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Abstract. Highly efficient encryption and authentication of short messages has been
identified as an essential requirement for enabling security in constrained computation
and communication scenarios such as the CAN FD in automotive systems (with
maximum message length of 64 bytes), massive IoT and critical communication
domains of 5G, and Narrowband IoT (NB-IoT), to mention some. Accordingly, NIST
has specified, as a design requirement in the lightweight cryptography project, that
AEAD submissions shall be “optimized to be efficient for short messages (e.g., as short
as 8 bytes)”. We propose AEAD schemes that exceed in efficiency over all previous
general-purpose modular AEAD designs at processing (very) short inputs. The main
ingredient in our solution is a new low-level primitive, called a tweakable forkcipher,
which we introduce and formalize in this paper. We give an instance of the tweakable
forkcipher and dub it ForkAES. It is based on the tweakable blockcipher KIASU,
which relies on the round function of AES and uses the TWEAKEY framework
to derive round keys from a 128-bit secret key and a 64-bit tweak. Finally, we
demonstrate the applicability of a tweakable forkcipher by designing several provably-
secure nonce-based AEAD modes of operation, optimized to be efficient for short
messages. Considering the AES block size (16 bytes) as a reference, our new AE
schemes can beat all known schemes for single-block messages while still performing
better than majority of the existing schemes for combined message and associated data
lengths up to 4 blocks. While ForkAES as a concrete instantiation for a forkcipher is
based on KIASU, we note that our solution provides a general recipe for lightweight
AEAD for short messages, even for very resource-constrained scenarios in which AES
may not be considered a lightweight option. In those environments, our schemes
can be instantiated using a forkcipher that is realized based on the best off-the-shelf
lightweight blockcipher, following the TWEAKEY framework.

Keywords: Authenticated encryption, short messages, lightweight cryptography,
forkcipher, ForkAES.

1 Introduction
Authenticated encryption (AE) aims at achieving two fundamental security goals of
symmetric-key cryptography: confidentiality (privacy) and integrity (together with authen-
tication) for data at rest and data in transit.

Historically, these two goals were achieved by generic composition of an encryption
scheme (for confidentiality) and a message authentication code (MAC) [12,13]. For instance,
old versions of major security protocols such as TLS, SSH and IPsec included variants of
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generic composition method, namely MAC-then-Encrypt, Encrypt-and-MAC and Encrypt-
then-MAC schemes, respectively. But it turned out that this approach is neither the most
efficient (as it needs processing the whole message twice) nor the most robust to security
and implementation issues [11, 35, 37, 38]; rather it is easy for practitioners to get it wrong
even when using the best known method among three, i.e. Encrypt-then-MAC, following
standards [35].

The notion of AE as a primitive in its own right—integrating encryption and authenti-
cation functionalities and exposing a single abstract interface—put forth by Bellare and
Rogaway [15] and independently by Katz and Yung [31] in 2000. The notion was further en-
hanced by Rogaway [40] to authenticated encryption with associated data (AEAD). Being
able to process associated data (AD) is now a default requirement for any authenticated
encryption scheme; therefore we use AE and AEAD interchangeably. After attracting near
two decades of research and standardization activities, recently fostered by the CAESAR
competition (2014–2018) [17], we have now a rich set of general-purpose AEAD schemes,
some already standardized (e.g. GCM and CCM) and some expected to be adopted by
new applications and standards (e.g. the seven finalists of CAESAR).

This progress may lead to the belief that the AEAD problem is “solved”. However, as
evidenced by the ECRYPT-CSA report in 2017 [8], several critical ongoing “Challenges
in Authenticated Encryption” still need research effort stretching years into the future.
Therefore, it is interesting to investigate to what extent CAESAR has resulted in solutions
for these problems.

Our Target Challenge. Among the four categories of challenges—security, interface,
performance, mistakes and malice—reported by the ECRYPT-CSA [8], we aim at digging
into the performance regarding authenticated encryption of very short messages. General-
purpose AEAD schemes are normally optimized for the cost of handling (moderately) long
messages as they often incur some initialization and/or finalization cost that is amortized
when the message is long. To quote the provocative statement of the ECRYPT-CSA
report: “The performance target is wrong · · · Another increasingly common scenario is
that an authenticated cipher is applied to many small messages · · · The challenge here is
to minimize overhead.”

Therefore, designing efficient AEAD for short messages is a timely and compelling
objective as also evidenced by NIST’s first call for submissions (May 14, 2018) for lightweight
cryptography [36], where it is stressed as a design requirement that lightweight AEAD
submissions shall be “optimized to be efficient for short messages (e.g., as short as 8 bytes)”.

Motivating Use Cases. The need for high-performance and low-latency processing of
short messages can be identified as an essential requirement in several security and safety
critical use cases in different domains. Examples are Secure Onboard Communication
(SecOC) in automotive systems [6], handling of short data bursts in critical communication
and massive IoT domains of 5G [1], and Narrowband IoT (NB-IoT) [2, 5] systems. For
instance, the new CAN FD standard (ISO 11898-1) for vehicle bus technology [3,4], which
is expected to be implemented in most cars by 2020, allows for a payload up to 64 bytes.
In NB-IoT standard [2,5] the maximum transport block size (TBS) is 680 bits in downlink
and 1000 bits in uplink (the minimum TBS size is 16 bits in both cases). In use cases
with tight requirements on delay and latency, the typical packet sizes should be small as
large packets occupy a link for more time, causing more delays to subsequent packets and
increasing latency. In use cases such as smart parking lots the actual data to be sent is
just a bit (for “free” or “occupied” status), so a minimum allowed TBS size of 2 bytes (16
bits) would suit the application.

Our Goal. Our main objective is to construct secure, modular AEAD schemes that
exceed in efficiency over previous modular AEAD constructions at processing very short
inputs, while also being able to process longer inputs, albeit somewhat less efficiently. We
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insist that our AEAD schemes ought to be able to securely process inputs of arbitrary
lengths to be fairly comparable to other general-purpose (long message focused) schemes,
and to be qualified as a full-fledged variable-input-length AEAD scheme according to the
requirements in NIST’s call for lightweight cryptography primitives.

Towards this goal, we take an approach that can be seen as a parallel to the shift
from generic composition to dedicated AEAD designs, but on the level of the primitive.
We rethink the way a low level fixed-input-length (FIL) primitive is designed, and how
variable-input-length (VIL) AEAD schemes are constructed from such a new primitive.

The Gap between the Primitives and AE. Our first observation is that there is a
large gap between the high level security goal to be achieved by the VIL AEAD schemes
and the security properties that their underlying FIL primitives can provide. Modular
AEAD designs typically confine the AE security to the mode of operation only; the used
lower-level primitives, such as (tweakable) block ciphers, cryptographic permutations and
compression functions, are never meant to posses any AE-like features, and in particular
they are never expanding as required for providing ciphertext integrity in AEAD. Therefore,
a VIL AEAD scheme Π designed as a mode of operation for an FIL primitive F plays two
roles: not only it extends the domain of its underlying FIL primitive but also it transforms
and boosts the security property of the primitive to match to the AEAD security notion.
A natural question then arises, whether by explicitly decoupling these two roles of the
AEAD mode we can have more efficient designs and more transparent security proofs.

Forkcipher: a New Primitive. The first, most obvious approach to resolving this
question is to remove the security gap between the mode and its primitive altogether, i.e.,
to start from a FIL primitive F which itself is a secure FIL AEAD. This way a VIL AEAD
mode will only have one role: a property-preserving domain extender for the primitive F.
Property-preserving domain extension is a well-studied and popular design paradigm for
other primitives such as hash functions [7,14,39]. Informally speaking, the best possible
security that a FIL AEAD scheme with a fixed ciphertext expansion (stretch) can achieve
is to be indistinguishable from a tweakable random injective function, i.e., to be a tweakable
pseudorandom injection (PRI) [26,42]. But starting directly with a FIL tweakable PRI,
we did not achieve a desirable solution in our quest for the most efficient AEAD design
for short messages.1 It seems that, interestingly, narrowing the security gap between the
mode and its primitive, but not removing the gap entirely, is what helps us achieve our
ultimate goal of efficient AEAD for short messages.

We introduce a different kind of low-level primitive—calling it a tweakable forkcipher—
that does yield the most efficient AEAD design for short messages. A tweakable forkcipher
is nearly—but not exactly—a FIL AE primitive; “nearly” because it produces expanded
ciphertexts with a non-trivial redundancy, and not exactly because it has no integrity-
checking mechanisms.2 When keyed and tweaked, a forkcipher maps an n bit input block
to 2n output bits. Intuitively, evaluating a secure tweakable forkcipher on an input X
is equivalent to evaluating two independent tweakabkle permutations on X but with an
amortized computational cost.

We give an instance of the tweakable forkcipher and dub it ForkAES. It is based on the
tweakable blockcipher KIASU [28,30], which relies on the round function of AES and uses
the TWEAKEY framework to derive round keys from a 128-bit secret key and a 64-bit
tweak. To obtain ForkAES, we apply our newly proposed iterate-fork-iterate paradigm:
when encrypting a block X, we derive 17 (3 · 5 + 2) round keys, and first transform X
into X ′ using 5 AES rounds with 5 round keys. Then, we fork the encryption process by
applying two parallel paths each comprising 5 AES rounds with 5 round keys, followed by

1See Section 5.10 for a brief discussion.
2We can demonstrate that when used in a minimalistic mode of operation, a secure tweakable forkcipher

yields a miniature FIL AEAD scheme which achieves tweakable PRI security.
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the final whitenings using the remaining two sub-keys. The iterate-fork-iterate paradigm
is conceptually easy and we give arguments about its security.

The New AEAD Schemes. We demonstrate the applicability of tweakable forkciphers
by designing three provably secure nonce-based AEAD modes of operation, all suitable for
short messages, but having some different features.

Our first scheme, called PAEF (Parallel AE from a forkcipher), is fully parallelizable,
but its security completely falls apart with the first nonce repetition. This mode will be
useful in applications where longer queries occur more often, and where one of the parties
is able to perform parallel computations.

Our second scheme, called SAEF (Sequential AE from a forkcipher), has an online
computable encryption, but is not parallelizable. While its integrity and confidentiality
bounds in the nonce-respecting setting are inferior to those of the parallel mode, we
conjecture that a nonce-misusing universal forgery will require data complexity at the
birthday bound. In addition, SAEF also lends itself well to low-overhead implementations,
as it does not need to store any block counters. In a typical setting where very short
queries occur with an overwhelming probability, this mode is our primary recommendation.

Our third scheme, called fGCM (forkcipher-based GCM), is inspired by the blockcipher-
based standard scheme GCM, but differs from it in some critical details. It is almost fully
parallelizable, and it beats the other two modes in efficiency for plaintexts of more than n
bits, but this requires an n-bit increase of the memory footprint to store a derived key in
order to achieve full efficiency.

Performance Comparison: No One-size-fits-all Mode. Regarding the state of
the art in AE designs, it appears that aiming for a provably secure AE scheme that
achieves the best performance for both very long and very short message scenarios is a very
ambitious goal. Instead we aimed at addressing the specific problem of high-performance
AE for very short inputs. All three proposed modes, PAEF, SAEF and fGCM, can be
efficiently implemented when instantiated with ForkAES. The ForkAES-based instances of
our schemes beat all of the existing blockcipher-based AEAD modes when instantiated
with AES, for the shortest queries. The performance comparison (in terms of the number
of AES128 calls) of encrypting very short queries (up to 4 blocks) with AES-GCM [23,33],
AES-CCM [44], AES-OCB [32], AES-CLOC [27], Deoxys-I [29] and KIASU 6= [28] is
summarized in Figure 1. Our new AE schemes can beat all known schemes for single-block
messages while still performing better than most of the existing schemes up to 4-block
messages, and then leaving the competition to some of the general-purpose schemes such
as AES-OCB.

To be Modular and Provably Secure, or not to be. In this work we followed
the well-established modular AE design approach for data of arbitrary lengths in the
provable security framework. However, we note that there seems to be no consensus in the
cryptography community whether AE schemes can claim higher merits for being modular
and provably secure or not. For instance, we note that 3 out of 7 CAESAR [17] finalists,
namely ACORN, AEGIS and MORUS are novel monolithic designs from scratch and
do not follow the provable security paradigms. Nevertheless, we choose as our design
paradigm the modular and provable security methodology for its several well-advertised
benefits [9, 41]. Interestingly, the class of provably secure AE designs includes all currently
standardized AE schemes (e.g. GCM and CCM) as well as the majority of CAESAR
finalists.

Recipe for Lightweight AEAD for Short Messages. For very resource constrained
IoT devices in which AES could not be considered a lightweight option—which seems to be
a driving motivation behind the current NIST lightweight cryptography standardization—
our proposed SAEF, PAEF and fGCM modes can be instantiated using a forkcipher
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scheme
Cost of encryption in (# of AES rounds)/10

a = 0 a = 1 a = 2
m=1 m=2 m=3 m=4 m=0 m=1 m=2 m=3 m=1 m=2

GCM 2+2 3+3 4+4 5+5 1+2 2+3 3+4 4+5 2+4 3+5
CCM 4 6 8 10 3 5 7 9 6 8
OCB3 3 4 5 6 3 4 5 6 5 6
CLOC 3 5 7 9 2 4 6 8 5 7
Deoxys-I 2.8 4.2 5.6 7 2.8 4.2 5.6 7 5.6 7
KIASU6= 2 3 4 5 2 3 4 5 4 5
PAEF 1.5 3 4.5 6 1.5 2.5 4 5.5 3.5 5
SAEF 1.5 3 4.5 6 1.5 2.5 4 5.5 3.5 5
fGCM 1.5+1 2.5+2 3+3 5+4 1.5+2 1.5+2 2.5+3 3+4 1.5+3 2.5+4

Figure 1: The comparison of performance of several existing single-pass AE schemes and
the forkcipher modes presented in Section 5. Here a = |A|n and m = |M |n, and the cells of
the form “b+ g” mean “b · 10 AES rounds and g multiplications in GF(2128).” GCM, CCM,
OCB3 and CLOC are assumed to be instantiated with AES. For schemes that compute a
derived key that is the same for all queries (OCB and GCM), the complexity of this step
is ignored.

which is based on any off-the-shelf lightweight blockcipher. The crux would be a careful
realization of the forkcipher following the TWEAKEY framework.

2 Preliminaries
All strings are binary strings. The set of all strings of length n (for a positive integer n)
is denoted {0, 1}n. We let {0, 1}≤n denote the set of all strings fo length at most n. We
denote by Perm(n) the set of all permutations of {0, 1}n. We denote by Func(m)n the set
of all functions with domain {0, 1}m and range {0, 1}n, and we let Inj(m)n ⊂ Func(m)n
denote the set of all injective functions with the same signature.

For a string X of ` bits, we let X[i] denote the ith bit of X for i = 0, . . . , ` − 1
(starting from the left) and X[i . . . j] = X[i]‖X[i + 1]‖ . . . ‖X[j] for 0 ≤ i < j < `.
We let left`(X) = X[0 . . . (` − 1)] denote the ` leftmost bits of X and rightr(X) =
X[(|X| − r) . . . (|X| − 1)] the r rightmost bits of X, such that X = leftχ(X)‖right|X|−χ(X)
for any 0 ≤ χ ≤ |X|. We let (L,R) = lsplitX,n denote splitting a string X ∈ {0, 1}∗
into two parts such that L = leftmin(|X|,n)(X) and R = right|X|−|L|(X). In particular,
for n ≥ |X| we have (X, ε) = lsplitX,n. We further let (M ′,M∗) = msplitn(M) denote a
splitting of a stringM ∈ bits∗ into two partsM ′‖M∗ = M , such that |M∗| ≡ |M | (mod n),
and 0 ≤ |M∗| ≤ n, where |M∗| = 0 if and only if |M | = 0. We let (C ′, C∗, T ) = csplitn(C)
splitting a string C of at least n bits into three parts C ′‖C∗‖T = C, such that |C∗| = n,
|T | ≡ |C| (mod n), and 0 ≤ |T | ≤ n, where |T | = 0 if and only if |C| = n. Finally, we
let C ′1, . . . , C ′m, C∗, T ← csplit-bn(C) denote a version of csplitn(C), where the string C ′
further gets partitioned into |C ′|n blocks of n bits, such that C ′ = C ′1‖ . . . ‖C ′m.

