
Two-Round MPC: Information-Theoretic and Black-Box

Sanjam Garg∗

University of California, Berkeley
sanjamg@berkeley.edu

Yuval Ishai†

Technion
yuvali@cs.technion.ac.il

Akshayaram Srinivasan
University of California, Berkeley

akshayaram@berkeley.edu

Abstract

We continue the study of protocols for secure multiparty computation (MPC) that require
only two rounds of interaction. The recent works of Garg and Srinivasan (Eurocrypt 2018)
and Benhamouda and Lin (Eurocrypt 2018) essentially settle the question by showing that
such protocols are implied by the minimal assumption that a two-round oblivious transfer (OT)
protocol exists. However, these protocols inherently make a non-black-box use of the underlying
OT protocol, which results in poor concrete efficiency. Moreover, no analogous result was known
in the information-theoretic setting, or alternatively based on one-way functions, given an OT
correlations setup or an honest majority.

Motivated by these limitations, we study the possibility of obtaining information-theoretic
and “black-box” implementations of two-round MPC protocols. We obtain the following results:

• Two-round MPC from OT correlations. Given an OT correlations setup, we get
protocols that make a black-box use of a pseudorandom generator (PRG) and are secure
against a malicious adversary corrupting an arbitrary number of parties. For a semi-honest
adversary, we get similar information-theoretic protocols for branching programs.

• New NIOT constructions. Towards realizing OT correlations, we extend the DDH-
based non-interactive OT (NIOT) protocol of Bellare and Micali (Crypto ’89) to the mali-
cious security model, and present new NIOT constructions from the Quadratic Residuosity
Assumption (QRA) and the Learning With Errors (LWE) assumption.

• Two-round black-box MPC with strong PKI setup. Combining the two previous
results, we get two-round MPC protocols that make a black-box use of any DDH-hard
or QRA-hard group. The protocols can offer security against a malicious adversary, and
require a PKI setup that depends on the number of parties and the size of computation,
but not on the inputs or the identities of the participating parties.

• Two-round honest-majority MPC from secure channels. Given secure point-to-
point channels, we get protocols that make a black-box use of a pseudorandom generator

∗Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, and research grants by the Okawa Foundation, Visa Inc., and Center for Long-
Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.
†Supported by ERC grant 742754 (project NTSC), ISF grant 1709/14, NSF-BSF grant 2015782, and a grant from

the Ministry of Science and Technology, Israel and Department of Science and Technology, Government of India.

1

(PRG), as well as information-theoretic protocols for branching programs. These protocols
can tolerate a semi-honest adversary corrupting a strict minority of the parties, where in
the information-theoretic case the complexity is exponential in the number of parties.

1 Introduction

There is an enormous body of work on the round complexity of protocols for secure multiparty
computation (MPC). While the feasibility of constant-round MPC has been established a long time
ago [Yao86, BB89, BMR90], some of the most basic questions about the exact number of rounds
required for MPC remained wide open until recently.

A single round of interaction is clearly insufficient to realize the standard notion of MPC. The
focus of this work is on MPC protocols that require only two rounds. Two-round MPC protocols
are not only interesting because of the quantitative aspect of minimizing the number of rounds,
but also because of the following qualitative advantage. In a two-round MPC protocol, a party
can send its first round messages and then go offline until all second-round messages are received
and the output can be computed. (In fact, for two-round protocols over insecure channels, the first
round messages can be publicly posted.) Moreover, the first round messages can be potentially
reused for several computations in which the receiver’s input remains the same. Indeed, in the
two-party setting, such two-round protocols are sometimes referred to as “non-interactive secure
computation” [IKO+11].

The state of the art on two-round MPC can be briefly summarized as follows. Unless otherwise
specified, we restrict our attention to semi-honest adversaries, who may non-adaptively corrupt an
arbitrary subset of parties, and allow the protocols to use a common random string.

In the information-theoretic setting, 2-round protocols over secure point-to-point channels are
known to exist with t < n/3 corrupted parties [IK00], leaving open the existence of similar protocols
with an optimal threshold of t < n/2. These information-theoretic protocols, like all current
general constant-round protocols in the information-theoretic setting, have complexity that grows
polynomially with n and with the branching program size of the function being computed, and thus
can only efficiently apply to rich but limited function classes such as NC1, NL, or other log-space
classes.

Settling for computational security, the above information-theoretic protocols imply (via the
multi-party garbling technique of [BMR90]) similar protocols for circuits, capturing all polynomial-
time computable functions, where the protocols only require a black-box use of any pseudorandom
generator (PRG), or equivalently a one-way function. In this setting too, it was open whether the
optimal1 threshold of t < n/2 can be achieved.

Under stronger cryptographic assumptions, a lot of recent progress has been made on two-round
MPC protocols that tolerate an arbitrary number of corrupted parties. The first such protocols
required a public-key infrastructure (PKI) setup, where each party can post a public key before its
input is known, and were based on the Learning With Errors (LWE) assumption via threshold fully
homomorphic encryption [AJW11]. This was followed by protocols without PKI setup, first under
indistinguishability obfuscation [GGHR14] or witness encryption [GLS15], and later under LWE
via multi-key fully homomorphic encryption [MW16] or spooky encryption [DHRW16]. Using PKI

1Protocols that offer security with no honest majority imply oblivious transfer. Thus, they provably do not admit
a black-box reduction to a PRG [IR89], and a non-black-box reduction would be considered a major breakthrough in
cryptography.

2

setup, two-round protocols could also be constructed under the Decisional Diffie-Hellman (DDH)
assumption via homomorphic secret sharing [BGI17, BGI+18].

In recent works, a new general technique for collapsing rounds via “protocol garbling” [GS17]
has been used by Garg and Srinivasan [GS18] and Benhamouda and Lin [BL18] to settle the minimal
assumptions required for two-round MPC. These works show that general two-round MPC can be
based on any two-round protocol for oblivious transfer (OT) [Rab81, EGL85], namely a protocol
allowing a receiver to obtain only one of two bits held by a sender without revealing the identity
of the chosen bit. This assumption is clearly necessary, since two-round OT is an instance of
two-round general MPC.

Remaining challenges. Despite apparently settling the problem of two-round MPC, many chal-
lenges still remain. First and foremost, the recent OT-based protocols from [GS18, BL18] inherently
make a non-black-box use of the underlying OT protocol. This results in poor concrete efficiency,
which is unfortunate given the appealing features of two-round MPC discussed above. Second,
the recent results leave open the possibility of obtaining information-theoretic security, or alter-
natively, computational security using symmetric cryptography, in other natural settings. These
include protocols for the case of an honest majority (t < n/2) using secure point-to-point chan-
nels,2 or alternatively protocols for dishonest majority based on an ideal OT oracle. Finally, the
two-round MPC protocols from [GS18, BL18] did not seem to apply to the more general client-
server setting, where only clients hold inputs and receive outputs, and communication only involves
messages from clients to servers and from servers to clients.3

1.1 Our Contribution

In this work we address the above challenges, focusing mainly on the goal of constructing information-
theoretic and “black-box” implementations of two-round MPC protocols. We obtain the following
results:

Two-round MPC from OT correlations. We start by studying two-round MPC using an
OT correlations setup, which can be viewed as a minimal4 setup for MPC with no honest majority
under assumptions that are weaker than OT. An OT correlation setup allows each pair of parties to
share many independent instances of correlated randomness where party Pi gets a pair of random
bits (or strings) (s0, s1) and party Pj gets a random bit b and the bit sb. Using such an OT
correlations setup, we get protocols that make a black-box use of a PRG and are secure against
either a semi-honest5 or malicious adversary corrupting an arbitrary number of parties. For a

2A recent work of Ananth, Choudhuri, Goel, and Jain [ACGJ18] obtains honest-majority, two-round MPC proto-
cols from one-way functions satisfying the notion of security with abort against malicious adversaries. Our work was
done in part following a public announcement of this result.

3An additional disadvantage of the protocols from [GS18, BL18] compared to most earlier protocols is that their
communication complexity is always bigger than the circuit size of the function being computed. However, breaking
this circuit size barrier under general assumptions such as OT would require a major breakthrough, regardless of
round complexity.

4Two-round MPC was previously known to follow from a global correlated randomness setup that includes garbled
circuits [CEMY09, IMO18] or truth-tables [IKM+13] whose keys are secret-shared between all parties. Our setup
assumption is weaker in that it only involves a simple pairwise correlation.

5Our protocol for semi-honest adversaries is expensive but not prohibitively so. With some simple optimizations,
the online communication consists of roughly 1750 ·n3 standard garbled circuits, which is about 135 times the cost of

3

semi-honest adversary, we get similar information-theoretic protocols for branching programs.
This OT correlation setup can be implemented with good concrete efficiency via OT exten-

sion [IKNP03], requiring roughly 128 bits of communication per string-OT. Alternatively, the com-
munication complexity of the setup can be made independent of the circuit size (at a much higher
computational cost) by using homomorphic secret sharing based on LWE, DDH, or DCRA [BGI16,
DHRW16, FGJI17, BCG+17]. Finally, a fully non-interactive option for implementing the OT
correlation setup is discussed next.

New NIOT constructions. An appealing method of realizing the OT correlation setup is via
non-interactive OT (NIOT) [BM90]. An NIOT protocol is the OT analogue of non-interactive
key exchange: it allows two parties to obtain a joint OT correlation via a simultaneous message
exchange. We present several new constructions of NIOT. First, we extend the DDH-based con-
struction from [BM90] to the malicious security model, improving over an earlier construction based
on bilinear maps from [GS17]. Second, we present new NIOT constructions from the Quadratic
Residuosity Assumption (QRA) and from LWE.

Two-round black-box MPC with strong PKI setup. Combining the protocols based on OT
correlations and the NIOT constructions, we get two-round MPC protocols that make a black-box
use of any DDH-hard or QRA-hard group. The protocols can offer security against a malicious
adversary, and require a strong PKI setup that depends on the number of parties and the size of
computation, but not on the inputs or the identity of the participating parties. This is arguably the
first “black box” two-round MPC protocol that does not rely on an honest majority or a correlated
randomness setup. Our DDH-based protocol can be compared with previous DDH-based two-
round MPC protocols from [BGI+18] that require a weaker PKI setup and have better asymptotic
communication complexity, but make a non-black-box use of the underlying group except when
there are n clients and 2 servers.

Two-round honest-majority MPC from secure channels. Given secure point-to-point chan-
nels, we get protocols that make a black-box use of a PRG, as well as information-theoretic protocols
for branching programs. These protocols can tolerate a semi-honest adversary corrupting a strict
minority of the parties, where in the information-theoretic case the complexity of the protocol grows
quasi-polynomially with the number of parties. Our work leaves open the question of eliminating
this slightly super-polynomial dependence as well as the question of obtaining similar results for
malicious adversaries. This question has been resolved in the concurrent and independent work of
Applebaum, Brakerski and Tsabary [ABT18].

From standard MPC to client-server MPC. Finally, we present a general (non-black-box)
transformation that allows converting previous two-round MPC protocols (including the recent OT-
based protocols from [GS18, BL18]) to the stronger client-server model. Concretely, we use a PRG
to transform any n-party, two-round, MPC protocol with security against semi-honest adversaries
corrupting an arbitrary subset of parties to a similar protocol with n clients and m servers, where in
the first round each client sends a message to each server and in the second round each server sends
a message to each client. The resulting protocol is secure against a semi-honest adversary that

the BMR protocol [BMR90], and the total number of OTs required by the setup is less than 7% of the communication.

4

corrupts an arbitrary subset of clients and a strict subset of the servers. This setting is particularly
appealing when clients would like to be offline except when their input changes or they would like
to receive an output.

1.2 Overview of Techniques

In this subsection, we describe the main techniques used to obtain our results.

1. We start with a high-level overview of the OT correlations model and describe the technical
challenges in constructing a non-interactive OT protocol.

2. Later, we will show how to use OT correlations to make the compiler of Garg and Srini-
vasan [GS18] information theoretic. This gives efficient, two-round protocols in the OT corre-
lations model with information theoretic security for branching programs and computational
security for circuits making black-box use of a pseudorandom generator.

3. We then explain the main ideas in constructing a two-round, protocol in the honest majority
setting with secure point-to-point channels.

OT Correlations Model. The OT correlation is modeled by a two-party ideal functionality.
When this functionality is invoked by a (sender, receiver) pair, it samples three bits (s0, s1) and b
uniformly at random and provides (s0, s1) to the sender and (b, sb) to the receiver. For simplicity, we
focus only for the case where sender’s output (s0, s1) are bits as there are perfect, round-preserving
reductions from bit OT correlations to string OT correlations (refer [BCS96, BCW03]). Given such
OT correlations, there is an information theoretic, two-round OT protocol as follows. In the first
round, the receiver sends u = b⊕ c to the sender where c is the choice bit and in the second round,
the sender computes (x0, x1) = (m0 ⊕ su,m1 ⊕ s1⊕u) and sends them to the receiver. The receiver
outputs xc ⊕ rb.

Bellare-Micali Non-Interactive Oblivious Transfer. Bellare and Micali [BM90] gave an
efficient, single-round protocol based on Decisional Diffie-Hellman (DDH) assumption [DH76] for
computing OT correlations when the adversary corrupting either of the two parties is semi-honest.
The protocol is in the common reference string model and is as follows. Let us assume that G is
a DDH hard group and g is a generator. The CRS is an uniform group element X. The sender
chooses a ← Z∗p and sends A = ga to the receiver. The receiver chooses a random b ← Z∗p and

sends (B0, B1) = (gb, X/gb) in a randomly permuted order. The sender computes (Ba
0 , B

a
1) and

outputs it and the receiver computes Ab and outputs it. The receiver’s choice bit b is statistically
hidden from an adversarial sender and the string s1−b is computationally hidden from the receiver
based on the DDH assumption. However, this protocol only works in the semi-honest model as
there is no efficient way to extract the receiver’s choice bit or the sender’s correlations. In [GS17],
Garg and Srinivasan additionally used Groth-Sahai proofs [GS08] to enable efficient extraction of
the correlations from a malicious adversary but this construction relies on bilinear maps.

Our Construction of Non-Interactive Oblivious Transfer. Our approach of constructing
non-interactive oblivious transfer is via a generalization of the dual-mode framework introduced
in the work of Peikert, Vaikuntanathan and Waters [PVW08]. In the dual mode framework,

5

the common reference string can be in one of two indistinguishable modes: namely, the receiver
extraction mode or the sender extraction mode. In the receiver extraction mode, the CRS trapdoor
enables the simulator to extract the receiver’s correlation b and in the sender extraction mode, the
it enables the simulator to extract the sender’s correlation (s0, s1) from the malicious party. In
either of the two modes, the secrets of the honest party are statistically hidden. We give efficient
instantiations of this framework from DDH, Quadratic Residuocity assumption [GM82] and the
Learning with Errors assumption [Reg05]. Our DDH and QR based constructions make black-box
use of the underlying group. We stress that constructions of dual-mode cryptosystem in [PVW08]
do not yield non-interactive oblivious transfer and we need to come up with new constructions. We
refer the reader to Section 3.1 for the details.

Round-Collapsing Compiler in the OT Correlations Model. Independent works by Ben-
hemouda and Lin [BL18] and Garg and Srinivasan [GS18] gave a “round-collapsing” compiler that
takes an arbitrary multi-round MPC protocol and collapses it to two-rounds assuming the existence
of a two-round oblivious transfer and garbled circuits. The compiler makes use of the code of the
underlying protocol and thus, if the underlying protocol performs cryptographic operations then
the resultant two-round protocol makes non-black box use of cryptography. In this work, we will
use OT correlations to modify the compiler of [GS18] so that the resulting protocol makes black-box
use of cryptography even if the underlying protocol performs cryptographic operations. Let us see
how this is done.

We start by observing that OT correlations allow for perfect (resp., statistical) information-
theoretic protocols in the presence of an arbitrary number of semi-honest (resp., malicious) cor-
rupted parties. Hence, we we will round-collapse, perfectly/statistically secure protocols that are
in the OT-hybrid model (e.g., [GMW87, Kil88, IPS08]). We first give a reduction from per-
fectly/statistically secure protocols in the OT-hybrid model to a perfectly/statistically secure pro-
tocols in the OT correlations model. This reduction has a property that all the OT correlations
are generated before the actual execution of the protocol and the operations performed in the
protocol are information theoretic. Another useful property is that number of OT correlations
needed depends only the number of parties and the size of the computation to be performed and
in particular, is independent of the actual inputs. At a high level, this reduction relies on the
fact that OT correlations can be used to perform information theoretic OTs. Now, given such a
protocol in the OT correlations model, we modify the compiler of Garg and Srinivasan to have a
pre-processing phase where all the OT correlations needed for the underlying protocol and those
consumed by the round-collapsing compiler are generated. Later, these OT correlations are used
to perform information theoretic OTs both in the underlying protocol and the round-collapsing
compiler. Additionally, we also replace the garbled circuits used in the round-collapsing compiler
with a perfectly secure analogue, namely a so-called “decomposable randomized encodings” for
low-depth circuits [IK00, AIK04]. With these changes to the [GS18] compiler, we get a perfectly
secure two-round protocol in the OT correlations model for constant size functions. Later, we
use a result from [BGI+18] to bootstrap this to a perfectly secure, two-round protocol in the OT
correlations model for NC0 circuits. Two immediate corollaries of this result are a perfectly secure,
two-round protocol in the OT correlations model for polynomial sized branching programs and
a computationally secure, two-round protocol in the OT correlations model for arbitrary circuits
making black-box use of a pseudorandom generator.

6

Two-round Protocol in the Honest Majority Setting. To construct a two-round protocol in
the plain model (with secure point-to-point channels) when the adversary corrupts a strict minority
of the parties, we use the same high level idea of the [GS18] compiler. That is, we take a larger
round protocol secure with honest majority and round-collapse it to two-rounds. Two immediate
issues arise: (1) The first issue is that the round-collapsing compiler requires the existence of two-
round oblivious transfer, (2) the second issue is that round-collapsing compiler could only compress
protocols in the presence of a broadcast channels and fails for protocols with secure channels. To
address the first issue, we construct a perfectly secure, two-round OT protocol in the presence
of honest majority (building on the work of [IKP10]) and to address the second issue, we give
a generalization of the [GS18] compiler to compress protocols that may require secure channels.
We then use this OT protocol in parallel with the round-collapsing compiler of [GS18] (enhanced
to work for protocols with secure channels) to obtain a two-round protocol in the honest majority
setting. However, the resulting communication complexity of the protocol grows super-polynomially
with the number of parties n. Still, for constant n, the protocol is efficient.

