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Abstract. This paper introduces Spice, a system for
building verifiable state machines (VSMs). A VSM is
a request-processing service that produces proofs estab-
lishing that requests were executed correctly according
to a specification. Such proofs are succinct (a verifier
can check them efficiently without reexecution) and zero-
knowledge (a verifier learns nothing about the content of
the requests, responses, or the internal state of the service).
Recent systems for proving the correct execution of state-
ful computations—Pantry [24], Geppetto [34], CTV [30],
Hawk [49], vSQL [87]—implicitly implement VSMs, but
they incur prohibitive costs. Spice reduces these costs by
over two orders of magnitude with a new storage prim-
itive. More notably, Spice’s storage primitive supports
multiple writers, making Spice the first system that can
succinctly prove the correct execution of concurrent ser-
vices. We find that Spice running on a cluster of 16 servers
achieves 488–1048 transactions/second for a variety of
applications including inter-bank transactions [27], cloud-
hosted ledgers [28], and dark pools [65]. This represents
a 16,000—620,000× higher throughput than prior work.

1 Introduction
We are interested in a system for building verifiable state
machines (VSMs). A VSM is similar to a traditional state
machine except that it produces correctness proofs of its
state transitions. Such proofs can be checked efficiently
by a verifier without locally reexecuting state transitions
and without access to the (plaintext) content of requests,
responses, or the internal state of the machine. Conse-
quently, VSMs enable a wide class of real-world ser-
vices to prove their correct operation—without compro-
mising privacy. For example, by appropriately program-
ming state transitions, VSMs can implement verifiable
versions of distributed payment networks [27, 63], dark
pools [65], ad exchanges [3], blockchains and smart con-
tracts [11, 29, 49, 61], or a request-processing application
that interacts with a database.

There is an elegant solution to build VSMs by em-
ploying efficient arguments [40, 43, 47, 48, 57, 60],
a primitive that composes probabilistically checkable
proofs (PCPs) [5, 6] with cryptography. Specifically, an
untrusted service can maintain state (e.g., in a key-value
store), run appropriate computations that manipulate that
state in response to clients’ requests, and produce proofs
that it faithfully executed each request on the correct state.

Such proofs are succinct, in the sense that the proofs are
small (e.g., constant-sized) and are efficient to verify. In
some constructions, the proofs are zero-knowledge [42],
meaning that they reveal nothing beyond their validity:
the state maintained by the service, along with the content
of requests and responses, is kept private from a verifier.

While the original theory is too expensive to imple-
ment, recent systems [7, 13, 17, 24, 33, 34, 38, 50, 66–
69, 71, 74, 75, 79–83, 86–88] make significant progress.
Beyond reducing the costs of the theory by over 1020×,
some of them can prove the correct execution of stateful
computations like MapReduce jobs and database queries.

Despite this progress, the costs remain prohibitive: the
service incurs several CPU-seconds per storage operation
(e.g., put, get on a key-value store) when generating a
proof of correct execution (§2.1, §7). This is over 106×
slower than an execution that does not produce proofs.
Besides costs, storage primitives in prior systems support
only a single writer, which limits them to a sequential
model of execution. Consequently, they cannot scale out
with additional resources by processing requests concur-
rently; this limits throughput that applications built atop
prior systems can achieve.

We address these issues with Spice, a new system for
building VSMs. Spice introduces a storage primitive with
a key-value store interface, called SetKV, that is over two
orders of magnitude more efficient than storage primitives
used by prior systems (§3). Furthermore, SetKV admits
concurrent writers with sequential consistency [53] (or in
some cases linearizability [45]) semantics, and supports
serializable transactions [20, 64]. This makes Spice the
first system to build VSMs that support a concurrent exe-
cution model (§4). Finally, we compose SetKV with prior
and new techniques to ensure that a verifier can check the
correct execution of requests using only cryptographic
commitments that hide the content of requests, responses,
and the state of the service (§3–5).

In more detail, SetKV extends a decades-old mecha-
nism for verifying the correctness of memories [4, 22,
31, 35]. SetKV is based on set data structures that result
in constant costs for each storage operation (amortized
over a batch of operations), whereas prior systems em-
ploy (Merkle) trees [24, 30, 49], or commitments [34, 87],
whose costs are logarithmic [24, 30, 49] or linear [34, 87]
in the size of the state. Furthermore, since SetKV allows
concurrent writers, Spice introduces mutual-exclusion
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primitives to build concurrency control protocols.
We implement Spice atop a prior framework [76, 82].

A programmer can express a VSM in a broad subset of C
(augmented with APIs for SetKV and transactions), and
compile it to executables of clients that generate requests,
servers that process those requests and generate proofs,
and verifiers that check the correctness of responses by
verifying proofs. We build several realistic applications
with Spice: an inter-bank transaction service [27], a cloud-
hosted ledger [28], and a dark pool [65]. Our experimen-
tal evaluation shows that Spice’s VSMs are 36–2,500×
more CPU-efficient and achieve 16,000–620,000× higher
throughput than the same VSMs built with prior works—
through a combination of inexpensive storage operations
and concurrent execution. Concretely, Spice’s VSMs sup-
port 488–1048 transactions/second on a cluster of 16 ma-
chines, each with 32 CPU cores and 256 GB of RAM.

Despite these advances, Spice has limitations. To
achieve high throughput, Spice proves state transitions in
batches, so one must wait for a batch to be verified be-
fore determining the correctness of any individual request,
which introduces latency (§3, §7.2). The CPU cost to pro-
duce proofs remains large (§7.1, §7.3), especially when
compared to unverified execution. Nevertheless, Spice
opens the door to VSMs that support a concurrent model
of computation and to many exciting applications.

2 Problem statement and background
Spice’s goal is to produce efficient verifiable state ma-
chines (VSMs). In our context, we use state machine as an
abstraction that represents a request-processing service.
State machines are specified by a tuple (Ψ,S0), where Ψ
is a deterministic program that encodes state transitions,
and S0 is the initial state of the machine (e.g., a set of
key-value pairs). The service maintains its state with Scur,
which is initialized to S0. When the service receives a
request x, it executes Ψ with x and its state Scur as inputs,
which mutates the state of the machine and produces a
response y. More formally, the service executes a request
x to produce a response y as follows:

(Si, y)← Ψ(Scur, x)

Scur ← Si

A state machine may execute a batch of requests con-
currently to achieve a higher throughput. In such a case,
the behavior of the state machine (i.e., the state after ex-
ecuting a batch of requests, and the responses produced
by the machine) depends on the desired correctness con-
dition for concurrent operations. In the next few sections,
we assume sequential consistency [53] as the correctness
condition for concurrent operations on single objects, and
serializability for multi-object transactions [20, 64]; these
can be relaxed as we discuss in Section 4.
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FIGURE 1—Overview of verifiable state machines (see text).

A verifiable state machine permits the verification of
state transitions without reexecution and without access
to the (plaintext) contents of requests, responses, and
the state of the service (Scur). Specifically, a VSM is a
protocol involving a prover P , a set of clients that issue re-
quests, and one or more verifiers {V1, . . . ,Vℓ} that check
the correctness of the execution (clients can be verifiers).
We depict this protocol in Figure 1; it proceeds as follows.

1. P runs a state machine (Ψ,S0) that processes requests
concurrently and maintains its state on a persistent
storage service (e.g., a key-value store).

2. Clients issue a set of requests, x1, . . . , xm, concurrently
to P and get back responses, y1, . . . , ym.

3. Each verifier Vi receives an opaque trace from P and
runs a local check on the trace that outputs accept or
reject. Concretely, the trace contains a commitment1

to the initial state of the service, a commitment to the
final state after executing the batch of requests, and a
commitment and proof for each request-response pair.

An efficient VSM must satisfy the following properties.

• Correctness. If P is honest (i.e., P’s behavior is equiv-
alent to a correct execution of requests in a sequential
order) then P can make a Vi output true.

• Soundness. If P errs (e.g., it does not execute Ψ or vio-
lates semantics of storage), then Pr[Vi outputs true] ≤
ϵ, where ϵ is small (e.g., 1/2128).2

• Zero-knowledge. The trace does not reveal anything
to a verifier Vi beyond the correctness of P .

• Succinctness. The size of each entry in the trace should
be small, ideally a constant (e.g., a few hundred bytes).
The cost to a Vi to verify an entry is linear in the size
of the entry (e.g., a few milliseconds of CPU-time).

• Throughput. P should be able to execute (and gener-
ate proofs for) hundreds of requests/second.

VSMs relate to recent systems for proving the correct

1 A commitment c to a value x is hiding and binding. Hiding means that
c does not reveal anything about x. Binding means that it is infeasible
to find a value x′ ̸= x which produces the same commitment.

2We discuss how to prevent P from equivocating (i.e., showing different
traces to different verifiers) or omitting requests in Section 9.
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execution of stateful computations [7, 24, 30, 34, 38, 87].
However, in prior systems: (1) P lacks mechanisms to
prove that it correctly executed requests concurrently, and
(2) P incurs high CPU costs to produce proofs. Con-
sequently, prior systems do not satisfy our throughput
requirement. We expand on a prior system below, but note
that Spice addresses both issues.

2.1 A prior instantiation of VSMs

We now describe a prior system that implements VSMs;
our goal is to introduce the necessary concepts to describe
Spice and to highlight why prior systems are inefficient.
We focus on Pantry [24]; Section 8 discusses other work.

Programming model and API. Pantry [24] follows the
VSM protocol structure introduced above. In Pantry, the
service’s request-processing program (Ψ) is expressed in
a subset of C, which includes functions, structs, typedefs,
preprocessor macros, if-else statements, loops (with static
bounds), explicit type conversions, and standard integer
and bitwise operations. For Ψ to interact with the service’s
storage, Pantry augments the above C subset with several
storage APIs; an example is the get and put API of
a key-value store. Also, Pantry supports commit (and
decommit) APIs to convert blobs of data (e.g., a request)
into commitments (and back)—to hide data from verifiers.

Mechanics. Pantry meets the correctness, soundness,
zero-knowledge, and succinctness properties of VSMs
(§2). To explain how, we provide an overview of Pantry’s
machinery, starting with a toy computation:

int increment(int x) {
int y = x + 1;
return y;

}

Pantry proceeds in three steps to execute a computation.
(1) Express and compile. A programmer expresses

the desired computation in the above subset of C, and
uses Pantry’s compiler to transform the program into a
low-level mathematical model of computation called al-
gebraic constraints. This is essentially a system of equa-
tions where variables can take values from a finite field
Fp over a large prime p (i.e., the set {0, 1, . . . , p − 1}).
For the above toy computation, the compiler produces the
following system of equations (uppercase letters denote
variables and lowercase letters denote concrete values):

C =

 X − x = 0
Y − (X + 1) = 0

Y − y = 0


A crucial property of this transformation is that the

set of equations is satisfiable—there exists a solution (a
setting of values to variables) to the system of equations—
if and only if the output is correct. For the above constraint
set, observe that if y = x + 1, {X ← x, Y ← y} is a

solution. If y ̸= x + 1, then there does not exist any
solution and the constraint set is not satisfiable.

(2) Solve. The prover solves the equations using the
input x provided by the client. In other words, the prover
obtains an assignment for each of the variables in the
system of equations and sends the output y to the client.

(3) Argue. The prover argues (or proves) that the sys-
tem of equations has a solution (which by the above trans-
formation property establishes that y is the correct output
of the computation with x as the input). To prove that a sys-
tem of equations is satisfiable, the prover could send its so-
lution (i.e., values for each of the variables in the equation)
to the verifier, who could check that each equation is satis-
fiable. However, this approach meets neither the succinct-
ness nor the zero-knowledge requirement of VSMs: the
size of the proof is linear in the running time of the com-
putation, and the solution reveals inputs, outputs, and the
internal state of the computation. To guarantee both prop-
erties, Pantry employs an argument protocol referred to
as a zkSNARK [21] to encode the prover’s solution to the
system of equations as a short proof. Details of how these
protocols work are elsewhere [13, 17, 24, 44, 66, 82, 85];
we first focus on costs and then discuss a subset of mech-
anisms in Pantry that are relevant to our work.