Given a string X and an integer n, we let X1, . . . , Xx, X∗
n←− X denote partitioning

X into n-bit blocks, such that |Xi| = n for i = 1, . . . , x, 0 ≤ |X∗| ≤ n and X =
X1‖ . . . ‖Xx‖X∗, so x = max(0, bX/nc − 1). We let |X|n = dX/ne. Given a (possibly
implicit) positive integer n and an X ∈ {0, 1}∗, we let X‖10∗ denote X‖10n−(|X| mod n)−1

for simplicity.
The symbol ⊥ denotes an error signal, or an undefined value. We denote by X ←$ X

sampling an element X from a finite set X following the uniform distribution. We let (n)q
denote the falling factorial n · (n− 1) · (n− 2) · . . . · (n− q + 1).
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3 ForkAES
We design an expanding primitive with fixed input length which we dub ForkAES. It is best
described by its name: it is an iterated design with a 128-bit input block, and its internal
state is forked after half of the rounds to produce two redundant 128-bit output blocks.
We also add a tweak to facilitate the design of simple modes of operation. ForkAES is
obtained by combining two ingredients: the KIASU [28,30] tweakable blockcipher (which is,
in turn, a derivative of AES, hence the name), and our newly proposed iterate-fork-iterate
paradigm.

3.1 Specification

RF

KS

P

K

T‖064 T‖064

KS

RF

b b b

b b b

RF

KS

T‖064 T‖064

KS

RF

b b b

b b b

T‖064

C0

W

RF

KS

T‖064 T‖064

KS

RF

b b b

b b b

T‖064

C1

W

5 times

5 times

5 times

KS

Figure 2: Illustration of an encryption by ForkAES. A 128 bit plaintext P, a 128 bit key K
and 64 bit tweak T (all in blue) are used to compute a 256 bit ciphertext C = C0‖C1 (in
red). RF denotes a single iteration of the AES round function and KS denotes a single
iteration of the AES keyschedule.

ForkAES is a deterministic cryptographic algorithm which takes a 128-bit plaintext P,
a 64-bit tweak T and a 128-bit secret key K as input, and outputs a 256-bit ciphertext C
(i.e., ForkAES(K, T, P) = C).

It is based on the tweakable blockcipher KIASU. In KIASU, a round function based on
the SubBytes, Shiftrows and Mixcolumn operations of AES is iteratively applied to the
plaintext block. Following the TWEAKEY framework [30], the secret key and tweak are
used to generate subkeys which are xored to the intermediate internal state before every
application of the round function.

Iterate-fork-iterate. How ForkAES differs from both AES and KIASU is that after half
of the rounds, the encryption is forked and two copies of the internal states are further
processed with different sets of independent subkeys. The additional required subkeys
are generated by doing the necessary number of extra iterations of the key schedule
(beyond what would have been done in the original (tweakable) blockcipher). We call this
simple mechanism of turning an iterated (tweakable) blockcipher into a forkcipher the
iterate-fork-iterate construction paradigm.
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Inverse algorithms. Associated to ForkAES are the decryption algorithm ForkAES−1 and
the reconstruction algorithm ForkAESρ. Because the two output blocks produced by
ForkAES are redundant, either one of them is sufficient for decryption. The decryption
algorithm thus takes a secret key K, a tweak T, a half-ciphertext C of 128 bits, and a
bit b that indicates whether this is the left half or the right half, and inverts the “fork”
indicated by b and then the initial common processing. For every K, P ∈ {0, 1}128 and every
T ∈ {0, 1}64 we have

P = ForkAES−1 (K, T, leftn(ForkAES(K, T, P)), 0) = ForkAES−1 (K, T, rightn(ForkAES(K, T, P)), 1) .

Similarly, the redundancy can be used to recompute one output block from the other
which is what the reconstruction algorithm does. It takes a secret key K, a tweak T, a
half-ciphertext C of 128 bits, and a bit b that indicates whether this is the left half or the
right half, inverts the indicated “fork”, and then recomputes the other one. For every
K, P ∈ {0, 1}128 and every T ∈ {0, 1}64 we have

ForkAESρ (K, T, leftn(ForkAES(K, T, P)), 0) = rightn(ForkAES(K, T, P))

and
ForkAESρ (K, T, rightn(ForkAES(K, T, P)), 1) = leftn(ForkAES(K, T, P))

The formal algorithmic description of all three algorithms is given in Figure 3, and the
encryption operation is illustrated in Figure 2.

To generate of round keys, we set the secret key as the first round key, iterate the key
schedule of AES 16 times, and xor the tweak to the 8 leftmost bytes of each round key.
This is exactly what is done in KIASU, except we iterate the key schedule 6 more times.
The round key generation algorithm is described in Figure 3.

3.2 Security Evaluation
In this section, we briefly discuss the security of ForkAES against the most important
cryptanalytic attacks. We only consider classical black-box attacks, i.e., we do not consider
side-channel attacks.

Differential Cryptanalysis. Differential crpyptanalysis is one of the most powerful security
analysis methods and showing the security of a cipher against it is essential part of the
security evaluation. For a cipher based on the Substitution Permutation Network (SPN)
the analysis is relatively easy and well-understood and it is based on counting the number
of active s-boxes over the cipher rounds. When the active s-boxes reach a certain threshold
then the cipher is assumed to be secure against differential cryptanalysis. For example,
in the case of AES in the single-key model, one can guarantee at least 25 active s-boxes
for a differential path of four rounds due to the careful choice of a permutation layer
(which is a diffusion matrix with branching number five). If each active s-box reaches the
maximal differential probability of the AES S-box pmax = 2−6, then the probability of
the differential path becomes 2−150 < 2−128. Hence, four AES rounds already provide
enough protection. Since our ForkAES design uses the AES round function, we can easily
deduce that our design will provide enough security in this setting after four rounds against
differential attacks in the single-key model.

Related-TWEAKEY Attacks. The extra freedom provided from key K (in our case
tweak T as well) makes the security evaluation of ciphers against related-key (in our case
related-tweakey) attacks more challenging. Over the years, many search algorithms [18,
19, 24, 25, 34, 43] were given to compute an upper bound for the related-key differential
characteristics. The KIASU designers gave a comprehensive related-key analysis for KIASU
by extending the search algorithms to cover the related-tweak option and we summarize
their results in Table 1. Our design is based on the KIASU algorithm and its tweakey
schedule and thus a closer inspection reveals that the latter results also apply to ForkAES.
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1: Algorithm ForkAES(K, T, P)
2: K0, . . . ,K16 ← KeySched(K, T)
3: S ← P
4: for i← 0 to 4 do
5: S ← S ⊕Ki
6: S ← AESrnd(S)
7: end for
8: S0 ← S; S1 ← S
9: for i← 5 to 9 do
10: S0 ← S0 ⊕Ki
11: S0 ← AESrnd(S0)
12: end for
13: C0 ← S0 ⊕K10
14: for i← 11 to 15 do
15: S1 ← S1 ⊕Ki
16: S1 ← AESrnd(S1)
17: end for
18: C1 ← S1 ⊕K16
19: return C0‖C1
20: end Algorithm

1: Algorithm ForkAES−1(K, T, C, b)
2: K0, . . . ,K16 ← KeySched(K, T)
3: S ← C⊕K10+b·6
4: for i← 9 + b · 6 to 5 + b · 6 do
5: S ← AESrnd−1(S)
6: S ← S ⊕Ki
7: end for
8: for i← 4 to 0 do
9: S ← AESrnd−1(S)
10: S ← S ⊕Ki
11: end for
12: return S
13: end Algorithm

1: Algorithm ForkAESρ(K, T, C, b)
2: K0, . . . ,K16 ← KeySched(K, T)
3: b′ ← b⊕ 1
4: S ← C⊕K10+b·6
5: for i← 9 + b · 6 to 5 + b · 6 do
6: S ← AESrnd−1(S)

7: S ← S ⊕Ki
8: end for
9: for i← 5 + b′ · 6 to 9 + b′ · 6 do
10: S ← S ⊕Ki
11: S ← AESrnd(S)
12: end for
13: C′ ← S ⊕K10+b′·6
14: return C′

15: end Algorithm

1: Algorithm KeySched(K, T)
2: K0 ← K⊕ Rwfy(T‖064)
3: W0, . . . ,W3

32←−− K
4: for i← 1 to 16 do
5: tmp← RotWord(W[3])
6: W ′0 ←W0 ⊕ SubWord(tmp)⊕ Rcon[i]
7: for j ← 1 to 3 do
8: W ′j ←Wj ⊕W ′j−1
9: end for
10: for j ← 0 to 3 do
11: Wj ←W ′j
12: end for
13: Ki ←W0‖W1‖W2‖W3 ⊕ Rwfy(T‖064)
14: end for
15: return K0, . . . ,K16
16: end Algorithm

1: Algorithm AESrnd(S)
2: S ← SubBytes(S)
3: S ← ShifRows(S)
4: S ← MixColumns(S)
5: return S
6: end Algorithm

1: Algorithm AESrnd−1(S)
2: S ← iMixColumns(S)
3: S ← iShifRows(S)
4: S ← iSubBytes(S)
5: return S
6: end Algorithm

Figure 3: The algorithms ForkAES, ForkAES−1 and ForkAESρ. The function Y =
Rwfy(X) (from “rowify”) is a byte-transposition of a 128-bit string X that maps
Yi = X4∗(i mod 4)+bi/4c.

Table 1: Upper bounds on probabilities of related-TWEAKEY differential characteris-
tics [28, Table 4.1].

Rounds Active S-boxes Probability (upper bound) Method
1 0 20 trivial
2 0 20 trivial
3 1 2−6 Matsui’s
4 8 2−48 Matsui’s
5 ≥ 14 2−84 Matsui’s
7 ≥ 22 2−132 extended split (3R+ 4R)
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Meet-in-the-Middle Attack. There are numerous meet-in-the-middle attacks performed
against AES [20–22] and for all those attacks the key schedule plays an important role.
In these attacks partial encryption/decryption is done by guessing keys to prepare pre-
computed tables. To reduce the amount of guessed key bytes (and respective attack
complexities), the existing linear relations of the AES key schedule are exploited. In our
design, we use KIASU as our core encryption operation which in turn replies on the AES
cipher with the tweak addition to key schedule. The tweak is a fixed and known constant
value T and therefore the existing meet-in-the-middle attacks for AES-128 will apply to
both KIASU and our design.

Security Against Other Attacks. Our forkcipher ForkAES is based purposely on the AES
block cipher regarding round function and key schedule designs. Moreover, we borrow the
KIASU tweak (tweak and key) treatment to support the use of the additional tweak input
in our design. Since we do not introduce any novel design complexities, the security of
our forkcipher design can be reduced to the security of the AES and KIASU ciphers for
further type of attacks.

4 Forkcipher
In this section, we formalize the syntax and security goals of a forkcipher ; the kind of
FIL and expanding tweakable primitive that ForkAES is. We recall that in ForkAES,
the forward computation starts with a single input X, but forks into two independent
branches in the middle, resulting in a double output block C0‖C1. This makes it possible
to compute the original preimage X from either of the two output block-halves C0 or C1,
or to reconstruct one half from another. These are the basic properties captured in the
concept of a forkcipher.

When keyed and tweaked and given a block X of n bits, a forkcipher computes its
image under two permutations C0 = π0(X) and C1 = π1(X) simultaneously, returning
2n bit block C0‖C1. The “inverse” forkcipher, consists of two algorithms. They each
take a binary flag b and an n bit block C as input, and return n bits: one computes
the inverse of the input under the permutation selected by b, i.e. X ′ = π−1

b (C) and the
other reconstructs the image C ′ = πb⊕1 ◦ π−1

b (C) of the putative input under the other
permutation. This is illustrated in Figure 4.

When used with a random key, each of these permutations would be perfectly random
for an ideal forkcipher, i.e., it would implement a pair of independent random permutations
for every tweak. We thus define a secure forkcipher to be computationally indistiguishable
from such an idealized object - a tweak-indexed collection of pairs of random permutations.

A trivial forkcipher. It may be clear at this point that the security notion towards which
we are headed models two instances of a secure tweakable blockcipher that are used in
parallel. In the same spirit, one could instantiate a forkcipher by a tweakable blockcipher
used with two independent keys (or a tweak-space separation mechanism).

The main novelty in a forkcipher is that it aims to provide the same security as a
pair of tweakable blockciphers at a reduced computational cost. Yet this amortization of
computation has nothing to do with the security goals and syntax; these only model what
kind of object a forkcipher inevitably is, and which security properties it aspires to achieve.

4.1 Syntax
A forkcipher is a triple of deterministic algorithms, the encryption3 algorithm F : {0, 1}k ×
T ×{0, 1}n → {0, 1}2n, the inversion algorithm F−1{0, 1}k×T ×{0, 1}n×{0, 1} → {0, 1}n

3We again conflate the label for the primitive with the label of the encryption algorithm.
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K,T

M

C0 C1
‖

F

M

F
−1

F
ρ

C0 C0 C1

b = 0 b = 0

M

F
−1

F
ρ

C1 C0 C1

b = 1 b = 1

K,T K, T K, T K, T

Figure 4: Forward and backward execution of a forkcipher.

and the tag reconstruction algorithm Fρ{0, 1}k × T × {0, 1}n × {0, 1} → {0, 1}n. We call
k, n and T the keysize, blocksize and tweak space of F, respectively.

A tweakable forkcipher F meets the correctness condition, if for every K,T,M, β ∈
{0, 1}k × T × {0, 1}n × {0, 1} we have

F−1(K,T,F(K,T,M)[(β · n) . . . (β · n+ n− 1)], β) = M

and

F(K,T,M)[((1−β)·n) . . . ((1−β)·n+n−1)] = Fρ(K,T,F(K,T,M)[(β·n) . . . (β·n+n−1)], β).

We again focus on two specific forms of T only: when T = {0, 1}t for some positive
t, and when T is an empty set. If T = ∅, then we call F simply forkcipher, and we omit
T from the functional notation of both F and F−1, as well as the tweaks from the input
arguments of the two algorithms.

4.2 Security Definition
We define the security of forkciphers by indistiguishability from the closest, most natural
idealized version of the primitive.

We formalize the security of forkciphers through the notion of a pseudorandom tweakable
forked permutation, with help of security games defined in Figure 5. A forked permutation
is a pair of oracles, that internally make use of two permutations, s.t. the “left” permutation
is used in the usual way (as a permutation), and the “right” permutation is always forked
from the preimage of the left permutation, no matter if the former is used in the forward
or the backward direction.

An adversary A that aims at breaking a tweakable forkcipher F plays the games
prtfp-real and prtfp-ideal and define the advantage of A at distinguishing F from a
random tweakable injection in a chosen ciphertext attack as

Advprtfp
F (A) = Pr[Aprtfp-realF ⇒ 1]− Pr[Aprtfp-idealF ⇒ 1].

