
Generic Authenticated Key Exchange in the
Quantum Random Oracle Model

Kathrin Hövelmanns 1 Eike Kiltz 1 Sven Schäge 1 Dominique Unruh 2

February 14, 2019

1 Ruhr-Universität Bochum
{kathrin.Hoevelmanns,eike.kiltz,sven.schaege}@rub.de

2 University of Tartu
unruh@ut.ee

Abstract
We propose FOAKE, a generic construction of two-message authenticated key exchange (AKE)

from any passively secure public key encryption (PKE) in the quantum random oracle model
(QROM). Whereas previous AKE constructions relied on a Diffie-Hellman key exchange or required
the underlying PKE scheme to be perfectly correct, our transformation allows arbitrary PKE schemes
with non-perfect correctness. Furthermore, we avoid the use of (quantum-secure) digital signature
schemes which are considerably less efficient than their PKE counterparts. As a consequence, we can
instantiate our AKE transformation with any of the submissions to the recent NIST post-quantum
competition, e.g., ones based on codes and lattices.

FOAKE can be seen as a generalization of the well known Fujisaki-Okamoto transformation (for
building actively secure PKE from passively secure PKE) to the AKE setting. Therefore, as a helper
result, we also provide a security proof for the Fujisaki-Okamoto transformation in the QROM for
PKE with non-perfect correctness. Our reduction fixes several gaps in a previous proof (CRYPTO
2018), is tighter, and tolerates a larger correctness error.

Keywords: Authenticated key exchange, quantum random oracle model, NIST, Fujisaki-
Okamoto.

1 Introduction

Authenticated Key Exchange. Besides public key encryption (PKE) and digital signatures, authenti-
cated key exchange (AKE) is one of the most important cryptographic building blocks in modern security
systems. In the last two decades, research on AKE protocols has made tremendous progress in develop-
ing more solid theoretical foundations [BR94, CK01, LLM07, JKSS12] as well as increasingly efficient
designs of AKE protocols [Kra05, YZ13, Sch15]. Most AKE protocols rely on constructions based on an
ad-hoc Diffie-Hellman key exchange that is authenticated either via digital signatures, non-interactive
key exchange (usually a Diffie-Hellman key exchange performed on long-term Diffie-Hellman keys), or
public key encryption. While in the literature one can find many protocols that use one of the two former
building blocks, results for PKE-based authentication are rather rare [BCK98, BCNP08]. Even rarer are
constructions that only rely on PKE, discarding Diffie-Hellman key exchanges entirely. Notable recent
exceptions are [FSXY12] and the protocol in [ABS14], the latter of which has been criticized for having a
flawed security proof and a weak security model [Too15, LS17].
The NIST Post-Quantum Competition. Recently, some of the above mentioned designs have gathered
renewed interest in the quest of finding AKE protocols that are secure against quantum adversaries,
i.e., adversaries equipped with a quantum computer. In particular, the National Institute of Standards
and Technology (NIST) announced a competition with the goal to standardize new PKE and signature
algorithms [NIS17] with security against quantum adversaries. With the understanding that an AKE
protocol can be constructed from low level primitives such as quantum-secure PKE and signature schemes,

mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here

the NIST did not require the submissions to describe a concrete AKE protocol. Natural PKE and
signature candidates base their security on the hardness of certain problems over lattices and codes, which
are generally believed to resist quantum adversaries.
The quantum ROM. Quantum computers may execute all “offline primitives” such as hash functions
on arbitrary superpositions, which motivated the introduction of the quantum (accessible) random oracle
model (QROM) [BDF+11]. While the adversary’s capability to issue quantum queries to the random
oracle renders many proof strategies significantly more complicated, it is nowadays generally believed
that only proofs in the QROM imply provable security guarantees against quantum adversaries.
AKE and Quantum-Secure Signatures. Digital signatures are useful for the “authentication” part
in AKE, but unfortunately all known quantum-secure constructions would add a considerable overhead to
the AKE protocol. Therefore, if at all possible, we prefer to build AKE protocols only from PKE schemes,
without using signatures.1 We insist that our ultimate goal is to build a system that remains secure in
the presence of quantum computers, meaning that even currently employed (very fast) signatures schemes
based on elliptic curves are not an option.
Central Research Question for Quantum-Secure AKE. In summary, motivated by post-quantum
secure cryptography and the NIST competition, we are interested in the following question:

How to build an actively secure AKE protocol from any passively secure PKE in
the quantum random oracle model, without using signatures?

(The terms “actively secure AKE” and “passively secure PKE” will be made more precise later.) One of
the main technical difficulties is that the underlying PKE scheme might come with a small probability of
decryption failure, i.e., first encrypting and then decrypting does not yield the original message. This
property is called non-perfect correctness, and it is common for quantum-secure schemes from lattices
and codes, rendering them unfit for usage in all previous constructions that relied on perfect correctness.2

Previous Constructions of AKE from PKE. The generic AKE protocol of Fujioka et al. [FSXY12]
(itself based on [BCNP08]) transforms a passively secure PKE scheme PKE and an actively (i.e.,
IND-CCA) secure PKE scheme PKEcca into an AKE protocol. We will refer to this transformation
as FSXY[PKE,PKEcca]. Since the FSXY transformation is in the standard model, it is likely to be secure
with the same proof in the post-quantum setting and thus also in the QROM. The standard way to
obtain actively secure encryption from passively secure ones is the Fujisaki-Okamoto transformation
PKEcca = FO[PKE,G,H] [FO99, FO13]. In its “implicit rejection” variant [HHK17], it comes with a
recently discovered security proof [SXY18] that models the hash functions G and H as quantum random
oracles. Indeed, the combined AKE transformation FSXY[PKE,FO[PKE,G,H]] transforms passively secure
encryption into AKE that is very likely to be secure in the QROM, without using digital signatures,
hence giving a first answer to our above question. It has, however, two main drawbacks.

• Perfect correctness requirement. Transformation FSXY is not known to have a security proof
if the underlying scheme does not satisfy perfect correctness. Likewise, the relatively tight QROM
proof for FO that was given in [SXY18] requires the underlying scheme to be perfectly correct,
and the generalisation of the proof for schemes with non-perfect correctness is not straightforward.
Since there were no results on how non-perfect correctness of PKE influences the security of
FSXY[PKE,FO[PKE,G,H]], it was unclear whether it was fit to be used with lattice- or code-based
encryption schemes.

• Overly complicated? The Fujisaki-Okamoto transformation already involves hashing the key
using hash function H, and FSXY involves even more (potentially redundant) hashing of the (already
hashed) session key. Overall, the combined transformation seems overly complicated and hence
impractical.

Hence, it seems desirable to provide a simplified transformation that gets rid of unnecessary hashing
steps, and that can be proven secure in the quantum random oracle model even if the underlying scheme

1Clearly, PKE requires a working public-key infrastructure (PKI) which in turn requires signatures to certify the public-
key. However, a user only has to verify a given certificate once and for all, which means the overhead of a quantum-secure
signature can be neglected.

2There exist generic transformations that can immunize against decryption errors (e.g., [DNR04]). Even though they are
quite efficient in theory, the induced overhead is still not acceptable for practical purposes.

2

does not come with perfect correctness. As a motivating example, note that the Kyber AKE protocol
[BDK+17] can be seen as a result of applying such a simplified transformation to the Kyber PKE scheme,
although coming without a formal security proof.

1.1 Our Contributions
Our main contribution is a transformation, FOAKE[PKE,G,H] (“Fujisaki-Okamoto for AKE”) that converts
any passively secure encryption scheme into an actively secure AKE protocol, with provable security in
the quantum random oracle model. It can deal with non-perfect correctness and does not use digital
signatures. Furthermore, we provide a precise game-based security definition for two-message AKE
protocols. As a side result, we give a security proof for the Fujisaki-Okamoto transformation in the
QROM in Section 3 that deals with correctness errors. It can be seen as the KEM analogue of our main
result, the AKE proof. We want to stress that a security proof for the Fujisaki-Okamoto transformation
in the QROM was already given in the independent work of [JZC+18a], but since we identified some
flaws and since our proof structurally differs from the one given [JZC+18a], we decided to include our
KEM proof to illustrate our techniques and to keep our AKE proof as comprehensible as possible.

1.1.1 Improved bounds and analysis for the Fujisaki-Okamoto transformation FO 6⊥m.

To simplify the presentation of FOAKE, we first give some background on the Fujisaki-Okamoto transfor-
mation. In its original form [FO99, FO13], FO yields an encryption scheme that is IND-CCA secure in the
random oracle model [BR93] from combining any One-Way secure asymmetric encryption scheme with any
one-time secure symmetric encryption scheme. In “A Designer’s Guide to KEMs”, Dent [Den03] provided
FO-like IND-CCA secure KEMs. (Recall that any IND-CCA secure Key Encapsulation Mechanism can
be combined with any (one-time) chosen-ciphertext secure symmetric encryption scheme to obtain a
IND-CCA secure PKE scheme [CS03].) Since all of the transformations mentioned above required the
underlying PKE scheme to be perfectly correct, and due to the increased popularity of lattice-based
schemes with non-perfect correctness, [HHK17] gave several modularizations of FO-like transformations
and proved them robust against correctness errors. The key observation was that FO-like transformations
essentially consists of two separate steps and can be dissected into two transformations, as sketched in
the introduction of [HHK17]:

• Transformation T ([BBO07], [BHSV98, Sec. 5]): “Derandomization” and “re-encryption”. Starting
from an encryption scheme PKE and a hash function G, encryption of PKE′ = T[PKE,G] is defined
by

Enc′(pk,m) := Enc(pk,m; G(m)),
where G(m) is used as the random coins for Enc, rendering Enc′ deterministic. Dec′(sk, c) first
decrypts c into m′ and rejects if Enc(pk,m′; G(m′)) 6= c (“re-encryption”).

• Transformation U6⊥m: “Hashing”. Starting from an encryption scheme PKE′ and a hash function H,
key encapsulation mechanism KEM 6⊥m = U 6⊥m[PKE′,H] with “implicit rejection” is defined by

Encaps(pk) := (c ← Enc′(pk,m),K := H(m)), (1)

where m is picked at random from the message space, and

Decaps(sk, c) =
{

H(m) m 6= ⊥
H(s, c) m = ⊥

,

where m := Dec(sk, c) and s is a random seed which is contained in sk. In the context of the FO
transformation, implicit rejection was first introduced by Persichetti [Per12, Sec. 5.3].

Transformation T was proven secure both in the (classical) ROM and the QROM, and U6⊥m was proven
secure in the ROM. To achieve QROM security, [HHK17] gave a modification of U6⊥m , called QU 6⊥m , but its
security proof in the QROM suffered from a quartic loss in tightness, and most real-world proposals are
designed such that they fit the framework of FO 6⊥m = U6⊥m ◦ T, not QU 6⊥m ◦ T.

A slightly different modularization was introduced in [SXY18]: they gave transformations TPunc
("Puncturing and Encrypt-with-Hash") and SXY ("Hashing with implicit reject and reencryption"). SXY

3

differs from U 6⊥m in that it reencrypts during decryption. Hence, it can only be applied to deterministic
schemes. Even in the QROM, its CCA security tightly reduces to an intermediate notion called Disjoint
Simulatability (DS) of ciphertexts. Intuitively, disjoint simulatability means that we can efficiently sample
“fake ciphertexts” that are computationally indistinguishable from real PKE ciphertexts (“simulatability”),
while the set of possible fake ciphertexts is required to be (almost) disjoint from the set of real ciphertexts.
DS is naturally satisfied by many code/lattice-based encryption schemes. Additionally, it can be achieved
using transformation Punc, i.e., by puncturing the underlying schemes’ message space at one point and
using this message to sample fake encryptions. Deterministic DS can be achieved by using transformation
TPunc, albeit non-tightly (due to the use of the oneway-to-hiding lemma).

PKE0
IND-CPA

PKE
DS (prob.)
+ IND-CPA

PKE′
DS (det.)

KEM
IND-CCA

Punc[PKE0]

T[PKE,G]TPunc[PKE0,G]

SXY[PKE′,H]

FO 6⊥m [PKE,G,H] = U 6⊥m [T[PKE,G],H]

Figure 1: Comparison of [SXY18]’s modular transformation (green) with ours. Solid arrows indicate tight
reductions, dashed arrows indicate non-tight reductions.

However, the reduction that is given in [SXY18] requires the underlying encryption scheme to be
perfectly correct. While [JZC+18a, JZC+18b] ([JZC+18b] refers to the full version of [JZC+18a] in its
last revision from July 2018) gave security proofs for the non-modular transformations FO 6⊥m and FO 6⊥
[JZC+18b, Thms. 1 and 2] as well as a security proof for SXY3 (see [JZC+18b, Thm. 6]) for schemes with
correctness errors. We identified some flaws and drawbacks which we will discuss in Appendix A. In a
nutshell, two main issues arise: The first issue is that to prove the non-modular statements, a lemma is
used whose formal statement is unclear. One of its requirements might be unsatisfiable, rendering the
proof impossible to verify. We structure our proof differently by following [SXY18]’s modular approach
as far as possible.4 For more details on this issue and our strategy to avoid it, we refer to Appendix A.

The second issue is that the security statement given in [JZC+18b, Thm. 6] is based on prerequisites
that are not met by most lattice-based encryption schemes. Recall that both U6⊥m and SXY are only
applicable to deterministic schemes since they reencrypt, and the issue stated above is due to the correctness
definition for deterministic schemes that is used.5 It is not straightforward to give a correctness definition
for deterministic encryption schemes such that it fits known strategies to prove SXY tightly secure,
but also is achievable by most lattice-based schemes. We circumvent this difficulty by resorting to a
non-modularized proof that assumes a non-deterministic scheme.6 Lastly, we want to stress that the
statement of [JZC+18b, Thm. 6] is not proven, and it is unclear how it could be proven with the standard
notion of IND-CCA security. More details on these issues are also given in Appendix A.

Transformation FO 6⊥m can be applied to any PKE scheme that is both IND-CPA and DS secure. The
reduction is tighter than the one that results from combining those of TPunc and SXY in [SXY18], and
also than the reduction given in [JZC+18b]. This is due to our use of the improved Oneway-to-Hiding
lemma [AHU18, Thm. 1: “Semi-classical O2H”]. Furthermore, we achieve a better correctness bound (the
square of the bound given in [JZC+18b]) due to a better bound for the generic distinguishing problem.
In cases where PKE is not already DS, this requirement can be waived with negligible loss of efficiency:

3 Note that the papers’ nomenclature is misleading: while the KEM discussed in theorem 6 and given in figure 13 is
called U 6⊥m , it is transformation SXY (it reencrypts during decryption, which transformation U 6⊥m does not).

4 We will first prove that T[−,G] turns any suitable scheme into a scheme that is deterministically DS, and then plug in
this result into [SXY18]’s tight security proof for U 6⊥m .

5The definition of correctness, in the deterministic setting, effectively requires that the scheme is perfectly correct for
almost all public keys.

6 When plugging in T[−,G] into U6⊥m , we can change random oracle G during the security proof such that the scheme
is rendered perfectly correct, a necessary condition to proceed with the tight security proof. Distinguishing G from its
“perfected” version allows for a reduction to a distinguishing problem.

4

To rely on IND-CPA alone, all that has to be done is to plug in transformation Punc. A visualization is
given in Figure 1.

1.1.2 Rigorous Security Model for Two-Message Authenticated Key Exchange.

We introduce a game-based security model for (non-parallel) two-message AKE protocols, i.e., protocols
where the responder sends his message only after having received the initiator’s message. Technically,
in our model, and similar to previous literature, we define several oracles that the attacker has access
to. However, in contrast to most other security models, the inner workings of these oracles and their
management via the challenger are precisely defined with pseudo-code.
Details on our Models. We define two security notions for two-message AKEs: key indistinguishability
against active attacks (IND-AA) and the weaker notion of indistinguishability against active attacks without
state reveal in the test session (IND-StAA). IND-AA captures the classical notion of key indistinguishability
(as introduced by Bellare and Rogaway [BR94]) as well as security against reflection attacks, key
compromise impersonation (KCI) attacks, and weak forward secrecy (wFS) [Kra05]. It is based on the
Canetti-Krawczyk (CK) model and allows the attacker to reveal (all) secret state information as compared
to only ephemeral keys. As already pointed out by [BCNP08], this makes our model incomparable to the
eCK model [LLM07] but strictly stronger than the CK model. Essentially, the IND-AA model states that
the session key remains indistinguishable from a random one even if

1. the attacker knows either the long-term secret key or the secret state information (but not both) of
both parties involved in the test session, as long as it did not modify the message received by the
test session,

2. and also if the attacker modified the message received by the test session, as long as it did not
obtain the long-term secret key of the test session’s peer.

Note that IND-AA only excludes trivial attacks and is hence the strongest notion of security that can be
achieved by any (non-parallel) two-message AKE protocol (relative to the set of oracle queries we allow).

We also consider the slightly weaker model IND-StAA (in which we will prove the security of our AKE
protocols), where 2. is substituted by

2’. and also if the attacker modified the message received by the test session, as long as it did neither
obtain the long-term secret key of the test session’s peer nor the test session’s state. The latter
strategy, we will call a state attack.

We remark that IND-StAA security is essentially the same notion that was achieved by the FSXY
transformation [FSXY12].7

1.1.3 Our Authenticated Key-Exchange Protocol.

Our transformation FOAKE transforms any passively secure PKE (with potential non-perfect correctness)
into an IND-StAA secure AKE. FOAKE is a simplification of the transformation FSXY[PKE,FO[PKE,G,H]]
mentioned above, where the derivation of the session key K uses only one single hash function H. FOAKE
can be regarded as the AKE analogue of the Fujisaki-Okamoto transformation.

Transformation FOAKE[PKE,G,H] is described in Figure 2 and uses transform PKE′ = T[PKE,G] as
a building block. (The full construction is given in Figure 18, see Section 5.) Our main security result
(Theorem 5.1) states that FOAKE[PKE,G,H] is an IND-StAA-secure AKE if the underlying probabilistic
PKE is DS as well as IND-CPA secure and has negligible correctness error, and furthermore G and H are
modeled as quantum random oracles.

The proof essentially is the AKE analogue to the security proof of FO 6⊥m we give in Section 3.2: By
definition of our security model, it always holds that at least one of the messages mi , mj and m̃ is hidden
from the adversary (unless it loses trivially). Adapting the simulation technique in [SXY18], we can
simulate the session keys even if we do not know the corresponding secret key ski (skj , s̃k). Assuming
that PKE is DS, we can replace the corresponding ciphertext ci (cj , c̃) of the test session with a fake

7The difference is that the model from [FSXY12] furthermore allows a “partial reveal” of the test session’s state. For
simplicity and due to their little practical relevance, we decided not to include such partial session reveal queries in our
model. We remark that, however, our protocol could be proven secure in this slightly stronger model.

5

Pi(ski , pkj) Pj(skj , pki)

p̃k, cj

ci , c̃

mj

cj

p̃k p̃k

m̃′

c̃
m′i ci

mj

$

Enc′pkj

(p̃k, s̃k)← KG

Decs̃k

Dec′ski

cj

m′j

p̃k

c̃

m̃

ci mi

Dec′skj

p̃k

Enc′p̃k m̃

$

Enc′pki
mi

$

H

K = H(m′i ,mj , m̃′, p̃k, i, j)

H

K = H(mi ,m′j , m̃, p̃k, i, j)

Figure 2: A visualisation of our authenticated key-exchange protocol FOAKE. We make the convention
that, in case any of the Dec′ algorithms returns ⊥, the session key K is derived deterministically and
pseudorandomly from the player’s state (“implicit rejection”).

ciphertext, rendering the test session’s key completely random from the adversary’s view due to PKE’s
disjointness.

Let us add two remarks. Firstly, we cannot prove the security of FOAKE[PKE,G,H] in the stronger
sense of IND-AA and actually, it is not secure against state attacks. Secondly, note that our security
statement involves the probabilistic scheme PKE rather than PKE′. Unfortunately, we were not able to
provide a modular proof of AKE solely based on reasonable security properties of PKE′ = T[PKE,G]. The
reason for this is indeed the non-perfect correctness of PKE. This difficulty corresponds to the difficulty to
generalize [SXY18]’s result for deterministic encryption schemes with correctness errors discussed above.
Concrete Applications. Our transformation can be applied to any DS and IND-CPA secure PKE
scheme with post-quantum security, e.g., Frodo [NAB+17], Kyber [BDK+17], and Lizard [BI17]. In fact,
applying FOAKE to Kyber provides a formal security proof for the AKE protocol described in [BDK+17].
Note that most of the mentioned schemes are already DS secure under the same assumption as it is
used for IND-CPA security and as mentioned above, the requirement of DS security can be waived with
negligible loss of efficiency.

1.1.4 Open Problems.

In the literature, one can find several Diffie-Hellman based protocols that achieve IND-AA security, for
example HMQV [Kra05]. However, none of them provides security against quantum computers. We leave
as an interesting open problem to design a generic and efficient two-message AKE protocol in our stronger
IND-AA model, preferably with a security proof in the QROM. While we were able to generalize (and
tighten) the proof of CCA security given in [SXY18] for the combined transformation FO 6⊥m := U6⊥m ◦ T
such that it covers encryption schemes that come with non-perfect correctness, it still remains an open
problem to generalize the security proof of U 6⊥m such that it is applicable to any deterministic encryption
scheme that is DS, even if it is not perfectly correct for more than neglibly many key pairs.

2 Preliminaries
For n ∈ N, let [n] := {1, . . . , n}. For a set S , |S | denotes the cardinality of S. For a finite set S , we denote
the sampling of a uniform random element x by x ←$ S , while we denote the sampling according to some
distribution D by x ← D. By JBK we denote the bit that is 1 if the boolean Statement B is true, and
otherwise 0.

6

Algorithms. We denote deterministic computation of an algorithm A on input x by y := A(x). We
denote algorithms with access to an oracle O by AO. Unless stated otherwise, we assume all our algorithms
to be probabilistic and denote the computation by y ← A(x).
Games. Following [Sho04, BR06], we use code-based games. We implicitly assume boolean flags to be
initialized to false, numerical types to 0, sets to ∅, and strings to the empty string ε. We make the
convention that a procedure terminates once it has returned an output.

2.1 Public-key Encryption

Syntax. A public-key encryption scheme PKE = (KG,Enc,Dec) consists of three algorithms, and a
finite message spaceM which we assume to be efficiently recognizable. The key generation algorithm
KG outputs a key pair (pk, sk), where pk also defines a finite randomness space R = R(pk). The
encryption algorithm Enc, on input pk and a message m ∈M, outputs an encryption c ← Enc(pk,m) of
m under the public key pk. If necessary, we make the used randomness of encryption explicit by writing
c := Enc(pk,m; r), where r ←$ R. We call PKE injective iff the (deterministic) function E(pk,−;−) is
injective for all public keys pk. The decryption algorithm Dec, on input sk and a ciphertext c, outputs
either a message m = Dec(sk, c) ∈ M or a special symbol ⊥ /∈ M to indicate that c is not a valid
ciphertext.

Definition 2.1 (Collision probability of key generation.). We define

γ(KG) := Pr[(pk, sk)← KG, (pk ′, sk ′)← KG : pk = pk ′] .

Correctness. [HHK17] We define δ := E[maxm∈M Pr[c ← Enc(pk,m) : Dec(sk, c) 6= m]], where the
expectation is taken over (pk, sk)← KG.
Security. We now define the notion of Indistinguishability under Chosen Plaintext Attacks (IND-CPA)
for public-key encryption.

Definition 2.2 (IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption scheme. We define
game IND-CPA game as in Figure 3, and the IND-CPA advantage function of a quantum adversary
A = (A1,A2) against PKE (such that A2 has binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA

1 ⇒ 1]− Pr[IND-CPAA
0 ⇒ 1]| .

We also define IND-CPA security in the random oracle model model, where PKE and adversary A are
given access to a random oracle.