Pantry’s costs. Since costs depend on the choice of
argument protocol, and Pantry implements several [66,
68], we assume a recent protocol due to Groth [44]. The
costs to a Vj are small: the proof produced by P and sent
over the network to Vj per Ψ is short (128 bytes); Vj’s cost
to validate a proof is only a few milliseconds of CPU-time.
P’s costs to produce a proof scale (roughly) linearly with
the number of constraints of the program; concretely, this
cost is ≈150µs of CPU-time per constraint.3

2.1.1 Interacting with external resources

A key limitation of the above algebraic constraint formal-
ism is that it cannot handle interactions with the external
“world” such as accessing disk or sending and receiving
packets over a network. To address this, Pantry relies on
the concept of exogenous computations.

An exogenous computation is a remote procedure
call (RPC) to an external service, which can be used to
read from a disk or interact with remote servers (using
OS services). Such an external service is executed outside
of the constraint formalism (hence the name). The RPC
simply returns a response that is then assigned to appro-
priate variables in the constraint set of the computation.
We illustrate this concept with an example below.

Suppose that the computation is y =
√

x, where x
is a perfect square. Of course, one could represent the

3The time complexity and the concrete per-constraint cost we provide
assume that the constraint set is produced in the quadratic form [40, 68]:
each constraint is of the form P1 · P2 = P3, where P1, P2, and P3 are
degree-1 polynomials over the variables in the constraint set.
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square-root function using constraints and apply the above
machinery, but the resulting constraint set is highly ver-
bose (which increases the prover’s cost to solve and ar-
gue). Exogenous computations offer a way to express the
equivalent (and much cheaper) computation with:

int sqrt(int x) {
int y = RPC(SQRT, x); //exogenous computation
assert(y*y == x);
return y;

}

The above code compiles to the following constraint set:

C =

 X − x = 0
(Yexo · Yexo)− X = 0

Yexo − y = 0


The prover computes

√
x outside of constraints (e.g., by

running a Python program) and assigns the result to Yexo

when solving the equations (Step 2). The assert state-
ment becomes an additional constraint that essentially
forces the prover to prove that it has verified the correct-
ness of Yexo. A similar approach can be used to interact
with services like databases. The challenge is defining an
appropriate assert statement, as we discuss next.

2.1.2 Handling state

Unfortunately, exogenous computations are insufficient
to enable programs to access state that is not part of the
input, such as a key-value store (which is the case in
VSMs). This is because the prover is untrusted and can
return any response to an RPC. For example, if the prover
keeps a key-value store with the tuple (k, v), and a client’s
program issues an RPC(GET, k) operation, the prover
could return v′ ̸= v. Consequently, as in the above sqrt
example, the program must verify the result of every RPC.

To enable this verification, Pantry borrows the idea of
self-verifying data blocks from untrusted storage systems:
it names data blocks using their collision-resistant hashes
(or digests). The following example takes as input a digest
and increments the value of the corresponding data.

Digest increment(Digest d) {
// prover supplies value of block named by d
int block = RPC(GETBLOCK, d);
// if block is invalid the assert fails
assert(d == Hash(block));
// compute new data block
int new_block = block + 1;
// supply to prover a new block and get digest
Digest new_d = RPC(PUTBLOCK, new_block);
// verify new digest and return
assert(new_d == Hash(new_block));
return new_d;

}

Pantry abstracts these operations with two APIs: (1)
PutBlockwhich takes as input a block of data and returns
its digest, and (2) GetBlock which returns a previously

stored block of data given its digest (these APIs take care
of the RPC call and computing the appropriate asserts and
invocations of the hash function). Atop this API, Pantry
builds more expressive storage abstractions using prior
ideas [22, 39, 55, 59]. To support RAM, Pantry encodes
the state in a Merkle tree [22, 59]. To support a key-value
store, Pantry uses a searchable Merkle tree: an AVL tree
where internal nodes store a hash of their children. To
read (or update) state in these tree-based storage prim-
itives, the program executes a series of GetBlock (and
PutBlock) calls starting with the root of the tree. Thus, a
read operation incurs ⌈log2(n)⌉ calls to GetBlock, where
n is the maximum number of addresses in the state (an
update incurs twice those costs).

Hiding requests and responses. The above storage prim-
itive can be used to hide requests and responses from a
verifier. Specifically, the prover keeps the plaintext re-
quests and responses in its persistent storage and releases
cryptographic commitments to requests and responses to
a verifier. As in the increment example, a C program
must take as input a commitment to a request, obtain the
plaintext version of it using an RPC, and produce a com-
mitment to the response. This logic is abstracted with the
commit and decommit APIs.

Costs. We now assess the cost of a key-value store op-
eration under Pantry. A get(k) makes ⌈log2 n⌉ calls to
GetBlock, and each GetBlock call requires encoding
a hash function as constraints (to represent the assert
statement that verifies the return value of the RPC). Thus,
a single get on a key-value store with as few as n = 1,000
entries requires 44,000 constraints (§7.1); this translates
to 6.6 CPU-seconds for producing a proof. Furthermore,
since Pantry relies on a tree to represent a key-value store,
the root of the tree is a point of contention; a batch of
operations cannot be executed concurrently.

2.2 Outlook and roadmap

Given the overwhelming expense to execute a simple stor-
age operation when using a tree-based data structure, we
believe that making meaningful progress requires revis-
iting mechanisms for verifying interactions with storage.
In Section 3.1, we describe an entirely different way to
verify storage operations that relies on a set—rather than
a tree—data structure. In Section 3.2, we show how to
employ this set-based storage primitive to realize efficient
VSMs, and in Section 4 we show how, unlike Merkle
trees, this set-based primitive allows requests to be pro-
cessed concurrently. Finally, Section 5 describes how to
instantiate the set-based storage primitive efficiently, so
each get and put operation can be represented with only
a few hundred constraints.
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3 Efficient storage operations in VSMs
This section presents a new mechanism to handle storage
operations in VSMs. We first discuss the design of a
verifiable key-value store based on set data structures;
the design itself is orthogonal to VSMs and can be used
to build a standalone untrusted storage service. We then
show to how to compose the new key-value store with
prior machinery to realize efficient VSMs.

3.1 SetKV: A verifiable key-value store

The goal of a verifiable key-value store is to enable an
entity VK to outsource a key-value storeK to an untrusted
server PK, while being able to verify that interactions
with K are correct. Specifically, PK receives operations
from VK and executes them on K such that VK can check
that a get on a key returns the value written by the most
recent put to that key. This protocol proceeds as follows.

1. VK calls init to obtain an object that encodes the
initial empty state of K.

2. VK issues inserts, gets, and puts sequentially to PK
and receives responses. That is, VK has at most one
outstanding request, and it waits for a response from
PK before issuing the next request. Also, VK locally
updates its object for every request-response pair.

3. After a batch of operations, VK runs audit that com-
putes over its local object (and auxiliary responses from
PK), and outputs whether or not PK operated correctly.

We desire the following properties from this protocol.

• If PK correctly executes operations on K, then it can
make VK’s audit output true.

• If PK errs, then Pr{audit outputs true} < θ, where
θ is very small (e.g., 1/2128).

• VK maintains little state (e.g., tens of bytes).

Figure 2 depicts our construction. We call this con-
struction SetKV for ease of reference, but note that it
introduces small—albeit critical—changes to the offline
memory checking scheme of Blum et al. [22] (and its
follow-up refinement [31]) and the Concerto key-value
store [4]. We discuss our modifications at the end of this
subsection; these changes are necessary to build VSMs
using SetKV (§3.2). We prove that SetKV meets all de-
sired properties in Appendix C.1. Below, we describe how
SetKV works starting with a straw man design.

A straw man design. Suppose VK maintains a totally-
ordered log where it records all key-value operations it
issues to PK along with the responses supplied by PK.
VK can execute the following audit procedure: for each
get on a key k recorded in the log, identify the most
recent put to k (by traversing the log backwards starting
from the point at which the get is recorded) and check if

1: function init( )
2: return s← VKState{0, 0, 0}
3: function insert(s, k, v)
4: ts′ ← s.ts + 1
5: RPC(INSERT, k, (v, ts′)) // PK executes INSERT on K
6: ws′ ← s.ws⊙H({(k, v, ts′)})
7: return VKState{s.rs, ws′, ts′}
8: function get(s, k)
9: (v, t)← RPC(GET, k) // PK executes GET on K

10: rs′ ← s.rs⊙H({(k, v, t)})
11: ts′ ← max (s.ts, t) + 1
12: RPC(PUT, k, (v, ts′)) // PK executes PUT on K
13: ws′ ← s.ws⊙H({(k, v, ts′)})
14: return VKState{rs′, ws′, ts′}, v
15: function audit(s)
16: rs′ ← s.rs
17: keys← RPC(GETKEYS) // PK returns a list of keys in K
18: for k in keys do
19: (v, t)← RPC(GET, k) // PK executes GET on K
20: rs′ ← rs′ ⊙H({(k, v, t)})
21: if keys has duplicates or rs′ ̸= s.ws then return false
22: else return true

FIGURE 2—SetKV: A verifiable key-value store based on set
data structures [4, 22, 31, 35]. The logic depicted here is run
by VK; PK responds to RPCs. VK’s state s is an instance of
VKState and it consists of two set-digests and a timestamp ts;
H(·) is an incremental and set collision-resistant hash function;
see text for details. A put is similar to get except that lines 11
and 13 use the value being written instead of v.

the value returned by the get matches the value written
by the put. If all the checks pass, VK outputs true.

There are two issues with this straw man: (1) VK’s state
is too large since the size of the log is proportional to
the number of key-value store operations, and it grows
indefinitely; (2) the cost to verify the correctness of each
get is linear in the size of the log.

Mechanics of SetKV. SetKV addresses both issues as-
sociated with the straw man. It lowers verification cost by
relying on two sets instead of an append-only log, and it
reduces the size of the state maintained by VK by lever-
aging a special type of cryptographic hash function that
operates on sets. We elaborate on these next.

(1) Using sets. Instead of a totally-ordered log, suppose
that VK maintains a local timestamp counter ts along with
two sets, a “read set” (RS) and a “write set” (WS). SetKV’s
key idea is to design a mechanism that combines all the
checks in the straw man design (performed on the return
value of each get using a log) into a single check on these
two sets; if the server executes any operation incorrectly,
the check fails. Of course, unlike the above log-based
checks, if the set-based check fails, VK will not know
which particular operation was executed incorrectly by
PK, but this dramatically reduces verification costs.

Details of the set-based check. First, we structure the
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key-value store K so that each entry is of the form (k, v, t)
where k is a key, v is the associated value, and t is a
timestamp (more precisely a Lamport clock [52]) that
indicates the last time the key was read (or updated). VK
initializes RS and WS to empty and ts to 0. When VK
wishes to insert a new key-value pair (k, v) into K, it
increments the local timestamp ts, adds the tuple (k, v, ts)
into WS, and sends this tuple to PK. Similarly, when
VK wishes to execute a get (or a put) operation on an
existing key k, VK executes the following five steps:

1. Get from PK via an RPC the current value v and time-
stamp t associated with key k

2. Add the tuple (k, v, t) into RS

3. Update local timestamp ts← max(ts, t) + 1

4. Add the tuple (k, v′, ts) into WS (where v′ = v for a
get, or the new value for a put)

5. Send the new tuple to PK via an RPC

Observe that the sets maintained by VK preserve two
important invariants: (1) every element added to RS and
WS is unique because ts is incremented after each opera-
tion, and (2) RS “trails” WS by exactly the last write to
each key (i.e., RS ⊆ WS). These lead to an efficient audit
procedure: VK can request the current state of K (i.e., the
set of key, value, and timestamp tuples) from PK (denote
this returned set as M), and check if:

RS ∪M = WS

There is also a check in audit that verifies whether all the
keys in M are unique that prevents the following double
insertion attack: if VK issues to PK an insert operation
with a key that already exists in K, a correct PK should
return an error message. However, a malicious PK could
return success for both inserts, and in the future, return
either value for a get on such a key.

Correctness intuition. We now use an example to ex-
plain the intuition of the set-based check. Suppose that
after initialization, VK inserts a new key-value pair (k, v)
into K (via the above protocol). VK’s state will be:

RS={}, WS={(k, v, 1)}, ts=1

If VK runs the audit procedure, then a correct PK can re-
turn its state, which in this case is simply M = {(k, v, 1)}.
This leads VK’s audit to return true since RS∪M=WS,
and the set of keys in M has no duplicates. Suppose that
VK then calls get(k) and PK misbehaves by returning
(v′, 1) where v′ ̸= v. VK’s state will be updated to:

RS={(k, v′, 1)}, WS={(k, v, 1), (k, v′, 2)}, ts=2

Observe that for any set M, RS ∪ M ̸= WS (this is be-
cause RS ⊈ WS). By returning a wrong response, PK
permanently damaged its ability to pass audit.

