In EuroSec’17.

[15] Simon Johnson and Intel. 2017. Intel SGX: EPID Provisioning and Attestation
Services. https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-
provisioning-and-attestation-services.

[16] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, StefanMangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019.
Spectre Attacks: Exploiting Speculative Execution. In S&P’19.

[17] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In USENIX Security’17.

[18] ARM Limited. [n. d.]. SSL Library mbed TLS / PolarSSL. https://tls.mbed.org/
[19] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

StefanMangard, Paul Kocher, Daniel Genkin, Yuval Yarom, andMike Hamburg.
2018. Meltdown: Reading Kernel Memory from User Space. USENIX Security’18.

[20] Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang Jiang,
Sushmitha Kini, Weikuan Yu, Darius Buntinas, PeteWyckoff, and Dhabaleswar K
Panda. 2003. Performance comparison of MPI implementations over InfiniBand,
Myrinet and Quadrics. In SC’03.

[21] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution.. In USENIX Security’17.

[22] Jonathan MMcCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi
Isozaki. 2008. Flicker: An execution infrastructure for TCBminimization. In ACM
SIGOPS Operating Systems Review.

[23] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,
Daniel Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, and Yuval Yarom. 2019.
Fallout: Reading Kernel Writes From User Space. arXiv preprint arXiv:1905.12701
(2019).

[24] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In CHES’17.

[25] Bryan Parno. 2008. Bootstrapping Trust in a Trusted Platform. InHotSec’08.
[26] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital

Side-Channels through Obfuscated Execution.. In USENIX Security’15.
[27] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. 2017. ZeroTrace:

Oblivious memory primitives from Intel SGX. In NDSS’17.
[28] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018. Sup-

porting Third Party Attestation for Intel SGXwith Intel Data Center Attestation
Primitives. https://software.intel.com/sites/default/files/managed/f1/b8/intel-
sgx-support-for-third-party-attestation.pdf.

[29] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In S&P’15.

[30] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. arXiv:1905.05726 (2019).

[31] Adi Shamir and Eran Tromer. 2004. Acoustic cryptanalysis. presentation available
from http://www. wisdom. weizmann. ac. il/ tromer (2004).

[32] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. In 2019 IEEE Symposium on Security and Privacy (SP).

[33] Zhenghong Wang and Ruby B Lee. 2006. Covert and side channels due to
processor architecture. In ACSAC’06.

[34] DanWendlandt,DavidG.Andersen, andAdrianPerrig. 2008. Perspectives: Improv-
ing SSH-style Host Authentication with Multi-path Probing. In USENIX ATC’08.

[35] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In S&P’15.

[36] ZhangkaiZhang,XuhuaDing,GeneTsudik, JinhuaCui, andZhoujunLi. 2017. Pres-
ence Attestation: The Missing Link in Dynamic Trust Bootstrapping. In CCS ’17.

A ADDRESSING EMULATIONATTACKS

We consider attestation key extraction from SGX processors diffi-
cult and rare, in contrast to the previously considered relay attacks
that require only OS control or other malicious software on the
target platform. However, the recently demonstrated Foreshadow
attack [8] that exploited the Meltdown vulnerability [19] showed
how to extract attestation keys fromSGXprocessors. Although, Intel
has the possibility to issue microcode patches that address proces-
sor vulnerabilities like Meltdown and the processor’s microcode
version is reflected in the SGX attestation signature, new vulnera-
bilities like the ZombieLoad attack [30] may be discovered. Before
microcode patches are deployed, in rare occasions, leaked but not
revoked attestation keys may be available to the adversary.

In this appendix, we consider such stronger adversary that has
leaked attestation keys and present a hardened attestation solution
based on boot-time initialization.

A.1 Emulation Attack

Adversary model.We consider an emulation attacker has all the
capabilities of the relay attacker (cf. Section 3) and additionally has
obtained at least one valid (not yet revoked by Intel) attestation
key from any SGX platforms but the target platform. The adversary
might obtain an attestation key by attacking one of his processors
or by purchasing an extracted key from another party.