GAME IND-CPAb
01 (pk, sk)← KG
02 (m∗0 ,m∗1 , st)← A1(pk)
03 c∗ ← Enc(pk,m∗b)
04 b′ ← A2(pk, c∗, st)
05 return b′

GAME IND-CCA
06 (pk, sk)← KG
07 b ←$ F2
08 (K∗0 , c∗)← Encaps(pk)
09 K∗1 ←$ K
10 b′ ← ADecaps(pk, c∗,K∗b)
11 return Jb′ = bK

Decaps(c 6= c∗)
12 K := Decaps(sk, c)
13 return K

Figure 3: Games IND-CPAb for PKE (b ∈ F2) and game IND-CCA for KEM.

Disjoint simulatability. Following [SXY18], we consider PKE where it is possible to efficiently
sample fake ciphertexts that are indistinguishable from proper encryptions, while the probability that the
sampling algorithm hits a proper encryption is small.

Definition 2.3 (DS) [SXY18] Let PKE = (KG,Enc,Dec) be a PKE scheme with message space M
and ciphertext space C, together with a PPT algorithm Enc. For quantum adversaries A, we define the
advantage against PKE’s disjoint simulatability as

AdvDS
PKE(A) :=|Pr[pk ← KG,m ←$ M, c ← Enc(pk,m) : 1← A(pk, c)]

− Pr[pk ← KG, c ← Enc(pk) : 1← A(pk, c)]| .

7

We call PKE εdis-disjoint if for all pk ← KG, Pr[c ← Enc(pk) : c ∈ Enc(pk,M;R)] ≤ εdis.

2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (KG,Encaps,Decaps) consists of three algorithms. The
key generation algorithm KG outputs a key pair (pk, sk), where pk also defines a finite key space K. The
encapsulation algorithm Encaps, on input pk, outputs a tuple (K , c) where c is said to be an encapsulation
of the key K which is contained in key space K. The deterministic decapsulation algorithm Decaps, on
input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈ K or a special symbol ⊥ /∈ K
to indicate that c is not a valid encapsulation.

We call KEM δ-correct if

Pr [Decaps(sk, c) 6= K | (pk, sk)← KG; (K , c)← Encaps(pk)] ≤ δ .

Note that the above definition also makes sense in the random oracle model since KEM ciphertexts do
not depend on messages.
Security. We now define a security notion for key encapsulation: Indistinguishbility under Chosen
Ciphertext Attacks (IND-CCA).

Definition 2.4 (IND-CCA). We define the IND-CCA game as in Figure 3 and the IND-CCA advantage
function of an adversary A (with binary output) against KEM as

AdvIND-CCA
KEM (A) := |Pr[IND-CCAA ⇒ 1]− 1/2| .

2.3 Quantum Computation

Qubits. For simplicity, we will treat a qubit as a vector |ϕ〉 ∈ C2, i.e., a linear combination |ϕ〉 =
α · |0〉+β · |1〉 of the two basis states (vectors) |0〉 and |1〉 with the additional requirement to the probability
amplitudes α, β ∈ C that |α|2 + |β|2 = 1. The basis {|0〉, |1〉} is called standard orthonormal computational
basis. The qubit |ϕ〉 is said to be in superposition. Classical bits can be interpreted as quantum bits via
the mapping (b 7→ 1 · |b〉+ 0 · |1− b〉).
Quantum Registers. We will treat a quantum register as a collection of multiple qubits, i.e. a linear
combination |ϕ〉 :=

∑
x∈Fn

2
αx · |x〉, where αx ∈ C, with the additional restriction that

∑
x∈Fn

2
|αx |2 = 1.

As in the one-dimensional case, we call the basis {|x〉}x∈Fn
2
the standard orthonormal computational basis.

We say that |ϕ〉 =
∑

x∈Fn
2
αx · |x〉 contains the classical query x if αx 6= 0.

Measurements. Qubits can be measured with respect to a basis. In this paper, we will only consider
measurements in the standard orthonormal computational basis, and denote this measurement by
Measure(·), where the outcome of Measure(|ϕ〉) for a single qubit |ϕ〉 = α · |0〉 + β · |1〉 will be
0 with probability |α|2 and 1 with probability |β|2, and the outcome of measuring a qubit register
|ϕ〉 =

∑
x∈Fn

2
αx · |x〉 will be x with probability |αx |2. Note that the amplitudes collapse during a

measurement, this means that by measuring α · |0〉 + β · |1〉, α and β are switched to one of the
combinations in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional case, all amplitudes are switched to 0
except for the one that belongs to the measurement outcome and which will be switched to 1.
Quantum oracles and quantum Adversaries. Following [BDF+11, BBC+98], we view a quantum
oracle |O〉 as a mapping

|x〉|y〉 7→ |x〉|y ⊕ O(x)〉 ,

where O : Fn
2 → Fm

2 , and model quantum adversaries A with access to O by a sequence U1, |O〉, U2, · · · ,
|O〉, UN of unitary transformations. We write A|O〉 to indicate that the oracles are quantum-accessible
(contrary to oracles which can only process classical bits).
Quantum random oracle model. We consider security games in the quantum random oracle model
(QROM) as their counterparts in the classical random oracle model, with the difference that we consider
quantum adversaries that are given quantum access to the (offline) random oracles involved, and
classical access to all other (online) oracles. For example, in the IND-CPA game, the adversary only

8

obtains a classical encryption, like in [BJ15], and unlike in [BZ13]. In the IND-CCA game, the adversary
only has access to a classical decryption oracle, unlike in [GHS16] and [AJOP18].

Zhandry [Zha12] proved that no quantum algorithm A|O〉, issuing at most q quantum queries to |O〉,
can distinguish between a random function O : Fm

2 → Fn
2 and a 2q-wise independent function f2q. For

concreteness, we view f2q : Fm
2 → Fn

2 as a random polynomial of degree 2q over the finite field F2n . The
running time to evaluate f2q is linear in q. In this article, we will use this observation in the context
of security reductions, where quantum adversary B simulates quantum adversary A|O〉 issuing at most
q queries to |O〉. Hence, the running time of B is Time(B) = Time(A) + q · Time(O), where Time(O)
denotes the time it takes to simulate |O〉. Using the observation above, B can use a 2q-wise independent
function in order to (information-theoretically) simulate |O〉, and we obtain that the running time of B
is Time(B) = Time(A) + q · Time(f2q), and the time Time(f2q) to evaluate f2q is linear in q. Following
[SXY18] and [KLS18], we make use of the fact that the second term of this running time (quadratic in
q) can be further reduced to linear in q in the quantum random-oracle model where B can simply use
another random oracle to simulate |O〉. Assuming evaluating the random oracle takes one time unit, we
write Time(B) = Time(A) + q, which is approximately Time(A).
Oneway to Hiding with semi-classical oracles. In [AHU18], Ambainis et al. defined semi-classical
oracles that return a state that was measured with respect to one of the input registers. In particular,
to any subset S ⊂ X , they associated the following semi-classical oracle OSC

S : Algorithm OSC
S , when

queried on |ψ, 0〉, measures with respect to the projectors M1 and M0, where M1 :=
∑

x∈S |x〉〈x| and
M0 :=

∑
x /∈S |x〉〈x|. The oracle then initializes the second register to |b〉 for the measured bit b. This

means that |ψ, 0〉 collapses to either a state |ψ′, 0〉 such that |ψ′〉 only contains elements of X \ S or to a
state |ψ′, 1〉 such that |ψ′〉 only contains elements of S . Let FIND denote the event that the latter ever
is the case, i.e., that OSC

S ever answers with |ψ′, 1〉 for some ψ′. To a quantum oracle |G〉 and a subset
S ⊂ X , Ambainis et al. associate the following punctured oracle |G \ S〉 that removes S from the domain
of |G〉 unless FIND occurs.

|G \ S〉|ψ, φ〉
01 |ψ′, b〉 := OSC

S |ψ, 0〉
02 return |G〉|ψ′, φ〉

Figure 4: Punctured oracle |G \ S〉 for OW2H.

The following theorem is a simplification of statement (2) given in [AHU18, Thm. 1: “Semi-classical
O2H”]. It differs in the following way: While [AHU18] consider adversaries that might execute parallel
oracle invocations and therefore differentiate between query depth d and number of queries q, we use the
upper bound q ≥ d for simplicity.

Theorem 2.5 Let S ⊂ X be random. Let G,H ∈ YX be random functions such that G|X\S = H|X\S ,
and let z be a random bitstring. (S, G, H , and z may have an arbitrary joint distribution.) Then, for all
quantum algorithms A issuing at most q queries that, on input z, output either 0 or 1,

|Pr[1← A|G〉(z)]− Pr[1← A|H〉(z)]| ≤ 2 ·
√
q Pr[b ← A|G\S〉(z) : FIND] .

Theorem 2.6 ([AHU18, Cor. 1]) Suppose that S := {x} for x ←$ X, and that x and z are independent.
Then, for all quantum algorithms A issuing at most q queries,

Pr[b ← A|G\S〉(z) : FIND] ≤ 4q
|X | .

Generic quantum Distinguishing Problem with bounded probabilities. For λ ∈ [0, 1], let Bλ
be the Bernoulli distribution, i.e., Pr[b = 1] = λ for the bit b ← Bλ. Let X be some finite set. The
generic quantum distinguishing problem ([ARU14, Lemma 37: "Preimage search in a random function"],
[HRS16, Lem. 3]) is to distinguish quantum access to an oracle F : X → F2, such that for each x ∈ X ,
F(x) is distributed according to Bλ, from quantum access to the zero function. We will need the following
slight variation. The Generic quantum Distinguishing Problem with Bounded probabilities GDPB is like

9

the quantum distinguishing problem with the difference that the Bernoulli parameter λx may depend on
x , but still is upper bounded by a global λ. The upper bound we give is the same as in [HRS16, Lem. 3].

Lemma 2.7 (Generic Distinguishing Problem with Bounded Probabilities). Let X be a finite set, and
let λ ∈ [0, 1]. Then, for any (unbounded, quantum) algorithm A issuing at most q quantum queries,

|Pr[GDPBA
λ,0 ⇒ 1]− Pr[GDPBA

λ,1 ⇒ 1]| ≤ 8(q + 1)2 · λ,

where games GDPBA
λ,b (for bit b ∈ F2) are defined as follows:

GAME GDPBλ,b
01 (λx)x∈X ← A1
02 if ∃x ∈ X s.t. λx > λ return 0
03 if b = 0
04 F := 0
05 else for all x ∈ X
06 F(x)← Bλx

07 b′ ← A|F〉2
08 return b′

Proof. In this proof, let CGDPBλ denote the game GDPBλ as defined in [ARU14] and [HRS16], i.e.,
defined such that λx = λ for all x. (Hence, we call it constant GDPB). The bound on GDPBλ can be
reduced to the known bound on CGDPBλ by coupling the Bernoulli parameter to obtain the dependence
on each x ∈ X : Let A be an adversary against game GDPBλ, issuing at most q queries. Without loss of
generality, we can assume that λ > 0. Consider adversary B against game CGDPBλ, given in Figure 5.

B1
01 (λx)x∈X ← A1
02 λ := maxx∈X λx
03 for all x ∈ X
04 µx := λx

λ

05 G(x)← Bµx

06 return λ

B|F〉2

07 b′ ← A|F·G〉2
08 return b′

Figure 5: Adversary B for the proof of Lemma 2.7.

For each x ∈ X , B picks G(x) according to Bµx , where µx := λx
λ ∈ [0, 1]. B then executes A with

oracle access to |F · G〉 and returns A’s output bit. If F(x) is distributed according to Bλ for each x , then
(F ·G)(x) is distributed according to Bλx , and if F is the constant zero function, so is F ·G, hence B
perfectly simulates game GDPBλ for A and

|Pr[GDPBA
λ,0 ⇒ 1]− Pr[GDPBA

λ,1 ⇒ 1]| = |Pr[CGDPBB
λ,0 ⇒ 1]− Pr[CGDPBB

λ,1 ⇒ 1]| .

We now argue that B can realize A’s oracle access to |F · G〉 in a way such that any query to |F · G〉 by
A triggers at most one query to |F〉. To verify this claim, consider the following state transitions:

x

y

0 G

F

G

The dot indicates execution of F(x), conditioned on G(x). It’s easy to see that |x, y, 0〉 transitions to
|x, y ⊕ F(x), 0〉 if G(x) = 1, and that |x, y, 0〉 transitions to |x, y, 0〉 if G(x) = 0, hence |x, y, 0〉 transitions

10

to |x, y ⊕ (F ·G)(x), 0〉, either way, and B can answer queries to |F · G〉 by querying |F〉 just once. Since
B issues at most q queries to |F〉, we can apply [HRS16, Lem. 3] and obtain

|Pr[CGDPBB
λ,0 ⇒ 1]− Pr[CGDPBB

λ,1 ⇒ 1]| ≤ 8(q + 1)2 · λ .

3 The FO Transformation: QROM security with correctness
errors

In Section 3.1, we modularize transformation TPunc that was given in [SXY18] and that turns any public
key encryption scheme that is IND-CPA secure into a deterministic one that is DS. We show that TPunc
essentially consists of first puncturing the message space at one point (transformation Punc, to achieve
DS), and then applying transformation T. Next, in Section 3.2, we show that transformation U 6⊥m, when
applied to T, transforms any encryption scheme that is DS as well as IND-CPA into an IND-CCA secure
KEM.

3.1 Modularization of TPunc
We modularize transformation TPunc ("Puncturing and Encrypt-with-Hash") that was given in [SXY18],
and that turns any IND-CPA secure PKE scheme into a deterministic one that is DS. Note that apart
from reencryption, TPunc[PKE0,G] given in [SXY18] and our modularization T[Punc[PKE0],G] are equal.
In Section 3.1.1, we show that puncturing turns any IND-CPA secure scheme into a scheme that is both
DS and IND-CPA, and in Section 3.1.2, we show that transformation T turns any scheme that is DS as
well as IND-CPA secure into a deterministic scheme that is DS. Unfortunately, the latter security proof is
nontight due to the use of the oneway-to-hiding lemma.

3.1.1 Transformation Punc: From IND-CPA to probabilistic DS security

Transformation Punc turns any IND-CPA secure public-key encryption scheme with injective encryption
into a DS secure one by puncturing the message space at one message and sampling encryptions of this
message as fake encryptions. If PKE0’s encryption is injective, PKE is statistical disjoint with εdis = 0.
The Construction. To a public-key encryption scheme PKE0 = (KG0,Enc0,Dec0) with message
space M0, we associate PKE := Punc[PKE0, m̂] := (KG := KG0,Enc,Dec := Dec0) with message space
M :=M0 \ {m̂} for some message m̂ ∈M. Encryption and fake encryption sampling of PKE are defined
in Figure 6.

Enc(pk,m ∈M)
01 c ← Enc0(pk,m)
02 return c

Enc(pk)
03 c ← Enc0(pk, m̂)
04 return c

Figure 6: Encryption and fake encryption sampling of PKE = Punc[PKE0].

The following lemma states that IND-CPA security of PKE0 implies DS security of PKE.

Lemma 3.1 (DS security of PKE). If PKE0 is δ-correct, so is PKE. For all adversaries A, there exists
an IND-CPA adversary B such that

AdvDS
PKE(A) ≤ AdvIND-CPA

PKE0
(B) .

Furthermore, PKE is εdis-statistical disjoint with

εdis ≤ E[Pr
r̂←$R

[∃ (m, r) ∈M0 ×R s.th. Enc0(pk, m̂; r̂) = Enc0(pk,m; r)]] ,

where the expectation is taken over (pk, sk) ← KG. In particular, if Enc0(pk,−;−) : M×R → C is
injective for all public keys pk, PKE is statistical disjoint with εdis = 0.

11

Proof. Let A be a DS adversary against PKE. Consider the games given in Figure 7.

AdvDS
PKE(A) = |Pr[GA ⇒ 1]− 1

2 | .

Game G
01 pk ← KG0
02 m ←$ M0 \ {m̂}
03 b ←$ F2
04 c0 ← Enc0(pk,m)
05 c1 ← Enc0(pk, m̂)
06 b′ ← A(pk, cb)
07 return Jb′ = bK

B1(pk)
08 m ←$ M0 \ {m̂}
09 return (m, m̂)

B2(c)
10 b′ ← A(pk, c)
11 return b′

Figure 7: Game G and IND-CPA adversary B = (B1,B2) for the proof of Lemma 3.1.

Consider the IND-CPA adversary B := (B1,B2) also given in Figure 7. Since B perfectly simulates
game G,

|Pr[GA ⇒ 1]− 1
2 | = AdvIND-CPA

PKE (B) .

The following lemma states that IND-CPA security of PKE0 translates to IND-CPA security of PKE.
Its proof is straightforward.

Lemma 3.2 (IND-CPA security of PKE). For all IND-CPA adversaries A there exists an adversary B
such that

AdvIND-CPA
PKE (A) ≤ AdvIND-CPA

PKE0
(B) .

3.1.2 Transformation T: From probabilistic to deterministic DS security

Transformation T [BBO07] turns any probabilistic public-key encryption scheme into a deterministic one.
The transformed scheme is DS, given that PKE is DS as well as IND-CPA secure. Our security proof is
tighter than the proof given for TPunc (see [SXY18, Theorem 3.3]) due to our use of the semi-classical
O2H theorem.
The Construction. Take an encryption scheme PKE = (KG,Enc,Dec) with message space M and
randomness space R. Assume PKE to be additionally endowed with a sampling algorithm Enc (see
Definition 2.3). To PKE and random oracle G : M → R, we associate PKE′ = T[PKE,G], where the
algorithms of PKE′ = (KG′ := KG,Enc′,Dec′,Enc′ := Enc) are defined in Figure 8. Note that Enc′
deterministically computes the ciphertext as c := Enc(pk,m; G(m)).

Enc′(pk,m)
01 c := Enc(pk,m; G(m))
02 return c

Dec′(sk, c)
03 m′ := Dec(sk, c).
04 if m′ = ⊥ or Enc(pk,m′; G(m′)) 6= c
05 return ⊥
06 else return m′

Figure 8: Deterministic encryption scheme PKE′ = T[PKE,G].

The following lemma states that combined IND-CPA and DS security of PKE imply the DS security of
PKE′.

Lemma 3.3 (DS security of PKE′). If PKE is ε-disjoint, so is PKE′. For all adversaries A issuing at

12

most qG queries to |G〉, there exist an adversary BIND and an adversary BDS such that

AdvDS
PKE′(A) ≤ AdvDS

PKE(BDS) + 2 ·

√
qG ·AdvIND-CPA

PKE (BIND) +
4q2

G
|M|

≤ AdvDS
PKE(BDS) + 2 ·

√
qG ·AdvIND-CPA

PKE (BIND) + 4qG√
|M|

,

and the running time of each adversary is about that of B.

Proof. It is straightforward to prove disjointness since Enc′(pk,M) is subset of Enc(pk,M;R). Let A be
a DS adversary against PKE′. Consider the sequence of games given in Figure 9. Per definition,

AdvDS
PKE′(A) = |Pr[GA

0 ⇒ 1]− Pr[GA
1 ⇒ 1]|

≤ |Pr[GA
0 ⇒ 1]− Pr[GA

3 ⇒ 1]|+ |Pr[GA
1 ⇒ 1]− Pr[GA

3 ⇒ 1]| .

Games G0-G2
01 pk ← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk) �G0
04 r∗ := G(m∗) �G1
05 r∗ ←$ R �G2-G3
06 c∗ := Enc(pk,m∗; r∗) �G1-G3
07 b′ ← A|G〉(pk, c∗) �G0-G1, G3
08 b′ ← A|H〉(pk, c∗) �G2
09 return b′

Game G4-G5
10 FIND := false
11 pk ← KG
12 m∗ ←$ M
13 r∗ ←$ R
14 c∗ := Enc(pk,m∗; r∗) �G4
15 c∗ := Enc(pk, 0; r∗) �G5
16 b′ ← A|G\{m

∗}〉(pk, c∗)
17 return FIND

|G \ {m∗}〉|ψ, φ〉
18 |ψ′, b〉 := OSC

{m∗}|ψ, 0〉
19 if b = 1
20 FIND := true
21 return |G〉|ψ′, φ〉

Figure 9: Games G0 - G5 for the proof of Lemma 3.3.

To upper bound |Pr[GA
0 ⇒ 1]−Pr[GA

3 ⇒ 1]|, consider adversary BDS against the disjoint simulatability
of the underlying scheme PKE, given in Figure 10. BDS runs in the time that is required to run A and to
simulate G for qG queries. Since BDS perfectly simulates game G0 if run with a fake ciphertext as input,
and game G3 if run with a random encryption c ← Enc(pk,m∗),

|Pr[GA
0 ⇒ 1]− Pr[GA

3 ⇒ 1]| = AdvDS
PKE(BDS) .

It remains to upper bound |Pr[GA
1 ⇒ 1]−Pr[GA

3 ⇒ 1]|. We claim that there exists an adversary BIND
such that

|Pr[GA
1 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ 2

√
qG ·AdvIND-CPA

PKE (BIND) +
4q2

G
|M|

.

BDS(pk, c)
01 b′ ← A|G〉(pk, c)
02 return b′

BIND,1(pk)
03 m∗ ←$ M
04 return (0,m∗, st := m∗)

BIND,2(pk, c∗, st := m∗)
05 FIND := false
06 b′ ← A|G\{m

∗}〉(pk, c∗)
07 return FIND

|G \ {m∗}〉|ψ, φ〉
08 |ψ′, b〉 := OSC

{m∗}|ψ, 0〉
09 if b = 1
10 FIND := true
11 return |G〉|ψ′, φ〉

Figure 10: Adversaries BDS and BIND- for the proof of Lemma 3.3.

Game G2. In game G2, we replace oracle access to |G〉 with oracle acess to |H〉 in line 08, where H is
defined as follows: we pick a uniformly random r∗ in line 05 and let H(m) := G(m) for all m 6= m∗, and
H(m∗) := r∗. Since G is a random oracle, this change is purely conceptual and

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1] .

13

Game G3. In game G3, we switch back to oracle access to |G〉. Applying Theorem 2.5 for S := {m∗},
and z := (pk, c∗ := Enc(pk,m∗; r∗)), we obtain

|Pr[GA
2 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ 2 ·
√
qG · Pr[GA

4 ⇒ 1] .

Game G5. In game G5, c∗ ← Enc(pk,m∗) is replaced with an encryption of 0. Since in game G5, (pk, c∗)
is independent of m∗, we can apply Theorem 2.6 to obtain

Pr[GA
5 ⇒ 1] ≤ 4qG

|M|
.

To upper bound |Pr[GA
4 ⇒ 1]− Pr[GA

5 ⇒ 1]|, consider adversary BIND against the IND-CPA security of
PKE, also given in Figure 10. BIND runs in the time that is required to run A and to measure and simulate
G for qG queries. BIND perfectly simulates game G4 if run in game IND-CPA0 and game G5 if run in game
IND-CPA1, therefore,

|Pr[GA
4 ⇒ 1]− Pr[GA

5 ⇒ 1]| = AdvIND-CPA
PKE (BIND) .

Collecting the probabilities yields

Pr[GA
4 ⇒ 1] ≤ AdvIND-CPA

PKE (BIND) + 4qG
|M|

.