(2) Compressing VK’s state. VK cannot track the two
sets explicitly since they are larger than K. Instead, VK
employs a particular type of hash functionH(·) that acts
on sets and produces a succinct set-digest [8, 31].Hmeets
two properties. First, it is set collision-resistant, meaning
that it is computationally infeasible to find two different
sets that hash to the same set-digest. Second,H is incre-
mental: given a set-digest dS for a set S, and a set W, one
can efficiently compute a set-digest for S ∪ W. Specifi-
cally, there is an operation ⊙ (that takes time linear in the
number of elements in W) such that:

H(S ∪W) = H(S)⊙H(W)

= dS ⊙H(W)

We later discuss a new instantiation of H that can be
represented efficiently in the constraints formalism (§5).
VK leverages H to create (and incrementally update)

set-digests that represent RS and WS, and keeps these
digests and the timestamp in a small data structure:

struct VKState {
SetDigest rs; // a set-digest of RS
SetDigest ws; // a set-digest of WS
int ts;

}

The same correctness argument (discussed above) ap-
plies except that we must account for the case where PK
identifies a collision in H, which can allow it to misbe-
have and still pass the audit. Fortunately, the probability
that PK can find any collision is very small (θ ≤ 2−128).

Note that while the audit procedure (Figure 2) appears
to require VK to keep state linear in the size of K to store
the set of all keys (to check for duplicates), this is not
the case. If getkeys (Fig. 2, Line 17) returns a sorted
list of keys, the uniqueness check can be expressed as
a streaming computation. Consequently, VK only needs
enough state for VKState, and the metadata required to
track the status of the streaming computation; all of this
is tens of bytes, which meets our requirement.

Differences with prior designs. SetKV supports insert-
ing any number of keys, whereas offline memory check-
ing protocols [22, 31, 35] have a fixed memory size.
To support insertion, we add the insert procedure,
the getkeys RPC, and the uniqueness check (Figure 2,
Line 21). To prevent P from denying that a particular key
has been inserted, and to disallow P from maintaining a
key-value store with duplicate keys, we have additional
checks (Appendix C.1). Concerto [4] also supports inserts
but it is more expensive than SetKV since it requires VK
to issue two additional RPCs per insert (and two ad-
ditional calls to H to update rs and ws) to maintain an
index of keys, so Concerto’s approach is up to 3× more
expensive than SetKV for VK.

Several prior schemes [4, 22, 35] use instances of H
that require VK to use cryptographic material that must
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be kept secret from PK. While this is not an issue in
the standalone setting presented in this section (since VK
updates set-digests locally), it is problematic in the VSM
context where the prover P executes these operations on
behalf of clients (§3.2). In contrast, our construction of
H does not require secret cryptographic material (§5.2).
Finally, the audit protocol of SetKV does not modify VK’s
set-digests (as is the case in Concerto’s), which lowers
the costs of audit by 2×.

3.2 Building VSMs using SetKV

Spice is similar to Pantry (including the compiler to trans-
form programs to algebraic constraints and how it em-
ploys an argument protocol as a blackbox). The principal
difference is in how Spice handles interactions with stor-
age, which we discuss next.

Recall from Section 2.1 that a VSM’s program Ψ inter-
acts with external services (e.g., a storage service) through
exogenous computation via RPCs. Since the prover is
untrusted and can return incorrect RPC responses, Ψ
must verify these responses via assert; Section 2.1.2
discusses the verification mechanism in Pantry. We now
discuss an alternate mechanism based on SetKV.

At a high level, Spice’s idea is to employ SetKV’s
verifier (i.e., VK) to check the interactions of Ψ with a
storage service by representing the logic of VK as a set
of algebraic constraints. To accomplish this, we build a
C library that implements the init, insert, get, put,
and audit procedures in Figure 2. A VSM programmer
uses this library to write Ψ, and compiles Ψ with prior
machinery (§2.1) into algebraic constraints (and client,
server, verifier executables). To illustrate this idea, we
start with an example in which Ψ increments an integer
value associated with a key requested by a client.

Value increment(VKState* s, Key k) {
Value v;
// prover supplies value v for key k
get(s, k, &v); //setkv library call (updates s)
// increment value
v = (Value) ((int) v + 1);
// supply new value to prover
put(s, k, v); // setkv library call (updates s)
// batch-verify all storage operations
assert(audit(*s) == true); // setkv library call
return v;

}

Observe that the high-level structure of the above pro-
gram is nearly identical to the example we discussed in
the context of Pantry (§2.1.2). A key difference, however,
is that under Pantry, Ψ verifies each storage operation
(e.g., GetBlock) with an assert; under Spice, Ψ veri-
fies all storage operations at the end with a single assert
that calls SetKV’s audit procedure.

Costs. Since init, insert, get, and put execute a con-
stant number of arithmetic operations (Figure 2), Spice

compiles them into a constant number of equations when
transforming Ψ into the constraint formalism. audit,
however, computes over the entire state of the key-value
store, so it compiles to a constraint set with size linear
in the number of objects in the key-value store (say n).
Fortunately, audit is called only once, so its costs are
amortized over all storage operations in Ψ.

In more detail, if Ψ executes O(n) storage operations
before calling audit, the (amortized) cost of each stor-
age operation is a constant. However, for the services that
Spice targets (§1, §6), Ψ executes far fewer storage oper-
ations than n. This leads to an undesirable situation: the
amortized cost of a storage operation can be worse than in
Pantry (where each storage operation’s cost is logarithmic
in n). Spice addresses this by decoupling the call to audit
from the rest of Ψ. We discuss this below.

Spice’s VSMs. Let Ψ be a VSM program with the same
structure as the previous increment example: Ψ takes as
input a request x and a VKState s, interacts with the
storage via RPCs, verifies those interactions at the end via
assert, updates s, and outputs a response y. Spice splits
Ψ into two independent programs: Ψreq and Ψaudit, where
Ψreq is same as Ψ except that it does not have the assert
statement at the end; Ψaudit is the following program:

void audit_batch(VKState s) {
assert(audit(s) == true);

}

This decomposition achieves the following: proving
the correct execution of m instances of Ψ is equivalent
to proving the correct execution of the corresponding
m instances of Ψreq and a single instance of Ψaudit. By
equivalent, we mean that a verifier V outputs true to m+1
proofs (one per instance of Ψreq and Ψaudit) if and only
if V would have output true to the m proofs produced
by instances of Ψ. Thus, if m=O(n), the O(n) constraints
needed to express Ψaudit are effectively amortized over the
m requests, making the (amortized) number of constraints
for each storage operation in Ψreq a constant.

This approach has two drawbacks. First, it increases la-
tency since V confirms the correct execution of any given
instance Ψreq only after it has verified all m + 1 proofs.
Second, if the proof of Ψaudit fails, V does not learn which
of the storage operations (and therefore which instance of
Ψreq) returned an incorrect result. However, as we show in
our evaluation (§7), this decomposition reduces the cost
of storage operations by orders of magnitude over Pantry,
even for modest values of m.

Trace. Recall from Section 2 that each verifier Vj re-
ceives a trace from P to verify a batch of m instances of
Ψreq. This trace contains m tuples and a proof for Ψaudit:

(xi, si−1, yi, si,πi)∀i ∈ [1, m] and πaudit

where πi is the proof of correct execution of the ith in-
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stance of Ψreq with (si−1, xi) as input and (si, yi) as out-
put. Each state si is an object of type VKState (s0 is a
VKState object for an empty key-value store), xi is a
request, and yi is the corresponding response. πaudit estab-
lishes the correct execution of Ψaudit with sm as input.

Observe that the above trace is sufficient to guarantee
correctness and soundness (since each Vj has all the in-
formation needed to verify the actions of P), but does
not satisfy zero-knowledge or succinctness. This trace
is not succinct since the sizes of requests and responses
could be large (they depend on the application). The trace
is not zero-knowledge since requests and responses ap-
pear in plaintext. Moreover, a VKState object leaks the
timestamp field and the set-digests (unlike commitments,
hashes bind the input but do not hide it; see Footnote 1).

Commitments. To make the trace succinct and zero-
knowledge, a programmer writes a VSM that takes as
input (or produce as output) commitments to requests,
responses, and VKState. For example, the Ψreq and Ψaudit

discussed earlier are expressed as:

Commitment incr_comm(Commitment* cs, Commitment ck) {
// prover passes value via RPC (checked by assert)
VKState s = (VKState) decommit(*cs);
Key k = (Key) decommit(ck);
Value v = increment(&s, k); // prior program logic
*cs = commit(s);
return commit(v);

}

void audit_batch_comm(Commitment cs) {
VKState s = (VKState) decommit(cs);
audit_batch(s); // prior program logic

}

In more detail, a client sends to P the plaintext request
xi (k in the example). P computes the program (with-
out commitments) outside of the constraint formalism
and sends back to the client the output yi (v in the ex-
ample). P then generates a proof πi for the version of
the program that uses commitments (incr_comm in the
example). Specifically, P first generates a commitment to
xi outside of the constraint formalism (we discuss what
prevents P from omitting requests or generating an in-
correct commitment in Section 9), and uses it to solve
the constraint set produced by Ψreq (§2.1). P then adds
to its trace commitments to each of (si, xi, yi), and the
corresponding proof πi. Each verifier Vj uses these com-
mitments to verify the proofs (including πaudit) without
learning anything about the requests, responses, or states
beyond their correctness. Furthermore, since the size of
each commitment and proof is constant, it satisfies the
succinctness property of VSMs.

4 Supporting concurrent services
Prior instantiations of VSMs—including our design in
Section 3—do not support a prover P that executes re-
quests concurrently. A key challenge is producing proofs

that establish that P met a particular consistency seman-
tic. Note that this problem is hard even without the zero-
knowledge or succinctness requirements of VSMs [73].

4.1 Executing requests concurrently

To make P execute requests concurrently, we introduce a
concurrent version of SetKV, called C-SetKV, which we
later integrate with Spice’s design from the prior section.

C-SetKV’s prover PK interacts with multiple instances
of VK (V(0)

K , . . . ,V(ℓ)
K ) that issue insert, put, and get

requests concurrently. C-SetKV guarantees sequential
consistency [53]: an audit returns true if and only if the
concurrent execution is equivalent to some sequential exe-
cution of operations, and the sequential execution respects
the order of operations issued by individual instances of
VK. In a few cases, C-SetKV guarantees a notion of lin-
earizability [45]. We formalize these guarantees and give
all the details in Appendix C, but the key differences
between C-SetKV and SetKV are:

1. Enforcement of isolation. In SetKV (Figure 2), VK is-
sues two RPCs for each get and put; they are executed
in isolation by SetKV’s PK because there is only one
outstanding operation. In C-SetKV, PK must explicitly
ensure that both RPCs are executed in isolation since it
receives and executes many concurrent operations.

2. Support for independent VKStates. In SetKV, VK
maintains a single VKState object that encodes its key-
value store operations since initialization. In C-SetKV,
each V(j)

K has its own independent VKState object that
contains only the effects of operations issued by V(j)

K .

We discuss the details of these differences below.

Enforcement of isolation. Of the four key-value oper-
ations, insert executes in isolation since it performs a
single RPC; audit does not modify PK’s state, so it exe-
cutes in isolation using a snapshot. To ensure two RPCs
of put and get execute in isolation in the presence of
multiple instances of VK, a correct PK can keep track
of when the first RPC starts and block any other request
that attempts to operate on the same key until the second
RPC (for the same key) completes. A simple approach to
achieve this is for PK to lock a key during the first RPC
and release the lock on the second RPC. A malicious PK
could of course choose not to guarantee isolation, but
as we show in Appendix C.2, a future audit would not
pass.