The emulation attack. In the attack, the adversary uses a leaked
attestation key to emulate an SGX-processor on the target platform.
Since the IAS (or any other attestation service) successfully attests

11

https://medium.com/@sachinkagarwal/public-cloud-inter-region-network-latency-as-heat-maps-134e22a5ff19
https://medium.com/@sachinkagarwal/public-cloud-inter-region-network-latency-as-heat-maps-134e22a5ff19
https://tls.mbed.org/
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf
https://software.intel.com/sites/default/files/managed/f1/b8/intel-sgx-support-for-third-party-attestation.pdf


Submission, ACSAC, 2019 Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Čapkun

Trusted processor

App 
Enclave

Attacker’s 
Enclave

Remote verifier

PROXIMIKEY

Target platform

3 Local Attestation

2 App enclave

4 Approve

PROXIMITEE

Enclave

5 Communication

1
Sealed 

key

Emulated processor

Figure 9: ProximiTEE boot-time attestation. After the

boot-time initialization (refer to Figure 10) the Proximi-

TEE enclave executes a local attestation with the verifier

uploaded application-specific enclave.

PROXIMIKEY Platform owner Target Platform

Restart

BIOSBoot USB

Plug USB

PROXIMITEE kernel 
PROXIMITEE enclave

PROXIMITEE

kernel

Boot

PROXIMITEE

enclave

Loads

Seals 
key

Stores 
seal

Sends sealed key

Restart

Sends key

Key 
gen

Press button

1

2

3

4

5
6

Figure 10: Boot-time initialization. The ProximiKey uses a

minimal kernel Linux image to boot and load ProximiTEE

enclave on the target platform and seal a platform specific

secret to the ProximiKeymemory.

the emulated enclave, it is impossible for the remote verifier to dis-
tinguish between the emulated enclave and the real one.
Emulation attack implications. The emulation attack allows the
adversary to fully control the attested execution environment and
thus break the two fundamental security guarantees of SGX, en-
clave’s data confidentiality and code integrity, and to access any
secrets provisioned to the emulated enclave. Since the OS is also un-
der the control of the attacker, any attempted communication with
the real enclave will always be redirected to the emulated enclave.

A.2 Boot-Time Initialization Solution

Proximity verification alone cannot protect against the emulation
attacker, as the locally emulated enclave would pass the proximity
test. Therefore, we describe a second hardened attestation mecha-
nism that leverages secure boot-time initialization and is designed
to prevent emulation attacks. This solution can be seen as a novel
variant of the well-known TOFU principle and the main benefits of
our solution over previous variants is that it simplifies deployment
and increases security. Additionally, when such attestation is used
in combination with our previously described periodic proximity
verification, our solution enables secure offline revocation.
Security assumptions. Our security assumptions regarding the
target platform are as described in Section 3. The only difference

is that in this case we assume that the UEFI (or BIOS) on the target
platform is trusted.

Solution overview. Figure 9 illustrates an overview of this solu-
tion. During initialization, that is depicted in Figure 10, the target
platform is booted from the attached device that loads a minimal
and single-purpose ProximiTEE kernel on the target device. In par-
ticular, this kernel includes no network functionality. The kernel
starts the ProximiTEE enclave, which shares a secret with the de-
vice. This shared secret later bootstraps the secure communication
between ProximiKey and the ProximiTEE enclave. The security of
the bootstrapping relies on the fact that the minimal kernel will not

perform enclave emulation at boot time.The ProximiTEE enclavewill
later be used as a proxy to attest whether other (application-specific)
enclaves in the system are real or emulated and on the same platform.

Boot-time initialization. The boot-time initialization process is
performed only once. This process is depicted in Figure 10 and it
proceeds as follows:
① The platform owner plugs ProximiKey to the target platform,

restarts it to BIOS and selects the option to boot from ProximiKey.
② ProximiKey loads the ProximiTEE kernel and boots from it.

The ProximiTEE kernel starts the ProximiTEE enclave.
③ The user presses a button on ProximiKey to confirm that this

is a boot-initialization process. This step is necessary to prevent an
attack where the compromised OS emulates a system boot.
④ ProximiKey sends a randomly generated keyK to the Prox-

imiTEE enclave.
⑤ The enclave returns the sealed keyS corresponding to the key
K (S← Seal(K)) to ProximiKey that stores the key and the seal
pair (K,S) on its flash storage.
⑥ ProximiKey blocks further initializations, sends a restart signal

and boots the platformwith the normal OS.