4.3 Iterate-Fork-Iterate: A Generic Validation
In order to rule out that the iterate-fork-iterate construction succumbs to a generic attack
(i.e., attacks that do not use any property of the iterated primitive, but only treat it as a
blackbox), we carry out a generic analysis in the spirit of provable security. This result
does not, of course, imply the security of ForkAES, or any other instance of forkcipher,
because the iterated primitive is not a secure pseudorandom permutation. It does show,
however, that the construction itself does not introduce any exploitable weakness.
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Game prtfp-realF

K ←$ {0, 1}k
b← AEnc,Dec

return b

Oracle Enc(T,M)
return F(K,T,M)

Oracle Dec(T,C, β)
return F−1(K,T,C, β)

Game prtfp-idealF

for T ∈ T do πT,0, πT,1 ←$ Perm(n)
b← AEnc,Dec

return b

Oracle Enc(T,M)
return πT,0(M)‖πT,1(M)

Oracle Dec(T,C, β)
return π−1

T,β(C)

Figure 5: Games prtfp-real, and prtfp-ideal used to define security of a (strong)
forkcipher.

IFI: a generalized ForkAES. We define the IFI construction which combines three
tweakable permutations (i.e., three tweak-indexed collections of random permutations) in
the same same way ForkAES applies the three groups of Tweakey-AESround iterations.
Fix the block length n and the tweak length t. Formally, for three tweakable random
permutations p, p0, p1 (i.e. p = (pT ←$ Perm(n))T∈{0,1}t is a collection of independent
uniform elements of Perm(n) indexed by the elements of T ∈ {0, 1}t, and similar applies for
p0 and p1), the forkcipher F = IFI[p, p0, p1] is defined by FT(X) = pT,0(pT(X))‖pT,1(pT(X)),
F−1T(C, b) = p−1

T (p−1
T,b(C)) and FρT(C, b) = pT,b⊕1(p−1

T,b(C)). We note that the three
tweakable random permutations act as a key for IFI[p, p0, p1] and we omit them for the
sake of simplicity.

The analysis. We are going to analyze the indistinguishability of the IFI construction
from a forked random permutation. Since both objects an adversary is attempting to
distinguish are information-theoretic, we can assume w.l.o.g. that the adversaries are
computationally unbounded and deterministic.

Theorem 1. Fix a blocklength n and a tweaklength t. Then for any adversary A that
makes at most q queries we have that

Advprtfp
IFI[p,p0,p1](A) = 0

where p, p0, p1 are random tweakable permutations.

Proof. We use the game Γ from Figure 6 to show that the IFI construction used with a
triple of random tweakable permutations yields a perfect forkcipher. For any partially
defined permutation π, we let D(π) ⊆ {0, 1}n denote those domain points with a defined
image, and we let R(π) ⊆ {0, 1}n denote those range points with a defined preimage. For
simplicity, we will denote IFI[p, p0, p1] as F.

We first prove by an induction over adversary’s queries that at any point during the
execution of game Γ, and for any T ∈ {0, 1}t the following properties hold:

1. D(πT,0) = D(πT,1) = D(pT),

2. R(pT) = D(pT,0) = D(pT,1),
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3. R(πT,0) = R(pT,0),

4. R(πT,1) = R(pT,1),

5. pT,0(pT(M)) = πT,0(M) and pT,1(pT(M)) = πT,1(M) for each M ∈ D(pT)

At the beginning of the game Γ, pT, pT,0, pT,1, πT,0 and πT,1 are undefined for every
T ∈ {0, 1}t, so all four properties are trivially true. Then, assuming that all five properties
are true, we examine the effect of A’s Enc and Dec queries.

When A makes an Enc(T,M) query, and πT,0(M) 6= ⊥ (i.e., M ∈ D(πT,0)) then none
of the partial permutations is extended, and the properties are trivially preserved by the
induction assumption.

If πT,0(M) = ⊥, then by property 1 the images of πT,1(M) and pT(M) are undefined as
well. We assign a new image to M in each of the three partial permutations, so property 1
is preserved. The value Y is included in R(pT),D(pT,0) and D(pT,1), so property 2 is
preserved as well. Similarly, R(πT,0) and R(pT,0) both get extended by the same value Z0,
and similarly R(πT,1) and R(pT,1) both get extended by Z1. Thus properties 3 and 4 are
preserved as well. Finally, if property 5 held before the current query then it also holds
after it is made, as pT(M) = Y , pT,0(Y ) = Z0 = πT,0(M) and pT,1(Y ) = Z1 = πT,1(M).

When A makes a Dec(T, C, β) query and π−1
T,β(C) 6= ⊥, no changes are made to the

partial permutations and all properties are trivially preserved. Otherwise, the value X
extends the domains of pT, πT,0 and πT,1, preserving property 1. The range of pT is
extended by the value Y , as are the domains of pT,0 and pT,1, preserving property 2. The
adversarial input C is added to both R(πT,β) and R(pT,β), and the value Zβ⊕1 extends
both R(πT,β⊕1) and R(pT,β⊕1), so the properties 3 and 4 are preserved. Finally, we have
pT(X) = Y , pT,β(Y ) = C = πT,β(X) and pT,β⊕1(Y ) = Zβ⊕1 = πT,β⊕1(X), so property 5
is preserved as well.

It is easy to see, that the games Γ and prtfp-idealAF are equivalent. The framed lines
in Figure 6 do not affect the outputs of oracle queries; Γ just lazily samples two tweakable
random permutations π0 and π1, and uses them to reply the Enc and Dec queries the
same way as in prtfp-idealF. Therefore Pr[AΓ ⇒ 1] = Pr[Aprtfp-idealF ⇒ 1].

At the same time, in a non-trivial Enc(T,M) query, we lazily sample an image Y of
pT(M), which was previously undefined due to property 1. The lines 3 and 4 do a correct
lazy sampling of pT,0 and pT,1: the images pT,0(Y ) and pT,1(Y ) were previously undefined
due to property 2, and the sampling of the images Z0 and Z1 is correct due to properties 3
and 4. Finally, due to property 5, we see that the Enc oracle actually implements the F
construction.

Similarly, in a Dec(T,M, β) query, we sample a preimage Y of previously undefined
p−1

T,β(C) (due to property 3 or 4). Then, the previously unassigned p−1
T (Y ) and pT,β⊕1(Y )

(due to property 2) get a correctly sampled preimage X, resp. image Zβ⊕1 (and sampling is
correct due to property 1 and property 3 or 4). Finally, the assignment is compatible with
the F construction (due to property 5). Thus the games Γ and prtfp-realF are equivalent,
and Pr[AΓ ⇒ 1] = Pr[Aprtfp-realF ⇒ 1]. This concludes the proof.

5 Tweakable Forkcipher Modes
We demonstrate the applicability of forkciphers by designing provably secure AE modes of
operation for a tweakable forkcipher. The designs are motivated by the following objectives:
(1) the resulting AE scheme must be able to process strings of arbitrary length but (2) it
must be most efficient for encryption queries whose total number of blocks (in AD and
message) is very small, e.g. below four.
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1: proc initialize
2: bad← false
3: for T ∈ {0, 1}t do
4: pT ← ⊥; pT,0 ← ∅; pT,1 ← ∅
5: πT,0 ← ⊥; πT,1 ← ⊥
6: end for

1: proc Enc(T,M)
2: if πT,0(M) = ⊥ then
3: Z0 ←$ {0, 1}n\R(πT,0)
4: Z1 ←$ {0, 1}n\R(πT,1)
5: πT,0(M)← Z0
6: πT,0(M)← Z1

7: Y ←$ {0, 1}n\R(pT)
8: pT(M)← Y

9: pT,0(Y )← Z0

10: pT,1(Y )← Z1

11: end if
12: return πT,0(M)‖πT,1(M)

1: proc Dec(T,C, β)
2: if π−1

T,β(C) = ⊥ then
3: X ←$ {0, 1}n\D(πT,β)
4: Zβ⊕1 ←$ {0, 1}n\R(πT,β⊕1)
5: π−1

T,β(C)← X

6: πT,β⊕1(X)← Zβ⊕1

7: Y ←$ {0, 1}n\D(pT,β)

8: p−1
T,β(C)← Y

9: p−1
T (Y )← X

10: pT,β⊕1(Y )← Zβ⊕1

11: end if
12: return π−1

T,β(C)

Figure 6: Game Γ used in the proof of security of the IFI[p, p0, p1] construction. The
tweakable permutations p, p0, p1, π0 and π1 are initially undefined.

We define three nonce-based AE modes of operation for a tweakable forkcipher. One of
the modes is fully parallelizable, but its security falls apart with the first nonce repetition.
This mode will be useful in applications where longer queries occur more often, and where
one of the parties has more powerful computational capabilities.

The second mode has an online computable encryption, but is not parallelizable. While
its integrity and confidentiality bounds in the nonce-respecting setting are inferior to those
of the parallel mode, we conjecture that a nonce-misusing universal forgery will require
data complexity at the birthday bound. In addition to the resilience to accidental nonce
reuse, the sequential mode also lends itself well to low-overhead implementations, as it
does not require to store any message-block counter.

The third mode is inspired by the blockcipher-based scheme GCM [23], but differs from
it in some critical details. It is almost fully parallelizable, and it beats the other two modes
in efficiency for plaintexts of more than n bits, but this increased efficiency comes at the
price of an n-bit larger memory footprint necessary to store a derived authentication key.

While the first two of our AE schemes appear to be computationally less efficient, we
stress that all three can be efficiently implemented when instantiated with ForkAES. The
ForkAES-based instances will even beat all of the existing AE modes for the shortest
queries (see Section 5.8).

A small AE primitive. While a secure forkcipher does not directly capture any integrity,
we show in Section 5.9 that a secure forkcipher can be used as an AEAD scheme with
fixed length messages and AD in the natural way, provably delivering robust AE security
guarantees.

5.1 Syntax and Security of AE
Our modes target the security of nonce-based AE with associated data, following the
syntax proposed by Rogaway [40].

A scheme for authenticated encryption with associated data is a triplet Π = (K, E ,D).
The key space K is a finite set endowed with the uniform distribution. The deterministic
encryption algorithm E : K × N × A ×M → C maps a secret key K, a nonce N , an
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proc initialize priv-realΠ
K ←$ K
X ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
return C

proc initialize priv-idealΠ
X ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ←$ {0, 1}|M|+τ
return C

proc initialize authΠ

K ←$ K
X ← ∅, Y ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
Y ← Y ∪ {(N,A,C)}
return C

proc Dec(N,A,C)
if (N,A,C) ∈ Y then

return ⊥
return D(K,N,A,C)

Figure 7: Games for defining the security of a nonce based AE scheme Π = (K, E ,D) with
ciphertext expansion τ .

associated data A and a message M to a ciphertext C = E(K,N,A,M). The nonce, AD
and message domains are all subsets of {0, 1}∗. The deterministic decryption algorithm
D : K ×N ×A× C →M∪ {⊥} takes a tuple (K,N,A,C) and either returns a mesage
M ∈M, or a distinguished symbol ⊥ to signalize an authentication error.

We require that for everyM ∈M, we have {0, 1}|M | ⊆M (i.e. for any integerm, either
all or no strings of length m belong toM) and that for all K,N,A,M ∈ K×N ×A×M
we have |E(K,N,A,M)| = |M | + τ for some non-negative integer τ called the stretch
of Π. For correctness of Π, we require that for all K,N,A,M ∈ K × N × A × M
we have M = D(K,N,A, E(K,N,A,M)). We let EK(N,A,M) = E(K,N,A,M) and
DK(N,A,M) = D(K,N,A,M).

We use the two-requirement definition of AE security. We model a chosen plaintext
attack of an adversary A against the confidentiality of a nonce-based AE scheme Π with the
help of the security games priv-real and priv-real in Figure 7. We define the advantage
of A in breaking the confidentiality of Π as

Advpriv
Π (A) = Pr[Apriv-realΠ ⇒ 1]− Pr[Apriv-idealΠ ⇒ 1].

We model a chosen ciphertext attack against the integrity of Π with help of the game
auth in Figure 7. We define the advantage of A in breaking the integrity of Π as

Advpriv
Π (A) = Pr[AauthΠ forges]

where “A forges” denotes the event that there is a decryption query that returns a value
other than ⊥.

5.2 Parallel AE from a Forkcipher
We define the nonce based AEAD scheme PAEF (as in “Parallel AE from a Forkcipher”).
PAEF is parameterized by a forkcipher F (as defined in Section 4) with T = {0, 1}t for
a positive t. It is further parameterized by a nonce length 0 < ν ≤ t − 4. An instance
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PAEF[F, ν] = (K, E ,D) has K = {0, 1}k and the encryption and decryption algorithms as
defined in Figure 8. Its nonce space is N = {0, 1}ν , and its message and AD space are
respectivelyM = {0, 1}≤n·2(t−ν−3) and A = {0, 1}≤n·2(t−ν−3) . The ciphertext expansion of
PAEF[F, ν] is n. The encryption algorithm is illustrated in Figure 9.

In an encryption query, AD and message are partitioned into blocks of n bits. Each
block is processed with exactly one call to F using a tweak that is composed of

1. a three-bit flag f0‖f1‖f2,
2. the nonce,
3. a (t− ν − 3)-bit encoding of the block index (indexing is individual for both AD and

message),

so the nonce-length is a parameter that allows to make a trade-off between maximal
message length and maximal number of queries with the same key. The bit f0 = 1 iff the
final block of message is being processed, the bit f1 = 1 iff a block of message is being
processed, and f2 = 1 iff the final block of the current input (depending on f1) is being
processed and is incomplete. The ciphertext blocks are the “left” output blocks of F from
message blocks, and an xor of all “right” output blocks of F is xored to the rightmost n
bits of the call to F that processes the final message block.

The decryption proceeds similarly as the encryption, except that “right” output blocks
of the message blocks are reconstructed from ciphertext blocks (using the reconstruction
algorithm) to recompute the tag, which is then checked.

5.3 Security of PAEF
We state the formal claim about the nonce-based AE security of PAEF in Theorem 2.

Theorem 2. Let F be a tweakable forkcipher with T = {0, 1}t, and let 0 < ν ≤ t − 4.
Then for any nonce-respecting adversary A whose queries lie in the proper domains of the
encryption and decryption algorithms and who makes at most qv decryption queries, we
have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B)

and
Advauth

PAEF[F,ν](A) ≤ Advprfp
F (C) + qv · 2n

(2n − 1)2

for some adversaries B and C who make at most twice as many queries in total as is the
total number of blocks in all encryption, respectively all encryption and decryption queries
made by A, and who run in time given by the running time of A plus an overhead that is
linear in the total number of blocks in all A’s queries.

