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Abstract
We propose FOAKE, a generic construction of two-message authenticated key exchange (AKE)

from any passively secure public key encryption (PKE) in the quantum random oracle model
(QROM). Whereas previous AKE constructions relied on a Diffie-Hellman key exchange or required
the underlying PKE scheme to be perfectly correct, our transformation allows arbitrary PKE schemes
with non-perfect correctness. Dealing with imperfect schemes is one of the major difficulties in
a setting involving active attacks. Our direct construction, when applied to schemes such as the
submissions to the recent NIST post-quantum competition, is more natural than previous AKE
transformations. Furthermore, we avoid the use of (quantum-secure) digital signature schemes which
are considerably less efficient than their PKE counterparts. As a consequence, we can instantiate our
AKE transformation with any of the submissions to the recent NIST competition, e.g., ones based on
codes and lattices.

FOAKE can be seen as a generalization of the well known Fujisaki-Okamoto transformation (for
building actively secure PKE from passively secure PKE) to the AKE setting. As a helper result, we
also provide a security proof for the Fujisaki-Okamoto transformation in the QROM for PKE with
non-perfect correctness. Our reduction fixes several gaps in a previous proof (CRYPTO 2018), is
tighter, and tolerates a larger correctness error.

Keywords: Authenticated key exchange, quantum random oracle model, NIST, Fujisaki-
Okamoto.

1 Introduction

Authenticated Key Exchange. Besides public key encryption (PKE) and digital signatures, authenti-
cated key exchange (AKE) is arguably one of the most important cryptographic building blocks in modern
security systems. In the last two decades, research on AKE protocols has made tremendous progress in
developing more solid theoretical foundations [11, 19, 35, 30] as well as increasingly efficient designs of
AKE protocols [34, 45, 41]. Most AKE protocols rely on constructions based on an ad-hoc Diffie-Hellman
key exchange that is authenticated either via digital signatures, non-interactive key exchange (usually
a Diffie-Hellman key exchange performed on long-term Diffie-Hellman keys), or public key encryption.
While in the literature one can find many protocols that use one of the two former building blocks, results
for PKE-based authentication are rather rare [8, 17]. Even rarer are constructions that only rely on PKE,
discarding Diffie-Hellman key exchanges entirely. Notable recent exceptions are [23] and the protocol
in [2], the latter of which has been criticized for having a flawed security proof and a weak security
model [43, 36].
The NIST Post-Quantum Competition. Recently, some of the above mentioned designs have gathered
renewed interest in the quest of finding AKE protocols that are secure against quantum adversaries,
i.e., adversaries equipped with a quantum computer. In particular, the National Institute of Standards
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and Technology (NIST) announced a competition with the goal to standardize new PKE and signature
algorithms [38] with security against quantum adversaries. With the understanding that an AKE protocol
can be constructed from low level primitives such as quantum-secure PKE and signature schemes, the
NIST did not require the submissions to describe a concrete AKE protocol. Natural PKE and signature
candidates base their security on the hardness of certain problems over lattices and codes, which are
generally believed to resist quantum adversaries.
The quantum ROM. Quantum computers may execute all “offline primitives” such as hash functions
on arbitrary superpositions, which motivated the introduction of the quantum (accessible) random oracle
model (QROM) [14]. While the adversary’s capability to issue quantum queries to the random oracle
renders many proof strategies significantly more complicated, it is nowadays generally believed that only
proofs in the QROM imply provable security guarantees against quantum adversaries.
AKE and Quantum-Secure Signatures. Digital signatures are useful for the “authentication” part
in AKE, but unfortunately all known quantum-secure constructions would add a considerable overhead
to the AKE protocol. Therefore, if at all possible, we prefer to build AKE protocols only from PKE
schemes, without using signatures.1 Our ultimate goal is to build a system that remains secure in the
presence of quantum computers, meaning that even currently employed (very fast) signatures schemes
based on elliptic curves are not an option.
Central Research Question for Quantum-Secure AKE. In summary, motivated by post-quantum
secure cryptography and the NIST competition, we are interested in the following question:

How to build an actively secure AKE protocol from any passively secure PKE in
the quantum random oracle model, without using signatures?

(The terms “actively secure AKE” and “passively secure PKE” will be made more precise later.) Sur-
prisingly, one of the main technical difficulties is that the underlying PKE scheme might come with
a small probability of decryption failure, i.e., first encrypting and then decrypting does not yield the
original message. This property is called non-perfect correctness, and it is common for quantum-secure
schemes from lattices and codes, rendering them useless for all previous constructions that relied on
perfect correctness.2

Previous Constructions of AKE from PKE. The generic AKE protocol of Fujioka et al. [23] (itself
based on [17]) transforms a passively secure PKE scheme PKE and an actively (i.e., IND-CCA) secure PKE
scheme PKEcca into an AKE protocol. We will refer to this transformation as FSXY[PKE,PKEcca]. Since
the FSXY transformation is in the standard model, it is likely to be secure with the same proof in the
post-quantum setting and thus also in the QROM. The standard way to obtain actively secure encryption
from passively secure ones is the Fujisaki-Okamoto transformation PKEcca = FO[PKE,G,H] [24, 25]. In
its “implicit rejection” variant [27], it comes with a recently discovered security proof [40] that models
the hash functions G and H as quantum random oracles. Indeed, the combined AKE transformation
FSXY[PKE,FO[PKE,G,H]] transforms passively secure encryption into AKE that is very likely to be
secure in the QROM, without using digital signatures, hence giving a first answer to our above question.
It has, however, two main drawbacks.

• Perfect correctness requirement. Transformation FSXY is not known to have a security proof
if the underlying scheme does not satisfy perfect correctness. Likewise, the relatively tight QROM
proof for FO that was given in [40] requires the underlying scheme to be perfectly correct, and a
generalization of the proof for schemes with non-perfect correctness is not straightforward. Hence,
it is unclear whether FSXY[PKE,FO[PKE,G,H]] can be instantiated with lattice- or code-based
encryption schemes.

1Clearly, PKE requires a working public-key infrastructure (PKI) which in turn requires signatures to certify the public-
key. However, a user only has to verify a given certificate once and for all, which means the overhead of a quantum-secure
signature can be neglected.

2 There exist generic transformations that can immunize against decryption errors (e.g., [22]). Even though they are
quite efficient in theory, the induced overhead is still not acceptable for practical purposes. While lattice schemes could
be rendered perfectly correct by putting a limit on the noise, and setting the modulus of the LWE instance large enough
(see, e.g., [13, 28]), the security level cannot be maintained without increasing the problem’s dimension, accordingly. Since
this modification would lead to increased public-key and ciphertext length, many NIST submissions deliberately made the
design choice of having imperfect correctness.
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• Simplicity. The Fujisaki-Okamoto transformation already involves hashing the key using hash
function H, and FSXY involves even more (potentially redundant) hashing of the (already hashed)
session key. Overall, the combined transformation seems overly complicated and hence impractical.

Hence, it seems desirable to provide a simplified transformation that gets rid of unnecessary hashing
steps, and that can be proven secure in the QROM even if the underlying scheme does not satisfy perfect
correctness. As a motivating example, note that the Kyber AKE protocol [16] can be seen as a result of
applying such a simplified transformation to the Kyber PKE scheme, although coming without a formal
security proof.

1.1 Our Contributions
Our main contribution is a transformation, FOAKE[PKE,G,H] (“Fujisaki-Okamoto for AKE”) that converts
any passively secure encryption scheme into an actively secure AKE protocol, with provable security in
the quantum random oracle model. It can deal with non-perfect correctness and does not use digital
signatures. Furthermore, we provide a precise game-based security definition for two-message AKE
protocols. As a side result, we also give a security proof for the Fujisaki-Okamoto transformation in
the QROM in Section 3 that deals with correctness errors. It can be seen as the KEM analogue of our
main result, the AKE proof. Our proof strategy differs from and improves on the bounds of a previously
published proof of the Fujisaki-Okamoto transformation for KEMs in the QROM [31], which, as we will
explain later, contains a number of flaws and drawbacks.

1.1.1 FO transformation for KEMs.

To simplify the presentation of FOAKE, we first give some background on the Fujisaki-Okamoto trans-
formation for KEMs. In its original form [24, 25], FO yields an encryption scheme that is IND-CCA
secure in the random oracle model [10] from combining any One-Way secure asymmetric encryption
scheme with any one-time secure symmetric encryption scheme. In “A Designer’s Guide to KEMs”,
Dent [21] provided FO-like IND-CCA secure KEMs. (Recall that any IND-CCA secure Key Encapsulation
Mechanism can be combined with any (one-time) chosen-ciphertext secure symmetric encryption scheme
to obtain a IND-CCA secure PKE scheme [20].) Since all of the transformations mentioned above required
the underlying PKE scheme to be perfectly correct, and due to the increased popularity of lattice-based
schemes with non-perfect correctness, [27] gave several modularizations of FO-like transformations and
proved them robust against correctness errors. The key observation was that FO-like transformations
essentially consists of two separate steps and can be dissected into two transformations, as sketched in
the introduction of [27]:

• Transformation T: “Derandomization” and “re-encryption”. Starting from an encryption scheme
PKE and a hash function G, encryption of PKE′ = T[PKE,G] is defined by

Enc′(pk,m) := Enc(pk,m; G(m)),

where G(m) is used as the random coins for Enc, rendering Enc′ deterministic. Dec′(sk, c) first
decrypts c into m′ and rejects if Enc(pk,m′; G(m′)) 6= c (“re-encryption”).

• Transformation U6⊥m: “Hashing”. Starting from an encryption scheme PKE′ and a hash function H,
key encapsulation mechanism KEM 6⊥m = U 6⊥m[PKE′,H] with “implicit rejection” is defined by

Encaps(pk) := (c ← Enc′(pk,m),K := H(m)), (1)

where m is picked at random from the message space, and

Decaps(sk, c) =
{

H(m) m 6= ⊥
H(s, c) m = ⊥

,

where m := Dec(sk, c) and s is a random seed which is contained in sk. In the context of the FO
transformation, implicit rejection was first introduced by Persichetti [39, Sec. 5.3].
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Transformation T was proven secure both in the (classical) ROM and the QROM, and U6⊥m was proven
secure in the ROM. To achieve QROM security, [27] gave a modification of U 6⊥m, called QU 6⊥m, but its
security proof in the QROM suffered from a quartic loss in tightness, and most real-world proposals are
designed such that they fit the framework of FO 6⊥m = U6⊥m ◦ T, not QU 6⊥m ◦ T.

A slightly different modularization was introduced in [40]: they gave transformations TPunc ("Punctur-
ing and Encrypt-with-Hash") and SXY ("Hashing with implicit reject and reencryption"). SXY differs from
U6⊥m in that it reencrypts during decryption. Hence, it can only be applied to deterministic schemes. Even
in the QROM, its CCA security tightly reduces to an intermediate notion called Disjoint Simulatability
(DS) of ciphertexts. Intuitively, disjoint simulatability means that we can efficiently sample “fake cipher-
texts” that are computationally indistinguishable from real PKE ciphertexts (“simulatability”), while the
set of possible fake ciphertexts is required to be (almost) disjoint from the set of real ciphertexts. DS
is naturally satisfied by many code/lattice-based encryption schemes. Additionally, it can be achieved
using transformation Punc, i.e., by puncturing the underlying schemes’ message space at one point and
using this message to sample fake encryptions. Deterministic DS can be achieved by using transformation
TPunc, albeit non-tightly (due to the use of the oneway-to-hiding lemma).

PKE0
IND-CPA

PKE
DS (prob.)
+ IND-CPA

PKE′
DS (det.)

KEM
IND-CCA

Punc[PKE0]

T[PKE,G]TPunc[PKE0,G]

SXY[PKE′,H]

FO 6⊥m [PKE,G,H] = U 6⊥m [T[PKE,G],H]

Figure 1: Comparison of [40]’s modular transformation (green) with ours. Solid arrows indicate tight
reductions, dashed arrows indicate non-tight reductions.

FO for KEMs: previous issues and security proof. However, the reduction that is given in [40]
requires the underlying encryption scheme to be perfectly correct. While [31, 32] ([32] refers to the full
version of [31] in its last revision from July 2018) gave security proofs for the non-modular transformations
FO 6⊥m and FO 6⊥ [32, Thms. 1 and 2] as well as a security proof for SXY3 (see [32, Thm. 6]) for schemes
with correctness errors. We identify some flaws and drawbacks which we will discuss in Appendix A. In a
nutshell, two main issues arise: The first issue is that to prove the non-modular statements, a lemma is
used whose formal statement is unclear. One of its requirements might be unsatisfiable, rendering the
proof impossible to verify. We structure our proof differently by following [40]’s modular approach as far
as possible.4 For more details on this issue and our strategy to avoid it, we refer to Appendix A.

The second issue is that the security statement given in [32, Thm. 6] is based on prerequisites that are
not met by most lattice-based encryption schemes. Recall that SXY is only applicable to deterministic
schemes since it reencrypts, and the issue stated above is due to the correctness definition for deterministic
schemes that is used.5 It is not straightforward to give a correctness definition for deterministic encryption
schemes such that it fits known strategies to prove SXY tightly secure, but also is achievable by most
lattice-based schemes. We circumvent this difficulty by resorting to a non-modularized proof that assumes
a non-deterministic scheme.6 Lastly, we want to stress that the statement of [32, Thm. 6] is not proven,
and it is unclear how it could be proven with the standard notion of IND-CCA security. More details on
these issues are also given in Appendix A.

Our transformation FO 6⊥m can be applied to any PKE scheme that is both IND-CPA and DS secure.
3Note that nomenclature of [32] is a bit misleading: while the their KEM from Figure 13 (and Theorem 6) is called U6⊥m ,

it is actually transformation SXY (it reencrypts during decryption, which U 6⊥m does not).
4We will first prove that T[−,G] turns any suitable scheme into a scheme that is deterministically DS, and then plug in

this result into [40]’s tight security proof for U 6⊥m .
5The definition of correctness, in the deterministic setting, effectively requires that the scheme is perfectly correct for

almost all public keys.
6 When plugging in T[−,G] into U 6⊥m , we can change random oracle G during the security proof such that the scheme is

rendered perfectly correct, a necessary condition to proceed with the tight security proof.
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The reduction is tighter than the one that results from combining those of TPunc and SXY in [40], and
also than the reduction given in [32]. This is due to our use of the improved Oneway-to-Hiding lemma [3,
Thm. 1: “Semi-classical O2H”]. Furthermore, we achieve a better correctness bound (the square of the
bound given in [32]) due to a better bound for the generic distinguishing problem. In cases where PKE is
not already DS, this requirement can be waived with negligible loss of efficiency: To rely on IND-CPA
alone, all that has to be done is to plug in transformation Punc. A visualization is given in Figure 1.

1.1.2 Security Model for Two-Message Authenticated Key Exchange.

We introduce a simple game-based security model for (non-parallel) two-message AKE protocols, i.e.,
protocols where the responder sends his message only after having received the initiator’s message.
Technically, in our model, and similar to previous literature, we define several oracles that the attacker
has access to. However, in contrast to most other security models, the inner workings of these oracles and
their management via the challenger are precisely defined with pseudo-code.
Details on our Models. We define two security notions for two-message AKEs: key indistinguishability
against active attacks (IND-AA) and the weaker notion of indistinguishability against active attacks without
state reveal in the test session (IND-StAA). IND-AA captures the classical notion of key indistinguishability
(as introduced by Bellare and Rogaway [11]) as well as security against reflection attacks, key compromise
impersonation (KCI) attacks, and weak forward secrecy (wFS) [34]. It is based on the Canetti-Krawczyk
(CK) model and allows the attacker to reveal (all) secret state information as compared to only ephemeral
keys. As already pointed out by [17], this makes our model incomparable to the eCK model [35] but
strictly stronger than the CK model. Essentially, the IND-AA model states that the session key remains
indistinguishable from a random one even if

1. the attacker knows either the long-term secret key or the secret state information (but not both) of
both parties involved in the test session, as long as it did not modify the message received by the
test session,

2. and also if the attacker modified the message received by the test session, as long as it did not
obtain the long-term secret key of the test session’s peer.

Note that IND-AA only excludes trivial attacks and is hence the strongest notion of security that can be
achieved by any (non-parallel) two-message AKE protocol (relative to the set of oracle queries we allow).

We also consider the slightly weaker model IND-StAA (in which we will prove the security of our AKE
protocols), where 2. is substituted by

2’. and also if the attacker modified the message received by the test session, as long as it did neither
obtain the long-term secret key of the test session’s peer nor the test session’s state. The latter
strategy, we will call a state attack.

We remark that IND-StAA security is essentially the same notion that was achieved by the FSXY
transformation [23].7 In Appendix B we provide a more general perspective on how our model compares
to existing ones.

1.1.3 Our Authenticated Key-Exchange Protocol.

Our transformation FOAKE transforms any passively secure PKE (with potential non-perfect correctness)
into an IND-StAA secure AKE. FOAKE is a simplification of the transformation FSXY[PKE,FO[PKE,G,H]]
mentioned above, where the derivation of the session key K uses only one single hash function H. FOAKE
can be regarded as the AKE analogue of the Fujisaki-Okamoto transformation.

Transformation FOAKE[PKE,G,H] is described in Figure 2 and uses transform PKE′ = T[PKE,G] as
a building block. (The full construction is given in Figure 14, see Section 5.) Our main security result
(Theorem 3) states that FOAKE[PKE,G,H] is an IND-StAA-secure AKE if the underlying probabilistic
PKE is DS as well as IND-CPA secure and has negligible correctness error, and furthermore G and H are
modeled as quantum random oracles.

7The difference is that the model from [23] furthermore allows a “partial reveal” of the test session’s state. For simplicity
and due to their little practical relevance, we decided not to include such partial session reveal queries in our model. We
remark that, however, our protocol could be proven secure in this slightly stronger model.
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Pi(ski , pkj) Pj(skj , pki)

p̃k, cj

ci , c̃

mj

cj

p̃k p̃k

m̃′

c̃
m′i ci

mj

$

Enc′pkj

(p̃k, s̃k)← KG

Decs̃k

Dec′ski

cj

m′j

p̃k

c̃

m̃

ci mi

Dec′skj

p̃k

Enc′p̃k m̃

$

Enc′pki
mi

$

H

K = H(m′i ,mj , m̃′, p̃k, i, j)

H

K = H(mi ,m′j , m̃, p̃k, i, j)

Figure 2: A visualisation of our authenticated key-exchange protocol FOAKE. We make the convention
that, in case any of the Dec′ algorithms returns ⊥, the session key K is derived deterministically and
pseudorandomly from the player’s state (“implicit rejection”).

The proof essentially is the AKE analogue to the security proof of FO 6⊥m we give in Section 3.2: By
definition of our security model, it always holds that at least one of the messages mi , mj and m̃ is hidden
from the adversary (unless it loses trivially). Adapting the simulation technique in [40], we can simulate
the session keys even if we do not know the corresponding secret key ski (skj , s̃k). Assuming that PKE
is DS, we can replace the corresponding ciphertext ci (cj , c̃) of the test session with a fake ciphertext,
rendering the test session’s key completely random from the adversary’s view due to PKE’s disjointness.

Let us add two remarks. Firstly, we cannot prove the security of FOAKE[PKE,G,H] in the stronger
sense of IND-AA and actually, it is not secure against state attacks. Secondly, note that our security
statement involves the probabilistic scheme PKE rather than PKE′. Unfortunately, we were not able to
provide a modular proof of AKE solely based on reasonable security properties of PKE′ = T[PKE,G]. The
reason for this is indeed the non-perfect correctness of PKE. This difficulty corresponds to the difficulty
to generalize [40]’s result for deterministic encryption schemes with correctness errors discussed above.
Concrete Applications. Our transformation can be applied to any DS and IND-CPA secure PKE
scheme with post-quantum security, e.g., Frodo [37], Kyber [16], and Lizard [5]. In fact, applying FOAKE
to Kyber provides a formal security proof for the AKE protocol described in [16]. Note that most of the
mentioned schemes are already DS secure under the same assumption as it is used for IND-CPA security
and as mentioned above, the requirement of DS security can be waived with negligible loss of efficiency.

1.1.4 Open Problems.

In the literature, one can find several Diffie-Hellman based protocols that achieve IND-AA security, for
example HMQV [34]. However, none of them provides security against quantum computers. We leave as
an interesting open problem to design a generic and efficient two-message AKE protocol in our stronger
IND-AA model, preferably with a security proof in the QROM. While we were able to generalize (and
tighten) the proof of CCA security given in [40] for the combined transformation FO 6⊥m := U6⊥m ◦T such that
it covers encryption schemes that come with non-perfect correctness, it still remains an open problem to
generalize the security proof of U 6⊥m such that it is applicable to any deterministic encryption scheme that
is DS, even if it is not perfectly correct for more than neglibly many key pairs.

2 Preliminaries
For n ∈ N, let [n] := {1, . . . , n}. For a set S , |S | denotes the cardinality of S. For a finite set S , we denote
the sampling of a uniform random element x by x ←$ S , while we denote the sampling according to some
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distribution D by x ← D. By JBK we denote the bit that is 1 if the boolean Statement B is true, and
otherwise 0.
Algorithms. We denote deterministic computation of an algorithm A on input x by y := A(x). We
denote algorithms with access to an oracle O by AO. Unless stated otherwise, we assume all our algorithms
to be probabilistic and denote the computation by y ← A(x).
Games. Following [42, 12], we use code-based games. We implicitly assume boolean flags to be initialized
to false, numerical types to 0, sets to ∅, and strings to the empty string ε. We make the convention that
a procedure terminates once it has returned an output.

2.1 Public-key Encryption

Syntax. A public-key encryption scheme PKE = (KG,Enc,Dec) consists of three algorithms, and a
finite message spaceM which we assume to be efficiently recognizable. The key generation algorithm
KG outputs a key pair (pk, sk), where pk also defines a finite randomness space R = R(pk) as well as
a ciphertext space C. The encryption algorithm Enc, on input pk and a message m ∈ M, outputs an
encryption c ← Enc(pk,m) of m under the public key pk. If necessary, we make the used randomness
of encryption explicit by writing c := Enc(pk,m; r), where r ←$ R. The decryption algorithm Dec, on
input sk and a ciphertext c, outputs either a message m = Dec(sk, c) ∈M or a special symbol ⊥ /∈M to
indicate that c is not a valid ciphertext.

Definition 2.1 (Collision probability of key generation.). We define

µ(KG) := Pr[(pk, sk)← KG, (pk ′, sk ′)← KG : pk = pk ′] .

Definition 2.2 (Collision probability of ciphertexts.). We define

µ(Enc) := Pr[(pk, sk)← KG,m,m′ ←$ M, c ← Enc(pk,m), c′ ← Enc(pk,m′) : c = c′] .

Definition 2.3 (γ-Spreadness.). [24] We say that PKE is γ-spread iff for all key pairs (pk, sk) ∈ supp(KG)
and all messages m ∈M it holds that

max
c∈C

Pr[r ←$ R : Enc(pk,m; r) = c] ≤ 2−γ .

Definition 2.4 (Correctness). [27] We define δ := E[maxm∈M Pr[c ← Enc(pk,m) : Dec(sk, c) 6= m]],
where the expectation is taken over (pk, sk)← KG.

Security. We now define the notion of Indistinguishability under Chosen Plaintext Attacks (IND-CPA)
for public-key encryption.

Definition 2.5 (IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption scheme. We define
game IND-CPA game as in Figure 3, and the IND-CPA advantage function of a quantum adversary
A = (A1,A2) against PKE (such that A2 has binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA

1 ⇒ 1]− Pr[IND-CPAA
0 ⇒ 1]| .

We also define IND-CPA security in the random oracle model model, where PKE and adversary A are
given access to a random oracle.

Disjoint simulatability. Following [40], we consider PKE where it is possible to efficiently sample fake
ciphertexts that are indistinguishable from proper encryptions, while the probability that the sampling
algorithm hits a proper encryption is small.