Attestation process.After initialization the target platform runs
a regular OS. The attestation process is depicted in Figure 9 and
proceeds as follows:
① ProximiKey sends the sealS to the ProximiTEE enclave that

unseals it and retrieves the keyK . ProximiKey and the ProximiTEE
enclave establish a secure channel (TLS) usingK .
② The remote verifier uploads a new application-specific enclave

on the target platform.
③ The ProximiTEE enclave performs local attestation (see Sec-
tion 2) on the application-specific enclave that binds its public key
to the attestation.
④ TheProximiTEEenclave sends themeasurementand thepublic

key of the application-specific enclave to ProximiKey. ProximiKey
establishes a secure channel to the application-specific enclave and
sends the measurement of the enclave to the remote verifier. The
remote verifier then approves the communication to the application-
specific enclave.
⑤ Theremoteverifierchecks that themeasurementof theapplication-

specific enclave is as expected. If this is the case, it can communicate
with the enclave through ProximiKey.

12



ProximiTEE Submission, ACSAC, 2019

Untrusted Trusted Trust on first use

HW

Standard Kernel

Online CA

Strawman Solution (TOFU) Boot-time Initialization + attestation

HW

PROXIMITEE Kernel Standard Kernel

Offline CA

BIOS

Figure 11: TCB comparison. Trusted components in a

common TOFU solution and our boot-time solution.

Following communication. Similar to our previous solution, af-
ter the initial attestation all the communication between a remote
verifier and the enclave is mediated by the ProximiKey that periodi-
cally checks the proximity of the attested enclave and terminates the
communication channel in case the embedded device is detached.

A.3 Security Analysis

In this attestation mechanism, the task of establishing a secure com-
munication channel to the correct enclave can be broken into three
subtasks. The first subtask is to establish a secure channel to the
correct ProximiKey device. In our solution, this is achieved using
standard device certification. Recall that the adversary cannot com-
promise the specific ProximiKey used.

The second subtask is to establish a secure communication chan-
nel fromProximiKey to theProximiTEEenclave.ProximiKey shares
a key with an enclave that is started by the trusted ProximiTEE ker-
nel, hence at a time in which the attacker could not emulate any
enclave. ProximiKey knows when secure initialization takes place
because the user (platform owner) indicates this by pressing a but-
ton which is an operation that the adversary cannot perform. The
ProximiTEE enclave seals the key during initialization. Different
SGX CPUs cannot unseal each other’s data, and therefore even if the
adversary has extracted sealing keys from other SGX processors, she
cannot unseal the key andmasquerade as the legitimateProximiTEE
enclave.

The third subtask is to establish a secure communication channel
from the ProximiTEE enclave to the application-specific enclave.
The security of this step relies on SGX’s built-in local attestation.
An adversary in possession of leaked sealing attestation keys from
other SGX processors, cannot produce a local attestation report that
the ProximiTEE enclave would accept, and therefore the adversary
cannot trick the remote verifier to establish a secure communication
channel to a wrong enclave.

A.4 Comparison to TOFU

Our second attestation mechanism is a novel variant of the well-
known “trust on first use” principle. In this sectionwe briefly explain
the main benefits of our solution over common TOFU variants.

Smaller TCB size and attack surface. Figure 11 illustrates a com-
parisonof trusted components andattack surfacebetweenacommon
TOFU solution where a trusted authority (CA) certifies enclave keys
(cf. Section 3.3) and our boot-time initialization mechanism. In the
TOFU solution, the standard and general-purpose OS needs to be
trusted on first use and theCAneeds to remain online for enrollment
of new SGX platforms. In our solution, a significantly smaller and
single-purpose kernel needs to be trusted on first use. Additionally,

we require trust on the BIOS (or UEFI). In our solution, the CA can
remain offline when a new platform is enrolled.
Reboot instead of re-install.Our solution requires that the target
platform is rebootedonce fromProximiKey. InmostTOFUsolutions,
the target platform requires a clean state which is difficult to achieve
without reinstall that makes deployment difficult.
Secure offline revocation.When boot-time initialization is com-
bined with the previously explained periodic proximity verification,
our solution provides an additional property of secure offline revo-
cation that requires no interaction with the CA. Such property is
missing from previous TOFU solutions.