2 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote the security pa-
rameter. A function µ(·) : N→ R+ is said to be negligible if for any polynomial poly(·) there exists
λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified

negligible function and poly(·) to denote an unspecified polynomial function.
For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the

content of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite
set S, we denote x ← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time algorithm.

2.1 Decomposable Randomized Encoding

We recall the definitions of randomized encoding [Yao86, IK00, AIK04].

Definition 2.1 (Randomized Encoding) Let f : {0, 1}n → {0, 1}m be some function. We say
that a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}m is a perfect randomized encoding of f if for every

input x ∈ {0, 1} , the distribution f̂(x; r) induced by an uniform choice of r
$← {0, 1}ρ , encodes the

string f(x) in the following sense:

• Correctness. There exists a decoding algorithm Dec such that for every x ∈ {0, 1}n, it holds
that:

Pr
r

$←{0,1}ρ
[Dec(f̂(x; r)) = f(x)] = 1

• Privacy: There exists a randomized algorithm S such that for every x ∈ {0, 1}n and uni-

formly chosen r
$← {0, 1}ρ it holds that

S(f(x)) is distributed identically to f̂(x; r).

7

Definition 2.2 (Decomposable Randomized Encoding) We say that f̂(x; r) is decomposable
if f̂ can be written as f̂(x; r) = (f̂0(r), f̂1(x1; r), . . . , f̂n(xn; r)) where f̂i is chooses between two vec-
tors based on xi , i.e., it can be written as ai,xi and (ai,0,ai,1) arbitrarily depend on the randomness

r. We will use f̂(; r) to denote (f̂0(r), (a1,0,a1,1), . . . , (an,0,an,1)).

We will recall the following two constructions of randomized encoding.

Lemma 2.3 ([Kil88, IK00]) Let f : {0, 1}n → {0, 1}m be a function computable in NC0. Then
f has a perfectly secure decomposable randomized encoding f̂ where the size of the encoding is
2O(d)(n+m) where d is the depth of the circuit.

Lemma 2.4 ([Yao86]) Let f : {0, 1}n → {0, 1}m be a function computable by an arbitrary circuit.
Assuming the existence of one-way functions, f has a computationally secure randomized encoding
f̂ .

2.2 Universal Composability Framework

We work in the the Universal Composition (UC) framework [Can01] to formalize and analyze the
security of our protocols. (Our protocols can also be analyzed in the stand-alone setting, using the
composability framework of [Can00], or in other UC-like frameworks, like that of [PW00].) We give
the details in Appendix A. We only focus on static (non-adaptive) adversaries but we note that
our perfectly secure protocols are also secure against adaptive adversaries.

3 OT Correlations Functionality

In this section, we define the FOTCor functionality in Figure 1. Intuitively, the FOTCor functionality
obtains a bit b from the receiver and samples two bits (s0, s1) randomly from {0, 1} and outputs
(s0, s1) to the sender and sb to the receiver.6 In the definition, we focus on the case where the
sender’s output are just two bits (s0, s1) instead of two strings as there are efficient reductions
from 1-out-of-2 string OTs to 1-out-of-2 bit OTs using self-intersecting codes or randomness ex-
tractors [BCS96, BCW03]. By abusing notation, we will interchangeably use the same functionality
to sample two strings instead of two bits.

We first discuss two generic ways from literature for realizing FOTCor functionality and then
give two new ways for realizing it.

OT Extension. We first note that any OT protocol can be used to realize FOTCor functional-
ity. A more efficient way would be to use an oblivious transfer extension protocol [Bea96, IKNP03,
ALSZ13, ALSZ15, KOS15]. Any OT extension protocol with security against semi-honest/malicious
adversaries can be used to realize the FOTCor functionality against semi-honest/malicious adver-
saries. The only downside of this approach is that it involves multiple rounds of interaction (which
is inherent if we want to make black-box use of cryptography [GMMM18]).

6Here, we let the receiver to choose the bit b and provide as input to the functionality. We can also work with a
weaker formulation wherein the functionality can sample a random bit b. However, we chose this formulation as it
will lead to concrete improvements in the cost of our two-round MPC protocols.

8

Parametrized with parties P1, . . . , Pn and an adversary S controlling a subset of the parties.
Let H be the set of parties not controlled by the adversary.

On receiving (sid, receiver, pid, b) (where b ∈ {0, 1}) or (sid, sender, pid) from a party with
id pid, store this message.

On receiving (sid, pid1, pid2) from a party with id pid1, check if (sid, receiver, pid2, b) and
(sid, sender, pid1) are stored. If not stored, then do nothing. Else, do the following:

• If both pid1, pid2 ∈ H, sample (s0, s1)
$← {0, 1}, send (s0, s1) to the party pid1 and

sb to the party pid2.

• If pid1 6∈ H but pid2 ∈ H then send the message (sender, pid1) to S and receive
(s0, s1) from S. Send sb to the party pid2.

• If pid1 ∈ H but pid2 6∈ H, send the message (receiver, pid2) to S and receive sb

from S. Sample s1−b
$← {0, 1} and send (s0, s1) to the party pid1.

• If both pid1, pid2 6∈ H, ignore the message.

Figure 1: OT Correlations Functionality FOTCor.

Homomorphic Secret Sharing/ Threshold FHE. A reusable and a non-interactive approach
to realize the weaker formulation wherein the receiver’s choice bit is sampled randomly by the func-
tionality is to use Homomorphic Secret Sharing (HSS) [BGI16, BGI17, BGI+18, BCG+17]. Using
Homomorphic Secret Sharing, each party can generate a HSS encoding of a randomly chosen PRG
seed and broadcasts this encoding to all other parties. When an OT correlation is to be generated,
the parties (using the encodings) locally compute a functionality that expands the receiver’s and the
sender’s PRG seed to the required length and samples the prescribed OT correlation from the ex-
panded seeds. At the end of this local computation, the parties hold an additive secret sharing of the
OT correlation and the actual correlation can be obtained non-interactively by sending these addi-
tive shares to the receiver. This approach is reusable as the encodings just needs to be sent once and
can be resused to generate fresh correlations each time.7 We also note that we can replace the above
homomorphic secret sharing with any threshold FHE construction [MW16, DHRW16, BGG+18].
The downsides of using HSS or threshold FHE is that they make non-black box use of one-way
functions in expanding the short seed to a pseudorandom string and they are computationally ex-
pensive when compared to the OT extension. Additionally, HSS requires the use of secure channels
between every pairs of parties.

In Section 3.1, we describe a non-interactive approach to realize FOTCor. The advantage of this
approach over HSS/threshold-FHE is that it makes black-box use of a groups where either DDH
or QR is hard (we also provide an efficient construction from the LWE assumption). However,
unlike HSS/threshold-FHE they are not reusable. In Section 3.2, we give a two-round, information
theoretic protocol (with security against semi-honest adversaries) in the client-server model for
realizing FOTCor when a majority of the servers are honest.

7The HSS constructions in [BGI16, BGI17, BGI+18, BCG+17] have a polynomial error probability and this might
leak information about the correlations to an adversary. [BCG+17] mentions two ways to prevent such leakages:
either bootstrap random pads or use a punctured OT [BGI17]. We refer the reader to [BCG+17] for the details.

9

3.1 Realizing FOTCor : Non-Interactive Oblivious Transfer

In this subsection, we define a Non-Interactive Oblivious Transfer (NIOT) and show how to realize
FOTCor functionality from NIOT. Later, we give constructions of NIOT based on the Decisional
Diffie-Hellman (DDH), Quadratic Residuocity (QR) and Learning with Errors (LWE).

Definition. A Non-Interactive Oblivious Transfer (NIOT) is a tuple of algorithms (KR,KS, Sen,Rec,
outS, outR) having the following syntax, correctness and security guarantees.

• KR and KS are randomized algorithms that take as input the security parameter (encoded in
unary) and output a common random string σ along with some trapdoor information τ .

• Sen is a randomized algorithm that takes σ as input and outputs msgS along with secret
randomness ω.

• Rec is a randomized algorithm that takes σ and a bit b as input and outputs msgR along with
secret randomness ρb.

• outS is a deterministic algorithm that takes as input σ, msgR and the secret randomness ω
and outputs two bits k0, k1.

• outR is a deterministic algorithm that takes as σ, msgS and the secret randomness ρb and
outputs a bit k′b.

Correctness. We require that for all b ∈ {0, 1},

Pr
[
k′b = kb : (σ, τ)← KR(1λ), (msgS, ω)← Sen(σ), (msgR, ρb)← Rec(σ, b),

(k0, k1)← outS(σ, ω,msgR), k′b ← outR(σ, ρb,msgS)
]
≥ 1− negl(λ)

Security. We require the following security properties to hold.

• CRS Indistinguishability. We require that{
σ : (σ, τ)← KR(1λ)

}
c
≈
{
σ : (σ, τ)← KS(1λ)

}
• Sender Security. We require that there exists a PPT algorithm ExtR such that for all

non-uniform PPT adversarial Rec∗ the following two distributions are statistically close.

(σ, τ)← KR(1λ),
(msgS, ω)← Sen(σ),
msgR ← Rec∗(σ,msgS)
(k0, k1)← outS(σ, ω,msgR):
Output (msgS,msgR, k0, k1)

s
≈

(σ, τ)← KR(1λ),
(msgS, ω)← Sen(σ),
msgR ← Rec∗(σ,msgS)
b′ ← ExtR(σ,msgR, τ):
(k0, k1)← outS(σ, ω,msgR),
`b′ := kb′ , `1−b′ ← {0, 1}:
Output (msgS,msgR, `0, `1).

10

• Receiver Security. We require that there exists a PPT algrithm ExtS such that for all
non-uniform PPT adversarial Sen∗ and for all b ∈ {0, 1}, the following two distributions are
statistically close.

(σ, τ)← KS(1λ),
(msgR, ρb)← Rec(σ, b),
msgS ← Sen∗(σ,msgR),
k′b ← outR(σ, ρb,msgS):
Output (msgS,msgR, k

′
b)

s
≈

(σ, τ)← KS(1λ),
(msgR, ρ0, ρ1) ← ExtS(σ, τ),
msgS ← Sen∗(σ,msgR),
k′b ← outR(σ, ρb,msgS):
Output (msgS,msgR, k

′
b)

3.1.1 NIOT ⇒ FOTCor

In this subsection, we give a realization of the FOTCor functionality from any non-interactive obliv-
ious transfer.

Theorem 3.1 Assuming the existence of non-interactive oblivious transfer, there is a single round
protocol for realizing FOTCor against malicious adversaries in the common reference string model.

Construction. We give a construction realizing the FOTCor functionality in Figure 2.

Let (KR,KS,Sen,Rec, outS, outR) be a non-interactive oblivious transfer.

Inputs: Party Pi for i ∈ [n], receives a session id sid.

Common Reference String: For every i, j ∈ [n], sample (σi,j , τi,j) ← KR(1λ). Publish {σi,j}i,j∈[n]
as the common reference string.

Let us assume that Pi is the sender and Pj is the receiver.

Message sent by Pi → Pj: Compute (msgS, ω)← Sen(σi,j) and send msgS to Pj .

Message sent by Pj → Pi: On input b ∈ {0, 1}, compute (msgR, ρb)← Rec(σi,j , b). Send msgR to Pi.

Computation: Pi sets (s0, s1) := outS(σi,j , ω,msgR). Pj sets sb := outR(σi,j , ρb,msgS).

Figure 2: Realizing the FOTCor functionality

Description of the Simulator. We assume that A is static and hence the set of honest parties
H is known before the execution of the protocol. Recall the properties of ExtR and ExtS from the
definition of non-interactive oblivious transfer.

Simulating the CRS. For every i ∈ [n],

• If Pi ∈ H, sample (σi,j , τi,j)← KR(1λ) for every j ∈ [n] \ {i}.

• If Pi 6∈ H, sample (σi,j , τi,j)← KS(1λ) for every j ∈ [n] \ {i}.

Publish {σi,j}i,j∈[n] as the common reference string.

11

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start and for every choice of sender Pi and the receiver Pj , the simulator does the
following:

• Both Pi, Pj ∈ H:

1. Compute (msgS, ω)← Sen(σi,j) on behalf of Pi and send msgS to Pj .

2. Sample b← {0, 1} and compute (msgR, ρb)← Rec(σi,j , b) on behalf of Pj . Send msgR to
Pi.

• Pi ∈ H and Pj 6∈ H:

1. Compute (msgS, ω)← Sen(σi,j) on behalf of Pi and send msgS to A.

2. A outputs msgR.

3. Run b′ ← ExtR(σi,j , τi,j ,msgR).

4. Compute (s0, s1) := outS(σi,j , ω,msgR).

5. Send sb′ to the FOTCor functionality and output whatever A outputs.

• Pi 6∈ H and Pj ∈ H:

1. Compute (msgR, ρ0, ρ1)← S(σi,j , τi,j) and send msgR to A.

2. A outputs msgS.

3. Compute sb := outR(σi,j , ρb,msgS) for all b ∈ {0, 1}.
4. Send (s0, s1) to the FOTCor functionality and output whatever A outputs.

Lemma 3.2 Assuming the security of non-interactive oblivious transfer, for every Z that obeys

the rules of interaction for UC security we have EXECF ,S,Z
c
≈ EXECπ,A,Z .

Proof We now show that no environment can distinguish the real world execution with adversary
A and an ideal world execution with adversary S. We consider three cases.

• Case-1: Pi, Pj ∈ H. Note that EXECF ,S,Z is identically distributed to ({σi,j}i,j∈[n],msgS,msgR,
(`0, `1), `b) where msgS and msgR are obtained as in the description of the simulator and
(`0, `1)← {0, 1}. EXECπ,A,Z is identically distributed to ({σi,j}i,j∈[n],msgS,msgR,
(s0, s1), sb) where (msgR, ρb)← Rec(σi,j , b), (msgS, ω)← Sen(σi,j) and (s0, s1)← outS(σi,j , ω,msgR)
We show through a sequence of hybrids that EXECπ,A,Z is computationally indistinguishable
to EXECF ,S,Z .

Hybrid1 : This hybrid is same as EXECπ,A,Z except that we choose a random `1−b ← {0, 1}
and the sender outputs it instead of s1−b. Hybrid1 is statistically close to EXECπ,A,Z from
the sender security of non-interactive oblivious transfer.

12

Hybrid2 : This hybrid is same as Hybrid1 except that we generate σi,j as (σi,j , τi,j)← KS(1λ).
Hybrid1 is computationally indistinguishable to Hybrid1 from the CRS indistinguishability.

Hybrid3 : This hybrid is same as Hybrid2 except that the receiver’s message encodes 1 − b
instead of b. Hybrid3 is statistically close to Hybrid2 from receiver security of non-interactive
oblivious transfer.

Hybrid4 : This hybrid is same as Hybrid3 except that we generate σi,j as (σi,j , τi,j)← KR(1λ).
Again, Hybrid4 is computationally indistinguishable to Hybrid3 from the CRS indistinguisha-
bility.

Hybrid5 : This hybrid is same as Hybrid4 except that we choose a random `b ← {0, 1} and
the sender outputs it instead of sb. Hybrid4 is statistically close to Hybrid4 from the sender
security of non-interactive oblivious transfer.

Hybrid6 : This hybrid is same as Hybrid5 except that we generate σi,j as (σi,j , τi,j)← KS(1λ).
Again, Hybrid5 is computationally indistinguishable to Hybrid6 from the CRS indistinguisha-
bility.

Hybrid7 : This hybrid is same as Hybrid6 except that the receiver’s message encodes a randomly
chosen c instead of b. Hybrid3 is statistically close to Hybrid2 from receiver security of non-
interactive oblivious transfer. Notice that Hybrid5 is distributed identically to EXECF ,S,Z .

• Case-2: Pi ∈ H and Pj 6∈ H. It follows from the sender security of non-interactive oblivious
transfer that EXECF ,S,Z is statistically close to EXECπ,A,Z .

• Case-3: Pi 6∈ H and Pj ∈ H. It follows from the receiver security of non-interactive oblivious
transfer that EXECF ,S,Z is statistically close to EXECπ,A,Z .

3.1.2 NIOT from Decisional Diffie-Hellman

In this subsection we give a construction of non-interactive oblivious transfer from the Decisional
Diffie-Hellman (DDH) assumption. Bellare and Micali in [BM90] gave a protocol in the semi-honest
setting from DDH assumption. Garg and Srinivasan [GS17] gave a protocol against malicious
adversaries from bilinear maps. We review the DDH assumption below.

Decisional Diffie-Hellman Assumption [DH76]. Let SetupDDH be a randomized algorithm
that takes a security parameter as input and outputs (p,G, g) such that p is a prime, G is a
descriptions of group of order p and g is a random generator of G.

Definition 3.3 (Decisional Diffie-Hellaman Assumption) We say the Decisional Diffie-Hellman
holds for the group generator SetupDDH if for all non-uniform polynomial time adversaries A we

13

have ∣∣∣Pr
[
(p,G, g)← SetupDDH(1λ);x, y ← Z∗p : A(p,G, g, gx, gy, gxy) = 1

]
−

Pr
[
(p,G, g)← SetupDDH(1λ);x, y, z ← Z∗p : A(p,G, g, gx, gy, gz) = 1

]∣∣∣ ≤ negl(λ)

Theorem 3.4 Assuming the DDH assumption, there exists a construction of non-interactive obliv-
ious transfer.

We give our construction in Figure 3.

Correctness. We first argue correctness of the construction given in Figure 3. Note that (gb)
r =

(gsbb h
tb
b)r = (grb)

sb(hrb)
tb = gsbhtb . Thus, it follows that kb is indeed the first bit of (gb)

r.

Security. CRS indistinguishability follows directly from the DDH assumption. We show sender
and receiver security.

• Sender Security. We give details on the ExtR algorithm. On input σ := (g0, h0, g1, h1),
trapdoor τ := (x0, x1) := (z, zy/x) and an adversarially generated message (g, h), it checks
if x0 = x1. If yes, it aborts. If it does not abort, it checks if h = gx0 . If that is the case, it
outputs 0. Else, it checks if h = gx1 in which case it outputs 1. If h 6= gx0 or if h 6= gx1 , it
outputs 0.