Definition 2.6 (DS) [40] Let PKE = (KG,Enc,Dec) be a PKE scheme with message space M and
ciphertext space C, together with a PPT algorithm Enc. For quantum adversaries A, we define the
advantage against PKE’s disjoint simulatability as

AdvDS
PKE(A) :=|Pr[pk ← KG,m ←$ M, c ← Enc(pk,m) : 1← A(pk, c)]

− Pr[pk ← KG, c ← Enc(pk) : 1← A(pk, c)]| .

We call PKE εdis-disjoint if for all pk ← KG, Pr[c ← Enc(pk) : c ∈ Enc(pk,M;R)] ≤ εdis.
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GAME IND-CPAb
01 (pk, sk)← KG
02 (m∗0 ,m∗1 , st)← A1(pk)
03 c∗ ← Enc(pk,m∗b )
04 b′ ← A2(pk, c∗, st)
05 return b′

GAME IND-CCA
06 (pk, sk)← KG
07 b ←$ F2
08 (K∗0 , c∗)← Encaps(pk)
09 K∗1 ←$ K
10 b′ ← ADecaps(pk, c∗,K∗b )
11 return Jb′ = bK

Decaps(c 6= c∗)
12 K := Decaps(sk, c)
13 return K

Figure 3: Games IND-CPAb for PKE (b ∈ F2) and game IND-CCA for KEM.

2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (KG,Encaps,Decaps) consists of three algorithms. The
key generation algorithm KG outputs a key pair (pk, sk), where pk also defines a finite key space K. The
encapsulation algorithm Encaps, on input pk, outputs a tuple (K , c) where c is said to be an encapsulation
of the key K which is contained in key space K. The deterministic decapsulation algorithm Decaps, on
input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈ K or a special symbol ⊥ /∈ K
to indicate that c is not a valid encapsulation.

We call KEM δ-correct if

Pr [Decaps(sk, c) 6= K | (pk, sk)← KG; (K , c)← Encaps(pk)] ≤ δ .

Note that the above definition also makes sense in the random oracle model since KEM ciphertexts do
not depend on messages.
Security. We now define a security notion for key encapsulation: Indistinguishbility under Chosen
Ciphertext Attacks (IND-CCA).

Definition 2.7 (IND-CCA). We define the IND-CCA game as in Figure 3 and the IND-CCA advantage
function of an adversary A (with binary output) against KEM as

AdvIND-CCA
KEM (A) := |Pr[IND-CCAA ⇒ 1]− 1/2| .

2.3 Quantum computation

Qubits. For simplicity, we will treat a qubit as a vector |ϕ〉 ∈ C2, i.e., a linear combination |ϕ〉 =
α · |0〉+β · |1〉 of the two basis states (vectors) |0〉 and |1〉 with the additional requirement to the probability
amplitudes α, β ∈ C that |α|2 + |β|2 = 1. The basis {|0〉, |1〉} is called standard orthonormal computational
basis. The qubit |ϕ〉 is said to be in superposition. Classical bits can be interpreted as quantum bits via
the mapping (b 7→ 1 · |b〉+ 0 · |1− b〉).
Quantum Registers. We will treat a quantum register as a collection of multiple qubits, i.e. a linear
combination |ϕ〉 :=

∑
x∈Fn

2
αx · |x〉, where αx ∈ C, with the additional restriction that

∑
x∈Fn

2
|αx |2 = 1.

As in the one-dimensional case, we call the basis {|x〉}x∈Fn
2
the standard orthonormal computational basis.

We say that |ϕ〉 =
∑

x∈Fn
2
αx · |x〉 contains the classical query x if αx 6= 0.

Measurements. Qubits can be measured with respect to a basis. In this paper, we will only consider
measurements in the standard orthonormal computational basis, and denote this measurement by
Measure(·), where the outcome of Measure(|ϕ〉) for a single qubit |ϕ〉 = α · |0〉 + β · |1〉 will be
0 with probability |α|2 and 1 with probability |β|2, and the outcome of measuring a qubit register
|ϕ〉 =

∑
x∈Fn

2
αx · |x〉 will be x with probability |αx |2. Note that the amplitudes collapse during a

measurement, this means that by measuring α · |0〉 + β · |1〉, α and β are switched to one of the
combinations in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional case, all amplitudes are switched to 0
except for the one that belongs to the measurement outcome and which will be switched to 1.
Quantum oracles and quantum Adversaries. Following [14, 6], we view a quantum oracle |O〉 as a
mapping

|x〉|y〉 7→ |x〉|y ⊕ O(x)〉 ,
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where O : Fn
2 → Fm

2 , and model quantum adversaries A with access to O by a sequence U1, |O〉, U2, · · · ,
|O〉, UN of unitary transformations. We write A|O〉 to indicate that the oracles are quantum-accessible
(contrary to oracles which can only process classical bits).
Quantum random oracle model. We consider security games in the quantum random oracle model
(QROM) as their counterparts in the classical random oracle model, with the difference that we consider
quantum adversaries that are given quantum access to the (offline) random oracles involved, and
classical access to all other (online) oracles. For example, in the IND-CPA game, the adversary only
obtains a classical encryption, like in [18], and unlike in [15]. In the IND-CCA game, the adversary only
has access to a classical decryption oracle, unlike in [26] and [1].

Zhandry [46] proved that no quantum algorithm A|O〉, issuing at most q quantum queries to |O〉,
can distinguish between a random function O : Fm

2 → Fn
2 and a 2q-wise independent function f2q. For

concreteness, we view f2q : Fm
2 → Fn

2 as a random polynomial of degree 2q over the finite field F2n . The
running time to evaluate f2q is linear in q. In this article, we will use this observation in the context
of security reductions, where quantum adversary B simulates quantum adversary A|O〉 issuing at most
q queries to |O〉. Hence, the running time of B is Time(B) = Time(A) + q · Time(O), where Time(O)
denotes the time it takes to simulate |O〉. Using the observation above, B can use a 2q-wise independent
function in order to (information-theoretically) simulate |O〉, and we obtain that the running time of B
is Time(B) = Time(A) + q · Time(f2q), and the time Time(f2q) to evaluate f2q is linear in q. Following
[40] and [33], we make use of the fact that the second term of this running time (quadratic in q) can
be further reduced to linear in q in the quantum random-oracle model where B can simply use another
random oracle to simulate |O〉. Assuming evaluating the random oracle takes one time unit, we write
Time(B) = Time(A) + q, which is approximately Time(A).
Oneway to Hiding with semi-classical oracles. In [3], Ambainis et al. defined semi-classical
oracles that return a state that was measured with respect to one of the input registers. In particular,
to any subset S ⊂ X , they associated the following semi-classical oracle OSC

S : Algorithm OSC
S , when

queried on |ψ, 0〉, measures with respect to the projectors M1 and M0, where M1 :=
∑

x∈S |x〉〈x| and
M0 :=

∑
x /∈S |x〉〈x|. The oracle then initializes the second register to |b〉 for the measured bit b. This

means that |ψ, 0〉 collapses to either a state |ψ′, 0〉 such that |ψ′〉 only contains elements of X \ S or to a
state |ψ′, 1〉 such that |ψ′〉 only contains elements of S . Let FIND denote the event that the latter ever
is the case, i.e., that OSC

S ever answers with |ψ′, 1〉 for some ψ′. To a quantum oracle |G〉 and a subset
S ⊂ X , Ambainis et al. associate the following punctured oracle |G \ S〉 that removes S from the domain
of |G〉 unless FIND occurs.

|G \ S〉|ψ, φ〉
01 |ψ′, b〉 := OSC

S |ψ, 0〉
02 return |G〉|ψ′, φ〉

Figure 4: Punctured oracle |G \ S〉 for OW2H.

The following theorem is a simplification of statement (2) given in [3, Thm. 1: “Semi-classical O2H”],
and of [3, Cor. 1]. It differs in the following way: While [3] consider adversaries that might execute
parallel oracle invocations and therefore differentiate between query depth d and number of queries q, we
use the upper bound q ≥ d for simplicity.

Theorem 2.8 Let S ⊂ X be random. Let G,H ∈ YX be random functions such that G|X\S = H|X\S ,
and let z be a random bitstring. (S, G, H , and z may have an arbitrary joint distribution.) Then, for all
quantum algorithms A issuing at most q queries that, on input z, output either 0 or 1,

|Pr[1← A|G〉(z)]− Pr[1← A|H〉(z)]| ≤ 2 ·
√
q Pr[b ← A|G\S〉(z) : FIND] .

If furthermore, S := {x} for x ←$ X, and x and z are independent,

Pr[b ← A|G\S〉(z) : FIND] ≤ 4q
|X | .
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Generic quantum Distinguishing Problem with bounded probabilities. For λ ∈ [0, 1], let Bλ
be the Bernoulli distribution, i.e., Pr[b = 1] = λ for the bit b ← Bλ. Let X be some finite set. The generic
quantum distinguishing problem ([4, Lemma 37: "Preimage search in a random function" ], [29, Lem. 3])
is to distinguish quantum access to an oracle F : X → F2, such that for each x ∈ X , F(x) is distributed
according to Bλ, from quantum access to the zero function. We will need the following slight variation.
The Generic quantum Distinguishing Problem with Bounded probabilities GDPB is like the quantum
distinguishing problem with the difference that the Bernoulli parameter λx may depend on x , but still is
upper bounded by a global λ. The upper bound we give is the same as in [29, Lem. 3].
Lemma 2.9 (Generic Distinguishing Problem with Bounded Probabilities). Let X be a finite set, and
let λ ∈ [0, 1]. Then, for any (unbounded, quantum) algorithm A issuing at most q quantum queries,

|Pr[GDPBA
λ,0 ⇒ 1]− Pr[GDPBA

λ,1 ⇒ 1]| ≤ 8(q + 1)2 · λ,

where games GDPBA
λ,b (for bit b ∈ F2) are defined as follows:

GAME GDPBλ,b
01 (λx)x∈X ← A1
02 if ∃x ∈ X s.t. λx > λ return 0
03 if b = 0
04 F := 0
05 else for all x ∈ X
06 F(x)← Bλx

07 b′ ← A|F〉2
08 return b′

Proof. In this proof, let CGDPBλ denote the game GDPBλ as defined in [4] and [29], i.e., defined such
that λx = λ for all x. (Hence, we call it constant GDPB). The bound on GDPBλ can be reduced to the
known bound on CGDPBλ by coupling the Bernoulli parameter to obtain the dependence on each x ∈ X :
Let A be an adversary against game GDPBλ, issuing at most q queries. Without loss of generality, we
can assume that λ > 0. Consider adversary B against game CGDPBλ, given in Figure 16.

B1
01 (λx)x∈X ← A1
02 λ := maxx∈X λx
03 for all x ∈ X
04 µx := λx

λ

05 G(x)← Bµx

06 return λ

B|F〉2

07 b′ ← A|F·G〉2
08 return b′

Figure 5: Adversary B for the proof of Lemma 4.

For each x ∈ X , B picks G(x) according to Bµx , where µx := λx
λ ∈ [0, 1]. B then executes A with

oracle access to |F · G〉 and returns A’s output bit. If F(x) is distributed according to Bλ for each x , then
(F ·G)(x) is distributed according to Bλx , and if F is the constant zero function, so is F ·G, hence B
perfectly simulates game GDPBλ for A and

|Pr[GDPBA
λ,0 ⇒ 1]− Pr[GDPBA

λ,1 ⇒ 1]| = |Pr[CGDPBB
λ,0 ⇒ 1]− Pr[CGDPBB

λ,1 ⇒ 1]| .
We now argue that B can realize A’s oracle access to |F · G〉 in a way such that any query to |F · G〉 by

A triggers at most one query to |F〉. To verify this claim, consider the following state transitions:

x

y

0 G

F

G
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The dot indicates execution of F(x), conditioned on G(x). It’s easy to see that |x, y, 0〉 transitions to
|x, y ⊕ F(x), 0〉 if G(x) = 1, and that |x, y, 0〉 transitions to |x, y, 0〉 if G(x) = 0, hence |x, y, 0〉 transitions
to |x, y ⊕ (F ·G)(x), 0〉, either way, and B can answer queries to |F · G〉 by querying |F〉 just once. Since
B issues at most q queries to |F〉, we can apply [29, Lem. 3] and obtain

|Pr[CGDPBB
λ,0 ⇒ 1]− Pr[CGDPBB

λ,1 ⇒ 1]| ≤ 8(q + 1)2 · λ .

3 The FO Transformation: QROM security with correctness
errors

In Section 3.1, we modularize transformation TPunc that was given in [40] and that turns any public key
encryption scheme that is IND-CPA secure into a deterministic one that is DS. Transformation TPunc
essentially consists of first puncturing the message space at one point (transformation Punc, to achieve
DS), and then applying transformation T. Next, in Section 3.2, we show that transformation U 6⊥m, when
applied to T, transforms any encryption scheme that is DS as well as IND-CPA into a KEM that is
IND-CCA secure. We believe that many lattice-based schemes fulfill DS in a natural way,8 but for the
sake of completeness, we will show in Appendix D how transformation Punc can be used to waive the
requirement of DS with negligible loss of efficiency.

3.1 Modularization of TPunc
We modularize transformation TPunc ("Puncturing and Encrypt-with-Hash") that was given in [40], and
that turns any IND-CPA secure PKE scheme into a deterministic one that is DS. Note that apart from
reencryption, TPunc[PKE0,G] given in [40] and our modularization T[Punc[PKE0],G] are equal. We first
give transformation Punc that turns any IND-CPA secure scheme into a scheme that is both DS and
IND-CPA. In Section 3.1, we show that transformation T turns any scheme that is DS as well as IND-CPA
secure into a deterministic scheme that is DS.

3.1.1 Transformation Punc: From IND-CPA to probabilistic DS security

Transformation Punc turns any IND-CPA secure public-key encryption scheme into a DS secure one
by puncturing the message space at one message and sampling encryptions of this message as fake
encryptions.
The Construction. To a public-key encryption scheme PKE0 = (KG0,Enc0,Dec0) with message
space M0, we associate PKE := Punc[PKE0, m̂] := (KG := KG0,Enc,Dec := Dec0) with message space
M :=M0 \ {m̂} for some message m̂ ∈M. Encryption and fake encryption sampling of PKE are defined
in Figure 4. Note that transformation Punc will only be used as a helper transformation to achieve DS,
generically. For more details on Punc, we refer to Appendix D.

Enc(pk,m ∈M)
01 c ← Enc0(pk,m)
02 return c

Enc(pk)
03 c ← Enc0(pk, m̂)
04 return c

Figure 6: Encryption and fake encryption sampling of PKE = Punc[PKE0].

3.1.2 Transformation T: From probabilistic to deterministic DS security

Transformation T [7] turns any probabilistic public-key encryption scheme into a deterministic one. The
transformed scheme is DS, given that PKE is DS as well as IND-CPA secure. Our security proof is tighter
than the proof given for TPunc (see [40, Theorem 3.3]) due to our use of the semi-classical O2H theorem.

8Fake encryptions could be sampled uniformly random. DS would follow from the LWE assumption, and since LWE
samples are relatively sparse, uniform sampling should be disjoint.
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The Construction. Take an encryption scheme PKE = (KG,Enc,Dec) with message space M and
randomness space R. Assume PKE to be additionally endowed with a sampling algorithm Enc (see
Definition 6). To PKE and random oracle G : M → R, we associate PKE′ = T[PKE,G], where the
algorithms of PKE′ = (KG′ := KG,Enc′,Dec′,Enc′ := Enc) are defined in Figure 5. Note that Enc′
deterministically computes the ciphertext as c := Enc(pk,m; G(m)).

Enc′(pk,m)
01 c := Enc(pk,m; G(m))
02 return c

Dec′(sk, c)
03 m′ := Dec(sk, c).
04 if m′ = ⊥ or Enc(pk,m′; G(m′)) 6= c
05 return ⊥
06 else return m′

Figure 7: Deterministic encryption scheme PKE′ = T[PKE,G].

The following lemma states that combined IND-CPA and DS security of PKE imply the DS security of
PKE′.

Lemma 3.1 (DS security of PKE′). If PKE is ε-disjoint, so is PKE′. For all adversaries A issuing at
most qG queries to |G〉, there exist an adversary BIND and an adversary BDS such that

AdvDS
PKE′(A) ≤ AdvDS

PKE(BDS) + 2 ·

√
qG ·AdvIND-CPA

PKE (BIND) +
4q2

G
|M|

≤ AdvDS
PKE(BDS) + 2 ·

√
qG ·AdvIND-CPA

PKE (BIND) + 4qG√
|M|

,

and the running time of each adversary is about that of B.

Proof. It is straightforward to prove disjointness since Enc′(pk,M) is subset of Enc(pk,M;R). Let A be
a DS adversary against PKE′. Consider the sequence of games given in Figure 6. Per definition,

AdvDS
PKE′(A) = |Pr[GA

0 ⇒ 1]− Pr[GA
1 ⇒ 1]|

≤ |Pr[GA
0 ⇒ 1]− Pr[GA

3 ⇒ 1]|+ |Pr[GA
1 ⇒ 1]− Pr[GA

3 ⇒ 1]| .

Games G0-G2
01 pk ← KG
02 m∗ ←$ M
03 c∗ ← Enc(pk) �G0
04 r∗ := G(m∗) �G1
05 r∗ ←$ R �G2-G3
06 c∗ := Enc(pk,m∗; r∗) �G1-G3
07 b′ ← A|G〉(pk, c∗) �G0-G1, G3
08 b′ ← A|H〉(pk, c∗) �G2
09 return b′

Game G4-G5
10 FIND := false
11 pk ← KG
12 m∗ ←$ M
13 r∗ ←$ R
14 c∗ := Enc(pk,m∗; r∗) �G4
15 c∗ := Enc(pk, 0; r∗) �G5
16 b′ ← A|G\{m

∗}〉(pk, c∗)
17 return FIND

|G \ {m∗}〉|ψ, φ〉
18 |ψ′, b〉 := OSC

{m∗}|ψ, 0〉
19 if b = 1
20 FIND := true
21 return |G〉|ψ′, φ〉

Figure 8: Games G0 - G5 for the proof of Lemma 1.

To upper bound |Pr[GA
0 ⇒ 1]−Pr[GA

3 ⇒ 1]|, consider adversary BDS against the disjoint simulatability
of the underlying scheme PKE, given in Figure 7. BDS runs in the time that is required to run A and to
simulate G for qG queries. Since BDS perfectly simulates game G0 if run with a fake ciphertext as input,
and game G3 if run with a random encryption c ← Enc(pk,m∗),

|Pr[GA
0 ⇒ 1]− Pr[GA

3 ⇒ 1]| = AdvDS
PKE(BDS) .

It remains to upper bound |Pr[GA
1 ⇒ 1]−Pr[GA

3 ⇒ 1]|. We claim that there exists an adversary BIND
such that

|Pr[GA
1 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ 2

√
qG ·AdvIND-CPA

PKE (BIND) +
4q2

G
|M|

.
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BDS(pk, c)
01 b′ ← A|G〉(pk, c)
02 return b′

BIND,1(pk)
03 m∗ ←$ M
04 return (0,m∗, st := m∗)

BIND,2(pk, c∗, st := m∗)
05 FIND := false
06 b′ ← A|G\{m

∗}〉(pk, c∗)
07 return FIND

|G \ {m∗}〉|ψ, φ〉
08 |ψ′, b〉 := OSC

{m∗}|ψ, 0〉
09 if b = 1
10 FIND := true
11 return |G〉|ψ′, φ〉

Figure 9: Adversaries BDS and BIND- for the proof of Lemma 1.

Game G2. In game G2, we replace oracle access to |G〉 with oracle acess to |H〉 in line 08, where H is
defined as follows: we pick a uniformly random r∗ in line 05 and let H(m) := G(m) for all m 6= m∗, and
H(m∗) := r∗. Since G is a random oracle, this change is purely conceptual and

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1] .

Game G3. In game G3, we switch back to oracle access to |G〉. Applying Theorem 5 for S := {m∗}, and
z := (pk, c∗ := Enc(pk,m∗; r∗)), we obtain

|Pr[GA
2 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ 2 ·
√
qG · Pr[GA

4 ⇒ 1] .

Game G5. In game G5, c∗ ← Enc(pk,m∗) is replaced with an encryption of 0. Since in game G5, (pk, c∗)
is independent of m∗, we can apply Theorem 5 to obtain

Pr[GA
5 ⇒ 1] ≤ 4qG

|M|
.

To upper bound |Pr[GA
4 ⇒ 1]− Pr[GA

5 ⇒ 1]|, consider adversary BIND against the IND-CPA security of
PKE, also given in Figure 7. BIND runs in the time that is required to run A and to measure and simulate
G for qG queries. BIND perfectly simulates game G4 if run in game IND-CPA0 and game G5 if run in game
IND-CPA1, therefore,

|Pr[GA
4 ⇒ 1]− Pr[GA

5 ⇒ 1]| = AdvIND-CPA
PKE (BIND) .

Collecting the probabilities yields

Pr[GA
4 ⇒ 1] ≤ AdvIND-CPA

PKE (BIND) + 4qG
|M|

.

3.2 Transformation FO6⊥m and correctness errors
Transformation SXY [40] got rid of the additional hash (sometimes called key confirmation) that was
included in [27]’s quantum transformation QU 6⊥m . SXY is essentially the (classical) transformation U 6⊥m that
was also given in [27], and apart from doing without the additional hash, it comes with a tight security
reduction in the QROM. SXY differs from the (classical) transformation U 6⊥m only in the regard that it
reencrypts during decapsulation. (In [27], reencryption is done during decryption of T.)

The security proof given in [40] requires the underlying encryption scheme to be perfectly correct,
and it turned out that their analysis cannot be trivially adapted to take possible decryption failures into
account in a generic setting: SXY starts from a deterministic encryption scheme PKE′, and it is unclear
how to reasonably define correctness for deterministic encryption schemes such that it fits the proof’s
strategy. The correctness term δ we have to consider reduces to the probability that for the sampled key
pair, at least one message exists that inhibits decryption failure, i.e., the probability that the scheme is
not perfectly correct for the sampled key pair. But with this definition, the security statements given in
the theorem are not meaningful for most lattice-based encryption schemes since in most cases, there exist
some messages inducing decryption failure for each key pair. What we show instead is that the combined

13



transformation FO 6⊥m = U 6⊥m[T[−,G],H] turns any encryption scheme that is DS as well as IND-CPA into
a KEM that is IND-CCA secure in the QROM, even if the underlying encryption scheme comes with a
small probability of decryption failure. This is achieved by modifying random oracle G during the proof
such that the encryption scheme is rendered perfectly correct. Our reduction is tighter as the (combined)
reduction in [40] due to our tighter security proof for T (see Section 3.1).
The Construction. To PKE = (KG,Enc,Dec) with message spaceM and randomness space R, and
random oracles H :M→K, G :M→R, and an additional internal random oracle Hr : C → K that can
not be directly accessed, we associate KEM = FO 6⊥m [PKE,G,H] := U6⊥m [T[PKE,G],H], where the algorithms
of KEM = (KG,Encaps,Decaps) are given in Figure 8.

Encaps(pk)
01 m ←$ M
02 c := Enc(pk,m; G(m))
03 K := H(m)
04 return (K , c)

Decaps(sk, c)
05 m′ := Dec(sk, c)
06 if m′ = ⊥ or Enc(pk,m′; G(m′)) 6= c
07 return K := Hr(c)
08 else return K := H(m′)

Figure 10: Key encapsulation mechanism KEM = FO 6⊥m[PKE,G,H] = U 6⊥m[T[PKE,G],H]. Oracle Hr is used
to generate random values whenever reencryption fails. This strategy is called implicit reject. Amongst
others, it is used in [27], [40], and [31]. For simplicity of the proof, Hr is modelled as an internal random
oracle that cannot be accessed directly. For implementation, it would be sufficient to use a PRF.

Security. The following theorem (whose proof is essentially the same as in [40] except for the con-
sideration of possible decryption failure) establishes that IND-CCA security of KEM reduces to DS and
IND-CPA security of PKE, in the quantum random oracle model.