3.2 Transformation FO6⊥m and correctness errors
Transformation SXY [SXY18] got rid of the additional hash (sometimes called key confirmation) that was
included in [HHK17]’s quantum transformation QU 6⊥m. SXY is essentially the (classical) transformation
U6⊥m that was also given in [HHK17], and apart from doing without the additional hash, it comes with a
tight security reduction in the QROM. SXY differs from the (classical) transformation U6⊥m only in the
regard that it reencrypts during decapsulation. (In [HHK17], reencryption is done during decryption
of T.) The security proof given in [SXY18] requires the underlying encryption scheme to be perfectly
correct, and it turned out that their analysis cannot be trivially adapted to take possible decryption
failures into account in a generic setting: SXY starts from a deterministic encryption scheme PKE′, and it
is unclear how to reasonably define correctness for deterministic encryption schemes such that it fits the
proof’s strategy. What we show instead is that the combined transformation FO 6⊥m = U 6⊥m [T[−,G],H] turns
any encryption scheme that is DS as well as IND-CPA into a KEM that is IND-CCA secure in the QROM,
even if the underlying encryption scheme comes with a small probability of decryption failure. This is
achieved by modifying random oracle G during the proof such that the encryption scheme is rendered
perfectly correct. Our reduction is tighter as the (combined) reduction in [SXY18] due to our tighter
security proof for T (see Section 3.1.2).
The Construction. To PKE = (KG,Enc,Dec) with message spaceM and randomness space R, and
random oracles H :M→K, G :M→R, and an additional internal random oracle Hr : C → K that can
not be directly accessed, we associate KEM = FO 6⊥m [PKE,G,H] := U6⊥m [T[PKE,G],H], where the algorithms
of KEM = (KG,Encaps,Decaps) are given in Figure 11.

Encaps(pk)
01 m ←$ M
02 c := Enc(pk,m; G(m))
03 K := H(m)
04 return (K , c)

Decaps(sk, c)
05 m′ := Dec(sk, c)
06 if m′ = ⊥ or Enc(pk,m′; G(m′)) 6= c
07 return K := Hr(c)
08 else return K := H(m′)

Figure 11: Key encapsulation mechanism KEM = FO 6⊥m[PKE,G,H] = U 6⊥m[T[PKE,G],H]. Oracle Hr is used
to generate random values whenever reencryption fails. This strategy is called implicit reject. Amongst
others, it is used in [HHK17], [SXY18], and [JZC+18a]. For simplicity of the proof, Hr is modelled as an
internal random oracle that cannot be accessed directly. For implementation, it would be sufficient to use
a PRF.

14

Security. The following theorem (whose proof is essentially the same as in [SXY18] except for the
consideration of possible decryption failure) establishes that IND-CCA security of KEM reduces to DS
and IND-CPA security of PKE, in the quantum random oracle model.

Theorem 3.4 (PKE DS+IND-CPA QROM⇒ KEM IND-CCA). Assume PKE to come with injective encryption
and a fake sampling algorithm Enc such that PKE is εdis-disjoint. Then, for any (quantum) IND-CCA
adversary A issuing at most qD (classical) queries to the decapsulation oracle Decaps, at most qH quantum
queries to |H〉, and at most qG quantum queries to |G〉, there exist (quantum) adversaries BDS and BIND
such that

AdvIND-CCA
KEM (A) ≤ 16 · (qG + qH + 2qD + 1)2 · δ + AdvDS

PKE(BDS)

+ 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE (BIND) + 4(qG + qH)2

|M|
+ εdis ,

and the running time of BDS and BIND is about that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM, issuing at most qD queries to
Decaps, at most qH queries to the quantum random oracle |H〉, and at most qG queries to the quantum
random oracle |G〉. Consider the sequence of games given in Figure 12.

GAMES G0 - G4
01 G←$ RM, Hr ←$ KC
02 H←$ KM �G0
03 Hq ←$ KC �G1 - G4
04 H := Hq(Enc(pk,−; G(−))) �G1 - G4
05 (pk, sk)← KG
06 b ←$ F2
07 m∗ ←M
08 c∗ := Enc(pk,m∗; G(m∗)) �G0 - G2
09 c∗ ← Enc(pk) �G3 - G4
10 K∗0 := H(m∗) �G0
11 K∗0 := Hq(c∗) �G1 - G3
12 K∗0 ←$ K �G4
13 K∗1 ←$ K
14 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b)
15 return Jb′ = bK

Decaps(c 6= c∗) �G0 - G1

16 m′ := Dec(sk, c)
17 if m′ = ⊥

or Enc(pk,m′; G(m′)) 6= c
18 return K := Hr(c)
19 else
20 return K := H(m′) �G0
21 return K := Hq(c) �G1

Decaps(c 6= c∗) �G2 - G4
22 return K := Hq(c)

Figure 12: Games G0 - G4 for the proof of Theorem 3.4.

Game G0. Since game G0 is the original IND-CCA game,

AdvIND-CCA
KEM (A) = |Pr[GA

0 ⇒ 1]− 1/2| .

Game G1. In game G1, we prepare getting rid of the secret key by plugging in encryption into random
oracle H: Instead of drawing H←$ KM, we draw Hq ←$ KC in line 03 and define H := Hq(Enc(pk,−; G(−)))
in line 04. For consistency, we also change key K∗0 in line 11 from letting K∗0 := H(m∗) to letting
K∗0 := Hq(c∗), which is a purely conceptual change since c∗ = Enc(pk,m∗; G(m∗)). Additionally, we make
the change of H explicit in oracle Decaps, i.e., we change oracle Decaps in line 21 such that it returns
K := Hq(c) whenever Enc(pk,m′; G(m′)) = c. Since we assume Enc(pk,−;−) to be injective, H still is
uniformly random, and since we only change Decaps for ciphertexts c where c = Enc(pk,m′; G(m′)), we
maintain consistency of H and Decaps. Hence, A’s view is identical in both games and

Pr[GA
1 ⇒ 1] = Pr[GA

0 ⇒ 1] .

Game G2. In game G2, we change oracle Decaps such that it always returns K := Hq(c), as opposed to
returning Hq(c) only if c = Enc(pk,Dec(sk, c); G(Dec(sk, c))), and otherwise returning Hr(c). We claim

|Pr[GA
2 ⇒ 1]− Pr[GA

1 ⇒ 1]| ≤ 8 · (qG + qH + 2qD + 1)2 · δ .

15

GAMES G1 - G2
01 (pk, sk)← KG
02 G←$ RM �G1,G2
03 Pick 2q-wise hash f �G11/3 - G12/3

04 G := Gpk,sk �G11/3 - G12/3

05 Hr ←$ KC
06 Hq ←$ KC
07 H := Hq(Enc(pk,−; G(−)))
08 b ←$ F2
09 m∗ ←M
10 c∗ := Enc(pk,m∗; G(m∗))
11 K∗0 := Hq(c∗)
12 K∗1 ←$ K
13 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b)
14 return Jb′ = bK

Gpk,sk(m)
15 r := Sample(R \Rbad(pk, sk,m); f (m))
16 return r

Decaps(c 6= c∗) �G1 - G11/3

17 m′ := Dec′(sk, c)
18 if m′ = ⊥

or Enc(pk,m′; G(m′)) 6= c
19 return K := Hr(c)
20 else return K := Hq(c)

Decaps(c 6= c∗) �G12/3 - G2
21 return K := Hq(c)

Figure 13: Intermediate games G1 - G2 for the proof of Theorem 3.4 that deal with correctness errors. f
(lines 03 and 15) is an internal 2q-wise independent hash function, where q := qG + qH + 2 · qD + 1, that
cannot be accessed by A. Sample(Y) is a probabilistic algorithm that returns a uniformly distributed
y ←$ Y . Sample(Y ; f (m)) denotes the deterministic execution of Sample(Y) using explicitly given
randomness f (m).

To verify this upper bound, consider the sequence of games given in Figure 13.
Game G11/3. In game G11/3, we enforce that no decryption failure will occur: For fixed (pk, sk) and
message m ∈M, let

Rbad(pk, sk,m) := {r ∈ R | Dec(sk,Enc(pk,m; r)) 6= m}

denote the set of “bad” randomness. We replace random oracle G in line 04 with Gpk,sk that only samples
from good randomness. Further, define

δ(pk, sk,m) := |Rbad(pk,sk,m)|/|R| (2)

as the fraction of bad randomness, and δ(pk, sk) := maxm∈M δ(pk, sk,m). With this notation, δ =
E[maxm∈M δ(pk, sk,m)], where the expectation is taken over (pk, sk)← KG.

To upper bound |Pr[GA
11/3 ⇒ 1] − Pr[GA

1 ⇒ 1]|, we construct an (unbounded, quantum) adversary
B against the generic distinguishing problem with bounded probabilities GDPB (see Lemma 2.7) in
Figure 14, issuing qG + qH + 2 · qD + 1 queries to |F〉. B draws a key pair (pk, sk)← KG and computes the
parameters λ(m) of the generic distinguishing problem as λ(m) := δ(pk, sk,m), which are bounded by
λ := δ(pk, sk). To analyze B, we first fix (pk, sk). For each m ∈M, by the definition of game GDPBλ,1,
the random variable F(m) is bernoulli-distributed according to Bλ(m) = Bδ(pk,sk,m). By construction, the
random variable G(m) defined in line 06 if F(m) = 0 and in line 08 if F(m) = 1 is uniformly distributed in
R, therefore G is a (quantum) random oracle and A|F〉 perfectly simulates game G1 if executed in game
GDPBλ,1. Since A|F〉 also perfectly simulates game G11/3 if executed in game GDPBλ,0,

|Pr[GA
11/3 ⇒ 1]− Pr[GA

1 ⇒ 1]| = |Pr[GDPBA
λ,1 = 1]− Pr[GDPBA

λ,0 = 1]| ,

and according to Lemma 2.7,

|Pr[GDPBA
λ,1 = 1]− Pr[GDPBA

λ,0 = 1]| ≤ 8 · (qG + qH + 2qD + 1)2 · δ .

Game G12/3. In game G12/3, we change oracle Decaps such that it always returns K := Hq(c) (instead
of returning K := Hr(c) if m′ := Dec(sk, c) = ⊥ or Enc(pk,m′; G(m′)) 6= c). This change does not
affect A’s view: If there exists no message m such that c = Enc(pk,m; G(m)), oracle Decaps(c) returns
a random value (that can not possibly correlate to any random oracle query to |H〉) in both games,
therefore Decaps(c) is a random value independent of all other input to A in both games. But if there

16

B1 = B′1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

B|Hr〉,|Hq〉,|F〉
2 = B′2

|Hr〉,|Hq〉,|F〉

05 Pick 2q-wise hash f
06 H := Hq(Enc(pk,−; G(−)))
07 b ←$ F2
08 m∗ ←M
09 c∗ := Enc(pk,m∗; G(m∗))
10 K∗0 := Hq(c∗)
11 K∗1 ←$ K
12 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b)
13 return Jb′ = bK

Decaps(c 6= c∗) �Adversary B
14 m′ := Dec′(sk, c)
15 if m′ = ⊥

or Enc(pk,m′; G(m′)) 6= c
16 return K := Hr(c)
17 else return K := Hq(c)

Decaps(c 6= c∗) �Adversary B′
18 return K := Hq(c)

G(m)
19 if F(m) = 0
20 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
21 else G(m) := Sample(Rbad(pk, sk,m); f (m))
22 return G(m)

Figure 14: Adversaries B and B′ executed in game GDPBδ(pk,sk) with access to |F〉 (and additional oracles
|Hr〉 and |Hq〉) for the proof of Theorem 3.4. δ(pk, sk,m) is defined in Equation (7). f (lines 06 and 08) is
an internal 2q-wise independent hash function, where q := qG + qH + 2 · qD + 1, that cannot be accessed
by A. Note that B and B′ only differ in their simulation of the decapsulation oracle.

exists some message m such that c = Enc(pk,m; G(m)), Decaps(c) always returns Hq(c) in both games:
Since G(m) ∈ R \Rbad(pk, sk,m) for all messages m, it holds that m′ := Dec(sk, c) = m 6= ⊥ and that
Enc(pk,m′; G(m′)) = c. Hence A’s view is identical in both games and

Pr[GA
12/3 ⇒ 1] = Pr[GA

11/3 ⇒ 1] .

Game G2. In game G2, we switch back to using G←$ RM instead of Gpk,sk . With the same reasoning
as for the gamehop from game G1 to G11/3,

|Pr[GA
2 ⇒ 1]− Pr[GA

12/3 ⇒ 1]| = |Pr[GDPBB′
λ,1 = 1]− Pr[GDPBB′

λ,0 = 1]|
≤ 8 · (qG + qH + 2qD + 1)2 · δ ,

where adversary B′ is also given in Figure 14.
So far, we established

AdvIND-CCA
KEM (A) ≤ |Pr[GA

2 ⇒ 1]− 1/2|+ 16 · (qG + qH + 2qD + 1)2 · δ .

The rest of the proof proceeds similiar to the proof in [SXY18], aside from the fact that we consider
the particular scheme T[PKE,G] instead of a generic DS deterministic encryption scheme.
Game G3. In game G3, the challenge ciphertext c∗ gets decoupled from message m∗ by sampling
c∗ ← Enc(pk) in line 09 instead of letting c∗ := Enc(pk,m∗; G(m∗)). Consider the adversary CDS against
the disjoint simulatability of T[PKE,G] given in Figure 15. Since CDS perfectly simulates game G2 if run
with deterministic encryption c∗ := Enc(pk,m∗; G(m∗)) of a random message m∗, and game G3 if run
with a fake ciphertext,

|Pr[GA
3 ⇒ 1]− Pr[GA

2 ⇒ 1]| = AdvDS
T[PKE,G](CDS), ,

and according to Lemma 3.3, there exist an adversary BDS and an adversary BIND with roughly the
same running time such that

AdvDS
T[PKE,G](CDS) ≤AdvDS

PKE(BDS) + 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE (BIND) + 4(qG + qH)2

|M|
.

17

CDS
|G〉,|Hr〉|Hq〉(pk, c∗)

01 b ←$ F2
02 K∗0 := Hq(c∗)
03 K∗1 ←$ K
04 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b)
05 return Jb′ = bK

Decaps(c 6= c∗)
06 return K := Hq(c)

Figure 15: Adversary CDS (with access to additional oracles |Hr〉 and |Hq〉) against the disjoint simulatability
of T[PKE,G] for the proof of Theorem 3.4.

Game G4. In game G4, the game is changed in line 12 such that it always uses a randomly picked
challenge key. Since both K∗0 and K∗1 are independent of all other input to A in game G4,

Pr[GA
4 ⇒ 1] = 1/2 .

It remains to upper bound |Pr[GA
4 ⇒ 1]− Pr[GA

3 ⇒ 1]|. To this end, it is sufficient to upper bound
the probability that any of the queries to |Hq〉 could possibly contain c∗. Each query to |Hq〉 is either a
classical query triggered by a query to Decaps on some ciphertext c or triggered by a query to |H〉 on a
superposition |m〉. Since queries to Decaps on c∗ are explicitely forbidden, the only possibility would be
a a query to |Hq〉 of the form

∑
m |Enc(pk,m; G(m))〉. This query cannot contain c∗ unless there exists

some message m such that Enc(pk,m; G(m)) = c∗, and since we assume PKE to be εdis-disjoint,

|Pr[GA
4 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ εdis .

4 Two-Message Authenticated Key Exchange
A two-message key exchange protocol AKE = (KG, Init,Derinit,Derresp) consists of four algorithms. Given
the security parameter, the key generation algorithm KG outputs a key pair (pk, sk). The initialization
algorithm Init, on input sk and pk ′, outputs a message m and a state st. The responder’s derivation
algorithm Derresp, on input sk ′, pk and m, outputs a key K , and also a message m′. The initiator’s
derivation algorithm Derinit, on input sk, pk ′, m and st, outputs a key K .
Running a Key Exchange Protocol between two Parties. To run a two-message key exchange
protocol, the algorithms KG, Init, Derinit, and Derresp are executed in an interactive manner between two
parties Pi and Pj with key pairs (ski , pki), (skj , pkj)← KG. To execute the protocol, the parties call the
algorithms in the following way:

1. Pi computes (M , st)← Init(ski , pkj) and sends M to Pj .

2. Pj computes (M ′,K ′)← Derresp(skj , pki ,M) and sends M ′ to Pi .

3. Pi computes K := Derinit(ski , pkj ,M ′, st).

Party Pi (pki , ski) Party Pj (pkj , skj)

(M , st)← Init(ski , pkj)

(M ′,K ′)← Derresp(skj , pki ,M)
K := Derinit(ski , pkj ,M ′, st)

M

M ′

Note that in contrast to the holder Pi , the peer Pj will not be required to save any (secret) state
information besides the key K ′. Keys can be derived immediately after receiving the initiator’s message.

18

Correctness. We call a two-message key exchange protocol AKE δ-correct if

Pr[(pki , ski)← KG, (pkj , skj)← KG, (M , st)← Init(ski , pkj),
(M ′,K ′)← Derresp(skj , pki ,M),K := Derinit(ski , pkj ,M ′, st) : K 6= K ′] ≤ δ .

Our Security Model. We consider N parties P1, . . . ,PN , each holding a key pair (ski , pki) and possibly
having several sessions at once. The sessions run the protocol with access to the party’s long-term key
material, while also having their own set of (session-specific) local variables. The local variables of each
session, identified by the integer sID, are the following:

1. An integer holder ∈ [N] that points to the party running the session.

2. An integer peer ∈ [N] that points to the party the session is communicating with.

3. A string sent that holds the message sent by the session.

4. A string received that holds the message received by the session.

5. A string st that holds (secret) internal state values and intermediary results required by the session.

6. A string role that holds the information whether the session’s key was derived by Derinit or Derresp.

7. The session key K .

In our security model, the adversary A is given black-box access to the set of processes Init, Derresp
and Derinit that execute the AKE algorithms. To model the attacker’s control of the network, we allow
A to establish new sessions via EST, to call either INIT and DERinit or DERresp, each at most once
per session (see Figure 16, page 20) and to relay their outputs faithfully as well as modifying the data
on transit. Moreover, the attacker is additionally granted queries to reveal both secret process data,
namely using REVEAL and REV-STATE queries, and parties’ secret keys using CORRUPT queries,
see Figure 17, page 21. After choosing a test session, either the session’s key or a uniformly random key
is returned. The attacker’s task is to distinguish these two cases, to this end it outputs a bit.

Definition 4.1 (Key Indistinguishability of AKE). We define games IND-AAb and IND-StAAb for b ∈ F2
as in Figure 16 and Figure 17. We define the IND-AA advantage function of an adversary A against AKE
as

AdvIND-AA
AKE (A) := |Pr[IND-AAA

1 ⇒ 1]− Pr[IND-AAA
0 ⇒ 1]| ,

and the IND-StAA advantage function of an adversary A against AKE excluding test-state-attacks as

AdvIND-StAA
AKE (A) := |Pr[IND-StAAA

1 ⇒ 1]− Pr[IND-StAAA
0 ⇒ 1]| .

We call a session completed iff sKey[sID] 6= ⊥, which implies that either DERresp(sID,m) or
DERinit(sID,m) was queried for some message m.

We say that a completed session sID was recreated iff there exists a session sID′ 6= sID such
that (holder[sID],peer[sID]) = (holder[sID′],peer[sID′]), role[sID] = role[sID′], sent[sID] = sent[sID′],
received[sID] = received[sID′] and state[sID] = state[sID′].

We say that two completed sessions sID1 and sID2 match iff (holder[sID1],peer[sID1]) = (peer[sID2],
holder[sID2]), (sent[sID1], received[sID1]) = (received[sID2], sent[sID2]), and role[sID1] 6= role[sID2].

We say that A tampered with the test session sID∗ if at the end of the security game, there exists no
matching session for sID∗.

Helper procedure TRIVIAL (Figure 17) is used in all games to exclude the possibility of trivial
attacks, and helper procedure ATTACK (also Figure 17) is defined in games IND-StAAb to exclude the
possibility of trivial attacks as well as one nontrivial attack that we will discuss below. During execution
of TRIVIAL, the game creates list M(sID∗) of all matching sessions that were executed throughout the
game (see line 56), and A’s output bit b′ only counts in games IND-AAb only if TRIVIAL returns false,
i.e., if test session sID∗ was completed and all of the following conditions hold:

1. A did not obtain the key of sID∗ by querying REVEAL on sID∗ or any matching session, see lines
50 and 57.

19

GAME IND-AAb
01
02 cnt := 0 �session counter
03 sID∗ := 0 �test session’s id
04 for n ∈ [N]
05 (pkn , skn)← KG
06 b′ ← AO(pk1, · · · , pkN)
07 if TRIVIAL(sID∗)
08 return 0
09 return b′

EST((i, j) ∈ [N]2)
10 cnt ++
11 holder[cnt] := i
12 peer[cnt] := j
13 return cnt

DERresp(sID,M)
14 if holder[sID] = ⊥
15 return ⊥ �Session not established
16 if sKey[sID] 6= ⊥ return ⊥ �no re-use
17 if role[sID] = "initiator" return ⊥
18 role[sID] := "responder"
19 (j, i) := (holder[sID], peer[sID])
20 (M ′,K ′)← Derresp(skj , pki ,M)
21 sKey[sID] := K ′
22 (received[sID], sent[sID]) := (M ,M ′)
23 return M ′

GAME IND-StAAb
24 cnt := 0 �session counter
25 sID∗ := 0 �test session’s id
26 for n ∈ [N]
27 (pkn , skn)← KG
28 b′ ← AO(pk1, · · · , pkN)
29 if ATTACK(sID∗)
30 return 0
31 return b′

INIT(sID)
32 if holder[sID] = ⊥
33 return ⊥ �Session not established
34 if sent[sID] 6= ⊥ return ⊥ �no re-use
35 role[sID] := "initiator"
36 (i, j) := (holder[sID], peer[sID])
37 (M , st)← Init(ski , pkj)
38 (sent[sID], state[sID]) := (M , st)
39 return M

DERinit(sID,M ′)
40 if holder[sID] = ⊥ or state[sID] = ⊥
41 return ⊥ �Session not initalized
42 if sKey[sID] 6= ⊥ return ⊥ �no re-use
43 (i, j) := (holder[sID], peer[sID])
44 st := state[sID]
45 sKey[sID] := Derinit(ski , pkj ,M ′, st)
46 received[sID] := M ′

Figure 16: Games IND-AAb and IND-StAAb for AKE, where b ∈ F2, and the collection of oracles O
used in lines 06 and 28 is defined as O := {EST, INIT, DERresp, DERinit, REVEAL, REV-STATE,
CORRUPT,TEST}. Oracles REVEAL, REV-STATE, CORRUPT, and TEST are given in Fig-
ure 17. Note that IND-StAAb only differs from IND-AAb in ruling out one more kind of attack: To rule out
attacks, we introduce helper methods TRIVIAL and ATTACK in Figure 17. A’s bit b′ does not count
in games IND-AAb if helper procedure TRIVIAL returns true, see line 07. In games IND-StAAb, A’s bit
b′ does not count already if procedure ATTACK (that includes TRIVIAL and additionally checks for
state-attacks on the test session) returns true, see line 29.

2. A did not obtain both the holder i’s secret key ski and the test session’s internal state, see line
52. We enforce that ¬corrupted[i] or ¬revState[sID∗] since otherwise, A is allowed to obtain all
information required to trivially compute Der(ski , pkj , received[sID∗], state[sID∗]).

3. A did not obtain both the peer’s secret key skj and the internal state of any matching session, see
line 59. We enforce that ¬corrupted[j] or ¬revState[sID] for all sID s. th. sID ∈M(sID∗) for the
same reason as discussed in 2: A could trivially compute Der(skj , pki , received[sID], state[sID]) for
some matching session sID.

4. A did not both tamper with the test session and obtain the peer j’s secret key skj , see line 62. We
enforce that M(sID∗) 6= ∅ or ¬corrupted[j] to exclude the following trivial attack: A could learn
the peer’s secret key skj via query CORRUPT[j] and either

- receive a message M by querying INIT on sID∗, compute (M ′,K ′) ← Derresp(skj , pki ,M)
without having to call DERresp, and call DERinit(sID∗,M ′), thereby ensuring that sKey[sID∗]
= K ′,

- or compute (M , st) ← Init(skj , pki) without having to call INIT, receive a message M ′ by
querying DERresp(sID∗,M), and trivially compute Derinit(skj , pki ,M ′, st).