A.5 Implementation

We implemented a complete prototype of our second attestation
mechanism.OntopofourpreviousProximiTEE implementation (see
Section 5.1), the boot-time initialization solution requires the Prox-
imiTEEkernel.Wehavemodifiedan imageofTinyCoreLinux[2]and
used it as the boot image for our boot-time initialization. The image
size of our modified Linux distribution is 14 MB (in contrast to 2 GB
standard 64 bit Linux images build on the standard kernel). Our im-
age supports bare minimum functionality and includes libusb, gcc,
Intel SGX SDK, Intel SGX platform software (PSW), and Intel SGX
Linux driver. The ProximiTEE enclave is aminimal enclave that uses
a simple serial library tocommunicatewith theProximiKeyand local
attestation mechanism to attest any application-specific enclave.

B FURTHER EVALUATIONDETAILS

In this appendix we provide further details on howwe find suitable
parameter values for the initial and periodic proximity verification,
and describe additional experimental results such as the effect of
system load on proximity verification execution.

B.1 Initial Proximity Verification

In Section 5.5, we outlined a three-step approach to determine suit-
able parameter values for proximity verification. Here, we provide
further details on each of these steps.
1. Finding suitable thresholdTcon . Finding a suitable threshold
Tcon is a non-trivial task. A very low threshold requires a high num-
ber of the challenge-response rounds, since the protocol requires
at least a fraction k of the observed responses to be less or equal to
Tcon and a low threshold has very low cumulative probability value
in the latency distribution (see Figure 13). Conversely, a very high
threshold value enables some latencies measured during an attack
to be classified as legitimate replies, hence increasing the chances
of the attacker to break the proximity verification. To address this
challenge, we perform a trial over multiple threshold candidates to
evaluate their viability.

Figure 12 shows the legitimate success probability Pleдit for dif-
ferentnumberof rounds (n ∈ {10,20,50,100}).We iterate throughmul-
tiple threshold times (Tcon ∈ {183µs,184µs,185µs,186µs,189µs}), and
186µs provides high success ratio for different values of k (Pleдit =
0.9{7}77 (n= 50) and Pleдit = 0.9{15}29 (n= 100)), where 0.9{n}x
denotes 0.n-times 9 followed by x .

We testTcon up until 186µs because as can be observed in Figure 7
for thesevaluesweobserve extremely small occurrences (1.33×10−3)

13



Submission, ACSAC, 2019 Aritra Dhar, Ivan Puddu, Kari Kostiainen, and Srdjan Čapkun

0.1 0.2 0.3 0.4 0.5

0.
75

0.
95

No rerouting attack

(n
=

10
)

0.1 0.2 0.3 0.4 0.5

0.
75

0.
95

(n
=

20
)

0.1 0.2 0.3 0.4 0.5

0.
75

0.
95

(n
=

50
)

0.1 0.2 0.3 0.4 0.5

0.
75

0.
95

k

(n
=

10
0)

183 184 185 186 189

Figure 12: Legitimate attestation success probability for

different Tcon values. The chosen value Tcon = 186 µs gives

success probability 0.999999977 for number of trials at least

15 out of n=50 rounds when k=0.3.

CDF of latency

time (µs)

0.
0

0.
4

0.
8

150 200 250 300 350

CDF of latency

time (µs)

1e
−

05
1e

−
01

Platform in proximity
Attacker

Figure 13: Cumulative distribution function for latencies.

We set the threshold Tcon at 183 µs which has a cumulative

probability of 0.693 in the experiment where no rerouting

attack takes place with probability of 1.33×10−4.

of latency responses during an attacking scenario. It is possible to
increment the latency further to improve the success probability, but
doing so will start increasing the probability for the attacker as well.
After that, we estimate that any latency value less than or equals
to the threshold Tcon appears with the cumulative probability of
pH =Pr[144≤x ≤ 186]=

∑186
i=144Pr[x =i]=0.693 (where 144 µs is the

smallest latency experienced).
The attacker’s success probability for a single round is the cumula-

tiveprobability sampled fromtheattacker’sdistribution (thegreyhis-
togram in Figure 7) pA =Pr[x ≤ 186]=

∑183
i=160Pr[x =i]=1.33×10

−4.
Now, for both cases (simulated attack and benign case) we can

model the complete challenge-response protocol of n rounds as a
Bernoulli’s trialwherewe look for at leastkn responseswithin 186 µs
out of n. We can write this cumulative probability as a binomial dis-
tribution:

Pr[x ≥nk]=
n∑

i=nk

(
n

i

)
(p)i (1−p)n−i ;where p ∈ {pH,pA }

2. Choosing a suitable fractionk . The next step of the evaluation
is to find a suitable fraction k based on the threshold timeTcon . Note

0.2 0.3 0.4 0.5 0.61e
−

21
1

1e
−

28

Rerouting attack

1e
−

21
1

1e
−

28

0.2 0.3 0.4 0.5 0.60.
70

0.
85

1.
00 No rerouting attack

k

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0.
70

0.
85

1.
00

10 20 30 40 50 100

Figure 14: Finding suitable fraction k . The graph shows the

legitimate enclave’s success probability in an ideal scenario

and the attacker’s success probability in rerouting attack

scenario with varying k .

that both the success probability of the attacker and the legitimate
enclave is calculated as the cumulative probability from a binomial
distribution (from nk to n). Hence, we require to choose a suitable
value of k that maximizes Pleдit while minimizing Padv .

We calculate twographs that are depicted in Figure 14where the x-
axis denotes k , and the y-axis denotes attacker’s success probability
Padv and legitimate success probability Pleдit , respectively, while
usingTcon =186µs .Weobservea sharpdecrease in the legitimate suc-
cess probability atk=0.3. Hence, fixk=0.3 to achieve themaximum
Pleдit . Additionally, in the graph of attacker’s success probability,
the red horizontal line is placed at 10−30≈2−100. Hence we propose
to choose any round configuration bellow this horizontal line, where
n ≥ 40. With number of rounds set to n = 50 and k = 0.3, we have
Pleдit =0.99999997 and Padv =3.55×10−34. Similar result could be
also observed in Figure 14 where the success probability of the legit-
imate enclave decreases significantly after k=0.55 forTcon =186µs .

3. Generalizing the number of rounds n. Figure 7 extends this
analysis to the general number of challenge-response rounds span-
ning from n=2 to 100. Here we compute the probability of attacker
returning the reply within 186µs for at least k = 0.3 fraction of
challenges. The y-axis denotes the attacker’s success probability
which diminishes overwhelmingly with the increasing number of
challenges (keeping the fraction constant at k=0.3).

B.2 Periodic Proximity Verification

In Section 5.6 we outlined a three-step approach for finding suitable
parameters for the periodic proximity verification that we use for
revocation. Here, we provide further details on each of these steps.

1.FindingsuitablethresholdTdetach .Weset the thresholdTdetach
to 205 µs . We choose this value as we experience very small sam-
ples from the timing distribution (refer to the ‘yellow’ distribution
Figure 7) where no rerouting attack takes place. While in the at-
tacker’s distribution, the cumulative probability of the response
occurring betweenTcon andTdetach is Pr [Tcon ≤LA ≤Tdetach ]=∑205
i=186Pr[LA=i]=3.2×10

−2. UsingTdetach , we can nowdefine the
14



ProximiTEE Submission, ACSAC, 2019

challenge response rounds in Figure 5 for a single round as following:
Pr[Lleдit ≤Tcon ]=Pr[leдit ∈green]=0.693

Pr[Tcon <Lleдit <Tdetach ]=Pr[leдit ∈yellow]=0.208

Pr[Lleдit ≥Tdetach ]=Pr[leдit ∈ red]=1.83×10−3

Pr[LA ≤Tcon ]=Pr[A∈green]=1.33×10−3

Pr[Tcon <LA <Tdetach ]=Pr[A∈yellow]=0.032
Pr[LA ≥Tdetach ]=Pr[A∈ red]=0.966

2. Finding suitable sliding window sizew . Sliding window size
is analogous to that of the number of rounds n. We keep the size of
the sliding window asw =n=50 as it only requires the ProximiKey
to remember the past 50 interactions and achieve high probability
for the legitimate enclave and negligible success probability for the
attacker. Similar to theprevious approach, only if 15out of 50 (k=0.3)
challenge-response round where responses are within 186 µs , Prox-
imiTEE yields success probabilities as the following:

Pr[A∈ success window]=P ′adv =P
′
f n =3.55×10

−34

Pr[A∈ failed window]=Pr[A∈ red]2=0.933
Pr[leдit ∈ success window]=0.99999997

Pr[leдit ∈ failed window]=P ′f p =Pr[leдit ∈ red]
2=3.34×10−6

The probability that a halt window event occurs for a legitimate
application-specific enclave running on the platform in proximity is
Pr[leдit ∈ red]≈7.09×10−3. The ProximiKey halts all the data com-
munication to the target platform until the next periodic proximity
verification.