Theorem 3.2 (PKE DS + IND-CPA QROM⇒ KEM IND-CCA). Assume PKE to be δ-correct, and to come
with a fake sampling algorithm Enc such that PKE is εdis-disjoint. Then, for any (quantum) IND-CCA
adversary A issuing at most qD (classical) queries to the decapsulation oracle Decaps, at most qH quantum
queries to |H〉, and at most qG quantum queries to |G〉, there exist (quantum) adversaries BDS and BIND
such that

AdvIND-CCA
KEM (A) ≤ 8 · (2 · qG + qH + qD + 4)2 · δ + AdvDS

PKE(BDS)

+ 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE (BIND) + 4(qG + qH)2

|M|
+ εdis ,

and the running time of BDS and BIND is about that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM, issuing at most qD queries to
Decaps, at most qH queries to the quantum random oracle |H〉, and at most qG queries to the quantum
random oracle |G〉. Consider the sequence of games given in Figure 9.
Game G0. Since game G0 is the original IND-CCA game,

AdvIND-CCA
KEM (A) = |Pr[GA

0 ⇒ 1]− 1/2| .

Game G1. In game G1, we enforce that no decryption failure will occur: For fixed (pk, sk) and message
m ∈M, let

Rbad(pk, sk,m) := {r ∈ R | Dec(sk,Enc(pk,m; r)) 6= m}

denote the set of “bad” randomness. We replace random oracle G in line 05 with Gpk,sk that only samples
from good randomness. Further, define

δ(pk, sk,m) := |Rbad(pk,sk,m)|/|R| (2)

as the fraction of bad randomness, and δ(pk, sk) := maxm∈M δ(pk, sk,m). With this notation, δ =
E[maxm∈M δ(pk, sk,m)], where the expectation is taken over (pk, sk)← KG.
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GAMES G0 - G6
01 (pk, sk)← KG
02 Hr ←$ KC
03 G←$ RM �G0, G4 - G6
04 Pick 2q-wise hash f �G1 - G3
05 G := Gpk,sk �G1 - G3
06 H←$ KM �G0 - G1
07 Hq ←$ KC �G2 - G6
08 H := Hq(Enc(pk,−; G(−))) �G2 - G6
09 b ←$ F2
10 m∗ ←M
11 c∗ := Enc(pk,m∗; G(m∗)) �G0 - G4
12 c∗ ← Enc(pk) �G5 - G6
13 K∗0 := H(m∗) �G0 - G1
14 K∗0 := Hq(c∗) �G2 - G5
15 K∗0 ←$ K �G6
16 K∗1 ←$ K
17 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
18 return Jb′ = bK

Decaps(c 6= c∗) �G0 - G2

19 m′ := Dec(sk, c)
20 if m′ = ⊥

or Enc(pk,m′; G(m′)) 6= c
21 return K := Hr(c)
22 else
23 return K := H(m′) �G0 - G1
24 return K := Hq(c) �G2 - G6

Decaps(c 6= c∗) �G3 - G6
25 return K := Hq(c)

Gpk,sk(m)
26 r := Sample(R \Rbad(pk, sk,m); f (m))
27 return r

Figure 11: Games G0 - G6 for the proof of Theorem 1. f (lines 04 and 26) is an internal 2q-wise
independent hash function, where q := qG + qH + 2 · qD + 1, that cannot be accessed by A. Sample(Y )
is a probabilistic algorithm that returns a uniformly distributed y ←$ Y . Sample(Y ; f (m)) denotes the
deterministic execution of Sample(Y ) using explicitly given randomness f (m).

To upper bound |Pr[GA
0 = 1] − Pr[GA

1 = 1]|, we construct an (unbounded, quantum) adversary B
against the generic distinguishing problem with bounded probabilities GDPB (see Lemma 4) in Figure 10,
issuing qG + qD + 1 queries to |F〉. B draws a key pair (pk, sk)← KG and computes the parameters λ(m)
of the generic distinguishing problem as λ(m) := δ(pk, sk,m), which are bounded by λ := δ(pk, sk). To
analyze B, we first fix (pk, sk). For each m ∈M, by the definition of game GDPBλ,1, the random variable
F(m) is bernoulli-distributed according to Bλ(m) = Bδ(pk,sk,m). By construction, the random variable
G(m) defined in line 19 if F(m) = 0 and in line 21 if F(m) = 1 is uniformly distributed in R. Therefore, G
is a (quantum) random oracle, and B|F〉 perfectly simulates game G0 if executed in game GDPBλ,1. Since
B|F〉 also perfectly simulates game G1 if executed in game GDPBλ,0,

|Pr[GA
0 = 1]− Pr[GA

1 = 1]| = |Pr[GDPBB
λ,1 = 1]− Pr[GDPBB

λ,0 = 1]| ,

and according to Lemma 4,

|Pr[GDPBB
λ,1 = 1]− Pr[GDPBB

λ,0 = 1]| ≤ 8 · (qG + qD + 2)2 · δ .

Game G2. In game G2, we prepare getting rid of the secret key by plugging in encryption into random
oracle H: Instead of drawing H←$ KM, we draw Hq ←$ KC in line 07 and define H := Hq(Enc(pk,−; G(−)))
in line 08. For consistency, we also change key K∗0 in line 14 from letting K∗0 := H(m∗) to letting
K∗0 := Hq(c∗), which is a purely conceptual change since c∗ = Enc(pk,m∗; G(m∗)). Additionally, we make
the change of H explicit in oracle Decaps, i.e., we change oracle Decaps in line 24 such that it returns
K := Hq(c) whenever Enc(pk,m′; G(m′)) = c. Since G only samples from good randomness, encryption is
rendered perfectly correct and hence, injective. Since encryption is injective, H still is uniformly random.
Furthermore, since we only change Decaps for ciphertexts c where c = Enc(pk,m′; G(m′)), we maintain
consistency of H and Decaps. In conclusion, A’s view is identical in both games and

Pr[GA
1 = 1] = Pr[GA

2 = 1] .

Game G3. In game G3, we change oracle Decaps such that it always returns K := Hq(c), as opposed
to returning K := Hr(c) as in game G2 whenever decryption or reencryption fails (see line 21). We argue
that this change does not affect A’s view: If there exists no message m such that c = Enc(pk,m; G(m)),
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B1 = B′1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

B|Hr〉,|H〉,|F〉
2

05 Pick 2q-wise hash f
06 b ←$ F2
07 m∗ ←M
08 c∗ := Enc(pk,m∗; G(m∗))
09 K∗0 := H(m∗)
10 K∗1 ←$ K
11 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
12 return Jb′ = bK

B′2
|Hr〉,|Hq〉,|F〉

13 Pick 2q-wise hash f
14 H := Hq(Enc(pk,−; G(−)))
15 b ←$ F2
16 m∗ ←M
17 c∗ := Enc(pk,m∗; G(m∗))
18 K∗0 := Hq(c∗)
19 K∗1 ←$ K
20 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
21 return Jb′ = bK

Decaps(c 6= c∗) �Adversary B
22 m′ := Dec′(sk, c)
23 if m′ = ⊥

or Enc(pk,m′; G(m′)) 6= c
24 return K := Hr(c)
25 else return K := H(m′)

Decaps(c 6= c∗) �Adversary B′
26 return K := Hq(c)

G(m)
27 if F(m) = 0
28 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
29 else
30 G(m) := Sample(Rbad(pk, sk,m); f (m))
31 return G(m)

Figure 12: Adversaries B and B′ executed in game GDPBδ(pk,sk) with access to |F〉 (and additional oracles
|Hr〉 and |H〉 or |Hq〉, respectively) for the proof of Theorem 1. Parameters δ(pk, sk,m) are defined in
Equation (5). Function f (lines 19 and 21) is an internal 2q-wise independent hash function, where
q := qG + qD + 1 for B, and qG + qH + 1 for B′, that cannot be accessed by A.

oracle Decaps(c) returns a random value (that can not possibly correlate to any random oracle query
to |H〉) in both games, therefore Decaps(c) is a random value independent of all other input to A in
both games. And if there exists some message m such that c = Enc(pk,m; G(m)), Decaps(c) would have
returned Hq(c) in both games, anyway: Since G(m) ∈ R \ Rbad(pk, sk,m) for all messages m, it holds
that m′ := Dec(sk, c) = m 6= ⊥ and that Enc(pk,m′; G(m′)) = c. Hence, A’s view is identical in both
games and

Pr[GA
2 = 1] = Pr[GA

3 = 1] .

Game G4. In game G4, we switch back to using G←$ RM instead of Gpk,sk . With the same reasoning
as for the gamehop from game G0 to G1,

|Pr[GA
3 = 1]− Pr[GA

4 = 1]| = |Pr[GDPBB′
λ,1 = 1]− Pr[GDPBB′

λ,0 = 1]|
≤ 8 · (qG + qH + 2)2 · δ ,

where adversary B′ (that issues at most issuing qG + qH + 1 queries to |F〉) is also given in Figure 10.
So far, we established

AdvIND-CCA
KEM (A) ≤ |Pr[GA

4 ⇒ 1]− 1/2|+ 8 · (2 · qG + qH + qD + 4)2 · δ .

The rest of the proof proceeds similiar to the proof in [40], aside from the fact that we consider the
particular scheme T[PKE,G] instead of a generic encryption scheme that is deterministically DS.
Game G5. In game G5, the challenge ciphertext c∗ gets decoupled from message m∗ by sampling
c∗ ← Enc(pk) in line 12 instead of letting c∗ := Enc(pk,m∗; G(m∗)). Consider the adversary CDS against
the disjoint simulatability of T[PKE,G] given in Figure 11. Since CDS perfectly simulates game G4 if run

16



with deterministic encryption c∗ := Enc(pk,m∗; G(m∗)) of a random message m∗, and game G5 if run
with a fake ciphertext,

|Pr[GA
4 = 1]− Pr[GA

5 = 1]| = AdvDS
T[PKE,G](CDS), ,

and according to Lemma 1, there exist an adversary BDS and an adversary BIND with roughly the same
running time such that

AdvDS
T[PKE,G](CDS) ≤AdvDS

PKE(BDS) + 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE (BIND) + 4(qG + qH)2

|M|
.

CDS
|G〉,|Hr〉|Hq〉(pk, c∗)

01 b ←$ F2
02 K∗0 := Hq(c∗)
03 K∗1 ←$ K
04 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
05 return Jb′ = bK

Decaps(c 6= c∗)
06 return K := Hq(c)

Figure 13: Adversary CDS (with access to additional oracles |Hr〉 and |Hq〉) against the disjoint simulatability
of T[PKE,G] for the proof of Theorem 1.

Game G6. In game G6, the game is changed in line 15 such that it always uses a randomly picked
challenge key. Since both K∗0 and K∗1 are independent of all other input to A in game G6,

Pr[GA
6 ⇒ 1] = 1/2 .

It remains to upper bound |Pr[GA
5 = 1]− Pr[GA

6 = 1]|. To this end, it is sufficient to upper bound the
probability that any of the queries to |Hq〉 could possibly contain c∗. Each query to |Hq〉 is either a classical
query, triggered by A querying Decaps on some ciphertext c, or a query in superposition, triggered by A
querying |H〉. Since queries to Decaps on c∗ are explicitly forbidden, the only possibility would be one of
A’s queries to |H〉. A’s queries to |H〉 trigger queries to |Hq〉 that are of the form

∑
m αm|Enc(pk,m; G(m))〉.

They cannot contain c∗ unless there exists some message m such that Enc(pk,m; G(m)) = c∗. Since we
assume PKE to be εdis-disjoint,

|Pr[GA
5 = 1]− Pr[GA

6 = 1]| ≤ εdis .

3.2.1 CCA security wihout disjoint simulatability.

The following theorem establishes that plugging in transformation Punc before using FO 6⊥m achieves
IND-CCA security from IND-CPA security alone, as long as PKE is γ-spread (see Definition 3).

Theorem 3.3 (CCA security of FO 6⊥m ◦ Punc.). Assume PKE0 to be δ-correct and γ-spread, and let
m̂ ∈M. Let KEM := FO 6⊥m[Punc[PKE, m̂],G,H]. Then, for any (quantum) IND-CCA adversary A issuing
at most qD (classical) queries to the decapsulation oracle Decaps, at most qH quantum queries to |H〉,
and at most qG quantum queries to |G〉, there exist (quantum) CPA adversaries B1 and B2 against PKE0
such that

AdvIND-CCA
KEM (A) ≤ (8 · (3 · qG + 2 · qH + qD + 6)2 + 1) · δ + AdvIND-CPA

PKE0
(B1)

+ 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE0
(B2) + 4(qG + qH)2

|M| − 1 + 2−γ ,

and the running time of B1 and B2 is about that of A.

Since the proof is somewhat similar to the proof of Theorem 1, it is outsourced to Appendix D.
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4 Two-Message Authenticated Key Exchange
A two-message key exchange protocol AKE = (KG, Init,Derinit,Derresp) consists of four algorithms. Given
the security parameter, the key generation algorithm KG outputs a key pair (pk, sk). The initialization
algorithm Init, on input sk and pk ′, outputs a message m and a state st. The responder’s derivation
algorithm Derresp, on input sk ′, pk and m, outputs a key K , and also a message m′. The initiator’s
derivation algorithm Derinit, on input sk, pk ′, m and st, outputs a key K .
Running a Key Exchange Protocol between two Parties. To run a two-message key exchange
protocol, the algorithms KG, Init, Derinit, and Derresp are executed in an interactive manner between two
parties Pi and Pj with key pairs (ski , pki), (skj , pkj)← KG. To execute the protocol, the parties call the
algorithms in the following way:

1. Pi computes (M , st)← Init(ski , pkj) and sends M to Pj .

2. Pj computes (M ′,K ′)← Derresp(skj , pki ,M ) and sends M ′ to Pi .

3. Pi computes K := Derinit(ski , pkj ,M ′, st).

Party Pi (pki , ski) Party Pj (pkj , skj)

(M , st)← Init(ski , pkj)

(M ′,K ′)← Derresp(skj , pki ,M )
K := Derinit(ski , pkj ,M ′, st)

M

M ′

Note that in contrast to the holder Pi , the peer Pj will not be required to save any (secret) state
information besides the key K ′.
Our Security Model. We consider N parties P1, . . . ,PN , each holding a key pair (ski , pki) and possibly
having several sessions at once. The sessions run the protocol with access to the party’s long-term key
material, while also having their own set of (session-specific) local variables. The local variables of each
session, identified by the integer sID, are the following:

1. An integer holder ∈ [N ] that points to the party running the session.

2. An integer peer ∈ [N ] that points to the party the session is communicating with.

3. A string sent that holds the message sent by the session.

4. A string received that holds the message received by the session.

5. A string st that holds (secret) internal state values and intermediary results required by the session.

6. A string role that holds the information whether the session’s key was derived by Derinit or Derresp.

7. The session key K .

In our security model, the adversary A is given black-box access to the set of processes Init, Derresp
and Derinit that execute the AKE algorithms. To model the attacker’s control of the network, we allow
A to establish new sessions via EST, to call either INIT and DERinit or DERresp, each at most once
per session (see Figure 12, page 21) and to relay their outputs faithfully as well as modifying the data
on transit. Moreover, the attacker is additionally granted queries to reveal both secret process data,
namely using REVEAL and REV-STATE queries, and parties’ secret keys using CORRUPT queries,
see Figure 13, page 22. After choosing a test session, either the session’s key or a uniformly random key
is returned. The attacker’s task is to distinguish these two cases, to this end it outputs a bit.
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GAME IND-AAb
01 cnt := 0 �session counter
02 sID∗ := 0 �test session’s id
03 for n ∈ [N ]
04 (pkn , skn)← KG
05 b′ ← AO(pk1, · · · , pkN )
06 if Trivial(sID∗)
07 return 0
08 return b′

EST((i, j) ∈ [N ]2)
09 cnt ++
10 holder[cnt] := i
11 peer[cnt] := j
12 return cnt

DERresp(sID,M )
13 if holder[sID] = ⊥
14 return ⊥ �Session not established
15 if sKey[sID] 6= ⊥ return ⊥ �no re-use
16 if role[sID] = "initiator" return ⊥
17 role[sID] := "responder"
18 (j, i) := (holder[sID],peer[sID])
19 (M ′,K ′)← Derresp(skj , pki ,M )
20 sKey[sID] := K ′
21 (received[sID], sent[sID]) := (M ,M ′)
22 return M ′

GAME IND-StAAb
23 cnt := 0 �session counter
24 sID∗ := 0 �test session’s id
25 for n ∈ [N ]
26 (pkn , skn)← KG
27 b′ ← AO(pk1, · · · , pkN )
28 if ATTACK(sID∗)
29 return 0
30 return b′

INIT(sID)
31 if holder[sID] = ⊥
32 return ⊥ �Session not established
33 if sent[sID] 6= ⊥ return ⊥ �no re-use
34 role[sID] := "initiator"
35 (i, j) := (holder[sID],peer[sID])
36 (M , st)← Init(ski , pkj)
37 (sent[sID], state[sID]) := (M , st)
38 return M

DERinit(sID,M ′)
39 if holder[sID] = ⊥ or state[sID] = ⊥
40 return ⊥ �Session not initalized
41 if sKey[sID] 6= ⊥ return ⊥ �no re-use
42 (i, j) := (holder[sID], peer[sID])
43 st := state[sID]
44 sKey[sID] := Derinit(ski , pkj ,M ′, st)
45 received[sID] := M ′

Figure 14: Games IND-AAb and IND-StAAb for AKE, where b ∈ F2. The collection of oracles O used
in lines 05 and 27 is defined by O := {EST, INIT, DERresp, DERinit, REVEAL, REV-STATE,
CORRUPT,TEST}. Oracles REVEAL, REV-STATE, CORRUPT, and TEST are given in Fig-
ure 13. Game IND-StAAb only differs from IND-AAb in ruling out one more kind of attack: A’s bit b′ does
not count in games IND-AAb if helper procedure Trivial returns true, see line 06. In games IND-StAAb,
A’s bit b′ does not count already if procedure ATTACK (that includes Trivial and additionally checks for
state-attacks on the test session) returns true, see line 28.

Definition 4.1 (Key Indistinguishability of AKE). We define games IND-AAb and IND-StAAb for b ∈ F2
as in Figure 12 and Figure 13. We define the IND-AA advantage function of an adversary A against AKE
as

AdvIND-AA
AKE (A) := |Pr[IND-AAA

1 ⇒ 1]− Pr[IND-AAA
0 ⇒ 1]| ,

and the IND-StAA advantage function of an adversary A against AKE excluding test-state-attacks as

AdvIND-StAA
AKE (A) := |Pr[IND-StAAA

1 ⇒ 1]− Pr[IND-StAAA
0 ⇒ 1]| .

We call a session completed iff sKey[sID] 6= ⊥, which implies that either DERresp(sID,m) or
DERinit(sID,m) was queried for some message m. We say that a completed session sID was recre-
ated iff there exists a session sID′ 6= sID such that (holder[sID],peer[sID]) = (holder[sID′],peer[sID′]),
role[sID] = role[sID′], sent[sID] = sent[sID′], received[sID] = received[sID′] and state[sID] = state[sID′].
We say that two completed sessions sID1 and sID2 match iff (holder[sID1],peer[sID1]) = (peer[sID2],
holder[sID2]), (sent[sID1], received[sID1]) = (received[sID2], sent[sID2]), and role[sID1] 6= role[sID2]. We
say that A tampered with the test session sID∗ if at the end of the security game, there exists no matching
session for sID∗.

Helper procedure Trivial (Figure 13) is used in all games to exclude the possibility of trivial attacks,
and helper procedure ATTACK (also Figure 13) is defined in games IND-StAAb to exclude the possibility
of trivial attacks as well as one nontrivial attack that we will discuss below. During execution of Trivial,
the game creates list M(sID∗) of all matching sessions that were executed throughout the game (see line
55), and A’s output bit b′ only counts in games IND-AAb only if Trivial returns false, i.e., if test session
sID∗ was completed and all of the following conditions hold:
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Trivial(sID∗) �helper procedure to exclude trivial attacks
46 if sKey[sID∗] = ⊥ return true �test session was never completed
47 v := false
48 (i, j) := (holder[sID∗], peer[sID∗])
49 if revealed[sID∗] return true �A trivially learned the test session’s key
50 if corrupted[i] and revState[sID∗]
51 return true �A may simply compute Der(ski , pkj , received[sID∗], state[sID∗])
52 M(sID∗) := ∅ �create list of matching sessions
53 for 1 ≤ ptr ≤ cnt
54 if (sent[ptr], received[ptr]) = (received[sID∗], sent[sID∗])

and (holder[ptr],peer[ptr]) = (j, i) and role[ptr] 6= role[sID∗]
55 M(sID∗) := M(sID∗) ∪ {ptr} �session matches
56 if revealed[ptr] v := true �A trivially learned the test session’s key via matching session
57 if corrupted[j] and revState[ptr]
58 v := true �A may simply compute Der(skj , pki , received[ptr], state[ptr])
59 if |M(sID∗)| > 1 return false �not appropr. random.
60 if v = true return true
61 if M(sID∗) = ∅ and corrupted[j] return true �A tampered with test session, knowing skj
62 return false

ATTACK(sID∗) �helper procedure to exclude trivial attacks as well as state-attacks
63 if Trivial(sID∗) return true �trivial attack
64 if M(sID∗) = ∅ and revState[sID∗] return true �state-attack
65 return false

REVEAL(sID)
66 if sKey[sID] = ⊥ return ⊥
67 revealed[sID] := true
68 return sKey[sID]

CORRUPT(i ∈ [N ])
69 if corrupted[i] return ⊥
70 corrupted[i] := true
71 return ski

REV-STATE(sID)
72 if state[sID] = ⊥ return ⊥
73 revState[sID] := true
74 return state[sID]

TEST(sID) �only one query
75 sID∗ := sID
76 if sKey[sID∗] = ⊥
77 return ⊥
78 K∗0 := sKey[sID∗]
79 K∗1 ←$ K
80 return K∗b

Figure 15: Helper procedures Trivial and ATTACK and oracles REVEAL, REV-STATE, CORRUPT,
and TEST of games IND-AA and IND-StAA defined in Figure 12.

1. A did not obtain the key of sID∗ by querying REVEAL on sID∗ or any matching session, see lines
49 and 56.

2. A did not obtain both the holder i’s secret key ski and the test session’s internal state, see line
51. We enforce that ¬corrupted[i] or ¬revState[sID∗] since otherwise, A is allowed to obtain all
information required to trivially compute Der(ski , pkj , received[sID∗], state[sID∗]).

3. A did not obtain both the peer’s secret key skj and the internal state of any matching session, see
line 58. We enforce that ¬corrupted[j] or ¬revState[sID] for all sID s. th. sID ∈M(sID∗) for the
same reason as discussed in 2: A could trivially compute Der(skj , pki , received[sID], state[sID]) for
some matching session sID.

4. A did not both tamper with the test session and obtain the peer j’s secret key skj , see line 61. We
enforce that M(sID∗) 6= ∅ or ¬corrupted[j] to exclude the following trivial attack: A could learn
the peer’s secret key skj via query CORRUPT[j] and either

- receive a message M by querying INIT on sID∗, compute (M ′,K ′) ← Derresp(skj , pki ,M )
without having to call DERresp, and then call DERinit(sID∗,M ′), thereby ensuring that
sKey[sID∗] = K ′,

- or compute (M , st) ← Init(skj , pki) without having to call INIT, receive a message M ′ by
querying DERresp(sID∗,M ), and trivially compute Derinit(skj , pki ,M ′, st).

A’s output bit b′ only counts in games IND-StAAb if ATTACK returns false, i.e., if both of the
following conditions hold:
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1. Trivial returns false

2. A did not both tamper with the test session and obtain its internal state, see line 64. We enforce
that M(sID∗) 6= ∅ or ¬revState[sID∗] in game IND-StAA for the following reason: In an active
attack, given that the test session’s internal state got leaked, it is possible to choose a message
M ′ such that the result of algorithm Derinit(ski , pkj ,M ′, st) can be computed . For some protocols,
this attack is possible even without knowledge of any of the static secret keys. In this setting, an
adversary might query INIT on sID∗, learn the internal state st by querying REV-STATE on
sID∗, choose its own message M ′ without a call to DERresp and finally call DERinit(sID∗,M ′),
thereby being enabled to anticipate the resulting key.