Support for independent VKStates. Since each V(j)
K is-

sues requests independently, it maintains a local VKState
object. This creates two issues. First, the set-digests and
timestamp in the VKState object of V(j)

K do not capture
the operations issued by other instances of VK. As a result,
we need a mechanism to combine the VKState objects of
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all instances of VK prior to invoking audit—since audit
accepts a single VKState object. Second, the timestamp
field ts is no longer unique for each operation since each
V(j)
K initializes its VKState object with ts = 0. We discuss

how we address these issues below.
Combining VKState objects. To obtain a single

VKState object, each V(j)
K collects VKState objects from

every other instance and locally combines all objects.4

Combining set-digests is possible because sets are un-
ordered and the union operation is commutative. More-
over, H(·) preserves this property: the operation ⊙ is
commutative. As a result, each V(j)

K constructs set-digests
that capture the operations of all instances of VK as if they
were issued by a single entity. For example, the combined
read set-digest is computed as rs = rs(0) ⊙ . . . ⊙ rs(j)

(similarly for ws). Finally, the timestamp of the combined
VKState object is simply 0 since it is not used in audit.

Handling duplicate entries. Since different VK in-
stances start with the same timestamp ts=0, it is possible
for two different instances to add the same element into
their local set-digests (in a VKState object); this creates
a problem when multiple VKState objects are combined.
We use an example to illustrate the problem. Suppose
there are three instances of VK: V(1)

K ,V(2)
K ,V(3)

K . Suppose
V(1)
K calls insert(k, v), making its VKState:

ws = H({(k, v, 1)}), rs = H({}), ts = 1

Suppose V(2)
K and V(3)

K call get(k) concurrently and
PK returns an incorrect value v′ ̸= v. Specifically, PK
returns (k, v′, 1) to both, so their VKState object is:

ws = H({(k, v′, 2)}), rs = H({(k, v′, 1)}), ts = 2

Now, if each VK instance combines set-digests in the
three VKState objects, they get the following (we use
exponents to indicate the number of copies of an element):

ws = H({(k, v, 1), (k, v′, 2)2}), rs = H({(k, v′, 1)2})

Unfortunately, since H(·) is a set hash function the
above leads to undefined behavior: H’s input domain is
a set, but the above is a multiset.5 Worse, some construc-
tions [4] use XOR for ⊙, so H({(k, v′, 1)2} = H({})
(i.e., adding an element that already exists to a set-digest
removes the element!). Such a hash function would lead
to the following combined set-digests:

ws = H({(k, v, 1)}), rs = H({})

For these set-digests, a PK can make audit pass by re-
turning M = {(k, v, 1)}—even though it misbehaved by
returning an incorrect value to V(2)

K and V(3)
K .

4Exchanging VKState objects is easy in the context of VSMs since
(commitments to) all VKState objects appear in the trace.

5A multiset is a set that can contain duplicate elements.

There are two solutions. First, we can use aH(·) that is
multiset collision-resistant (our construction in Section 5
satisfies this). In that case, even if different instances
of VK add the same elements to their set-digests, the
aggregated set-digest will track the multiplicity of set
members (i.e., the number of times an element is added
to a set-digest). If PK misbehaves, the aggregated rs will
not be a subset of the aggregated ws, which prevents a
future audit from passing (Appendix C.2). The second
solution is to guarantee that there are no duplicate entries.
We discuss this second solution in detail in Appendix A.1.

Using C-SetKV to execute requests concurrently. P
executes (and generates proofs for) multiple instances of
Ψreq simultaneously using different threads of execution
(e.g., on a cluster of VMs). As before, each instance of
Ψreq interacts with a storage service through exogenous
computation. A key difference is that unlike the design
in Section 3.2, each instance of Ψreq checks the response
from the storage service using a different instance of C-
SetKV’s verifier. This is essentially the desired solution,
but we now specify a few details.

A verifier Vj receives commitments to a set of VKState
objects (one from each thread of execution) in P’s trace.
This means that Vj cannot execute the ⊙ operator on the
commitments sent by P (since ⊙ works on set-digests
and not on commitments). To address this, P supports a
computation Ψcomb that takes as input commitments to
VKState objects, and outputs a commitment to the com-
bined VKState object. That is, P helps Vj combine com-
mitments to VKState objects—without revealing any-
thing about the objects and without Vj having to trust P
(P produces a proof for Ψcomb). Vj then uses the resulting
commitment in Ψaudit.

4.2 Supporting transactional semantics

Many services compute over multiple key-value tuples
when processing a request, so they require transactional
semantics. To support such services, we first build low-
level mutual-exclusion primitives. We then use these prim-
itives to build a transactional interface to C-SetKV that
guarantees serializability [20, 64]. Finally, we show how
those low-level primitives can be used to build other con-
currency control protocols.

Mutual-exclusion primitives. Spice supports two APIs:
(1) lock takes as input a key and returns the current value
associated with it; and (2) unlock takes as input a key
and an updated value, and associates the new value with
the key before unlocking the key. Figure 3 depicts our
implementation of these APIs by essentially decomposing
SetKV’s get and put (Figure 2).

In essence, these primitives provide mutual-exclusion
semantics by leveraging the requirement that C-SetKV
must execute GET and PUT RPCs on the same key in
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1: function lock(s, k)
2: (v, t)← RPC(GET, k) // PK executes GET and locks k
3: rs′ ← s.rs⊙H({(k, v, t)})
4: ts′ ← max (s.ts, t)
5: return VKState{rs′, s.ws, ts′}, v
6: function unlock(s, k, v)
7: ts′ ← s.ts + 1
8: RPC(PUT, k, (v, ts′)) // PK executes PUT and unlocks k
9: ws′ ← s.ws⊙H({(k, v, ts′)})

10: return VKState{s.rs, ws′, ts′}

FIGURE 3—Mechanics of lock and unlock (see text).

1: function beg_txn(s, keys)
2: s′ ← s, vals← [ ]
3: for k in keys do
4: (s′, v)← lock(s′, k)
5: vals← vals + (v) // append the value
6: return s′, vals
7: function end_txn(s, tuples)
8: s′ ← s
9: for (k, v) in tuples do

10: s′ ← unlock(s′, k, v)
11: return s′

FIGURE 4—Mechanics of beg_txn and end_txn (see text).

isolation. More concretely, if a request executes lock on
a key k,PK must essentially block all operations on k until
the lock-owner calls unlock (otherwise audit fails).

Simple transactions. We now describe how the above
mutual-exclusion primitives can be used to build transac-
tions with known read/write sets: all the keys that will be
accessed are known before the transaction execution be-
gins. Spice abstracts this transactional primitive with two
APIs: (1) beg_txn takes as input a list of keys on which
a transaction wishes to operate and returns the values as-
sociated with those keys; (2) end_txn takes as input the
list of keys and the values that the transaction wishes to
commit. Between calls to these two APIs, a program Ψreq

can execute arbitrary computation in Spice’s subset of C.
Figure 4 depicts our implementation of these APIs.

beg_txn calls lock on each key in its argument to get
back the current value associated with the key. end_txn
calls unlock on each key (which stores the updated value
before releasing the lock). This guarantees serializability
since lock and unlock ensure mutual-exclusion.6

General transactions. We note that a transaction exe-
cuted by Ψreq does not need to acquire locks on all key-
value tuples involved in the transaction at once. A pro-
grammer can write a Ψreq that acquires locks on keys
(using lock) over its lifetime and then releases locks (us-
ing unlock). This supports transactions with arbitrary
read and write sets and guarantees serializability if Ψreq

6Deadlock can be avoided by acquiring locks in a deterministic order.

implements two-phase locking: all locks on keys involved
in the transaction are acquired before releasing any lock.
Appendix A.3 discusses how to implement serializable
transactions with optimistic concurrency control instead.

5 Efficient instantiations
We now describe an efficient implementation of audit
and the cryptographic primitives necessary to build Spice.

5.1 Parallelizing audits

Recall from Section 3.2 that P periodically produces
πaudit to prove the correct execution of the audit_-
batch program. We observe that audit_batch can be
expressed as a MapReduce job; thus, P can use existing
verifiable MapReduce frameworks [24, 34, 38] to reduce
the latency of producing πaudit by orders of magnitude.
The details (of what each mapper and reducer computes)
are in Appendix A.2, but we discuss the costs. This ap-
proach increases each verifier’s CPU costs and the size
of πaudit by a factor of |mappers| + |reducers|. This is
because each mapper and reducer generates a separate
proof.7 This is an excellent trade-off since checking πaudit

is relatively cheap: 3 ms of CPU-time to check a mapper’s
(or a reducer’s) proof, and each proof is 128 bytes.

5.2 Efficient cryptographic primitives

Set hash function. Recall from Section 3.2 that Spice
represents the logic of VK (Figure 2) in constraints. An
important component is encoding H(·) as a set of equa-
tions; all other operations in VK (such as comparisons and
integer arithmetic) are already supported by the existing
framework (§6). Spice instantiatesH(·) using MSet-Mu-
Hash [31] defined over an elliptic curve EC:

H({e1, . . . eℓ}) =
ℓ∑

i=1

H({ei})

where H(·) is a random oracle that maps a multiset of
elements to a point in EC, and point addition is the group
operation. We use an elliptic curve group since prior
work [16, 34, 51] shows how to express elliptic curve
operations with only a handful of constraints.

However, one issue remains: we need a candidate for
H(·) with an efficient representation as a constraints set.
Our starting point for H(·) is H(·) = ϕ(R(·)), where
R(·) is a collision-resistant hash function (modeled as a
random oracle) that takes as input a multiset of elements
and outputs an element of a set S (e.g., SHA-256 maps
an arbitrary length binary string to a 256-bit string); ϕ(·)
maps elements in S uniformly to a point in EC.

7CTV [30] avoids the cost increase for a verifier, but incurs >10×
higher expense for P . The recent work of Wu et al. [86] offers an
alternative by distributing P’s work for any computation in a blackbox
manner; applying it to audit_batch is future work.
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A challenge is that building ϕ using prior tech-
niques [36] is expensive; more critically, common hash
functions (e.g., SHA-256, Keccak) perform bitwise oper-
ations (XOR, shift, etc.), which are expensive to express
with algebraic constraints (it takes at least 1 constraint for
each bit of the inputs) [66, 70]. We discuss our solution in
detail in Appendix B, but we make the following contribu-
tion. We show that the requirement that H(·) be a random
oracle can be relaxed (we still require its constituent R(·)
to be a random oracle). We leverage this relaxation to con-
struct an efficient ϕ(·) from Elligator-2 [19]; to build R(·),
we use a relatively new block cipher called MiMC [1],
which is more efficient than SHA-256 in the constraints
formalism. In summary, our construction ofH(·) requires
10,000× fewer constraints than using SHA-256 and a
prior construction for ϕ(·) [36].

Commitments. Pantry [24] employs HMAC-SHA256 to
implement commit() but requires ≈ 250,000 constraints
to generate a commitment to a 150-byte message. Spice
takes a different approach. For a message x ∈ Fp (recall
from §2.1 that constraint variables are elements in Fp), a
commitment is (x + t, R(t)) where t ∈ Fp is a randomly-
chosen value and R(·) is the MiMC-based random oracle
introduced above. This is binding because R(t) binds t due
to the collision-resistance of R(·). It is hiding because x+t
is uniformly random; hence the tuple (x + t, R(t)) is inde-
pendent of the message x. Finally, the scheme generalizes
to larger messages x ∈ Fk

p in two ways: commit to each
component of x independently (which increases the size
of the commitment by k times), or output (R(x) + t, R(t)).
Compared to Pantry’s HMAC-SHA256, Spice’s commit-
ments require 1,437× fewer constraints.

6 Implementation and applications
We build Spice atop pequin [76], which provides a
compiler to convert a broad subset of C to constraints,
and links to libsnark [56] for the argument protocol
(step 3; §2.1); we configure libsnark to use a recent
argument [44]. We extend this compiler with Spice’s
SetKV API (including transactions and commitments)
based on the design discussed in Sections 3–5. Spice uses
leveldb [41] as its backing store to provide persistent
state. In total, Spice adds about 2,000 LOC to Pequin. Our
implementation of the services discussed below consists
of 1,300 lines of C and calls to Spice’s API.

6.1 Applications of Spice

We built three services atop Spice. These services require
strong integrity and privacy guarantees, and have transac-
tions on state that can be executed concurrently. Further-
more, they tolerate batch verification (i.e., P can produce
πaudit after many requests) since clients can levy financial
penalties if they detect misbehavior ex post facto.