We first notice that since x and y are sampled randomly, the probability that ExtR aborts is
negligible. So, we can condition on the event that ExtR does not abort (or, in other words,
x 6= y). We consider the following cases.

– Case-1: h = gx0 . In this case, it is sufficient to show that for randomly chosen s1, t1 ←
Z∗p, gs1ht1 is distributed uniformly in G conditioned on gs11 h

t1
1 . Let g := gr0 and h0 := gz0 .

Since, h = gx0 , we have h := hr0. Thus, gs1ht1 := grs10 hrt10 . Notice that since x 6= y, for a
randomly chosen s1, t1 ← Z∗p, xs1 + zyt1 and rs1 + zrt1 are random and independent of

each other. It now follows that gs11 h
t1
1 := gxs1+zyt1

0 and gs1ht1 := grs1+zrt1
0 are random

and independent of each other.

– Case-2: h = gx1 . It can be shown via an identical argument to Case-1 that for a
randomly chosen s0, t0 ← Z∗p, gs0ht0 is distributed uniformly in G conditioned on gs00 h

t0
0 .

– Case-3: h 6= gx0 and h 6= gx1 . In this case, let g := gr0 and h := hr
′

0 for some r 6= r′

since h 6= gx0 . As in Case-1, it can be easily seen that for a randomly chosen s1, t1 ← Z∗p
xs1 + zyt1 and rs1 + zr′t1 are random and independent of each other unless r := x and
r′ = y. If r := x and r′ = y then h := gx1 which contradicts our assumption.

• Receiver Security. We give details on the ExtS algorithm. On input σ := (g0, h0, g1, h1)
and the trapdoor τ := x, ExtS chooses r ← Z∗p and outputs msgR = (g, h) := (gr0, h

r
0) and sets

ρ0 := (r, 0) and ρ1 := (r/x, 1).

Notice that msgR is identically distributed to Rec(σ, b) for any b ∈ {0, 1}. Let (g0, g1) be any
adversarially chosen msgS. Let s0, s1, t0, t1 be such that gb := gsbb h

tb
b . It is sufficient to prove

that gs1ht1 := (g1)r/x. Note that g1 := gx0 and h1 := hx0 . Thus, (g1)r/x := (gs11 h
t1
1)r/x :=

(gr0)s1(hr0)t1 := gs1ht1 .

14

- KR(1λ) :

1. (p,G, g)← SetupDDH.

2. Set g0 := g and choose z ← Z∗p.
3. Set h0 := gz0 .

4. Choose x, y ← Z∗p.
5. Set g1 := gx0 and h1 := hy0.

6. Output σ := (g0, h0, g1, h1) and the trapdoor τ := (z, zy/x).

- KS(1λ) :

1. (p,G, g)← SetupDDH.

2. Set g0 := g and choose h0 ← G.

3. Choose x← Z∗p.
4. Set g1 := gx0 and h1 := hx0 .

5. Output σ := (g0, h0, g1, h1) and the trapdoor τ := x.

- Sen(σ) :

1. Choose s0, t0, s1, t1 ← Z∗p.

2. Output msgS := (gs00 h
t0
0 , g

s1
1 h

t1
1) and secret randomness ω := (s0, t0, s1, t1).

- Rec(σ, b) :

1. Choose r ← Z∗p.
2. Output msgR := (grb , h

r
b) and the secret randomness ρb := (r, b).

- outS(σ, ω,msgR) :

1. Parse msgR as (g, h) and ω as (s0, t0, s1, t1).

2. Output k0 and k1 to be the first bit of gs0ht0 and gs1ht1 respectively.

- outR(σ, ρb,msgS) :

1. Parse msgS as (g0, g1) and ρb as (r, b).

2. Output the first bit of (gb)
r.

Figure 3: Non-Interactive Oblivious Transfer from DDH

15

3.1.3 NIOT from Quadratic Residuocity

In this section we present a construction of non-interactive oblivious transfer from the quadratic
residuocity (QR) assumption. We will begin by reviewing the assumption, then describe the con-
struction, and finally prove its correctness and security.

Notations For a positive integer N , we use J (N) to denote the set {x ∈ Z/NZ :
(
x
N

)
= 1},

where
(
x
N

)
is the Jacobi symbol of x in Z/NZ. We use QR(N) to denote the set of quadratic

residues in J (N). The security of our scheme is based on the following computational assumption.

Definition 3.5 (Quadratic Residuocity (QR) Assumption [GM82]) Let QRgen(·) be a PPT
algorithm that generates two equal size primes p, q and N = pq. The following two distributions
are computationally indistinguishable:{

(p, q,N)← QRgen(1λ);V ← QR(N) : (N,V)
}

c
≈
{

(p, q,N)← QRgen(1λ);V ← J (N) \ QR(N) : (N,V)
}

In the construction and the proof of security, we make use of the the notion IBE compatible
algorithm proved in [BGH07].

Definition 3.6 ([BGH07]) Let Q be a deterministic algorithm that takes as input (N,S,R) where
N ∈ Z+ and R,S ∈ Z/NZ. The algorithm outputs two polynomials f, g ∈ Z/NZ[x]. We say that
Q is IBE-compatible if the following two conditions hold:

1. (Condition 1) If S and R are quadratic residues then f(s)g(r) is a quadratic residue for all
square roots r of R and s of S.

2. (Condition 2) If S is a quadratic residue then f(s)f(−s)R is a quadratic residue for all square
roots s of S.

Boneh et al. [BGH07] showed a concrete instantiation of such an IBE-compatible algorithm.

Theorem 3.7 Assuming the Quadratic Residuocity assumption, there exists a construction of non-
interactive oblivious transfer.

The Construction. We give the construction of non-interactive oblivious transfer in Figure 4.

Correctness. We start with the correctness proof. Notice that if b = 0 then msgR is a quadratic
residue and otherwise, u ·msgR is a quadratic residue. Let us first consider the case where msgR is

a quadratic residue. In that case, Condition 1 in Lemma 3.6 implies that
(
f(s)
N

)
=
(
g(r)
N

)
. Hence,

k′0 = k0. A similar argument can be used to show that if u · msgR is a quadratic residue then
k′1 = k1.

CRS Indistinguishability. The CRS indistinguishability property follows directly from quadratic
residuocity assumption.

16

• KR(1λ) :

1. (p, q,N)← QRgen(1λ)..

2. Sample a random u← J (N) \ QR(N).

3. Output σ := (N, u), τ := (p, q).

• KS(1λ):

1. (p, q)← QRgen(1λ).

2. Sample a random u← QR(N).

3. Output σ := (N, u), τ := (p, q).

• Sen(σ):

1. Pick a random s ∈ Z/NZ.

2. S := s2.

3. Output msgS := S, ω := s.

• Rec(σ, b):

1. Pick a random r ∈ Z/NZ.

2. If b = 0, let msgR := r2, otherwise let msgR := r2u.

3. Output msgR and ρb := (r, b,msgR).

• outS(σ, ω,msgR):

1. Parse ω as s, and let S := s2.

2. (f, g)← Q(N,S,msgR), (f̄ , ḡ)← Q(N,S, u ·msgR).

3. Output k0 :=
(
f(s)
N

)
, k1 :=

(
f̄(s)
N

)
.

• outR(σ, ρb,msgS):

1. Parse ρb as (r, b,msgR); parse msgS as S.

2. If b = 0, let (f, g)← Q(N,S, r2) and k′b :=
(
g(r)
N

)
;

otherwise let (f̄ , ḡ)← Q(N,S, (ru)2) and k′b :=
(
ḡ(ru)
N

)
.

3. Output k′b.

Figure 4: Non-Interactive Oblivious Transfer from QR

Sender Security. We first give the description of the extractor ExtR. On input msgR, the
extractor uses the trapdoor τ = (p, q) to check if msgR is a quadratic residue. It outputs b′ = 0 if
it is the case and 1 otherwise. We now need to show that k1−b′ is statistically indistinguishable to
random and this follows directly from the following lemma given in [BGH07].8

8The lemma in [BGH07] was shown only for R ∈ J (N). We extend it to arbitrary R 6∈ QR(N).

17

Lemma 3.8 ([BGH07]) Let N = pq be a QR modulus, X ∈ QR(N) and R 6∈ QR(N). Let x
be a random variable uniformly chosen among the four square roots of X. Let f be a polynomial

such that f(x)f(−x)R is a quadratic residue for all four values of x. Then,
(
f(x)
N

)
is uniformly

distributed in {±1}.

Proof Some parts of the proof are taken verbatim from [BGH07]. Let x, x′ be two square-
roots of X such that x = x′ mod p and x = −x′ mod q. Then, the four square roots of X

are {±x,±x′}. By definition, we have that
(
f(x)
p

)
=
(
f(x′)
p

)
and

(
f(x′)
q

)
=
(
f(−x)
q

)
. Also,

from the fact that f(x)f(−x)R is a quadratic residue, we have that
(
f(x)
p

)(
f(−x)
p

)(
R
p

)
= 1 and(

f(x)
q

)(
f(−x)
q

)(
R
q

)
= 1. Since R 6∈ QR(N) either

(
R
p

)
= −1 or

(
R
q

)
= −1. We consider two

cases:

• Case-1:
(
R
q

)
= −1. In this case,

(
f(x)
q

)
= −

(
f(−x)
q

)
= −

(
f(x′)
q

)
. Thus,

(
f(x)
N

)
=

−
(
f(x′)
N

)
. Similarly, one can show that

(
f(−x)
N

)
= −1

(
f(−x′)
N

)
. Thus, among f(x), f(x′), f(−x), f(−x′),

the first two have different Jacobi symbols and the last two have different Jacobi symbols

modulo N . Thus,
(
f(x)
N

)
is uniformly distributed over {±1}.

• Case-2:
(
R
p

)
= −1. In this case,

(
f(x)
p

)
= −

(
f(−x)
p

)
= −

(
f(−x′)
p

)
. Thus,

(
f(x)
N

)
=

−
(
f(−x′)
N

)
. Similarly, one can show that

(
f(x′)
N

)
= −

(
f(−x)
N

)
. Thus, among f(x), f(−x′), f(−x), f(x′),

the first two have different Jacobi symbols and the last two have different Jacobi symbols

modulo N . Thus,
(
f(x)
N

)
is uniformly distributed over {±1}.

Receiver Security. We first give the description of the extractor ExtS. On input σ, τ , it uses τ
to find the square root u′ of u. It samples a random r and sets msgR = r2u, ρ0 = ru′ and ρ1 = r.
It is easy to see that this extractor satisfies the receiver security definition.

3.1.4 NIOT from Learning with Errors

In this section, we will provide a construction of non-interactive oblivious transfer from Learning
with Errors (LWE) assumption.

We will begin by recalling the LWE assumption. In the following description, we will use n as
the security parameter.

Lemma 3.9 (Lattice Trapdoors [Ajt99, GPV08, MP12]) There is an efficient randomized
algorithm TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m =
Ω(n log q), outputs a parity check matrix A ∈ Znmq and a trapdoor matrix T ∈ Zmm such that the
distribution of A is negl(n)-close to uniform.

Definition 3.10 (B-Bounded Distribution) A family of distribution χ := {χn}n∈N is said to
be B = B(n) ∈ N-bounded for every n, Pr[χ ∈ {−B,−B + 1, . . . , B − 1, B}] = 1.

18

Definition 3.11 (Learning with Errors [Reg05, Pei09]) For an integer q = q(n) ≥ 2 and a
B-bounded error distribution χ = χ(n) over Zq, the learning with errors problem dLWEn,m,q,χ is to
distinguish between the following pairs of distributions:

{A,AT s + e} and {A,y}

where A← Zn×mq , s← Znq , e← χm and y← Zmq .

Theorem 3.12 Assuming LWE, there exists a construction of non-interactive oblivious transfer.

The Construction. We give the construction of non-interactive oblivious transfer in Figure 5.
In the construction, we will fix an integer 2

√
q ≤ R ≤ q

4mB and denote R := [0, R− 1].

Correctness. The receiver output k′b is the msb of rTb AT sR and kb output by the sender is the
msb of rTb AT sR + rTb eR. Note that |rTb eR| ≤ mRB ≤ q/4. Thus, msb of rTb AT sR is same as the
msb of rTb AT sR + rTb eR.

CRS Indistinguishability. The CRS indistinguishability follows directly from the LWE as-
sumption.

Sender Security. The proof of sender security follows almost directly from [PVW08]. We now
sketch the details.

For a fixed (A,v) ∈ Zn×mq × Zmq , following [PVW08], we define δ(A,v) to be the statistical

distance between (rTAT , rTv) where r ← Rm and the uniform distribution over Znq × Zq. The
following lemma was shown in [PVW08].

Lemma 3.13 ([PVW08, GPV08]) Let m ≥ 2(n + 1) log q and let ε = 1
q(n+1)/2 . Then, with all

but negligible probability over the random choices of (A,u0,u1), for every msgR ∈ Zmq , there exists
b ∈ {0, 1} such that δ(A,msgR + ub) ≤ ε. Furthermore, given the trapdoor matrix T, there exists
an efficient algorithm that finds such a b given msgR.

The sender security follows from a straightforward application of this lemma.

Receiver Security. We describe the algorithm ExtS. This algorithm outputs msgR = w and
ρb = sb for each b ∈ {0, 1}. It is easy to see that this extractor satisfies the receiver security
requirement.

3.2 Realizing FOTCor: Honest Majority Case

We first give a brief introduction to the client-server model.

19

• KR(1λ) :

1. (A,T)← TrapSamp(1n, 1m, q).

2. Sample u0,u1 ← Zmq .

3. Output σ := (A,u0,u1), τ := T.

• KS(1λ):

1. (A,T)← TrapSamp(1n, 1m, q).

2. Sample w← Zmq and s0, s1 ← Znq .

3. Set ub := AT sb + eb −w where eb ← χm for b ∈ {0, 1}.
4. Output σ := (A,u0,u1), τ := (T, s0, s1).

• Sen(σ):

1. Sample r0, r1 ∈ Rm.

2. Set vb := rTb A
T .

3. Output msgS := (v0,v1) and ω = (r0, r1).

• Rec(σ, b):

1. Sample sR ← Znq .

2. Set msgR := AT sR + eR − ub where eR ← χm.

3. Output msgR and ρb := (sR, b).

• outS(σ, ω,msgR):

1. Parse ω as (r0, r1).

2. Output kb as the msb of rTb (msgR + ub) for b ∈ {0, 1}.

• outR(σ, ρb,msgS):

1. Parse ρb as (sR, b); parse msgS as (v0,v1).

2. Output k′b to be the msb of vTb sR.

Figure 5: Non-Interactive Oblivious Transfer from LWE

Client-Server Model. In the client-server model for computing FOTCor, there are two clients:
the sender and the receiver of the FOTCor functionality. There are 2t+ 1 servers and at most t of
them are corrupted. In the two-round protocol, a single message is sent from both the sender and
the receiver to the 2t + 1 servers (via a private channel) and a single message is sent from all the
2t+ 1 servers to the receiver (again via a private channel) which enables the receiver to obtain the
output of the function.

Ishai et al. [IKP10] gave a two-round protocol for computing degree-2 functionalities in the
client-server model. We observe that this protocol in fact implies as protocol for securely computing

20

FOTCor in the client-server model where the majority of the servers are honest and the adversary
is semi-honest. We state the theorem here and for completeness we give a proof in Appendix B.

Theorem 3.14 There is a protocol that securely realizes FOTCor in the client-server model against
adversaries who can corrupt an arbitrary number of clients and a minority of the servers.

4 Two-round Semi-Honest MPC in the FOTCor Model

In this section, we give our construction of two-round MPC against semi-honest adversaries in the
FOTCor model when the adversary is allowed to corrupt an arbitrary subset of the parties. The
results we obtain against semi-honest adversaries are as follows (all our results are in the FOTCor

model):

1. We first give a perfectly secure, two-round protocol for constant-size functionalities.

2. Next, using s result in [BGI+18] and the protocol from Step 1, we will give a protocol with
perfectly (resp. statistical) secure, two-round protocol for functionalities with perfect (resp.
statistical) randomized encodings with constant degree. Following [AIK04], we will denote
the class of functions with perfectly (resp. statistically) secure constant degree randomized
encodings as PREN (resp. SREN). Applebaum et al. [AIK04] showed that some of the natural
complexity classes such as NC1 and mod-2 branching programs ⊕L/poly are contained in
PREN. A complexity class that is in SREN but not known to be in PREN is NL.

3. Next, using the result in [BMR90] and the protocol from Step 1, we will give a protocol for
all circuits making black-box use of a pseudorandom generator.

4.1 Protocols for Constant-Size Functionalities

For a constant n, let f : {0, 1}n → {0, 1} be a function with constant circuit size.9 For each i ∈ [n],
the party Pi has input bit xi and the parties want to securely compute f(x1, . . . , xn).10 We give
perfectly secure, two-round protocols for computing f both in the dishonest majority setting in the
FOTCor hybrid model.

To construct a two-round protocol in the dishonest majority setting, we will use the same
high level idea of Garg and Srinivasan [GS18]. To be more precise, we will take an arbitrary
round protocol that securely computes the function f and compress it to two-rounds. However, to
construct a perfectly secure protocol we will make the following changes to the round-collapsing
compiler of [GS18],

1. All the executions of two-round oblivious transfer used by the round-collapsing compiler in
[GS18] are replaced with perfectly secure, two-round oblivious transfer from OT correlations.

9For simplicity, we restrict ourselves to functions that output a single bit. We note that all our results can be
generalized to functions with multiple bits with efficiency growing linearly with this number. We also assume that
all the parties get the output of this functionality. We can also generalize our result for the case where some specific
parties get the output.

10Again, for simplicity we restrict ourselves to parties with a single input bit and our results naturally generalize
to parties with multiple bits as input.

21

2. The garbled circuits used in [GS18] compiler are replaced with perfectly secure, decomposable
randomized encodings for NC0 circuits (cf. Definition 2.2).

3. The underlying multi-round protocol that we want to round-compress might use cryptographic
operations (which is necessary in the dishonest majority setting) and this creates the following
two problems: (i) we can no longer argue perfect/statistical security, (ii) a subtle but a more
important problem is that the compiler in [GS18] makes use of the code of the underlying
protocol and hence if the underlying protocol involves cryptographic operations then the
resultant two-round protocol makes non-black box use of cryptographic primitives. To solve
the first problem, we will only round-compress perfect/statistical protocols in the OT-hybrid
model (e.g., [GMW87, Kil88, IPS08]). Notice that any protocol in the OT-hybrid model can
be reduced information theoretically to a protocol in the FOTCor functionality. To make the
operations performed by all the parties information theoretic, we will generate OT correlations
and make these correlations as part of the party’s input. For example, consider two parties
P1 and P2 who wish to do an OT in some round of the underlying protocol. Now, P1 and P2

will use the OT correlations from their input to perform an information theoretic OT.