5 Transformation from PKE to AKE
Transformation FOAKE constructs a IND-StAA-secure AKE protocol from a PKE scheme that is both DS and
IND-CPA secure. If we plug in transformation Punc before applying FOAKE, we achieve IND-StAA-security
from CPA security alone.
The Construction. To a PKE scheme PKE = (KG,Enc,Dec) with message space M, and random
oracles G and H, we associate

AKE = FOAKE[PKE,G,H] = (KG, Init,Derresp,Derinit) .

The algorithms of AKE are defined in Figure 14.

Init(ski , pkj):
01 mj ←$ M
02 cj := Enc(pkj ,mj ; G(mj))
03 (s̃k, p̃k)← KG
04 M := (p̃k, cj)
05 st := (s̃k,mj ,M )
06 return (M , st)

Derresp(skj , pki ,M ):
07 Parse (p̃k, cj) := M
08 mi , m̃ ←$ M
09 ci := Enc(pki ,mi ; G(mi))
10 c̃ := Enc(p̃k, m̃; G(m̃))
11 M ′ := (ci , c̃)
12 m′j := Dec(skj , cj)
13 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
14 K ′ := H′R(mi , cj , m̃, i, j,M ,M ′)
15 else
16 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
17 return (M ′,K ′)

Derinit(ski , pkj ,M ′, st):
18 Parse (ci , c̃) := M ′
19 Parse (s̃k,mj ,M := (p̃k, cj)) := st
20 m′i := Dec(ski , ci)
21 m̃′ := Dec(s̃k, c̃)
22 if m′i = ⊥

or ci 6= Enc(pki ,m′i ; G(m′i))
23 if m̃′ = ⊥
24 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
25 else
26 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
27 else if m̃′ = ⊥
28 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
29 else K := H(m′i ,mj , m̃′, i, j,M ,M ′)
30 return K

Figure 16: IND-StAA secure AKE protocol AKE = FOAKE[PKE,G,H]. Oracles H′R and H′L1, H′L2 and H′L3
are used to generate random values whenever reencryption fails. (For encryption, this strategy is called
implicit reject Amongst others, it is used in [27], [40] and [31].) For simplicity of the proof, H′R and H′L1,
H′L2 and H′L3 are internal random oracles that cannot be accessed directly. For implementation, it would
be sufficient to use a PRF.

IND-StAA Security of FOAKE. The following theorem establishes that IND-StAA security of AKE
reduces to DS and IND-CPA security of PKE (see Definition 6).

Theorem 5.1 (PKE DS + IND-CPA⇒ AKE IND-StAA). Assume PKE to be δ-correct, and to come with
a sampling algorithm Enc such that it is ε-disjoint. Then, for any IND-StAA adversary B that establishes S
sessions and issues at most qR (classical) queries to REVEAL, at most qG (quantum) queries to random
oracle G and at most qH (quantum) queries to random oracle H, there exists an adversary ADS against the
disjoint simulatability of T[PKE,G] issuing at most qG + 2qH + 3S queries to G such that

AdvIND-StAA
AKE (B) ≤ 2 · S · (S + 3 ·N ) ·AdvDS

T[PKE,G](ADS) + 32 · (S + 3 ·N ) · (qG + 2qH + 4S)2 · δ
+ 4 · S · (S + N ) · εdis + S2 · (N + 1) · µ(KG) · µ(Enc) + 2 · S2 · µ(KG) ,
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and the running time of ADS is about that of B. Due to Lemma 1, there exist adversaries CDS and CIND
against PKE such that

AdvIND-StAA
AKE (B) ≤ 2 · S · (S + 3 ·N ) ·AdvDS

PKE(CDS)

+ 4 · S · (S + 3 ·N ) ·

√
(qG + 2qH + 3S) ·AdvIND-CPA

PKE (CIND) + 4(qG + 2qH + 3S)2

|M|
+ 32 · (S + 3 ·N ) · (qG + 2qH + 3S)2 · δ + 4 · S · (S + N ) · εdis

+ S2 · (N + 1) · µ(KG) · µ(Enc) + 2 · S2 · µ(KG) ,

and the running times of CDS and CIND is about that of B.

Proof Sketch. To prove IND-StAA security of FOAKE[PKE,G,H], we consider an adversary B with
black-box access to the protocols’ algorithms and to oracles that reveal keys of completed sessions, internal
states, and long-term secret keys of participating parties as specified in game IND-StAA (see Figure 12).
Intuitively, B will always be able to obtain all-but-one of the three secret messages mi , mj and m̃ that
are picked during execution of the test session between Pi and Pj :

1. We first consider the case that B executed the test session honestly. Note that on the right-hand
side of the protocol there exists no state. We assume that B has learned the secret key of party
Pj and hence knows mj . Additionally, B could either learn the secret key of party Pi and thereby,
compute mi , or the state on the left-hand side of the protocol including s̃k, and thereby, compute
m̃, but not both.

2. In the case that B did not execute the test session honestly, B is not only forbidden to obtain the
long-term secret key of the test session’s peer, but also to obtain the test session’s state due to our
restriction in game IND-StAA. Given that B modified the exchanged messages, the test session’s
side is decoupled from the other side. If the test session is on the right-hand side, messages mj and
m̃ can be obtained, but message mi can not because we forbid to learn peer i’s secret key. If the
test session is on the left-hand side, messages mi and m̃ can be obtained, but message mj can not
because we forbid both to learn the test session’s state and to learn peer j’s secret key.

In every possible scenario of game IND-StAA, at least one message can not be obtained trivially and is still
protected by PKE’s IND-CPA security, and the respective ciphertext can be replaced with fake encryptions
due to PKE’s disjoint simulatability. Consequently, the session key K is pseudorandom. So far we have
ignored the fact that B has access to an oracle that reveals the keys of completed sessions. This implicitly
provides B a decryption oracle with respect to the secret keys ski and skj . In our proof, we want to make
use of the technique from [40] to simulate the decryption oracles by patching encryption into the random
oracle H. In order to extend their technique to PKE schemes with non-perfect correctness, during the
security proof we also need to patch random oracle G in a way that (Enc′,Dec′) (relative to the patched
G) provides perfect correctness. This strategy is the AKE analogue to the technique used in our analysis
of the Fujisaki-Okamoto transformation given in Section 3, in particular, during our proof of Theorem 1.
The latter also explains why our transformation does not work with any deterministic encryption scheme,
but only with the ones that are derived by using transformation T. For more details on this issue, we
refer to Section 3.2.

Proof. Let B be an adversary against the IND-StAA security of AKE, establishing S sessions and issuing
at most qR (classical) queries to REVEAL, at most qG (quantum) queries to random oracle G and at
most qH (quantum) queries to random oracle H. We will first examine the case that B executed the test
session honestly (i.e., the case that M(sID∗) 6= ∅, where M(sID∗) is defined in Figure 13 , line 55, as
the list of matching sessions that were executed throughout game IND-StAA), in the second part we will
examine the case that B tampered with the test session (i.e., the case that M(sID∗) = ∅).

|Pr[IND-StAAB
1 ⇒ 1]− Pr[IND-StAAB

0 ⇒ 1]|
≤ |Pr[IND-StAAB

1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB
0 ⇒ 1 ∧M(sID∗) 6= ∅]|

+ |Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]| .
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Lemma 5.2 There exists an adversary A such that

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|
≤ 2 · S · (S + N ) ·AdvDS

T[PKE,G](A) + 32 · (S + N ) · (qG + 2qH + 3S + 1)2 · δ
+ 4 · S2 · εdis + S2 · (N + 1) · µ(KG) · µ(Enc) + 2 · S2 · µ(KG) ,

and the running time of A is about that of B.

The upper bound is proven in appendix E. Intuition is as follows: While B might have obtained the
secret key of the initialising session’s peer in both cases, B might not both reveal its internal state and
corrupt its holder, hence either the message that belongs to its holder (i.e., m∗i ) or the message that
belongs to its ephemeral key (i.e., m̃∗) are still protected by PKE’s IND-CPA security, and the respective
ciphertext can hence be replaced with a fake ciphertext (due to T[PKE,G]’s disjoint simulatability).

Lemma 5.3 There exists an adversary A′ such that

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]|
≤ 4 · SN ·AdvDS

T[PKE,G](A′) + 64 ·N · (qG + qH + 3S)2 · δ + 4 · SN εdis ,

and the running time of A is about that of B.

The upper bound is proven in appendix F. The proof is essentially the same and only differs in the
following way: since no matching sessions exists, B is neither allowed to reveal the test session’s state nor
to corrupt its peer. Depending on whether role[sID∗] = "initiator" or role[sID∗] = "responder", we can
rely on the secrecy of either m∗i or m∗j .

Folding A and A′ into one adversary ADS, we obtain

|Pr[IND-StAAB
1 ⇒ 1]− Pr[IND-StAAB

0 ⇒ 1]|
≤ 2 · S · (S + 3 ·N ) ·AdvDS

T[PKE,G](ADS) + 32 · (S + 3 ·N ) · (qG + 2qH + 4S)2 · δ
+ 4 · S · (S + N ) · εdis + S2 · (N + 1) · µ(KG) · µ(Enc) + 2 · S2 · µ(KG) .

5.1 IND-StAA security wihout disjoint simulatability
The following theorem establishes that plugging in transformation Punc before using FOAKE achieves
IND-StAA security from IND-CPA security alone, as long as PKE is γ-spread.

Theorem 5.4 (IND-StAA security of FOAKE ◦ Punc.). Assume PKE0 to be δ-correct and γ-spread, and
let m̂ ∈M. Let AKE := FOAKE[Punc[PKE, m̂],G,H]. Then, for any IND-StAA adversary B that establishes
S sessions and issues at most qR (classical) queries to REVEAL, at most qG (quantum) queries to random
oracle G and at most qH (quantum) queries to random oracle H, there exist adversaries B1 and B2 such
that

AdvIND-StAA
AKE (B) ≤ 2S · (S + 3 ·N ) ·

(
AdvIND-CPA

PKE0
(B1) + 2

√
q ·AdvIND-CPA

PKE0
(B2)

)
+ (S + 3N ) ·

(
8q2 · (S + 4) + S

)
· δ + S · (S + 3N ) · 2−γ

+ S(8q · (S + 3N ) + S2)√
|M| − 1

+ S · (3S2 + 2) · µ(KG) ,

and the running time of B1 and B2 is about that of B.

Since the proof is somewhat similar to the proof of Theorem 3, it is outsourced to Appendix G.
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A Problems in and comparison with the proofs of [31].
In this section we will discuss some problems we encountered in the proofs of [31]. We refer to its current
eprint version [32]. Due to the structure of the non-modular proofs of [32, Thms. 1 and 2], the original
OW2H lemma [44, Lem. 31: “One-way to hiding”] cannot be used to decouple the challenge plaintext from
the adversary’s view since random oracles H and G are not independent of each other. As a consequence,
a new lemma called “One-way to hiding with redundant oracle” is introduced (see [32, Lem. 3]). It is
applied in the proof of Theorem 1 (to upper bound the distinguishing advantage between games 5 and
6). Unfortunately, we were not able to verify that Lemma 3 can be applied during the proof: In lemma
3, the assumption is made that O(x) is uniformly distributed. To justify the game-hop from game 5 to
game 6, both G(m∗) as well as H(c∗) have to be replaced with random values. To this end, the lemma’s
oracle O is identified with G× H1(Enc(−; G(−))), and x with m∗. We claim that with this identification,
O(x) = (G(m∗),H1(Enc(m∗; G(m∗))) can not be seen as uniformly random since encryption might not
be injective. Intuitively, either G can be kept a random oracle, but then the second part of O is not,
or random oracle G could be kept sampling only good randomness (as before game G5), rendering the
second part of O random, but then the first part is not. Either way, it is unclear why Lemma 3 can be
applied.9 Intuitively, the problem is that G and H are intertwined. During our proof, we circumvent
this difficulty by following [40]’s modular approach as far as we managed to: In [40], the original OW2H
lemma only needs to be applied for random oracle G (to prove that PKE′ is deterministically DS, as
reflected in Figure 1). Once deterministic DS is achieved, oracle H does not have to be reprogrammed
(instead, a fake encryption is sampled) and hence, OW2H does not have to be applied again.

To explain in which sense we followed the modular approach of [40] as far as we managed to, we will
point out some issues regarding the security claim for SXY10 [32, Thm. 6] in an attempt to illustrate
the difficulties in proving SXY secure if the underlying scheme comes with non-perfect correctness: [32,

9 It might be possible to apply Lemma 3 twice, once for G (while it is random) and once for H1(Enc(−; G(−))) (after
switching to "good" G). But that would lead to structurally different reductions, and furthermore, to nested square roots.
While we also cannot exclude the possibility that this issue could be resolved by applying [3, Thm. 1: “Semi-classical O2H”],
this approach would also result in structurally different reductions and would require a stronger security assumption for the
underlying scheme.

10Recall that while the KEM discussed in theorem 6 is called U6⊥m , it differs from the original transformation U6⊥m since it
reencrypts.
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Thm. 6] states that SXY turns any PKE scheme that is oneway-secure into a KEM that is IND-CCA
secure, with the correctness term δ being included into the upper bound as a summand 4qE

√
δ, where qE

is said to denote the number of queries to an encryption oracle.
The first drawback is that for deterministic schemes, the correctness term δ defined in [27] and used

in [32, Thm. 6] reduces to the probability that for the sampled key pair, at least one message exists that
inhibits decryption failure, i.e., the probability that the scheme is not perfectly correct for the sampled
key pair. With this definition, the security statements given in the theorem are not meaningful for most
lattice-based encryption schemes since in most cases, there exist some messages inducing decryption
failure for each key pair, though this fraction might be small. Unfortunately, it is not straightforward
to reasonably define correctness for deterministic encryption schemes such that it fits existing proof
strategies, but also is being met by lattice-based schemes at the same time. We also would like to mention
that the statement of [32, Thm. 6], in the case where the underlying scheme is DS, follows trivially (and
with a better upper bound) from [40, Thm. 4.2: “Security of SXY in the QROM”].11

Another issue is that the statement is claimed to follow directly from combining some proofs that were
given before. However, none of the mentioned proofs include an encryption oracle, and it is unclear how
this encryption oracle can be introduced such that its definition makes sense and still enables a reduction
to deal with correctness errors: Either pk is not given to the reduction that deals with correctness errors
and hence, game IND-CCA cannot be simulated, or pk is given to the reduction and hence, introducing
oracle access to the encryption oracle makes no sense. We note that the notion of IND-CCA security could
be modified such that instead of being given pk, the adversary has access to an encapsulation oracle.
This alteration could allow for a reduction, but it is straightforward that this security notion would be
strictly weaker.

The problems discussed above reflect why we weren’t able to generalize [40]’s modular analysis in a
straightforward manner: In fact, we did not manage to define correctness for deterministic encryption
schemes such that the definition bridges the gap between what is achievable by most lattice-based
schemes and what is needed to fit existing proof strategies. This difficulty is solved by resorting to a
non-modularized proof: What we show is that the KEM resulting from applying FO 6⊥m := U 6⊥m ◦ T is
IND-CCA secure in the QROM. To this end, we first prove that T[−,G] turns any suitable scheme into a
scheme that is deterministically DS, and then plug in this result into [40]’s tight security proof. When
plugging in T[−,G] into U6⊥m, we can change random oracle G during the security proof such that the
scheme is rendered perfectly correct, a necessary condition to proceed with the tight security proof.
Distinguishing G from its “perfected” version allows for a reduction to a distinguishing problem. To
generalize this strategy for any scheme, however, one would have to come up with a reduction that
distinguishes access to an encryption oracle from access to an oracle that only answers with perfect
encryptions, and as mentioned above, it might prove difficult to formalize this indistinguishability property
in a meaningful manner such that it is compatible with the standard notion of IND-CCA security. We
hope that our proofs achieve better auditability due to their at least somewhat more modular structure.

B On Comparing Security Models in Key Exchange
In the literature on key exchange one can find several widely-used game-based security models and many
variants of them. All of these models have in common that they formalize the idea that the key that is
computed by two parties should be indistinguishable from random to the attacker (and thus suitable for
the application of symmetric primitives). When compared in more detail, AKE models typically differ in
two ways. The first one is the set of capabilities they conceptually grant to the attacker to reveal secret
values. In comparison to the classical works on key exchange, more recent models have extended the set
of attacker queries over the past two decades considerably. These differences are cryptographically very
meaningful. For example, a security model that allows the attacker to reveal the long-term key of the
test session is stronger than one in which such an attack is excluded. Often new attack capabilities are
given explicit names, e.g. attacks in which the attacker corrupts the secret key of the test session are
typically called key compromise impersonation (KCI) attacks [34]. The second way in which security
models differ is the concrete formalization of these attacks, i.e. the algorithmic steps the challenger
(in the context of key exchange often called execution environment) has to perform to answer attack

11One could simply insert as the first game hop an abort if the key pair renders the scheme non-perfectly correct, thereby
obtaining the upper bound δ � 4qE

√
δ.
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queries. This not only includes the final computation of responses to attack queries but also the sometimes
complicated bookkeeping operations required to keep track of which secret values have already been
revealed to exclude trivial attacks. In particular, two formalizations of the same attack concept, say KCI
attacks, may differ considerably. Unfortunately, in the literature these formalizations are often very vague
and present rather informal descriptions of how attacker queries are handled. In cryptography, such an
approach is very problematic since it lacks preciseness and allows for misinterpretations. We stress that
in cryptography unspecified subtleties can make a huge difference in the expressiveness of cryptographic
definitions, as for example, shown in[9] for definitions of chosen-ciphertext security. This work introduces
two security models. Conceptually we do not introduce new attack queries but stick to the state-of-art in
the field. We claim that our stronger model captures all attacks that are addressed in state-of-the-art
security models. Our weaker model deviates from this by excluding attacks that reveal the ephemeral
state of the test session in case it initiates the communication. Where our model excells is in the way
we rigorously formalize the security definition: we opt for a precise pseudo-code representation of the
security model as it is common in security models for cryptographic primitives. Let us go into more detail:
as detailed before our stronger model is a formalization of a very strong security notion covering many
advanced security features like weak PFS, KCI security, and security against reflection attacks [34]. Our
weaker model is equivalent to that, except that it does not allow the attacker to obtain the (temporary)
secret state that is held by initiator oracles in the time interval after the sending of the first message and
before receiving the responder’s message. (After obtaining the responder’s message the session key is
computed and all other state information may be erased.) In practice, the time interval for this attack is
relatively small compared to the lifetime of the session key. However, an active attacker may increase
it by withholding messages and delaying their arrival. We note that for practical reasons (for example
to avoid denial of service attacks), in real-world implementations message delays cannot grow too large
as otherwise the initiator will abort, assuming the receiver is not reachable. We also remark that the
responder directly computes the session key after receiving the initiator’s message, so formally no state is
computed by the responder at all.

C CCA KEMs without disjoint simulatability.
Recall that transformation Punc punctures the message space at one message and samples encryptions of
this message as fake encryptions, see Figure 4.

The following lemma states that IND-CPA security of PKE0 implies DS security of PKE. Note that
we do not specifiy εdis due to the following reason: While εdis-disjointness would follow naturally from
injective encryption, this requirement might not be met by many schemes. We shift this issue to our
proof of Theorem 2, in which we will achieve disjointness by switching G to a function that renders the
encryption scheme perfectly correct and hence, injective.

Lemma C.1 (DS security of Punc). If PKE0 is δ-correct, so is PKE. For all adversaries A, there exists
an IND-CPA adversary B such that

AdvDS
PKE(A) ≤ AdvIND-CPA

PKE0
(B) .

Proof. Let A be a DS adversary against PKE. Consider the games given in Figure 17.

AdvDS
PKE(A) = |Pr[GA ⇒ 1]− 1

2 | .

Consider the IND-CPA adversary B := (B1,B2) also given in Figure 17. Since B perfectly simulates
game G,

|Pr[GA ⇒ 1]− 1
2 | = AdvIND-CPA

PKE (B) .

The following lemma states that IND-CPA security of PKE0 translates to IND-CPA security of PKE.
Its proof is straightforward.

Lemma C.2 (IND-CPA security of Punc). For all IND-CPA adversaries A there exists an adversary B
such that

AdvIND-CPA
PKE (A) ≤ AdvIND-CPA

PKE0
(B) .
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Game G
01 pk ← KG0
02 m ←$ M0 \ {m̂}
03 b ←$ F2
04 c0 ← Enc0(pk,m)
05 c1 ← Enc0(pk, m̂)
06 b′ ← A(pk, cb)
07 return Jb′ = bK

B1(pk)
08 m ←$ M0 \ {m̂}
09 return (m, m̂)

B2(c)
10 b′ ← A(pk, c)
11 return b′

Figure 17: Game G and IND-CPA adversary B = (B1,B2) for the proof of Lemma 5.

The following corollary follows directly from Lemma 5, Lemma 6 and Lemma 1. It states that
combining T with Punc turns IND-CPA security into DS security.

Corollary C.3 (DS security of TPunc). For all adversaries A issuing at most qG queries to |G〉, there
exist two adversaries B1 and B2 such that

AdvDS
T[Punc[PKE0,m̂],G](A) ≤ AdvIND-CPA

PKE0
(B1) + 2 ·

√
qG ·AdvIND-CPA

PKE0
(B2) +

4q2
G

|M| − 1 ,

and the running time of each adversary is about that of B.

C.1 Proof of Theorem 2
The following theorem establishes that FO 6⊥m ◦ Punc turns IND-CPA security into IND-CCA security, in the
quantum random oracle model, as long as PKE is γ-spread.

Theorem (CCA security of FO 6⊥m ◦Punc.). Assume PKE0 to be δ-correct and γ-spread, and let m̂ ∈M. Let
KEM := FO 6⊥m[Punc[PKE, m̂],G,H]. Then, for any (quantum) IND-CCA adversary A issuing at most qD
(classical) queries to the decapsulation oracle Decaps, at most qH quantum queries to |H〉, and at most
qG quantum queries to |G〉, there exist (quantum) CPA adversaries B1 and B2 against PKE0 such that

AdvIND-CCA
KEM (A) ≤ (8 · (3 · qG + 2 · qH + qD + 6)2 + 1) · δ + AdvIND-CPA

PKE0
(B1)

+ 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE0
(B2) + 4(qG + qH)2

|M| − 1 + 2−γ ,

and the running time of B1 and B2 is about that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM, issuing at most qD queries to
Decaps, at most qH queries to the quantum random oracle |H〉, and at most qG queries to the quantum
random oracle |G〉. It is easy to verify that we can apply the first 5 game-hops of our proof of Theorem 1 to
FO 6⊥m [Punc[PKE, m̂],G,H]: We first enforce that no decryption failure will occur by replacing G with oracle
Gpk,sk that only samples from good randomness. Note that since PKE0 is δ-correct, so is Punc[PKE, m̂].
Afterwards, we plug encryption into the random oracle, and then change oracle Decaps such that it
always returns K := Hq(c), as opposed to implicitly rejecting whenever decryption or reencryption fails.
Both changes are not recognizable by A. After evening out the decapsulation oracle, we switch back to
using random oracle G and obtain the upper bound

AdvIND-CCA
KEM (A) ≤ |Pr[GA

4 ⇒ 1]− 1/2|+ 8 · (2 · qG + qH + qD + 4)2 · δ .

Since for PKE = Punc[PKE, m̂], our fake encryptions are encryptions of m̂, we next replace the challenge
ciphertext c∗ with an encryption of m̂. We know that there exists an adversary CDS against the disjoint
simulatability of T[Punc[PKE0, m̂],G] such that

|Pr[GA
4 = 1]− Pr[GA

5 = 1]| = AdvDS
T[Punc[PKE0,m̂],G](CDS), ,
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and according to Corollary 1, there exist CPA adversaries B1 and B2 against PKE0 such that

AdvDS
T[Punc[PKE0,m̂],G](CDS)

≤ AdvIND-CPA
PKE0

(B1) + 2 ·

√
(qG + qH) ·AdvIND-CPA

PKE0
(B2) + 4(qG + qH)2

|M| − 1 .