If two or more than two latencies ≥ 205µs (Tdetach ) are received,
the ProximiKey terminates the connection and revoke the platform.
The downtime that can happen as a result of false positive during
a connection of 10 years is around 2minutes.
3.Findingsuitable frequency f .The frequency f determineshow
fast the connection is terminated in case the ProximiKey device is
detached. Note that the ProximiKey takes around 500 µs on average
to issue a new random challenge in the legitimate case. Hence, by
performing a round of the protocol as soon as the previous is over,
we achieve the maximum attainable average frequency of ∼ 2000
rounds per second.We use this frequency as it consumes only 156.14
KB (2.4 × 10−3% of the USB 3.0 channel capacity) and allows the
communication channel to be halted on average after 200µs of the
start of a relay attack and terminated in 1000µs or 1ms .

B.3 Additional Experimental Results

Effects of core pinning.We executes the ProximiTEE enclave ap-
plicationpinning to specificCPUcores (using the commandtaskset
[COREMASK] [EXECUTABLE]). Core pinning forces the operating sys-
tem to use a specific set of CPU core(s) to execute a program. CPU
pinning may significantly bring down execution time due to the
elimination of core switching and ability to reuse L1 and L2 cache.
Figure 15 illustrates the effect of CPU core pinning vs. no pinning.
We experience negligible effect by core pinning. Hence we conclude
that the attacker won’t gain any advantage by CPU core pinning.
Effects of CPU load. Figure 16 shows the enclave execution times
with varying degree of CPU stress testing. We used stress-ng to

Effect of CPU core pinning

time (µs)
140 160 180 200 220 2400.

00
0.

04
0.

08 Core pinned
No pinning

Figure 15: Effect of CPU core pinning on the enclave appli-

cation. Restricting the enclave application to a specific core

has a veryminor effect on the observed latency.

5 10 15 20 25 30

0.
0

0.
4

0.
8 No load

1 core

5 10 15 20 25 30

0.
0

0.
4

0.
8 No load

4 cores

time (µs)
5 10 15 20 25 30

0.
0

0.
4

0.
8 No load

6 cores

time (µs)
5 10 15 20 25 30

0.
0

0.
4

0.
8 No load

8 cores

Figure 16: Effect on enclave execution time with different

number of stressed CPU cores. Increase system load has a

minor effect on observed enclave execution time.

stress different number of CPU cores. We experienced a minor slow-
down with the increasing number of busy CPU cores. But the slow-
down is insignificant. For example, as shown in the Figure 16, we
experienced a shift of 12µs when all the 8 CPU cores are busy exe-
cuting the benchmark software. Also, note that the load introduced
by the benchmark is a sustained load on all the CPU cores which
is much more demanding for the CPUs compared to the CPU loads
introduced by real-life applications. In that scenarios, the deviation
would be even lesser. We conclude that proximity verification for
SGX enclaves is reliable even under high system load. In rare cases
of extreme system load, proximity verification might fail, but this
is an availability concern, not a security threat.

15


	Abstract
	1 Introduction
	2 SGX Background
	2.1 Remote Attestation
	2.2 Side-Channel Leakage

	3 Relay Attack Analysis
	3.1 Relay Attacks
	3.2 Relay Attack Implications
	3.3 Limitations of Known Solutions

	4 ProximiTEE
	4.1 Approach Overview
	4.2 Example Use Cases
	4.3 Solution Details
	4.4 Security Analysis

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Evaluation Focus: Internet Relay
	5.3 Experimental Setup
	5.4 Latency Distributions
	5.5 Initial Proximity Verification Parameters
	5.6 Periodic Proximity Verification Parameters
	5.7 Performance Analysis
	5.8 Preventing Relay to Co-Located Platform

	6 Discussion and Related Work
	7 Conclusion
	References
	A Addressing Emulation Attacks
	A.1 Emulation Attack
	A.2 Boot-Time Initialization Solution
	A.3 Security Analysis
	A.4 Comparison to TOFU
	A.5 Implementation

	B Further Evaluation Details
	B.1 Initial Proximity Verification
	B.2 Periodic Proximity Verification
	B.3 Additional Experimental Results