The rest of the subsection is organized as follows. We will first recall the notion of conforming
protocols from [GS18]. Intuitively, conforming protocols are MPC protocols with some additional
structure. [GS18] showed that any MPC protocol can be transformed to a conforming protocol
(with some efficiency loss). We give a generalization of the notion of conforming protocols to work
in FOTCor model. Then, we will describe our construction of two-round MPC in the FOTCor hybrid
model.

Conforming Protocol. We will now recall the notion of conforming protocols from [GS18]. We
introduce an additional parameter s such that in each round of the conforming protocol, a single
party computes s NAND gates and broadcasts the output of these NAND gates to every party. We
note that in the formulation of [GS18], the parameter s was set to 1. We introduce this parameter
for better concrete efficiency.

Consider a n-party deterministic11 MPC protocol Φ between parties P1, . . . , Pn with inputs
x1, . . . , xn, respectively. For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi (xi’s
also include the randomness used in the protocol and hence they are m bits long). A conforming
protocol Φ in the FOTCor is defined by functions pre, post, and a OT correlations generation phase
and computations steps or what we call actions φ1, · · ·φT . The protocol Φ proceeds in four stages:
the OT correlations generation phase, the pre-processing stage, the computation stage and the
output stage.

• OT correlations generator: For every instance of the OT to be performed in the protocol,
interact with the FOTCor functionality to generate OT correlations.

• Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi)← pre(i, xi)

where pre is a randomized algorithm and the input xi is now augmented with the OT corre-
lations generated in the previous step. The algorithm pre takes as input the index i of the

11Randomized protocols can be handled by including the randomness used by a party as part of its input.

22

party, its input xi and outputs zi ∈ {0, 1}`/n and vi ∈ {0, 1}` (where ` is a parameter of the
protocol). Finally, Pi retains vi as the secret information and broadcasts zi to every other
party. We require that vi,k = 0 for all k ∈ [`]\ {(i− 1)`/n+ 1, . . . , i`/n}.

• Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn).

Next, for each t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, (a1, b1, c1), . . . , (as, bs, cs)) where i ∈ [n] and aj , bj , cj ∈ [`] for all
j ∈ [s].

2. Party Pi computes s NAND gates as

sti,cj = NAND(sti,aj ⊕ vi,aj , sti,bj ⊕ vi,bj)⊕ vi,cj
for all j ∈ [s] and broadcasts {sti,cj}j∈[s] to every other party.

3. Every party Pk for k 6= i updates stk,cj for all j ∈ [s] to the bits received from Pi.

We require that for all t, t′ ∈ [T] such that t 6= t′, if φt = (·, (·, ·, c1), . . . , (·, ·, cs)) and φt′ =
(·, (·, ·, c′1), . . . , (·, ·, c′s)) then {cj} ∩ {c′j} = ∅. We use Ai ⊂ [T] to denote the set of rounds in
which the party Pi sends a message. Namely, Ai = {t ∈ T | φt = (i, (·, ·, ·), . . . , (·, ·, ·))} .

• Output phase: For each i ∈ [n], party Pi outputs post(i, sti, vi).

We now show the following lemma which is a generalization of the lemma proved in [GS18].

Lemma 4.1 For s = 1, any MPC protocol Π in the OT hybrid model can be transformed into a
conforming protocol Φ in the FOTCor model while inheriting the correctness and the security of the
original protocol. Furthermore, there exists a choice of s such that the number of rounds of the
resulting conforming protocol is O(n · dmax · r) where dmax is the maximum depth of the boolean
circuit computing the next message function of any party and r is the number of rounds of the
original protocol Π.

We prove the lemma in Appendix C.

Remark 4.2 We note that if the i-th party’s output is public then the algorithm post need not take
vi as input.

Compiled Protocol. We describe the compiled protocol in Figure 6 and give an informal
overview below.

Overview. Our construction involves a pre-preprocessing phase followed by the two-rounds of
interaction (described in Figure 6) and a local evaluation phase (described below). In the pre-
processing phase, the parties interact with the FOTCor functionality to generate two sets of OT
correlations. The first set of OT correlations are generated to execute the two-round oblivious
transfer used in the compiler of Garg and Srinivasan [GS18]. The second set of OT correlations are
to be hardwired as part of the input in the conforming protocols so that the operations done by
each party in the conforming protocol are information theoretic. To obtain perfect security, we also
use a decomposable randomized encoding in place of garbled circuits. Apart from these changes,
our two-round protocol is exactly same as in [GS18].

23

Evaluation. To compute the output of the protocol, each party Pi does the following:

1. For each k ∈ [n], let x̂k,1 be the input encoding received from Pk at the end of round 2.

2. for each t from 1 to T do:

(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).

(b) Compute ({(ξj , ωj)}j∈[s], x̂
i∗,t+1) := Dec(f̃ i,t, x̂i,t).

(c) Set sti,cj := ξj .

(d) for each k 6= i∗ do:

i. Compute ({ots2
j}j∈[s], {x̂

k,t+1
h }h∈[`]\{cj}j∈[s]) := Dec(f̃ i,t, x̂i,t).

ii. For every j ∈ [s]:

A. Parse ots2
j as (Y0, Y1) and ωj as {γkj }k∈[n]\{i∗}.

B. Recover x̂k,t+1
cj := Yξj ⊕ γkj .

iii. Set x̂k,t+1 := {x̂k,t+1
h }h∈[`].

3. Compute the output as post(i, sti, vi).

Asymptotic cost. Since the function f is constant size, the number of rounds of the underly-
ing protocol and the maximum depth of the next message functions are constant (e.g., if we use
[GMW87] as the underlying protocol). As a result of Lemma 4.1, the number of rounds of the
conforming protocol is also a constant since k is a constant. Hence, the asymptotic cost of our
protocol is a constant (though concretely it grows as 2O(T) where T is the number of rounds of the
conforming protocol).

Security. The only changes that we make when compared to the protocol in [GS18] is that we use
information theoretic, two-round oblivious transfer (based on OT correlations) and perfectly secure
DRE in place of garbled circuits. For completeness, we show the proof of the following theorem in
Appendix D.

Theorem 4.3 For every constant size function f , the protocol in Figure 6 perfectly computes f
against a semi-honest adversaries who might corrupt an arbitrary subset of the parties.

Extensions. We will now describe two-extensions to the protocol in Figure 6.

• f need not be known until the second round. We will now describe how to augment
the protocol so that the function f to be computed need not be known until the beginning of
the second round and only the size of these functions need to be known before the first round.
Let us assume for simplicity that, |f | = m′. We define a (k+m′k)-party functionality C that
takes xi from party Pi for every i ∈ [k] and takes a bit yi` from party Pi` for each i ∈ [k] and

` ∈ [m′] and does the following: it checks if for each i, i′ ∈ [n] and ` ∈ [m′], yi,`
?
= yi′,`; if yes, it

interprets y1,1, . . . , y1,m′ as the function f and computes an universal circuit U(x1, . . . , xk, f)
that outputs f(x1, . . . , xk). With this functionality, let us now see how to change the two-
round protocol so that the parties need not know f until the beginning of the second-round.

24

Let Φ be an n-party conforming semi-honest MPC protocol (with T rounds in the computation phase)

and f̂ be a DRE (See Definition 2.2).

Pre-processing Phase: On input the number of parties n, the number of functions s, the size of each
of these functions and the size of each party’s input m, the party Pi does the following:

1. For each j ∈ [s] and α, β ∈ {0, 1}:
(a) For each t ∈ Ai (recall the definition of Ai from the description of conforming protocol),

send ((t, j, α, β), receiver, i, rt,j,α,β) (where rt,j,α,β is chosen randomly) and for each
t ∈ [T] \Ai, send ((t, j, α, β), sender, i) to FOTCor functionality.

(b) Receive ωt,j,α,β = {γkt,j,α,β}k∈[n]\{i} for each t ∈ Ai and (γ0t,j,α,β , γ
1
t,j,α,β) if t ∈ [T] \ Ai

from FOTCor.

2. Execute the OT correlations generation phase of the conforming protocol Φ.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(i, xi).

2. For each t ∈ Ai, for each j ∈ [s] and α, β ∈ {0, 1}, compute

ots1t,j,α,β ←
(
vi,cj ⊕ NAND(vi,aj ⊕ α, vi,bj ⊕ β)

)
⊕ rt,j,α,β ,

where φt = (i, (a1, b1, c1), . . . , (as, bs, cs)).

3. Send
(
zi, {ots1t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zi‖ . . . ‖zn).

2. Set ai,T+1
k,0 = ai,T+1

k,1 = ⊥ for all k ∈ [`].

3. for each t from T down to 1,

(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).

(b) If i = i∗ then

i. Let f i,t be a NC0 function that takes st as input, updates stcj as per the action for

every j ∈ [s] and outputs ωt,j,staj ,stbj for every j ∈ [s] along with ai,t+1
k,stk

for every

k ∈ [`].

(c) If i 6= i∗ then for every α, β ∈ {0, 1},

i. Compute ots2t,j,α,β := (ai,t+1
cj ,0

⊕ X0,a
i,t+1
cj ,1

⊕ X1) where Xb = γ
b⊕ots1t,j,α,β
t,j,α,β for every

j ∈ [s].

ii. Let f i,t be a NC0 function that takes st as input and outputs ai,t+1
k,stk

for all k ∈
[`] \ {cj} and ots2t,j,staj ,stbj

for every j ∈ [s].

(d) Compute (f̃ i,t, {(ai,tk,0,a
i,t
k,1)}k∈[`])← f̂ i,t(; r).

4. Send
(
{f̂ i,t}t∈[T], {ai,1k,stk}k∈[`]

)
to every other party.

Figure 6: Two-round MPC for constant size functions in the FOTCor hybrid model

25

We will use an underlying conforming protocol that securely computes the constant size circuit
C. In the compiled protocol, we will let each party Pi to additionally emulate the parties
{Pi`}`∈[m′]. To be more precise, in the first round of the protocol, for each ` ∈ [m′], the
party Pi sends two first round messages on behalf of party Pi`; the first message assuming
the bit yi` = 0 and the second message assuming the bit yi`′ = 1. In the beginning of the
second round, all the parties know the description of the functions f and hence can choose the
first round message corresponding to the correct value of yi` and ignore the other message.
Based on the chosen messages, the parties generate the second round message in the compiled
protocol.

• Extension to the Client-Server setting. We now describe an extension of our two-round
protocol to the client-server setting. In the client server setting, there are n-input clients who
holds the inputs, m servers who do not have any input and one output client. The input
clients send a single message to each of the m servers and the servers send a single message to
the output client and the output client learns the output of the function based on the server’s
message. We will assume that any number of clients can be corrupted but there is at least one
server who is uncorrupted. We will transform our 2-round protocol in the FOTCor model to
one in the client-server model. Later, in Section 5, we give a general transformation from any
two-round MPC protocol with security against semi-honest adversaries who might corrupt an
arbitrary subset of the parties to a protocol in the client-server model. However, this general
transformation might make non-black-box use of cryptography but the transformation we
give here is specific to protocol in Figure 6 and is information theoretic.

1. The i-th input client computes the first round message
(
zi, {ots1

t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}

)
of our two-round protocol and sends it to each of the servers.

2. In addition to the protocols first round message, the client will generate a randomized

encoding of NC0 circuits f
i,t

for every t ∈ [T], and sends these randomized encodings
along with an additive secret share of the input encoding (ai,10 ,ai,11) to the servers. Let

us now describe the functionality computed by f
i,t

. The functionality takes in the
first round messages of all parties and reconstructs sti. If t ∈ Ai, then it computes
the same function as that of fi,t (described in Figure 6). If t 6∈ Ai, it will use ots1

t,j,α,β

(obtained from the first round messages of the parties) and will generate ots2
t,j,α,β exactly

as described in the protocol. Then, it computes the same functionality as that of f i,t.

3. The servers on receiving the first round messages from all the input clients, choose the
secret share of the input encodings corresponding to the first round messages from all
the clients and sends the chosen secret shares to the output client.

4. The output client reconstructs the input encodings from the shares and decodes the ran-
domized encodings exactly as given the evaluation procedure of our two-round protocol
to obtain the output.

4.2 Protocols for PREN and SREN

In this subsection, we will use the protocols described in Section 4.1 to construct protocols for
functions in PREN and SREN. We first define the dMULTPlus function below.

26

dMULTPlus((x1, z1), . . . , (xd, zd)) = x1 · . . . · xd +
d∑
i=1

zi.

We recall the following lemma from [BGI+18].

Lemma 4.4 ([BGI+18]) Let g : {0, 1}n → {0, 1} be a constant degree function i.e., there exists
a constant d such that g(x1, . . . , xn) =

∑
a`i1...idxi1xi2 . . . xid. There exists a perfectly secure, two-

round protocol in the presence of secure channels between every pair of parties for computing g
against semi-honest adversary (corrupting an arbitrary subset of parties) in the FdMULTPlus hybrid
model. The efficiency of the protocol is O(m+ n2) where m is the number of monomials in g.

We obtain the following corollary of our Theorem 4.3.

Corollary 4.5 There exists a perfectly secure, two-round protocol for realizing FdMULTPlus func-
tionality against semi-honest adversary (corrupting an arbitrary subset of parties) in the FOTCor

hybrid model. The efficiency of the protocol is 2poly(d).

Combining Lemma 4.4 and Corollary 4.5 and the observation that FOTCor implies secure chan-
nels, we get the following lemma.

Lemma 4.6 Let g : {0, 1}n → {0, 1} be a constant degree function i.e., there exists a constant d
such that g(x1, . . . , xn) =

∑
a`i1...idxi1xi2 . . . xid. There exists a perfectly secure, two-round protocol

for computing g against semi-honest adversary (corrupting an arbitrary subset of parties) in the
FOTCor hybrid model. The efficiency of the protocol is O(m + n2) where m is the number of
monomials in g.

We now show our main theorem regarding securely computing functions in PREN and SREN.

Theorem 4.7 Every f : {0, 1}n → {0, 1} in PREN (resp. SREN) has an efficient, perfectly secure
(resp., statistically secure) two-round protocol in the FOTCor model against a semi-honest adversary
corrupting an arbitrary subset of parties. The computational cost incurred by each party is O(m+n2)
where m is the size of the randomized encoding for f .

Proof Let f̂ : {0, 1}n × {0, 1}ρ → {0, 1} be the randomized encoding of the function f . Each
party Pi chooses ri uniformly at random from {0, 1}ρ and the parties wish to securely compute the
functionality f̂(x1, . . . , xn; r1 ⊕ r2 . . .⊕ rn) (i.e., the input of party Pi is set as (xi, ri)).

Let f̂(x1, . . . , xn; r1 ⊕ r2 . . . ⊕ rn) =
∑
a`i1i2...idvi1vi2 . . . vid where each vid is either some input

bit xj or a bit of some random string rj . We will use the protocol from Lemma 4.6 to securely

compute f̂ .
It now follows from the privacy of randomized encodings and the security of the protocol for

computing f̂ the above protocol securely computes f against semi-honest corruptions.

Remark 4.8 For simplicity, in Theorem 4.7, we considered a setting where each party holds a
single bit as input and the output of the function f is also a single bit. This can be naturally
generalized to a setting wherein each party holds a string as input and the number of outputs of the
functions is greater than 1.

27

We obtain the following corollary from Theorem 4.7.

Corollary 4.9 There is a perfectly (resp. statistical) secure two-round protocol for branching pro-
grams (resp. non-deterministic branching programs) in the FOTCor model against a semi-honest
adversary corrupting an arbitrary subset of parties.

4.3 Protocols for Circuits

In this subsection, we will use the protocols described in Section 4.1 and make black-box use of a
PRG to obtain secure protocols for computing circuits. Without loss of generality, we will restrict
ourselves to circuits with fan-in 2 NAND gates. The high level idea is to use the protocol in
Section 4.1 to compute the BMR garbling of a gate [BMR90]. To obtain the labels for executing
the BMR garbled circuit, we run the BMR online phase in parallel.

BMR Garbling. We will now recall the semantics of a BMR garbled gate. The BMR garbling
for a NAND gate g that takes wires a and b as input and the output wire is c is a set of values
{G̃ir1,r2}r1,r2∈{0,1},i∈[n], where

G̃jr1,r2 =

(
n⊕
i=1

Fkia,r1
(g, j, r1, r2)⊕ Fkib,r2

(g, j, r1, r2)

)
⊕ kjc,0 ⊕ (χr1,r2 ∧ (kjc,1 ⊕ k

j
c,0))

where χr1,r2 = ((
⊕n

i=1 λi,a ⊕ r1) · (
⊕n

i=1 λi,b ⊕ r2)⊕ 1)⊕ (
⊕n

i=1 λi,c). Here, F is a PRF, kix,r where
x ∈ {a, b, c, } and r ∈ {0, 1} is a PRF key, λi,x for x ∈ {a, b, c, } are bits.12 The PRF keys kix,r and
the bits λi,x are chosen by each party before the first round of the protocol.

We notice that each output bit of {G̃ir1,r2}r1,r2∈{0,1},i∈[n] is a constant degree (precisely, a degree
3 functionality). We will use the protocol in Lemma 4.6 to securely compute each output bit of
{G̃ir1,r2}r1,r2∈{0,1},i∈[n].

13

Online Phase of BMR. We now describe the two-round BMR online phase.

1. For every wire w, which is the input wire of a party Pi, the other parties Pj will set λj,w = 0.
The party Pi will compute αw = λi,w ⊕ xw and broadcast it to all other parties.

2. For every αw obtained, the party Pi will broadcast kiw,αw to every other party.

Asymptotic Cost. The cost of computing every bit of G̃ir1,r2 is O(n2) since the number of

monomials in G̃ir1,r2 is O(n2). So the overall complexity of our protocol is O(n3|C|λ). This gives a
factor of n improvement over the cost in [GS18].

Using the above protocol for computing the BMR garbled gate in parallel with the online phase,
we obtain the following theorem:

Theorem 4.10 There is a computationally secure two-round protocol for any circuit C in the
FOTCor model against a semi-honest adversary corrupting an arbitrary subset of parties, where
the protocol makes a black-box use of a PRG. The computational cost incurred by each party is
dominated by O(n3|C|) invocations of a length-doubling PRG.