GAMES G5 - G8
01 (pk, sk)← KG
02 Pick 2q-wise hash f �G7 - G8
03 G := Gpk,sk �G7 - G8
04 H := Hq(Enc0(pk,−; G(−)))
05 b ←$ F2
06 m∗ ←M\ {m̂}
07 c∗ ← Enc0(pk, m̂)
08 if Enc0(pk, m̂; G(m̂)) = c∗
09 ABORT �G6 - G8
10 K∗0 := Hq(c∗) �G5 - G7
11 K∗0 ←$ K �G8
12 K∗1 ←$ K
13 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
14 return Jb′ = bK

Decaps(c 6= c∗)
15 return K := Hq(c)

Gpk,sk(m)
16 r := Sample(R \Rbad(pk, sk,m); f (m))
17 return r

Figure 18: Games G5 - G8 for the proof of Theorem 2.

To justify that we can replace the real key with random, we give a sequence of games in Figure 18.
Game G6. In game G6, we abort in line 09 if the deterministic encryption hits the challenge ciphertext,
i.e., if Enc0(pk, m̂; G(m̂) = c∗. Since G is a random oracle, and PKE is γ-spread,

|Pr[GA
5 ⇒ 1]− Pr[GA

6 ⇒ 1]| ≤ 2−γ .

Game G7. In game G7, we enforce that no decryption failure will occur once more: again, we switch to
Gpk,sk . With the same argument as for former game-hops,

|Pr[GA
6 ⇒ 1]− Pr[GA

7 ⇒ 1]| = |Pr[GDPBC
λ,1 = 1]− Pr[GDPBC

λ,0 = 1]| ,

where C is given in Figure 19, and according to Lemma 4,

|Pr[GDPBC
λ,1 = 1]− Pr[GDPBC

λ,0 = 1]| ≤ 8 · (qG + qH + 2)2 · δ .

Game G8. In game G8, the game is changed in line 15 such that it always uses a randomly picked
challenge key. Since both K∗0 and K∗1 are independent of all other input to A in game G8,

Pr[GA
8 ⇒ 1] = 1/2 .

It remains to upper bound |Pr[GA
7 ⇒ 1] − Pr[GA

8 ⇒ 1]|. To this end, it is sufficient to upper bound
the probability that any of the queries to |Hq〉 could possibly contain c∗. Each query to |Hq〉 is either
a classical query, triggered by A querying Decaps on some ciphertext c, or a query in superposition,
triggered by A querying |H〉. Since queries to Decaps on c∗ are explicitly forbidden, the only possibility
would be one of A’s queries to |H〉. A’s queries to |H〉 trigger queries to |Hq〉 that are of the form∑

m αm|Enc0(pk,m; G(m))〉. They cannot contain c∗ unless there exists some message m such that
Enc0(pk,m; G(m)) = c∗. We claim that this is impossible. First we consider the case that m = m̂: It
would be required that Enc0(pk, m̂; G(m̂)) = c∗, but the game aborts if this ever should be the case. It
remains to show that no other message could possibly encrypt to c∗ unless c∗ induced decryption failure:
Assume that there exists some message m 6= m̂ such that Enc0(pk,m; G(m)) = c∗. Since all sampled
randomness is good, it is implied that m̂ 6= m = Dec0(sk, c∗). Since c∗ was a random encryption of m̂,
the probability of c∗ inducing decryption failure can be upper bounded by δ, hence

|Pr[GA
7 ⇒ 1]− Pr[GA

8 ⇒ 1]| ≤ δ .

Collecting the probabilities yields the theorem’s upper bound.
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C1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

C2
|Hq〉,|F〉

05 (pk, sk)← KG
06 Pick 2q-wise hash f
07 H := Hq(Enc0(pk,−; G(−)))
08 b ←$ F2
09 m∗ ←M\ {m̂}
10 c∗ ← Enc0(pk, m̂)
11 if Enc0(pk, m̂; G(m̂)) = c∗
12 ABORT
13 K∗0 := Hq(c∗)
14 K∗1 ←$ K
15 b′ ← ADecaps,|H〉,|G〉(pk, c∗,K∗b )
16 return Jb′ = bK

Decaps(c 6= c∗)
17 return K := Hq(c)

G(m)
18 if F(m) = 0
19 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
20 else
21 G(m) := Sample(Rbad(pk, sk,m); f (m))
22 return G(m)

Figure 19: Adversary C executed in game GDPBδ(pk,sk) for the proof of Theorem 2.

D Proof of Lemma 2

Faithful execution of the protocol (M(sID∗) 6= ∅). Recall that we are proving an upper bound
for |Pr[IND-StAAB

1 ⇒ 1 ∧M(sID∗) 6= ∅] − Pr[IND-StAAB
0 ⇒ 1 ∧M(sID∗) 6= ∅]|. First, we will enforce

that indeed, we only need to consider the case where M(sID∗) 6= ∅, afterwards we ensure that exactly
one matching session exists. Consider the sequence of games given in Figure 20.
Games G0,b. Since for both bits b, game G0,b is the original game IND-StAAb,

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|
= |Pr[GB

0,1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[GB
0,0 ⇒ 1 ∧M(sID∗) 6= ∅]| .

Games G1,b. Both games G1,b abort in line 07 if M(sID∗) = ∅. Since Pr[GB
0,b ⇒ 1 ∧M(sID∗) 6= ∅] =

Pr[GB
1,b ⇒ 1] for both bits b,

|Pr[GB
0,1 ⇒1 ∧M(sID∗) 6= ∅]− Pr[GB

0,0 ⇒ 1 ∧M(sID∗) 6= ∅]|
= |Pr[GB

1,1 ⇒ 1]− Pr[GB
1,0 ⇒ 1]| .

Games G2,b. Both games G2,b abort in line 09 if |M(sID∗)| > 1, i.e., if more than one matching session
exists. Due to the difference lemma,

|Pr[GB
1,b ⇒ 1]− Pr[GB

2,b ⇒ 1]| ≤ Pr[Abort in line 09]

for both bits b. We claim

Pr[Abort in line 09] ≤ (S − 1) · µ(Enc) ·max{µ(Enc), µ(KG)} ≤ S · µ(Enc) .

To verify this bound, we first consider the case that role[sID∗] = "initiator": Let i∗ := holder[sID∗]
and j∗ := peer[sID∗]. To create more than one matching session, B has to establish and derive two
distinct ("responder") sessions sID 6= sID′ with holder j∗ and peer i∗ via oracle call to DERresp, such
that sent[sID] = sent[sID′]. This means that for (ci , c̃) := sent[sID] and (c′i , c̃′) := sent[sID′] it holds that
both ci = c′i and c̃ = c̃′. All ciphertexts were generated by faithfully executing DERresp, and therefore
encryptions of messages that were drawn at random. Since both p̃k and pkj∗ were also generated faithfully,

Pr[Abort in line 09 ∧ role[sID∗] = "initiator"] ≤ (S − 1) · µ(Enc)2 ≤ S · µ(Enc) .
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GAMES G0,b - G2,b
01 sID, sID∗ := 0
02 for n ∈ [N ]
03 (pkn , skn)← KG
04 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
05 if ATTACK(sID∗)
06 return 0
07 if M(sID∗) = ∅ ABORT �G1,b
08 if |M(sID∗)| > 1
09 ABORT �G2,b
10 return b′

INIT(sID)
11 if holder[sID] = ⊥

or sent[sID] 6= ⊥ return ⊥
12 role[sID] := "initiator"
13 i := holder[sID]
14 j := peer[sID]
15 mj ←$ M
16 cj := Enc(pkj ,mj ; G(mj))
17 (p̃k, s̃k)← KG
18 M := (p̃k, cj)
19 state[sID] := (s̃k,mj ,M )
20 sent[sID] := M
21 return M

DERresp(sID,M = (p̃k, cj))
22 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
23 role[sID] := "responder"
24 (j, i) := (holder[sID], peer[sID]
25 mi , m̃ ←$ M
26 ci := Enc(pki ,mi ; G(mi))
27 c̃ := Enc(p̃k, m̃; G(m̃))
28 M ′ := (ci , c̃)
29 m′j := Dec(skj , cj)
30 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
31 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
32 else K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
33 sKey[sID] := K ′
34 (received[sID], sent[sID]) := (M ,M ′)
35 return M ′

DERinit(sID,M ′ = (ci , c̃))
36 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
37 (i, j) := (holder[sID], peer[sID])
38 (s̃k,mj ,M := (p̃k, cj)) := state[sID]
39 m′i := Dec(ski , ci)
40 m̃′ := Dec(s̃k, c̃)
41 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
42 if m̃′ = ⊥
43 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
44 else
45 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
46 else if m̃′ = ⊥
47 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
48 else K := H(m′i ,mj , m̃′, i, j,M ,M ′)
49 sKey[sID] := K
50 received[sID] := M ′

Figure 20: Games G0,b - G2,b for case one of the proof of Theorem 3. Helper procedure ATTACK and
oracles TEST, EST, CORRUPT, REVEAL and REV-STATE remains as in the original IND-StAA
game (see Figures 12 and 13).

Now we consider the case that role[sID∗] = "responder": Let j∗ := holder[sID∗] and i∗ := peer[sID∗].
To create more than one matching session, B has to establish and derive two distinct sessions sID 6= sID′
with holder i∗ and peer j∗ via oracle call to INIT such that sent[sID] = sent[sID′]. This means that for
(p̃k, cj) := sent[sID] and (p̃k ′, c′j) := sent[sID′] it holds that both p̃k = p̃k ′ and cj = c′j . Both public keys
and both ciphertexts were generated by faithfully executing INIT, the latter therefore being encryptions
of messages that were drawn at random, and

Pr[Abort in line 09 ∧ role[sID∗] = "responder"] ≤ (S − 1) · µ(KG) · µ(Enc).

So far, we established

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|
≤ |Pr[GB

2,1 ⇒ 1]− Pr[GB
2,0 ⇒ 1]|+ 2 · S · µ(KG) · µ(Enc) .

Since games G2,b abort unless |M(sID∗)| = 1, we treat the matching session’s ID as unique from this
point on and denote it by sID′. Note that it is ensured that one of the two sessions was executed as a
"initiator" session, while the other was executed as a "responder" session. Let sID∗init denote the "initiator"
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session, i.e., pick sID∗init ∈ {sID∗, sID′} such that role[sID∗init] = "initiator", and let sID∗resp denote the
other session. B’s bit b′ only counts in IND-StAAb (and also in G2,b) if no trivial attack was executed:
ATTACK returns true (and hence the game returns 0) if B did obtain both the initialising session’s
internal state and the secret key of its holder. We will therefore examine

- case (¬st): the case that the initialising session’s state was not revealed, i.e., the case that
¬revState[sID∗init],

- and case (¬sk): the case that the initialising session’s holder was not corrupted, i.e., the case that
¬corrupted[holder[sID∗init]]

Since cases (¬st) and (¬sk) are mutually exclusive if the game outputs 1,

|Pr[GB
2,1 ⇒ 1]− Pr[GB

2,0 ⇒ 1]| ≤ |Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]|
+ |Pr[GB

2,1 ⇒ 1 ∧ ¬sk]− Pr[GB
2,0 ⇒ 1 ∧ ¬sk]| .

Case (¬st). We claim that there exists an adversary A¬st
DS such that

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]|
≤ 2S2 ·AdvDS

T[PKE,G](A¬st
DS ) + 32 · S · (qG + qH + 3S + 1)2 · δ

2S2 · εdis + 2S2 · µ(KG) . (3)

The proof is given in in Appendix E.1. Its main idea is that since the initialising session’s state (in
particular, ephemeral secret key s̃k∗) remains unrevealed throughout the game, at least message m̃∗ (that
was randomly picked by DERresp(sID∗resp) cannot be computed trivially. By patching encryption into the
random oracle at the argument where the ephemeral messages go in, we ensure that the game makes no
use of s̃k∗ any longer. Since PKE is DS (and hence, so is T[PKE,G], see Lemma 1), we can decouple the
test session’s key from m̃∗ by replacing c̃ = Enc(p̃k, m̃∗; G(m̃∗)) with a fake ciphertext that gets sampled
using Enc, and changing the key accordingly. Given that PKE is εdis-disjoint, the probability that this fake
ciphertext is a proper encryption can be upper bounded by εdis. Since the random oracle now comes with
patched-in encryption, εdis also serves as an upper bound for the probability that a random oracle query
actually hits the session key. Hence the key is indistinguishable from a random key with overwhelming
probability.
Case (¬sk). We claim that there exists an adversary A¬sk

DS such that

|Pr[GB
2,1 ⇒ 1∧¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]|
≤ 2 · SN ·AdvDS

T[PKE,G](A¬sk
DS ) + 32N · (qG + 2qH + 3S)2 · δ

+ 2 · SN · εdis + S2 ·N · µ(KG) · µ(Enc) . (4)

The proof of the upper bound is given in in Appendix E.2. Structurally, the proof is the same. It
differs in the following way: while in case (¬st), we made use of the fact that B does not obtain ephemeral
secret key s̃k∗ and therefore, ciphertext c̃ was indistinguishable from a fake encryption, in case (¬sk), we
can replace ciphertext ci (since holder[sID∗init] is not corrupted).

Collecting the probabilities, and folding A¬st
DS and A¬sk

DS into one adversary A, we obtain

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) 6= ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) 6= ∅]|
≤ 2 · S · (S + N ) ·AdvDS

T[PKE,G](A) + 32 · (S + N ) · (qG + 2qH + 3S + 1)2 · δ
+ 4 · S2 · εdis + S2 · (N + 1) · µ(KG) · µ(Enc) + 2 · S2 · µ(KG) ,

the upper bound given in Lemma 2.

D.1 Case (¬st) of the Proof of Lemma 2

Case (¬st) (Initialising session’s state was not revealed). Consider the sequence of games given
in Figures 21, 22 and 24: First, we will enforce that indeed, we only need to consider the case where
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¬revState[sID∗init]. Afterwards, we ensure that the game makes no use of ephemeral secret key s̃k∗ of
sID∗init any longer by patching encryption into the random oracle (in games G¬st

2,b to G¬st
10,b, see Figure 21

and22 ). Next, during execution of DERresp(sID∗resp), we replace c̃ = Enc(p̃k∗, m̃∗; G(m̃∗)) with a fake
ciphertext that gets sampled using Enc (games G¬st

11,b to G¬st
12,b, Figure 24, see line 25 ). We show that

after those changes, B’s view does not change with overwhelming probability if we change TEST such
that it always returns a random value (game G¬st

14,0, also Figure 24).

GAMES G¬st
2,b -G¬st

6,b

01 cnt, sID∗ := 0
02 s′init ←$ [S ] �G¬st

4,b -G¬st
6,b

03 for n ∈ [N ]
04 (pkn , skn)← KG
05 (p̃k∗, s̃k∗)← KG �G¬st

5,b - G¬st
6,b

06 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
07 if ATTACK(sID∗)
08 return 0
09 if |M(sID∗)| 6= 1 ABORT
10 if revState[sID∗init] ABORT �G¬st

3,b -G¬st
6,b

11 Pick sID∗init ∈ {sID∗, sID′} s. th.
role[sID∗init] = "initiator" �G¬st

4,b -G¬st
6,b

12 if sID∗init 6= s′init
13 return 0 �G¬st

4,b -G¬st
6,b

14 return b′

INIT(sID)
15 if holder[sID] = ⊥

or sent[sID] 6= ⊥ return ⊥
16 role[sID] := "initiator"
17 i := holder[sID]
18 j := peer[sID]
19 mj ←$ M
20 cj := Enc(pkj ,mj ; G(mj))
21 (p̃k, s̃k)← KG
22 if sID 6= s′init and p̃k = p̃k∗

23 ABORT �G¬st
6,b

24 if sID = s′init
25 (p̃k, s̃k) := (p̃k∗, s̃k∗) �G¬st

5,b - G¬st
6,b

26 M := (p̃k, cj)
27 state[sID] := (s̃k,mj ,M )
28 sent[sID] := M
29 return M

Figure 21: Games G¬st
2,b - G¬st

6,b for case (¬st) of the proof of Lemma 2. Oracles DERresp, DERinit
and TEST remain as in games G¬st

0,b (see Figure 20, page 39), and helper procedure ATTACK and
oracles EST, REVEAL and REV-STATE remain as in the original IND-StAA game (see Figure 12 and
Figure 13, pages 21 and 22).

Games G¬st
2,b . Since game G¬st

2,b and G2,b are the same for both bits b,

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]|

= |Pr[G¬st
2,1

B ⇒ 1 ∧ ¬st]− Pr[G¬st
2,0

B ⇒ 1 ∧ ¬st]| .

Games G¬st
3,b . To enforce that we are in the correct case, games G¬st

3,b , abort in line 10 if revState[sID∗init].
Since for both bits b it holds that Pr[GB

3,b ⇒ 1] = Pr[GB
2,b ⇒ 1 ∧ ¬st],

|Pr[G¬st
2,1

B ⇒ 1 ∧ ¬st]− Pr[G¬st
2,0

B ⇒ 1 ∧ ¬st]| = |Pr[G¬st
3,1

B ⇒ 1]− Pr[G¬st
3,0

B ⇒ 1]| .

As mentioned above, the first goal is not make use of the ephemeral secret key of sID∗init any longer.
To this end, we first have to add a guess for sID∗init.
Games G¬st

4,b . In both games G¬st
4,b , one of the sessions that get established during execution of B is

picked at random in line 02, and the games return 0 in line 13 if any other session s′init was picked than
session sID∗init. Since games G¬st

4,b and G¬st
3,b proceed identically for both bits b if s′init = sID∗init, and since

games G¬st
4,b output 0 if s′init 6= sID∗init,

Pr[G¬st
3,b

B ⇒ 1] = S · Pr[G¬st
4,b ⇒ 1] .

Games G¬st
5,b . In both games G¬st

5,b , an ephemeral key pair (p̃k∗, s̃k∗) gets drawn in line 05 and oracle
INIT is changed in line 25 such that this key pair is used as the ephemeral key pair of sID∗init. This
change is only conceptual, hence

Pr[G¬st
4,b ⇒ 1] = Pr[G¬st

5,b ⇒ 1] .
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Games G¬st
6,b . Both games G¬st

6,b , abort in line 23 if any of the initialised sessions apart from sID∗init comes
up with the same ephemeral key p̃k∗.

|Pr[G¬st
5,b ⇒ 1]− Pr[G¬st

6,b ⇒ 1]| ≤ (S − 1) · µ(KG) .

So far, we established

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]−Pr[GB

2,0 ⇒ 1 ∧ ¬st]|

≤ S · |Pr[G¬st
6,1

B ⇒ 1]− Pr[G¬st
6,0

B ⇒ 1]|+ 2S2 · µ(KG) .

Consider the sequence of games given in Figure 22. The goal is to change the game such that it can
be simulated without usage of s̃k∗. As in the KEM proof, we will first modify random oracle G such that
it renders PKE perfectly correct for key pair (p̃k∗, s̃k∗).

Game G¬st
7,b . In game G¬st

7,b , we enforce that no decryption failure with respect to key pair (p̃k∗, s̃k∗) will
occur: We replace random oracle G with Gp̃k∗,s̃k∗ in line 08, where Gp̃k∗,s̃k∗(m) is defined in line 55 by

Gp̃k∗,s̃k∗(m) := Sample(R \Rbad(p̃k∗, s̃k∗,m); f (m)) ,

with Rbad(pk, sk,m) := {r ∈ R | Dec(sk,Enc(pk,m; r)) 6= m} denoting the set of “bad” randomness for
any fixed key pair (pk, sk), and any message m ∈M. Further, let

δ(pk, sk,m) := |Rbad(pk,sk,m)|/|R| (5)

denote the fraction of bad randomness, and δ(pk, sk) := maxm∈M δ(pk, sk,m). With this notation,
δ = E[maxm∈M δ(pk, sk,m)], where the expectation is taken over (pk, sk)← KG.

To upper bound |Pr[G¬st
6,b ⇒ 1]− Pr[G¬st

7,b ⇒ 1]| for each bit b, we construct (unbounded, quantum)
adversaries Cb against the generic distinguishing problem with bounded probabilities GDPBλ (see Lemma 4)
in Figure 23, issuing at most qG + 3 · S queries to |F〉: Each Cb runs (pk, sk)← KG and uses this key pair
as (p̃k∗, s̃k∗) when simulating game G¬st

6,b . Cb computes the parameters λ(m) of the generic distinguishing
problem as λ(m) := δ(pk, sk,m), which are bounded by λ := δ(pk, sk).

To analyze Cb, we first fix (pk, sk). For each m ∈M, by the definition of game GDPBλ,1, the random
variable F(m) is distributed according to Bλ(m) = Bδ(pk,sk,m). By construction, the random variable G(m)
defined in line 06 if F(m) = 0 and in line 08 if F(m) = 1 is uniformly distributed in R. Therefore, G is a
(quantum) random oracle, and Cb perfectly simulates game G¬st

6,b if executed in game GDPBλ,1. Since
adversary Cb also perfectly simulates game G¬st

7,b if executed in game GDPBλ,0,

|Pr[G¬st
6,b ⇒ 1]− Pr[G¬st

7,b ⇒ 1]| = |Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ,

and according to Lemma 4,

Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ≤ 8 · (qG + 3 · S + 1)2 · δ .

Recall that the goal is to simulate the game without knowledge of s̃k∗. To this end, we will first
change DERinit for s′init as follows: If ciphertext ci already induces de- or reencryption failure, we will
not have to use s̃k∗ any more to check whether c̃ induces decryption failure as well.
Games G¬st

8,b . In games G¬st
8,b , oracle DERinit is changed for our guess s′init in line 45: Whenever decryption

or reencryption fails with respect to ci , the session key is defined as K := H′L1(ci ,mj , c̃, i, j,M ,M ′), as
opposed to letting K := H′L2(ci ,mj , m̃′, i, j,M ,M ′) in the case that decryption or reencryption fails with
respect to ci , but c̃ de- and reencrypts properly.