Proof. For both confidentiality and authenticity, we first replace F with a pair of inde-
pendent random tweakable permutations π0, π1, i.e. π0 = (πT,0 ←$ Perm(n))T∈{0,1}t

is a collection of independent uniform elements of Perm(n) indexed by the elements of
T ∈ {0, 1}t (and similarly π1 = (πT,1 ←$ Perm(n))T∈{0,1}t). We let PAEF[(π0, π1), ν]
denote the PAEF mode that uses π0, π1 instead of F. We have that

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) + Advpriv
PAEF[(π0,π1),ν](A)

because a distinguisher B for F can perfectly simulate the games priv-realPAEF[F,ν] and
priv-realPAEF[(π0,π1),ν] for A using its own oracles. In place of any Fρ call, B has to make
a decryption query followed by an encryption query. By copying A’s output, B can achieve
the same advantage as A does, with the same data complexity as A and a very similar
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1: Algorithm E(K,N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: T ← 0n
5: for i← 1 to a do
6: T← 000‖N‖〈i〉t−ν−3
7: T ← T ⊕ rightn(FT

K(Ai))
8: end for
9: if |A∗| = n then
10: T← 001‖N‖〈a+ 1〉t−ν−3
11: T ← T ⊕ rightn(FT

K(A∗))
12: else if |A∗| > 0 or |M | = 0 then
13: T← 011‖N‖〈a+ 1〉t−ν−3
14: T ← T ⊕ rightn(FT

K(A∗‖10∗))
15: end if . Do nothing if A = ε,M 6= ε
16: for i← 1 to m do
17: T← 100‖N‖〈i〉t−ν−3
18: Ci, T

′ ← lsplitn(FT
K(Mi))

19: T ← T ⊕ T ′
20: end for
21: if |M∗| = n then
22: T← 101‖N‖〈m+ 1〉t−ν−3
23: R← FT

K(M∗)
24: else if |M∗| > 0 then
25: T← 111‖N‖〈m+ 1〉t−ν−3
26: R← leftn+|M∗|(F

T
K(M∗‖10∗))

27: else
28: R← 0n
29: end if
30: R← (0|M∗|‖T )⊕R
31: return C1‖ . . . ‖Cm‖R
32: end Algorithm

1: Algorithm D(K,N,A,C)
2: A1, . . . , Aa, A∗

n←− A
3: C1, . . . , Cm, C∗, T ← csplit-bn(C)
4: T̄ ← 0n
5: for i← 1 to a do
6: T← 000‖N‖〈i〉t−ν−3
7: T̄ ← T̄ ⊕ rightn(FT

K(Ai))
8: end for
9: if |A∗| = n then
10: T← 001‖N‖〈a+ 1〉t−ν−3
11: T̄ ← T̄ ⊕ rightn(FT

K(A∗))
12: else if |A∗| > 0 or |T | = 0 then
13: T← 011‖N‖〈a+ 1〉t−ν−3
14: T̄ ← T̄ ⊕ rightn(FT

K(A∗‖10∗))
15: end if . Do nothing if A = ε,M 6= ε
16: for i← 1 to m do
17: T← 100‖N‖〈i〉t−ν−3
18: Mi ← F−1T

K(Ci, 0)
19: T̄ ← T̄ ⊕ FρT

K(Ci, 0)
20: end for
21: C∗, T ← lsplitn((C∗‖T )⊕ (0|T |‖T̄ ))
22: if |T | = n then
23: T← 101|N‖〈m+ 1〉t−ν−3
24: T ′ ← T
25: else if |T | > 0 then
26: T← 111‖N‖〈m+ 1〉t−ν−3
27: T ′ ← 10n−|T |−1‖T
28: else
29: if C∗ 6= 0n then return ⊥
30: return ε
31: end if
32: T̃ ← left|T |(FρT

K(C∗, 0))
33: M∗ ← F−1T

K(C∗, 0)
34: if T ′ 6= rightn−|T |(M∗)‖T̃ then
35: return ⊥
36: end if
37: M∗ ← left|T |(M∗)
38: return M1‖ . . . ‖Mm‖M∗
39: end Algorithm

Figure 8: The PAEF[F, ν] AEAD scheme. Here 〈i〉` is the cannonical encoding of an
integer i as an `-bit string.
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Figure 9: The encryption algorithm of PAEF[F] mode. The picture illustrates the
processing of AD when length of AD is a multiple of n (top left) and when the length
of AD is not a multiple of n (top right), and the processing of the message when length
of the message is a multiple of n (bottom left) and when the length of message is not a
multiple of n (bottom right)

running time. This implies that the gap between these games is bounded by Advprtfp
F (B).

By a similar argument, we have that

Advauth
PAEF[F,ν](A) ≤ Advprtfp

F (C) + Advpriv
PAEF[(π0,π1),ν](A).

For confidentiality, it is easy to see that in a nonce-respecting attack, every message block
is processed with a unique tweak. Every ciphertext block is produced as the only image
under and independent random permutation, and thus uniformly distributed. The final
|M∗|+ n bits of every ciphertext are produced as xor-sum that always contains (a part
of) the concatenated output of π0 and π1 applied to he last message block with a unique
tweak, such that this part is not used for any ciphertext block. Since all ciphertexts are
uniformly distributed we get perfect privacy and hence our privacy result.

For authenticity, we analyse the probability of forgery for an adversary that makes a single
decryption query against PAEF[(π0, π1), ν] and then use a result of Bellare [10] to extend
our result to multiple queries (still against PAEF[(π0, π1), ν]).

We will denote the encryption queries of A and the corresponding replies as (N i, Ai,M i)
and Ci for i = 1, . . . , q, where q is the number of encryption queries made by A. For each
i we let Ci1, . . . , Cim, Ci∗, T = csplit-bn(Ci). We let (N,A,C) denote the only decryption
query of A and we let C1, . . . , Cm, C∗, T = csplit-bn(C). When the forgery (N,A,C) is
made, we have two base cases. If the nonce N is fresh, then the forgery attempt is
equivalent to guessing the value of a uniform string of n bits, thus succeeds with probability
2−n. This holds even if |T | < 0, because the rightmost (n − |T |) bits of the final image
under the inverse of π0 must have a specific value.

If N is reused, i.e. if N = N i for some N i ∈ {N1, . . . , Nq}, then we perform a case
analysis. Note that we can disregard all encryption queries except the ith, because their
ciphertetxts are computed using independent random permutations. Every case assumes
the negation of all previous case-conditions.

Case 1, |C|n 6= |Ci|n: We have several subcases.

• If |C| = n, then C is a xor-sum of πT,1 images from the associated data (denoted
as TA in Figure 9), such that we can possibly have Ai = A. However, due to the
assumption in this case, we must have |M i| > 0, so the xor-sum TAi computed
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in the ith encryption query is xor-masked with uniform bits produced by by
the processing of M i

∗. Therefore TAi is statistically independent of Ci, and the
adversary has no information when trying to guess the value of the TA sum.
The probability of a successful forgery is 2−n.
• When |C| > n, regardless if C has more or less blocks than Ci, the successful

forgery is equivalent to guessing the value of an image under π1 (respectively the
value of n out of 2n bits produced by π−1

T,0(leftn(T∗)) and πT,1(π−1
T,0(leftn(T∗))))

such that the tweak T = 110‖N‖〈m+ 1〉t−ν−3 (respectively T = 111‖N‖〈m+
1〉t−ν−3) was not used before. The probability of this event is 2−n.

The probability of a successful forgery in Case 1 is at most 2−n. In the following
cases, |C|n = |Ci|n.

Case 2, |A|n 6= |Ai|n: Again, we have a few subcases to consider.

• If |A|n > |Ai|n, a successful forgery is equivalent to guessing an output value of
πT,1 with a previously unused tweak (T = 0b1‖N‖〈a+ 1〉t−ν−3 for b ∈ {0, 1})
thanks to a > ai, succeeding with probability of 2−n.
• If 0 < |A|n < |Ai|n but more than 0, then a successful forgery is still equivalent

to guessing an output value of πT,1 with a previously unused tweak (T0b1‖N‖〈a+
1〉t−ν−3 for b ∈ {0, 1}), thanks to the three-bit domain-separation flag (which
was set to 000 in the ith encryption query). This succeeds with probability 2−n.
• Finally if |A| = 0, then |A|n 6= |Ai|n implies that |Ai|n > 0. Forging in this case
is equivalent to guessing the image π(011‖N‖1),1(10n−1), such that the random
permutation π(011‖N‖1),1 was evaluated on no more than a single other input
Ai∗‖10∗ 6= 10n−1 in the whole game. This succeeds with probability at most
1/(2n − 1).

Thus the probability of a successful forgery in this case is at most 1/(2n − 1). In the
remaining cases, we have |C|n = |Ci|n > 1 and |A|n = |Ai|n > 0.

Case 3, |C| 6= |Ci| and |T | = n or |T i| = n: In this case, the forgery verification will use
πT,1 with a fresh tweak T because the “incomplete-block” bit of the three-bit flag will
have different values in the processing of the decryption query, and in the processing
of the ith encryption query. The forgery succeeds with probability 2−n.

Case 4, |A| 6= |Ai| and |A∗| = n or |Ai∗| = n: This is analogous with the previous case;
the probability of forgery is 2−n. In the remaining cases, we have |C|n = |Ci|n > 1,
|A|n = |Ai|n > 0 and |T | > 0, |T i| > 0, |A∗| > 0, |Ai∗| > 0.

Case 5, |C| 6= |Ci| and |T | < n and |T i| < n: In this case, both the encryption query and
the decryption query use the same tweak T to process M i

∗ and C∗, T , respectively.
There are two conditions for the forgery to succeed. First, the preimageX = π−1

T,0(C∗⊕
(0n−|T |left|T |(T̄ )) (as per line 21 in Figure 8) must be equal to W‖10n−|T |−1 6=
M i
∗‖10n−|T i|−1 (noting that the case condition implies |T | 6= |T i|) for some W ∈
{0, 1}|T |. This is no easier than finding a fresh value whose preimage falls into a set
of size 2|T |. With a single image of π−1

T,0 already used, this succeeds with probability
bounded by (2|T |)/(2n − 1). Secondly, the image Y = πT,1(X) must be equal to
T‖Z for some Z ∈ {0, 1}n−|T |, conditioned on X having the correct format. This
is equivalent to guessing a fresh image under πT,1 with (n − |T |) free bits. As a
single image of πT,1 has been used already, this happens with probability at most
(2n−|T |)/(2n − 1). The probability of a successful forgery in this case is therefore
bounded by (2|T |)/(2n − 1) · (2n−|T |)/(2n − 1) = 2n/(2n − 1)2.
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Case 6, |A| 6= |Ai| and |Aa| < n and |Aia| < n: In this case, the final blocks A∗ and Ai∗ are
processed by the same random permutation πT,1, but as A∗‖10n−|A∗| 6= Ai∗‖10n−|Ai∗|,
successfully forging in this case is equivalent to guessing the yet unsampled image
πT,1(A∗‖10n−|A∗|). With a single image of πT,1 used before, this happens with
probability at most 1/(2n − 1).

Case 7, |C| = |Ci| and |A| = |Ai|: In this case, there must be at least a single block of
either AD or ciphertext where the two queries differ. We investigate the following
subcases.

• If the forgery N,A,C differs from N,Ai, Ci only in C∗‖T , then , if we ran the
decryption algorithm on N,Ai, Ci and N,A,C in parallel, the values T̄ i and
T̄ used on the line 21 of the decryption algorithm in Figure 8 would be the
same, and thus necessarily (C∗‖T )⊕ (0n−|T |‖T̄ ) 6= (Ci∗‖T i)⊕ (0n−|T |‖T̄ i). The
probability of a successful forgery is at most 2n/(2n− 1)2 by a similar argument
as in Case 5.
• If A,C‖T and Ai, Ci‖T i differ in a single block, such that C∗‖T = Ci∗‖T i, a
forgery is impossible (because πT,0 and πT,1 are all permutations).
• If there are at least two blocks in A1, . . . Aa, A∗, C1, . . . , Cm, C∗, T that differ
from the corresponding blocks in Ai1, . . . A

i
a, A

i
∗, C

i
1, . . . , C

i
m, C

i
∗, T

i, then the
forgery can succeed in two ways. The first is if (C∗‖T )⊕(0n−|T |‖T̄ ) = (Ci∗‖T i)⊕
(0n−|T |‖T̄ i). This happens with probability at most 1/(2n − 1), as there will
be at least one index j for which Aj 6= Aij (or Cj 6= Cij), and for which
πT,1(Aj)⊕ πT,1(Aij) (respectively πT,1(π−1

T,0(Cj))⊕ πT,1(π−1
T,1(Cij))) would have

to take a particular value. The probability follows from the fact that whatever
T, the random permutations πT,1 and π−1

T,1 we sampled only once. The second
way is if (C∗‖T )⊕ (0n−|T |‖T̄ ) 6= (Ci∗‖T i)⊕ (0n−|T |‖T̄ i) but the verification still
succeeds. This is analogous to Case 5.

The probability of a successful forgery in this case is therefore bounded by 2n/(2n−1)2.

Thus a single forgery succeeds with probability no greater than 2n/(2n − 1)2. By applying
the result of Bellare [10], we can bound the probability of a successful forgery among qv
decryption queries as (qv · 2n)/(2n − 1)2.

5.4 Sequential AE from a Forkcipher
We now define SAEF (as in “Sequential AE from a Forkcipher,” pronounce as “safe”),
a nonce-based AEAD scheme parameterized by a tweakable forkcipher F (as defined in
Section 4) with T = {0, 1}t for a positive t ≤ n. An instance SAEF[F] = (K, E ,D) has a
key space K = {0, 1}k, nonce space N = {0, 1}t−3, and the AD and message spaces are
both {0, 1}∗ (although the maximal message length influences the security). The ciphertext
expansion of SAEF[F] is n. The encryption and decryption algorithms are defined in
Figure 11 and the encryption algorithm is illustrated in Figure 12.

In an encryption query, first AD and then message processed in blocks of n bits. Each
block is processed with exactly one call to F, using a tweak that is composed of

1. the nonce, and
2. a three-bit flag f .

The flag f takes different values for processing of different types of data blocks in the
encryption algorithm. These are given in Figure 10.

The “right” output of every F call is used as a whitening mask for the following F call,
masking either the input (in AD processing) or both the input and the output (in message
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value of f type of block processed by the encryption algorithm
000 processing non-final AD block
010 processing final complete AD block
011 processing final incomplete AD block
110 processing final complete AD block to produce tag
111 processing final incomplete AD block to produce tag
001 processing non-final message block
100 processing final complete message block
101 processing final incomplete message block

Figure 10: The binary flag values used in the SAEF mode for forkcipher.

processing) of this subsequent call. The initial F call in the query is unmasked. The tag is
the last “right” output of F produced in the query.

The decryption proceeds similarly as the encryption, except that the “right” outputs
of F in the message processing part are reconstructed from ciphertext blocks (using the F
reconstruction algorithm). Only if the verification succeeds will the actual decryption take
place.

5.5 Security of SAEF
For the security analysis of SAEF, we will work with adversarial resources that are more
fine-grained than it is usual. The reason for this is that the security in a typical setting,
most of the messages will be very short. We will show that this can greatly improve
security of SAEF, if we account for adversarial resources per query length.

For an adversary A, we will watch the total number of encryption and decryption
queries, q and qv respectively. For data complexity, we will work with a vector q ∈ NL
with L = {` | ∃A ∈ A,M ∈ M s.t. |A|n = ` or |M |n = `}. In other words, q is a vector
of non-negative integers whose elements are indexed by a subset of those integers that
can be the number of either message or AD blocks in a query to SAEF[F]. The vector q
associated to A will then contain for each ` the maximal number q` of queries (N,A,M)
made by A with no more than ` = max(|A|n, |M |n) blocks of either the message or AD.
We further let `max = max{|A|n + |X|n| A queries (N,A,X) or (N,A,X‖T )} denote the
maximal number of blocks of AD and message together in a single query. We finally let σ
denote the maximal total data complexity of A, measured in the total number of blocks
of AD, messages, and possibly ciphertexts in all A’s queries. It is then easy to see that∑
`∈L∩{0,...,`max} ` · q` ≤ 2σ and that q + qv ≤

∑
`∈L q`.

We state the formal claim about the nonce-based AE security of SAEF in Theorem 3.