12For simplicity we consider a PRF. But all our results also work with a length doubling pseudorandom generator.
13Here, the parties will compute the PRF outputs locally and give these as inputs to the protocol

28

We the following two corollaries by realizing FOTCor under DDH/QR or LWE in the strong-PKI
model.

Corollary 4.11 (DDH/QR) There is a computationally secure, two-round protocol for any cir-
cuit C in the strong-PKI model against a semi-honest adversary corrupting an arbitrary subset of
parties, where the protocol makes a black-box use of a PRG and black-box use of a DDH/QR hard
group.

Corollary 4.12 (LWE) Under the LWE assumption, there is a computationally secure, two-round
protocol for any circuit C in the strong-PKI model against a semi-honest adversary corrupting an
arbitrary subset of parties, where the protocol makes a black-box use of a PRG.

4.4 Concretely Efficient Protocols in the Dishonest Majority Setting

In this subsection, we will describe a concretely efficient two-round, MPC protocols (against static,
semi-honest adversaries corrupting a majority of the parties) for computing arbitrary circuits in
the FOTCor hybrid model.

It follows from Sections 4.2 and 4.3, that it is sufficient to focus on the constant size functionality
3MULTPlus which is a three-party functionality defined as follows:

3MULTPlus((x1, z1), (x2, z2), (x3, z3)) = x1 · x2 · x3 + z1 + z2 + z3

We first describe a multi-round protocol for computing 3MULTPlus and then compress it to
two-rounds using the protocol compiler given in Section 4.1 using a specialized garbling gadget
that we will describe later.

Multi-round Protocol. The multi-round protocol we will be using is a variant of the one out-
lined in [ACJ17] for computing an additive secret sharing of x1 · x2 · x3. We will assume the
existence of a two-message OT protocol (which is implied by OT correlations).

1. In the first round of the protocol, the party P1 sends two OT1 messages to P2 encoding the
bits x1 and 0 respectively. The party P3 also sends two OT1 messages to the first and the
second party respectively and both these messages encode its input x3.

2. In the second round, the party P2 sends two OT2 messages to first party. For the first OT1

message that encodes x1, it sends an OT2 message that encodes (0 · x2 + r2, 1 · x2 + r2) where
r2 is a randomly chosen. For the second OT1 message, it samples a random y and sends an
OT2 message that encodes (y, y). The two strings encoded in the OT2 message to the third
party are (0 · r2 + z2 + y, 1 · r2 + z2 + y).

3. In the third round, the P1 recovers the message u = x1 · x2 + r2 from the OT2 message of
the second party and sends an OT2 message to the third party with the two strings that are
encoded are (0 · u+ z1 + y, 1 · u+ z1 + y).

4. In the last round of the protocol, the P3 recovers the message v = x3r2 + z2 + y and w =
x1x2x3 +x3r2 +z1 +y from the OT2 messages sent from P2 and P1 respectively. It broadcasts
v + w + z3 to all the parties.

We will use the following garbling gadget from [HIJ+16] as our randomized encoding. Later,
we will explain the concept of computation tables which are used to represent the next message
function of a party.

29

Garbling Gadget. Let f : {0, 1}k → {0, 1}m be a function. The garbled function f̂ consists of
2k rows with the contents in the (α1, α2, . . . , αk)-th row being

f(α1 ⊕ r1, α2 ⊕ r2, . . . , αk ⊕ rk)⊕ s1
α1
⊕ s2

α1‖α2
⊕ . . . skα1‖...‖αk

where r1, . . . , rk are randomly chosen bits and {sie}i∈[k],e∈{0,1}k are chosen randomly from {0, 1}m.

The garbled input x̂ consists of (x1 ⊕ r1, . . . , xk ⊕ rk) along with {sie‖xi}i∈[k],e∈{0,1}i−1 . To decode,

we just output the contents of the (x1 ⊕ r1, . . . , xk ⊕ rk)-th row of the garbled function unmasked
with the bits s1

x1⊕r1 ⊕ s
2
(x1⊕r1)|(x2⊕r2) ⊕ . . . s

k
(x1⊕r1)‖...‖(xn⊕rn).

Computation Tables. Instead of representing a party’s next message function as boolean cir-
cuits, we will represent them as computation tables which are simply the truth table of the next
message function of the party.

2-round Protocol. We now describe our two-round protocol for computing the 3MULTPlus
functionality.

• Round-1: In the first round of the protocol, the parties do the following:

– P1’s round-1 messages are as follows:

∗ It sends the two OT1 messages encoding x1 and 0 respectively to P2.

∗ It prepares the computation table corresponding to the message it has to send to
P3 in the third round of the original protocol.

· P1’s message to P3 depends on the four bits it receives from P2 in the second
round of the protocol (these four bits correspond to the two OT2 messages) and
the OT1 message that it receives from P3. Let i-th bit of the message from P1

to P3 for i ∈ [2] be described by the function f1→3
i () that takes as input the

messages received from P2 and P3 in the second and the first round respectively.

∗ For each i ∈ [2] and α1, . . . , α5 ∈ {0, 1}, P1 generates first round OT messages
ots1→3

i,α1,...,α5
where the bit encoded is f1→3

i (α1, . . . , α5). P1 broadcasts these messages.

– P2’s round-1 messages are as follows:

∗ P2 first prepares its computation table for the messages it has to send in the second
round of the original protocol.

· P2’s messages to P1 depends on the two OT1 messages that it receives from P1.
P2’s message to P1 in the second round consists of 4 bits corresponding to the
two OT2 messages. Let i-th bit of the message from P2 to P1 for i ∈ [4] be
described by the function f2→1

i (·, ·) that takes the messages received from P1 as
input.

· Similarly, P2’s message to P3 depends on the OT1 message it receives from P3

and P2’s message to P3 consists of the two bits corresponding to the the OT2

message. Let the i-th bit of the message from P2 to P3 for i ∈ [2] be described
by the function f2→3

i (·) that takes the message received from P3 as input.

∗ For each i ∈ [4] and α, β ∈ {0, 1}, P2 generates the first round OT messages ots2→1
i,α,β

where the bit encoded is f2→1
i (α, β). Similarly, for each i ∈ [2] and α ∈ {0, 1}, P2

generates first round OT messages ots2→3
i,α where the bit encoded is f2→3

i (α). P2

broadcasts these messages.

30

– P3’s messages in Round-1 are as follows:

∗ It generates two OT1 messages that both encode its input x3 and sends them to P2

and P1 respectively.

• Round-2: In the following, we will denote (a1, a2) to be the two OT1 messages that P1 sends
to P2 in the first round of the original protocol, a3 and b to be the OT1 messages that P3

sends to P2 and P1 in the first round of the original protocol. In round-2 of the protocol, the
parties do the following:

– P1’s message in Round-2 are as follows:

∗ It uses the garbling gadget to garble a function f that takes 4 bits (α1, . . . , α4) as
inputs and outputs the randomness used for generating {ots1→3

i,α1,...,α4,b
}i∈[2]. For each

i ∈ [4], let (x̂i,0, x̂i,1) be the two garbled inputs corresponding to the bits 0 and 1

for the above garbling. For each i ∈ [4], P1 generates OT2 messages ots2→1
i,a1,a2 (with

respect to the ots2→1
i,a1,a2

) where the messages encoded are (x̂i,0, x̂i,1). It broadcasts

the garbled function and {ots2→1
i,a1,a2} to all the parties.

– P2’s messages in Round-2 are as follows:

∗ For each i ∈ [4], P2 broadcasts the randomness used for generating ots2→1
i,a1,a2

.

∗ For each i ∈ [2], P2 broadcasts the randomness used for generating ots2→3
i,a .

– P3’s messages in Round-2 are as follows:

∗ It uses the garbling gadget to garble the last round message function of P3 of the
original protocol. That is, the function f1 takes in the two bits received from P2 in
the second round, and the two bits received from P1 in the third round and outputs
the last round message of P3. For each i ∈ [4], let (x̂i,0, x̂i,1) be the two garbled
inputs corresponding to the bits 0 and 1 for the above garbling. For each i ∈ [2],
P3 generates OT2 messages ots2→3

i,a (with respect to the ots2→1
i,a) where the messages

encoded are (x̂i,0, x̂i,1).

∗ For i ∈ [3, 4] and α1, . . . , α4 ∈ {0, 1}, P3 generates OT2 messages ots1→3
i−2,α1,...,α4,b

(with respect to the ots1→3
i−2,α1,...,α4,b

) where the messages encoded are (x̂i,0, x̂i,1). It
again uses the garbling gadget to garble a function f2 that takes 4 bits (α1, . . . , α4)
as inputs and outputs the {ots1→3

i+2,α1,...,α4,b}i∈[2]. Let (ŷi,0, ŷi,1) be the two garbled

inputs corresponding to the bits 0 and 1 for the garbled function f̂2. For each
i ∈ [4], P1 generates OT2 messages ots2→1

i,a1,a2 (with respect to the ots2→1
i,a1,a2

) where
the messages encoded are (ŷi,0, ŷi,1).

∗ P3 broadcasts f̂1, f̂2, {ots2→3
i,a }i∈[2] to all the parties.

• Local Evaluation. The parties use the randomness broadcasted by P2 to recover the input
encodings for evaluating f̂ and f̂1. Later, they use the randomness output by evaluation of
f̂ to recover the input encodings for evaluating f̂2. The evaluation of f̂2 gives the desired
output.

Concrete Communication Cost. The concrete communication cost for the protocol is 1752
bits. The communication cost of generating an entry of the garbled circuit is 1752 × n3 which is
about 135 times the communication cost of the BMR protocol.

31

Security. The security of the protocol follows directly from Theorem 4.3.

5 Transformation to a Protocol in the Client-Server Model

In this section, we give a general transformation from a two-round MPC protocol with security
against semi-honest adversaries to a protocol in the client-server model. We first recall the client-
server model and then give the transformation.

Client-Server Model. In the client-server model, there are n input clients, m servers and a
single output client. The input clients hold the inputs x1, . . . , xn and the servers and the output
clients do not hold any input. The input clients send a single message to the servers (via private
channels) and the servers send a single message to the output client who computes the output of
the function. An adversary is allowed to corrupt any number of input and output clients but we
assume that there exists at least one server who is not corrupted by the adversary. We will denote
a protocol working with n clients and m servers as (n,m) MPC protocol.

We note that the existing two-round MPC results [GGHR14, GLS15, MW16, GS17, GS18, BL18]
do not directly extend to this setting as the input clients generate both of the messages in these
protocols. We now describe a general transformation from any two-round MPC protocol to a
protocol in the client-server model.

Theorem 5.1 Assuming the existence of a pseudorandom generator, for any m ≥ 2, there exists
a transformation from any n-party two-round, MPC protocol with security against semi-honest
adversaries corrupting an arbitrary subset of parties to a (n,m) MPC protocol against semi-honest
adversaries.

Sketch of Proof (Informal) Let the two-round MPC protocol be abstractly defined as follows:
in round-1, i-th party computes (msgi,1, sti)← MPC1(i, xi) and sends msgi,1 it to all the parties. In
the second round, the i-th party computes msgi,2 ← MPC2(i, xi, sti, {msgj,1}j∈[n]) and sends msgi,2
to all the parties. The parties can compute the output from these messages. We start with the
description of the (n,m) MPC protocol.

1. The i-th input client computes msgi,1, sti ← MPC1(i, xi) and sends msgi,1 to all the m-
servers. Additionally, it computes a garbling of a circuit Ci that takes as input {msgj,1}j∈[n]

and outputs msgi,2. It sends the garbled circuit C̃i to all the servers along with an additive
secret sharing of the input labels. That is, the k-th server receives the k-th secret share of
both the input labels for each input wire of Ci.

2. The k-th server on receiving inputs from all the clients, chooses for each i ∈ [n], the secret
share of the label corresponding to {msgj,1}j∈[n] and sends them along with {msgj,1}j∈[n], {C̃j}j∈[n]

to the output client.

3. The output client reconstructs the labels from the secret shares and evaluates C̃i for each
i ∈ [n] to obtain msgi,2. It then computes the output of the function from {msgi,1,msgi,2}i∈[n].

32

Simulator. For each input client corrupted by the adversary, S will use the underlying simulator
for MPC to generate their random tapes and for the uncorrupted clients, it uses the underlying
simulator to generate the messages in both the rounds of the protocol. To each corrupted server,
S forwards the first round message and a simulated garbled circuit that outputs the second round
message on behalf of each uncorrupted client. Additionally, instead of additively secret sharing
both labels, it just sends random shares to the corrupted servers. For each simulated garbled
circuit generated, S chooses the shares that correctly reconstructs to the simulated input label on
behalf of the uncorrupted servers. It then forwards these shares to the output client.

Proof of Indistinguishability. To show the indistinguishability of the simulated distribution
to the real distribution, we first change all the garbled circuits sent from the uncorrupted input
clients to be simulated and then we change the messages in both the rounds to be generated by
the simulator of the underlying protocol.

6 Two-round MPC in the Honest Majority Setting

In the case of an honest majority, we will obtain a two-round protocol in the plain model (with
every pair of parties being connected via a secure channel) for securely computing functionalities
represented by polynomial sized branching programs against semi-honest adversaries. For the
protocol to be efficient, we restrict the number of parties in the protocol to be a constant.

Conforming Protocols in the Honest Majority Setting. We give a generalization of the
conforming protocol in [GS18] to work in a setting where each pair of parties are connected via a
secure channel. The original compiler given in [GS18] fails in this case as it was designed only for
protocols which make use of a broadcast channel.

Let f : {0, 1}nm → {0, 1} be a function. Consider a n-party deterministic14 MPC protocol
Φ between parties P1, . . . , Pn with inputs x1, . . . , xn that computes f .15 For each i ∈ [n], we let
xi ∈ {0, 1}m denote the input of party Pi. A conforming protocol Φ is defined by functions pre,
post, and computations steps or what we call actions φ1, · · ·φT . The protocol Φ proceeds in three
stages: the pre-processing stage, the computation stage and the output stage.

• Pre-processing phase: For each i ∈ [n],

– The party Pi computes
(zi, vi)← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the index i of the
party, its input xi and outputs zi ∈ {0, 1}`/n and vi ∈ {0, 1}` (where ` is a parameter of
the protocol). Finally, Pi retains vi as the secret information and broadcasts zi to every
other party. We require that vi,k = 0 for all k ∈ [`]\ {(i− 1)`/n+ 1, . . . , i`/n}.

– For every t ∈ [T], parse the action φt as (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)). If i = i∗ and
k 6= ⊥, then send vi,c1 , vi,c2 , . . . , vi,cs to the party Pk via private channels. Party Pk
updates vk,cj = vi,cj for every j ∈ [s].

14Randomized protocols can be handled by including the randomness used by a party as part of its input.
15For simplicity, we restrict the output of the function to be a single bit. We can naturally extend them to multiple

bits.

33

• Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn).

Next, for each t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, k, (a1, b1, c1), . . . , (as, bs, cs)) where i ∈ [n] and aj , bj , cj ∈ [`] for all
j ∈ [s].

2. Party Pi computes s NAND gates as

sti,cj = NAND(sti,aj ⊕ vi,aj , sti,bj ⊕ vi,bj)⊕ vi,cj

for all j ∈ [s] and broadcasts {sti,cj}j∈[s] to every other party.

3. Every party Pk for k 6= i updates stk,cj for all j ∈ [s] to the bits received from Pi.

We require that for all t, t′ ∈ [T] such that t 6= t′, if φt = (·, (·, ·, c1), . . . , (·, ·, cs)) and φt′ =
(·, (·, ·, c′1), . . . , (·, ·, c′s)) then {cj} ∩ {c′j} = ∅. We use Ai ⊂ [T] to denote the set of rounds in
which the party Pi sends a message. Namely, Ai = {t ∈ T | φt = (i, (·, ·, ·), . . . , (·, ·, ·))} .

• Output phase: For each i ∈ [n], party Pi outputs post(i, sti, vi).

We prove the following lemma in Appendix E.

Lemma 6.1 There exists a choice of s such that any protocol Π using secure channels can be
transformed into a conforming protocol Φ (over secure channels) inheriting the correctness and
the security properties of Π and the number of rounds of Φ is O(n2 · dmax · r). Here, dmax is the
maximum depth of the boolean circuit computing the next message function of any party and r is
the number of rounds of the original protocol Π.

Construction. In the construction, we will use a OT protocol that is secure when a majority of
the parties are honest (refer Section 3.2). We will abstractly describe the protocol as follows: in
the first round, the receiver computes a message OT1(b) to obtain n-shares and sends the i-th share
to party Pi via a secure channel. Similarly, the sender chooses two-random messages m0 and m1

and runs OT2(m0,m1) to obtain n-shares and sends the i-th share to party Pi via a secure channel.
Each party Pi computes a linear function on the shares to obtain ωi. Given {ωi}i∈[n], the receiver
runs the reconstruction algorithm OT3 on them to obtain mb. We give the formal description of
the construction in Figure 7.

Evaluation. To compute the output of the protocol, each party Pi does the following:

1. For each k ∈ [n], let x̂k,1 be the input encoding received from Pk at the end of round 2.

2. for each t from 1 to T do:

(a) Parse φt as (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)).

(b) Compute ({(ξj , ωi
∗
j)}j∈[s], x̂

i∗,t+1) := Dec(f̃ i
∗,t, x̂i

∗,t).

(c) Set sti,cj := ξj for each j ∈ [s].

34

(d) for each k 6= i∗ do:

i. Compute ({ots2
j}j∈[s], {ωkj }j∈[s], {x̂

k,t+1
h }h∈[`]\{cj}j∈[s]) := Dec(f̃ i,t, x̂i,t).

ii. For each j ∈ [s],

A. Parse ots2
j as (Y0, Y1) and compute {γkj }k∈[n]\{i∗} as OT3({ωkj }k∈[n]).

B. Recover x̂k,t+1
cj := Yξj ⊕ γkj .

iii. Set x̂k,t+1 := {x̂k,t+1
h }h∈[`].