20

TRIVIAL(sID∗) �helper procedure to exclude trivial attacks
47 if sKey[sID∗] = ⊥ return true �test session was never completed
48 v := false
49 (i, j) := (holder[sID∗], peer[sID∗])
50 if revealed[sID∗] return true �A trivially learned the test session’s key
51 if corrupted[i] and revState[sID∗]
52 return true �A may simply compute Der(ski , pkj , received[sID∗], state[sID∗])
53 M(sID∗) := ∅ �create list of matching sessions
54 for 1 ≤ ptr ≤ cnt
55 if (sent[ptr], received[ptr]) = (received[sID∗], sent[sID∗])

and (holder[ptr], peer[ptr]) = (j, i) and role[ptr] 6= role[sID∗]
56 M(sID∗) := M(sID∗) ∪ {ptr} �session matches
57 if revealed[ptr] v := true �A trivially learned the test session’s key via matching session
58 if corrupted[j] and revState[ptr]
59 v := true �A may simply compute Der(skj , pki , received[ptr], state[ptr])
60 if |M(sID∗)| > 1 return false �not appropr. random.
61 if v = true return true
62 if M(sID∗) = ∅ and corrupted[j] return true �A tampered with test session, knowing skj
63 return false

ATTACK(sID∗) �helper procedure to exclude trivial attacks as well as state-attacks
64 if TRIVIAL(sID∗) return true �trivial attack
65 if M(sID∗) = ∅ and revState[sID∗] return true �state-attack
66 return false

REVEAL(sID)
67 if sKey[sID] = ⊥ return ⊥
68 revealed[sID] := true
69 return sKey[sID]

CORRUPT(i ∈ [N])
70 if corrupted[i] return ⊥
71 corrupted[i] := true
72 return ski

REV-STATE(sID)
73 if state[sID] = ⊥ return ⊥
74 revState[sID] := true
75 return state[sID]

TEST(sID) �only one query
76 sID∗ := sID
77 if sKey[sID∗] = ⊥
78 return ⊥
79 K∗0 := sKey[sID∗]
80 K∗1 ←$ K
81 return K∗b

Figure 17: Helper procedures TRIVIAL and ATTACK and oracles REVEAL, REV-STATE,
CORRUPT, and TEST of games IND-AA and IND-StAA defined in Figure 16.

A’s output bit b′ only counts in games IND-StAAb if ATTACK returns false, i.e., if both of the
following conditions hold:

1. TRIVIAL returns false

2. A did not both tamper with the test session and obtain its internal state, see line 65. We enforce
that M(sID∗) 6= ∅ or ¬revState[sID∗] in game IND-StAA for the following reason: In an active
attack, given that the test session’s internal state got leaked, it is possible to choose a message
M ′ such that the result of algorithm Derinit(ski , pkj ,M ′, st) can be computed . For some protocols,
this attack is possible even without knowledge of any of the static secret keys. In this setting, an
adversary might query INIT on sID∗, learn the internal state st by querying REV-STATE on
sID∗, choose its own message M ′ without a call to DERresp and finally call DERinit(sID∗,M ′),
thereby being enabled to anticipate the resulting key.

21

5 Transformation from PKE to AKE
Transformation FOAKE constructs a IND-StAA-secure AKE protocol from a PKE scheme that is both DS
and IND-CPA secure.
The Construction. To a PKE scheme PKE = (KG,Enc,Dec) with message space M, and random
oracles G :M→R and H :M→K, we associate

AKE = FOAKE[PKE,G,H] = (KG, Init,Derresp,Derinit) .

The algorithms of AKE are defined in Figure 18.

Init(ski , pkj):
01 mj ←$ M
02 cj := Enc(pkj ,mj ; G(mj))
03 (s̃k, p̃k)← KG
04 M := (p̃k, cj)
05 st := (s̃k,mj ,M)
06 return (M , st)

Derresp(skj , pki ,M):
07 Parse (p̃k, cj) := M
08 mi , m̃ ←$ M
09 ci := Enc(pki ,mi ; G(mi))
10 c̃ := Enc(p̃k, m̃; G(m̃))
11 M ′ := (ci , c̃)
12 m′j := Dec(skj , cj)
13 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
14 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
15 else
16 K ′ := H(mi ,m′j , m̃, p̃k, i, j)
17 return (M ′,K ′)

Derinit(ski , pkj ,M ′, st):
18 Parse (ci , c̃) := M ′
19 Parse (s̃k,mj , p̃k, cj) := st
20 m′i := Dec(ski , ci)
21 m̃′ := Dec(s̃k, c̃)
22 if m′i = ⊥

or ci 6= Enc(pki ,m′i ; G(m′i))
23 if m̃′ = ⊥
24 K := H′L1(ci ,mj , c̃, p̃k, i, j)
25 else
26 K := H′L2(ci ,mj , m̃′, p̃k, i, j)
27 else if m̃ = ⊥
28 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
29 else K := H(m′i ,mj , m̃′, p̃k, i, j)
30 return K

Figure 18: IND-StAA secure AKE protocol AKE = FOAKE[PKE,G,H]. Oracles H′R and H′L1, H′L2 and
H′L3 are used to generate random values whenever reencryption fails. (For encryption, this strategy is
called implicit reject Amongst others, it is used in [HHK17], [SXY18] and [JZC+18a].) For simplicity of
the proof, H′R and H′L1, H′L2 and H′L3 are internal random oracles that cannot be accessed directly. For
implementation, it would be sufficient to use a PRF.

Security from DS. The following theorem establishes that IND-StAA security of AKE (see Definition 4.1)
reduces to DS and IND-CPA security of PKE (see Definition 2.3 and Lemma 3.3).

Theorem 5.1 (PKE DS + IND-CPA ⇒ AKE IND-StAA). Assume PKE to be injective. Furthermore,
assume PKE to come with a sampling algorithm Enc such that it is ε-disjoint. Then, for any IND-StAA
adversary B that establishes S sessions and issues at most qR (classical) queries to REVEAL, at most
qG (quantum) queries to random oracle G and at most qH (quantum) queries to random oracle H, there
exists an adversary ADS against the disjoint simulatability of T[PKE,G] issuing at most qG + 2qH + 3S
queries to G such that

AdvIND-StAA
AKE (B) ≤ 16S2 ·AdvDS

T[PKE,G](ADS) + 128 ·N · (qG + 2qH + 4S)2 · δ

+ 4S2 ·
(
εdis + S

|M|

)
+ 2S2 · γ(KG) ,

and the running time of ADS is about that of B, and due to Lemma 3.3, there exist adversaries CDS and
CIND such that

AdvIND-StAA
AKE (B) ≤ 16S2 ·

(
AdvDS

PKE(CDS) + 2 ·
√

(qG + 2qH + 4S) ·AdvIND-CPA
PKE (CIND)

)
+ 128 ·N · (qG + 2qH + 4S)2 · δ + 4S2 · (16(qG + 2qH + 4S)2 + 1)√

|M|
+ 4S2 · εdis + 2S2 · γ(KG) ,

and the running times of CDS and CIND is about that of B.

22

Proof Sketch. To prove IND-StAA security of FOAKE[PKE,G,H], we consider an adversary B with
black-box access to the protocols’ algorithms and to oracles that reveal keys of completed sessions, internal
states, and long-term secret keys of participating parties as specified in Figure 16. Intuitively, B will
always be able to obtain all-but-one of the three secret messages mi , mj and m̃ that are picked during
execution of the test session between Pi and Pj :

1. We first consider the case that B executed the test session honestly. Note that on the right-hand
side of the protocol there exists no state. We assume that B has learned the secret key of party
Pj and hence knows mj . Additionally, B could either learn the secret key of party Pi and thereby,
compute mi , or the state on the left-hand side of the protocol including s̃k, and thereby, compute
m̃, but not both.

2. In the case that B did not execute the test session honestly, B is not only forbidden to obtain the
long-term secret key of the test session’s peer, but also to obtain the test session’s state due to our
restriction in game IND-StAA. Given that B modified the exchanged messages, the test session’s
side is decoupled from the other side. If the test session is on the right-hand side, messages mj and
m̃ can be obtained, but message mi can not because we forbid to learn peer i’s secret key. If the
test session is on the left-hand side, messages mi and m̃ can be obtained, but message mj can not
because we forbid both to learn the test session’s state and to learn peer j’s secret key.

In every possible scenario of game IND-StAA, at least one message can not be obtained trivially and is still
protected by PKE’s IND-CPA security, and the respective ciphertext can be replaced with fake encryptions
due to PKE’s disjoint simulatability. Consequently, the session key K is pseudorandom. So far we have
ignored the fact that B has access to an oracle that reveals the keys of completed sessions. This implicitly
provides B a decryption oracle with respect to the secret keys ski and skj . In our proof, we want to
make use of the technique from [SXY18] to simulate the decryption oracles by patching encryption into
the random oracle H. In order to extend their technique to PKE schemes with non-perfect correctness,
during the security proof we also need to patch random oracle G in a way that (Enc′,Dec′) (relative to
the patched G) provides perfect correctness. This strategy is the AKE analogue to the technique used in
our analysis of the Fujisaki-Okamoto transformation given in Section 3, in particular, during our proof of
Theorem 3.4.

The latter also explains why our transformation does not work with any deterministic encryption
scheme, but only with the ones that are derived by using transformation T. For more details on this
issue, we refer to Section 3.2.

Proof. Let B be an adversary against the IND-StAA security of AKE, establishing S sessions and issuing
at most qR (classical) queries to REVEAL, at most qG (quantum) queries to random oracle G and at
most qH (quantum) queries to random oracle H. We will first examine the case that B executed the test
session honestly (i.e., the case that M(sID∗) 6= ∅, where M(sID∗) is defined in Figure 17 , line 56, as
the list of matching sessions that were executed throughout game IND-StAA), in the second part we will
examine the case that B tampered with the test session (i.e., the case that M(sID∗) = ∅).

|Pr[IND-StAAB
1 ⇒ 1]− Pr[IND-StAAB

0 ⇒ 1]|
≤ |Pr[IND-StAAB

1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB
0 ⇒ 1 ∧M(sID∗) 6= ∅]|

+ |Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]| .

Lemma 5.2 There exists an adversary A such that

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|
≤ 4S2 ·AdvDS

T[PKE,G](A) + 64 ·N · (qG + 2qH + 4S)2 · δ

+ 2S2 ·
(
εdis + N

|M|
+ γ(KG)

)
,

and the running time of A is about that of B.

The upper bound is proven in appendix B. Intuition is as follows: While B might have obtained the
secret key of the initialising session’s peer in both cases, B might not both reveal its internal state and

23

corrupt its holder, hence either the message that belongs to its holder (i.e., m∗i) or the message that
belongs to its ephemeral key (i.e., m̃∗) are still protected by PKE’s IND-CPA security, and the respective
ciphertext can hence be replaced with a fake ciphertext (due to T[PKE,G]’s disjoint simulatability).

Lemma 5.3 There exists an adversary A′ such that

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]|
≤ 4 · SN ·AdvDS

T[PKE,G](A′) + 64 ·N · (qG + qH + 3S)2 · δ

+ 2 · SN ·
(
εdis + S

|M|

)
,

and the running time of A is about that of B.

The upper bound is proven in appendix C. The proof is essentially the same and only differs in the
following way: since no matching sessions exists, B is neither allowed to reveal the test session’s state nor
to corrupt its peer. Depending on whether role[sID∗] = "initiator" or role[sID∗] = "responder", we can
rely on the secrecy of either m∗i or m∗j .

Folding A and A′ into one adversary ADS, and assuming that N << S , we obtain

|Pr[IND-StAAB
1 ⇒ 1]− Pr[IND-StAAB

0 ⇒ 1]|
≤ 16S2 ·AdvDS

T[PKE,G](ADS) + 128 ·N · (qG + 2qH + 4S)2 · δ

+ 4S2 ·
(
εdis + S

|M|

)
+ 2S2 · γ(KG) .

References
[ABS14] Janaka Alawatugoda, Colin Boyd, and Douglas Stebila. Continuous after-the-fact leakage-

resilient key exchange. In Willy Susilo and Yi Mu, editors, ACISP 14: 19th Australasian
Conference on Information Security and Privacy, volume 8544 of Lecture Notes in Computer
Science, pages 258–273, Wollongong, NSW, Australia, July 7–9, 2014. Springer, Heidelberg,
Germany. (Cited on page 1.)

[AHU18] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using
semi-classical oracles. Cryptology ePrint Archive, Report 2018/904, 2018. http://eprint.
iacr.org/2018/904. (Cited on page 4, 9, 28.)

[AJOP18] Gorjan Alagic, Stacey Jeffery, Maris Ozols, and Alexander Poremba. On non-adaptive
quantum chosen-ciphertext attacks and learning with errors. CoRR, abs/1808.09655, 2018.
(Cited on page 9.)

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In 55th Annual Symposium on Foundations
of Computer Science, pages 474–483, Philadelphia, PA, USA, October 18–21, 2014. IEEE
Computer Society Press. (Cited on page 9, 10.)

[BBC+98] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. In 39th Annual Symposium on Foundations of Computer
Science, pages 352–361, Palo Alto, CA, USA, November 8–11, 1998. IEEE Computer Society
Press. (Cited on page 8.)

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622
of Lecture Notes in Computer Science, pages 535–552, Santa Barbara, CA, USA, August 19–23,
2007. Springer, Heidelberg, Germany. (Cited on page 3, 12.)

24

http://eprint.iacr.org/2018/904
http://eprint.iacr.org/2018/904

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In 30th Annual
ACM Symposium on Theory of Computing, pages 419–428, Dallas, TX, USA, May 23–26,
1998. ACM Press. (Cited on page 1.)

[BCNP08] Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, and Kenneth G. Paterson. Efficient one-
roundkey exchange in the standard model. ACISP 08: 13th Australasian Conference on
Information Security and Privacy, 2008. (Cited on page 1, 2, 5.)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, pages 41–69, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg, Germany.
(Cited on page 2, 8.)

[BDK+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, and Damien Stehlé. CRYSTALS – kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Report 2017/634, 2017. http://eprint.iacr.org/2017/
634. (Cited on page 3, 6.)

[BHSV98] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan. Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In Hugo Krawczyk, editor, Advances in
Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 283–298,
Santa Barbara, CA, USA, August 23–27, 1998. Springer, Heidelberg, Germany. (Cited on
page 3.)

[BI17] Subhadeep Banik and Takanori Isobe. Some cryptanalytic results on lizard. Cryptology ePrint
Archive, Report 2017/346, 2017. http://eprint.iacr.org/2017/346. (Cited on page 6.)

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits of low
T-gate complexity. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science,
pages 609–629, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.
(Cited on page 9.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM
Press. (Cited on page 3.)

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in
Computer Science, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994. Springer,
Heidelberg, Germany. (Cited on page 1, 5.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology –
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426, St.
Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. (Cited on page 7.)

[BZ13] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a quantum
computing world. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages 361–379,
Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. (Cited on
page 9.)

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 453–474, Innsbruck, Austria,
May 6–10, 2001. Springer, Heidelberg, Germany. (Cited on page 1.)

25

http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/346

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003. (Cited on page 3.)

[Den03] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th
IMA International Conference on Cryptography and Coding, volume 2898 of Lecture Notes
in Computer Science, pages 133–151, Cirencester, UK, December 16–18, 2003. Springer,
Heidelberg, Germany. (Cited on page 3.)

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 342–360,
Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany. (Cited on page 2.)

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 537–554, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany. (Cited on page 2, 3.)

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, January 2013. (Cited on page 2, 3.)

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure
authenticated key exchange from factoring, codes, and lattices. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012: 15th International Conference on Theory
and Practice of Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 467–484, Darmstadt, Germany, May 21–23, 2012. Springer, Heidelberg, Germany. (Cited
on page 1, 2, 5.)

[GHS16] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Semantic security and
indistinguishability in the quantum world. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer
Science, pages 60–89, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany. (Cited on page 9.)

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory
of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 341–371, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany.
(Cited on page 2, 3, 7, 14, 22, 28.)

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in hash-
based signatures. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang, editors, PKC 2016: 19th International Conference on Theory and Practice of Public
Key Cryptography, Part I, volume 9614 of Lecture Notes in Computer Science, pages 387–416,
Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany. (Cited on page 9, 10, 11.)

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
273–293, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.
(Cited on page 1.)

[JZC+18a] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure
key encapsulation mechanism in the quantum random oracle model, revisited. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III,
volume 10993 of Lecture Notes in Computer Science, pages 96–125, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany. (Cited on page 3, 4, 14, 22, 28.)

26

[JZC+18b] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. Ind-cca-secure key
encapsulation mechanism in the quantum random oracle model, revisited. Cryptology ePrint
Archive, Report 2017/1096, July 2018. https://eprint.iacr.org/2017/1096/. (Cited on
page 4, 28.)

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-
Shamir signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of
Lecture Notes in Computer Science, pages 552–586, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany. (Cited on page 9.)

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 546–566, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany. (Cited on page 1, 5, 6.)

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007: 1st
International Conference on Provable Security, volume 4784 of Lecture Notes in Computer
Science, pages 1–16, Wollongong, Australia, November 1–2, 2007. Springer, Heidelberg,
Germany. (Cited on page 1, 5.)

[LS17] Yong Li and Sven Schäge. No-match attacks and robust partnering definitions: Defining
trivial attacks for security protocols is not trivial. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17: 24th Conference on Computer
and Communications Security, pages 1343–1360, Dallas, TX, USA, October 31 – November 2,
2017. ACM Press. (Cited on page 1.)

[NAB+17] Michael Naehrig, Erdem Alkim, Joppe Bos, Leo Ducas, Karen Easterbrook, Brian LaMacchia,
Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan,
and Douglas Stebila. Frodokem. Technical report, National Institute of Standards and Technol-
ogy, 2017. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions. (Cited on page 6.)

[NIS17] NIST. National institute for standards and technology. postquantum crypto project, 2017.
http://csrc.nist.gov/groups/ST/post-quantum-crypto/. (Cited on page 1.)

[Per12] Edoardo Persichetti. Improving the efficiency of code-based cryptography. PhD thesis, 2012.
(Cited on page 3.)

[Sch15] Sven Schäge. TOPAS: 2-pass key exchange with full perfect forward secrecy and optimal
communication complexity. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15: 22nd Conference on Computer and Communications Security, pages 1224–1235,
Denver, CO, USA, October 12–16, 2015. ACM Press. (Cited on page 1.)

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/2004/332. (Cited on
page 7.)

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation
mechanism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 520–551, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany. (Cited on page 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 17, 22, 23, 28, 29.)

[Too15] Mohsen Toorani. On continuous after-the-fact leakage-resilient key exchange. In Proceedings
of the Second Workshop on Cryptography and Security in Computing Systems, CS2 ’15, pages
31:31–31:34, New York, NY, USA, 2015. ACM. (Cited on page 1.)

27

https://eprint.iacr.org/2017/1096/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://eprint.iacr.org/2004/332

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of
Lecture Notes in Computer Science, pages 129–146, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany. (Cited on page 28.)

[YZ13] Andrew Chi-Chih Yao and Yunlei Zhao. OAKE: a new family of implicitly authenticated
Diffie-Hellman protocols. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13: 20th Conference on Computer and Communications Security, pages 1113–1128,
Berlin, Germany, November 4–8, 2013. ACM Press. (Cited on page 1.)

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 758–775, Santa Barbara, CA, USA,
August 19–23, 2012. Springer, Heidelberg, Germany. (Cited on page 9.)

A Problems in and comparison with the proofs of [JZC+18a].
In this section we will discuss some problems we encountered in the proofs of [JZC+18a]. We refer to its
current eprint version [JZC+18b]. Due to the structure of the non-modular proofs of [JZC+18b, Thms. 1
and 2], the original OW2H lemma [Unr14, Lem. 31: “One-way to hiding”] cannot be used to decouple the
challenge plaintext from the adversary’s view since random oracles H and G are not independent of each
other. As a consequence, a new lemma called “One-way to hiding with redundant oracle” is introduced
(see [JZC+18b, Lem. 3]). Unfortunately, the formal statement of Lemma 3 is unclear, in particular, the
precise meaning of the independence requirement in [JZC+18b] is unclear and might be unsatisfiable,8
rendering the proof impossible to verify.9 During our proof, we circumvent this difficulty by following
[SXY18]’s modular approach as far as we managed to: In [SXY18], the original OW2H lemma only needs
to be applied for random oracle G (to prove that PKE′ is deterministically DS, as reflected in Figure 1).
Once deterministic DS is achieved, oracle H does not have to be reprogrammed (instead, a fake encryption
is sampled) and hence, OW2H does not have to be applied again.

To explain in which sense we followed the modular approach of [SXY18] as far as we managed to,
we will point out some issues regarding the security claim for SXY10 [JZC+18b, Thm. 6] in an attempt
to illustrate the difficulties in proving SXY secure if the underlying scheme comes with non-perfect
correctness: [JZC+18b, Thm. 6] states that SXY turns any PKE scheme that is oneway-secure into a
KEM that is IND-CCA secure, with the correctness term δ being included into the upper bound as a
summand 4qE

√
δ, where qE is said to denote the number of queries to an encryption oracle.

The first drawback is that for deterministic schemes, the correctness term δ defined in [HHK17]
and used in [JZC+18b, Thm. 6] reduces to the probability that for the sampled key pair, at least one
message exists that inhibits decryption failure, i.e., the probability that the scheme is not perfectly correct
for the sampled key pair. With this definition, the security statements given in the theorem are not
meaningful for most lattice-based encryption schemes since in most cases, there exist some messages
inducing decryption failure for each key pair, though this fraction might be small. Unfortunately, it is not
straightforward to reasonably define correctness for deterministic encryption schemes such that it fits
existing proof strategies, but also is being met by lattice-based schemes at the same time. We also would
like to mention that the statement of [JZC+18b, Thm. 6], in the case where the underlying scheme is
DS, follows trivially (and with a better upper bound) from [SXY18, Thm. 4.2: “Security of SXY in the

8The requirement is that x is uniformly distributed given O(x′) for all x′ 6= x. The formal meaning of this is hard to pin
down, because the requirement says that x is supposed to be uniform given a set of random variables (namely {O(x′)}x′ 6=x),
where the choice which random variables are in that set depends in turn on x. But x is a random variable itself and thus, it
has no fixed value. We can formalize the requirement as “x is uniform given O(x := ⊥)” (i.e., we remove the point x from
O). But x cannot be uniform given O(x := ⊥) since O(x := ⊥) determines x. So, the conditions in the O2H variant from
[JZC+18b] may be unsatisfiable.

9While we cannot exclude the possibility that this issue could be resolved by applying [AHU18, Thm. 1: “Semi-classical
O2H”], this approach would result in structurally different reductions and would require a stronger security assumption for
the underlying scheme.

10Recall that while the KEM discussed in theorem 6 is called U6⊥m , it differs from the original transformation U6⊥m since it
reencrypts.

28

QROM”].11

Another issue is that the statement is claimed to follow directly from combining some proofs that were
given before. However, none of the mentioned proofs include an encryption oracle, and it is unclear how
this encryption oracle can be introduced such that its definition makes sense and still enables a reduction
to deal with correctness errors: Either pk is not given to the reduction that deals with correctness errors
and hence, game IND-CCA cannot be simulated, or pk is given to the reduction and hence, introducing
oracle access to the encryption oracle makes no sense. We note that the notion of IND-CCA security could
be modified such that instead of being given pk, the adversary has access to an encapsulation oracle.
This alteration could allow for a reduction, but it is straightforward that this security notion would be
strictly weaker.

The problems discussed above reflect why we weren’t able to generalize [SXY18]’s modular analysis in
a straightforward manner: In fact, we did not manage to define correctness for deterministic encryption
schemes such that the definition bridges the gap between what is achievable by most lattice-based
schemes and what is needed to fit existing proof strategies. This difficulty is solved by resorting to a
non-modularized proof: What we show is that the KEM resulting from applying FO 6⊥m := U 6⊥m ◦ T is
IND-CCA secure in the QROM. To this end, we first prove that T[−,G] turns any suitable scheme into
a scheme that is deterministically DS, and then plug in this result into [SXY18]’s tight security proof.
When plugging in T[−,G] into U 6⊥m, we can change random oracle G during the security proof such that
the scheme is rendered perfectly correct, a necessary condition to proceed with the tight security proof.
Distinguishing G from its “perfected” version allows for a reduction to a distinguishing problem. To
generalize this strategy for any scheme, however, one would have to come up with a reduction that
distinguishes access to an encryption oracle from access to an oracle that only answers with perfect
encryptions, and as mentioned above, it might prove difficult to formalize this indistinguishability property
in a meaningful manner such that it is compatible with the standard notion of IND-CCA security. We
hope that our proofs achieve better auditability due to their at least somewhat more modular structure.