We claim that this change does not affect B’s view since the respective random value is decoupled
from all other session keys: Let i∗ and j∗ denote holder and peer of s′init. Recall that DERinit(s′init)
uses ephemeral key pair (p̃k∗, s̃k∗). Furthermore, let m∗j be the message that was picked by INIT(s′init),
let (c∗i , c̃∗) denote the message that is received by DERinit(s′init), and let m̃∗ := Dec(s̃k∗, c̃∗). To
distinguish the games, both values H′L1(c∗i ,m∗j , c̃∗, i∗, j∗,M ,M ′) and H′L2(c∗i ,m∗j , m̃∗, p̃k∗, i∗, j∗,M ,M ′)
must be obtained. But both H′L1 and H′L2 are internal random oracles that cannot be accessed directly
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GAMES G¬st
6,b -G¬st

10,b

01 cnt, sID∗ := 0
02 s′init ←$ [S ]
03 for n ∈ [N ]
04 (pkn , skn)← KG
05 (p̃k∗, s̃k∗)← KG
06 G←$ RM �G¬st

6,b , G¬st
10,b

07 Pick 2q-wise hash f �G¬st
7,b -G¬st

9,b
08 G := Gp̃k∗,s̃k∗ �G¬st

7,b -G¬st
9,b

09 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
10 if ATTACK(sID∗)
11 return 0
12 if |M(sID∗)| 6= 1 ABORT
13 if revState[sID∗init] ABORT
14 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
15 if sID∗init 6= s′init return 0
16 return b′

DERresp(sID,M = (p̃k, cj))
17 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
18 role[sID] := "responder"
19 (j, i) := (holder[sID],peer[sID]
20 mi , m̃ ←$ M
21 ci := Enc(pki ,mi ; G(mi))
22 c̃ := Enc(p̃k, m̃; G(m̃))
23 M ′ := (ci , c̃)
24 m′j := Dec(skj , cj)
25 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
26 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
27 else
28 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
29 if p̃k = p̃k∗

30 K ′ := Hq(mi ,m′j , c̃, i, j,M ,M ′) �G¬st
9,b -

G¬st
10,b

31 sKey[sID] := K ′
32 (received[sID], sent[sID]) := (M ,M ′)
33 return M ′

DERinit(sID,M ′ = (ci , c̃))
34 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
35 (i, j) := (holder[sID], peer[sID])
36 (s̃k,mj ,M := (p̃k, cj)) := state[sID]
37 m′i := Dec(ski , ci)
38 m̃′ := Dec(s̃k, c̃)
39 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
40 if m̃′ = ⊥
41 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
42 else
43 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
44 if sID = s′init
45 K := H′L1(ci ,mj , c̃, i, j,M ,M ′) �G¬st

8,b
-G¬st

10,b
46 else
47 if m̃′ = ⊥
48 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
49 else
50 K := H(m′i ,mj , m̃′, i, j,M ,M ′)
51 if sID = s′init
52 K := Hq(m′i ,mj , c̃, i, j,M ,M ′) �G¬st

9,b
53 sKey[sID] := K
54 received[sID] := M ′

Gp̃k∗,s̃k∗(m)
55 r := Sample(R \Rbad(p̃k∗, s̃k∗,m); f (m))
56 return r

H(m1,m2,m3, i, j,M = (p̃k, cj),M ′) �G¬st
9,b

57 if p̃k = p̃k∗

58 return Hq(m1,m2,Enc(p̃k,m3; G(m3)), i, j,M ,M ′)
59 return H′(m1,m2,m3, p̃k, i, j)

Figure 22: Games G¬st
6,b - G¬st

10,b for case (¬st) of the proof of Lemma 2. Oracle Init remains as in games
G¬st

4,b (see Figure 21, page 42), (see Figure 12, page 21), and helper procedure ATTACK and oracles
TEST, EST, REVEAL and REV-STATE remain as in the original IND-StAA games. f (lines 07 and
55) is an internal 2q-wise independent hash function, where q := qG + qH + S , that cannot be accessed by
B. Sample(Y ) is a probabilistic algorithm that returns a uniformly distributed y ←$ Y . Sample(Y ; f (m))
denotes the deterministic execution of Sample(Y ) using explicitly given randomness f (m).

by B. The only way to obtain oracle values of H′L1 and H′L2 is via calls to REVEAL after execution of
DERinit, and possibly, via the additional call to TEST for the test session. (Note that the latter is only
an option if the test session is an "initiator" session, and if either decryption or reencryption fails with
respect to c∗i . In this case, the test session and its match do not derive the same key.) Recall that the
game trivially outputs 0 if B queries REVEAL on sID∗init or if sID∗init 6= s′init. Therefore, to distinguish
H′L1(c∗i ,m∗j , c̃∗, i∗, j∗, (p̃k∗, c∗j ),M ′) from H′L2(ci ,mj , m̃′, p̃k∗, i, j, (p̃k∗, c∗j ),M ′) without triggering the game
to output 0, another session s 6= s′init would have to be established and initialized, and it would be
necessary that the same ephemeral public key p̃k∗ was drawn by INIT(s). But recall that since game
G¬st

6,b , it is enforced that p̃k∗ is not used as the ephemeral key of any other session than s′init (see line 23 in
Figure 21). Hence, B cannot obtain both values without losing trivially. Since both values are uniformly
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Cb
1 = Db

1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

G(m)
05 if F(m) = 0
06 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
07 else
08 G(m) := Sample(Rbad(pk, sk,m); f (m))
09 return G(m)

Cb
2
|F〉, Db

2
|F〉

10 cnt, sID∗ := 0
11 s′init ←$ [S ]
12 for n ∈ [N ]
13 (pkn , skn)← KG
14 (p̃k∗, s̃k∗) := (pk, sk)
15 Pick 2q-wise hash f
16 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
17 if ATTACK(sID∗)
18 return 0
19 if |M(sID∗)| 6= 1 ABORT
20 if revState[sID∗init] ABORT
21 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
22 if sID∗init 6= s′init return 0
23 return b′

Figure 23: Unbounded quantum adversaries Cb = (Cb
1,Cb

2) and Db
=(Db

1,Db
2) for b ∈ F2, executed in game

GDPBδ(pk,sk) with access to |F〉, for case (¬st) of the proof of Lemma 2. δ(pk, sk) is defined in Equation (5).
The adversaries only differ in their definition of DERresp, DERinit and H: For adversaries Cb, DERresp,
DERinit and H are defined as in game G¬st

6,b , see Figure 22, while for adversaries Db, DERresp and DERinit
and H are defined as in gameG¬st

9,b (also Figure 22).

random, B’s view does not change and

Pr[G¬st
7,b ⇒ 1] = Pr[G¬st

8,b ⇒ 1] .

We can now get rid of s̃k∗ altogether by changing DERinit for s′init such that s̃k∗ is not used any more
even if ciphertext ci decrypts correctly. This is achieved as follows: If ciphertext ci decrypts correctly, we
do note use the decryption of c̃, but c̃ itself. To this end, we will "plug in" encryption into random oracle
H whenever ephemeral public key p̃k∗ is used. To maintain consistency, DERresp is changed accordingly.
Games G¬st

9,b . In game G¬st
9,b , random oracle H is changed as follows: Instead of picking H uniformly

random, we pick two random oracles Hq and H′ and define

H(m1,m2,m3, i, j,M = (p̃k, cj),M ′) :={
Hq(m1,m2,Enc(p̃k,m3; G(m3)), i, j,M ,M ′) p̃k = p̃k∗

H′(m1,m2,m3, i, j,M ,M ′) o.w.
,

see line 58. Note that since G only samples from good randomness, encryption is rendered perfectly
correct and hence, injective. Since encryption is injective, H still is uniformly random.

We make the change of H explicit in the derivation oracles: We change DERinit in line 52 such that for
sID = s′init, the session key is defined as K := Hq(m′i ,mj , c̃, i, j,M ,M ′), given that ci de- and reencrypts
correctly. Likewise, make the change of H explicit in DERresp: we change DERresp in line 30 such that if
p̃k = p̃k∗, the session keys are defined as K ′ := Hq(mi ,m′j , c̃, i, j,M ,M ′) whenever cj decrypts correctly.
The latter change is purely conceptual since c̃ is defined as c̃ := Enc(p̃k, m̃; G(m̃)):

H(mi ,m′j , m̃, i, j,M = (p̃k∗, cj),M ′) = Hq(mi ,m′j ,Enc(p̃k∗, m̃; G(m̃)), i, j,M ,M ′)
= Hq(mi ,m′j , c̃, i, j,M ,M ′) .

It remains to show that the keys derived by DERinit are still consistent. Since we enforced in game G¬st
6,b

that no other session than s′init could possibly use public key p̃k∗, this indeed is the only session where we
have to modify the definition of K to keep it consistent with our redefinition of H. We will now argue
that for DERinit(s′init), the change is only conceptual as well: Let (c∗i , c̃∗) denote the message on which
DERinit(s′init) was called. Since there exists a matching "responder" session that generated c∗i and c̃∗,
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in particular there exists a message m̃∗ such that c̃∗ = Enc(p̃k∗, m̃∗; G(m̃∗)). Since G only samples from
good randomness, it holds that m̃′ := Dec(s̃k∗, c̃∗) = m̃∗, and reencryption works as well. Therefore,
game G¬st

9,b should return H(m′i ,mj , m̃′, i, j,M = (p̃k∗, cj),M ′), as does G¬st
8,b . Since m̃′ = m̃∗ and hence

Enc(p̃k∗,m′; G(m′)) = c̃∗, this is indeed the case:

H(m′i ,mj , m̃′, i, j,M = (p̃k∗, cj),M ′) = Hq(m′i ,mj ,Enc(p̃k∗, m̃′; G(m̃′)), i, j,M ,M ′)
= Hq(m′i ,mj , c̃∗, i, j,M ,M ′) .

Hence, A’s view is identical in both games and

Pr[G¬st
8,b ⇒ 1] = Pr[G¬st

9,b ⇒ 1] .

Games G¬st
10,b. In games G¬st

10,b, we switch back to using G←$ RM instead of Gp̃k∗,s̃k∗ . With the same
reasoning as for the gamehop from game G¬st

6,b to G¬st
7,b ,

|Pr[G¬st
9,b ⇒ 1]− Pr[G¬st

10,b ⇒ 1]| = |Pr[GDPBDb

λ,1 = 1]− Pr[GDPBDb

λ,0 = 1]|
≤ 8 · (qG + qH + 3 · S + 1)2 · δ ,

where adversary Db is also given in Figure 23.
So far, we established

|Pr[G¬st
6,1 ⇒ 1]− Pr[G¬st

6,0 ⇒ 1]| ≤|Pr[G¬st
10,1 ⇒ 1]− Pr[G¬st

10,0 ⇒ 1]|
+ 32 · (qG + qH + 3 · S + 1)2 · δ ,

hence

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1∧¬st]| ≤ S · |Pr[G¬st
10,1 ⇒ 1]− Pr[G¬st

10,0 ⇒ 1]|
+ 32 · S · (qG + qH + 3 · S + 1)2 · δ + 2S2 · µ(KG) .

We stress that from game G¬st
10,b on, none of the oracles use ephemeral secret key s̃k∗ any longer. To

upper bound |Pr[G¬st
10,1

B ⇒ 1]−Pr[G¬st
10,0

B ⇒ 1]|, consider the sequence of games given in Figure 24, where
we replace sID∗resp’s ciphertext c̃ with a fake encryption. To replace c̃, we first have to add a guess for
sID∗resp.
Games G¬st

11,b. In game G¬st
11,b, one of the sessions that get established during execution of B is picked at

random in line 03, and the game returns 0 in line 16 if any other session s′resp was picked than session
sID∗resp. Again,

Pr[G¬st
10,b ⇒ 1] = S · Pr[G¬st

11,b ⇒ 1] .

Games G¬st
12,b. In game G¬st

12,b, DERresp is changed in line 25 such that for s′resp, c̃ is no longer an encryption
of a randomly drawn message m̃, but a fake encryption c̃ ← Enc(p̃k∗). Consider the adversaries A¬st

DS,b
against the disjoint simulatability of T[PKE,G] given in Figure 25. Each adversary A¬st

DS,b needs to
generate ephemeral key pairs (at most S times), to (deterministically) encrypt or reencrypt (at most 3S
times), to decrypt (at most 2S times), to evaluate the random oracles H1

q to H3
q and H′ (at most qH + S

times) as well as G (at most qG + qH + 3S times), and to lazy sample (at most S times). Hence the total
running time is upper bounded as follows:

Time(A¬st
DS,b) ≤ Time(B) + S · (Time(KG) + 3 · Time(Enc) + 2 · Time(Dec)) + qH + qG + 4S

≈ Time(B) . (6)

Since A¬st
DS,b perfectly simulates game G¬st

11,b if its input c∗ was generated by randomly picking m and
letting c := Enc(p̃k∗,m,G(m)), and game G¬st

12,b if its input was generated by c ← Enc(p̃k∗),

|Pr[G¬st
11,b ⇒ 1]− Pr[G¬st

12,b ⇒ 1]| = AdvDS
T[PKE,G](A¬st

DS,b) .
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GAMES G¬st
10,b -G¬st

14,b

01 cnt, sID∗ := 0
02 s′init ←$ [S ]
03 s′resp ←$ [S ] �G¬st

11,b -G¬st
14,b

04 for n ∈ [N ]
05 (pkn , skn)← KG
06 (p̃k∗, s̃k∗)← KG
07 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
08 if ATTACK(sID∗)
09 return 0
10 if |M(sID∗)| 6= 1 ABORT
11 if revState[sID∗init] ABORT
12 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
13 if sID∗init 6= s′init return 0
14 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder" �G¬st
11,b-G¬st

14,b
15 if sID∗resp 6= s′resp
16 return 0 �G¬st

11,b-G¬st
14,b

17 return b’

DERresp(sID,M = (p̃k, cj))
18 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
19 role[sID] := "responder"
20 (j, i) := (holder[sID], peer[sID]
21 mi , m̃ ←$ M
22 ci := Enc(pki ,mi ; G(mi))
23 c̃ := Enc(p̃k, m̃; G(m̃))
24 if sID = s′resp

25 c̃ ← Enc(p̃k∗) �G¬st
12,b-G¬st

14,b
26 if c̃ ∈ Enc(p̃k,M;R)
27 ABORT �G¬st

13,b-G¬st
14,b

28 M ′ := (ci , c̃)
29 m′j := Dec(skj , cj)
30 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
31 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
32 else
33 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
34 if p̃k = p̃k∗

35 K ′ := Hq(mi ,m′j , c̃, i, j,M ,M ′)
36 sKey[sID] := K ′
37 (received[sID], sent[sID]) := (M ,M ′)
38 return M ′

TEST(sID) �only one query
39 sID∗ := sID
40 if sKey[sID∗] = ⊥ return ⊥
41 K∗0 := sKey[sID∗] �G¬st

10,b-G¬st
12,b

42 K∗0 ←$ K �G¬st
14,0

43 K∗1 ←$ K
44 return K∗b

Figure 24: Games G¬st
10,b - G¬st

14,b for case (¬st) of the proof of Lemma 2. All oracles except for TEST and
DERresp remain as in game G¬st

10,b (see Figure 22, page 43).

Folding adversaries A¬st
DS,0 and A¬st

DS,1 into one adversary A¬st
DS yields

AdvDS
T[PKE,G](A¬st

DS,0) + AdvDS
T[PKE,G](A¬st

DS,1) = 2 ·AdvDS
T[PKE,G](A¬st

DS ) .

Game G¬st
13,b. In game G¬st

13,b, we abort in line 27 if the fake ciphertext c̃ that was picked during execution
of DERresp(s′resp) lies within the range of encryption under p̃k, i.e., if c̃ ∈ Enc(p̃k,M;R). Since PKE is
εdis-disjoint,

|Pr[G¬st
12,b ⇒ 1]− Pr[G¬st

13,b ⇒ 1]| ≤ εdis .

Game G¬st
14,0. In game G¬st

14,0, we change oracle TEST in line 42 such that it returns a random value
instead of returning sKey[sID∗]. Since this change renders games G¬st

14,0 and G¬st
14,1 equal, and since game

G¬st
14,1 is equal to game G¬st

13,1,

|Pr[G¬st
12,1 ⇒ 1]− Pr[G¬st

12,0 ⇒ 1]| = |Pr[G¬st
14,0 ⇒ 1]− Pr[G¬st

13,0 ⇒ 1]| .

It remains to upper bound |Pr[G¬st
14,0 ⇒ 1] − Pr[G¬st

13,0 ⇒ 1]|. B cannot distinguish the value K∗0 =
sKey[sID∗] that is returned by TEST(sID∗) from random in game G¬st

13,0 unless it obtains K∗0 (either
classically or contained in a quantum answer) at some point other than during the calling of TEST. It’s
easy to verify that B can only obtain keys (and in particular, K∗0 ) by queries to REVEAL or to H.
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A¬st
DS,b
|H′〉,|Hq〉,|G〉(p̃k∗, c∗)

01 cnt, sID∗ := 0
02 s′init ←$ [S ], s′resp ←$ [S ]
03 for n ∈ [N ]
04 (pkn , skn)← KG
05 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
06 if ATTACK(sID∗) return 0
07 if |M(sID∗)| 6= 1 ABORT
08 if revState[sID∗init] ABORT
09 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
10 if sID∗init 6= s′init return 0
11 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder"
12 if sID∗resp 6= s′resp return 0
13 return b′

REV-STATE(sID 6= s′init)
14 if state[sID] = ⊥ return ⊥
15 revState[sID] := true
16 return state[sID]

DERresp(sID,M = (p̃k, cj))
17 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
18 role[sID] := "responder"
19 (j, i) := (holder[sID], peer[sID]
20 mi , m̃ ←$ M
21 ci := Enc(pki ,mi ; G(mi))
22 c̃ := Enc(p̃k, m̃; G(m̃))
23 if sID = s′resp
24 c̃ := c∗
25 M ′ := (ci , c̃)
26 m′j := Dec(skj , cj)
27 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
28 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
29 else
30 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
31 if p̃k = p̃k∗

32 K ′ := Hq(mi ,m′j , c̃, i, j,M ,M ′)
33 sKey[sID] := K ′
34 (received[sID], sent[sID]) := (M ,M ′)
35 return M ′

Figure 25: Adversaries A¬st
DS,b for case (¬st) of the proof of Lemma 2, with oracle access to |H′〉, |Hq〉 and

|G〉. All oracles except for DERresp and REV-STATE are defined as in game G¬st
11,b (see Figure 24, page

47).

We will first make explicit how the key is defined: Let i∗ and j∗ denote holder and peer of the
"initiator" session. Recall that p̃k∗ denotes the ephemeral key that was chosen in the beginning of the
game (see Figure 21, line 05) and used during execution of INIT(sID∗init) (line 25, also Figure 21). Let m∗j
denote the randomly chosen message with encryption c∗j := Enc(pkj∗ ,m∗j ; G(m∗j )) that was sampled during
execution of INIT(sID∗init), furthermore let c̃∗ denote the fake ciphertext that was sampled under p̃k∗

during execution of Derresp(sID∗resp) (Figure 24, line 25) and let m∗i denote the randomly chosen message
with encryption c∗i := Enc(pki∗ ,m∗i ; G(m∗i )) that was picked during execution of DERresp(sID∗resp). We
changed the key derivation such that since p̃k∗ is used, in the case that sID∗ is an "initiator" session, we
have

K∗0 =
{

H′L1(c∗i ,m∗j , c̃∗, i∗, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) m′i = ⊥ or Enc(pki∗ ,m′i) 6= c∗i
Hq(m′i ,m∗j , c̃∗, i∗, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) o.w.

,

where m′i := Dec(ski∗ , c∗i ). In the case that sID∗ is a "responder" session, we have

K∗0 =
{

H′R(m∗i , c∗j , m̃∗, i∗, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) m′j = ⊥ or Enc(pkj∗ ,m′j) 6= c∗j
Hq(m∗i ,m∗j , c̃∗, i∗, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) o.w.

,

where m′j := Dec(skj∗ , c∗j ).
First, we will argue that B could not possibly obtain K∗0 by a query to REVEAL: Recall that B

trivially loses if it revealed the test session or its match. Hence, B would have to create some session
sID /∈ {sID∗init, sID∗resp} that derives the same key as the test session. First, we argue that the key cannot
be obtained via any session sID with role[sID] 6= role[sID∗]: Since both exchanged messages M and M ′
are hashed, the same key could only be derived if the respective session matches the test session. Since
creation of an additional matching session would result in an abort, we can ignore this case, and only
need to consider the case that role[sID] = role[sID∗].

We first consider the case that sID∗ is an "initiator" session: To obtain K∗0 via another "initiator"
session, B would have to establish and initialize another "initiator" session sID 6= sID∗init with holder i∗
and peer j∗. The subsequent call to DERinit could only result in the same key if INIT(sID) had also
picked ephemeral key p̃k∗, which is impossible since we enforced in game G¬st

6,b that no other session uses
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p̃k∗. Now we consider the case that sID∗ is a "responder" session. To obtain K∗0 via another "responder"
session sID, B would have to call DERresp for some session sID 6= sID∗resp with holder j∗, peer i∗, on the
same message M = (p̃k∗, c∗j ). Since the resulting key includes the message (ci , c̃) that was computed by
session sID, it can only be equal to the test session’s key if (ci , c̃) = (c∗i , c̃∗). Since c̃ is an encryption
of some message, and c̃∗ does not lie within the range of Enc(p̃k,−;−), this is impossible. Either way,
recreation of the test session’s key is impossible.

To upper bound the probability that any of the quantum answers of |H〉 could contain session key
K∗0 = Hq (m∗i ,m∗j , c̃∗, i∗, j∗,M ,M ′), recall that for any message M = (p̃k∗, cj), where cj is arbitrary,

H(m1,m2,m3, i∗, j∗,M = (p̃k∗, cj),M ′) = Hq(m1,m2,Enc(p̃k∗,m3; G(m3)), i∗, j∗,M ,M ′) .

Hence, to trigger a query to |Hq〉 containing the classical query (m∗i ,m∗j , c̃∗, i∗, j∗,M ,M ′), B would need
to come up with a message m such that Enc(p̃k∗,m; G(m)) = c̃∗. Since c̃∗ does not lie in the range of
Enc(p̃k,−;−), this is impossible with probability at most εdis.

In conclusion,

|Pr[G¬st
12,1 ⇒ 1]− Pr[G¬st

12,0 ⇒ 1]| = |Pr[G¬st
14,0 ⇒ 1]− Pr[G¬st

13,0 ⇒ 1]|

≤ S − 2
|M|

·max{ 1
|M|

, εdis}+ εdis ≤
S
|M|

+ εdis ,

hence

|Pr[G¬st
10,1 ⇒ 1]− Pr[G¬st

10,0 ⇒ 1]|

≤ S ·
(
|Pr[G¬st

12,1 ⇒ 1]− Pr[G¬st
12,0 ⇒ 1]|+ 2 ·AdvDS

T[PKE,G](A¬st
DS )

)
≤ 2S ·AdvDS

T[PKE,G](A¬st
DS ) + 2S · εdis .

Collecting the probabilities yields

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]−Pr[GB

2,0 ⇒ 1 ∧ ¬st]|
≤ 2S2 ·AdvDS

T[PKE,G](A¬st
DS ) + 32 · S · (qG + qH + 3S + 1)2 · δ

2S2 · εdis + 2S2 · µ(KG) ,

the upper bound we claimed in equation (3).

D.2 Case (¬sk) of the Proof of Lemma 2

Case (¬sk) (Initialising session’s owner was not corrupted). Intuition is as follows: While
B might have obtained both the secret key of peer[sID∗init] and sID∗init’s internal state, we can replace
ciphertext ci since holder[sID∗init], henceforth called i∗, is not corrupted. To be able to replace ci , we
will patch in encryption at the first (and due to the need for symmetry, at the second) argument of the
random oracle.

Consider the sequence of games given in Figures 26, 27 and 29: First, we will enforce that indeed, we
only need to consider the case where ¬corrupted[holder[sID∗init]]. Afterwards, we ensure that the game
makes no use of ski∗ any longer by patching encryption into the random oracle (in games G¬sk

2,b to G¬sk
9,b , see

Figure 27, line 53). This is the only part of the proof where we need to consider the adversary’s capability
to come up with encryptions that decrypt incorrectly. Next, during execution of DERresp(sID∗resp), we
replace ci = Enc(pki∗ ,m∗i ) with a fake ciphertext that gets sampled using Enc (games G¬sk

10,b to G¬sk
13,b, see

Figure 29). We show that after those changes, B’s view does not change with overwhelming probability if
we finally change TEST such that it always returns a random value (game G¬sk

13,b, also Figure 29).

Game G¬sk
2,b . Since games G¬sk

2,b and G2,b are the same,

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]|

= |Pr[G¬sk
2,1

B ⇒ 1 ∧ ¬sk]− Pr[G¬sk
2,0

B ⇒ 1 ∧ ¬sk]| .
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GAMES G¬sk
2,b -G¬sk

4,b

01 cnt, sID∗ := 0
02 i ′ ←$ [N ] �G¬sk

4,b
03 for n ∈ [N ]
04 (pkn , skn)← KG
05 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
06 if ATTACK(sID∗)
07 return 0
08 if |M(sID∗)| 6= 1 ABORT
09 Pick sID∗init ∈ {sID∗, sID′}

s. th. role[sID∗init] = "initiator" �G¬sk
3,b -G¬sk

4,b
10 if corrupted[holder[sID∗init]]
11 ABORT �G¬sk

3,b -G¬sk
7,b

12 if holder[sID∗init] 6= i ′
13 return 0 �G¬sk

4,b -G¬sk
4,b

14 return b’

Figure 26: Games G¬sk
2,b - G¬sk

4,b for case (¬sk) of the proof of Lemma 2. Helper procedure ATTACK and
oracles TEST, Init, EST, REVEAL and REV-STATE remain as in the original IND-StAA game (see
Figure 12 and Figure 13, pages 21 and 22).

Games G¬sk
3,b . Both games G¬sk

3,b abort in line 11 if corrupted[holder[sID∗init]]. Since for both bits b it
holds that Pr[G¬sk

3,b
B ⇒ 1] = Pr[G¬sk

2,b
B ⇒ 1 ∧ ¬sk]],

|Pr[G¬sk
2,1

B ⇒ 1 ∧ ¬sk]− Pr[G¬sk
2,0

B ⇒ 1 ∧ ¬sk]| = |Pr[G¬sk
3,1 ⇒ 1]− Pr[G¬sk

3,0 ⇒ 1]| .