3. Compute the output as post(i, sti, vi).

Asymptotic Cost. We start with the constant round (to be more precise, 3-round) protocol
with secure channels (e.g., [IK00]) for securely computing f represented by a polynomial sized
branching program. We will compile this protocol via Lemma 6.1 to a conforming protocol. Notice
that the protocol in [IK00] works over a finite field F where |F| ≥ n. Plugging [IK00] protocol into
the compiler in Lemma 6.1, we get a conforming protocol with ` = O(n2m log |F|) where m is at
most quadratic in the branching program size of f . In every round of the [IK00] protocol, every
party computes a linear function on the private state and the messages received so far. Since the
boolean circuit for multiplying two finite field numbers is in NC1, the maximum depth of the circuit
computed by a party in every round is O(log logF). Hence, from Lemma 6.1, the total number of
rounds of the conforming protocol is O(n2 · log logF). Hence, the asymptotic cost of the protocol
described in Figure 7 is `O(n2·log log F) which is poly(`) if n is a constant.

Security. The security of the protocol is argued via a generalization of the security proof in
[GS18]. We state and prove the following theorem.

Theorem 6.2 For a constant number of parties, the protocol given in Figure 7 is a perfectly secure,
two-round protocol for computing for branching programs over secure point-to-point channels with
security against a semi-honest adversary corrupting a strict minority of the parties.

We prove this theorem in Appendix F.

7 Two-round Malicious MPC in the FOTCor Model

In this section, we give a construction of two-round malicious MPC for securely computing arbitrary
circuits in the FOTCor model. Our construction makes black-box use of a pseudorandom generator.
The construction is exactly same as the one described in the work of Garg and Srinivasan [GS18]
except that we will be using FOTCor to generate the OT correlations. Recall that for proving
the security of their construction, Garg and Srinivasan needed an additional property called as
equivocal receiver security from their oblivious transfer. We show that the OTs generated via
FOTCor are trivially equivocal receiver secure.

Construction. We will use take an arbitrary round, conforming protocol (cf. Section 4.1) secure
against malicious adversaries and will compress it to two-rounds using the compiler of Garg and
Srinivasan [GS18]. The formal description of our construction is given in Figure 8.

35

Let Φ be an n-party conforming semi-honest MPC protocol with an honest majority and f̂ be a DRE.
Each pair of parties are connected via a secure channel.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi) where xi is the augmented input that includes the random-
ness for the original protocol.

2. For every t ∈ [T], parse the action φt as (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)). If i = i∗ and
k 6= ⊥, then send vi,c1 , vi,c2 , . . . , vi,cs to the party Pk via private channels. Party Pk updates
vk,cj = vi,cj for every j ∈ [s].

3. For each j ∈ [s] and α, β ∈ {0, 1},
(a) For each t ∈ Ai,

i. Choose rt,j,α,β randomly and compute OT1(rt,j,α,β) and send the corresponding
shares to each party via the private channel.

ii. Compute

ots1t,j,α,β ←
(
vi,cj ⊕ NAND(vi,aj ⊕ α, vi,bj ⊕ β)

)
⊕ rt,j,α,β ,

where φt = (i, k, (a1, b1, c1), . . . , (as, bs, cs)).

(b) For each t 6∈ Ai,
i. Choose (γ0t,j,α,β , γ

1
t,j,α,β) randomly and compute OT2 on these messages and send

the corresponding shares to each party via a private channel.

4. Send
(
zi, {ots1t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zi‖ . . . ‖zn).

2. Set ai,T+1
k,0 = ai,T+1

k,1 = ⊥ for all k ∈ [`].

3. For each t ∈ [T], j ∈ [s] and α, β ∈ {0, 1}, let ωi,kt,j,α,β be the share corresponding to
linear computation on the OT between i∗ and k for every k ∈ [n] \ {i∗}. We will let

ωit,j,α,β = {ωi,kt,j,α,β}k∈[n]\{i∗}.
4. for each t from T down to 1,

(a) Parse φt as (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)).

(b) If i = i∗ then

i. Let f i,t be a NC0 function that takes st as input, updates stcj as per the action and

outputs ωit,j,staj ,stbj
for every j ∈ [s] along with ai,t+1

k,stk
for every k ∈ [`].

(c) If i 6= i∗ then for every α, β ∈ {0, 1},

i. Compute ots2t,j,α,β := (ai,t+1
cj ,0

+X0,a
i,t+1
cj ,1

+X1) where Xb = γ
b⊕ots1t,j,α,β
t,j,α,β .

ii. Let f i,t be a NC0 function that takes st as input and outputs ai,t+1
k,stk

for all k ∈
[`] \ {cj}j∈[s], ωit,j,staj ,stbj and ots2t,j,staj ,stbj

for every j ∈ [s].

(d) Compute (f̃ i,t, {(ai,tk,0,a
i,t
k,1)}k∈[`])← f̂ i,t(; r).

5. Send
(
{f̂ i,t}t∈[T], {ai,1k,stk}k∈[`]

)
to every other party.

Figure 7: Two-round MPC for with an honest majority

36

Evaluation. The evaluation procedure is exactly same as the one described in Section 4.1.

Security. In order, to prove security, we show that the two-round, information theoretic OT,
using OT correlations has equivocal receiver security. Once we prove this, we can directly use the
result of Garg and Srinivasan [GS18] to argue security of our protocol. Below, we first recall the
notion of equivocal receiver security.

Let (c, rc) be the correlation with the receiver and (r0, r1) be the correlation with the sender.
The two-round OT using these correlations can be abstractly defined as follows (where the receiver’s
input is a bit b and the sender’s input is (m0,m1)): the receiver computes (ots1, ω) = OT1(b, c) and
sends ots1 to the sender and the sender sends ots2 = OT2(ots1, (m0,m1), (r0, r1)) to the receiver.
The receiver computes mb = OT3(ots2, ω). In our actual construction, ots1 = b⊕ c, ω = (b, rc) and
ots2 = (m0 ⊕ rots1 ,m1 ⊕ r1⊕ots1).

Definition 7.1 (Equivocal Receiver Security) We say that a two-round oblivious transfer has
equivocal receiver security if there exists a PPT simulator SimEq such that the for any β ∈ {0, 1}:{

((ots1, ωβ)) : (ots1, ω0, ω1)← SimEq(1
λ)
}

s
≈ {(OT1(β, c))} .

We now give the description of the SimEq. While generating the OT correlations, SimEq intercepts
the message (r0, r1) that an adversarial sender sends to the FOTCor functionality. SimEq samples
ots1 randomly and outputs ω0 as (0, rots1) and ω1 as (1, r1⊕ots1). It is easy to see that the distribution
of (ots1, ωβ) generated by SimEq is identical to the real world distribution.

We now state our result which follows directly from [GS18].

Theorem 7.2 The protocol given in Figure 8 is computationally secure two-round protocol for
circuits in the FOTCor model against a malicious adversary corrupting an arbitrary subset of parties,
where the protocol makes a black-box use of a PRG.

References

[ABT18] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation
in two rounds. To appear in TCC, 2018. https://eprint.iacr.org/2018/894.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-
optimal secure multiparty computation with honest majority. LNCS, pages 395–424,
Santa Barbara, CA, USA, 2018. Springer, Heidelberg, Germany.

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 468–499, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press.

37

Let Φ be an n-party conforming semi-honest MPC protocol and (Garble,Eval) be a garbling scheme for
circuits.

Pre-processing Phase: On input the number of parties n, the number of functions s, the size of each
of these functions and the size of each party’s input m, the party Pi does the following:

1. For each j ∈ [s] and α, β ∈ {0, 1}:
(a) For each t ∈ Ai, send ((t, j, α, β), receiver, i, rt,j,α,β) (where rt,j,α,β is chosen randomly)

and for each t ∈ [T] \Ai, send ((t, j, α, β), sender, i) to FOTCor functionality.

(b) Receive ωt,j,α,β = {γkt,j,α,β}k∈[n]\{i} for each t ∈ Ai and (γ0t,j,α,β , γ
1
t,j,α,β) if t ∈ [T] \ Ai

from FOTCor.

2. Execute the OT correlations generation phase for the underlying conforming protocol Φ.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi).

2. For each t ∈ Ai, for each j ∈ [s] and α, β ∈ {0, 1}, compute

ots1t,j,α,β ←
(
vi,cj ⊕ NAND(vi,aj ⊕ α, vi,bj ⊕ β)

)
⊕ rt,j,α,β ,

where φt = (i, (a1, b1, c1), . . . , (as, bs, cs)).

3. Send
(
zi, {ots1t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zi‖ . . . ‖zn).

2. Set labi,T+1 := {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1}, labi,T+1
k,b := 0λ.

3. for each t from T down to 1,

(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).

(b) If i = i∗ then

i. Let f i,t be a NC0 function that takes st as input, updates stcj as per the action and

outputs ωt,j,staj ,stbj for every j ∈ [s] along with labi,t+1
k,stk

for every k ∈ [`].

(c) If i 6= i∗ then for every α, β ∈ {0, 1},

i. Compute ots2t,j,α,β := (labi,t+1
cj ,0

⊕X0, labi,t+1
cj ,1

⊕X1) where Xb = γ
b⊕ots1t,j,α,β
t,j,α,β .

ii. Let f i,t be a NC0 function that takes st as input and outputs labi,t+1
k,stk

for all k ∈
[`] \ {cj} and ots2t,j,staj ,stbj

for every j ∈ [s].

(d) Compute (f̃ i,t, {labi,tk }k∈[`])← f̂ i,t(; r).

4. Send
(
{f̂ i,t}t∈[T], {labi,1k,sti,k}k∈[`] to every other party.

Figure 8: Two-round MPC against Malicious Adversaries in FOTCor hybrid model

38

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, ICALP 99, volume 1644
of LNCS, pages 1–9, Prague, Czech Republic, July 11–15, 1999. Springer, Heidelberg,
Germany.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. IACR Cryptology
ePrint Archive, 2011:613, 2011.

[AL11] Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational
secret sharing. Journal of Cryptology, 24(1):157–202, January 2011.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 535–548,
Berlin, Germany, November 4–8, 2013. ACM Press.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 673–701, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada, Au-
gust 14-16, 1989, pages 201–209, 1989.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomor-
phic secret sharing: Optimizations and applications. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages 2105–2122,
Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure compu-
tation without authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 361–377, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany.

[BCS96] Gilles Brassard, Claude Crépeau, and Miklos Santha. Oblivious transfers and inter-
secting codes. IEEE Trans. Information Theory, 42(6):1769–1780, 1996.

[BCW03] Gilles Brassard, Claude Crépeau, and Stefan Wolf. Oblivious transfers and privacy
amplification. Journal of Cryptology, 16(4):219–237, September 2003.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 479–488, 1996.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomor-
phic encryption. To appear in Crypto, 2018. https://eprint.iacr.org/2017/956.

39

[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based en-
cryption without pairings. In 48th FOCS, pages 647–657, Providence, RI, USA, Oc-
tober 20–23, 2007. IEEE Computer Society Press.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for se-
cure computation under DDH. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539, Santa Barbara, CA,
USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Opti-
mizing rounds, communication, and computation. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
163–193, Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations
of homomorphic secret sharing. In ITCS 2018, pages 21:1–21:21, January 2018.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, pages 500–532, 2018.

[BM90] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 547–557, Santa
Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513, Baltimore, MD,
USA, May 14–16, 1990. ACM Press.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001.
IEEE Computer Society Press.

[CEMY09] Seung Geol Choi, Ariel Elbaz, Tal Malkin, and Moti Yung. Secure multi-party com-
putation minimizing online rounds. In Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology and In-
formation Security, Tokyo, Japan, December 6-10, 2009. Proceedings, pages 268–286,
2009.

40

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51st FOCS, pages 541–550, Las
Vegas, NV, USA, October 23–26, 2010. IEEE Computer Society Press.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky en-
cryption and its applications. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122, Santa Barbara, CA,
USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

[FGJI17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Ho-
momorphic secret sharing from paillier encryption. In Provable Security - 11th Inter-
national Conference, ProvSec 2017, Xi’an, China, October 23-25, 2017, Proceedings,
pages 381–399, 2017.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 74–94, San Diego, CA, USA, February 24–26, 2014.
Springer, Heidelberg, Germany.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness
and guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82, Santa Barbara,
CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th ACM STOC, pages 365–377, San
Francisco, CA, USA, May 5–7, 1982. ACM Press.

[GMMM18] Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler. On the
round complexity of OT extension. LNCS, pages 545–574, Santa Barbara, CA, USA,
2018. Springer, Heidelberg, Germany.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

41

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM
Press.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, edi-
tors, 40th ACM STOC, pages 197–206, Victoria, British Columbia, Canada, May 17–
20, 2008. ACM Press.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432,
Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC
from bilinear maps. In 58th FOCS, pages 588–599. IEEE Computer Society Press,
2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 468–
499, 2018.

[HIJ+16] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure
multiparty computation with general interaction patterns. In Madhu Sudan, editor,
ITCS 2016, pages 157–168, Cambridge, MA, USA, January 14–16, 2016. ACM.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–304,
Redondo Beach, CA, USA, November 12–14, 2000. IEEE Computer Society Press.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In Theory
of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan,
March 3-6, 2013. Proceedings, pages 600–620, 2013.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
406–425. Springer, 2011.

42

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 577–594, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg,
Germany.

[IMO18] Yuval Ishai, Manika Mittal, and Rafail Ostrovsky. On the message complexity of
secure multiparty computation. In Public-Key Cryptography - PKC 2018 - 21st IACR
International Conference on Practice and Theory of Public-Key Cryptography, Rio de
Janeiro, Brazil, March 25-29, 2018, Proceedings, Part I, pages 698–711, 2018.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg,
Germany.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 44–61, 1989.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–741, Santa Barbara, CA,
USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342,
Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer,
Heidelberg, Germany.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In S. Jajodia and P. Samarati, editors, ACM CCS 00, pages
245–254, Athens, Greece, November 1–4, 2000. ACM Press.

43

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93,
Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

A UC Security

In this section we briefly review UC security. For full details see [Can01]. A large part of this
introduction has been taken verbatim from [CLP10].

The basic model of execution. Following [GMR88, Gol01], a protocol is represented as an
interactive Turing machine (ITM), which represents the program to be run within each participant.
Specifically, an ITM has three tapes that can be written to by other ITMs: the input and subroutine
output tapes model the inputs from and the outputs to other programs running within the same
“entity” (say, the same physical computer), and the incoming communication tapes and outgoing
communication tapes model messages received from and to be sent to the network. It also has an
identity tape that cannot be written to by the ITM itself. The identity tape contains the program
of the ITM (in some standard encoding) plus additional identifying information specified below.
Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent some
administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of bits
written on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol
execution process is bounded by a polynomial, we define n as the total number of bits written to
the input tape of M , minus the overall number of bits written by M to input tapes of other ITMs.;
see [Can01].)

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to

44

an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed
to capture the desired functionality of the task at hand. A protocol is said to securely realize an
ideal functionality if the process of running the protocol amounts to “emulating” the ideal process
for that ideal functionality. Below we overview the model of protocol execution (called the real-life
model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape. Finally our adversary can decide to corrupt any honest
party (in an adaptive fashion). In this case the input and the random coins used by this party are
revealed to the adversary.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for

45

functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is
null.)) In addition, F can interact with the adversary according to its code. Whenever F outputs
a value to a party, the party immediately copies this value to its own output tape. We call the
parties in the ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality
F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition A.1 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction for
UC security we have EXECF ,S,Z ≈ EXECπ,A,Z .

Definition A.2 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F if Π UC-emulates the ideal process Π(F).

The Common Reference String Model. In the common reference string (CRS) model [CF01,
CLOS02], all parties in the system obtain from a trusted party a reference string, which is sampled
according to a pre-specified distribution D. The reference string is referred to as the CRS. In the
UC framework, this is modeled by an ideal functionality FDCRS that samples a string ρ from a
pre-specified distribution D and sets ρ as the CRS. FDCRS is described in Figure 9.

Functionality FD
CRS

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r),
where r denotes uniform random coins, and send (crs, sid, ρ) to the ad-
versary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Figure 9: The Common Reference String Functionality.

General Functionality. We consider the general-UC functionality F , which securely evaluates
any polynomial-time (possibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The function-
ality Ff is parameterized with a function f and is described in Figure 10.

We restrict the functions to be computed to any deterministic poly-time function with n inputs
and single output. This functionality has been formally defined in Figure 11. As explained in
Section ?? the same protocol can be used to obtain a protocol that UC-securely realizes the general
functionality Ff for any function f .

46

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running with
parties P = {P1, . . . Pn} (of which some may be corrupted) and an adversary
S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn) ←
f(x1, . . . , xn). For every Pi that is corrupted send adversary S the mes-
sage (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, Pi, yi) to Pi. (And ignores the message if inputs
from all parties in P have not been received.)

4. If all the parties in P are corrupted then the ideal functionality reveals
the internals coins used in the computation of f .

Figure 10: General Functionality.

B Proof of Theorem 3.14

In this section, we give a two-round protocol for realizing FOTCor in the client-server model where
the majority of the servers are honest and the adversary is semi-honest. We start with an informal
description of the model.

Client-Server Model. In the client-server model for computing FOTCor, there are two clients:
the sender and the receiver of the FOTCor functionality. There are 2t+ 1 servers and at most t of
them are corrupted. In the two-round protocol, a single message is sent from both the sender and
the receiver to the 2t + 1 servers (via a private channel) and a single message is sent from all the
2t+ 1 servers to the receiver (again via a private channel) which enables the receiver to obtain the
output of the function.

Construction. We give the formal description of the construction in Figure 12.

Theorem B.1 The protocol given in Figure 12 securely realizes FOTCor in the client-server model
against adversaries who can corrupt an arbitrary number of clients and a minority of the servers.

Correctness. Notice that from the linearity of Shamir’s secret sharing scheme that µi are poly-
nomial shares of a degree 2t polynomial with the constant term being m0(1 − b) + m1b. The
correctness of the protocol now follows directly from the reconstruction correctness of the Shamir’s
secret sharing scheme.

47

Functionality Ff

Ff parameterized by an n-ary deterministic single output function f , running
with parties P = {P1, . . . Pn} (of which some may be corrupted) and an adver-
sary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate y ← f(x1, . . . , xn).
Send adversary S the message (output, sid,P, y).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, y) to Pi. (And ignores the message if inputs from
all parties in P have not been received.)

Figure 11: General Functionality for Deterministic Single Output Functionalities.

Let F be a finite field with at least 2t + 1 elements and let 0 and 1 denote the additive and the

multiplicative identity of F respectively. The sender samples two field elements m0,m1
$← {0,1} and

the receiver’s input is b ∈ {0,1}.