B Proof of Lemma 5.2

Faithful execution of the protocol (M(sID∗) 6= ∅). Recall that we are proving an upper bound
for |Pr[IND-StAAB

1 ⇒ 1 ∧M(sID∗) 6= ∅] − Pr[IND-StAAB
0 ⇒ 1 ∧M(sID∗) 6= ∅]|. First, we will enforce

that indeed, we only need to consider the case where M(sID∗) 6= ∅, afterwards we ensure that exactly
one matching session exists. Consider the sequence of games given in Figure 19.
Games G0,b. Since for both bits b, game G0,b is the original game IND-StAAb,

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|
= |Pr[GB

0,1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[GB
0,0 ⇒ 1 ∧M(sID∗) 6= ∅]| .

Games G1,b. Both games G1,b abort in line 07 if M(sID∗) = ∅. Since Pr[GB
0,b ⇒ 1 ∧M(sID∗) 6= ∅] =

Pr[GB
1,b ⇒ 1] for both bits b,

|Pr[GB
0,1 ⇒1 ∧M(sID∗) 6= ∅]− Pr[GB

0,0 ⇒ 1 ∧M(sID∗) 6= ∅]| = |Pr[GB
1,1 ⇒ 1]− Pr[GB

1,0 ⇒ 1]| .

Games G2,b. Both games G2,b abort in line 08 if |M(sID∗)| > 1, i.e., if more than one matching session
exists. Due to the difference lemma,

|Pr[GB
1,b ⇒ 1]− Pr[GB

2,b ⇒ 1]| ≤ Pr[Abort in line 08]

for both bits b, and due to Lemma B.1 below,

Pr[Abort in line 08] ≤ S − 1
|M|

max{ 1
|M|

, γ(KG)} ≤ S
|M|

.

11One could simply insert as the first game hop an abort if the key pair renders the scheme non-perfectly correct, thereby
obtaining the upper bound δ � 4qE

√
δ.

29

GAMES G0,b - G2,b
01 sID, sID∗ := 0
02 for n ∈ [N]
03 (pkn , skn)← KG
04 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
05 if ATTACK(sID∗)
06 return 0
07 if M(sID∗) = ∅ ABORT �G1,b
08 if |M(sID∗)| > 1 ABORT �G2,b
09 return b′

INIT(sID)
10 if holder[sID] = ⊥

or sent[sID] 6= ⊥ return ⊥
11 role[sID] := "initiator"
12 i := holder[sID]
13 j := peer[sID]
14 mj ←$ M
15 cj := Enc(pkj ,mj ; G(mj))
16 (p̃k, s̃k)← KG
17 M := (p̃k, cj)
18 state[sID] := (s̃k,mj ,M)
19 sent[sID] := M
20 return M

DERresp(sID,M = (p̃k, cj))
21 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
22 role[sID] := "responder"
23 (j, i) := (holder[sID], peer[sID]
24 mi , m̃ ←$ M
25 ci := Enc(pki ,mi ; G(mi))
26 c̃ := Enc(p̃k, m̃; G(m̃))
27 M ′ := (ci , c̃)
28 m′j := Dec(skj , cj)
29 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
30 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
31 else K ′ := H(mi ,m′j , m̃, p̃k, i, j)
32 sKey[sID] := K ′
33 (received[sID], sent[sID]) := (M ,M ′)
34 return M ′

DERinit(sID,M ′ = (ci , c̃))
35 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
36 (i, j) := (holder[sID], peer[sID])
37 (s̃k,mj , p̃k, cj) := state[sID]
38 m′i := Dec(ski , ci)
39 m̃′ := Dec(s̃k, c̃)
40 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
41 if m̃′ = ⊥
42 K := H′L1(ci ,mj , c̃, p̃k, i, j)
43 else
44 K := H′L2(ci ,mj , m̃′, p̃k, i, j)
45 else if m̃′ = ⊥
46 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
47 else K := H(m′i ,mj , m̃′, p̃k, i, j)
48 sKey[sID] := K
49 received[sID] := M ′

Figure 19: Games G0,b - G2,b for case one of the proof of Theorem 5.1. Helper procedure ATTACK and
oracles TEST, EST, CORRUPT, REVEAL and REV-STATE remains as in the original IND-StAA
game (see Figures 16 and 17).

Lemma B.1 Assume PKE to be injective. Then, for any execution of IND-StAA in which S sessions
were established, the probability that a particular session sID was recreated is upper bounded by

S − 1
|M|

·

{
1
|M| role[sID] = "responder"
γ(KG) role[sID] = "initiator"

.

Proof. We first consider the case that role[sID] = "responder": Let j := holder[sID] and i := peer[sID],
let (p̃k, cj) := received[sID] and let (ci , c̃) := sent[sID], where ci := Enc(pki ,mi ,G(mi)) and c̃ :=
Enc(p̃k, m̃,G(m̃)) for some messagesmi and m̃ that were randomly drawn during execution of DERresp(sID).

To recreate sID, B has to establish another session sID′ 6= sID with same holder and peer, and to call
DERresp on (sID, (p̃k, cj)). After execution of DERresp, we have that sent[sID′] = (Enc(pki ,m′i ,G(m′i)),Enc(p̃k, m̃′,G(m̃′)))
for some random messages m′i and m̃′. Since we assume Enc(pk,−;−) to be injective, sent[sID] = sent[sID′]
iff mi = m′i and m̃ = m̃′, happening with probability at most 1/|M|2.

Now we consider the case that role[sID] = "initiator": Let i := holder[sID] and i := peer[sID], and let
(s̃k,mj , p̃k, cj) := st[sID] before execution of DERinit(sID,−). To recreate sID, B has to establish and
initialize another session sID′ 6= sID with same holder and peer. Let (s̃k ′,m′j , p̃k ′, c′j) := st[sID′] before
execution of DERinit(sID′,−). st[sID] = st[sID′] iff mj = m′j and (p̃k, s̃k) = (p̃k ′, s̃k ′), happening with
probability at most γ(KG)/|M|.

30

So far, we established

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|

≤ |Pr[GB
2,1 ⇒ 1]− Pr[GB

2,0 ⇒ 1]|+ 2S
|M|

.

Since games G2,b abort unless |M(sID∗)| = 1, we can treat the session ID of the matching session
as unique from this point on and call it sID′. Let sID∗init denote the initialising session, i.e., choose
sID∗init ∈ {sID∗, sID′} such that role[sID∗init] = "initiator", and let sID∗resp denote the other session. B’s
bit b′ only counts in IND-StAAb (and also in G2,b) if no trivial attack was executed: ATTACK returns
true (and hence the game returns 0) if B did obtain both the initialising session’s internal state and the
secret key of its holder. We will therefore examine

- case (¬st): the case that the initialising session’s state was not revealed, i.e., ¬revState[sID∗init],

- and case (¬sk): the case that the initialising session’s holder was not corrupted, i.e., the case that
¬corrupted[holder[sID∗init]]

Since cases (¬st) and (¬sk) are mutually exclusive if the game outputs 1,

|Pr[GB
2,1 ⇒ 1]− Pr[GB

2,0 ⇒ 1]| ≤ |Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]|
+ |Pr[GB

2,1 ⇒ 1 ∧ ¬sk]− Pr[GB
2,0 ⇒ 1 ∧ ¬sk]| .

Case (¬st). We claim that there exists an adversary A¬st
DS such that

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]| ≤ 2S2 ·AdvDS
T[PKE,G](A¬st

DS) + 2S · δ

+ 2S2 · γ(KG) + S2 · εdis + S3

|M|2
. (3)

The proof is given in in Appendix B.1. Its main idea is that since the initialising session’s state (in
particular, ephemeral secret key s̃k∗) remains unrevealed throughout the game, at least message m̃∗ (that
was randomly picked by DERresp(sID∗resp) cannot be computed trivially. By patching encryption into the
random oracle at the argument where the ephemeral messages go in, we ensure that the game makes no
use of s̃k∗ any longer. Since PKE is DS (and hence, so is T[PKE,G], see Lemma 3.3), we can decouple the
test session’s key from m̃∗ by replacing c̃ = Enc(p̃k, m̃∗; G(m̃∗)) with a fake ciphertext that gets sampled
using Enc, and changing the key accordingly. Given that PKE is εdis-disjoint, the probability that this fake
ciphertext is a proper encryption can be upper bounded by εdis. Since the random oracle now comes with
patched-in encryption, εdis also serves as an upper bound for the probability that a random oracle query
actually hits the session key. Hence the key is indistinguishable from a random key with overwhelming
probability.
Case (¬sk). We claim that there exists an adversary A¬sk

DS such that

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]| ≤ 2SN ·AdvDS
T[PKE,G](A¬sk

DS) + 32N · (qG + 2qH + 3S)2 · δ

+ SN · εdis + S2 ·N
|M|

. (4)

The proof of the upper bound is given in in Appendix B.2. Structurally, the proof is the same. It
differs in the following way: while in case (¬st), we made use of the fact that B does not obtain ephemeral
secret key s̃k∗ and therefore, ciphertext c̃ was indistinguishable from a random fake encryption, in case
(¬sk), we can replace ciphertext ci (since holder[sID∗init] is not corrupted). In this setting, we need to
patch in encryption at the first two arguments of the random oracle. Note that since B can execute many
sessions defined relative to the secret key of holder[sID∗init], whereas in case (¬st), the probability that
ephemeral key pair (p̃k∗, s̃k∗) was drawn in another session was negligibly small. Due to the adversary’s
capability to implicitly decrypt many encryptions relative to the secret key of holder[sID∗init], the proof
gets more involved when dealing with correctness errors.

31

Collecting the probabilities, folding A¬st
DS and A¬sk

DS into one adversary A, and assuming that N <<
S << |M|, we obtain

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|
≤ 4S2 ·AdvDS

T[PKE,G](A) + 64 ·N · (qG + 2qH + 4S)2 · δ

+ 2S2 ·
(
εdis + N

|M|
+ γ(KG)

)
,

the upper bound given in Lemma 5.2.

B.1 Case (¬st) of the Proof of Lemma 5.2

Case (¬st) (Initialising session’s state was not revealed). Consider the sequence of games given
in Figures 20, 21 and 22: First, we will enforce that indeed, we only need to consider the case where
¬revState[sID∗init]. Afterwards, we ensure that the game makes no use of ephemeral secret key s̃k∗ of
sID∗init any longer by patching encryption into the random oracle (in games G¬st

2,b to G¬st
9,b , see Figure 20

and 21). Next, during execution of DERresp(sID∗resp), we replace c̃ = Enc(p̃k∗, m̃∗; G(m̃∗)) with a fake
ciphertext that gets sampled using Enc (games G¬st

10,b to G¬st
11,b, Figure 22, see line 28). We show that

after those changes, B’s view does not change with overwhelming probability if we change TEST such
that it always returns a random value (game G¬st

12,0, also Figure 22).

GAMES G¬st
2,b -G¬st

6,b

01 cnt, sID∗ := 0
02 s′init ←$ [S] �G¬st

4,b -G¬st
6,b

03 for n ∈ [N]
04 (pkn , skn)← KG
05 (p̃k∗, s̃k∗)← KG �G¬st

5,b - G¬st
6,b

06 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
07 if ATTACK(sID∗)
08 return 0
09 if |M(sID∗)| 6= 1 ABORT
10 if revState[sID∗init] ABORT �G¬st

3,b -G¬st
6,b

11 Pick sID∗init ∈ {sID∗, sID′} s. th.
role[sID∗init] = "initiator" �G¬st

4,b -G¬st
6,b

12 if sID∗init 6= s′init
13 return 0 �G¬st

4,b -G¬st
6,b

14 return b′

INIT(sID)
15 if holder[sID] = ⊥

or sent[sID] 6= ⊥ return ⊥
16 role[sID] := "initiator"
17 i := holder[sID]
18 j := peer[sID]
19 mj ←$ M
20 cj := Enc(pkj ,mj ; G(mj))
21 (p̃k, s̃k)← KG
22 if sID 6= s′init and p̃k = p̃k∗

23 ABORT �G¬st
6,b

24 if sID = s′init
25 (p̃k, s̃k) := (p̃k∗, s̃k∗) �G¬st

5,b - G¬st
6,b

26 M := (p̃k, cj)
27 state[sID] := (s̃k,mj ,M)
28 sent[sID] := M
29 return M

Figure 20: Games G¬st
2,b - G¬st

6,b for case (¬st) of the proof of Lemma 5.2. Oracles DERresp, DERinit
and TEST remain as in games G¬st

0,b (see Figure 19, page 30), and helper procedure ATTACK and
oracles EST, REVEAL and REV-STATE remain as in the original IND-StAA game (see Figure 16 and
Figure 17, pages 20 and 21).

Games G¬st
2,b . Since game G¬st

2,b and G2,b are the same for both bits b,

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]| = |Pr[G¬st
2,1

B ⇒ 1 ∧ ¬st]− Pr[G¬st
2,0

B ⇒ 1 ∧ ¬st]| .

Games G¬st
3,b . Both games G¬st

3,b abort in line 10 if revState[sID∗init]. Since for both bits b it holds that
Pr[GB

3,b ⇒ 1] = Pr[GB
2,b ⇒ 1 ∧ ¬st],

|Pr[G¬st
2,1

B ⇒ 1 ∧ ¬st]− Pr[G¬st
2,0

B ⇒ 1 ∧ ¬st]| = |Pr[G¬st
3,1

B ⇒ 1]− Pr[G¬st
3,0

B ⇒ 1]| .

As mentioned above, the first goal is not make use of the ephemeral secret key of sID∗init any longer.
To this end, we first have to add a guess for sID∗init.

32

Games G¬st
4,b . In both games G¬st

4,b , one of the sessions that get established during execution of B is picked
at random in line 02, and the games return 0 in line 13 if any other session s′init was picked than session
sID∗init. Since for both bits b it holds that games G¬st

4,b and G¬st
3,b proceed identically if s′init = sID∗init, and

since games G¬st
4,b output 0 if s′init 6= sID∗init,

Pr[G¬st
3,b

B ⇒ 1] = S · Pr[G¬st
4,b ⇒ 1] .

Games G¬st
5,b . In both games G¬st

5,b , an ephemeral key pair (p̃k∗, s̃k∗) gets drawn in line 05 and oracle
INIT is changed in line 25 such that this key pair is used as the ephemeral key pair of sID∗init.

Pr[G¬st
4,b ⇒ 1] = Pr[G¬st

5,b ⇒ 1] .

Games G¬st
6,b . Both games G¬st

6,b , abort in line 23 if any of the initialised sessions apart from sID∗init comes
up with the same ephemeral key p̃k∗.

|Pr[G¬st
5,b ⇒ 1]− Pr[G¬st

6,b ⇒ 1]| ≤ (S − 1) · γ(KG) .

So far, we established

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]| ≤ S · |Pr[G¬st
6,1

B ⇒ 1]− Pr[G¬st
6,0

B ⇒ 1]|+ 2S2 · γ(KG) .

To upper bound |Pr[G¬st
6,1

B ⇒ 1]− Pr[G¬st
6,0

B ⇒ 1]|, consider the sequence of games given in Figure 21.
To prepare getting rid of s̃k∗, we first change DERinit such that whenever ciphertext ci induces

decryption failure, s̃k∗ is not used anymore.
Games G¬st

7,b . In games G¬st
7,b , oracle DERinit is changed in line 43 such that whenever ci fails to decrypt

(i.e., ci does not decrypt to a message m′i s. th. ci = Enc(pki ,m′i ,G(m′i))), the session key is always
defined as K := H′L1(ci ,mj , c̃, p̃k, i, j). (Before this change we let K := H′L2(ci ,mj , m̃′, p̃k, i, j) in the case
that ci fails to decrypt, but c̃ decrypts correctly.) Since both H′L1 and H′L2 are not directly accessible and
we assume Enc(p̃k,−) to be injective, B’s view does not change and

Pr[G¬st
6,b ⇒ 1] = Pr[G¬st

7,b ⇒ 1] .

The next preparation step is to rule out the possibility that the test session’s ephemeral ciphertext
fails to decrypt.
Game G¬st

8,b . In games G¬st
8,b , DERinit(s′init, (ci , c̃)) is changed such that it aborts in line 46 if c̃ does not

decrypt to some message m̃′ such that c̃ = Enc(p̃k∗, m̃′; G(m̃′)). Since the unique matching session sID∗resp
exists, c̃ is the encryption of some message that was picked at random by DERresp(sID∗resp, sent[sID∗init])
and

|Pr[G¬st
7,b ⇒ 1]− Pr[G¬st

8,b ⇒ 1]| ≤ δ .

We finally get rid of s̃k∗ by changing DERinit for s′init such that if ciphertext ci decrypts correctly,
the key is defined not using s̃k∗ anymore. This is achieved as follows: If ciphertext ci decrypts correctly,
we do note use the decryption of c̃, but c̃ itself. To this end, we "patch in" encryption into random oracle
H whenever ephemeral public key p̃k∗ is used. Due to the need for key consistency, we have to change
DERresp accordingly.
Games G¬st

9,b . In game G¬st
9,b , random oracle H is changed as follows: Instead of picking H uniformly

random, we pick two random oracles Hq and H′ in lines 01 and 02, and define

H(m1,m2,m3, p̃k, i, j) :=
{

Hq(m1,m2,Enc(p̃k,m3; G(m3)), p̃k, i, j) p̃k = p̃k∗

H′(m1,m2,m3, p̃k, i, j) o.w.
,

see line 55. Since we assume Enc to be injective, H still is uniformly random.
We make the change of H explicit in the derivation oracles:
We change DERinit in line 47 such that for sID = s′init, the session key is defined as K :=

Hq(m′i ,mj , c̃, p̃k∗, i, j), given that ci decrypts correctly. Since we enforced in game G¬st
6,b that no other

33

GAMES G¬st
6,b -G¬st

9,b

01 H′ ←$ KM
3×PK×[N]2 �G¬st

9,b -G¬st
9,b

02 Hq ←$ KM
2×C×PK×[N]2 �G¬st

9,b -G¬st
9,b

03 cnt, sID∗ := 0
04 s′init ←$ [S]
05 for n ∈ [N]
06 (pkn , skn)← KG
07 (p̃k∗, s̃k∗)← KG
08 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
09 if ATTACK(sID∗)
10 return 0
11 if |M(sID∗)| 6= 1 ABORT
12 if revState[sID∗init] ABORT
13 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
14 if sID∗init 6= s′init return 0
15 return b′

DERresp(sID,M = (p̃k, cj))
16 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
17 role[sID] := "responder"
18 (j, i) := (holder[sID], peer[sID]
19 mi , m̃ ←$ M
20 ci := Enc(pki ,mi ; G(mi))
21 c̃ := Enc(p̃k, m̃; G(m̃))
22 M ′ := (ci , c̃)
23 m′j := Dec(skj , cj)
24 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
25 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
26 else
27 K ′ := H(mi ,m′j , m̃, p̃k, i, j)
28 if p̃k = p̃k∗

29 K ′ := Hq(mi ,m′j , c̃, p̃k, i, j) �G¬st
9,b -

G¬st
9,b

30 sKey[sID] := K ′
31 (received[sID], sent[sID]) := (M ,M ′)
32 return M ′

DERinit(sID,M ′ = (ci , c̃))
33 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
34 (i, j) := (holder[sID],peer[sID])
35 (s̃k,mj , p̃k, cj) := state[sID]
36 m′i := Dec(ski , ci)
37 m̃′ := Dec(s̃k, c̃)
38 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
39 if m̃′ = ⊥
40 K := H′L1(ci ,mj , c̃, p̃k, i, j)
41 else
42 K := H′L2(ci ,mj , m̃′, p̃k, i, j) �G¬st

6,b
43 K := H′L1(ci ,mj , c̃, p̃k, i, j) �G¬st

7,b
-G¬st

9,b
44 else if sID = s′init
45 if m̃′ = ⊥ or c̃ 6= Enc(p̃k, m̃′; G(m̃′))
46 ABORT �G¬st

8,b -G¬st
9,b

47 K := Hq(m′i ,mj , c̃, p̃k, i, j) �G¬st
9,b

48 else if m̃′ = ⊥
49 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
50 else
51 K := H(m′i ,mj , m̃′, p̃k, i, j)
52 sKey[sID] := K
53 received[sID] := M ′

H(m1,m2,m3, p̃k, i, j) �G¬st
9,b

54 if p̃k = p̃k∗

55 return Hq(m1,m2,Enc(p̃k,m3; G(m3)), p̃k, i, j)
56 return H′(m1,m2,m3, p̃k, i, j)

Figure 21: Games G¬st
6,b - G¬st

9,b for case (¬st) of the proof of Lemma 5.2. Oracle Init remains as in games
G¬st

4,b (see Figure 20, page 32), (see Figure 16, page 20), and helper procedure ATTACK and oracles
TEST, EST, REVEAL and REV-STATE remain as in the original IND-StAA games.

session than s′init could possibly use public key p̃k∗, this indeed is the only session where we have to
change the definition of K . Furthermore, we enforced in game G¬st

8,b that c̃ decrypts correctly, i.e., we
enforce that m̃′ := Dec(s̃k∗, c̃) 6= ⊥ and that c̃ = Enc(p̃k∗, m̃′; G(m̃′)), hence we have key consistency:

H(m′i ,mj , m̃′, p̃k∗, i, j) = Hq(m′i ,mj ,Enc(p̃k∗, m̃′; G(m̃′)), p̃k∗, i, j)

= Hq(m′i ,mj , c̃, p̃k∗, i, j) .

Likewise, make the change of H explicit in DERresp: we change DERresp in line 29 such that if p̃k = p̃k∗,

34

the session keys are defined as K ′ := Hq(mi ,m′j , c̃, p̃k∗, i, j) whenever cj decrypts correctly. This change is
purely conceptual since c̃ is defined as c̃ := Enc(p̃k, m̃; G(m̃)):

H(mi ,m′j , m̃, p̃k∗, i, j) = Hq(mi ,m′j ,Enc(p̃k∗, m̃; G(m̃)), p̃k, i, j) = Hq(mi ,m′j , c̃, p̃k∗, i, j) .

We conclude
Pr[G¬st

8,b ⇒ 1] = Pr[G¬st
9,b ⇒ 1] .

So far, we established

|Pr[G¬st
6,1 ⇒ 1]− Pr[G¬st

6,0 ⇒ 1]| ≤ |Pr[G¬st
9,1 ⇒ 1]− Pr[G¬st

9,0 ⇒ 1]|+ 2 · δ ,

hence

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]| ≤ S · |Pr[G¬st
9,1 ⇒ 1]− Pr[G¬st

9,0 ⇒ 1]|
+ 2S · δ + 2S2 · γ(KG) .

We stress that from game G¬st
9,b on, none of the oracles use ephemeral secret key s̃k∗ any longer. To

upper bound |Pr[G¬st
9,1

B ⇒ 1]−Pr[G¬st
9,0

B ⇒ 1]|, consider the sequence of games given in Figure 22, where
we replace sID∗resp’s ciphertext c̃ with a fake encryption. To replace c̃, we first have to add a guess for
sID∗resp.