Theorem 3. Let F be a tweakable forkcipher with T = {0, 1}t. Then for any nonce-
respecting adversary A whose resources are bounded by q, qv, σ, `max and q (in the sense
we just defined) such that `max ≤ 2n/4, we have

Advpriv
SAEF[F](A) ≤Advprtfp

F (B) +
∑

`∈L∩{0,...,`max}

3 · q` · ` · (`− 1)
2n ,

Advauth
SAEF[F](A) ≤Advprtfp

F (C)

+
∑

`∈L∩{0,...,`max}

q` · 3` · (`− 1)
2n + qv · (2`max + 1)

2n + qv
(2n − 1)

for some adversaries B and C who make at most 2σ queries, and who run in time given
by the running time of A plus γ · σ for some constant γ.
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1: Algorithm E(K,N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← 000‖N
7: for i← 1 to a do
8: ∆← rightn(FT

K(Ai ⊕∆))
9: end for
10: if |A∗| = n then
11: T← noM‖10‖N
12: ∆← rightn(FT

K(A∗ ⊕∆))
13: else if |A∗| > 0 or |M | = 0 then
14: T← noM‖11‖N
15: ∆← rightn(FT

K((A∗‖10∗)⊕∆))
16: end if . Do nothing if A = ε,M 6= ε
17: T← 001‖N
18: for i← 1 to m do
19: S ← FT

K(Mi ⊕∆)⊕ (∆‖0n)
20: Ci,∆← lsplitn(S)
21: end for
22: if |M∗| = n then
23: T← 100‖N
24: R← FT

K(M∗ ⊕∆)⊕ (∆‖0n)
25: else if |M∗| > 0 then
26: T← 101‖N
27: R← FT

K((M∗‖10∗)⊕∆)⊕ (∆‖0n)
28: R← leftn+|M∗|(R)
29: else
30: R← ∆
31: end if
32: return C1‖ . . . ‖Cm‖R
33: end Algorithm

1: Algorithm D(K,N,A,C)
2: A1, . . . , Aa, A∗

n←− A
3: C1, . . . , Cm, C∗, T csplit-bnC
4: noM← 0
5: if |C| = n then noM← 1
6: ∆← 0n; T← 000‖N
7: for i← 1 to a do
8: ∆← rightn(FT

K(Ai ⊕∆))
9: end for
10: if |A∗| = n then
11: T← noM‖10‖N
12: ∆← rightn(FT

K(A∗ ⊕∆))
13: else if |A∗| > 0 or |T | = 0 then
14: T← noM‖11‖N
15: ∆← rightn(FT

K((A∗‖10∗)⊕∆))
16: end if . Do nothing if A = ε,M 6= ε
17: T← 001‖N
18: for i← 1 to m do
19: Mi ← F−1T

K(Ci ⊕∆, 0)⊕∆
20: ∆← FρT

K(Ci ⊕∆, 0)
21: end for
22: if |T | = n then
23: T← 100‖N
24: T̄ ← T
25: else if |T | > 0 then
26: T← 101‖N
27: T̄ ← 10n−|T |−1‖T
28: else
29: if ∆ 6= C∗ then return ⊥
30: return ε
31: end if
32: T̃ ← left|T |(FρT

K(C∗ ⊕∆, 0))
33: M∗ ← F−1T

K(C∗ ⊕∆, 0)⊕∆
34: if T̄ 6= rightn−|T |(M∗)‖T̃ then
35: return ⊥
36: end if
37: M∗ ← left|T |(M∗)
38: return M1‖ . . . ‖Mm‖M∗
39: end Algorithm

Figure 11: The SAEF[F] AEAD scheme.
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Figure 12: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0.
The picture illustrates the processing of AD when length of AD is a multiple of n (top
left) and when the length of AD is not a multiple of n (top right), and the processing of
the message when length of the message is a multiple of n (bottom left) and when the
length of message is not a multiple of n (bottom right)

Corollary 1. From
∑
`∈L∩{0,...,`max} ` · q` ≤ 2σ it immediately follows that

Advpriv
SAEF[F](A) ≤Advprtfp

F (B) + 12 · σ
2

2n ,

Advauth
SAEF[F](A) ≤Advprtfp

F (C) + 12 · σ
2

2n + 4 · qv · (2`
2
max + 1)
2n + qv

(2n − 1) .

Remark 1 (Interpretation of the bounds in Theorem 3 and Corollary 1). Corollary 1 clearly
shows that in general, the security of SAEF is birthday bounded, which is unusual for a
mode of operation for a tweakable primitive. However, SAEF was designed especially for
applications where the encryption queries are very short. The security guarantees given by
the fine-grained bound in Theorem 3 become very competitive in this case.

For example, in an (IoT-like) application where qv is reasonably small, and where we
know for certain that the vast majority of queries consists of a single block of AD and
a single message block, and a tiny portion γ � q of messages is expected to contain a
small number of message blocks β, the contribution of the short queries vanishes and the
security bounds of SAEF become near optimal:

Advpriv
SAEF[F](A) ≤Advprtfp

F (B) + 3 · γ · β · (β − 1)
2n

Advauth
SAEF[F](A) ≤Advprtfp

F (C) + 3 · γ · β · (β − 1)
2n + ·qv · (β

2 + 1)
2n + qv

(2n − 1)

Remark 2 (Sequential encryption vs forgeries.). The sequential structure of SAEF causes
a birthday-type deterioration of the security bounds in in the nonce-respecting setting.
However, we conjecture that it also lends a degree for resistance to forgeries up to the
birthday bound in the nonce-misuse setting to SAEF. Right now this is an unproven claim,
and we intend to prove it for the full version of the paper.

Here is an intuition behind this claim. In the case of nonce-reuse, issuing queries
with no AD allows the adversary to learn direct input-“left” output pairs for F. However,
the adversary never learns the “right” outputs of F for the non-final blocks of message.
Therefore, finding a collision on the input to F that would allow a forgery should still take
a query complexity at the birthday bound.
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Proof of Theorem 3. The security analysis of SAEF is slightly more involved than in the
case of PAEF. We first tackle confidentiality and then integrity.

Confidentiality of SAEF. We first replace the forkcipher F with a pair of tweakable
permutations π0 and π1. I.e. π0 = (πT,0 ←$ Perm(n))T∈{0,1}t is a collection of independent
uniform elements of Perm(n) indexed by the elements of T ∈ {0, 1}t (and similarly for
π1 = (πT,1 ←$ Perm(n))T∈{0,1}t). We let SAEF[π0, π1] denote the SAEF mode that uses
π0, π1 instead of F. This replacement implies the following inequality:

Advpriv
SAEF[F](A) ≤ Advprtfp

F (B) + Advpriv
SAEF[π0,π1](A)

by a similar argument as in the proof of Theorem 2.

We now further replace the two families of random permutations π0 and π1 with families of
random functions f0 and f1 with the same signature. I.e. fb = (fT,b ←$ Func(n))T∈{0,1}t

for b ∈ {0, 1}. Denoting the SAEF mode using these random functions by SAEF[f0, f1],
we have that

Advpriv
SAEF[π0,π1](A) ≤ Advpriv

SAEF[f0,f1](A) +
∑

`∈L∩{0,...,`max}

2 · q` · ` · (`− 1)
2n

because each query uses a distinct nonce, and thus for each N , the functions fT,0 and fT,1
with T = b0b1b2‖N and b0, b1, b2 ∈ {0, 1} are always used only in a single query. Moreover,
for b0b1b2 ∈ {0, 1}3\{000, 001}, the associated random functions are used at most once, so
their distribution is indistinguishable from that of the corresponding random permutations.
For b0b1b2 ∈ {000, 001}, there will be exactly q` values of N for which both fT,0 and fT,1
will be used at most ` times. Replacing such a πb0b1b2‖N,b by fb0b1b2‖N,b augments the
bound by at most ` · (`− 1) · 2−n−1 by the RP-RF switching lemma [16] and a standard
hybrid argument. By summing over `, b0b1b2 ∈ {000, 001} and b ∈ {0, 1}, we obtain the
bound.

We now bound Advpriv
SAEF[f0,f1](A). For this, we use the games G0 and G1 defined in

Figure 13. In both games, the set DT collects the domain points, on which the functions
fT,0 and fT,1 were already evaluated. It is easy to verify that G0 actually implements
priv-realSAEF[f0,f1], as the flag bad and the sets DT have no influence on the outputs of
Enc. It is also possible to verify that Pr[Apriv-idealSAEF[f0,f1] ⇒ 1] = Pr[AG1 ⇒ 1]: unless
bad is set, every ciphertext block Ci is an image of a distinct input to fT,0. The final
blocks C∗ and T are an xor of the sum of previous “right” blocks, and of bits produced by
two random functions f10b‖N,0 and f10b‖N,1 that are each used exactly once (due to the
non-repetition of the nonces and the domain separation flags 10b for b ∈ {0, 1}). Thus, all
the output bits of Enc are uniform. Once bad is set, all the ciphertext blocks and each
value of ∆ is replaced by a uniform string, so the simulation is perfect. Thus we have
Advpriv

SAEF[f0,f1](A) ≤ Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1].
We also have that G0 and G1 are identical until bad, so by the Fundamental lemma of

gameplaying [16] we have that Advpriv
SAEF[f0,f1](A) ≤ Pr[AG0 sets bad], where AG0 sets bad

denotes the event that bad = true whenA issues its final output. We bound Pr[AG0 sets bad]
by union bound, iterating over the probability that the ith query sets bad, given that bad
was not set before.

For an encryption query (N,A,M) with ` = |M |n, all the sets Db0b1b2‖N used in the
query are initially empty, due to the uniqueness of N . The flag bad can only be set
due to a collision on D001‖N . We use the tweak 001‖N when processing the message.
With the first message block, the adversary can possibly choose the input to f001‖N,1,
but this cannot cause a collision because D001‖N is empty. Then for every next block
Mi, the input to f001‖N,1 is masked by the current value ∆. If bad has not been set
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before, ∆ is a fresh, uniform value, so the probability that (Mi ⊕∆) ∈ D001‖N is at most
|D001‖N | · 2−n = (i− 1) · 2−n. The probability that bad gets set due to AD processing is
then bounded by ` · (`− 1) · 2−n−1 by summing over i = 2, . . . , `.

We know that for each `, there are exactly q` queries (N,A,M) with ` = max(|A|n, |M |n)
and for ` > `max, q` = 0. So, by applying the union bound over all queries, we get
Pr[AG0 sets bad] ≤

∑
`∈L∩{0,...,`max} q` · ` · (` − 1) · 2−n. Combined with the previously

derived inequalities, this completes the proof of the confidentiality bound.

1: proc initialize
2: for T ∈ {0, 1}t do
3: fT,0 ←$ Func(n)
4: fT,1 ←$ Func(n)
5: DT ← ∅
6: end for
7: bad← false

1: proc Enc(N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← 000‖N
7: for i← 1 to a do
8: ∆← fT,1(Ai ⊕∆)
9: end for
10: if |A∗| = n then
11: T← noM‖10‖N
12: ∆← fT,1(A∗ ⊕∆)
13: else if |A∗| > 0 or |M | = 0 then
14: T← noM‖11‖N
15: ∆← fT,1((A∗‖10∗)⊕∆)
16: end if
17: T← 001‖N

18: for i← 1 to m do
19: if Mi ⊕∆ ∈ DT then
20: bad← true
21: end if
22: DT ← DT ∪ (Mi ⊕∆)
23: Ci ← fT,0(Mi ⊕∆)⊕∆
24: ∆← fT,1(Mi ⊕∆)
25: if bad = true then
26: Ci‖∆←$ {0, 1}2n

27: end if
28: end for
29: if |M∗| = n then
30: T← 100‖N
31: C∗ ← fT,0(M∗ ⊕∆)⊕∆
32: T ← fT,1(M∗ ⊕∆)
33: else if |M∗| > 0 then
34: T← 101‖N
35: C∗ ← fT,0((M∗‖10∗)⊕∆)⊕∆
36: T ← fT,1((M∗‖10∗)⊕∆)
37: T ← left|M∗|(T )
38: else
39: T ← ∆
40: end if
41: return C1‖ . . . ‖Cm‖C∗‖T

Figure 13: The games G0 and G1 for bounding Advpriv
SAEF[f0,f1]. The game G0 does not

contain the boxed statement, while G1 does.

Integrity of SAEF. We again replace the forkcipher F with a pair of tweakable permuta-
tions π0 = (πT,0 ←$ Perm(n))T∈{0,1}t and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t , such that we
have

Advauth
SAEF[F](A) ≤ Advprtfp

F (C) + Advauth
SAEF[π0,π1](A)

by a similar argument as in the proof of Theorem 2.
We additionally replace the tweakable permutation π1 by a tweakable function f1 with

the same signature, yielding

Advauth
SAEF[π0,π1](A) ≤ Advauth

SAEF[π0,f1](A) +
∑

`∈L∩{0,...,`max}

q` · ` · (`− 1)
2n

by a similar argument as in the proof of SAEF’s confidentiality.
To bound Advauth

SAEF[π0,f1](A), we consider the games G2 and G3 in Figure 14. It is easy
to see that the game G2 actually implements the game authSAEF[π0,f1], because the sets
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DT for T ∈ {0, 1}t and the flag bad have no effect on the outputs of the game. Moreover,
unless bad is set to true, the games G2 and G3 execute the same code. Thus, by the
Fundamental lemma of gameplaying [16], we have that Pr[AG2 forges]− Pr[AG3 forges] ≤
Pr[AG2 sets bad] and consequently Advauth

SAEF[π0,f1](A) ≤ Pr[AG2 sets bad]+Pr[AG3 forges].

Transition from G2 to G3. The flag bad being set means that for some T ∈ {0, 1}t, the
permutation πT,0 and the function fT,1 were used twice on the same input in an encryption
queries. Informally speaking, this event may allow the adversary to forge trivially by
simply truncating the ciphertext, or the associated data used in an encryption query with
such a collision. We disallow this kind of victory in the game G3.

Similarly as in the proof of confidentiality bound, we bound Pr[AG2 sets bad] by the
union bound, iterating over the probability that the ith query sets bad, given that bad
was not set before. In an encryption query (N,A,M) with ` = max(|A|n, |M |n), the
flag bad can only be set by a collision on set Db‖N with b ∈ {000, 001}. For the first
block of AD (and the first block of message) there can be no collision because D000‖N
is initially empty (as is D001‖N ). For each subsequent block Ai with 2 ≤ i < `, Ai
is xored with a mask ∆. Given that bad has not been set before, ∆ is an image of a
fresh input under f(000‖N),1. Therefore, the probability that Ai sets bad is bounded by
|D000‖N | · 2−n ≤ (i − 1) · 2n−1 due to the fact i < ` ≤ `max and due to the assumption
`max ≤ 2n−1. Summing over i, we get that AD processing cannot set bad with a probability
bigger than ` · (` − 1) · 2−n. The probability that bad is set while processing message
blocks is bounded by ` · (`− 1) · 2−n by a similar argument. Summing over all queries and
knowing that for each `, there are exactly q` queries with ` = max(|A|n, |M |n), we get
that Pr[AG2 sets bad] ≤

∑
`∈Ł∩{0,...,`max} q` · 2` · (`− 1) · 2−n.

Forgery in G3. We proceed to bounding Pr[AG3 forges]. We carry out the analysis for
an adversary A′ that makes a single verification query, and then obtain Pr[AG3 forges] ≤
qv · Pr[A′G3 forges], referring to a result by Bellare to support the claim [10].

In what follows, we let (N i, Ai,M i), Ci denote the ith encryption query made by A′,
and (N,A,C) denote the only decryption query. For each i, we let Ci1, . . . , Cim, Ci∗, T i ←
csplit-bn(Ci) and we let C1, . . . , Cm, C∗, T ← csplit-bn(C). Additionally, we will refer to
the values of the ∆ variable. We will indicate by ∆A,j the jth value that the variable
∆ takes when processing the jth block of A from the decryption query (N,A,C), and
by ∆M,j the jth value that the variable ∆ takes when processing the jth block of the
ciphertext C. We note that we can have j = ∗ and that ∆A,1 = 0n. We define ∆i

A,j and
∆i
M,j in a similar way for (N i, Ai,M i).
We bound Pr[AG3 forges] by the following case analysis.

Case 1, N 6= N i for all 1 ≤ i ≤ q: In this case, T is either compared to an output of
f(b‖N),1 with b ∈ {100, 110, 111}, or the rightmost n−|T | bits of the preimage π−1

(101‖N),0(C∗)
must have a specific value, and T is compared to |T | bits of an image under f(101‖N),1.
Because all these random permutations (respectively functions) have not yet been sampled,
the probability that the forgery succeeds is at most 2−n.

In all the remaining cases, we assume that ∃1 ≤ i ≤ q : N = N i, i.e. the nonce N is reused
from the ith encryption query.