Analogous to our proof of case (¬st), the first goal is not to have to make use of the initialiser’s s
secret key any longer. Since initialiser i∗ = holder[sID∗init] is not fixed until B issues the TEST query,
we first add a guess i ′ for i∗. In the subsequent games, encryption will be plugged into random oracle
H for the first two messages (since pki′ could be used in both slots) Afterwards, we will even out the
difference in derivation for ciphertexts with de- or reencryption failure and ciphertexts without. As in the
proof of case (¬st), we will see that these changes do not affect B’s view unless it is able to distinguish
random oracle G from an oracle Gpki′ ,ski′ that only samples randomness under which decryption never
fails, thereby allowing for a reduction to game GDPB.
Games G¬sk

4,b . In both games G¬sk
4,b , one of the parties is picked at random in line 02, and the games

return 0 in line 13 if any other party i ′ was picked than the holder of sID∗init. Since for both bits b it
holds that games G¬sk

4,b and G¬sk
3,b proceed identically if holder[sID∗init] = i ′, and since games G¬sk

4,b output
0 if holder[sID∗init] 6= i ′, we have that Pr[G¬sk

3,b ⇒ 1] = N · Pr[G¬sk
4,b ⇒ 1] and hence,

|Pr[G¬sk
3,1 ⇒ 1]− Pr[G¬sk

3,0 ⇒ 1]| = N · |Pr[G¬sk
4,1 ⇒ 1]− Pr[G¬sk

4,0 ⇒ 1]| .
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GAMES G¬sk
4,b -G¬sk

9,b

01 Pick 2q-wise hash f �G¬sk
5,b -G¬sk

8,b
02 cnt, sID∗ := 0
03 i ′ ←$ [N ]
04 for n ∈ [N ]
05 (pkn , skn)← KG
06 G := Gpki′ ,ski′ �G¬sk

5,b -G¬sk
8,b

07 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
08 if ATTACK(sID∗)
09 return 0
10 if |M(sID∗)| 6= 1 ABORT
11 Pick sID∗init ∈ {sID∗, sID′}

s. th. role[sID∗init] = "initiator"
12 if corrupted[holder[sID∗init]]
13 ABORT
14 if holder[sID∗init] 6= i ′
15 return 0
16 return b’

DERinit(sID,M ′ = (ci , c̃))
17 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
18 (i, j) := (holder[sID], peer[sID])
19 (s̃k,mj ,M := (p̃k, cj)) := state[sID]
20 m′i := Dec(ski , ci)
21 m̃′ := Dec(s̃k, c̃)
22 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
23 if m̃′ = ⊥
24 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
25 else
26 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
27 if i = i ′ and j 6= i ′
28 K ′ := H1

q(ci ,mj , m̃′, i ′, j,M ,M ′) �G¬sk
8,b -

G¬sk
9,b

29 if i = j = i ′
30 K ′ := H3

q(ci , cj , m̃′, i ′, i ′,M ,M ′) �G¬sk
8,b -

G¬sk
9,b

31 else
32 if m̃′ = ⊥
33 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
34 if i = i ′
35 K := H′L1(ci ,mj , c̃, i, j,M ,M ′) �G¬sk

6,b -
G¬sk

9,b
36 else
37 K := H(m′i ,mj , m̃′, i, j,M ,M ′)
38 if i = i ′ and j 6= i ′
39 K ′ := H1

q(ci ,mj , m̃′, i ′, j,M ,M ′) �G¬sk
7,b -

G¬sk
9,b

40 if j = i ′ and i 6= i ′
41 K ′ := H2

q(m′i , cj , m̃′, i, i ′,M ,M ′) �G¬sk
7,b -

G¬sk
9,b

42 if i = j = i ′
43 K ′ := H3

q(ci , cj , m̃′, i ′, i ′,M ,M ′) �G¬sk
7,b -

G¬sk
9,b

44 sKey[sID] := K
45 received[sID] := M ′

DERresp(sID,M = (p̃k, cj))
46 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"return ⊥
47 role[sID] := "responder"
48 (j, i) := (holder[sID],peer[sID])
49 mi , m̃ ←$ M
50 ci := Enc(pki ,mi ; G(mi))
51 c̃ := Enc(p̃k, m̃; G(m̃))
52 M ′ := (ci , c̃)
53 m′j := Dec(skj , cj)
54 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
55 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
56 if j = i ′ and i 6= i ′
57 K ′ := H2

q(mi , cj , m̃, i, i ′,M ,M ′) �G¬sk
8,b -G¬sk

9,b
58 if i = j = i ′
59 K ′ := H3

q(ci , cj , m̃, i ′, i ′,M ,M ′) �G¬sk
8,b -G¬sk

9,b
60 else
61 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
62 if i = i ′ and j 6= i ′
63 K ′ := H1

q(ci ,m′j , m̃, i ′, j,M ,M ′) �G¬sk
7,b -G¬sk

9,b
64 if j = i ′ and i 6= i ′
65 K ′ := H2

q(mi , cj , m̃, i, i ′,M ,M ′) �G¬sk
7,b -G¬sk

9,b
66 if i = j = i ′
67 K ′ := H3

q(ci , cj , m̃, i ′, i ′,M ,M ′) �G¬sk
7,b -G¬sk

9,b
68 sKey[sID] := K ′
69 (received[sID], sent[sID]) := (M ,M ′)
70 return M ′

Gpki′ ,ski′ (m)
71 r := Sample(R \Rbad(pki′ , ski′ ,m); f (m))
72 return r

H(m1,m2,m3, i, j,M ,M ′) �G¬sk
7,b -G¬sk

9,b

73 if i = i ′ and j 6= i ′
74 return H1

q(Enc(pki′ ,m1; G(m1)),m2,m3, i, j,M ,M ′)
75 if j = i ′ and i 6= i ′
76 return H2

q(m1,Enc(pki′ ,m2; G(m2)),m3, i, j,M ,M ′)
77 if i = j = i ′
78 return H3

q(Enc(pki′ ,m1; G(m1)),Enc(pki′ ,m2; G(m2)),m3, i, j,M ,M ′)
79 return H′(m1,m2,m3, i, j,M ,M ′)

Figure 27: Games G¬sk
4,b - G¬sk

9,b for case (¬sk) of the proof of Lemma 2. Helper procedure ATTACK
and oracles TEST, INIT, EST, REVEAL and REV-STATE remain as in the original IND-StAA game
(see Figure 12 and Figure 13, pages 21 and 22).

To prepare getting rid of ski′ , we will first modify random oracle G such that it renders PKE perfectly
correct for key pair (pki′ , ski′).
Game G¬sk

5,b . In game G¬sk
5,b , we enforce that no decryption failure with respect to key pair (pki′ , pki′)

will occur: We replace random oracle G with Gpki′ ,ski′ in line 06, where Gpki′ ,pki′ is defined in line 71 by

Gpki′ ,ski′ (m) := Sample(R \Rbad(pki′ , ski′ ,m); f (m)) ,
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with Rbad(pk, sk,m) := {r ∈ R | Dec(sk,Enc(pk,m; r)) 6= m} denoting the set of bad randomness for any
fixed key pair (pk, sk), and any message m ∈M,

δ(pk, sk,m) := |Rbad(pk,sk,m)|/|R| (7)

denoting the fraction of bad randomness, and δ(pk, sk) := maxm∈M δ(pk, sk,m). (As in the proof of
(¬st).) Recall that with this notation, δ = E[maxm∈M δ(pk, sk,m)], where the expectation is taken over
(pk, sk)← KG. To upper bound |Pr[G¬sk

4,b ⇒ 1]− Pr[G¬sk
5,b ⇒ 1]| for each bit b, we construct (unbounded,

quantum) adversaries Cb against the generic distinguishing problem with bounded probabilities GDPBλ
in Figure 28, issuing at most qG + 3S queries to |F〉. With the same analysis as in our proof for case (¬st)
(see page 44),

|Pr[G¬sk
4,b ⇒ 1]− Pr[G¬sk

5,b ⇒ 1]| = |Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ,

and according to Lemma 4,

Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ≤ 8 · (qG + 3S + 1)2 · δ .

Cb
1 = Db

1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

G(m)
05 if F(m) = 0
06 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
07 else
08 G(m) := Sample(Rbad(pk, sk,m); f (m))
09 return G(m)

Cb
2
|F〉, Db

2
|F〉

10 cnt, sID∗ := 0
11 i ′ ←$ [N ]
12 for n ∈ [N ] \ {i ′}
13 (pkn , skn)← KG
14 (pki′ , ski′) := (pk, sk)
15 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
16 if ATTACK(sID∗)
17 return 0
18 if |M(sID∗)| 6= 1 ABORT
19 Pick sID∗init ∈ {sID∗, sID′}

s. th. role[sID∗init] = "initiator"
20 if corrupted[holder[sID∗init]] ABORT
21 if holder[sID∗init] 6= i ′
22 return 0
23 return b’

Figure 28: Unbounded quantum adversaries Cb and Db, executed in game GDPBδ(pk,sk), for case (¬sk) of
the proof of Lemma 2. The adversaries only differ in their definition of DERresp, DERinit and H: For
adversaries Cb, DERresp, DERinit and H are defined as in game G¬sk

4,b , see Figure 27, while for adversaries
Db, DERresp and DERinit and H are defined as in gameG¬sk

8,b (also Figure 27).

Recall that the goal is to simulate the game without knowledge of ski′ . To this end, we will first
change the key derivation procedure DERinit for holder i ′ as follows: If ciphertext c̃ already induces
decryption failure, we will not have to use ski′ any more to check whether ci induces de- or reencryption
failure as well.
Games G¬sk

6,b . In both games G¬sk
6,b , we change oracle DERinit in line 35 for session holder i ′ as follows:

Whenever c̃ does not decrypt to a message m̃′ s. th. c̃ = Enc(p̃k, m̃′,G(m̃′)), the session key is defined as
K := H′L1(ci ,mj , c̃, i, j,M ,M ′). (Before this change we let K := H′L3(m′i ,mj , c̃, i, j,M ,M ′) in the case that
c̃ fails to decrypt, but ci decrypts correctly.)

We claim that this change does not affect B’s view since the cases are logically distinct: Since both
H′L1 and H′L2 are internal random oracles that cannot be accessed directly by B, the only way to obtain
oracle values of H′L1 and H′L2 is via calls to REVEAL and TEST after execution of DERinit. Intuitively,
B could only tell the games apart by establishing and completing two distinct "initiator" sessions s and s′
with holder i ′ such that they derive different keys in game G¬sk

5,b , but the same key in game G¬sk
6,b . In

more detail, the following requirements would have to be met:
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• Both sesions have the same peer j, and algorithms INIT(s) and INIT(s′) pick the same key pair
(p̃k, s̃k) as well as the same message mj

• Calling DERinit(s) on some message (ci , c̃) results in session key H′L1(ci ,mj , c̃, i ′, j,M ,M ′) in both
games

• Calling DERinit(s′) on some message (c′i , c̃′) in gameG¬sk
5,b results in session key H′L3(Dec(ski , c′i),mj , c̃′, i, j,M ,M ′),

and in game G¬sk
6,b , it derives the same key as DERinit(s), i.e., its key is now H′L1(ci ,mj , c̃, i ′, j,M ,M ′).

To achieve key equality in game G¬sk
6,b it is required that both c′i = ci and c̃′ = c̃, i.e., both DERinit(s)

and DERinit(s′) were called on the same message (ci , c̃). Requiring that DERinit(s) computes its key
as H′L1(ci ,mj , c̃, i ′, j,M ,M ′) in game G¬sk

5,b implies that ciphertext ci is problematic. But additionally
requiring that DERinit(s) computes its key as H′L3(Dec(ski , c′i),mj , c̃′, i, j,M ,M ′) in game G¬sk

5,b implies
that ciphertext ci = c′i is non-problematic at the same time. Since this is impossible, B’s view does not
change and

Pr[G¬sk
5,b ⇒ 1] = Pr[G¬sk

6,b ⇒ 1] .
In the next game, we change key definition of DERinit if both ciphertexts de- and reencrypt correctly,

and key definition of DERresp if cj de-and reencrypts correctly. In these cases, we do note use the
decryptions under ski′ , but the ciphertexts themself. Similar to case (¬st), we "plug in" encryption into
random oracle H whenever i ′ appears as one of the involved parties. Since ski′ might be used for the first
as well as the second message, depending on the session’s role, we have to plug encryption into either of
the first two arguments of the random oracle, accordingly.
Games G¬sk

7,b . In games G¬sk
7,b , the random oracle is changed as follows: Instead of picking H uniformly

random, we pick four random oracles H1
q to H3

q, and H′, and define

H(m1,m2,m3, i, j,M ,M ′)

:=


H1

q(Enc(pki′ ,m1; G(m1)),m2,m3, i ′, j,M ,M ′) i = i ′ ∧ j 6= i ′
H2

q(m1,Enc(pki′ ,m2; G(m2)),m3, i, i ′,M ,M ′) i 6= i ′ ∧ j = i ′
H3

q(Enc(pki′ ,m1; G(m1)),Enc(pki′ ; G(m2)),m2,m3, i ′, j,M ,M ′) i = j = i ′
H′(m1,m2,m3, i, j,M ,M ′) o.w.

,

see lines 73 to 79. Note that since G only samples from good randomness, encryption under public key
pki′ is rendered perfectly correct and hence, injective. Since encryption under public key pki′ is injective,
H still is uniformly random.

We make the change of H explicit in the derivation oracles: We have to change DERresp for the case
that cj was unproblematic, because this is the only case in which we use H, and (at least) one of the
involved parties is i ′, because this is the only case in which we do not just use random oracle H′. This is
done in lines 63 to 67: If i ′ is holder of the respective session, we define the session key not relative to
decrypted message m′j , but relative to received ciphertext cj . If i ′ is the peer of the respective session, we
keep using decrypted message m′j , but we do not use mi . Instead, we use its encryption ci . If i ′ is even
both holder and peer of the respective session, we use received ciphertext cj and encryption ci . These
changes are purely conceptual since mi encrypts to ci , and we are in the case that m′j reencrypts to cj : In
this setting, we have

H(mi ,m′j , m̃, i, j,M ,M ′) = H2
q(mi ,Enc(pki′ ,m′j ; G(m′j)), m̃, i, i ′,M ,M ′)

= H2
q(mi , cj , m̃, i, i ′,M ,M ′) = K ′

if the holder j is i ′, but the peer i is not, and we have

H(mi ,m′j , m̃, i, j,M ,M ′) = H1
q(Enc(pki′ ,mi ; G(mi)),m′j , m̃, i ′, j,M ,M ′)

= H1
q(ci ,m′j , m̃, i ′, j,M ,M ′) = K ′

if the peer i is i ′, but the holder j is not, and

H(mi ,m′j , m̃, i, j,M ,M ′) = H3
q(Enc(pki′ ,mi ; G(mi)),Enc(pki′ ,m′j ; G(m′j)), m̃, i ′, i ′,M ,M ′)

= H3
q(ci , cj , m̃, i ′, i ′,M ,M ′) = K ′
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if both holder and peer are i ′.
Likewise, make the change of H explicit in DERinit: We have to change DERresp for the case that c̃

did not decrypt to ⊥ and ci was unproblematic, because this is the only case in which we use H, and
the subcase that (at least) one of the involved parties is i ′, because this is the only case in which we do
not just use random oracle H′. This is done in lines 39 to 43: If i ′ is holder of the respective session, we
define the session key not relative to decrypted message m′i , but relative to received ciphertext ci . If i ′ is
the peer of the respective session, we keep using decrypted message m′i , but we do not use mj . Instead,
we use its encryption cj . If i ′ is even both holder and peer of the respective session, we use received
ciphertext ci and encryption cj . These changes are purely conceptual since mj encrypts to cj , and we are
in the case that m′i reencrypts to ci : In this setting, we have

H(m′i ,mj , m̃′, i, j,M ,M ′) = H1
q(Enc(pki′ ,m′i ; G(m′i)),mj , m̃′, i ′, j,M ,M ′)

= H1
q(ci ,mj , m̃′, i ′, j,M ,M ′) = K ′

if the holder i is i ′, but the peer j is not, and we have

H(m′i ,mj , m̃′, i, j,M ,M ′) = H2
q(m′i ,Enc(pki′ ,mj ; G(mj)), m̃′, i, i ′,M ,M ′)

= H2
q(m′i , cj , m̃′, i, i ′,M ,M ′) = K ′

if the holder i is not i ′, but the peer j is i ′, and

H(m′i ,mj , m̃′, i, j,M ,M ′) = H3
q(Enc(pki′ ,m′i ; G(m′i)),Enc(pki′ ,mj ; G(mj)), m̃′, i ′, i ′,M ,M ′)

= H3
q(ci , cj , m̃′, i ′, i ′,M ,M ′) = K ′

if both holder and peer are i ′. Since key consistency is kept, all changes are purely conceptual and

Pr[G¬sk
6,b ⇒ 1] = Pr[G¬sk

7,b ⇒ 1] .

The final step to get rid of ski′ is to even out the key derivation ciphertexts that are problematic with
respect to secret key ski′ : To this end, we also use H1

q to H3
q if a ciphertext fails to de-or reencrypt under

ski′ , instead of using the implicit reject oracles.
Games G¬sk

8,b . In games G¬sk
8,b , we change DERresp in lines 57 to 59 such that if cj fails to de- or

reencrypt and i ′ is the session’s holder, the session key is defined relative to the random oracles H2
q or H3

q
instead of rejecting implicitly, just as if cj had reencrypted correctly. Likewise, we change DERinit in
lines 28 to 30 such that if ci fails to de- or reencrypt and i ′ is the session’s holder, but ciphertext c̃ does
not decrypt to ⊥, the session key is defined relative to the random oracles H1

q or H3
q instead of rejecting

implicitly, just as if ci had reencrypted correctly.
We now argue that this change could not possibly affect B’s view: B could only tell the games apart

by either

• establishing and revealing two matching sessions such that the keys mismatched in game G¬sk
7,b due

to an implicit reject, while in game G¬sk
8,b , this difference is evened out by the changes described

above, or by

• establishing a session such that its key resulted from an implicit reject in game G¬sk
7,b , while the key

can be linked to random oracle H in game G¬sk
8,b .

It is easy to verify that the former only happens if there exists a completed "initiator" session s with
holder i and peer j, and also a completed "responder" session s′, with holder j and peer i, such that one
of the following conditions hold:

• i = j = i ′ and at least one of the ciphertexts ci or cj is problematic,

• i = i ′, and j 6= i ′, and ciphertext ci is problematic,

• i 6= i ′, while j = i ′, and ciphertext cj is problematic.
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Here, cj is the encryption that INIT(s) returned, and cj is the encryption that DERresp returned.
The conditions above are unsatisfiable since Gpki′ ,ski′ only samples good randomness: We have ci =
Enc(pki ,mi ; Gpki′ ,ski′ (mi)) and cj = Enc(pkj ,mj ; Gpki′ ,ski′ (mj)). Both Gpki′ ,ski′ (mi) and Gpki′ ,ski′ (mj) are
good randomness for message mi or mj , respectively. If i = i ′, we can conclude that ci decrypts to mi
(and hence, reencryption also works), therefore ci can not be problematic. If j = i ′, we can conclude that
cj decrypts to mj (and hence, reencryption also works), therefore cj can not be problematic. Either way,
the conditions can not be satisfied. Since the keys’ mismatch will be kept in game G¬sk

8,b in any other case,
a loss of mismatching keys is impossible.

The latter, i.e., linking a key to H that should not have been linked, is impossible as well: Assume
that the session is an "initiator" session. We only have to consider the case that it is a session with holder
i ′. Let ci denote the ciphertext received by DERinit(s). First we examine the case that there exists
some message mi such that ci = Enc(pki ,m; Gpki′ ,ski′ (mi)): In this case, an implicit reject can not happen
since ci can not be problematic due to the reasons given above. Now we examine the case that there
exists no message mi such that ci = Enc(pki ,mi ; Gpki′ ,ski′ (mi)): In this case, while the derived key would
be defined as H1

q(ci ,mj , m̃′, i ′, j,M ,M ′) or H3
q(ci , cj , m̃′, i ′, i ′,M ,M ′), respectively, it could not possibly

correlate to any random oracle query to |H〉: Since i = i ′, |H〉 plugs encryption into the first argument,
and we only consider the case that ci does not lie in the encryption’s range. Hence, the respective key is
still uniformly random and not linked to H. The argument is completely symmetrical, hence a link of
keys can also not happen if the session is a "responder" session.

In conclusion, B’s view is identical in both games and

Pr[G¬sk
7,b ⇒ 1] = Pr[G¬sk

8,b ⇒ 1] .

Game G¬sk
9,b . In game G¬sk

9,b , we switch back to using G ←$ RM instead of Gpki′ ,ski′ . With the same
reasoning as for the gamehop from game G¬sk

4,b to G¬sk
5,b ,

|Pr[G¬sk
8,b ⇒ 1]− Pr[G¬sk

9,b ⇒ 1]| = |Pr[GDPBDb

λ,1 = 1]− Pr[GDPBDb

λ,0 = 1]|
≤ 8 · (qG + 2qH + 3 · S + 1)2 · δ ,

where adversary Db also is given in Figure 28.
So far, we established

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]|
≤ N · |Pr[G¬sk

9,1 ⇒ 1]− Pr[G¬sk
9,0 ⇒ 1]|+ 32 ·N · (qG + 2qH + 3 · S + 1)2 · δ .

To upper bound |Pr[G¬sk
9,b ⇒ 1]− 1/2|, consider the sequence of games given in Figure 29.

Games G¬sk
10,b. Games G¬sk

10,b do not differ from games G¬sk
9,b . We only changed the structure of the case

distinctions in DERresp and DERinit to achieve more readability. It is easy to verify that all cases are
still treated exactly the same as in game G¬sk

9,b .

Pr[G¬sk
9,b ⇒ 1] = Pr[G¬sk

10,b ⇒ 1] .

We stress that from game G¬sk
9,b on, none of the oracles uses ski′ any longer: DERresp and DERinit

were changed accordingly, and we only consider the case that B did not query CORRUPT on i ′. Since
we want to replace sID∗resp’s ciphertext ci with a fake encryption, we first have to add a guess for sID∗resp,
like in case (¬st).
Games G¬sk

11,b. In games G¬sk
11,b, one of the sessions that get established during execution of B is picked

at random in line 03, and the games return 0 in line 16 if any other session s′resp was picked than
session sID∗resp. Since for both bits b it holds that both games G¬sk

11,b and G¬sk
10,b proceed identically unless

s′resp 6= sID∗resp, and since games G¬sk
11,b output 0 if s′resp 6= sID∗resp,

Pr[G¬sk
10,b ⇒ 1] = S · Pr[G¬sk

11,b ⇒ 1] .