GAMES G¬st
9,b -G¬st

12,b

01 H′ ←$ KM
3×PK×[N]2

02 Hq ←$ KM
2×C×PK×[N]2

03 G←$ RM
04 cnt, sID∗ := 0
05 s′init ←$ [S]
06 s′resp ←$ [S] �G¬st

10,b -G¬st
12,b

07 for n ∈ [N]
08 (pkn , skn)← KG
09 (p̃k∗, s̃k∗)← KG
10 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
11 if ATTACK(sID∗)
12 return 0
13 if |M(sID∗)| 6= 1 ABORT
14 if revState[sID∗init] ABORT
15 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
16 if sID∗init 6= s′init return 0
17 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder" �G¬st
10,b-G¬st

12,b
18 if sID∗resp 6= s′resp
19 return 0 �G¬st

10,b-G¬st
12,b

20 return b’

DERresp(sID,M = (p̃k, cj))
21 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
22 role[sID] := "responder"
23 (j, i) := (holder[sID], peer[sID]
24 mi , m̃ ←$ M
25 ci := Enc(pki ,mi ; G(mi))
26 c̃ := Enc(p̃k, m̃; G(m̃))
27 if sID = s′resp

28 c̃ ← Enc(p̃k∗) �G¬st
11,b-G¬st

12,b
29 M ′ := (ci , c̃)
30 m′j := Dec(skj , cj)
31 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
32 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
33 else
34 K ′ := H(mi ,m′j , m̃, p̃k, i, j)
35 if p̃k = p̃k∗

36 K ′ := Hq(mi ,m′j , c̃, p̃k, i, j)
37 sKey[sID] := K ′
38 (received[sID], sent[sID]) := (M ,M ′)
39 return M ′

TEST(sID) �only one query
40 sID∗ := sID
41 if sKey[sID∗] = ⊥ return ⊥
42 K∗0 := sKey[sID∗] �G¬st

9,b -G¬st
11,b

43 K∗0 ←$ K �G¬st
12,0

44 K∗1 ←$ K
45 return K∗b

Figure 22: Games G¬st
9,b - G¬st

12,b for case (¬st) of the proof of Lemma 5.2. All oracles except for TEST
and DERresp remain as in game G¬st

9,b (see Figure 21, page 34).

Games G¬st
10,b. In game G¬st

10,b, one of the sessions that get established during execution of B is picked at
random in line 06, and the game returns 0 in line 19 if any other session s′resp was picked than session
sID∗resp. Again,

Pr[G¬st
9,b ⇒ 1] = S · Pr[G¬st

10,b ⇒ 1] .

35

Games G¬st
11,b. In game G¬st

11,b, DERresp is changed in line 28 such that for s′resp, c̃ is no longer an encryption
of a randomly drawn message m̃, but a fake encryption c̃ ← Enc(p̃k∗). Consider the adversaries A¬st

DS,b
against the disjoint simulatability of T[PKE,G] given in Figure 23. Each adversary A¬st

DS,b needs to
generate ephemeral key pairs (at most S times), to (deterministically) encrypt or reencrypt (at most 3S
times), to decrypt (at most 2S times), to evaluate the random oracles Hq and H′ (at most qH + S times)
as well as G (at most qG + 3S times), and to lazy sample (at most S times). Hence the total running time
is upper bounded as follows:

Time(A¬st
DS,b) ≤ Time(B) + S · (Time(KG) + 3 · Time(Enc) + 2 · Time(Dec)) + qH + qG + 4S

≈ Time(B) . (5)

Since A¬st
DS,b perfectly simulates game G¬st

10,b if its input c∗ was generated by c := Enc(p̃k∗,m,G(m)) for
some randomly picked message m, and game G¬st

11,b if its input was generated by c ← Enc(p̃k∗),

|Pr[G¬st
10,b ⇒ 1]− Pr[G¬st

11,b ⇒ 1]| = AdvDS
T[PKE,G](A¬st

DS,b) ,

and folding A¬st
DS,0 and A¬st

DS,1 into one adversary A¬st
DS yields

AdvDS
T[PKE,G](A¬st

DS,0) + AdvDS
T[PKE,G](A¬st

DS,1) = 2 ·AdvDS
T[PKE,G](A¬st

DS) .

A¬st
DS,b
|H′〉,|Hq〉,|G〉(p̃k∗, c∗)

01 cnt, sID∗ := 0
02 s′init ←$ [S], s′resp ←$ [S]
03 for n ∈ [N]
04 (pkn , skn)← KG
05 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
06 if ATTACK(sID∗) return 0
07 if |M(sID∗)| 6= 1 ABORT
08 if revState[sID∗init] ABORT
09 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
10 if sID∗init 6= s′init return 0
11 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder"
12 if sID∗resp 6= s′resp return 0
13 return b′

REV-STATE(sID 6= s′init)
14 if state[sID] = ⊥ return ⊥
15 revState[sID] := true
16 return state[sID]

DERresp(sID,M = (p̃k, cj))
17 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
18 role[sID] := "responder"
19 (j, i) := (holder[sID], peer[sID]
20 mi , m̃ ←$ M
21 ci := Enc(pki ,mi ; G(mi))
22 c̃ := Enc(p̃k, m̃; G(m̃))
23 if sID = s′resp
24 c̃ := c∗
25 M ′ := (ci , c̃)
26 m′j := Dec(skj , cj)
27 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
28 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
29 else
30 K ′ := H(mi ,m′j , m̃, p̃k, i, j)
31 if p̃k = p̃k∗

32 K ′ := Hq(mi ,m′j , c̃, p̃k, i, j)
33 sKey[sID] := K ′
34 (received[sID], sent[sID]) := (M ,M ′)
35 return M ′

Figure 23: Adversaries A¬st
DS,b for case (¬st) of the proof of Lemma 5.2, with oracle access to |H′〉, |Hq〉

and |G〉. All oracles except for DERresp and REV-STATE are defined as in game G¬st
10,b (see Figure 22,

page 35). Note that the internal random oracles (H′R, and H′L1 to H′L3) can be simulated via lazy sampling
since they are only accessible indirectly via DERresp and DERinit, which are queried classically.

So far, we established

|Pr[G¬st
9,1 ⇒ 1]− Pr[G¬st

9,0 ⇒ 1]| ≤ S · |Pr[G¬st
11,1 ⇒ 1]− Pr[G¬st

11,0 ⇒ 1]|+ 2S ·AdvDS
T[PKE,G](A¬st

DS) ,

hence

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]| ≤ S2 · |Pr[G¬st
11,1 ⇒ 1]− Pr[G¬st

11,0 ⇒ 1]|
+ 2S2 ·AdvDS

T[PKE,G](A¬st
DS) + 2S · δ + 2S2 · γ(KG) .

36

Game G¬st
12,0. In game G¬st

12,0, we change oracle TEST in line 43 such that it returns a random value
instead of returning sKey[sID∗]. Since this change renders games G¬st

12,0 and G¬st
12,1 equal, and since game

G¬st
12,1 is equal to game G¬st

11,1,

|Pr[G¬st
11,1 ⇒ 1]− Pr[G¬st

11,0 ⇒ 1]| = |Pr[G¬st
12,0 ⇒ 1]− Pr[G¬st

11,0 ⇒ 1]| .

It remains to upper bound |Pr[G¬st
12,0 ⇒ 1]− Pr[G¬st

11,0 ⇒ 1]|. B cannot distinguish K∗0 = sKey[sID∗] from
random in game G¬st

11,0 unless it obtains K∗0 (either classically or contained in a quantum answer) at some
point other than during the calling of TEST. It’s easy to verify that B can only obtain keys (and in
particular, K∗0) by queries to REVEAL or to H.

Let (i∗, j∗) := (holder[sID∗init],peer[sID∗init]). p̃k∗ denotes the ephemeral key that was chosen in the
beginning of the game (see Figure 20, line 05) and used during execution of INIT(sID∗init) (line 25, also
Figure 20). Let m∗j denote the randomly chosen message with encryption c∗j := Enc(pkj∗ ,m∗j ; G(m∗j)) that
was sampled during execution of INIT(sID∗init), furthermore let c̃∗ denote the fake ciphertext that was
sampled under p̃k∗ (Figure 22, line 28) and let m∗i denote the randomly chosen message with encryption
c∗i := Enc(pki∗ ,m∗i ; G(m∗i)) that was picked during execution of DERresp(sID∗resp). We changed the key
derivation such that since p̃k∗ is used (and Enc is injective), in the case that sID∗ = sID∗init, we have

K∗0 =
{

H′L1(c∗i ,m∗j , c̃∗, p̃k∗, i∗, j∗) Dec(ski∗ , c∗i) 6= m∗i
Hq(m∗i ,m∗j , c̃∗, p̃k∗, i∗, j∗) o.w.

,

and in the case that sID∗ = sID∗resp, we have

K∗0 =
{

H′R(m∗i , c∗j , m̃∗, p̃k∗, i∗, j∗) Dec(skj∗ , c∗j) 6= m∗j
Hq(m∗i ,m∗j , c̃∗, p̃k∗, i∗, j∗) o.w.

.

We claim that B obtains K∗0 by a query to REVEAL with probability 0 if role[sID∗] = "initiator"
and with probability at most S−2/|M|2 · δ if role[sID∗] = "responder":

Recall that B trivially loses if revealed[sID∗init] or revealed[sID∗resp], hence, to obtain K∗0 (without
losing trivially) via some query to REVEAL, B would have to derive the same session key by recreating
the test session. (Creation of an additional matching session would result in an abort.) We first consider
the case that sID∗ = sID∗init: To obtain K∗0 via recreation, B would have to establish and initialize session
sID 6= sID∗init with holder i∗ and peer j∗. INIT(sID) randomly picks some message mj and a key pair
(p̃k, s̃k) and outputs p̃k and cj := Enc(pkj∗ ,mj ; G(mj)). The subsequent call to DERinit only results in
the same key if m∗j = mj and p̃k = p̃k∗, which is impossible since we enforced in game G¬st

6,b that no other
session uses p̃k∗. Using the same reasoning, it is straightforward to argue that if sID∗ = sID∗resp, B can
only obtain K0 (without losing trivially) with probability at most S−2/|M|2 · δ.

To upper bound the probability that any of the quantum answers of |H〉 could contain session key
K∗0 = Hq (m∗i ,m∗j , c̃∗, p̃k∗, i∗, j∗), recall that for p̃k∗,

H(m1,m2,m3, p̃k∗, i∗, j∗) = Hq(m1,m2,Enc(p̃k∗,m3; G(m3)), p̃k∗, i∗, j∗) .

Hence, to trigger a query to |Hq〉 containing the classical query (m∗i ,m∗j , c̃∗, p̃k∗, i∗, j∗), B would need to
come up with a message m such that Enc(p̃k∗,m; G(m)) = c̃∗. Since c̃∗ was sampled by Enc and PKE is
εdis-disjoint, this is possible with probability at most εdis and

|Pr[G¬st
11,0 ⇒ 1]− Pr[G¬st

12,0 ⇒ 1]| ≤ S − 2
|M|2

· δ + εdis ≤
S
|M|2

+ εdis .

Collecting the probabilities yields

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]| ≤ 2S2 ·AdvDS
T[PKE,G](A¬st

DS) + 2S · δ

+ 2S2 · γ(KG) + S2 · εdis + S3

|M|2
,

the upper bound we claimed in equation (3).

37

B.2 Case (¬sk) of the Proof of Lemma 5.2

Case (¬sk) (Initialising session’s owner was not corrupted). Intuition is as follows: While
B might have obtained both the secret key of peer[sID∗init] and sID∗init’s internal state, we can replace
ciphertext ci since holder[sID∗init], henceforth called i∗, is not corrupted. To be able to replace ci , we
will patch in encryption at the first (and due to the need for symmetry, at the second) argument of the
random oracle.

Consider the sequence of games given in Figures 24 and 27: First, we will enforce that indeed, we only
need to consider the case where ¬corrupted[holder[sID∗init]]. Afterwards, we ensure that the game makes
no use of ski∗ any longer by patching encryption into the random oracle (in games G¬sk

2,b to G¬sk
7,b , see

Figure 24, line 35). This is the only part of the proof where we need to consider the adversary’s capability
to come up with encryptions that decrypt incorrectly. Next, during execution of DERresp(sID∗resp), we
replace ci = Enc(pki∗ ,m∗i) with a fake ciphertext that gets sampled using Enc (games G¬sk

8,b to G¬sk
9,b , see

Figure 27). We show that after those changes, B’s view does not change with overwhelming probability if
we finally change TEST such that it always returns a random value (game G¬sk

10,b, also Figure 27).

Game G¬sk
2,b . Since games G¬sk

2,b and G2,b are the same,

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]| = |Pr[G¬sk
2,1

B ⇒ 1 ∧ ¬sk]− Pr[G¬sk
2,0

B ⇒ 1 ∧ ¬sk]| .

Games G¬sk
3,b . Both games G¬sk

3,b abort in line 14 if corrupted[holder[sID∗init]]. Since for both bits b it
holds that Pr[G¬sk

3,b
B ⇒ 1] = Pr[G¬sk

2,b
B ⇒ 1 ∧ ¬sk]],

|Pr[G¬sk
2,1

B ⇒ 1 ∧ ¬sk]− Pr[G¬sk
2,0

B ⇒ 1 ∧ ¬sk]| = |Pr[G¬sk
3,1 ⇒ 1]− Pr[G¬sk

3,0 ⇒ 1]| .

The first goal is not to have to make use of ski∗ any longer. Since i∗ = holder[sID∗init] is not fixed until
B issues the TEST query, we first add a guess i ′ for holder[sID∗init]. Afterwards, we patch encryption into
H for the first two messages, and even out the difference in derivation for ciphertexts with decryption
failure and ciphertexts without. We will see that these changes do not affect B’s view unless it is able to
distinguish random oracle G from an oracle Gpk,sk that only samples randomness under which decryption
never fails, thereby allowing for a reduction to game GDPB.
Games G¬sk

4,b . In both games G¬sk
4,b , one of the parties is picked at random in line 05, and the games

return 0 in line 16 if any other party i ′ was picked than the holder of sID∗init.
Since for both bits b it holds that games G¬sk

4,b and G¬sk
3,b proceed identically if holder[sID∗init] = i ′, and

since games G¬sk
4,b output 0 if holder[sID∗init] 6= i ′,

Pr[G¬sk
3,b ⇒ 1] = N · Pr[G¬sk

4,b ⇒ 1] .

To prepare getting rid of ski′ , we first change DERinit such that whenever ciphertext c̃ induces
decryption failure, ski′ is not used anymore.
Games G¬sk

5,b . In both games G¬sk
5,b , we change oracle DERinit in line 34 such that whenever the session’s

holder is i ′ and c̃ does not decrypt to a message m̃′ s. th. c̃ = Enc(p̃k, m̃′,G(m̃′)), the session key is
defined as K := H′L1(ci ,mj , c̃, p̃k, i, j). (Before this change we let K := H′L3(m′i ,mj , c̃, p̃k, i, j) in the case
that c̃ fails to decrypt, but ci decrypts correctly.) Since both H′L1 and H′L3 are not directly accessible and
we assume Enc(pki′ ,−) to be injective, B’s view does not change and

Pr[G¬sk
4,b ⇒ 1] = Pr[G¬sk

5,b ⇒ 1] .

The next two game-hops are done to achieve that DERinit and DERresp do not use ski′ any more.
In the next game, we only change key definition of DERinit if both ciphertexts decrypt correctly, and
key definition of DERresp if cj decrypts correctly. In these cases, we do note use the decryptions under
ski′ , but the ciphertexts themself. Similar to case (¬st), we "patch in" encryption into random oracle
H whenever i ′ appears as one of the involved parties. Due to the need for key consistency, we have to
change patch encryption into the first two arguments.

38

GAMES G¬sk
2,b -G¬sk

7,b

01 H′ ←$ KM
3×PK×[N]2 �G¬sk

6,b -G¬sk
7,b

02 Hq ←$ KC
2×M×PK×[N]2 �G¬sk

6,b -G¬sk
7,b

03 G←$ RM
04 cnt, sID∗ := 0
05 i ′ ←$ [N] �G¬sk

4,b -G¬sk
7,b

06 for n ∈ [N]
07 (pkn , skn)← KG
08 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
09 if ATTACK(sID∗)
10 return 0
11 if |M(sID∗)| 6= 1 ABORT
12 Pick sID∗init ∈ {sID∗, sID′}

s. th. role[sID∗init] = "initiator" �G¬sk
3,b -G¬sk

7,b
13 if corrupted[holder[sID∗init]]
14 ABORT �G¬sk

3,b -G¬st
6,b

15 if holder[sID∗init] 6= i ′
16 return 0 �G¬sk

4,b -G¬sk
7,b

17 return b’

DERinit(sID,M ′ = (ci , c̃))
18 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
19 (i, j) := (holder[sID], peer[sID])
20 (s̃k,mj , p̃k, cj) := state[sID]
21 m′i := Dec(ski , ci)
22 m̃′ := Dec(s̃k, c̃)
23 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
24 if m̃′ = ⊥
25 K := H′L1(ci ,mj , c̃, p̃k, i, j)
26 else
27 K := H′L2(ci ,mj , m̃′, p̃k, i, j)
28 if i = i ′
29 K := Hq(ci , cj , m̃, p̃k, i, j) �G¬sk

7,b
30 else
31 if m̃ = ⊥
32 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
33 if i = i ′
34 K := H′L1(ci ,mj , c̃, p̃k, i, j) �G¬sk

5,b -G¬sk
7,b

35 else
36 K := H(m′i ,mj , m̃′, p̃k, i, j)
37 if i ′ ∈ {i, j}
38 K := Hq(ci , cj , m̃, p̃k, i, j) �G¬sk

6,b -G¬sk
7,b

39 sKey[sID] := K
40 received[sID] := M ′

DERresp(sID,M = (p̃k, cj))
41 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"return ⊥
42 role[sID] := "responder"
43 (j, i) := (holder[sID], peer[sID])
44 mi , m̃ ←$ M
45 ci := Enc(pki ,mi ; G(mi))
46 c̃ := Enc(p̃k, m̃; G(m̃))
47 M ′ := (ci , c̃)
48 m′j := Dec(skj , cj)
49 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
50 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
51 if j = i ′
52 K ′ := Hq(ci , cj , m̃, p̃k, i, j) �G¬sk

7,b
53 else
54 K ′ := H(mi ,m′j , m̃, p̃k, i, j)
55 if i ′ ∈ {i, j}
56 K ′ := Hq(ci , cj , m̃, p̃k, i, j) �G¬sk

6,b -G¬sk
7,b

57 sKey[sID] := K ′
58 (received[sID], sent[sID]) := (M ,M ′)
59 return M ′

H(m1,m2,m3, p̃k, i, j) �G¬sk
6,b -G¬sk

7,b

60 if i ′ ∈ {i, j}
61 return Hq(Enc(pki ,m1; G(m1)),Enc(pkj ,m2; G(m2)),m3, p̃k, i, j)
62 return H′(m1,m2,m3, p̃k, i, j)

Figure 24: Games G¬sk
2,b - G¬sk

7,b for case (¬sk) of the proof of Lemma 5.2. Helper procedure ATTACK
and oracles TEST, Init, EST, REVEAL and REV-STATE remain as in the original IND-StAA game
(see Figure 16 and Figure 17, pages 20 and 21).

Games G¬sk
6,b . In games G¬sk

6,b , the random oracle is changed as follows: Instead of picking H uniformly

39

random, we pick two random oracles Hq and H′ and define

H(m1,m2,m3,p̃k, i, j)

:=
{

Hq(Enc(pki ,m1; G(m1)),Enc(pkj ,m2; G(m2)),m3, p̃k, i, j) i ′ ∈ {i, j}
H(m1,m2,m3, p̃k, i, j) o.w. ,

see line 61. Again, H still is uniformly random since we assume Enc(pk,−;−) to be injective.
We make the change of H explicit in oracles DERresp and DERinit: We change DERinit in line 38

such that if the session’s peer or holder is i ′, the session key is defined as K := Hq(ci , cj , m̃, p̃k, i, j)
whenever both ci and c̃ decrypt correctly. This change is purely conceptual since ci = Enc(pk,m′i ; G(m′i))
and cj = Enc(pk,mj ; G(mj)).

Likewise, we change oracle DERresp in line 56 such that if the session’s peer or holder is i ′, the session
key is defined as K ′ := Hq(ci , cj , m̃, p̃k, i, j) whenever cj decrypts correctly. Again, this change is purely
conceptual, and

Pr[G¬sk
5,b ⇒ 1] = Pr[G¬sk

6,b ⇒ 1] .

So far, we established

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]| = N · |Pr[G¬sk
6,1 ⇒ 1]− Pr[G¬sk

6,0 ⇒ 1]| .

The final step to get rid of ski′ is to even out the key derivation for problematic ciphertexts: To this
end, we also use Hq if a ciphertext fails to decrypt under ski′ , instead of using the implicit reject.
Games G¬sk

7,b . In games G¬sk
7,b , we change DERresp in line 52 such that whenever the session’s holder

is i ′ and cj fails to decrypt, the session key is defined as K ′ := Hq(ci , cj , m̃, p̃k, i, j) instead of letting
K ′ := H′R(mi , cj , m̃, p̃k, i, j).

Likewise, we change DERinit in line 29 such that whenever the session’s holder is i ′ and ciphertext c̃
decrypts correctly, the session key is defined as K := Hq(ci , cj , m̃, p̃k, i, j). (Before this change, we let
K := H′L2(ci ,mj , m̃′, p̃k, i, j) if c̃ decrypts correctly, but ciphertext ci fails to decrypt.) We claim that for
both bits b it holds that

|Pr[G¬sk
6,b ⇒ 1]− Pr[G¬sk

7,b ⇒ 1]| ≤ 16 · (qG + 2qH + 3S)2 · δ . (6)

To verify this upper bound, consider the sequence of intermediate games given in Figure 25. Intuitively,
removing the implicit rejects can only affect B’s view if keys were derived using error-inducing encryptions.
We show that we can replace random oracle G with an oracle Gpki′ ,ski′ that makes error-inducing encryptions
impossible, while distinguishing G from Gpki′ ,ski′ is reducable to winning GDPB.

40

GAMES G¬sk
6,b - G¬sk

7,b

01 H′ ←$ KM
3×PK×[N]2

02 Hq ←$ KC
2×M×PK×[N]2

03 G←$ RM �G¬sk
6,b ,G¬sk

7,b
04 Pick 2q-wise hash f �G¬sk

61/3,b-G¬sk
62/3,b

05 cnt, sID∗ := 0
06 i ′ ←$ [N]
07 for n ∈ [N]
08 (pkn , skn)← KG
09 G := Gpki′ ,ski′ �G¬sk

61/3,b-G¬sk
62/3,b

10 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
11 if ATTACK(sID∗)
12 return 0
13 if |M(sID∗)| 6= 1 ABORT
14 Pick sID∗init ∈ {sID∗, sID′}

s. th. role[sID∗init] = "initiator"
15 if corrupted[holder[sID∗init]] ABORT
16 if holder[sID∗init] 6= i ′
17 return 0
18 return b’

Gpki′ ,ski′ (m)
19 r := Sample(R\Rbad(pki′ , ski′ ,m); f (m))
20 return r

DERresp(sID,M = (p̃k, cj))
21 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
22 role[sID] := "responder"
23 (j, i) := (holder[sID], peer[sID])
24 mi , m̃ ←$ M
25 ci := Enc(pki ,mi ; G(mi))
26 c̃ := Enc(p̃k, m̃; G(m̃))
27 M ′ := (ci , c̃)
28 m′j := Dec(skj , cj)
29 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
30 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
31 if j = i ′
32 K ′ := Hq(ci , cj , m̃, p̃k, i, j) �G¬sk

62/3,b-G¬sk
7,b

33 else
34 K ′ := H(mi ,m′j , m̃, p̃k, i, j)
35 if i ′ ∈ {i, j}
36 K ′ := Hq(ci , cj , m̃, p̃k, i, j)
37 sKey[sID] := K ′
38 (received[sID], sent[sID]) := (M ,M ′)
39 return M ′

DERinit(sID,M ′ = (ci , c̃))
40 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
41 (i, j) := (holder[sID], peer[sID])
42 (s̃k,mj , p̃k, cj) := state[sID]
43 m′i := Dec(ski , ci)
44 m̃′ := Dec(s̃k, c̃)
45 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
46 if m̃′ = ⊥
47 K := H′L1(ci ,mj , c̃, p̃k, i, j)
48 else
49 K := H′L2(ci ,mj , m̃′, p̃k, i, j)
50 if i = i ′
51 K := Hq(ci , cj , m̃, p̃k, i, j) �G¬sk

62/3,b-G¬sk
7,b

52 else
53 if m̃ = ⊥
54 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
55 if i = i ′
56 K := H′L1(ci ,mj , c̃, p̃k, i, j)
57 else
58 K := H(m′i ,mj , m̃′, p̃k, i, j)
59 if i ′ ∈ {i, j}
60 K := Hq(ci , cj , m̃, p̃k, i, j)
61 sKey[sID] := K
62 received[sID := M ′

Figure 25: Intermediate games G¬sk
6,b - G¬sk

7,b for case (¬sk) of the proof of Lemma 5.2. All oracles
except for G, DERresp and DERinit remain as in game G¬sk

6,b . f (lines 04 and 19) is an internal 2q-wise
independent hash function, where q := qG + 2 · qH + 3 · S , that cannot be accessed by B. Sample(Y) is
a probabilistic algorithm that returns a uniformly distributed y ←$ Y . Sample(Y ; f (m)) denotes the
deterministic execution of Sample(Y) using explicitly given randomness f (m).