Case 2, |T | = n and |T i| < n, or |T | < n and |T i| = n: If |T | = n, then it must be equal
to an image under a so far unused random function f(100‖N),1 (because of the three-bit
flag 100). Thus forging is equivalent to guessing the value of n random bits and succeeds
with probability 2−n.

If on the other hand |T | < n, then either the rightmost n− |T | bits of the preimage
π−1

(101‖N),0(C∗) must have a specific value and T is compared to |T | bits of an image under
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f(101‖N),1, or C∗ is compared to the output of f(11b‖N),1 for b ∈ {0, 1} (if |T | = 0). With
each of these three permutations unused in the experiment until now, the forgery succeeds
with probability 2−n.

Case 3, |T | = n ∧ |T i| = n: The tag T is compared to an image under the random
function f(100‖N),1, which was also used to produce T i. The adversary can forge in two
ways, either by making sure that C∗ ⊕ ∆M,∗ = Ci∗ ⊕ ∆i

M,∗ and reusing T = T i, or by
trying to guess the tag T 6= T i without this collision. Abusing the notation, we therefore
have Pr[AG3 forges|Case 3] ≤ Pr[coll|Case 3] + Pr[AG3 forges|¬coll ∧ Case 3] where coll
denotes the event C∗ ⊕∆M,∗ = Ci∗ ⊕∆i

M,∗ conditioned on the event that bad 6= true in
game G3.

We have that Pr[AG3 forges|¬coll ∧ Case 3] ≤ 2−n, because forging is equivalent to
guessing the value of a fresh image under a random function. To bound Pr[coll|Case 3],
we investigate four subcases:

Case 3.1, |Ai∗| = n and |A∗| < n or |Ai∗| < n and |A∗| = n: For the event coll to occur,
there either are two indices 1 ≤ j ≤ mi and 1 ≤ j′ ≤ m for which M i

j ⊕∆i
M,j =

M ′j ⊕∆M,j′ , or there are no such two indices and yet C∗ ⊕∆M,∗ = Ci∗ ⊕∆i
M,∗ (in

the first case, A′ may simply reuse a part of Ci). Omitting the condition “Case 3.1”,
the probability of coll is bounded by

Pr[coll|Case 3.1] ≤
∑
j,j′

Pr[collj,j′ ] + Pr[coll∗]

where collj,j′ denotes the event M i
j ⊕ ∆i

M,j = M ′j ⊕ ∆M,j′ conditioned on @j̄ :
M i
j̄
⊕ ∆i

M,j̄
= Mj′−1 ⊕ ∆M,j′−1 (if j′ > 1), and where coll∗ denotes the event

C∗ ⊕∆M,∗ = Ci∗ ⊕∆i
M,∗ conditioned on @j̄′, j̄ : M i

j̄
⊕∆i

M,j̄
= Mj̄′ ⊕∆M,j̄′ .

For j′ = 1, A may force ∆M,1 = 0n by setting A = ε, making collj,1 equivalent to
∆i
M,j = C1 ⊕ Ci1. However, all the masks ∆i

M,j were generated uniformly, either due
to the bad 6= true condition for j > 1 or because Ai 6= ε for j = 1, so the probability
that any of them is equal to C1 ⊕ Ci1 is 2−n. If A 6= ε, then ∆M,1 is produced by a
fresh random function, and therefore uniformly distributed, and the probability of
collj,1 is thus 2−n.

For j′ > 1, the condition @j̄ : M i
j̄
⊕∆i

M,j̄
= Mj′−1 ⊕∆M,j′−1 implies that ∆M,j′ is

uniformly distributed, and so the probability of collj,j′ is 2−n for any j.

Finally, the event coll∗ is equivalent to guessing the value of random n-bit string,
and occurs with probability 2−n.

As we have j ≤ mi ≤ `max and j′ ≤ m ≤ `max, the probability of coll in this
subcase is at most (`2max + 1) · 2−n, and a forgery succeeds with probability at most
(`2max + 2) · 2−n.

Case 3.2, |Ai∗| = n and |A| = n: The analysis is very similar as as in Case 3.1, except that
now both ∆M,1 and ∆i

M,1 are produced by the same random function f010‖N, 1. We
therefore need to consider the possibility, that A′ forces ∆M,1 = ∆i

M,1 by triggering
a non-trivial collision ∆A,∗ ⊕ A∗ = ∆i

A,1 ⊕ Ai∗. If no such collision happens, the
analysis proceeds exactly as in Case 3.1.
The analysis of the collision in AD processing is almost identical to the analysis of the
collision in the message processing, except that we trivially have ∆A,1 = ∆i

A,1 = 0n.
This does not help the adversary in achieving a non-trivial collision, because such
a collision can only occur past the trivial blockwise common prefix of A and Ai.
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Denoting by collA the event ∆A,∗ ⊕A∗ = ∆i
A,1 ⊕Ai∗, we have

Pr[collA|Case 3.2] ≤
∑
j,j′

Pr[collj,j′ ] + Pr[coll∗]

where collj,j′ denotes the eventAij⊕∆i
A,j = A′j⊕∆A,j′ conditioned on @j̄ : Ai

j̄
⊕∆i

A,j̄
=

Aj′−1⊕∆A,j′−1 (if j′ > 1), and where coll∗ denotes the event A∗⊕∆A,∗ = Ai∗⊕∆i
A,∗

conditioned on @j̄′, j̄ : Ai
j̄
⊕∆i

A,j̄
= Aj̄′⊕∆A,j̄′ , such that we iterate over min{j̄|Ai

j̄
6=

Aj̄} ≤ j′ ≤ m and 1 ≤ j ≤ mi.
The probability of each collj,j′ is at most 2−n by a similar argument as in the
analysis of Case 3.1 for all pairs j′j except for j = j′ = min{j̄|Ai

j̄
6= Aj̄}; for

j′ = min{j̄|Ai
j̄
6= Aj̄} the event ∆A,j′ ⊕Aj′ = ∆i

A,j′ ⊕Aij′ is impossible. There are
never more than `max possible values for j′.
We deduce that the probability of forger in this case is bounded by (2`2max + 2) · 2−n.

Case 3.3, 0 < |Ai∗| < n and 0 < |A| < n: Because of the use of injective padding in AD
processing, the analysis of this case is almost identical with the analysis of Case 3.2,
and a forgery succeeds with probability bounded by (2`2max + 1) · 2−n.

Case 3.4, A = Ai = ε: In this special case, we have ∆M,1 = ∆i
M,1 = 0n. The analysis in

this case is the same as in case Case 3.1, except that we iterate over min{j̄|Ci
j̄
6=

Cj̄} ≤ j′ ≤ m, and deduce that a forgery succeeds with a probability bounded by
(`2max + 2) · 2−n.

Summing up, the probability of forgery in Case 3 is bounded by (2`2max + 2) · 2−n.

Case 4, |T | = 0 and |T i| = 0: In this case, both messages are empty. We have the
following subcases:

Case 4.1, |A∗| = n and |Ai∗| < n, or |A∗| < n and |Ai∗| = n: In this case, the value C∗ is
compared to an image of a random function that has not been sampled in the
experiment. A forgery succeeds with probability 2−n in this case.

Case 4.2, |A∗| = n and |Ai∗| = n: In this case, A′ can manage to forge either by triggering
the collision ∆A,∗ ⊕A∗ = ∆i

A,1 ⊕Ai∗, or by guessing the tag otherwise. By a similar
argument as Case 3.2, the probability of forgery is no more than (`2max + 2) · 2−n in
this case.

Case 4.3, |A∗| < n and |Ai∗| < n: Due to the use of the injective 10∗ padding, this case is
symmetric to Case 4.2 and the probability of forgery is no more than (`2max +2) ·2−n.

The probability of forgery in this case is no more than (`2max + 2) · 2−n.

Case 5, 0 < |T | < n and 0 < |T i| < 0: In this case, we have the following subcases:

Case 5.1, |T | = |T i|: In this case, the adversary may forge either by forcing C∗ ⊕∆M,∗ =
Ci∗⊕∆i

M,∗ and reusing the tag, or by guessing a fresh valid pair (C∗, T ). The analysis
is very similar as in Case 3, except that the probability of forgery conditioned on
C∗ ⊕∆M,∗ 6= Ci∗ ⊕∆i

M,∗ changes.

In particular, the freshly sampled preimage X = π−1
101‖N,0(C∗⊕∆M,∗) will need to be

of the form X = Z‖10∗ for some Z ∈ {0, 1}|T | and simultaneously, the first |T | bits of
the freshly sampled image Y = f101‖N,1(X) will need to be equal to T . This happens
with probability no greater than ((2|T | − 1) · (2n−|T |))/((2n − 1) · 2n) ≤ 1/(2n − 1).
The total probability of forgery is no greater than (2`max + 1) · 2−n + (2n − 1)−1
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Case 5.2, |T | 6= |T i|: As in the previous case, the adversary may attempt to trigger
C∗ ⊕ ∆M,∗ = Ci∗ ⊕ ∆i

M,∗. If this does not succeed, the probability of forgery is
bounded by (2n − 1)/22n as in Case 5.1.
If this does succeed, the forgery is not as easily granted as before, as A′ also needs
C∗ ⊕∆M,∗ = Z‖10∗ for some Z ∈ {0, 1}|T |. Because clearly

Pr[C∗⊕∆M,∗ = Ci∗⊕∆i
M,∗ and C∗⊕∆M,∗ = Z‖10∗] ≤ Pr[C∗⊕∆M,∗ = Ci∗⊕∆i

M,∗],

We conclude that the probability of forgery in this case is also bounded by (2`max +
1) · 2−n + (2n − 1)−1.

The probability of forgery in this case is no more than (2`max + 1) · 2−n + (2n − 1)−1.
By taking the maximum over all cases, the probability that a single-decryption-query
adversary A′ forgers in the game G3 is at most (2`max +1) ·2−n+(2n−1)−1. The adversary
A making qv decryption queries thus forges with probability bounded by qv · (2`max +
1) · 2−n + qv · (2n − 1)−1. By back-substituting all the previous equalities, we obtain the
claimed result.

5.6 Modifying GCM for a Forkcipher
We finally define fGCM (as “forkcipher-based GCM,”), a nonce-based AEAD scheme
parameterized by a tweakable forkcipher F (as defined in Section 4) with T = {0, 1}t
for a positive t. An instance fGCM[F] = (K, E ,D) has a key space K = {0, 1}k, nonce
space N = {0, 1}t−2, and the AD and message spaces are both {0, 1}≤2n/2 (although the
maximal message length influences the security). The ciphertext expansion of fGCM[F] is
n. The encryption and decryption algorithms are defined in Figure 15 and the encryption
algorithm is illustrated in Figure 16.

The scheme fGCM is inspired by the original Galois-Counter Mode [23] in that it
processes all-but-last message block using counter mode, and computes a polynomial hash
of thus-computed ciphertext blocks and the AD. Unlike the original GCM, the output
of the GHASH is used as a masking offset for a primitive call, that encrypts the final
ciphertext block and simultaneously produces the authentication tag.

In an encryption query, the message processed in blocks of n bits. The first max(0, d|M |/ne−
1) message blocks are encrypted with counter mode, using dmax(0, d|M |/ne − 1)/2e calls
to F (because each F call produces 2n pseudorandom bits). Then, AD and the string
formed by concatenating the just-computed ciphertext blocks is processed by GHASH to
obtain a masking value ∆. The key for GHASH is derived as leftn(F(K, 0t, 0n)) The final
message block is padded to n bits if needed, and then processed by a single F call, whose
input and “left” output are xor-masked by ∆. The first |M | mod n+ n bits of the output
of this call form the final ciphertext block and the tag.

Each call to F made during the encryption is using a tweak that is composed of
1. the nonce, and
2. a two-bit flag f .

The flag f takes different values for processing of different types of data blocks in the
encryption algorithm:
f = 01 when in counter mode,

f = 10 in the final call if |M | ≡ 0 (mod n),

f = 11 in the final call if |M | 6≡ 0 (mod n).
The decryption recomputes the value ∆, with it decrypts the final ciphertext block

and and verifies the integrity of the inputs. If the verification succeeds, the rest of the
ciphertext gets decrypted, otherwise the error symbol is returned.
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1: proc initialize
2: for T ∈ {0, 1}t do
3: πT,0 ←$ Perm(n)
4: fT,1 ←$ Func(n)
5: DT ← ∅
6: end for
7: bad← false

1: proc Enc(N,A,M)
2: A1, . . . , Aa, A∗

n←− A
3: M1, . . . ,Mm,M∗

n←−M
4: noM← 0
5: if |M | = 0 then noM← 1
6: ∆← 0n; T← 000‖N
7: for i← 1 to a do
8: if Ai ⊕∆ ∈ DT then
9: bad← true
10: end if
11: DT ← DT ∪ (Ai ⊕∆)
12: ∆← fT,1(Ai ⊕∆)
13: end for
14: if |A∗| = n then
15: T← noM‖10‖N
16: ∆← fT,1(A∗ ⊕∆)
17: else if |A∗| > 0 or |M | = 0 then
18: T← noM‖11‖N
19: ∆← fT,1((A∗‖10∗)⊕∆)
20: end if
21: T← 001‖N
22: for i← 1 to m do
23: if Mi ⊕∆ ∈ DT then
24: bad← true
25: end if
26: DT ← DT ∪ (Mi ⊕∆)
27: Ci ← πT,0(Mi ⊕∆)⊕∆
28: ∆← fT,1(Mi ⊕∆)
29: end for
30: if |M∗| = n then
31: T← 100‖N
32: C∗ ← πT,0(M∗ ⊕∆)⊕∆
33: T ← fT,1(M∗ ⊕∆)
34: else if |M∗| > 0 then
35: T← 101‖N
36: C∗ ← πT,0((M∗‖10∗)⊕∆)⊕ (∆)
37: T ← fT,1((M∗‖10∗)⊕∆)
38: T ← left|M∗|(T )
39: else

40: T ← ∆
41: end if
42: T ← ∆
43: return C1‖ . . . ‖Cm‖C∗‖T

1: proc Dec(N,A,C)
2: if bad = true then
3: return ⊥
4: end if
5: A1, . . . , Aa, A∗

n←− A
6: C1, . . . , Cm, C∗, T ← csplit-bn(C)
7: noM← 0
8: if |C| = n then noM← 1
9: ∆← 0n; T← 000‖N
10: for i← 1 to a do
11: ∆← fT,1(Ai ⊕∆)
12: end for
13: if |A∗| = n then
14: T← noM‖10‖N
15: ∆← fT,1(A∗ ⊕∆)
16: end if
17: if |A∗| > 0 or |T | = 0 then
18: T← noM‖11‖N
19: ∆← fT,1((A∗‖10∗)⊕∆)
20: end if
21: T← 001‖N
22: for i← 1 to m do
23: Mi ← π−1

T,0(Ci ⊕∆, 0)⊕∆
24: ∆← fT,1(π−1

T,0(Ci ⊕∆, 0))
25: end for
26: if |T | = n then
27: T← 100‖N
28: T̄ ← T
29: else if |T | > 0 then
30: T← 100‖N
31: T̄ ← 10n−|T |−1‖T
32: else
33: if ∆ 6= C∗ then return ⊥
34: return ⊥
35: end if
36: M∗ ← π−1

T,0(C∗ ⊕∆)⊕∆
37: T̃ ← left|T |(fT,1(M∗ ⊕∆))
38: if T̄ 6= right|T |(M∗)‖T̃ then
39: return ⊥
40: end if
41: M∗ ← left|T |(M∗)
42: return M1‖ . . . ‖Mm‖M∗

Figure 14: The games G2 and G3 for bounding Advauth
SAEF[π0,f1]. The game G2 does not

contain the boxed statements, while G3 does.
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1: Algorithm E(K,N,A,M)
2: L← leftn(F0t