Round-1: The sender and the receiver do the following:

1. The sender chooses two random degree t polynomials ps, qs such that the free coefficients
in ps and qs are m0 and m1 respectively. It evaluates these polynomials on 2t + 1 distinct
elements in the field F and sends each evaluation to a single server. In addition, it sends an
additive secret sharing of 0 to the servers.

2. The receiver chooses two random degree t polynomials pr, qr such that the free coefficients
in pr and qr are b and 1 respectively. It evaluates the polynomial on 2t+ 1 distinct elements
in the field and sends each evaluation to a single server. In addition, it sends an additive
secret sharing of 0 to the servers.

Server’s Computation: Each server Si would have obtained (αi, βi) from the sender along with an
additive sharing of 0 Zi,s and (γi, δi) from the receiver along with an additive sharing of 0 Zi,r in
round-1. It does the following:

1. It computes µi = αi(δi − γi) + βi(γi).

2. It multiplies µi with the Lagrange’s reconstruction coefficient (for a degree 2t polynomial
given 2t+ 1 evaluations) and adds it with Zi,s + Zi,r to obtain ζi.

Round-2: Each server Si sends ζi to the receiver and the receiver reconstructs the constant term from
the polynomial shares ζi and outputs it.

Figure 12: Two-round Oblivious Transfer Protocol

Semi-honest Security. The security of our construction is argued in a similar way to [BOGW88,
IK00, AL11]. If the sender is corrupted along with a subset of at most t servers, then it follows

48

directly from the security of Shamir’s secret sharing scheme that the corrupted servers and the
sender do not learn anything about the receiver’s input b. Let us now assume that the receiver is
corrupted along with a set of at most t servers. We describe a simulator that perfectly simulates
the view of the corrupted parties.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape. The simulator chooses uniform random tapes for the receiver and
the corrupted servers and starts the adversary.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• In round-1, the simulator samples at most 2t random field elements (instead of sharing m0,m1

as in the honest protocol) and sends them to the corrupted servers on behalf of the sender.
In addition, it samples random field elements and sends them to the corrupted servers as a
secret sharing of 0.

• In round-2, the simulator learns ζi computed by each corrupted Si by virtue of setting the
random tapes of the sender and the corrupted servers. For the rest of the uncorrupted
servers, simulator samples ζi randomly such that {ζi}i∈[2t+1] is a valid reconstruction of the
field element mb. It sends the ζi on behalf of every honest server to the receiver in the second
round.

It is easy to see that the view of the adversary in the real protocol is exactly distributed to the
view of the adversary when interacting with the simulator.

C Transformation to a Conforming Protocol

We recall the lemma from Section 4.1.

Lemma C.1 For s = 1, any MPC protocol Π in the OT hybrid model can be transformed into
a conforming protocol Φ while inheriting the correctness and the security of the original protocol.
Furthermore, there exists a choice of s such that the number of rounds of the resulting conforming
protocol is O(n · dmax · rnd) where dmax is the maximum depth of the boolean circuit computing the
next message function of any party and rnd is the number of rounds of the original protocol Π.

Proof Let Π be any given MPC protocol. For s = 1, the lemma follows directly from [GS18]
where for every instance of the OT to be executed Π, we first generate the OT correlations in the
offline phase and use the OT correlations to execute OT in the computation phase. We argue the
special case.

We assume without loss of generality that in each round of Π, one party broadcasts an output
of a circuit on its initial state and the messages it has received so far from other parties. Note
that this restriction can be easily enforced by increasing the round complexity of the protocol by
a factor of k. Let the round complexity of such a Π be p. In every round r ∈ [p] of Π, a party
Pi computes a circuit Cp on its private state and the messages received so far and broadcasts the

49

output of the circuit to all parties. Without loss of generality, we will assume that (i) these exists
q, d such that for each r ∈ [p], width of the circuit Cp is q and the depth of the circuit is d (ii) each
Cp is composed of just NAND gates with fan-in two, and (iii) each party broadcasts a message in
the same number of rounds. All three of these conditions can be met by adding dummy gates and
dummy round of interaction. Looking ahead, we will set s to be equal to q.

We are now ready to describe our transformed conforming protocol Φ. The protocol Φ will have
T = pd rounds. We let ` = mn+ pqd and `′ = pqd/n and depending on ` the compiled protocol Φ
is as follows.

• OT Correlations Generator. For every instance of OT to be performed in the protocol
Φ, interact with FOTCor to generate OT correlations.

• pre(i, xi): Sample ri ← {0, 1}m and si ← ({0, 1}q(d−1)‖0q)p/n. (Observe that si is a pqd/n
bit random string such that in every qd block, the last q bits are set to 0.) Output zi :=
xi⊕ ri‖0`

′
(where the input xi is augmented with the OT correlations in the previous round)

and vi := 0`/n‖ . . . ‖ri‖si‖ . . . ‖0`/n.

• We are now ready to describe the actions φ1, · · ·φT . For each r ∈ [p], round r in Π party
is expanded into d actions in Φ — namely, actions {φk}k where k ∈ {(r − 1)d + 1 · · · rd}.
Let Pi be the party that computes the circuits Cp and broadcasts the q output bits in round
r of Π. We now describe the φk for k ∈ {(r − 1)d + 1 · · · rd}. For each j, we set φk =
(i, (a1, b1, c1), . . . , (aq, bq, cq)) where aj and bj are the locations in sti that the jth gate in the
k-th layer of Cp is computed on (recall that initially sti is set to z1‖z2‖ . . . ‖zn). Moreover,
we assign {cj} to be the first set of locations in sti among the locations (i− 1)`/k+m+ 1 to
i`/n that has previously not been assigned to an action.

Recall from before that on the execution of φj , party Pi sets sti,cj := NAND(sti,aj⊕vi,aj , sti,bj⊕
vi,bj)⊕ vi,cj and broadcasts sti,cj for every j ∈ [s] to all parties.

• post(i, sti, vi): Gather the masked local state of Pi, the mask vi and the messages sent by the
other parties in Π from sti, compute the output of Π.

Now we need to argue that Φ preserves the correctness and security properties of Π. Observe
that Φ is essentially the same as the protocol Π except that in Φ some additional bits are sent.
Specifically, in addition to the messages that were sent in Π, in Φ parties send zi in the preprocessing
step and q(d− 1) additional bits for every q bits sent in Π. Note that these additional bits sent are
not used in the computation of Φ. Thus these bits do not affect the functionality of Π if dropped.
This ensures that Φ inherits the correctness properties of Π. Next note that each of these bits is
masked by a uniform independent bit. This ensures that Φ achieves the same security properties
as the underlying properties of Π.

Finally, note that by construction for all t, t′ ∈ [T] such that t 6= t′, we have that if φt =
(·, (·, ·, c1), . . . , (·, ·, cs)) and φt′ = (·, (·, ·, c′1), . . . , (·, ·, c′s)) then {cj} ∩ {c′j} = ∅ as required. Also,
the number of rounds of the transformed protocol is O(pd).

D Proof of Theorem 4.3

We start with the description of the simulator.

50

Description of the Simulator. We give the description of the ideal world adversary S that
simulates the view of the real world adversary A. S will internally use the semi-honest simulator
SimΦ for Φ and the simulator SimG for the randomized encoding. Recall that A is static and hence
the set of honest parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Initialization: S uses the inputs of the corrupted parties {xi}i 6∈H and output y of the
functionality f to generate a simulated view of the adversary.16 More formally, for each
i ∈ [n] \ H, S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing
f and obtains the output y. Next, it executes SimΦ(1λ, {xi}i 6∈H , y) to obtain {zi}i∈H , the
random tapes for the corrupted parties, the transcript of the computation phase denoted by
{Zt,j}t∈[T],j∈[s] where Zt,j is the j-th bit sent in the tth round of the computation phase of Φ.
S starts the real-world adversary A with the inputs {xi}i 6∈H and random tape generated by
SimΦ.

Defining st∗.

1. Set st∗ := z1‖ . . . ‖zn.

2. For t ∈ {1 · · ·T}
(a) Parse φt = (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)).

(b) Updates st∗cj = Zt,j .

• Messages from S to FOTCor: S generates the OT messages sent to the FOTCor functionality
on behalf of honest parties as follows.

1. For each t ∈ Ai, let φt = (i, (a1, b1, c1), . . . , (ak, bk, ck)). For each j ∈ [s], let α∗j = st∗aj ,
β∗j = st∗bj . For each t ∈ Ai, j ∈ [s], S chooses a random bit rt,j,α∗j ,β∗j and sends it to
FOTCor functionality. For all other α 6= α∗j and β 6= β∗j , it chooses a random bit rt,j,α,β
but sends 0 (instead of rt,j,α,β) to the FOTCor functionality. Receive for each ωt,j,α∗j ,β∗j
from the FOTCor functionality.

2. For each t ∈ Ai, let φt = (i∗, (a1, b1, c1), . . . , (ak, bk, ck)). For each j ∈ [s], let α∗j = st∗aj ,

β∗j = st∗bj . For each t 6= Ai and j ∈ [s], S chooses random strings (γ0
t,j,α∗j ,β

∗
j
, γ1
t,j,α∗j ,β

∗
j
) and

sends (γ
rt,j,α∗

j
,β∗
j

t,j,α∗j ,β
∗
j
, γ

rt,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

). For all other α 6= α∗j and β 6= β∗j , it samples random strings

(γ0
t,j,α,β, γ

1
t,j,α,β) and sends it to the FOTCor functionality.

16For simplicity of exposition, we only consider the case where every party gets the same output. The proof in the
more general case where parties get different outputs follows analogously.

51

• Round-1 messages from S to A: For each i ∈ H, t ∈ Ai, j ∈ [s], α, β ∈ {0, 1}, generate
ots1

t,j,α,β ← Zt ⊕ rt,j,α,β. For each i ∈ H, S sends (zi, {ots1
t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}) to the

adversary A on behalf of the honest party Pi.

• Round-1 messages from A to S: Corresponding to every i ∈ [n] \H, S receives from the
adversary A the value (zi, {ots1

t,j,α,β}t∈Ai,j∈[s]α,β∈{0,1}) on behalf of the corrupted party Pi.

• Round-2 messages from S to A: For each i ∈ H, the simulator S generates the second
round message on behalf of party Pi as follows:

1. For each k ∈ [`] set ai,T+1
k := 0λ.

2. for each t from T down to 1,

(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).

(b) For each j ∈ [s], set α∗j := st∗aj , β
∗
j := st∗bj , and γ∗j := st∗cj .

(c) If i = i∗ then compute(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
{γ∗j }j∈[s], {ωt,j,α∗j ,β∗j }j∈[s], {a

i,t+1
k }k∈[`]

))
.

(d) If i 6= i∗ then compute ots2
t,j,α∗j ,β

∗
j

:= (ai,t+1
cj ,γ∗j

+X0,a
i,t+1
cj ,γ∗j

+X1) whereXb = γ
b⊕ots1

t,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

.

(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
ots2

t,j,α∗j ,β
∗
j
, {ali,t+1

k }k∈[`]\{h}

))
.

3. Send
(
{f̃ i,t}t∈[T],{a

i,1
k }k∈[`]

)
to every other party.

• Round-2 messages from A to S: For every i ∈ [n]\H, S obtains the second round message
from A on behalf of the malicious parties. Subsequent to obtaining these messages, for each
i ∈ H, S sends (generateOutput, sid, {P1 · · ·Pn}, Pi) to the ideal functionality.

D.1 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real world
adversary A or an ideal world adversary S. We prove this via an hybrid argument with T + 1
hybrids.

• HybridReal: This hybrid is the same as the real world execution. Note that this hybrid is the
same as hybrid Hybridt below with t = 0.

• Hybridt (where t ∈ {0, . . . T}): Hybrid Hybridt (for t ∈ {1 · · ·T}) is the same as hybrid
Hybridt−1 except we change the distribution of the OT messages (from the sender and the
receiver) and the randomized encoding (from the second round) that play a role in the execu-
tion of the tth round of the protocol Φ; namely, the action φt = (i∗, (a1, b1, c1), . . . , (as, bs, cs)).
We describe the changes more formally below.

We start by executing the protocol Φ on the inputs and the random coins of the honest and
the corrupted parties. This yields a transcript {Zt,j}t∈[T],j∈[s] of the computation phase. Since
the adversary is assumed to be semi-honest the execution of the protocol Φ with A will be

52

consistent with Zt,j . Let st∗ be the local state of the end of execution of the protocol. Finally,
let α∗j := st∗aj , β

∗
j := st∗bj and γ∗j := st∗cj for each j ∈ [s]. In hybrid Hybridt we make the

following changes with respect to hybrid Hybridt−1:

– If i∗ 6∈ H then skip these changes. S makes two changes in how it generates messages
to FOTCor functionality on behalf of Pi∗ . First, for each j ∈ [s], S chooses a random bit
rt,j,α∗j ,β∗j and sends it to the FOTCor functionality. For all other α 6= α∗j and β 6= β∗j , it
chooses a random bit rt,j,α,β but sends 0 to the FOTCor functionality. S receives ωt,j,α∗j ,β∗j
from the FOTCor functionality. Additionally, for each i ∈ H, t ∈ Ai, j ∈ [s], α, β ∈ {0, 1},
generate ots1

t,j,α,β ← Zt ⊕ rt,j,α,β.

Second, it generates the garbled circuit(
f̃ i
∗,t, {ai

∗,t
k }k∈[`]

)
← SimG

((
{γ∗j }j∈[s], {ωt,j,α∗j ,β∗j }j∈[s], {a

i∗,t+1
k,sti,k

}k∈[`]

))
,

where {ai
∗,t+1
k,sti,k

}k∈[`] are the honestly generates input encodings for the randomized en-

coding P̃i
∗,t+1.

– S makes the following two changes in how it generates messages for other honest parties
Pi (i.e., i ∈ H \ {i∗}). For each j ∈ [s], S chooses random strings (γ0

t,j,α∗j ,β
∗
j
, γ1
t,j,α∗j ,β

∗
j
)

and sends (γ
rt,j,α∗

j
,β∗
j

t,j,α∗j ,β
∗
j
, γ

rt,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

). For all other α 6= α∗j and β 6= β∗j , it samples random

strings (γ0
t,j,α,β, γ

1
t,j,α,β) and sends it to the FOTCor functionality.

S does not generate four ots2
t,j,α,β values but just one of them; namely, S generates

ots2
t,j,α∗j ,β

∗
j

:= (ai,t+1
cj ,γ∗j

+X0,a
i,t+1
cj ,γ∗j

+X1) where Xb = γ
b⊕ots1

t,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

.

Second it generates the garbled circuit(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
{ots2

t,j,α∗j ,β
∗
j
}j∈[s], {a

i,t+1
k,sti,k

}k∈[`]\{h}

))
,

where {ai,t+1
k,sti,k

}k∈[`] are the honestly generated input encodings for the randomized en-

coding f̃ i,t+1.

Indistinguishability between Hybridt−1 and Hybridt is proved in Lemma F.1.

• HybridT+1: In this hybrid we just change how the transcript Z, {zi}i∈H , random coins of
malicious parties and value st∗ are generated. Instead of generating these using honest party
inputs we generate these values by executing the simulator SimΦ on input {xi}i∈[n]\H and the
output y obtained from the ideal functionality.

The indistinguishability between hybrids HybridT and HybridT+1 follows directly from the
semi-honest security of the protocol Φ. Finally note that HybridT+1 is same as the ideal
execution (i.e., the simulator described in the previous subsection).

Lemma D.1 Assuming semi-honest security of the two-round OT protocol against a honest ma-
jority and the perfect security of the randomized encoding, for all t ∈ {1 . . . T} hybrids Hybridt−1

and Hybridt are identically distributed.

53

Proof
The indistinguishability between hybrids Hybridt−1 and Hybridt follows by a sequence of three

sub-hybrids Hybridt,1, Hybridt,2, and Hybridt,3.

• Hybridt,1: Hybrid Hybridt,1 is same as hybrid Hybridt−1 except that S now generates the

randomized encoding f̃ i,t for each i ∈ H in a simulated manner (rather than generating them
honestly). Specifically, S generates f̃ i,t as follows

– If i = i∗ then(
f̃ i
∗,t, {ai

∗,t
k }k∈[`]

)
← SimG

((
{γ∗j }j∈[s], {ωt,j,α∗j ,β∗j }j∈[s], {a

i∗,t+1
k,sti,k

}k∈[`]

))
,

where {ai
∗,t+1
k,sti,k

}k∈[`] are the honestly generates input encodings for the randomized en-

coding P̃i
∗,t+1.

– If i 6= i∗ then(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
{ots2

t,j,α∗j ,β
∗
j
}j∈[s], {a

i,t+1
k,sti,k

}k∈[`]\{h}

))
,

where {ai,t+1
k,sti,k

}k∈[`] are the honestly generated input encodings for the randomized en-

coding f̃ i,t+1.

The indistinguishability between hybrids Hybridt,1 and Hybridt−1 follows by |H| invocations
of security of the randomized encoding.

• Hybridt,2: Skip this hybrid, if i∗ 6∈ H. First, for each j ∈ [s], S chooses a random bit rt,j,α∗j ,β∗j
and sends it to the FOTCor functionality. For all other α 6= α∗j and β 6= β∗j , it chooses a
random bit rt,j,α,β but sends 0 to the FOTCor functionality. S receives ωt,j,α∗j ,β∗j from the

FOTCor functionality. Additionally, for each i ∈ H, t ∈ Ai, j ∈ [s], α, β ∈ {0, 1}, generate
ots1

t,j,α,β ← Zt ⊕ rt,j,α,β.

Indistinguishability between hybrids Hybridt,1 and Hybridt,2 follows statistically since only
ωt,j,α∗j ,β∗j is needed in the protocol.

• Hybridt,3: Skip this hybrid if there does not exist i 6= i∗ such that i ∈ H. In this hybrid, we
change how S generates the ots2

t,j,α,β on behalf of every honest party Pi such that i ∈ H \{i∗}
for all choices of α, β ∈ {0, 1}. More specifically, for each j ∈ [s], S chooses random strings

(γ0
t,j,α∗j ,β

∗
j
, γ1
t,j,α∗j ,β

∗
j
) and sends (γ

rt,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j
, γ

rt,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

). For all other α 6= α∗j and β 6= β∗j , it

samples random strings (γ0
t,j,α,β, γ

1
t,j,α,β) and sends it to the FOTCor functionality.