// pk_c is the public key of the caller
issue(VKState* s, PK pk_c, PK pk, Asset as, int a) {
return insert(s, pk||as, a); // || is concatenation

}

retire(VKState* s, PK pk, Asset as, int a) {
Value v[1];
beg_txn(s, [pk||as], v);
if (v[0] >= a) v[0] -= a;
end_txn(s, {pk||as}, v);

}

// pk1, pk2 are the keys of caller and recipient
transfer(VKState* s, PK pk1, PK pk2, Asset as, int a) {
Value v[2];
beg_txn(s, [pk1||as, pk2||as], v);
if (v[0] >= a) { v[0] -= a; v[1] += a; }
end_txn(s, [pk1||as, pk2||as], v);

}

FIGURE 5—Pseudocode for a Sequence-like application using
Spice’s API (Fig 12). The requests, except the public key of the
request’s caller, are committed using commit and decommit;
however, this part is not depicted.

Cloud-based ledger service. We consider a cloud-
hosted service that maintains a ledger with balances of
assets for different clients. Examples of assets include
currency in a mobile wallet (e.g., Square, WeChat) and
credits in a ride-sharing App. Clients submit three types
of requests: issue increases the balance of an asset;
transfer moves an asset from one client to another;
and retire decreases the balance of an asset. The need
for transfer is obvious; issue and retire move ex-
ternal assets in and out of the ledger. For example, in
WeChat, clients move currency from their bank accounts
to their mobile wallets. This service is inspired by Se-
quence [28]. However, to verify the correct operation of
Sequence, a verifier would need access to sensitive details
of clients’ requests (e.g., the amount of money) and the
service’s state. We address this limitation by implement-
ing a Sequence-like service as a VSM using Spice. The
ledger maintained by the service constitutes its state and
request types discussed above constitute state transitions.
Figure 5 depicts our implementation of this service in
Spice’s programming model.

Payment networks. Our second service is a payment
network inspired by Solidus [27]. Banks maintain cus-
tomer balances, and customers submit requests to move
money from their accounts to other accounts (in the same
bank or a different bank). This is similar to the previous
service except that it also supports an inter-bank transfer.
For such a transfer, the sender and recipient’s banks must
coordinate out-of-band: the sender’s bank executes the
debit part of a transfer and the recipient’s bank executes
the credit part. A verifier can check that banks are pro-
cessing requests correctly without learning the content of
requests: destination account, amount, etc.
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The cost of state operations is 36–2500× lower under Spice than prior works. §7.1, §7.2
Spice’s concurrent P achieves 16,000–620,000× higher throughput than prior works. §7.2
Spice achieves a throughput of 488–1048 transactions/second for applications in Section 6. §7.3

FIGURE 6—Summary of evaluation results.

A securities exchange (dark pool). A securities ex-
change is a service that allows buyers to bid for securities
(e.g., stock) sold by sellers. The service maintains an or-
der book—a list of buy and sell orders sorted by price.
Clients submit buy or sell orders to the service, who
either fulfills the order if there is a match, or adds the or-
der to the order book. Although traditional exchanges are
public (clients can see the order book), private exchanges
(or dark pools) have gained popularity in light of attacks
such as “front-running” [65]. Dark pools, however, are
opaque; indeed, there are prior incidents where dark pools
have failed to match orders correctly [37, 62].

We implement the exchange as a VSM: the order book
is the state, and submit and withdraw order are state tran-
sitions. At a high level, we represent the sorted order book
as a doubly-linked list using Spice’s API. Then, submit
removes or inserts nodes to the list depending on whether
there is a match or not, and withdraw removes nodes
from the list. With Spice, verifiers learn nothing about the
orders beyond the identity of the submitter, and yet they
can check the correct operation of the exchange.

7 Experimental evaluation
We answer the following questions in the context of our
prototype implementation and services (§6).

1. How does Spice compare to prior work?

2. How well does Spice scale with more CPUs?

3. What is the performance of apps built with Spice?

Figure 6 summarizes our results.

Baselines. We compare Spice to two prior systems for
building VSMs: Pantry [24] and Geppetto [34]. Sec-
tions 2.1 and 8 provide details of their storage primitives,
but briefly, Pantry’s storage operations incur costs log-
arithmic in the size of the state (due its use of Merkle
trees), and the costs are linear in the size of the state in
Geppetto. Besides these baselines, we consider a Pantry
variant, which we call Pantry+Jubjub, that uses a Merkle
tree instantiated with a recent hash function [32]. Finally,
we consider an additional baseline [27] for the payment
network service (§7.3).

Setup and metrics. We use a cluster of Azure D64s_v3
instances (32 physical CPUs, 2.4 GHz Intel Xeon E5-
2673 v3, 256 GB RAM) running Ubuntu 17.04. We mea-
sure CPU-time, storage costs, and network transfers at the
proverP and each verifier Vj, and end-to-end performance
of P (throughput, latency, etc.). We primarily focus on

costs of argument protocol (§2.1, §6)
P’s CPU-time per constraint ≈ 149µs
V’s CPU-time to check a proof ≈ 3 ms
size of a proof 128 bytes

#constraints for basic primitives (§5.2)
random oracle R(·) on a 32-byte message 167
map ϕ(·) on a 32-byte element to EC 105
add two points in EC (i.e., ⊙ in §3.1) 8
commit to a 32-byte message 168

FIGURE 7—Microbenchmarks.

P’s CPU costs and throughput (in requests/second); the
verifier’s costs are already practical (>1000 proofs/second
on 4 CPU-cores and the size of each proof is small (128
bytes). Finally, we measure Spice’s performance exper-
imentally, but estimate baselines’ performance through
microbenchmarks and prior cost models. Since we fix a
common argument protocol for Spice and the baselines,
P’s costs in all systems scale (roughly) linearly with num-
ber of constraints of a Ψ.

Microbenchmarks. To put our end-to-end results in con-
text, we measure the cost of basic operations in Spice.
Figure 7 depicts our results. It shows the principal costs
to each Vj and P in Spice’s underlying argument proto-
col (§6). It also shows the cost of Spice’s core crypto-
graphic primitives in the constraints formalism.

7.1 Spice’s approach to state VS. prior solutions

We consider a computation Ψ that invokes a batch of get
(or put) operations on a key-value store preloaded with
a varying number of key-value pairs; each key and each
value is 64 bits. Our metric here is the number of con-
straints required to represent a storage operation. Figure 8
depicts the cost under Spice and our baselines.

As expected, under Spice, the cost of a storage op-
eration is lower than prior works—even when the state
contains only a few hundred key-value pairs. As an ex-
ample, for 1M key-value pairs in P’s state, Spice re-
quires 70× fewer constraints than Pantry, 36× fewer than
Pantry+Jubjub, and 2,500× fewer than Geppetto for get.

However, Spice must execute (and produce a proof for)
Ψaudit, which requires constraints linear in the size of the
state (§3.2). Fortunately, this can be amortized over a
batch of m operations on state. Naturally, if m = 1 (i.e.,
we run Ψaudit after every storage operation), then Spice
requires more constraints per storage operation than prior
systems. But, even for modest values of m, Spice comes
out on top. For example, when the state is 1M key-value

12



get cost put cost

size of state (# key-value pairs) 1 103 106 1 103 106

Pantry 4.1K 44.9K 85.7K 8.2K 89.8K 171.5K
Geppetto 3 3.0K 3.0M 4 4.0K 4.0M
Pantry+Jubjub 2.1K 23.1K 44.1K 4.2K 46.2K 88.2K

Spice (online) 1.2K 1.2K 1.2K 1.2K 1.2K 1.2K
Spice (audit) 561/m 624K/m 616M/m 561/m 624K/m 616M/m

FIGURE 8—Per-op cost of get and put for Spice and its baselines with varying state size (the number of key-value pairs). The cost
shown is in terms of the number of constraints. The proof generation CPU time is 149µs per constraint (§2.1). The proof verification
CPU-time and the proof-size are independent of the number of constraints; the former is 3 ms/proof and the latter is 128 bytes/proof
(§2.1). Costs for Spice’s normal and audit phases are shown separately. m is the number of operations after which audit is invoked.

pairs, m ≥ 4,500 is sufficient to achieve per-operation
costs that are lower than Pantry. Furthermore, each request
in Spice, such as a financial transaction, performs multiple
storage operations; thus, the number of requests that must
be batch verified to achieve lower costs (for each storage
operation) than prior systems can be much smaller.

7.2 Benefits of Spice’s concurrent execution

We now assess how well Spice’s prover P can lever-
age multiple CPUs and concurrent request execution to
achieve higher throughput. We run a set of experiments
where P runs with increasing number of CPU cores. On
each core, P executes a Ψreq instance that invokes a batch
of get (or put) operations over a (shared) key-value store
preloaded with 1M key-value pairs. In these experiments,
Ψreq selects keys according to two different distributions:
uniform and Zipfian (exponent of 1.0). We measure P’s
throughput: the number of operations performed (and
proofs generated) per second.

Figure 9 depicts our results. As expected, Spice’s
prover achieves a near-linear speedup with increasing
number of CPU cores. When keys are chosen uniformly,
P (with 512 cores) achieves 419× higher throughput com-
pared to a single-core execution (for both get and put
workloads). When the workload is Zipfian, the speedup
is 200× due to higher contention (recall from Section 4.1
that P locks keys to guarantee isolation). In absolute
terms, Spice’s prover executes 626–1,250 key-value store
operations/second on 512 CPU cores.

When we extend the comparison to Spice’s base-
lines (Figure 10), Spice’s throughput is 84× that of Pantry,
43× that of Pantry+Jubjub, and 1,650× that of Geppetto
for put operations. The gap widens when Spice’s prover
executes concurrently on 512 cores: Spice’ throughput
is 32,000× higher than Pantry, 16,000× higher than
Pantry+Jubjub, and 620,000× higher than Geppetto.

Latency. Measuring the latency of Spice’s storage op-
erations is more involved since a verifier Vj must verify
πaudit (§3.2). We therefore measure P’s latency for pro-
ducing πaudit. Recall from Section 5.1 that the cost of
producing πaudit scales linearly with the size of P’s state

and we parallelize this using MapReduce (§5.1). We ex-
periment with P’s state containing 1M key-value pairs.
We run a MapReduce job on 1,024 CPU-cores consisting
of 1,024 mappers, where each mapper reads 1,024 key-
value tuples and produces a single set-digest (the details
of the MapReduce job are in Appendix A.2). We then
run 33 reducers split over two levels (containing 32 and 1
reducers) and a final aggregator. We find the latency for
the entire job to be 4.81 minutes.

Analysis. Suppose P runs Ψaudit every k minutes. The
latency of any operation is at most k + 4.81 minutes (for
1M key-value tuples and the above MapReduce config-
uration). Suppose k=10 minutes, then and P’s costs to
produce πaudit amortize over 750,000 storage operations—
since P executes about 1,250 ops/second (uniform dis-
tribution). Thus, the amortized cost of audit is about
616 · 106/750, 000 ≈ 822 constraints; the per-operation
storage cost (in terms of #constraints) is 822 + 1200 ≈
2022 constraints. This is 84× lower than Pantry, 43×
lower than Pantry+Jubjub, and about 2000× lower than
Geppetto for put operations (1M key-value pairs in P’s
state). With larger k (i.e., larger latency), this gap widens.

7.3 Performance of services built with Spice

We now assess whether Spice’s prover P meets our
throughput requirement (§2). We run experiments with
the three services we build on Spice (§6). Specifically, we
run a concurrent P with a varying number of CPU-cores
and measure its throughput for the different transaction
types (e.g,. credit, debit) supported by our services.
The keys for various requests are chosen according to both
uniform and Zipfian distributions, and requests compute
over state with a million key-value pairs.

Figure 11 depicts our results for the uniform distri-
bution case; for Zipfian distribution, the throughput is
2–3.3× lower due to higher contention. We find that,
across the board, P achieves a near-linear speedup in
transaction-processing throughput with varying number
of CPU-cores. Furthermore, when using 512 CPU-cores,
P achieves 488–1048 transactions/second, which meets
and exceeds our throughput requirement. We now discuss
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FIGURE 9—Concurrency benefits for Spice’s request execution. The workload is a stream of gets or puts and P’s state is 1M
key-value pairs. The keys are chosen uniformly at random or follow a Zipfian distribution (exponent of 1.0).

get put

Pantry 0.078 0.039
Pantry+Jubjub 0.153 0.076
Geppetto 0.002 0.002

Spice (1-thread) 3.3 3.3
Spice (512-threads) 1250 1259

FIGURE 10—Throughput (ops/sec) for get and put in Spice
and its baselines. The size of the state is 1M key-value pairs.

the specifics of each service.