K (0n))
3: M ′,M∗ ← msplitn(M)
4: S ← ε
5: for i← 1 to d|M ′|/2ne do
6: S ← S‖F01‖N

K (〈i〉n)
7: end for
8: C′ ←M ′ ⊕ left|M′|(S)
9: ∆← GHASH(L,A,C′)
10: if |M∗| = n then
11: T← 10‖N
12: else
13: M∗ ←M∗‖10∗
14: T← 11‖N
15: end if
16: R← FT

K(M∗ ⊕∆)⊕ (∆‖0n)
17: C ← C‖left|M∗|+n(R)
18: return C
19: end Algorithm

1: Algorithm GHASH(L,A,C)
2: α← n− (|A| mod n)
3: γ ← n− (|C| mod n)
4: X ← A‖0α‖C‖0γ‖〈|A|〉n/2‖〈|C|〉n/2
5: X1, . . . , Xx

n←− X
6: Y ← 0n
7: for j ← 1 to x do
8: L · (Y ⊕Xj) . in GF(2n)
9: end for
10: return Y
11: end Algorithm

1: Algorithm D(K,N,A,C)
2: L← leftn(F0t

K (0n))
3: C′, C∗, T ← csplitn(C)
4: ∆← GHASH(L,A,C′)
5: if |T | = n then
6: T← 10‖N
7: T̄ ← T
8: else
9: T← 11‖N
10: T̄ ← 10n−|T |−1‖T
11: end if
12: T̃ ← left|T |(FρT

K(C∗ ⊕∆, 0))
13: M∗ ← F−1T

K(C∗ ⊕∆, 0)⊕∆
14: if T̄ 6= rightn−|T |(M∗)‖T̃ then
15: return ⊥
16: end if
17: M∗ ← left|T |(M∗)
18: S ← ε
19: for i← 1 to d|C′|/2ne do
20: S ← S‖F01‖N

K (〈i〉n)
21: end for
22: M ′ ← C′ ⊕ left|C′|(S)
23: return M ′‖M∗
24: end Algorithm

Figure 15: The fGCM[F] AEAD scheme. Refer to Section 2 for the definitions of string
manipulation notation.
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Figure 16: The encryption algorithm of fGCM[F] mode (see Figure 15 for the definition of
M ′). We have m′ = |M ′|n. The picture illustrates the processing of M ′ when length of
M ′ is an odd multiple of n (top left) and when the length of M ′ is an even multiple of n
(bottom left), the processing of the final message block M∗ when length of the message
M is a multiple of n (top right) and when the length of message M is either zero or not
a multiple of n (bottom right), and the computation of the value ∆ (middle).

5.7 Security of fGCM
For the security analysis of fGCM, we will again work with the previously defined fine-
grained adversarial resources. We state the formal claim about the nonce-based AE security
of fGCM in Theorem 4.

Theorem 4. Let F be a tweakable forkcipher with T = {0, 1}t. Then for any nonce-
respecting adversary A whose resources are bounded by q, qv, σ, `max and q (in the sense
we just defined) such that `max ≤ 2n/4, we have

Advpriv
fGCM[F](A) ≤Advprtfp

F (B) +
∑

`∈L∩{0,...,`max}

q` · ` · (`− 1)
2n ,

Advauth
fGCM[F](A) ≤Advprtfp

F (C) + qv · `max

2n + qv · 2n

(2n − 1)2

for some adversaries B and C who make at most 2σ queries, and who run in time given
by the running time of A plus γ · σ for some constant γ.

Corollary 2. From
∑
`∈L∩{0,...,`max} ` · q` ≤ 2σ it immediately follows that

Advpriv
fGCM[F](A) ≤Advprtfp

F (B) + 4 · σ
2

2n

Remark 3 (Interpretation of the bounds in Theorem 4 and Corollary 2). According to
Corollary 2, the security of fGCM is birthday bounded in the general case. However,
when most of the encryption queries are very short, the security guarantees given by the
fine-grained bound in Theorem 4 become very competitive.

Revisiting the example where qv is reasonably small, and where the vast majority of
queries consists of a single block of AD and a single message block, and a tiny portion
γ � q of messages is expected to contain a small number of message blocks β, the security
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bounds of fGCM become near optimal:

Advpriv
fGCM[F](A) ≤Advprtfp

F (B) + γ · β · (β − 1)
2n

Advauth
fGCM[F](A) ≤Advprtfp

F (C) + qv · β
2n + qv · 2n

(2n − 1)2 .

The proof of Theorem 4 relies on the AXU property of GHASH stated in Lemma 1.

Lemma 1 (GHASH [23]). For any positive integers n, `max such that `max · n < 2n/2, for
any pairs of strings (A,C ′), (Ã, C̃ ′) ∈ ({0, 1}≤`max·n)2 such that (A,C ′) 6= (Ã, C̃ ′), and for
any c ∈ {0, 1}n we have that

Pr[L←$ {0, 1}n : GHASH(L,A,C ′)⊕GHASH(L, Ã, C̃ ′) = c] ≤ `max + 1
2n

with GHASH defined in Figure 15.

Proof of Theorem 4. We first tackle confidentiality and then integrity of fGCM.

Confidentiality of fGCM. As before, we first replace the forkcipher F with a pair of
tweakable permutations π0 and π1 (i.e., π0 = (πT,0 ←$ Perm(n))T∈{0,1}t is a collection of
independent uniform elements of Perm(n) indexed by the elements of T ∈ {0, 1}t, and
similarly for π1 = (πT,1 ←$ Perm(n))T∈{0,1}t). We let fGCM[π0, π1] denote the fGCM
mode that uses π0, π1 instead of F, and deduce the following inequality:

Advpriv
fGCM[F](A) ≤ Advprtfp

F (B) + Advpriv
fGCM[π0,π1](A)

by a similar argument as in the proof of Theorem 2.
We further replace the two families of random permutations π0 and π1 with families of

random functions f0 and f1 with the same signature (i.e., fb = (fT,b ←$ Func(n))T∈{0,1}t

for b ∈ {0, 1}). Denoting the fGCM mode using these random functions by fGCM[f0, f1],
we have that

Advpriv
fGCM[π0,π1](A) ≤ Advpriv

fGCM[f0,f1](A) +
∑

`∈L∩{0,...,`max}

2 · q` · ` · (`− 1)
2n

because each query uses a distinct nonce, and thus for each N , the functions fT,0 and
fT,1 with T = b0b1‖N and b0b1 ∈ {0, 1}2 are always used only in a single query. For
b0b1 ∈ {00, 10, 11}, the associated random functions are used at most once, so their
distribution is indistinguishable from that of the corresponding random permutations. For
b0b1 = 01, there will be exactly q` values of N for which both fT,0 and fT,1 will be used
at most ` times. Replacing such a π01‖N,b by f01‖N,b augments the bound by at most
` · (`− 1) · 2−n−1 by the RP-RF switching lemma [16] and a standard hybrid argument.
By summing over `, and b ∈ {0, 1}, we obtain the bound.

Bounding Advpriv
fGCM[f0,f1](A) is relatively straightforward, because in each ciphertext C

that A sees, one part of C is computed as an xor of message bits and images of the
random functions f01‖N,0 and f01‖N,1. Since none of the functions is ever evaluated twice
on any input, all these bits are uniformly distributed. The remainder of C consists of
a concatenation of the images of two random functions, that are only evaluated once
during the whole experiment. Every ciphertext is thus distributed uniformly, and we have
Advpriv

fGCM[f0,f1](A) = 0.
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Integrity of fGCM. We again replace the forkcipher F with a pair of tweakable per-
mutations π0 = (πT,0 ←$ Perm(n))T∈{0,1}t and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t , and
have

Advauth
fGCM[F](A) ≤ Advprtfp

F (C) + Advauth
fGCM[π0,π1](A)

by a similar argument as in the proof of Theorem 2.
To bound Advauth

fGCM[π0,π1](A), we first use the result of Bellare [10] that states that

Advauth
fGCM[π0,π1](A) ≤ qv ·Advauth

fGCM[π0,π1](A′)

where A′ is an adversary with identical resources to those of A, except that A′ only makes
a single decryption query.

What remains is to bound Advauth
fGCM[π0,π1](A′). The adversary A′ makes q encryption

queries N i, Ai,M i and receives ciphertexts Ci in response for i = 1, . . . , q. For each i
we define M ′i,M i

∗ = msplitn(M i) and C ′i, Ci∗, T i = csplitn(Ci), and we let ∆i denote the
output of GHASH in the ith query. A′ also makes a single decryption query (N,A,C), for
which we define C ′, C∗, T = csplitn(C), and let ∆ denote the output of GHASH evaluation
in the decryption query. We proceed with the following case analysis.

Case 1, N 6= N i for all 1 ≤ i ≤ q: T is either compared to an output of π(b0b1‖N),1 with
b0b1 ∈ {10, 11}, or the rightmost n− |T | bits of the preimage π−1

(11‖N),0(C∗) must have a
specific value, and T is compared to |T | bits of an image under π(11‖N),1. Because all these
random permutations have not yet been sampled, the probability that the forgery succeeds
is at most 2−n.

In all the remaining cases, we assume that ∃1 ≤ i ≤ q : N = N i, i.e., the nonce N is
reused from the ith encryption query.

Case 2, |T | = n ∧ |T i| < n or |T | < n ∧ |T i| = n: If |T | = n, the tag T is compared to an
image under the random permutation π(10‖N),1. However, no image under this permutation
was used in the game (because we only used π(11‖N),1). Thus forging is equivalent to
guessing the value of n random bits and succeeds with probability 2−n.

If on the other hand |T | < n, the rightmost n− |T | bits of the preimage π−1
(11‖N),0(C∗)

must have a specific value, and T is compared to |T | bits of an image under π(11‖N),1.
These two permutation being unused until now, the forgery succeeds with probability 2−n.

Case 3, |T | = n ∧ |T i| = n: We will investigate two subcases:

Case 3.1, (A,C ′) 6= (Ai, C ′i): The forgery can succeed in two ways in this case. If
the adversary reuses the tag, i.e. T = T i, then the forgery succeeds only if
π(10‖N),1(π−1

(10‖N),0(C∗ ⊕ ∆)) = π(10‖N),1(π−1
(10‖N),0(Ci∗ ⊕ ∆i)), which is equivalent

with the event ∆ ⊕∆i = C∗ ⊕ Ci∗. As (A,C ′) 6= (Ai, C ′i), the probability of this
event is no more than `max/2n due to the AXU property of GHASH (note that `max
is the maximal number of blocks in M , but C ′ always has 1 block less than M).
Otherwise, if T 6= T i, the forgery succeeds if and only if C∗ ⊕ ∆ 6= Ci∗ ⊕ ∆i ∧
π(10‖N),1(π−1

(10‖N),0(C∗ ⊕∆)) = T . Because π(10‖N),1 ◦ π−1
(10‖N),0 is a random permu-

tation, and it was only evaluated on a single image, the probability of this event is
at most 1/(2n − 1).
Because the two ways of forging in this case are mutually exclusive, the probability
of forgery is bounded by max(`max/2n, 1/(2n − 1)).

Case 3.2, (A,C ′) = (Ai, C ′i): Here, we must have (C∗, T ) 6= (Ci∗, T i) for the forgery to
be valid, but we also have ∆ = ∆i. This implies that C∗ 6= Ci∗ and T 6= Ti (because
the tags are produced as images of permutations). A successful forgery implies that
π(10‖N),1(π−1

(10‖N),0(C∗ ⊕ ∆)) = T , such that the random permutation π(10‖N),1 ◦
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π−1
(10‖N),0 was only evaluated on Ci∗ ⊕∆i before, which occurs with probability at

most 1/(2n − 1).

The probability of forgery in this case is no more than max(`max/2n, 1/(2n − 1)).

Case 4, |T | < n ∧ |T i| < n: Again, we have two subcases:

Case 4.1, (A,C ′) 6= (Ai, C ′i): Similarly to Case 3, A′ can succeed in two ways in this
case. The adversary may succeed in creating the collision C∗ ⊕∆ = Ci∗ ⊕∆i and
forge by setting T = T i, which happens with probability bounded by `max/2n due to
the AXU property of GHASH.
Otherwise, if C∗ ⊕∆ 6= Ci∗ ⊕∆i, the forgery succeeds if and only if π−1

(10‖N),0(C∗ ⊕
∆) ⊕ ∆ = Y ‖10n−|T |−1 ∧ π(10‖N),1(π−1

(10‖N),0(C∗ ⊕ ∆)) = T‖Z for arbitrary Y ∈
{0, 1}|T | and Z ∈ {0, 1}n−|T |. The probability of the event π−1

(10‖N),0(C∗ ⊕ ∆) ⊕
∆ = Y ‖10n−|T |−1 is at most {0, 1}|T |/(2n − 1) because π−1

(10‖N),0 has only been
evaluated on a single point Ci∗ ⊕∆i 6= C∗ ⊕∆ before. The probability of the event
π(10‖N),1(Y ‖10n−|T |−1) = T‖Z conditioned on π−1

(10‖N),0(C∗ ⊕ ∆) = Y ‖10n−|T |−1

is then at most |{0, 1}n−|T ||/(2n − 1), because π(10‖N),1 was also only evaluated
on a single input different from Y ‖10n−|T |−1. Multiplying the two terms yields
2n/(2n − 1)2.
Because the two ways of forging in this case are not clearly mutually exclusive (both
allow T = T i), the probability of forgery is bounded by `max/2n + 2n/(2n − 1)2.

Case 4.2, (A,C ′) = (Ai, C ′i): We must have (C∗, T ) 6= (Ci∗, T i) for the forgery to be valid,
ad we also have ∆ = ∆i. This implies that C∗ 6= Ci∗ (because forging with C∗ = Ci∗
and T 6= T i∗ is impossible), which in turn implies C∗ ⊕∆ 6= Ci∗ ⊕∆i. By a similar
argument as in the second part of Case 4.1, the probability of forgery in this case is
bounded by 2n/(2n − 1)2.

The probability of forgery in this case is thus no more than `max/2n + 2n/(2n − 1)2.

By taking the maximum over all cases, the probability that a single-decryption-query
adversary A′ manages to forge `max · 2−n + 2n · (2n − 1)−2. The adversary A making qv
decryption queries thus forges with probability bounded by qv ·`max ·2−n+qv ·2n ·(2n−1)−2.
By back-substituting all the previous inequalities, we obtain the claimed result.

5.8 Efficient Instantiation
Judging by the generic definitions of PAEF and SAEF in Figures 8 and 11, these two
modes look anything but efficient. First, half of the output of every forkcipher call is being
wasted when processing the associated data, and the decryption algorithms have to call
both the inversion and the reconstruction algorithm of the forkcipher for every ciphertext
block.

However, both PAEF and SAEF were designed with our proposed instance for tweakable
forkcipher, the ForkAES, in mind. Addressing the two issues just raised, and referring to
Section 3, with ForkAES

• The computational cost of "wasting" half of the output corresponds to 10 AES rounds;
we evaluate the first five rounds to compute state from which the computation is
forked, and then we only need to compute the five more rounds to compute the
“right” output. Thus in the AD processing, PAEF and SAEF perform as any other
rate-1 mode.
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scheme
Cost of encryption in (# of AES rounds)/10

a = 0 a = 1 a = 2
m=1 m=2 m=3 m=4 m=0 m=1 m=2 m=3 m=1 m=2

GCM 2+2 3+3 4+4 5+5 1+2 2+3 3+4 4+5 2+4 3+5
CCM 4 6 8 10 3 5 7 9 6 8
OCB3 3 4 5 6 3 4 5 6 5 6
CLOC 3 5 7 9 2 4 6 8 5 7
Deoxys-I 2.8 4.2 5.6 7 2.8 4.2 5.6 7 5.6 7
KIASU6= 2 3 4 5 2 3 4 5 4 5
PAEF 1.5 3 4.5 6 1.5 2.5 4 5.5 3.5 5
SAEF 1.5 3 4.5 6 1.5 2.5 4 5.5 3.5 5
fGCM 1.5+1 2.5+2 3+3 5+4 1.5+2 1.5+2 2.5+3 3+4 1.5+3 2.5+4

Figure 17: The comparison of performance of GCM [33], CCM [44], OCB3 [32], CLOC [27],
Deoxys-I [29], KIASU [28] and the AE schemes presented in Section 5. Here a = |A|n and
m = |M |n, and the cells of the form “b+ g” mean “b · 10 AES rounds and g multiplications
in GF(2128).” GCM, CCM, OCB3 and CLOC are assumed to be instantiated with AES.
For schemes that compute a derived key that is the same for all queries (OCB and GCM),
the complexity of this step is ignored.