S does not generate four ots2
t,j,α,β values but just one of them; namely, S generates ots2

t,j,α∗j ,β
∗
j

:=

(ai,t+1
cj ,γ∗j

+X0,a
i,t+1
cj ,γ∗j

+X1) where Xb = γ
b⊕ots1

t,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

.

Indistinguishability between hybrids Hybridt,2 and Hybridt,3 follows statistically since rt,j,α∗j ,β∗j

is the receiver’s choice bit and γ
1⊕rt,j,α∗

j
,β∗
j

t,j,α∗j ,β
∗
j

is statistically hidden. Finally, observe that Hybridt,3
is the same as hybrid Hybridt.

54

E Conforming Protocols with Secure Channels

We recall the lemma from Section 6.

Lemma E.1 There exists a choice of s such that any protocol Π using secure channels can be
transformed into a conforming protocol Φ inheriting the correctness and the security property as
that of Π and the number of rounds of Φ being O(n2 · dmax · rnd) where dmax is the maximum depth
of the boolean circuit computing the next message function of any party and rnd is the number of
rounds of the original protocol Π.

Proof Let Π be any given MPC protocol with secure channels. We assume without loss of
generality that in each round of Π, one party sends a private message to an another party and this
message is an output of a circuit on its initial state and the messages it has received so far from
other parties. Note that this restriction can be easily enforced by increasing the round complexity
of the protocol by a factor of n2 (because in a particular round of Π, every party might send a
private message to every other party). Let the round complexity of such a Π be p. In every round
r ∈ [p] of Π, a party Pi computes a circuit Cp on its private state and the messages received so
far and sends the output of the circuit privately to a party P`. Without loss of generality, we will
assume that (i) these exists q, d such that for each r ∈ [p], width of the circuit Cp is q and the depth
of the circuit is d (ii) each Cp is composed of just NAND gates with fan-in two, and (iii) each party
broadcasts a message in the same number of rounds. All three of these conditions can be met by
adding dummy gates and dummy round of interaction. Looking ahead, we will set s to be equal to
q.

We are now ready to describe our transformed conforming protocol Φ. The protocol Φ will have
T = pd rounds. We let ` = mn+ pqd and `′ = pqd/n and depending on ` the compiled protocol Φ
is as follows.

• We first describe the actions φ1, · · ·φT . For each r ∈ [p], round r in Π party is expanded into
d actions in Φ — namely, actions {φk}k where k ∈ {(r − 1)d+ 1 · · · rd}. Let Pi be the party
that computes the circuits Cp and sends the q output bits in round r as a private message
to party Pk′ . We now describe the φk for k ∈ {(r − 1)d + 1 · · · rd}. For each k 6= rd, we set
φk = (i,⊥, (a1, b1, c1), . . . , (aq, bq, cq)), otherwise we set φk = (i, k′, (a1, b1, c1), . . . , (aq, bq, cq)),
where aj and bj are the locations in sti that the jth gate in the k-th layer of Cp is computed
on (recall that initially sti is set to z1‖z2‖ . . . ‖zk). Moreover, we assign {cj} to be the first
set of locations in sti among the locations (i− 1)`/k +m+ 1 to i`/n that has previously not
been assigned to an action.

• pre(i, xi):

1. Sample ri ← {0, 1}m and si ← ({0, 1}qd)p/k. The distribution from which si is sam-
pled varies from the case of conforming protocols with a broadcast channel. Note that
unlike the case here where si is chosen uniformly random, si in the case of broadcast
channels has some bits fixed to 0 (refer Appendix C). Output zi := xi ⊕ ri‖0`

′
and

vi := 0`/n‖ . . . ‖ri‖si‖ . . . ‖0`/n.

2. For every t ∈ [T], parse the action φt as (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)). If i = i∗ and
k 6= ⊥, then send vi,c1 , vi,c2 , . . . , vi,cs to the party Pk via private channels. Party Pk
updates vk,cj = vi,cj for every j ∈ [s].

55

• Computation Phase. Recall from before that on the execution of φj , party Pi sets sti,cj :=
NAND(sti,aj ⊕ vi,aj , sti,bj ⊕ vi,bj)⊕ vi,cj and broadcasts sti,cj for every j ∈ [s] to all parties.

• post(i, sti, vi): Gather the masked local state of Pi, the mask vi and the messages sent by the
other parties in Π from sti, compute the output of Π.

Now we need to argue that Φ preserves the correctness and security properties of Π. We first
start with the correctness. For every round, where a party Pi sends a message to Pk, the conforming
protocol Φ sends the message masked with random bits. Furthermore, these random masking bits
are sent to Pk via a private channel. So essentially, Φ sends all the messages that Π sends and
sends additional bits. Specifically, in addition to the masked private messages that were sent in Π,
in Φ parties send zi in the preprocessing step and q(d − 1) additional bits for every q bits sent in
Π. Note that these additional bits sent are not used in the computation of Φ. Thus these bits do
not affect the functionality of Π if dropped. This ensures that Φ inherits the correctness properties
of Π. Next, for each private message sent from Pi and Pk, the message is masked by an uniformly
chosen random string. This random string is available only to Pi and Pk and thus, for an external
observer these messages are indistinguishable to random strings. Further, the messages (apart from
the private messages) sent by a party Pi are masked with an uniform random string known only to
Pi. This ensures that Φ achieves the same security properties as the underlying properties of Π.

Finally, note that by construction for all t, t′ ∈ [T] such that t 6= t′, we have that if φt =
(·, (·, ·, c1), . . . , (·, ·, cs)) and φt′ = (·, (·, ·, c′1), . . . , (·, ·, c′s)) then {cj} ∩ {c′j} = ∅ as required. Also,
the number of rounds of the transformed protocol is O(pd).

F Proof of Theorem 6.2

We start with the description of the simulator.

Description of the Simulator. We give the description of the ideal world adversary S that
simulates the view of the real world adversary A. S will internally use the semi-honest simulator
SimΦ for Φ and the simulator SimG for the randomized encoding. Recall that A is static and hence
the set of honest parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Initialization: S uses the inputs of the corrupted parties {xi}i 6∈H and output y of the
functionality f to generate a simulated view of the adversary.17 More formally, for each
i ∈ [n] \ H, S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing
f and obtains the output y. Next, it executes SimΦ(1λ, {xi}i 6∈H , y) to obtain {zi}i∈H , the

17For simplicity of exposition, we only consider the case where every party gets the same output. The proof in the
more general case where parties get different outputs follows analogously.

56

random tapes for the corrupted parties, the transcript of the computation phase denoted by
{Zt,j}t∈[T],j∈[s] where Zt,j is the j-th bit sent in the tth round of the computation phase of Φ.
S starts the real-world adversary A with the inputs {zi}i∈H and random tape generated by
SimΦ.

Defining st∗.

1. Set st∗ := z1‖ . . . ‖zn.

2. For t ∈ {1 · · ·T}
(a) Parse φt = (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)).

(b) Updates st∗cj = Zt,j .

• Round-1 messages from S to A: Next S generates the OT messages on behalf of honest
parties as follows.

1. For each t ∈ Ai, let φt = (i, k, (a1, b1, c1), . . . , (ak, bk, ck)). For each j ∈ [s], let α∗j = st∗aj ,
β∗j = st∗bj . For each t ∈ Ai, j ∈ [s], S chooses a random bit rt,j,α∗j ,β∗j and generates

OT1(rt,j,α∗j ,β∗j). For all other α 6= α∗j and β 6= β∗j , it chooses a random bit rt,j,α,β but
samples some random shares and sends them to the corrupted parties. In particular, it
does not generate secret sharing of the random bit rt,j,α,β.

2. For each t ∈ Ai, let φt = (i∗, k, (a1, b1, c1), . . . , (ak, bk, ck)). For each j ∈ [s], let α∗j = st∗aj ,

β∗j = st∗bj . For each t 6= Ai and j ∈ [s], S chooses random strings (γ0
t,j,α∗j ,β

∗
j
, γ1
t,j,α∗j ,β

∗
j
) and

generates OT2((γ
st∗cj
t,j,α∗j ,β

∗
j
, γ

st∗cj
t,j,α∗j ,β

∗
j
)). For all other α 6= α∗j and β 6= β∗j , it samples some

random shares and sends them to the corrupted parties.

For each i ∈ H, t ∈ Ai, j ∈ [s], α, β ∈ {0, 1}, generate ots1
t,j,α,β ← Zt⊕ rt,j,α,β. For each i ∈ H,

S sends (zi, {ots1
t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}) to the adversary A on behalf of the honest party Pi.

• Round-1 messages from A to S: Corresponding to every i ∈ [n] \H, S receives from the
adversary A the value (zi, {ots1

t,j,α,β}t∈Ai,j∈[s]α,β∈{0,1}) on behalf of the corrupted party Pi.

• Round-2 messages from S to A: For each i ∈ H, the simulator S generates the second
round message on behalf of party Pi as follows:

1. For each k ∈ [`] set ai,T+1
k := 0λ.

2. for each t from T down to 1,

(a) Parse φt as (i∗, k, (a1, b1, c1), . . . , (as, bs, cs)).

(b) For each j ∈ [s], set α∗j := st∗aj , β
∗
j := st∗bj , and γ∗j := st∗cj .

(c) For each t ∈ [T], j ∈ [s], let ωi,kt,j,α∗j ,β∗j
be the share corresponding to linear compu-

tation on the OT between i∗ and k for every k ∈ [n] \ {i∗}. We will let ωit,j,α∗j ,β∗j
=

{ωi,kt,j,α∗j ,β∗j }k∈[n]\{i∗}.

(d) If i = i∗ then compute(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
{γ∗j }j∈[s], {ωi

∗
t,j,α∗j ,β

∗
j
}j∈[s], {a

i,t+1
k }k∈[`]

))
.

57

(e) If i 6= i∗ then compute ots2
t,j,α∗j ,β

∗
j

:= (ai,t+1
cj ,γ∗j

+X0,a
i,t+1
cj ,γ∗j

+X1) whereXb = γ
b⊕ots1

t,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

.

(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
{ωi∗t,j,α∗j ,β∗j }j∈[s], ots2

t,j,α∗j ,β
∗
j
, {ali,t+1

k }k∈[`]\{h}

))
.

3. Send
(
{f̃ i,t}t∈[T],{a

i,1
k }k∈[`]

)
to every other party.

• Round-2 messages from A to S: For every i ∈ [n]\H, S obtains the second round message
from A on behalf of the malicious parties. Subsequent to obtaining these messages, for each
i ∈ H, S sends (generateOutput, sid, {P1 · · ·Pn}, Pi) to the ideal functionality.

F.1 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real world
adversary A or an ideal world adversary S. We prove this via an hybrid argument with T + 1
hybrids.

• HybridReal: This hybrid is the same as the real world execution.

Note that this hybrid is the same as hybrid Hybridt below with t = 0.

• Hybridt (where t ∈ {0, . . . T}): Hybrid Hybridt (for t ∈ {1 · · ·T}) is the same as hybrid
Hybridt−1 except we change the distribution of the OT messages (from the sender and the re-
ceiver) and the randomized encoding (from the second round) that play a role in the execution
of the tth round of the protocol Φ; namely, the action φt = (i∗, j, (a1, b1, c1), . . . , (as, bs, cs)).
We describe the changes more formally below.

We start by executing the protocol Φ on the inputs and the random coins of the honest and
the corrupted parties. This yields a transcript {Zt,j}t∈[T],j∈[s] of the computation phase. Since
the adversary is assumed to be semi-honest the execution of the protocol Φ with A will be
consistent with Zt,j . Let st∗ be the local state of the end of execution of the protocol. Finally,
let α∗j := st∗aj , β

∗
j := st∗bj and γ∗j := st∗cj for each j ∈ [s]. In hybrid Hybridt we make the

following changes with respect to hybrid Hybridt−1:

– If i∗ 6∈ H then skip these changes. S makes two changes in how it generates messages
on behalf of Pi∗ . First, for each j ∈ [s], S chooses a random bit rt,j,α∗j ,β∗j and generates

OT1(rt,j,α∗j ,β∗j). For all other α 6= α∗j and β 6= β∗j , it chooses a random bit rt,j,α,β but
samples some random shares and sends them to the corrupted parties. In particular,
it does not generate secret sharing of the random bit rt,j,α,β. Additionally, for each
i ∈ H, t ∈ Ai, j ∈ [s], α, β ∈ {0, 1}, generate ots1

t,j,α,β ← Zt ⊕ rt,j,α,β.

Second, it generates the garbled circuit(
f̃ i
∗,t, {ai

∗,t
k }k∈[`]

)
← SimG

((
{γ∗j }j∈[s], {ωi

∗
t,j,α∗j ,β

∗
j
}j∈[s], {a

i∗,t+1
k,sti,k

}k∈[`]

))
,

where {ai
∗,t+1
k,sti,k

}k∈[`] are the honestly generates input encodings for the randomized en-

coding P̃i
∗,t+1.

58

– S makes the following two changes in how it generates messages for other honest parties
Pi (i.e., i ∈ H \ {i∗}). For each j ∈ [s], S chooses random strings (γ0

t,j,α∗j ,β
∗
j
, γ1
t,j,α∗j ,β

∗
j
)

and generates OT2((γ
st∗cj
t,j,α∗j ,β

∗
j
, γ

st∗cj
t,j,α∗j ,β

∗
j
)). For all other α 6= α∗j and β 6= β∗j , it samples

some random shares and sends them to the corrupted parties.

S does not generate four ots2
t,j,α,β values but just one of them; namely, S generates

ots2
t,j,α∗j ,β

∗
j

:= (ai,t+1
cj ,γ∗j

+X0,a
i,t+1
cj ,γ∗j

+X1) where Xb = γ
b⊕ots1

t,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

.

Second it generates the garbled circuit(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
{ωi∗t,j,α∗j ,β∗j }j∈[s], ots2

t,j,α∗j ,β
∗
j
, {ai,t+1

k,sti,k
}k∈[`]\{h}

))
,

where {ai,t+1
k,sti,k

}k∈[`] are the honestly generated input encodings for the randomized en-

coding f̃ i,t+1.

Indistinguishability between Hybridt−1 and Hybridt is proved in Lemma F.1.

• HybridT+1: In this hybrid we just change how the transcript Z, {zi}i∈H , random coins of
malicious parties and value st∗ are generated. Instead of generating these using honest party
inputs we generate these values by executing the simulator SimΦ on input {xi}i∈[n]\H and the
output y obtained from the ideal functionality.

The indistinguishability between hybrids HybridT and HybridT+1 follows directly from the
semi-honest security of the protocol Φ. Finally note that HybridT+1 is same as the ideal
execution (i.e., the simulator described in the previous subsection).

Lemma F.1 Assuming semi-honest security of the two-round OT protocol against a honest ma-
jority and the perfect security of the randomized encoding, for all t ∈ {1 . . . T} hybrids Hybridt−1

and Hybridt are identically distributed.

Proof
The indistinguishability between hybrids Hybridt−1 and Hybridt follows by a sequence of three

sub-hybrids Hybridt,1, Hybridt,2, and Hybridt,3.

• Hybridt,1: Hybrid Hybridt,1 is same as hybrid Hybridt−1 except that S now generates the

randomized encoding f̃ i,t for each i ∈ H in a simulated manner (rather than generating them
honestly). Specifically, S generates f̃ i,t as follows

– If i = i∗ then(
f̃ i
∗,t, {ai

∗,t
k }k∈[`]

)
← SimG

((
{γ∗j }j∈[s], {ωi

∗
t,j,α∗j ,β

∗
j
}j∈[s], {a

i∗,t+1
k,sti,k

}k∈[`]

))
,

where {ai
∗,t+1
k,sti,k

}k∈[`] are the honestly generates input encodings for the randomized en-

coding P̃i
∗,t+1.

– If i 6= i∗ then(
f̃ i,t, {ai,tk }k∈[`]

)
← SimG

((
{ωi∗t,j,α∗j ,β∗j }j∈[s], ots2

t,j,α∗j ,β
∗
j
, {ai,t+1

k,sti,k
}k∈[`]\{h}

))
,

59

where {ai,t+1
k,sti,k

}k∈[`] are the honestly generated input encodings for the randomized en-

coding f̃ i,t+1.

The indistinguishability between hybrids Hybridt,1 and Hybridt−1 follows by |H| invocations
of security of the randomized encoding.

• Hybridt,2: Skip this hybrid, if i∗ 6∈ H. This hybrid is same as Hybridt,1 except that we change
how S generates the Round-1 message on behalf of Pi∗ . First, for each j ∈ [s], S chooses a
random bit rt,j,α∗j ,β∗j and generates OT1(rt,j,α∗j ,β∗j). For all other α 6= α∗j and β 6= β∗j , it chooses
a random bit rt,j,α,β but samples some random shares and sends them to the corrupted parties.
In particular, it does not generate secret sharing of the random bit rt,j,α,β. Additionally, for
each i ∈ H, t ∈ Ai, j ∈ [s], α, β ∈ {0, 1}, generate ots1

t,j,α,β ← Zt ⊕ rt,j,α,β.

Indistinguishability between hybrids Hybridt,1 and Hybridt,2 follows directly from the perfect
receiver security of the oblivious transfer.

• Hybridt,3: Skip this hybrid if there does not exist i 6= i∗ such that i ∈ H. In this hybrid, we
change how S generates the ots2

t,j,α,β on behalf of every honest party Pi such that i ∈ H \{i∗}
for all choices of α, β ∈ {0, 1}. More specifically, for each j ∈ [s], S chooses random strings

(γ0
t,j,α∗j ,β

∗
j
, γ1
t,j,α∗j ,β

∗
j
) and generates OT2((γ

st∗cj
t,j,α∗j ,β

∗
j
, γ

st∗cj
t,j,α∗j ,β

∗
j
)). For all other α 6= α∗j and β 6= β∗j ,

it samples some random shares and sends them to the corrupted parties.

S does not generate four ots2
t,j,α,β values but just one of them; namely, S generates ots2

t,j,α∗j ,β
∗
j

:=

(ai,t+1
cj ,γ∗j

+X0,a
i,t+1
cj ,γ∗j

+X1) where Xb = γ
b⊕ots1

t,j,α∗
j
,β∗
j

t,j,α∗j ,β
∗
j

.

Indistinguishability between hybrids Hybridt,2 and Hybridt,3 follows directly from the perfect
sender security of the oblivious transfer. Finally, observe that Hybridt,3 is the same as hybrid
Hybridt.

60