Cloud-based ledger service. Among the three transac-
tion types supported by our first service, issue and
retire involve a single storage operation whereas
transfer requires two (to update the balances at the
sender and the recipient of a transaction). Note that these
storage operations are in addition to various checks on
balances (see Figure 5). However, in terms of number of
constraints, the storage operations dominate. As a result,
P’s throughput for issue and retire is about 2× higher
than that of transfer. Furthermore, the throughput for
issue and retire is roughly the throughput that Spice’s
prover achieves for a get or a put workload (Figure 9).

Payment networks. Here we only experiment with inter-
bank transaction types: credit and debit (intra-bank
transactions achieve the same performance as our first
service). Since these transactions involve a single stor-
age operation, P’s throughput is similar to issue and
retire in the first service. For comparison we consider
Solidus [27], which achieves similar guarantees as our
service, but employs specialized machinery. Solidus’s pro-
totype with 32,000 accounts achieves 20 state ops/sec and
up to 10 tx/sec. Compared to Solidus, Spice-based pay-
ment network on 512 CPU cores supports >1,000 tx/sec
(100× higher throughput).

Dark pools. Our third service supports two transactions,
submit and withdraw. We depict only submit because
withdraw has similar costs. P achieves 488 tx/second.
This is lower than our other services because the dark
pool app is more complex: the state is a linked list layered
on top of a key-value store (where each operation on the
linked list is multiple storage operations), and transactions
manipulate the linked list to process orders (§6.1).

8 Related work

Proving correct executions via efficient arguments.
The problem of proving the correct execution of a com-
putation is decades old [6]; many systems have reduced
the expense of this theory (see [85] for a survey of this
progress). While early works [33, 50, 66, 67, 69, 71, 74,
75, 79] support only stateless computations, recent sys-
tems [7, 13, 17, 24, 30, 34, 38, 82, 87, 88] support state.
Section 2.1 discusses the approach in Pantry [24]; below,
we discuss other approaches and how they relate to Spice.

Ben-Sasson et al. [13, 17], Buffet [82], and vRAM [88]
propose a RAM abstraction based on permutation net-
works [12, 18, 84]. This technique can be more efficient
than using Merkle trees. For example, Buffet [82] shows
that each RAM operation (load, store, etc.) can be rep-
resented with several hundred constraints (compared to
tens of thousands under Pantry’s RAM). However, the
permutation networks technique supports only state that
persists within a single instance of Ψreq, so it cannot be
used to maintain state that persists across different request
executions—a requirement of VSMs (§2).

Geppetto [34] builds a storage primitive without en-
coding a hash function as a constraints set. Specifically,
Geppetto can transfer values associated with program vari-
ables (int, char, etc.) from one computation to another.
To support this, Geppetto introduces a single constraint
per value transferred, so this is more efficient than Pantry
for certain scenarios (e.g., sending output of a mapper as
input to a reducer in MapReduce). However, it is not a
good substitute to Merkle trees for key-value stores (or
RAM): each storage operation requires scanning all the
state. Fiore et al. [38] hybridize Geppetto-style and Pantry-
style storage primitives, but it incurs the same costs as
Pantry to support a key-value store.

ADSNARK [7] supports computations over state rep-
resented with an authenticated digest, but this approach
does not support transferring state to other computations.
vSQL [87] builds a storage primitive by representing state
(e.g., a database table) as a polynomial. However, this
storage primitive has the same issue as Geppetto: reading
or updating a single value of the state (e.g., a row) inside
a Ψreq requires scanning the entire state.

Compared to prior systems, Spice proposes a cheaper
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FIGURE 11—Throughput (requests processed/second) for the various applications (§6). Requests of type issue, transfer, and retire
are for the cloud-based ledger service (Figure 5); issue, transfer, retire, debit, and credit are for the distributed payment network; and,
submit requests are for the dark pool application.

and more expressive storage primitive (albeit under a
batch verification setting): Spice supports a multi-writer
transactional key-value store (§3, §4), which makes it
possible to build several realistic services with plausible
performance (§6–§7). Two exceptions: (1) for random
access over state within a single computation instance,
permutation networks are more efficient (indeed, Spice
relies on Buffet’s permutation networks for RAM within
threads); (2) for intermediate state in a MapReduce job,
Geppetto-style state transfer can be more efficient.

Concurrent systems with verifiability. Concerto [4] is
a concurrent key-value store that, like Spice, uses offline
memory checking [22, 31] to verify the correctness of
storage operations. However, there are four differences.
First, Concerto is limited to a key-value store whereas
Spice supports proving the execution of (arbitrary) con-
current services expressed in a large subset of C. Second,
Spice is based on SetKV, which is simpler and more per-
formant than Concerto. Third, Spice supports multi-object
transactional semantics whereas Concerto is limited to
single-object key-value store operations. Finally, Con-
certo requires trusted hardware (e.g., Intel SGX) to run
VK. It is possible to eliminate reliance on trusted hardware
by letting any client act as a verifier, but the resulting sys-
tem would expose the state of the key-value store (along
with requests and responses) to a verifier; hence, it cannot
provide zero-knowledge or succinctness properties (§2).

Orochi [73] enables verifiability for concurrent appli-
cations (and the underlying data store) running on an
untrusted server. Orochi’s key technique is a clever reex-
ecution of all requests at the verifier—one that accom-
modates concurrent execution of requests at the server,
and is cheaper than reexecuting requests naively. Com-
pared to Spice, Orochi imposes minimal overheads to the
server. However, Orochi’s verifier must keep a full copy
of the server’s state to verify requests along with contents
of all requests and the corresponding responses. Conse-
quently, Orochi does not satisfy the zero-knowledge or
succinctness properties of VSMs (§2).

9 Discussion and summary
Equivocation and omission. Spice’s P proves its cor-
rect operation by producing a trace that is checked by
verifiers. However, P can equivocate: it can expose dif-
ferent traces to different verifiers. If the set of verifiers
form a permissioned group (i.e., admitting new verifiers
requires approval from a quorum of existing verifiers),
then verifiers can agree on a single trace by employing
traditional distributed consensus [26, 54], thus prevent-
ing equivocation. If the set of verifiers is unbounded, P
can embed metadata about its trace in a permissionless
blockchain [77]. Besides equivocation,P can omit clients’
requests. To address this, clients must check if their re-
quests are included in the trace agreed upon by verifiers.

Fault-tolerance. We can make Spice’s services fault-
tolerant via standard techniques. Note that this does not
require implementing a replication protocol as a VSM.
This is because Spice’s service maintains its internal state
in a database (Spice uses leveldb), and interacts with it via
exogenous computations (§2.1). Thus, the service could
instead keep the state in a fault-tolerant cloud storage
system (e.g., DynamoDB).

Trusted setup. Spice is agnostic to the choice of efficient
arguments (step 3, §2.1), but our implementation employs
an argument [44] that requires a trusted setup: a trusted
party must create cryptographic material that depends on
Ψ but not on inputs or outputs to Ψ. In our context (§6),
such a trusted setup can be executed by a verifier (if
there is a single verifier), or in a distributed protocol [14]
(when there is more than one verifier). Recent argument
protocols [2, 9, 10, 15, 23, 83] do not require such a
trusted setup. We leave it to future work to integrate them
with Spice and explore trade-offs.

Summary. Spice is a substantial improvement over prior
systems that implement VSMs by over four orders of
magnitude. And, although Spice’s absolute costs (e.g.,
prover’s CPU-time) are large, it enables a new set of real-
istic services by opening up a concurrent model of com-
putation and achieving throughputs of over a thousand
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transactions/second.
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API description

init(VKState*) create a new key-value store
insert(VKState*, Key, Value) insert a key-value pair
put(VKState*, Key, Value) update a value
get(VKState*, Key, Value*) retrieve a value
audit(VKState) verify prior history

lock(VKState*, Key, Value*) lock a key
unlock(VKState*, Key, Value)unlock a key

beg_txn(VKState*, Key[], Value**) begin one-shot txn
end_txn(VKState*, Key[], Value[]) end one-shot txn

Commitment commit(Message) commit to a message
Message decommit(Commitment)decommit a commitment

FIGURE 12—Spice’s APIs. VSM programmers express Ψreq in
a subset of C agumented with the above API.
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A Details of Spice
This appendix covers an alternate construction of Spice
that uses C-SetKV without a multiset collision-resistant
hash function (Appendix A.1), discusses the details of
parallelizing audits with MapReduce (Appendix A.2),
and how to build transactions with optimistic concurrency
control. The full API of all operations supported by Spice
is given in Figure 12.

A.1 Construction of Spice with unique ids

In Section 4.1 we described how C-SetKV can be im-
plemented using either a multiset collision-resistant hash
function or a set collision-resistant hash function and guar-
anteeing that there are no duplicate entries. Here we detail
the latter approach.

Recall that the goal is to ensure that every element that
is inserted into a set-digest is unique. This is achieved by
assigning to each VK a unique identifier. The combination
of the timestamp and the identifier acts as a Lamport
clock [52] that replaces the timestamp field in SetKV
(§3.1). In other words, the timestamp field is updated as
before, but the key-value store now consist of tuples of
the form (k, v, ts, tid), where k is a key, v is a value, ts is

the timestamp, and tid is the identifier of the last writer.
A VKState object is:

struct VKState {
SetDigest rs; // a set-digest of RS
SetDigest ws; // a set-digest of WS
int ts; // timestamp
int tid; // a unique identifier

}

Assigning thread identifiers. In C-SetKV, we assumed
each instance of VK is given a unique identifier; we now
specify who does this and how uniqueness is enforced.
Since P spawns different threads of execution, we let P
pick identifiers. To accomplish this, we augment Ψreq to
call a library function init_vkstate as the first program
statement: it sets the tid field in the input VKState object
with an identifier (purported to be unique) that it obtains
via an exogeneous computation. Of course Ψreq cannot
verify the uniqueness of thread-identifiers across different
requests, but the uniqueness is checked by Ψaggr (§4.1).

A.2 Parallelizing Spice’s audit with MapReduce

Recall from Section 3.2 that Ψaudit takes as input a com-
mitment to VKState object cs, and outputs a Boolean;
note that it also takes as input a set of tuples of the form
(k, v, ts) from P (Figure 2). In more detail, Ψaudit checks
the following conditions.

1. The keys given by P , [k1, . . . , kn], have no duplicates.

2. s.rs ⊙ rs′ = s.ws where rs′ ← H({e1, . . . , en}) and
(e1, . . . , en) are tuples supplied byP and s is a VKState
object whose commitment is cs.

We now discuss a MapReduce job that checks the above
conditions. The job is organized as a tree (we discuss bi-
nary for simplicity) where mappers are leaves and reduc-
ers are internal nodes that read inputs from their children.
Suppose there are n tuples in P’s state (without loss of
generality, let n be a power of two).

• Each mapper takes as input two tuples (ei, ej), as-
serts that ei.k < ej.k, and outputs commitments to
(H({ei, ej}), ei.k, ej.k), say (cd, ck1, ck2).

• Each reducer reads its input from its two children (e.g.,
(cd, ck1, ck2) and (cd′, ck′1, ck′2)), asserts that k2 < k′1,
and outputs commitments to (s ⊙ s′, k1, k′2), where
(d, k1, k2, s′, k′1, k′2) are plaintext values of commitments
(cd, ck1, ck2, cs′, ck′1, ck′2) respectively..

Finally, a special program takes as input a commitment
to a VKState object cs and the output of the root reducer
of the job (cdroot, ck1, ck2), and asserts: s.rs⊙ droot = s.ws
and k1 < k2 where (s, droot, k1, k2) are plaintext values of
commitments (cs, cdroot, ck1, ck2) respectively.
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A.3 Implementing optimistic concurrency control

We now discuss how to implement optimistic concurrency
control using the lock and unlock primitives discussed
in Section 4.2. This requires maintaining metadata along-
side the value of a corresponding key. Specifically, each
value contains a version counter that gets incremented
when the rest of the value changes. With such a facility,
a Ψreq can issue get operations to obtain current values
and version numbers associated with keys. Then, it exe-
cutes the logic of the transaction locally (without writing
anything to the key-value store). To commit or abort this
locally-executed transaction, Ψreq proceeds as follows.
Ψreq acquires locks on all keys involved in the transaction
(using lock), verifies that all keys it read did not change
(by checking the version numbers in the values returned
by lock operations); it then either commits (by updating
values and releasing locks using unlock) or aborts (by
simply releasing locks) the transaction.