• The computational cost of the inversion and the reconstruction algorithm can be
factored when evaluated on the same input. We first compute the 5 inverse rounds
that are common for both the reconstruction and the inversion algorithms to reach
the forking state S, and then compute five more backwards round to compute the
plaintext, and five other forward rounds to compute the other output half. The
computational cost of this is exactly the same as the complete forward evaluation of
ForkAES: 15 AE rounds.

In an optimized implementation, the actual interface of ForkAEs would be slightly different
as well. The general rule for the implementations could be characterized as “implement
only what you need.” For example for the PAEF and SAEF modes, one would have
both the usual forward interface ForkAES(·, ·, ·) with 2n output bits, but also a dedicated
interface ForkAES-r(·, ·, ·) that evaluates only the right branch of the forward ForkAES,
for the AD processing. On the other hand, one would have a dedicated “composite” inverse
interface ForkAES(·, ·, ·) that would take the key, the tweak, and the left output block, and
directly output 2n bits—the plaintext block, and the reconstructed right output block.
Thus we would factor the inversion and reconstruction, and dispense with the indicator
bit input.

In this light, the performance of SAEF[ForkAES] and PAEF[ForkAES, ν] looks much
more promising, with the cost of both encryption and decryption algorithm being equivalent
to about 1 AES evaluation per block of AD, and 1.5 AES evaluations per block of message.

PAEF and SAEF versus other modes. Of course, the factor of 1.5 is restrictive for long
plaintexts, but SAEF and PAEF were designed to be efficient for short messages. To
illustrate their efficiency, we compare the computational cost (in terms of the number of
AES128 calls) of encrypting very short queries by PAEF and SAEF with that of GCM,
CCM, OCB, CLOC and Deoxys-I in Figure 17.

Note also that in the plausible application scenarios (as those mentioned in Section 1),
it is unlikely that a pipelined hardware accelerator for AES would be available. Therefore,
the metric used in Table 17 yields an accurate comparison of actual performance of the
mentioned AE modes.
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5.9 Deterministic MiniAE
In the introduction, we stated that a forkcipher is nearly, but not exactly, an AE primitive:
we clarify this statement in this section. It is easy to see that the syntax and security goals
of a forkcipher, as proposed in Section 4, capture neither AE functionality nor AE security
goals. Yet, constructing a secure PRI (with the same signature) from the forkcipher
is trivial. In this section, we demonstrate that when used in a minimalistic “mode” of
operation, a secure forkcipher yields a miniature AE scheme for fixed-size messages, which
achieves PRI security [42].

PRI security of an AEAD scheme. Informally speaking, the best possible security that an
AEAD scheme with a fixed stretch can achieve is to be (computationally) indistinguishable
from a random injection from N ×A×M to C, because any AE scheme that is correct,
must also be injective. This intuition is formalized as follows. The advantage of an
adversary A in distinguishing an AEAD scheme Π with ciphertext expansion τ from a
random injection with the same signature is defined as

Advpri
Π (A) = Pr[Apri-realΠ ⇒ 1]− Pr[Apri-idealΠ ⇒ 1]

with the games pri-realΠ and pri-idealΠ defined in Figure 18.

proc initialize pri-realΠ
K ←$ K

proc Enc(N,A,M)
return E(K,N,A,M)

proc Dec(N,A,C)
return D(K,N,A,C)

proc initialize pri-idealΠ
for N,A ∈ N ×A do

fN,A ←$ Inj(τ)

proc Enc(N,A,M)
return fN,A(M)

proc Dec(N,A,C)
if ∃M ∈M s.t. fN,A(M) = C then

return M
else

return ⊥

Figure 18: Pseudo-random injection (PRI) security games for a scheme Π = (K, E ,D)
with ciphertext expansion τ .

Given a tweakable forkcipher F with T = {0, 1}t and a 1 ≤ ν < t, we define the AEAD
scheme MAE[F, ν] = (K, E ,D) (as in “mini AE”) with K = {0, 1}k. The message space
M = {0, 1}n is given by the block-size of F, the nonce space N = {0, 1}ν and the AD space
A = {0, 1}α with α = t− ν, so the parameter ν allows to make a trade-off between the
nonce and AD sizes. The ciphertext expansion is n. The encryption and the decryption
algorithm are defined in Figure 19.

The MAE mode captures the immediate intuition behind the “AE-potential” of a
forkcipher: just use the redundancy contained in the right output block as a “tag”.

Security of MAE. We have the following statement about the security of MAE.
Theorem 5. Let F be a tweakable forkcipher with T = {0, 1}t, let 1 ≤ ν < t and let
1 ≤ τ ≤ n. Then for adversary A whose queries lie in the proper domains of the encryption
and decryption algorithms and who makes q encryption queries and qv decryption queries
such that q + qv ≤ 2n−1, we have

Advpri
MAE[F,ν,τ ](A) ≤ Advprtfp

F (B) + (q + qv)2

2n
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1: Algorithm E(K,N,A,M)
2: return FN‖AK M
3: end Algorithm

1: Algorithm D(K,N,A,C‖T )
2: if T = FρN‖AK (C, 0) then
3: return F−1N‖A

K (C, 0)
4: end if
5: return ⊥
6: end Algorithm

Figure 19: The MAE[F, ν] AEAD scheme.

for some adversary B who makes at most twice as many queries in total as A, and who
runs in time given by the running time of A plus an overhead that is linear in the total
number A’s queries.

Proof (sketch). We first replace F by a pair of tweakable random permutations π0 =
(πT,0 ←$ Perm(n))T∈{0,1}t and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t). Letting MAE[π0, π1]
denote the MAE mode that uses π0, π1 instead of F, we have

Advpri
MAE[F](A) ≤ Advprtfp

F (B) + Advpri
MAE[π0,π1](A)

by a similar argument as in the proof of Theorem 2. In the rest of the analysis, we will
refer to MAE[π0, π1 simply by Π.

For the rest of the analysis, we use the game Γ0 and Γ1 defined in Figure 20. We claim
that Pr[Apri-realΠ → 1] = AΓ1 → 1] and that Pr[Apri-idealΠ → 1] = AΓ0 → 1], which
yields

Advpri
MAE[π0,π1](A) ≤ Pr[AΓ1 → 1]− Pr[AΓ0 → 1].

It is easy to verify the latter equality; with the boxed statements removed, the code in
Figure 20 implements a family of random injections indexed by (N,A) by lazy sampling.
In particular, note that the probability that non-trivial decryption query succeeds in Γ0 is
Pr[b′ = 1 ∧ b′′ = 1] = 1 · (2n − |fN,A|)2/(2n − |fN,A|) · (22n − |fN,A|) which is equal to the
probability of finding a preimage of a random injection for which |fN,A| range points with
known images (or known to have no preimages).

The former equality holds, because the framed lines in game Γ1 make sure that f
does in fact implement MAE based on a family of pairs of random permutations indexed
by (N,A). First, there is an implicit bijection between {0, 1}t and N × A, so they are
interchangeable. Then, the conditions of lines 7 and 7 make sure that the functions π(N,A),0
and π(N,A),1 defined by π(N,A),0(M) = leftn(f(m)) and π(N,A),1(M) = rightn(f(m)). The
framed lines following the line 8 make sure that the distribution of ciphertext is the same
as when produced by a pair of random permutations. The boxed statement after line 10
rejects ciphertexts that can never be produced by MAE[π0, π1]. The boxed statements
after line 20 make sure that the probability that a non-trivial decryption query succeeds is
the same as for MAE[π0, π1].

In addition, the games Γ0 and Γ1 are identical until bad, so we have Pr[AΓ1 →
1]− Pr[AΓ0 → 1] ≤ Pr[AΓ1 sets bad] by the Fundamental lemma of gameplaying [16]. We
define badi for i = 1, . . . , q + qv to be the event bad is set to true in the ith query made by
the adversary. We further let badi1 denote the event that badi is true due to line line 8,
badi2 denote the event that badi is true due to line 10 and badi3 denote the event that badi

is true due to line 20. Then we have that Pr[AΓ1 sets bad] ≤
∑3
i=1
∑q+qv
j=1 Pr[badij ].

We have that

Pr[badi1] ≤ (i− 1) · 2 · 2n − 1
22n − i+ 1 ≤ (i− 1) · 2n+1

2n(2n − 1) ≤
2 · (i− 1)

2n − 1
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because if bad was not set previously, there are at most i−1 elements in both Rl(fN,A) and
Rr(fN,A) for any (N,A), and for each X element of either Rl(fN,A) or Rr(fN,A), there
are at most 2n − 1 elements of {0, 1}2n\R⊥(fN,A) that collide with X on their n leftmost,
or respectively rightmost bits. The rest follows from the assumption (q + qv) ≤ 2n implied
by q + qv ≤ 2n−1. Summing over i, we get that

∑q+qv
i=1 Pr[badi1] ≤ 2 · (q + qv)2/2 · (2n − 1).

Then, we have that

Pr[badi2] ≤ · 2n

22n − i+ 1 ≤
2n

2n(2n − 1) ≤
1

2n − 1

because in the ith query, we have 0 ≤ |fN,A| ≤ i− 1 for any (N,A), and this determines
the parameter of the Bernouli variable which can set bad. The inequality follows using
the assumption (q + qv) ≤ 2n implied by (q + qv) ≤ 2n−1. Summing over i, we get that∑q+qv
i=1 Pr[badi2] ≤ (q + qv)/(2n − 1).
Finally, we have that

Pr[badi3] = 1
2n − |fN,A|

·
(

1− (2n − |fN,A|)2

22n − |fN,A|

)
≤ 1

2n − |fN,A|
≤ 1

2n − (i− 1) ≤
1

2n−1

because badij occurs in the ith query if and only if b′ = b′′ = 1. The fina;l inequality then
follows from the assumption (q+qv) ≤ 2n−1. Summing over i, we get that

∑q+qv
i=1 Pr[badi3] ≤

(q + qv)/(2n−1).
The claimed bound is obtained by adding up the sums

∑q+qv
j=1 Pr[badij ] for j = 1, 2, 3.

5.10 Discussion
We presented three modes of operation for a tweakable forkcipher. Each of the three nodes
reduces to a single call to the used forkcipher F in the case that the input only consists
of a single block of data (either AD or message, but not both). This, together with an
appropriate instantiation of F yields concrete AE schemes that excel in short-message
encryption and decryption performance.

However, all three modes also share a certain deficiency: the technique we use to
process arbitrary-length messages requires the ciphertext expansion to be exactly n bits.
This can be limiting in many applications, in which bandwidth is limited. We leave solving
this issue as an interesting open question.

Starting from a FIL PRI. As mentioned in Section 1, we also considered designing the
VIL AEAD schemes as mods of operation of a FIL (tweakable) PRI, but we encountered
several setbacks when heading in this direction.

Firstly, the FIL PRI does not seem suitable for designing modes that process arbitrary
length messages. Out of the three modes we proposed, PAEF and SAEF cannot be recast as
modes of a PRI, because they effectively discard one half of every call to the used primitive
F. If F were a PRI, this would make decryption impossible. The parallel-permutation
structure is crucial for these two modes. The fGCM, on the other hand, could be recast as
a mode of a FIL PRI, as it does not require the computation of the inverse of F, except for
the final message block. The problem here is that when used with a FIL PRI, fGCM could
not have a constant ciphertext expansion. When instantiated with a n-to-2n bit PRI, an
encryption of a single-bit message would result in a ciphertext with 2n−1 bits of expansion;
an attempt to truncate the ciphertext would render decryption impossible. Thus we were
unable to find a mode of operation for a FIL-PRI that would process arbitrary length
messages with constant stretch. Whether such a mode of operation for forkciphers exists
is another interesting open question.
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1: proc initialize
2: for N,A ∈ N ×A do
3: fN,A = ∅
4: end for
5: bad← false

1: proc Enc(N,A,M)
2: if ∃ C s.t. (M,C) ∈ fN,A then
3: return C
4: end if
5: C ←$ {0, 1}2n\R⊥(fN,A)
6: Cl ← leftn(C); Cr ← rightn(C)
7: if Cl ∈ Rl(fN,A) or Cr ∈ Rr(fN,A)

then
8: bad← true
9: if Cl ∈ Rl(fN,A) then
10: X ←$ {0, 1}n\Rl(fN,A)
11: C ← X‖Cr
12: end if
13: if Cr ∈ Rr(fN,A) then
14: X ←$ {0, 1}n\Rr(fN,A)
15: C ← Cl‖X
16: end if
17: end if
18: fN,A ← fN,A ∪ {(M,C)}
19: return C

1: proc Dec(N,A,C‖T )
2: if ∃ M s.t. (M,C) ∈ fN,A then
3: return M

4: end if
5: M ←$ {0, 1}n\D(fN,A)
6: Cl ← leftn(C); Cr ← rightn(C)
7: if Cl ∈ Rl(fN,A) or Cr ∈ Rr(fN,A)

then
8: b←$ Be

(
2n−|fN,A|
22n−|fN,A|

)
9: if b = 1 then
10: bad← true
11: return ⊥
12: fN,A ← fN,A ∪ {(M,C)}
13: return M
14: end if
15: else
16: b′ ←$ Be

(
1

(2n−|fN,A|

)
17: b′′ ←$ Be

(
(2n−|fN,A|)2

22n−|fN,A|

)
18: if b′ = 1 then
19: if b′′ = 0 then
20: bad← true
21: fN,A ← fN,A ∪ {(M,C)}
22: return M

23: else
24: fN,A ← fN,A ∪ {(M,C)}
25: return M
26: end if
27: end if
28: end if
29: fN,A ← fN,A ∪ {(⊥, C)}
30: return ⊥

Figure 20: The games Γ0 and Γ1 for bounding Advpri
MAE[π0,π1]. The game Γ1 does not con-

tain the boxed statements, while Γ0 does. The games implement the (partially defined) in-
jective funcitons fN,A : {0, 1}n → {0, 1}2n as initially-empty sets of preimage-image pairs; a
pair (⊥, C) signifies that C has no premiage under the given function. We define the domain,
range, and the “left” and “right” range of any fN,A as D(fN,A) = {M ∈ {0, 1}n|∃(M,C) ∈
fN,A}, R(fN,A) = {C ∈ {0, 1}2n|∃(M,C) ∈ fN,A s.t. M 6= ⊥}, Rl(fN,A) = {L ∈
{0, 1}n|∃ some L‖X ∈ R(fN,A)} and Rr(fN,A) = {R ∈ {0, 1}n|∃ some X‖R ∈ R(fN,A)}.
We additionally define the extended range R⊥(fN,A) = {C ∈ {0, 1}2n|∃(M,C) ∈ fN,A}.
Be (p) denotes a random variable with Bernouli distribution with Pr[Be (p) = 1] = p.
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Constructing a FIL PRI. The second question is if we can find better instances of a FIL
PRI. Our preferred choice was AES-based and thus the ForkAES. Yet, as evidenced by
the result in Section 5.9, there is an unavoidable birthday-type quantitative gap between
the PRI security, and the kind of security that ForkAES inherently possesses. A direct
instance of a true FIL tweakable PRI is a question we leave open.
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