Game G¬sk
61/3,b. In game G¬sk

61/3,b, we enforce that no decryption failure with respect to key pair (pki′ , ski′)
will occur by replacing random oracle G with Gpki′ ,ski′ (m) in line 09, where Gpki′ ,ski′ (m) is defined in line

41

19 by
Gpki′ ,ski′ (m) := Sample(R \Rbad(pki′ , ski′ ,m); f (m)) ,

with Rbad(pk, sk,m) := {r ∈ R | Dec(sk,Enc(pk,m; r)) 6= m} denoting the set of “bad” randomness for
any fixed key pair (pk, sk) and any message m ∈M. Further, let

δ(pk, sk,m) := |Rbad(pk,sk,m)|/|R| (7)

denote the fraction of bad randomness, and δ(pk, sk) := maxm∈M δ(pk, sk,m). With this notation,
δ = E[maxm∈M δ(pk, sk,m)], where the expectation is taken over (pk, sk)← KG.

To upper bound |Pr[G¬sk
61/3,b ⇒ 1] − Pr[G¬sk

6,b ⇒ 1]| for each bit b, we construct (unbounded, quan-
tum) adversaries Cb against the generic distinguishing problem with bounded probabilities GDPBλ (see
Lemma 2.7) in Figure 26, issuing at most qG + 2qH + 3 · S queries to |F〉:

Each Cb runs (pk, sk)← KG and uses this key pair as (pki′ , ski′) when simulating game G¬sk
6,b to B. Cb

computes the parameters λ(m) of the generic distinguishing problem as λ(m) := δ(pki′ , ski′ ,m), which
are bounded by λ := δ(pki′ , ski′).

To analyze Cb, we first fix (pki′ , ski′). For each m ∈ M, by the definition of game GDPBλ,1, the
random variable F(m) is distributed according to Bλ(m) = Bδ(pki′ ,ski′ ,m). By construction, the random
variable G(m) defined in line 06 if F(m) = 0 and in line 08 if F(m) = 1 is uniformly distributed in R,
therefore G is a (quantum) random oracle and Cb perfectly simulates game G¬sk

6,b if executed in game
GDPBλ,1. Since adversary Cb also perfectly simulates game G¬sk

61/3,b if executed in game GDPBλ,0,

|Pr[G¬sk
6,b ⇒ 1]− Pr[G¬sk

61/3,b ⇒ 1]| = |Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ,
and according to Lemma 2.7,

Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ≤ 8 · (qG + qH + 3S)2 · δ .

Cb
1 = Cb′

1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

G(m)
05 if F(m) = 0
06 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
07 else
08 G(m) := Sample(Rbad(pk, sk,m); f (m))
09 return G(m)

CORRUPT(i ∈ [N] \ {i ′})
10 if corrupted[i] return ⊥
11 corrupted[i] := true
12 return ski

Cb|F〉
2 , Cb′

2
|F〉

13 H′ ←$ KM
3×PK×[N]2

14 Hq ←$ KC
2×M×PK×[N]2

15 Pick 2q-wise hash f
16 cnt, sID∗ := 0
17 i ′ ←$ [N]
18 for n ∈ [N] \ {i ′}
19 (pkn , skn)← KG
20 (pki′ , ski′) := (pk, sk)
21 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
22 if ATTACK(sID∗)
23 return 0
24 if |M(sID∗)| 6= 1 ABORT
25 Pick sID∗init ∈ {sID∗, sID′}

s. th. role[sID∗init] = "initiator"
26 if corrupted[holder[sID∗init]] ABORT
27 if holder[sID∗init] 6= i ′
28 return 0
29 return b’

Figure 26: Adversaries Cb = (Cb
1,Cb

2) and Cb′ = (Cb′
1,Cb′

2) for b ∈ F2 executed in game GDPBδ(pki′ ,ski′)
with access to |F〉, for case (¬sk) of the proof of Lemma 5.2. δ(pki′ , ski′) is defined in Equation (7). The
adversaries only differ in their definition of DERresp and DERinit: For the adversaries Cb, DERresp and
DERinit are defined as in game G¬sk

6,b , see Figure 25, while for adversaries Cb′, DERresp and DERinit are
defined as in game G¬st

62/3,b (also Figure 25).

Games G¬sk
62/3,b. In games G¬sk

62/3,b, we change DERinit in line 51 such that for holder i ′, the session key is
defined as K := Hq(ci , cj , m̃, p̃k, i, j) whenever ciphertext c̃ decrypts correctly. (Before this change, we let

42

K := H′L2(ci ,mj , m̃′, p̃k, i, j) if c̃ decrypts correctly, but ciphertext ci fails to decrypt.) Likewise, we change
DERresp in line 32 such that for holder i ′, the session key is always defined as K ′ := Hq(ci , cj , m̃, p̃k, i, j)
instead of letting K ′ := H′R(mi , cj , m̃, p̃k, i, j) if cj fails to decrypt.

We argue that this change does not affect B’s view for both bits b: Let (sID, (ci , c̃)) be any of
the queries to DERinit such that holder[sID] = i ′. If there exists no message mi such that ci =
Enc(pki ,mi ; Gpki′ ,ski′ (mi)), the key K is a random value that can not possibly correlate to any random
oracle query to |H〉 in both game and hence is independent of all other input to B in both games. But if
there exists some message mi such that ci = Enc(pki ,m; Gpki′ ,ski′ (mi)), the respective key K is defined as
H(m′i ,mj , m̃, pk∗, i, j) in both games: We have that Gpki′ ,ski′ (m) ∈ R \ Rbad(pk∗, sk∗,m) for all messages
m. Therefore, it holds in particular for for m′i := Dec(ski′ , ci) that m′i = mi 6= ⊥, and hence, also that
Enc(pki ,m; Gpki′ ,ski′ (m

′
i)) = ci . The same reasoning applies to all queries to DERresp. For both bits it

holds that B’s view is identical in both games and

Pr[G¬sk
61/3,b ⇒ 1] = Pr[G¬sk

62/3,b ⇒ 1] .

Game G¬sk
7,b . In game G¬sk

7,b , we switch back to using G ←$ RM instead of Gpki′ ,ski′ . With the same
reasoning as for the gamehop from game Pr[G¬sk

6,b ⇒ 1] to Pr[G¬sk
61/3,b ⇒ 1], for both bits b it holds that

|Pr[G¬sk
62/3,b ⇒ 1]− Pr[G¬sk

7,b ⇒ 1]| = |Pr[GDPBC′
λ,1 = 1]− Pr[GDPBC′

λ,0 = 1]|
≤ 8 · (qG + 2qH + 3 · S)2 · δ ,

where adversary Cb′ also is given in Figure 26.
Collecting the probabilities of the intermediate games yields the upper bound of equation (6), i.e., for

both bits b it holds that

|Pr[G¬sk
6,b ⇒ 1]− Pr[G¬sk

7,b ⇒ 1]| ≤ 16 · (qG + 2qH + 3S)2 · δ ,

hence

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]−Pr[GB

2,0 ⇒ 1 ∧ ¬sk]| = N · |Pr[G¬sk
6,1 ⇒ 1]− Pr[G¬sk

6,0 ⇒ 1]|
≤ N · |Pr[G¬sk

7,1 ⇒ 1]− Pr[G¬sk
7,0 ⇒ 1]|+ 32 · (qG + 2qH + 3S)2 · δ .

We stress that from game G¬sk
7,b on, none of the oracles uses ski′ any longer. To upper bound

|Pr[G¬sk
7,b ⇒ 1] − 1/2|, consider the sequence of games given in Figure 27, where we replace sID∗resp’s

ciphertext ci with a fake encryption. Like in case (¬st), we first have to add a guess for sID∗resp.

Games G¬sk
8,b . In games G¬sk

8,b , one of the sessions that get established during execution of B is picked
at random in line 06, and the games return 0 in line 19 if any other session s′resp was picked than
session sID∗resp. Since for both bits b it holds that both games G¬sk

8,b and G¬sk
7,b proceed identically unless

s′resp 6= sID∗resp, and since games G¬sk
8,b output 0 if s′resp 6= sID∗resp,

Pr[G¬sk
7,b ⇒ 1] = S · Pr[G¬sk

8,b ⇒ 1] .

Games G¬sk
9,b . In games G¬sk

9,b , oracle DERresp is changed in line 35 such that for sID∗resp, ci is no longer
a ciphertext of the form ci := Enc(pki ,mi ; G(mi)) for some randomly drawn message mi , but a fake
encryption ci ← Enc(pki′). Consider the adversaries A¬sk

DS,b given in Figure 28. The running times are the
same as in case (¬st), see Equation (5), page 36:

Time(A¬sk
DS,b) ≤ Time(B) + S · (Time(KG) + 3 · Time(Enc) + 2 · Time(Dec)) + qH + qG + 4S

≈ Time(B) ,

and since A¬sk
DS,b perfectly simulates game G¬sk

9,b if its input was generated by c ← Enc(pk), and game G¬sk
8,b

if its input c was generated by c := Enc(pk,m; G(m)) for some randomly picked message m,

|Pr[G¬sk
8,b ⇒ 1]− Pr[G¬sk

9,b ⇒ 1]| = AdvDS
T[PKE,G](A¬sk

DS,b) ,

43

GAMES G¬sk
7,b -G¬sk

10,b

01 H′ ←$ KM
3×PK×[N]2

02 Hq ←$ KC
2×M×PK×[N]2

03 G←$ RM
04 cnt, sID∗ := 0
05 i ′ ←$ [N]
06 s′resp ←$ [S] �G¬sk

8,b -G¬sk
10,b

07 for n ∈ [N]
08 (pkn , skn)← KG
09 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
10 if ATTACK(sID∗)
11 return 0
12 if |M(sID∗)| 6= 1 ABORT
13 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
14 if corrupted[holder[sID∗init]] ABORT
15 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder" �G¬sk
8,b -G¬sk

10,b
16 if holder[sID∗init] 6= i ′
17 return 0
18 if sID∗resp 6= s′resp
19 return 0 �G¬sk

8,b -G¬sk
10,b

20 return b’

TEST(sID) �only one query
21 sID∗ := sID
22 if sKey[sID∗] = ⊥
23 return ⊥
24 K∗0 := sKey[sID∗] �G¬sk

7,b -G¬sk
9,b

25 K∗0 ←$ K �G¬sk
10,0

26 K∗1 ←$ K
27 return K∗b

DERresp(sID,M = (p̃k, cj))
28 if holder[sID] = ⊥

or sKey[sID] 6= ⊥
or role[sID] = "initiator"

29 return ⊥
30 role[sID] := "responder"
31 (j, i) := (holder[sID], peer[sID])
32 mi , m̃ ←$ M
33 ci := Enc(pki ,mi ; G(mi))
34 if sID = s′resp
35 ci ← Enc(pki′) �G¬sk

9,b -G¬sk
10,b

36 c̃ := Enc(p̃k, m̃; G(m̃))
37 M ′ := (ci , c̃)
38 if j = i ′
39 K ′ := Hq(ci , cj , m̃, p̃k, i, j)
40 else
41 m′j := Dec(skj , cj)
42 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
43 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
44 else
45 if i = i ′
46 K ′ := Hq(ci , cj , m̃, p̃k, i, j)
47 else
48 K ′ := H(mi ,m′j , m̃, p̃k, i, j)
49 sKey[sID] := K ′
50 (received[sID], sent[sID]) := (M ,M ′)
51 return M ′

Figure 27: Games G¬sk
7,b - G¬sk

10,b for case (¬sk) of the proof of Lemma 5.2.

and folding A¬st
DS,0 and A¬st

DS,1 into one adversary A¬st
DS yields

AdvDS
T[PKE,G](A¬sk

DS,0) + AdvDS
T[PKE,G](A¬sk

DS,1) = 2 ·AdvDS
T[PKE,G](A¬sk

DS) .

So far, we established

|Pr[G¬sk
7,1 ⇒ 1]− Pr[G¬sk

7,0 ⇒ 1]| ≤ S · |Pr[G¬sk
9,1 ⇒ 1]− Pr[G¬sk

9,0 ⇒ 1]|+ 2S ·AdvDS
T[PKE,G](A¬sk

DS) .

Game G¬sk
10,0. In game G¬sk

10,0, we change oracle TEST in line 25 such that it returns a random value
instead of returning sKey[sID∗]. Since games G¬sk

9,1 and G¬sk
10,0 are equal,

|Pr[G¬sk
9,1 ⇒ 1]− Pr[G¬sk

9,0 ⇒ 1]| = |Pr[G¬sk
10,0 ⇒ 1]− Pr[G¬sk

9,0 ⇒ 1]| .

It remains to upper bound |Pr[G¬sk
10,0 ⇒ 1] − Pr[G¬sk

9,0 ⇒ 1]|, which means upper bounding the
probability that B obtains sKey[sID∗] in game G¬sk

9,0 by a classical query to any of the oracles included
in O (except for TEST), and the probability that any quantum answer of the random oracle contains
sKey[sID∗]. With the same reasoning as in case (¬st),

|Pr[G¬sk
10,0 ⇒ 1]− Pr[G¬sk

9,0 ⇒ 1]| ≤ S − 2
|M|

·max{γ(KG), δ

|M|
}+ εdis ≤

S
|M|

+ εdis .

44

A¬sk
DS,b
|H′〉,|Hq〉,|G〉(pk, c)

01 cnt, sID∗ := 0
02 i ′ ←$ [N]
03 s′resp ←$ [S]
04 for n ∈ [N] \ {i ′}
05 (pkn , skn)← KG
06 pki′ := pk
07 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
08 if ATTACK(sID∗)
09 return 0
10 if |M(sID∗)| 6= 1 ABORT
11 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
12 if corrupted[holder[sID∗init]] ABORT
13 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder"
14 if holder[sID∗init] 6= i ′
15 return 0
16 if sID∗resp 6= s′resp
17 return 0
18 return b’

CORRUPT(i ∈ [N] \ {i ′})
19 if corrupted[i] return ⊥
20 corrupted[i] := true
21 return ski

DERresp(sID,M = (p̃k, cj))
22 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"
23 return ⊥
24 role[sID] := "responder"
25 (j, i) := (holder[sID], peer[sID])
26 mi , m̃ ←$ M
27 ci := Enc(pki ,mi ; G(mi))
28 if sID = s′resp
29 ci := c
30 c̃ := Enc(p̃k, m̃; G(m̃))
31 M ′ := (ci , c̃)
32 if j = i ′
33 K ′ := Hq(ci , cj , m̃, p̃k, i, j)
34 else
35 m′j := Dec(skj , cj)
36 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
37 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
38 else
39 if i = i ′
40 K ′ := Hq(ci , cj , m̃, p̃k, i, j)
41 else K ′ := H(mi ,m′j , m̃, p̃k, i, j)
42 sKey[sID] := K ′
43 (received[sID], sent[sID]) := (M ,M ′)
44 return M ′

Figure 28: Adversaries A¬sk
DS,b for case (¬sk) of the proof of Lemma 5.2, with oracle access to |H′〉, |Hq〉

and |G〉. All oracles except for DERresp and CORRUPT are defined as in game G¬sk
8,b (see Figure 27).

Again, internal random oracles (H′R, and H′L1 to H′L3) can be simulated via lazy sampling since they are
only accessible indirectly via DERresp and DERinit which are queried classically.

Collecting the probabilities, we obtain

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]| ≤ 2SN ·AdvDS
T[PKE,G](A¬sk

DS) + 32N · (qG + 2qH + 3S)2 · δ

+ SN · εdis + S2 ·N
|M|

,

the upper bound we claimed in equation (4).

C Proof of Lemma 5.3

Tampering with the protocol (M(sID∗) = ∅). Recall that we are proving an upper bound for
|Pr[IND-StAAB

1 ⇒ 1 ∧M(sID∗) = ∅] − Pr[IND-StAAB
0 ⇒ 1 ∧M(sID∗) = ∅]|. Therefore, we will first

enforce that indeed, we only need to consider the case where M(sID∗) = ∅. Consider the sequence of
games given in Figure 29.
Games G0,b. Since for both bits b, game G0,b is the original game IND-StAAb,

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]|
= |Pr[GB

0,1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[GB
0,0 ⇒ 1 ∧M(sID∗) = ∅]| .

Games G1,b. Both games G1,b abort in line 07 if M(sID∗) 6= ∅. Since for both bits b it holds that
Pr[GB

1,b ⇒ 1] = Pr[GB
0,b ⇒ 1 ∧M(sID∗) = ∅],

|Pr[GB
0,1 ⇒1 ∧M(sID∗) = ∅]− Pr[GB

0,0 ⇒ 1 ∧M(sID∗) = ∅]| = |Pr[GB
1,1 ⇒ 1]− Pr[GB

1,0 ⇒ 1]| .

45

GAMES G0,b - G1,b
01 cnt, sID∗ := 0
02 for n ∈ [N]
03 (pkn , skn)← KG
04 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
05 if ATTACK(sID∗)
06 return 0
07 if M(sID∗) 6= ∅ ABORT �G1,b
08 return b′

INIT(sID)
09 if holder[sID] = ⊥

or sent[sID] 6= ⊥ return ⊥
10 role[sID] := "initiator"
11 i := holder[sID]
12 j := peer[sID]
13 mj ←$ M
14 cj := Enc(pkj ,mj ; G(mj))
15 (p̃k, s̃k)← KG
16 M := (p̃k, cj)
17 state[sID] := (s̃k,mj ,M)
18 sent[sID] := M
19 return M

DERresp(sID,M = (p̃k, cj))
20 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
21 role[sID] := "responder"
22 (j, i) := (holder[sID], peer[sID]
23 mi , m̃ ←$ M
24 ci := Enc(pki ,mi ; G(mi))
25 c̃ := Enc(p̃k, m̃; G(m̃))
26 M ′ := (ci , c̃)
27 m′j := Dec(skj , cj)
28 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
29 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
30 else K ′ := H(mi ,m′j , m̃, p̃k, i, j)
31 sKey[sID] := K ′
32 (received[sID], sent[sID]) := (M ,M ′)
33 return M ′

DERinit(sID,M ′ = (ci , c̃))
34 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
35 (i, j) := (holder[sID], peer[sID])
36 (s̃k,mj , p̃k, cj) := state[sID]
37 m′i := Dec(ski , ci)
38 m̃′ := Dec(s̃k, c̃)
39 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
40 if m̃′ = ⊥
41 K := H′L1(ci ,mj , c̃, p̃k, i, j)
42 else
43 K := H′L2(ci ,mj , m̃′, p̃k, i, j)
44 else if m̃′ = ⊥
45 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
46 else K := H(m′i ,mj , m̃′, p̃k, i, j)
47 sKey[sID] := K
48 received[sID] := M ′

Figure 29: Games G0,b - G1,b for case two of the proof of Theorem 5.1. Helper procedure ATTACK and
oracles TEST, EST, CORRUPT, REVEAL and REV-STATE remains as in the original IND-StAA
game (see Figures 16 and 17).

To upper bound |Pr[GB
1,1 ⇒ 1] − Pr[GB

1,0 ⇒ 1]|, we will examine both the case that role[sID∗] =
"initiator", called case (init), and the case that role[sID∗] = "responder", called case (resp). Since cases
(init) and (resp) are mutually exclusive,

|Pr[GB
1,1 ⇒ 1]−Pr[GB

1,0 ⇒ 1]|
≤ |Pr[GB

1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB
1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|

+|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "responder"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "responder"]| .

As discussed below Definition 4.1, B’s bit only counts in game IND-StAA (and hence, in game G1,b) if
no attack was executed that we ruled out by method ATTACK: Since we examine the case that no
matching session exists, ATTACK returns true if B obtained the test session’s internal state or the
secret key of its peer. Case (init). Intuition is as follows: While B could pick message (ci , c̃) on its own
(thereby being able to control both m∗i and m̃∗), peer[sID∗] (henceforth called j∗) remains uncorrupted
throughout the game, and also the internal state state[sID∗] remains unrevealed. Therefore, message m∗j
can not be obtained trivially and ciphertext c∗j can be replaced.

Consider the sequence of games given in Figures 30 and 33: First, we will enforce that indeed, we
only need to consider the case where role[sID∗] = "initiator". Afterwards, we ensure that the game makes

46

no use of skj∗ any longer by patching encryption into the random oracle (in games Ginit
2,b to Ginit

6,b , see
Figure 30). Again, this is the only part of the proof where the correctness error comes into play. Next,
during execution of INIT(sID∗), we replace ciphertext cj with a fake ciphertext that gets sampled using
Enc (games Ginit

7,b to Ginit
8,b , see Figure 33, line 28). We show that after those changes, B’s view does not

change with overwhelming probability if we finally change TEST such that it always returns a random
value (game Ginit

9,b , also Figure 33).

GAMES Ginit
1,b -Ginit

6,b

01 H′ ←$ KM
3×PK×[N]2 �Ginit

5,b -Ginit
6,b

02 Hq ←$ KC
2×M×PK×[N]2 �Ginit

5,b -Ginit
6,b

03 cnt, sID∗ := 0
04 j ′ ←$ [N] �Ginit

3,b -Ginit
6,b

05 for n ∈ [N]
06 (pkn , skn)← KG
07 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
08 if ATTACK(sID∗)
09 return 0
10 if M(sID∗) 6= ∅ ABORT
11 if role[sID∗] = "responder"
12 ABORT �Ginit

2,b -Ginit
5,b

13 if peer[sID∗] 6= j ′
14 return 0 �Ginit

3,b -Ginit
6,b

15 return b′

DERinit(sID,M ′ = (ci , c̃))
16 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
17 (i, j) := (holder[sID], peer[sID])
18 (s̃k,mj , p̃k, cj) := state[sID]
19 m′i := Dec(ski , ci)
20 m̃′ := Dec(s̃k, c̃)
21 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
22 if m̃′ = ⊥
23 K := H′L1(ci ,mj , c̃, p̃k, i, j)
24 else
25 K := H′L2(ci ,mj , m̃′, p̃k, i, j)
26 if i = j ′
27 K := Hq(ci , cj , m̃, p̃k, i, j) �Ginit

6,b
28 else if m̃′ = ⊥
29 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
30 if i = j ′
31 K := H′L1(ci ,mj , c̃, p̃k, i, j) �Ginit

4,b -Ginit
6,b

32 else K := H(m′i ,mj , m̃′, p̃k, i, j)
33 if j ′ ∈ {i, j}
34 K := Hq(ci , cj , m̃, p̃k, i, j) �Ginit

5,b -Ginit
6,b

35 sKey[sID] := K
36 received[sID] := M ′

INIT(sID)
37 if holder[sID] = ⊥ or sent[sID] 6= ⊥
38 return ⊥
39 role[sID] := "initiator"
40 i := holder[sID]
41 j := peer[sID]
42 mj ←$ M}
43 cj := Enc(pkj ,mj ; G(mj))
44 (s̃k, p̃k)← KG
45 M := (p̃k, cj)
46 state[sID] := (s̃k,mj ,M)
47 sent[sID] := M
48 return M

DERresp(sID,M = (p̃k, cj))
49 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"
50 return ⊥
51 role[sID] := "responder"
52 (j, i) := (holder[sID], peer[sID]
53 mi , m̃ ←$ M
54 ci := Enc(pki ,mi ; G(mi))
55 c̃ := Enc(p̃k, m̃; G(m̃))
56 M ′ := (ci , c̃)
57 m′j := Dec(skj , cj)
58 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
59 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
60 if j = j ′
61 K ′ := Hq(ci , cj , m̃, p̃k, i, j) �Ginit

6,b
62 else K ′ := H(mi ,m′j , m̃, p̃k, i, j)
63 if j ′ ∈ {i, j}
64 K ′ := Hq(ci , cj , m̃, p̃k, i, j) �Ginit

5,b -Ginit
6,b

65 sKey[sID] := K ′
66 (received[sID], sent[sID]) := (M ,M ′)
67 return M ′

H(m1,m2,m3, p̃k, i, j) �Ginit
5,b -Ginit

6,b

68 if j ′ ∈ {i, j}
69 return Hq(Enc(pki ,m1; G(m1)),Enc(pkj ,m2; G(m2)),m3, p̃k, i, j)
70 return H′(m1,m2,m3, p̃k, i, j)

Figure 30: Games Ginit
1,b - Ginit

6,b for case (init) of the proof of Lemma 5.3. Helper procedure ATTACK
and oracles TEST, EST, REVEAL and REV-STATE remain as in the original IND-StAA game (see
Figure 16 and Figure 17, pages 20 and 21).