Finally, we leave it future work to leverage metadata
(similar to the version counter) inside a value to imple-
ment other mutual-exclusion primitives (e.g., read locks).

B Multiset collision-resistant hashH
This appendix discusses the details of our incremental
multiset collision-resistant hash function, and how it
is embedded into the field over which constraint vari-
ables are defined. Appendix B.1 gives the high level con-
struction of our hash function based on prior work. Ap-
pendix B.2 proves that we can relax some of the require-
ments of the hash function, and propose a more efficient
construction in Appendix B.3.

B.1 Hash function construction

Clarke et al. [31] propose several (incremental) set and
multiset collision-resistant hash functions. We borrow
notation, definitions, and terminology from [31].

Multiset (respectively, set) hash functions map multi-
sets (respectively, sets) of arbitrary finite size to digests
of fixed length with the property that it is computationally
infeasible to find two distinct multisets (respectively, sets)
of polynomial size that map to the same digest. Any mul-
tiset collision-resistant hash function is an incremental set
collision-resistant hash function, so we focus on the latter.

Suppose M is a multiset of elements from a countable
set B. We denote the number of times an element b ∈ B
appears in M as Mb, and call it the multiplicity of b in M.
Suppose H is a function that maps elements of B to an
additive group G, that is, H : B→ G. Furthermore, sup-
pose H is a random oracle. We consider the incremental
multiset collision resistant hash function Mset-Mu-Hash
from [31, §5]:

HH(M) =
∑
b∈B

H(b) ·Mb

Clarke et al. [31] prove that this is a multiset collision-
resistant hash function if the discrete logarithm problem is
hard in G and if H is a random oracle. Thus, to instantiate
Mset-Mu-Hash, we must choose G where the discrete
logarithm problem is hard and choose a suitable H.

In our context, it is more natural to work with G =
E(Fp) an elliptic curve. Arithmetic over the curve is nat-
urally expressed as arithmetic in Fp, which is “natively”
supported by the efficient arguments machinery that we
use in this work [34, 51]. The conceptually simplest ap-
proach is to build a random oracle H : B→ E(Fp).

This can be done in two steps. First we map from
elements in B to Fp using a hash function, and then map
the resulting elements to points in the curve. While we
could use many different hash functions to achieve the
first step, we want to keep the multiplicative complexity
of the mapping B→ Fp low.8 We therefore build a hash
function from an element in B to Fp out of the MiMC
block cipher [1] which has low multiplicative complexity
(we discuss this in Appendix B.3).

We could then use a prior function to map from a ran-
dom element in Fp to a point in the curve [19, 46, 72, 78].
However, these functions only map to a fraction of all
of the points in E(Fp), making them easy to differentiate
from a random oracle, and consequently unsuitable for
our purposes. Fortunately, Farashahi et al. [36] show that
sums in E(Fp) of multiple invocations of these mapping
functions are indifferentiable from a uniform random map-
ping to a point in E(Fp). The drawback of this approach
is that it requires computing mapping functions multiple
times, which is expensive. We avoid this overhead by con-
structing a collision resistant hash function directly from
the Elligator-2 map [19], as we discuss next.

B.2 Relaxing requirements on H

We now show that the random oracle requirement on
H can be relaxed, while still ensuring that HH (based
on Mset-Mu-Hash) remains an incremental multiset
collision-resistant hash function. The relaxation that we
present below allows us to use a more efficient construc-
tion for H (we give the details in Appendix B.3).

Throughout, we assume G is a group on which discrete
logarithms take ∼ 2λ steps, and all polynomial or neg-
ligible factors are functions of λ. Recall from the prior
section that H acts as a random oracle from a multiset
to an element in G. Furthermore, recall that we com-
pute H : B → G with a composition of two functions:
R : B → S and ϕ : S → G. R hashes multisets to some
arbitrary set S (e.g., binary strings, Fp), and ϕ maps ele-
ments in S to an element in G.

8The higher the multiplicative complexity, the more constraints that we
need to represent the function, and hence more costs to the prover to
solve and argue constraints (§2.1).
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Claim. We prove that HH remains multiset collision-
resistant even when ϕ is not indifferentiable from a ran-
dom oracle, assuming that R is a random oracle. Using
the notation of [58], we have:

Theorem B.1. Let G = G1 ⊕G2 be a cyclic group with
G1 prime. Let S be an arbitrary set, R : B→ S be a ran-
dom oracle, and ϕ : S→ G be an efficiently computable
partial function such that:

• ∀x ∈ G, the set ϕ−1(x) is computable in polynomial
time and has size ≤ α for α ∈ N.

• Ex(|ϕ−1(x)|/α) ≥ 1/β for β bounded.

•
∑

x |ϕ−1(r)|/|S| ≥ 1− ϵ for ϵ = negl(λ).

Then if the discrete logarithm problem in G1 is hard,Hϕ◦R

is a multiset collision resistant hash function

This is a generalization of the results in [58], which ap-
ply only to total functions. The intuition behind the proof
is that if R is a random oracle, we can sample outputs
of ϕ ◦ R in G with known logarithms, by first choosing
the logarithm, choosing a random preimage under ϕ with
some probability, and using these to fix the random oracle
on certain inputs. Then if multiset collisions for Hϕ◦R

are found, we recover a random linear relation between
logarithms, which allows us to find discrete logarithms
quickly in G, resulting in a contradiction.

Proof. Let G be a generator of G, and fix a point P ∈ G to
be determined later. Consider the following randomized
function F:

1. Sample e, f R←− {0, . . . , |G| − 1}, set Y = eP + fG.

2. Return to step 1 with probability 1− |ϕ−1(Y)|/α.

3. Choose h ∈ ϕ−1(Y) uniformly at random.

4. Return (h, e, f ).

Lemma B.1. If (h, e, f ) ← F(P), then e is uniformly
random in {0, . . . , |G| − 1} and independent of h, and
the distribution of h is within statistical distance 2ϵ of
uniform over S.

Proof. As G generates G, Y is independent of e and uni-
form in G. Since the probability of a sampled value for
e being returned as the output of S is determined by Y ,
and e is sampled uniformly, the returned values of e are
uniform in {0, . . . , |G| − 1}. For a fixed h, if a sample
at (1) causes h to be returned, the following events must
occur:

• Y = ϕ(h)

• We do not return to (1) at (2)

• h is chosen from ϕ−1(Y)

These are independent, and Y is uniform in G as discussed.
So the probability that any given sample at (1) causes h
to be returned is:

1
|G|
· |ϕ

−1(Y)|
α

· 1
|ϕ−1(Y)|

=
1

α|G|
.

Since this is independent of h, the returned values h are
uniform over ϕ−1(G). Hence the statistical distance be-
tween the distribution of h and a uniform distribution over
S is 2ϵ.

We replace H with a function F̃ which, when called on a
new input, samples (h, e, f )← F(P), retains (h, e, f ), and
returns h. On later calls with the same input it returns the
retained h. Since the distribution of h is within 2ϵ of uni-
form over S and H is invoked at most poly(λ) times, this
can be detected with advantage ≤ 2ϵpoly(λ) = negl(λ).

Hence it suffices to show:

Lemma B.2. If the discrete logarithm problem in G is
hard, then it is infeasible to find two distinct multisets
A, B with multiplicities < poly(λ) such that Hϕ◦F̃(A) =
Hϕ◦F̃(B).

Proof. We give a reduction from finding logarithms in G
of elements of G1 to finding collisions. This suffices to
find logarithms in G1. We are given P ∈ G1, and we wish
to find s such that sG = P. Construct F̃ as above, and
assume that a collision is found. Then we have:∑

x∈A

ϕ(F̃(x))−
∑
x∈B

ϕ(F̃(x)) = 0

Without loss of generality, we can assume A, B are disjoint,
as removing an element from both A, B yields a smaller
pair of colliding multisets. Let {x1, . . . xk} be the set of
distinct elements of A, B, and let ri = Axi − Bxi mod |G|.
Then since Axi , Bxi ∈ {0, . . . , |G| − 1}, these ri are not all
0. Note also that ϕ(F̃(xi)) = eiP + fiG, for ei, fi known.
Then:∑

i

riϕ(F̃(xi)) =

(∑
i

riei

)
P +

(∑
i

rifi

)
G = 0

in the curve. The ei are independent, uniformly random in
{0, . . . , |G| − 1}. Recall |G1| = p a prime, so p ̸ |

∑
i riei

with probability 1− 1/p.
If
∑

i riei has an inverse c modulo p, we obtain:

P =

(
−c
∑

i

rifi

)
G⇒ s = −c

∑
i

rifi.

Hence a multiset collision inHϕ◦F̃ recovers a logarithm
in polynomial time with probability 1− 1/p > 1/2, and
so by repeating we amplify the probability of success and
recover a logarithm in polynomial time.
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B.3 Instantiating H (R and ϕ)

Corollary B.1. Let E be an elliptic curve with a point of
order 2. Let ϕ be the Elligator-2 map [19]. If R : B→ Fp

is a random oracle and the discrete logarithm problem in
E(Fp) is hard, thenHϕ◦R is multiset collision resistant.

Proof. We take S = Fp, G = E(Fp), and R as discussed
below. It suffices to check that ϕ meets the conditions of
Theorem B.1.

• ϕ produces, for all but at most 6 points in Fp, an ele-
ment of E(Fp).

• The preimage of any point (x, y) ∈ Im(ϕ) is guaran-
teed to be of form {r,−r}. Hence |Im(ϕ)| > (p−7)/2,
and so |ϕ(S)|/|G| = 1/2 + O(p−1/2).

• Im(ϕ) is the set of points (x, y) in E(Fp) such that
x ̸= −A, y = 0 implies x = 0, and −ux · (x + A) is
square in Fp. On this set ϕ is invertible [19].

Take α = 2, and Er(|ϕ−1(r)|/α) ≥ 1 − 7/2p > β. If
discrete logarithms in E(Fp) are hard, there must be a
prime subgroup of E(Fp) of order q on which the discrete
logarithm problem is hard. Sampling G2 is trivial, as this
is the set of multiples of q in G.

In our case, we have E(Fp) = 4r for r a prime, as E is
a Twisted Edwards curve.

Instantiating R. We recall the MiMC-n/n block cipher
from [1]. This is defined over F2n , and is constructed by
iterating

x→ (x⊕ k ⊕ ci)
3,

where ci are round constants and k is the key. The
number of rounds is chosen such that the degree of
MiMC-n/n(x, k) as a polynomial in x is ∼ 2n.

We work in Fp, and for us gcd(3, p− 1) > 1 so cubing
is not a permutation of Fp. However, gcd(5, p− 1) = 1,
and we define the following keyed permutations:

Fi,k(x) = (x + k + ci)
5

Fk(x) = (Fr−1,k ◦ Fr−2,k ◦ . . . ◦ F0,k)(x) + k

for ci a sequence of round constants. We choose r such
that deg(Fk) ∼ 2λ. We then define a compression func-
tion by using Fk in the Miyaguchi-Preneel construction,
and build R from this compression function by the Merkle-
Damgard construction, i.e.:

h0 = iv
hi = hi−1 + mi + Fhi−1(mi)

R({mi}αi=1) = hℓ

C Security of Spice
In Appendix C.1 we show that the SetKV protocol of
Section 3.1 is complete and sound. Appendix C.2 then

proves that C-SetKV and Spice (§4) provide sequential
consistency (and in some cases, a notion of linearizability)
to concurrent requests.

C.1 Proof of SetKV

We adapt the proof given in Concerto [4] to our design.

Lemma C.1 (ideal audit). If VK tracks sets (i.e., read-set
RS and write-set WS) instead of set-digests following the
logic in Figure 2, then audit returns true if and only if
SetKV returns, for every get operation on a key k, the
value written by the most recent put (or insert) to k.

Proof. The reverse direction (i.e., that the protocol is com-
plete) is straightforward. The timestamp field in VKState
is updated after every operation so every element is
unique. After k successful insert operations, there are
k entries added to the write set WS. Each put and get
adds exactly one entry to RS (in particular the entry with
the highest timestamp for a given key in WS) and one
entry to WS (the entry read but with a larger timestamp
and a potentially new value). audit scans through all the
elements in the key-value store (K), and adds k entries to
RS (in particular the entries with the highest timestamp
for each key in WS). As a result, RS and WS have the same
number of entries, and these entries are the same.