47

Game Ginit
1,b . Since game Ginit

1,b is equal to game G1,b,

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|

= |Pr[Ginit
1,1

B ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[Ginit
1,0

B ⇒ 1 ∧ role[sID∗] = "initiator"]| .

Games Ginit
2,b . Both games Ginit

2,b abort in line 12 if role[sID∗] = "responder". Since for both bits b it holds
that Pr[Ginit

1,b
B ⇒ 1 ∧ role[sID∗] = "initiator"] = Pr[Ginit

2,b
B ⇒ 1],

|Pr[Ginit
1,1

B ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[Ginit
1,0

B ⇒ 1 ∧ role[sID∗] = "initiator"]|
=|Pr[Ginit

2,1 ⇒ 1]− Pr[Ginit
2,0 ⇒ 1]| .

The first goal is not to have to make use of skj∗ ’s secret key any longer. Since j∗ = peer[sID∗] is
not fixed until B issues the TEST query, we first add a guess j ′ for peer[sID∗]. Afterwards, we patch
encryption into H for the first two messages, and even out derivation for ciphertexts with decryption
failure and for ciphertexts without. Like in case (¬sk), these changes do not affect B’s view unless it is
able to distinguish random oracle G from an oracle Gpk,sk that only samples randomness under which
decryption never fails, allowing for a reduction to game GDPB.
Games Ginit

3,b . In games Ginit
3,b , one of the parties is picked at random in line 04, and the game returns 0

in line 14 if any other party j ′ was picked than the test session’s peer.

Pr[Ginit
2,b

B ⇒ 1] = N · Pr[Ginit
3,b

B ⇒ 1] .

To prepare getting rid of skj′ , we first change DERinit such that whenever ciphertext c̃ induces
decryption failure, skj′ is not used anymore.
Games Ginit

4,b . In games Ginit
4,b , we change oracle DERinit in line 31 such that if the session’s holder is

j ′ and c̃ does not decrypt to a message m̃′ s. th. c̃ = Enc(p̃k, m̃′,G(m̃′)), the session key is defined as
K := H′L1(ci ,mj , c̃, p̃k, i, j). (Before this change we let K := H′L3(m′i ,mj , c̃, p̃k, i, j) in the case that c̃ fails
to decrypt, but ci decrypts correctly). Since both H′L1 and H′L3 are not directly accessible and Enc(pkj′ ,−)
is injective, B’s view does not change and

Pr[Ginit
3,b

B ⇒ 1] = Pr[Ginit
4,b

B ⇒ 1] .

The next two game-hops are done to achieve that DERinit and DERresp do not use skj′ any more.
In the next game, we only change key definition of DERinit if both ciphertexts decrypt correctly, and
key definition of DERresp if cj decrypts correctly. In these cases, we do note use the decryptions under
skj′ , but the ciphertexts themself. Similar to case (¬sk), we "patch in" encryption into random oracle
H whenever j ′ appears as one of the involved parties. Due to the need for key consistency, we have to
change patch encryption into the first two arguments.
Games Ginit

5,b . In games Ginit
5,b , the random oracle is changed as follows: Instead of picking H uniformly

random, we pick two random oracles Hq and H′ and define

H(m1,m2,m3,p̃k, i, j)

:=
{

Hq(Enc(pki ,m1),Enc(pkj ,m2),m3, p̃k, i, j) j ′ ∈ {i, j}
H(m1,m2,m3, p̃k, i, j) o.w. ,

see line 69. Again, H remains truly random under the assumption that encryption is injective. The
change of H is made explicit in oracles DERresp and DERinit in lines 64 and 34. Using the same analysis
as in game G¬sk

6,b of case (¬sk), it is straightforward to see that

Pr[Ginit
4,b

B ⇒ 1] = Pr[Ginit
5,b

B ⇒ 1] .

So far, we established

|Pr[Ginit
2,1 ⇒ 1]− Pr[Ginit

2,0 ⇒ 1]| = N · |Pr[Ginit
5,1 ⇒ 1]− Pr[Ginit

5,0 ⇒ 1]| .

48

The final step to get rid of skj′ is to even out the key derivation for problematic ciphertexts: To this
end, we also use Hq if a ciphertext fails to decrypt under skj′ , instead of using the implicit reject.
Games Ginit

6,b . In games Ginit
6,b , we remove the implicit reject for ciphertexts with decryption failure under

the secret key of j ′ in lines 61 and 27. We claim

|Pr[Ginit
5,b ⇒ 1]− Pr[Ginit

6,b ⇒ 1]| ≤ 16 · (qG + 2qH + 3S)2 · δ . (8)

The proof strategy is completely similar to case (¬sk): Intuitively, removing the implicit rejects
can only affect B’s view if keys were derived using error-inducing encryptions. We show that we can
replace random oracle G with an oracle Gpki′ ,ski′ that makes error-inducing encryptions impossible, while
distinguishing G from Gpki′ ,ski′ is reducable to winning GDPB. To verify this upper bound, consider the
sequence of intermediate games given in Figure 31.
Games Ginit

51/3,b. In games Ginit
51/3,b, we enforce that no decryption failure with respect to key pair (pkj′ , skj′)

will occur by replacing random oracle G with Gpkj′ ,skj′ (m) in line 09, where Gpkj′ ,skj′ (m) is defined by

Gpkj′ ,skj′ (m) := Sample(R \Rbad(pkj′ , skj′ ,m); f (m)) .

To upper bound |Pr[Ginit
5,b

B ⇒ 1]− Pr[Ginit
51/3,b

B ⇒ 1]| for each bit b, we construct quantum adversaries Db

against GDPBλ in Figure 32, issuing at most qG + 2qH + 3 · S queries to |F〉. With the same reasoning as
for case (¬st) (see page 42),

|Pr[Ginit
5,b

B ⇒ 1]| − Pr[Ginit
51/3,b

B ⇒ 1]| =|Pr[GDPBDb

λ,0 = 1]− Pr[GDPBDb

λ,1 = 1]|
≤ 8 · (qG + 2qH + 3 · S)2 · δ .

Games Ginit
52/3,b. In games Ginit

52/3,b, we change DERresp in line 32 such that whenever the session’s holder
is j ′, the session key is defined as K ′ := Hq(ci , c′j , m̃, pk∗, i, j) instead of letting K ′ := H′R(mi , cj , m̃, p̃k, i, j)
if cj fails to decrypt. Likewise, we change DERinit in line 51 such that if the session’s holder is j ′,
whenever c̃ decrypts correctly, the session key is defined as K := Hq(ci , cj , m̃, p̃k, i, j) instead of letting
K := H′L2(ci ,mj , m̃′, p̃k, i, j) if ci fails to decrypt. With the same reasoning as in case (¬sk), this change
does not affect B’s view and

Pr[Ginit
51/3,b

B ⇒ 1] = Pr[Ginit
52/3,b

B ⇒ 1] .

49

GAMES Ginit
5,b -Ginit

6,b

01 H′ ←$ KM
3×PK×[N]2

02 Hq ←$ KC
2×M×PK×[N]2

03 G←$ RM �Ginit
5,b ,Ginit

6,b
04 Pick 2q-wise hash f �Ginit

51/3,b-Ginit
52/3,b

05 cnt, sID∗ := 0
06 j ′ ←$ [N]
07 for n ∈ [N]
08 (pkn , skn)← KG
09 G := Gpkj′ ,skj′ �Ginit

51/3,b-Ginit
52/3,b

10 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
11 if ATTACK(sID∗)
12 return 0
13 if M(sID∗) 6= ∅ ABORT
14 if role[sID∗] = "responder"
15 ABORT
16 if peer[sID∗] 6= j ′
17 return 0
18 return b’

DERinit(sID,M ′ = (ci , c̃))
19 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
20 (i, j) := (holder[sID], peer[sID])
21 (s̃k,mj , p̃k, cj) := state[sID]
22 m′i := Dec(ski , ci)
23 m̃′ := Dec(s̃k, c̃)
24 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
25 if m̃′ = ⊥
26 K := H′L1(ci ,mj , c̃, p̃k, i, j)
27 else
28 K := H′L2(ci ,mj , m̃′, p̃k, i, j)
29 if i = j ′
30 K := Hq(ci , cj , m̃, p̃k, i, j) �Ginit

52/3,b-Ginit
6,b

31 else if m̃′ = ⊥
32 K := H′L3(m′i ,mj , c̃, p̃k, i, j)
33 if i = j ′
34 K := H′L1(ci ,mj , c̃, p̃k, i, j)
35 else K := H(m′i ,mj , m̃′, p̃k, i, j)
36 if j ′ ∈ {i, j}
37 K := Hq(ci , cj , m̃, p̃k, i, j)
38 sKey[sID] := K
39 received[sID] := M ′

DERresp(sID,M = (p̃k, cj))
40 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"return ⊥
41 role[sID] := "responder"
42 (j, i) := (holder[sID],peer[sID]
43 mi , m̃ ←$ M
44 ci := Enc(pki ,mi ; G(mi))
45 c̃ := Enc(p̃k, m̃; G(m̃))
46 M ′ := (ci , c̃)
47 m′j := Dec(skj , cj)
48 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
49 K ′ := H′R(mi , cj , m̃, p̃k, i, j)
50 if j = j ′
51 K ′ := Hq(ci , cj , m̃, p̃k, i, j) �Ginit

52/3,b-
Ginit

6,b
52 else K ′ := H(mi ,m′j , m̃, p̃k, i, j)
53 if j ′ ∈ {i, j}
54 K ′ := Hq(ci , cj , m̃, p̃k, i, j)
55 sKey[sID] := K ′
56 (received[sID], sent[sID]) := (M ,M ′)
57 return M ′

Gpkj′ ,skj′ (m)
58 r := Sample(R \Rbad(pkj′ , skj′ ,m); f (m))
59 return r

Figure 31: Intermediate games Ginit
5,b - Ginit

6,b for case (init) of the proof of Lemma 5.3. All oracles except
for G, DERresp and DERinit remain as in game Ginit

5,b . f is an internal 2q-wise independent hash function
(like in games G¬sk

6,b - G¬sk
7,b of case (¬sk), see Figure 25), where q := qG + 2 · qH + 3 · S . Sample(Y ; f (m))

(again) denotes the deterministic execution of Sample(Y) using explicitly given randomness f (m).

50

Db
1 = Db

1
′

01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

G(m)
05 if F(m) = 0
06 G(m) := Sample(R \Rbad(pk, sk,m); f (m))

07 else
08 G(m) := Sample(Rbad(pk, sk,m); f (m))
09 return G(m)

CORRUPT(i ∈ [N] \ {j ′})
10 if corrupted[i] return ⊥
11 corrupted[i] := true
12 return ski

Db
2
|F〉, Db

2
′|F〉

13 H′ ←$ KM
3×PK×[N]2

14 Hq ←$ KC
2×M×PK×[N]2

15 Pick 2q-wise hash f
16 cnt, sID∗ := 0
17 j ′ ←$ [N]
18 for n ∈ [N] \ {j ′}
19 (pkn , skn)← KG
20 (pkj′ , skj′) := (pk, sk)
21 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
22 ATTACK(sID∗)
23 return 0
24 if M(sID∗) 6= ∅ ABORT
25 if role[sID∗] = "responder"
26 ABORT
27 if peer[sID∗] 6= j ′
28 return 0
29 return b’

Figure 32: Adversaries Db = (Db
1,Db

2) and Db′ = (Db
1
′
,Db

2
′) executed in game GDPBδ(pk,sk) with access to

|F〉 for case (init) of the proof of Lemma 5.3. Similar to case (¬st), the adversaries only differ in their
definition of DERresp and DERinit: For adversaries Db, DERresp and DERinit are defined as in game
Ginit

5,b , see Figure 31, and for adversaries Db′, DERresp and DERinit are defined as in game G¬st
52/3,b (also

Figure 31).

51

Game Ginit
6,b . In game Ginit

6,b , we switch back to using G ←$ RM instead of Gpkj′ ,skj′ . With the same
reasoning as for the gamehop from game Pr[Ginit

5,b
B ⇒ 1] to Pr[Ginit

51/3,b
B ⇒ 1],

|Pr[Ginit
52/3,b

B ⇒ 1]− Pr[Ginit
6,b

B ⇒ 1]| = |Pr[GDPBD′
λ,0 = 1]− Pr[GDPBD′

λ,1 = 1]|
≤ 8 · (qG + 2qH + 3 · S)2 · δ ,

where adversaries Db′ also are given in Figure 32.
Collecting the probabilities of the intermediate games yields the upper bound of equation (8), i.e., for

both bits it holds that

|Pr[Ginit
5,b

B ⇒ 1]− Pr[Ginit
6,b

B ⇒ 1]| ≤ 16 · (qG + 2qH + 3S)2 · δ ,

hence

|Pr[Ginit
2,1 ⇒ 1]− Pr[Ginit

2,0 ⇒ 1]| = N · |Pr[Ginit
5,1 ⇒ 1]− Pr[Ginit

5,0 ⇒ 1]|
≤ N · |Pr[Ginit

6,1 ⇒ 1]− Pr[Ginit
6,0 ⇒ 1]|+ 32N · (qG + 2qH + 3S)2 · δ .

We stress that from games Ginit
6,b on, none of the oracles uses skj′ any longer. To upper bound

|Pr[Ginit
6,1 ⇒ 1] − Pr[Ginit

6,0 ⇒ 1]|, consider the sequence of games given in Figure 33, where we replace
sID∗’s ciphertext cj with a fake encryption.

GAMES Ginit
6,b -Ginit

9,b

01 H′ ←$ KM
3×PK×[N]2

02 Hq ←$ KC
2×M×PK×[N]2

03 cnt, sID∗ := 0
04 j ′ ←$ [N]
05 for n ∈ [N]
06 (pkn , skn)← KG
07 s′ ←$ [S] �Ginit

7,b -Ginit
9,b

08 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
09 if ATTACK(sID∗)
10 return 0
11 if M(sID∗) 6= ∅ ABORT
12 if role[sID∗] = "responder"
13 ABORT
14 if peer[sID∗] 6= j ′
15 return 0
16 if peer[sID∗] 6= j ′
17 return 0
18 if sID∗ 6= s′
19 return 0 �Ginit

7,b -Ginit
9,b

20 return b’

INIT(sID)
21 if holder[sID] = ⊥ or sent[sID] 6= ⊥
22 return ⊥
23 role[sID] := "initiator"
24 i := holder[sID], j := peer[sID]
25 mj ←$ M
26 cj := Enc(pkj ,mj ; G(mj))
27 if sID = s′
28 cj ← Enc(pkj′) �Ginit

8,b -Ginit
9,b

29 (s̃k, p̃k)← KG
30 M := (p̃k, cj)
31 state[sID] := (s̃k,mj ,M)
32 sent[sID] := M
33 return M

TEST(sID) �only one query
34 sID∗ := sID
35 if sKey[sID∗] = ⊥ return ⊥
36 K∗0 := sKey[sID∗] �Ginit

6,b -Ginit
8,b

37 K∗0 ←$ K �Ginit
9,0

38 K∗1 ←$ K
39 return K∗b

Figure 33: Games Ginit
6,b - Ginit

9,b for case (init) of the proof of Lemma 5.3. All oracles except for INIT and
TEST remain as in game Ginit

6,b (see Figure 30).

Games Ginit
7,b . In games Ginit

7,b , one of the sessions that gets established during execution of B is picked at
random in line 07, and the game returns 0 in line 19 if any other session s′ was picked than test session
sID∗.

Pr[Ginit
6,b

B ⇒ 1] = S · Pr[Ginit
7,b

B ⇒ 1] .

Games Ginit
8,b . In games Ginit

8,b , oracle INIT is changed in line 28 such that for s′, cj is no longer a
ciphertext of the form cj := Enc(pkj ,mj ; G(mj)) for some randomly drawn message mj , but a fake

52

encryption cj ← Enc(pkj′). Consider the adversaries Ainit
DS,b given in Figure 34. The running time is the

same as in case (¬st), see Equation (5):

Time(Ainit
DS,b) ≤ Time(B) + S · (Time(KG) + 3 · Time(Enc) + 2 · Time(Dec)) + qH + qG + 4S

≈ Time(B) ,

and since Ainit
DS,b perfectly simulates game Ginit

8,b if its input was generated by c ← Enc(pk), and game Ginit
7,b

if its input c was generated by c := Enc(pk,m; G(m)) for some randomly picked message m,

|Pr[Ginit
7,b ⇒ 1]− Pr[Ginit

8,b ⇒ 1]| = AdvDS
T[PKE,G](Ainit

DS,b) ,

and folding Ainit
DS,0 and Ainit

DS,1 into one adversary Ainit
DS yields

AdvDS
T[PKE,G](Ainit

DS,0) + AdvDS
T[PKE,G](Ainit

DS,1) = 2 ·AdvDS
T[PKE,G](Ainit

DS) .

Ainit
DS,b
|H′〉,|Hq〉,|G〉(pk, c)

01 cnt, sID∗ := 0
02 j ′ ←$ [N]
03 s′ ←$ [S]
04 for n ∈ [N] \ {j ′}
05 (pkn , skn)← KG
06 pkj′ := pk
07 b′ ← BO,|RO〉(pk1, · · · , pkN)
08 if ATTACK(sID∗)
09 return 0
10 if M(sID∗) 6= ∅ ABORT
11 if role[sID∗] = "responder"
12 ABORT
13 if peer[sID∗] 6= j ′ return 0
14 if peer[sID∗] 6= j ′ return 0
15 if sID∗ 6= s′ return 0
16 return b’

CORRUPT(i ∈ [N] \ {j ′})
17 if corrupted[i] return ⊥
18 corrupted[i] := true
19 return ski

INIT(sID)
20 if holder[sID] = ⊥
21 return ⊥
22 if sent[sID] 6= ⊥
23 return ⊥
24 role[sID] := "initiator"
25 i := holder[sID]
26 j := peer[sID]
27 mj ←$ M
28 cj := Enc(pkj ,mj ; G(mj))
29 if sID = s′
30 cj := c
31 (s̃k, p̃k)← KG
32 M := (p̃k, cj)
33 state[sID] := (s̃k,mj ,M)
34 sent[sID] := M
35 return M

Figure 34: Adversaries Ainit
DS,b for case (init) of the proof of Lemma 5.3, with oracle access to |H′〉, |Hq〉 and

|G〉. All oracles except for INIT and CORRUPT are defined as in game Ginit
7,b (see Figure 33). Again,

internal random oracles (H′R, and H′L1 to H′L3) can be simulated via lazy sampling since they are only
accessible indirectly via DERresp and DERinit which are queried classically.

So far, we established

|Pr[Ginit
6,1 ⇒ 1]− Pr[Ginit

6,0 ⇒ 1]| ≤ S · |Pr[Ginit
8,1 ⇒ 1]− Pr[Ginit

8,0 ⇒ 1]|+ 2S ·AdvDS
T[PKE,G](Ainit

DS) .

Game Ginit
9,0 . In game Ginit

9,0 , we change oracle TEST in line 37 such that it returns a random value
instead of sKey[sID∗]. Since games Ginit

8,1 and Ginit
9,0 are equal,

|Pr[Ginit
8,1 ⇒ 1]− Pr[Ginit

8,0 ⇒ 1]| = |Pr[Ginit
9,0

B ⇒ 1]− Pr[Ginit
8,0

B ⇒ 1]| .

It remains to upper bound |Pr[Ginit
9,0

B ⇒ 1]−Pr[Ginit
8,0

B ⇒ 1]|, which means upper bounding the probability
that B obtains sKey[sID∗] in game Ginit

8,0 by a query to any of the oracles included in O (except for

53

TEST), and the probability that any answer of the random oracle contains sKey[sID∗]. With the same
reasoning as in case (¬st),

|Pr[Ginit
9,0

B ⇒ 1]− Pr[Ginit
8,0

B ⇒ 1]| ≤ S − 2
|M|

· δ · γ(KG) + εdis ≤
S
|M|

+ εdis .

Collecting the probabilities, we obtain

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|
≤ 2 · SN ·AdvDS

T[PKE,G](Ainit
DS)

+ 32N · (qG + 2qH + 3S)2 · δ + SN · εdis + S2 ·N
|M|

.

Case (resp). Intuition is as follows: While B could pick message (cj , p̃k) on its own (thereby being able
to control both mj and m̃), peer[sID∗] remains uncorrupted throughout the game, therefore, at least
message mi (that was randomly picked by DERresp(sID∗, (cj , p̃k))) cannot be computed trivially. The
proof differs from case (init) only in the following way: instead of changing INIT(sID∗) such that it
outputs a fake encryption cj , we change DERresp(sID∗,m) such that it outputs a fake encryption ci . We
obtain a similar upper bound: there exists an adversary Aresp

DS such that

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "responder"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "responder"]|
≤ 2 · SN ·AdvDS

T[PKE,G](A
resp
DS)

+ 32N · (qG + 2qH + 3S)2 · δ + SN · εdis + SN · S − 1
|M|2

.

Collecting the probabilities, folding Ainit
DS and Aresp

DS into one adversary A′, and assuming that N <<
S << |M|, we obtain

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]|
≤ 4 · SN ·AdvDS

T[PKE,G](A′) + 64 ·N · (qG + qH + 3S)2 · δ

+ 2 · SN ·
(
εdis + S

|M|

)
,

the upper bound bound given in Lemma 5.3.

54

	Introduction
	Our Contributions
	Improved bounds and analysis for the Fujisaki-Okamoto transformation FOm.
	Rigorous Security Model for Two-Message Authenticated Key Exchange.
	Our Authenticated Key-Exchange Protocol.
	Open Problems.

	Preliminaries
	Public-key Encryption
	Key Encapsulation
	Quantum Computation

	The FO Transformation: QROM security with correctness errors
	Modularization of TPunc
	Transformation Punc: From IND-CPA to probabilistic DS security
	Transformation T: From probabilistic to deterministic DS security

	Transformation FOm and correctness errors

	Two-Message Authenticated Key Exchange
	Transformation from PKE to AKE
	Problems in and comparison with the proofs of C:JZCWM18.
	Proof of lem:ubForMatchingSessions
	Case (st) of the Proof of lem:ubForMatchingSessions
	Case (sk) of the Proof of lem:ubForMatchingSessions

	Proof of lem:ubForTampering