We prove the forward direction (i.e., that the protocol
is sound) by contradiction. Suppose that PK misbehaves
and yet audit passes. Then there exists some RPC(GET,
k) call that returns a value inconsistent with the previous
write to key k. We show that this is not possible.

The audit passes only when RS ∪M = WS and when
keys has no duplicates. These two checks imply that there
could be no two inserts with the same key (otherwise
either RS ∪ M ̸= WS or keys has duplicate). Let H be
the history of invocation/response pairs of RPC(INSERT),
RPC(PUT), and RPC(GET). Consider the earliest inconsis-
tent RPC(GET) in H, and call it gi. Let (ki, vi) be the key-
value pair associated with gi; consequently (ki, vi) ∈ RS
due to Line 10 in Figure 2 (note that put also results in
an RPC(GET), see the caption of Figure 2 for more de-
tails). If (ki, vi) is not in WS, then RS ∪M ̸= WS for any
M, so the audit could not have passed, which leads to a
contradiction.

If (ki, vi) does occur in WS, the unique RPC(PUT) or
RPC(INSERT) that writes (ki, vi) should occur in H before
gi. Call this value w. This is due to the fact that timestamps
increase monotonically, and that after Line 11 the time-
stamp associated with the value of key ki is incremented
(so no further operation can add a value with a lower
timestamp to WS). Consider g to be the first RPC(GET,
k) for key k after operation w. If g = gi, then gi would
be consistent which contradicts our setup. Hence, g is an
RPC(GET) that occurs before gi. Furthermore, since gi is
the earliest inconsistent RPC(GET), then g must be consis-
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tent and as a result it must add (ki, vi) to RS. This means
that (ki, vi) occurs at least twice in RS. Given that WS has
no repeated entries, this implies that RS ∪M ̸= WS for
any M and audit fails, which yields a contradiction.

Dealing with inserts. In Concerto, if VK asks for a key
that does not exist it receives an error and a proof showing
that the key has not been inserted. In SetKV, we intro-
duce a function called InsertIfNotExists: it calls a
new operation RPC(EXISTS) that returns an untrusted
hint true (if the key already exists) or false (if the
key does not exist). Depending on the untrusted hint,
VK executes insert or get. We essentially force PK
to choose between the two via the untrusted hint. Sup-
pose the key exists but PK pretends that it does not: this
causes the key to be inserted twice, which is caught dur-
ing audit (due to the uniqueness check). On the other
hand, if the key does not exist but PK claims that it does,
InsertIfNotExists behaves like a get. This triggers
an RPC(GET), which leads to a bogus entry being added
to RS (PK can control the value but not the timestamp,
which prevents it from reordering requests). Since this
entry does not appear in WS, audit fails.

Lemma C.2 (Digest audit completeness). If the ideal
audit returns true, the audit using set-digests instead of
sets returns true.

Proof. We assume that VK uses a set collision resistant
hash function H to produce set-digests instead of keep-
ing track of RS and WS explicitly. Completeness follows
immediately from the completeness ofH [31].

Lemma C.3 (Digest audit soundness). If the ideal audit
returns false, the audit using set-digests instead of sets
returns true with negligible probability.

Proof. We prove this by reduction to the set collision
resistant property ofH. Assume that for sets RS and WS,
and a list of keys, audit returns false. Meanwhile, for
rs← H(RS), ws← H(WS), and keys, audit returns true.
Since keys is the same in both cases, and the uniqueness
check ensures there are no duplicates, this means that
the ideal audit returns false because RS ̸= WS (and not
because keys had duplicates, as otherwise the digest audit
would fail too). Since the digest audit returns true, we have
that rs = ws despite RS ̸= WS. This constitutes a collision
inH, which occurs with negligible probability.

C.2 Proof of C-SetKV and Spice

We reason about C-SetKV in isolation and prove that it
ensures sequential consistency [53] when processing con-
current requests (§4.1). We then show that C-SetKV can
also guarantee linearizability [45]) under certain condi-
tions. Finally, prior results (e.g., [25, Appendix A]) estab-
lish that composing a verifiable storage primitive, such

as C-SetKV, with efficient arguments (e.g., like we do in
Spice) preserves the above consistency semantics.

To prove C-SetKV’s consistency semantics, we adapt
the proof given in Appendix C.1 and a proof in Con-
certo [4] to our particular design. Unlike the prior section,
there are multiple instances of VK; we denote them as:
V(1)
K , . . ., V(ℓ)

K . Recall that each of these verifiers start
with a timestamp ts initialized to 0, and executes a se-
quence of key-value store operations and maintain a lo-
cal VKState. To audit, they obtain the VKState of all
other verifiers and combine them. That is, they compute
rscomb = rs1⊙rs2⊙ . . . rsℓ, where rs1, . . . , rsℓ are the read
set-digests of different verifiers. The same is done for the
write set-digest (ws). The timestamp of the combined
VKState object is set to 0.

Lemma C.4 (Ideal audit using unique ids). If each V(i)
K

keeps track of sets (i.e., read-set RS(i) and write-set WS(i))
instead of set-digests following the logic in Figure 2 (and
the unique ids modification in Appendix A.1), then audit
returns true if and only if C-SetKV respects sequential
consistency.

Proof. The reverse direction (i.e., that the protocol is
complete) is straightforward and is similar to Lemma C.1.
We prove the forward direction (i.e., that the protocol is
sound) by contradiction.

Suppose that PK misbehaves, so C-SetKV does not
provide sequential consistency, and yet audit passes.
Then, there exists some RPC(GET) request that returns a
value inconsistent with the previous write to the same key.
We show that this is not possible.

Let RS denote the union of read sets from all the
threads; and WS denote the union of write sets from all
the instances of VK. Since each V(j)

K has a Lamport clock
consisting of the unique identifier of V(j)

K and a mono-
tonically increasing timestamp, there are no duplicates in
any of the local write sets and hence no duplicates in WS.
The audit passes only when RS ∪M = WS (for some set
M) and when keys has no duplicates. These two checks
imply that there could be no two inserts with the same key
(otherwise either RS ∪M ̸= WS or keys has duplicate).

Let L(j) be the history of invocation/response pairs of
RPC(INSERT), RPC(PUT), and RPC(GET) requests asso-
ciated with V(j)

K . Consider the sequence Lcomb that con-
tains all operations in L(j), for all j ∈ [1, ℓ], ordered first
by their timestamp field ts and then by the tid field to
break ties. Within each L(j) timestamps increase monoton-
ically; thus, the ordering of operations in Lcomb respects
the ordering of operations issued by each V(j)

K .
By assumption, Lcomb does not obey sequential con-

sistency. Consider the earliest inconsistent RPC(GET) in
Lcomb, and call it gi. Let (ki, vi, tsi, tidi) be the key, value,
timestamp and thread-id tuple associated with gi; conse-
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quently (ki, vi, tsi, tidi) ∈ RS due to Line 10 in Figure 2
(note that put requests also result in an RPC(GET) op-
eration, see the caption of Figure 2 for more details). If
(ki, vi, tsi, tidi) is not in WS, then RS ∪M ̸= WS for any
M, so the audit could not have passed, which leads to a
contradiction.

If (ki, vi, tsi, tidi) does occur in WS, the unique
RPC(PUT) or RPC(INSERT) that writes (ki, vi, tsi, tidi)
should occur in Lcomb before gi. Call this operation w.
This is due to the fact that timestamps increase after every
operation: after gi, the timestamp of V(tidi)

K is incremented
in Line 11 so no further operation can add an element with
thread id tidi and a timestamp that is less than or equal to
tsi to the set WS. Consider g to be the first RPC(GET) of
key k after operation w. If g = gi, then gi would be consis-
tent which contradicts our setup. Hence, g is an RPC(GET)
that occurs before gi. Furthermore, since gi is the earliest
inconsistent RPC(GET), then g must be consistent and as
a result it must add (ki, vi, tsi, tidi) to RS. This means that
(ki, vi, ti, tidi) occurs at least twice in RS. Given that WS
has no repeated entries, this implies that RS ∪M ̸= WS
for any M and audit fails, which yields a contradiction.

Lemma C.5 (Digest audit completeness). If the ideal
audit returns true, the audit using set-digests instead of
sets (and multisets) returns true.

Proof. The argument is similar to Lemma C.2.

Lemma C.6 (Digest audit soundness). If the ideal audit
returns false, the audit using set-digests instead of sets
(and multisets) returns true with negligible probability.

Proof. The argument is similar to Lemma C.3 when ap-
plied to Lemma C.4.

C-SetKV’s linearizability semantics. We consider C-
SetKV in a more general setting: there is a sequence of
batches where each batch contains a set of concurrent
key-value store operations. PK executes the operations
in each batch concurrently and runs audit at the end of
each batch.

We now discuss when C-SetKV guarantees lineariz-
ability [45], which, in addition to sequential consistency,
preserves a notion of real-time. Suppose x1 and x2 are
two key-value store operations executed by PK where x2
was issued (by a VK instance) after PK has returned a re-
sponse for x1. Linearizability requires not only that these
operations execute atomically but also that x2 observes
the effects of x1. In other words, linearizability requires
that the behavior of the key-value store (i.e., responses)
be equivalent to the case where x1 and x2 were issued
sequentially one after the other.

In C-SetKV, requests in the same batch are concurrent
(and hence have no real-time constrains), but requests in

batch m + 1 happen after requests in batch m, and hence
must observe their effect.

Lemma C.7. C-SetKV satisfies linearizability across
batches if and only if audit returns true.

Proof. The proof is by induction. The base case is that the
key-value store is empty and no operations were issued.
It satisfies linearizability trivially. Assume linearizability
holds for the first m batches. We now show that under the
above definition of concurrent requests, audit returns
true for the m + 1 batch if and only if C-SetKV satisfies
linearizability. The reverse direction (i.e., if linearizabil-
ity holds audit returns true) is simple and similar to
Lemma C.1, so we omit it.

By the inductive step, linearizability holds for the first
m batches. This means that there exists a linear ordering
of all requests in the first m batches such that: (1) if we
executed operations in that linear order one by one, each
operation returns a response consistent with externally ob-
served output for that request, and (2) the linear ordering
respects real-time constrains (i.e., if an operation x2 was
issued after x1 and both belong to different batches, x1
appears before x2 in the linear order). We are also given
audit returns true for the previous m batches and the
(m + 1)th batch. audit returns true for the (m + 1)th
batch implies that there is a serial ordering of all requests
consistent with external responses (Lemma C.4).

Given these two, we can construct a linear ordering
of all operations such that (i) it satisfies requirement (1)
above, and (ii) the operations in the (m + 1)th batch
appear as a suffix (i.e., they happen in real-time after all
operations in the first m batches). Requirement (1) follows
from the existence of a serial ordering of all requests. We
prove requirement (2) by contradiction.

There are two cases. First, an operation x in batch
(m + 1) reads or writes a tuple that was created in a prior
batch. If x must appear in the linear ordering before oper-
ations in prior batches, then it means x must exist in prior
batches for those batches to be sequentially consistent. A
contradiction. Second, an operation x in batch (m + 1) is
an insert to a new key that never existed and must be
placed in the linear ordering before an operation from a
prior batch. In the linear ordering of all operations, this op-
eration can occur anywhere in the past including the case
where it is included after all operations from m batches.
A contradiction. Thus C-SetKV preserves linearizability
for operations in different batches.

An example. The previous proof shows that C-SetKV
guarantees linearizability for operations across batches
since the linearization point occurs after audit. But why
must we consider operations within the same batch con-
current? In other words, why can we not have a finer slic-
ing of time? To motivate this we use an example. Consider
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the case where a V(i)
K issues a key-value store operation

x1 = get(k) for a key k that does not exist in PK’s key-
value store. A correct PK would respond with an error
code, but suppose a malicious PK responds with (k, v, 1)
for some v. Of course, if we run audit now, it will return
false.

However, suppose we do not run audit immediately
and later a V(j)

K (j ̸= i) issues x2 = insert(k, v) and
suppose it assigns a timestamp of 1 (this is possible since,
recall from Section 4.1, each VK instance starts with a
timestamp of 0). Now, if we run audit, it returns true—
even though x2 is ordered before x1 in the linear history
despite the fact that x2 happened after x1 in the actual
execution. In essence, PK violates the real-time constrain
of linearizability and yet audit passes.
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