Games G¬sk
12,b. In games G¬sk

12,b, oracle DERresp is changed in line 53 such that for sID∗resp, ci is no longer
a ciphertext of the form ci := Enc(pki′ ,mi ; G(mi)) for some randomly drawn message mi , but a fake
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GAMES G¬sk
10,b-G¬sk

13,b

01 cnt, sID∗ := 0
02 i ′ ←$ [N ]
03 s′resp ←$ [S ] �G¬sk

11,b-G¬sk
13,b

04 for n ∈ [N ]
05 (pkn , skn)← KG
06 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
07 if ATTACK(sID∗)
08 return 0
09 if |M(sID∗)| 6= 1 ABORT
10 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
11 if corrupted[holder[sID∗init]] ABORT
12 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder" �G¬sk
11,b-G¬sk

13,b
13 if holder[sID∗init] 6= i ′
14 return 0
15 if sID∗resp 6= s′resp
16 return 0 �G¬sk

11,b-G¬sk
13,b

17 return b’

DERinit(sID,M ′ = (ci , c̃))
18 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
19 (i, j) := (holder[sID], peer[sID])
20 (s̃k,mj ,M := (p̃k, cj)) := state[sID]
21 m̃′ := Dec(s̃k, c̃)
22 if i = i ′
23 if m̃′ = ⊥
24 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
25 else
26 if j = i ′
27 K ′ := H3

q(ci , cj , m̃′, i ′, i ′,M ,M ′)
28 else
29 K ′ := H1

q(ci ,mj , m̃′, i ′, j,M ,M ′)
30 else
31 m′i := Dec(ski , ci)
32 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
33 if m̃′ = ⊥
34 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
35 else
36 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
37 else
38 if m̃′ = ⊥
39 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
40 else
41 if j = i ′
42 K ′ := H2

q(m′i , cj , m̃′, i, i ′,M ,M ′)
43 else
44 K := H(m′i ,mj , m̃′, i, j,M ,M ′)
45 sKey[sID] := K
46 received[sID] := M ′

DERresp(sID,M = (p̃k, cj))
47 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"
return ⊥
48 role[sID] := "responder"
49 (j, i) := (holder[sID], peer[sID])
50 mi , m̃ ←$ M
51 ci := Enc(pki ,mi ; G(mi))
52 if sID = s′resp
53 ci ← Enc(pki′) �G¬sk

12,b-G¬sk
13,b

54 if ci ∈ Enc(pki′ ,M;R)
55 ABORT �G¬sk

13,b-G¬sk
13,b

56 c̃ := Enc(p̃k, m̃; G(m̃))
57 M ′ := (ci , c̃)
58 if j = i ′
59 if i = i ′
60 K ′ := H3

q(ci , cj , m̃, i ′, i ′,M ,M ′)
61 else
62 K ′ := H2

q(mi , cj , m̃, i, i ′,M ,M ′)
63 else
64 m′j := Dec(skj , cj)
65 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
66 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
67 else
68 if i ′ = i
69 K ′ := H1

q(ci ,m′j , m̃, i ′, j,M ,M ′)
70 else
71 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
72 sKey[sID] := K ′
73 (received[sID], sent[sID]) := (M ,M ′)
74 return M ′

TEST(sID) �only one query
75 sID∗ := sID
76 if sKey[sID∗] = ⊥
77 return ⊥
78 K∗0 := sKey[sID∗] �G¬sk

10,b-G¬sk
13,b

79 K∗0 ←$ K �G¬sk
13,0

80 K∗1 ←$ K
81 return K∗b

Figure 29: Games G¬sk
10,b - G¬sk

13,b for case (¬sk) of the proof of Lemma 2. Random oracles G and H remain
as in game G¬sk

10,b.

encryption ci ← Enc(pki′). Consider the adversaries A¬sk
DS,b given in Figure 30. The running times are the
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same as in case (¬st), see Equation (6), page 48:

Time(A¬sk
DS,b) ≤ Time(B) + S · (Time(KG) + 3 · Time(Enc) + 2 · Time(Dec)) + qH + qG + 4S

≈ Time(B) .

Since each adversary A¬sk
DS,b perfectly simulates game G¬sk

12,b if its input was generated by c ← Enc(pk), and
game G¬sk

11,b if its input c was generated by c := Enc(pk,m; G(m)) for some randomly picked message m,

|Pr[G¬sk
11,b

B ⇒ 1]− Pr[G¬sk
12,b

B ⇒ 1]| = AdvDS
T[PKE,G](A¬sk

DS,b)

for both bits b. Folding A¬sk
DS,0 and A¬sk

DS,1 into one adversary A¬sk
DS yields

|Pr[G¬sk
11,1 ⇒ 1]− Pr[G¬sk

11,0 ⇒ 1]| ≤|Pr[G¬sk
12,1 ⇒ 1]− Pr[G¬sk

12,0 ⇒ 1]|
+ 2 ·AdvDS

T[PKE,G](A¬sk
DS ) .

A¬sk
DS,b
|H′〉,|Hq〉,|G〉(pk, c∗)

01 cnt, sID∗ := 0
02 i ′ ←$ [N ]
03 s′resp ←$ [S ]
04 for n ∈ [N ] \ {i ′}
05 (pkn , skn)← KG
06 (pki′ , ski′) := (pk,⊥)
07 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
08 if ATTACK(sID∗)
09 return 0
10 if |M(sID∗)| 6= 1 ABORT
11 Pick sID∗init ∈ {sID∗, sID′} s. th.

role[sID∗init] = "initiator"
12 if corrupted[holder[sID∗init]] ABORT
13 Pick sID∗resp ∈ {sID∗, sID′} s. th.

role[sID∗resp] = "responder"
14 if holder[sID∗init] 6= i ′
15 return 0
16 if sID∗resp 6= s′resp
17 return 0
18 return b’

DERresp(sID,M = (p̃k, cj))
19 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"
20 return ⊥
21 role[sID] := "responder"
22 (j, i) := (holder[sID], peer[sID])
23 mi , m̃ ←$ M
24 ci := Enc(pki ,mi ; G(mi))
25 if sID = s′resp
26 ci := c∗
27 c̃ := Enc(p̃k, m̃; G(m̃))
28 M ′ := (ci , c̃)
29 if j = i ′
30 if i = i ′
31 K ′ := H3

q(ci , cj , m̃, i ′, i ′,M ,M ′)
32 else
33 K ′ := H2

q(mi , cj , m̃, i, i ′,M ,M ′)
34 else
35 m′j := Dec(skj , cj)
36 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
37 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
38 else
39 if i ′ = i
40 K ′ := H1

q(ci ,m′j , m̃, i ′, j,M ,M ′)
41 else
42 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
43 sKey[sID] := K ′
44 (received[sID], sent[sID]) := (M ,M ′)
45 return M ′

Figure 30: Adversaries A¬sk
DS,b for case (¬sk) of the proof of Lemma 2, with oracle access to |H′〉, |Hq〉 and

|G〉. All oracles except for DERresp and CORRUPT are defined as in game G¬sk
11,b (see Figure 29).

Game G¬sk
13,0. In game G¬sk

13,0, we abort in line 55 if the fake ciphertext ci that was picked during execution
of DERresp(s′resp) lies within the range of encryption under pki′ , i.e., if ci ∈ Enc(pki′ ,M;R). Since PKE
is εdis-disjoint,

|Pr[G¬sk
12,1 ⇒ 1]− Pr[G¬sk

12,0 ⇒ 1]| ≤ |Pr[G¬sk
13,1 ⇒ 1]− Pr[G¬sk

13,0 ⇒ 1]|+ 2 · εdis .
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Game G¬sk
13,0. In game G¬sk

13,0, we change oracle TEST in line 79 such that it returns a random value
instead of returning sKey[sID∗]. Since games G¬sk

12,1 and G¬sk
13,0 are equal,

|Pr[G¬sk
13,1 ⇒ 1]− Pr[G¬sk

13,0 ⇒ 1]| = |Pr[G¬sk
13,0 ⇒ 1]− Pr[G¬sk

12,0 ⇒ 1]| .

It remains to upper bound |Pr[G¬sk
13,0 ⇒ 1] − Pr[G¬sk

12,0 ⇒ 1]|. B cannot distinguish the value K∗0 =
sKey[sID∗] that is returned by TEST(sID∗) from random in game G¬sk

12,0 unless it obtains K∗0 (either
classically or contained in a quantum answer) at some point other than during the calling of TEST. This
means obtaining K∗0 by queries to REVEAL or to H.

We will first make explicit how the key is defined: Let j∗ denote the peer of sID∗init. Let m∗j denote
the randomly chosen message with encryption c∗j := Enc(pkj∗ ,m∗j ; G(m∗j )) that was sampled during
execution of INIT(sID∗init). Let (p̃k∗, s̃k∗) denote the key pair that was sampled during execution of
INIT(sID∗init). Furthermore, let c∗i denote the fake ciphertext that was sampled under pki′ during
execution of Derresp(sID∗resp) (Figure 29, line 53) and let m̃∗ denote the randomly chosen message with
encryption c̃∗ := Enc(p̃k, m̃∗; G(m̃∗)) that was picked during execution of DERresp(sID∗resp).

In the case that sID∗ is a "responder" session,

K∗0 =


H3

q(c∗i , c∗j , m̃∗, i ′, i ′, (p̃k∗, c∗j ), (c∗i , c̃∗)) j∗ = i ′

H′R(m∗i , c∗j , m̃∗, i ′, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) j∗ 6= i ′ and (m′j = ⊥ or Enc(pkj∗ ,m′j) 6= c∗j )
H1

q(c∗i ,m′j , m̃∗, i ′, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) o.w.
,

where m′j := Dec(skj∗ , c∗j ). In the case that sID∗ is an "initiator" session, we have

K∗0 =


H′L1(c∗i ,m∗j , c̃∗, p̃k∗, i ′, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) m̃′ = ⊥ or c̃∗ 6= Enc(p̃k, m̃′; G(m̃′))
H3

q(c∗i , c∗j , m̃′, i ′, i ′, (p̃k∗, c∗j ), (c∗i , c̃∗)) c̃∗ = Enc(p̃k, m̃′; G(m̃′)) and j∗ = i ′

H1
q(c∗i ,m∗j , m̃′, i ′, j∗, (p̃k∗, c∗j ), (c∗i , c̃∗)) o.w.

,

where m′i := Dec(ski′ , c∗i ) and m̃′ := Dec(s̃k, c̃∗).
With an argument similar to case (¬st), we can show that none of the quantum answers of |H〉 could

contain the session key: In any of the cases, to trigger a query to |Hq〉 such that its answer contains K0,
B would need to come up with a message m such that Enc(pki′ ,m; G(m)) = c∗i . Since we abort if c∗i lies
in the range of Enc(pki′ ,−;−), this is impossible.

Next, we will argue that B obtains K∗0 by a query to REVEAL with negligible probability, no matter
if sID∗ is an "initiator" session, or if sID∗ is a "responder" session: B would have to derive the same
session key by recreating the test session. (Recall that recreating the key on the other side would result
in creation of an additional matching session, and hence, in an abort.)

We first consider the case that sID∗ is an "initiator" session: To obtain K∗0 via recreation, B would
have to establish and initialize another "initiator" session s 6= sID∗ with holder i∗ and peer j∗. The final
call to DERinit could only result in the same key if INIT(s) had computed the same message M as
sID∗. This means that it picked the same ephemeral key p̃k∗ as INIT(sID∗init), and additionally, some
message mj such that mj encrypts to c∗j , happening with probability at most (S − 2) · µ(KG) · µ(Enc).
Now assume that sID∗ is a "responder" session. To obtain K∗0 via recreation, B would have to establish
and derive another "responder" session s 6= sID∗ with holder j∗ and peer i ′. DERresp(s) will only derive
the same key as DERresp(sID∗resp) if DERresp(s)computed the same message M ′ as sID∗. This means
that in particular, it picked some message mi such that mi encrypts to c∗i . Since we abort if c∗i lies in the
range of Enc(pki′ ,−;−), this is impossible. Hence, we can upper bound the probability of recreation, and
therefore, the game distance, by

|Pr[G¬sk
13,0 ⇒ 1]− Pr[G¬sk

12,0 ⇒ 1]| ≤ (S − 2) · µ(KG) · µ(Enc) .

Collecting the probabilities, we obtain

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]|
≤ 2 · SN ·AdvDS

T[PKE,G](A¬sk
DS ) + 32N · (qG + 2qH + 3S)2 · δ

+ 2 · SN · εdis + S2 ·N · µ(KG) · µ(Enc) ,

the upper bound we claimed in equation (4).
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E Proof of Lemma 3

Tampering with the protocol (M(sID∗) = ∅). Recall that we are proving an upper bound for
|Pr[IND-StAAB

1 ⇒ 1 ∧M(sID∗) = ∅] − Pr[IND-StAAB
0 ⇒ 1 ∧M(sID∗) = ∅]|. Therefore, we will first

enforce that indeed, we only need to consider the case where M(sID∗) = ∅. Consider the sequence of
games given in Figure 31.

GAMES G0,b - G1,b
01 cnt, sID∗ := 0
02 for n ∈ [N ]
03 (pkn , skn)← KG
04 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
05 if ATTACK(sID∗)
06 return 0
07 if M(sID∗) 6= ∅ ABORT �G1,b
08 return b′

INIT(sID)
09 if holder[sID] = ⊥

or sent[sID] 6= ⊥ return ⊥
10 role[sID] := "initiator"
11 i := holder[sID]
12 j := peer[sID]
13 mj ←$ M
14 cj := Enc(pkj ,mj ; G(mj))
15 (p̃k, s̃k)← KG
16 M := (p̃k, cj)
17 state[sID] := (s̃k,mj ,M )
18 sent[sID] := M
19 return M

DERresp(sID,M = (p̃k, cj))
20 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator" return ⊥
21 role[sID] := "responder"
22 (j, i) := (holder[sID], peer[sID]
23 mi , m̃ ←$ M
24 ci := Enc(pki ,mi ; G(mi))
25 c̃ := Enc(p̃k, m̃; G(m̃))
26 M ′ := (ci , c̃)
27 m′j := Dec(skj , cj)
28 if m′j = ⊥ or cj 6= Enc(pkj ,m′j ; G(m′j))
29 K ′ := H′R(mi , cj , m̃, i, j, ci ,M ,M ′)
30 else K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
31 sKey[sID] := K ′
32 (received[sID], sent[sID]) := (M ,M ′)
33 return M ′

DERinit(sID,M ′ = (ci , c̃))
34 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
35 (i, j) := (holder[sID], peer[sID])
36 (s̃k,mj ,M := (p̃k, cj)) := state[sID]
37 m′i := Dec(ski , ci)
38 m̃′ := Dec(s̃k, c̃)
39 if m′i = ⊥ or ci 6= Enc(pki ,m′i ; G(m′i))
40 if m̃′ = ⊥
41 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
42 else
43 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
44 else if m̃′ = ⊥
45 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
46 else K := H(m′i ,mj , m̃′, i, j,M ,M ′)
47 sKey[sID] := K
48 received[sID] := M ′

Figure 31: Games G0,b - G1,b for case two of the proof of Theorem 3. Helper procedure ATTACK and
oracles TEST, EST, CORRUPT, REVEAL and REV-STATE remains as in the original IND-StAA
game (see Figures 12 and 13).

Games G0,b. Since for both bits b, game G0,b is the original game IND-StAAb,

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]|
= |Pr[GB

0,1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[GB
0,0 ⇒ 1 ∧M(sID∗) = ∅]| .

Games G1,b. Both games G1,b abort in line 07 if M(sID∗) 6= ∅. Since for both bits b it holds that
Pr[GB

1,b ⇒ 1] = Pr[GB
0,b ⇒ 1 ∧M(sID∗) = ∅],

|Pr[GB
0,1 ⇒1 ∧M(sID∗) = ∅]− Pr[GB

0,0 ⇒ 1 ∧M(sID∗) = ∅]|
= |Pr[GB

1,1 ⇒ 1]− Pr[GB
1,0 ⇒ 1]| .
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To upper bound |Pr[GB
1,1 ⇒ 1] − Pr[GB

1,0 ⇒ 1]|, we will examine both the case that role[sID∗] =
"initiator", called case (init), and the case that role[sID∗] = "responder", called case (resp). Since cases
(init) and (resp) are mutually exclusive,

|Pr[GB
1,1 ⇒ 1]− Pr[GB

1,0 ⇒ 1]|
≤ |Pr[GB

1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB
1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|

+ |Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "responder"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "responder"]| .

As discussed below Definition 8, B’s bit only counts in game IND-StAA (and hence, in game G1,b) if
no attack was executed that we ruled out by method ATTACK: Since we examine the case that no
matching session exists, ATTACK returns true if B obtained the test session’s internal state or the
secret key of its peer.
Case (init). Intuition is as follows: While B interacts with "initiator" session sID∗ and could pick message
(ci , c̃) on its own (thereby being able to control both corresponding messages m′j and m̃′), the test session’s
peer (henceforth called j∗) remains uncorrupted throughout the game, and also the test session’s internal
state remains unrevealed. Therefore, at least message m∗j that was randomly picked by INIT(sID∗) can
not be obtained trivially, and therefore, ciphertext c∗j can be faked.

Consider the sequence of games given in Figures 32 and 34: First, we will enforce that indeed, we are
in the case where sID∗ is an "initiator" session. Afterwards, we ensure that the game makes no use of the
peer’s secret key any longer by plugging encryption into the random oracle (in games Ginit

2,b to Ginit
8,b , see

Figure 32). Again, this is the only part of the proof where the correctness error comes into play. Next,
during execution of INIT(sID∗), we replace ciphertext c∗j with a fake ciphertext that gets sampled using
Enc (games Ginit

9,b to Ginit
10,b, see Figure 34, line 26). We show that after those changes, B’s view does not

change with overwhelming probability if we finally change TEST such that it always returns a random
value (game Ginit

12,b, also Figure 34).
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GAMES Ginit
1,b - Ginit

8,b

01 Pick 2q-wise hash f �Ginit
4,b -Ginit

7,b
02 cnt, sID∗ := 0
03 j ′ ←$ [N ]
04 for n ∈ [N ]
05 (pkn , skn)← KG
06 G := Gpkj′ ,skj′ �Ginit

4,b -Ginit
7,b

07 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
08 if ATTACK(sID∗)
09 return 0
10 if M(sID∗) 6= ∅ ABORT
11 if role[sID∗] = "responder"
12 ABORT �Ginit

2,b -Ginit
7,b

13 if peer[sID∗] 6= j ′
14 return 0 �Ginit

3,b -Ginit
8,b

15 return b′

DERinit(sID,M ′ = (ci , c̃))
16 if holder[sID] = ⊥ or state[sID] = ⊥

or sKey[sID] 6= ⊥ return ⊥
17 (i, j) := (holder[sID], peer[sID])
18 (s̃k,mj ,M := (p̃k, cj)) := state[sID]
19 m′j := Dec(ski , ci)
20 m̃′ := Dec(s̃k, c̃)
21 if m′j = ⊥ or ci 6= Enc(pki ,m′j ; G(m′j))
22 if m̃′ = ⊥
23 K := H′L1(ci ,mj , c̃, i, j,M ,M ′)
24 else
25 K := H′L2(ci ,mj , m̃′, i, j,M ,M ′)
26 if i = j ′ and j 6= j ′
27 K ′ := H1

q(ci ,mj , m̃′, j ′, i,M ,M ′) �Ginit
7,b -

Ginit
8,b

28 if i = j = j ′
29 K ′ := H3

q(ci , cj , m̃′, j ′, i,M ,M ′) �Ginit
7,b -

Ginit
8,b

30 else
31 if m̃′ = ⊥
32 K := H′L3(m′i ,mj , c̃, i, j,M ,M ′)
33 if i = j ′
34 K := H′L1(ci ,mj , c̃, i, j,M ,M ′) �Ginit

5,b -
Ginit

8,b
35 else
36 K := H(m′i ,mj , m̃′, i, j,M ,M ′)
37 if i = j ′ and j 6= j ′
38 K ′ := H1

q(ci ,mj , m̃′, j ′, i,M ,M ′) �Ginit
6,b -

Ginit
8,b

39 if j = j ′ and i 6= j ′
40 K ′ := H2

q(m′i , cj , m̃′, i, j ′M ,M ′) �Ginit
6,b -

Ginit
8,b

41 if i = j = j ′
42 K ′ := H3

q(ci , cj , m̃′, j ′, i,M ,M ′) �Ginit
6,b -

Ginit
8,b

43 sKey[sID] := K
44 received[sID] := M ′

DERresp(sID,M = (p̃k, cj))
45 if holder[sID] = ⊥ or sKey[sID] 6= ⊥

or role[sID] = "initiator"return ⊥
46 role[sID] := "responder"
47 (j, i) := (holder[sID],peer[sID])
48 mi , m̃ ←$ M
49 ci := Enc(pki ,mi ; G(mi))
50 c̃ := Enc(p̃k, m̃; G(m̃))
51 M ′ := (ci , c̃)
52 m′j := Dec(skj , cj)
53 if m′j = ⊥

or cj 6= Enc(pkj ,m′j ; G(m′j))
54 K ′ := H′R(mi , cj , m̃, i, j,M ,M ′)
55 if j = j ′ and i 6= j ′
56 K ′ := H2

q(mi , cj , m̃, i, j ′M ,M ′) �Ginit
7,b -G¬sk

9,b
57 if i = j = j ′
58 K ′ := H3

q(ci , cj , m̃, j ′, i,M ,M ′) �Ginit
7,b -G¬sk

9,b
59 else
60 K ′ := H(mi ,m′j , m̃, i, j,M ,M ′)
61 if i = j ′ and j 6= j ′
62 K ′ := H1

q(ci ,m′j , m̃, j ′, i,M ,M ′) �Ginit
6,b -Ginit

8,b
63 if j = j ′ and i 6= j ′
64 K ′ := H2

q(mi , cj , m̃, i, j ′M ,M ′) �Ginit
6,b -Ginit

8,b
65 if i = j = j ′
66 K ′ := H3

q(ci , cj , m̃, j ′, i,M ,M ′) �Ginit
6,b -Ginit

8,b
67 sKey[sID] := K ′
68 (received[sID], sent[sID]) := (M ,M ′)
69 return M ′

Gpkj′ ,skj′ (m)
70 r := Sample(R \Rbad(pkj′ , skj′ ,m); f (m))
71 return r

H(m1,m2,m3, i, j,M ,M ′) �Ginit
6,b -Ginit

8,b

72 if i = j ′ and j 6= j ′
73 return H1

q(Enc(pkj′ ,m1; G(m1)),m2,m3, i, j,M ,M ′)
74 if j = j ′ and i 6= j ′
75 return H2

q(m1,Enc(pkj′ ,m2; G(m2)),m3, i, j,M ,M ′)
76 if i = j = j ′
77 return H3

q(Enc(pkj′ ,m1; G(m1)),Enc(pkj′ ,m2; G(m2)),m3, i, j,M ,M ′)
78 return H′(m1,m2,m3, i, j,M ,M ′)

Figure 32: Games Ginit
1,b - Ginit

8,b for case (init) of the proof of Lemma 3. Helper procedure ATTACK and
oracles INIT, TEST, EST, REVEAL and REV-STATE remain as in the original IND-StAA game (see
Figure 12 and Figure 13, pages 21 and 22).

Game Ginit
1,b . Since game Ginit

1,b is equal to game G1,b,

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|

= |Pr[Ginit
1,1

B ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[Ginit
1,0

B ⇒ 1 ∧ role[sID∗] = "initiator"]| .

Games Ginit
2,b . Both games Ginit

2,b abort in line 12 if role[sID∗] = "responder". Since for both bits b it holds
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that Pr[Ginit
1,b

B ⇒ 1 ∧ role[sID∗] = "initiator"] = Pr[Ginit
2,b

B ⇒ 1],

|Pr[Ginit
1,1

B ⇒ 1∧role[sID∗] = "initiator"]− Pr[Ginit
1,0

B ⇒ 1 ∧ role[sID∗] = "initiator"]|
=|Pr[Ginit

2,1 ⇒ 1]− Pr[Ginit
2,0 ⇒ 1]| .

The first goal is not to have to make use of the test session’s peer’s secret key any longer. Since peer
j∗ = peer[sID∗] is not fixed until B issues the TEST query, we first add a guess j ′. Afterwards, we patch
encryption into H for the first two messages, and even out derivation for ciphertexts with decryption
failure and for ciphertexts without. Like in case (¬sk), these changes do not affect B’s view unless it is
able to distinguish random oracle G from an oracle Gpk,sk that only samples randomness under which
decryption never fails, allowing for a reduction to game GDPB.
Games Ginit

3,b . In games Ginit
3,b , one of the parties is picked at random in line 03, and the games return 0

in line 14 if any other party j ′ was picked than the test session’s peer.

Pr[Ginit
2,b

B ⇒ 1] = N · Pr[Ginit
3,b

B ⇒ 1] .

To prepare getting rid of skj′ , we will first modify random oracle G such that it renders PKE perfectly
correct for key pair (pkj′ , skj′).
Game Ginit

4,b . In game Ginit
4,b , we enforce that no decryption failure with respect to key pair (pkj′ , pkj′) will

occur: We replace random oracle G with Gpkj′ ,skj′ in line 06, where Gpkj′ ,pkj′ is defined in line 70. To upper
bound |Pr[Ginit

3,b
B ⇒ 1]− Pr[Ginit

4,b
B ⇒ 1]| for each bit b, we construct (unbounded, quantum) adversaries

Cb against the generic distinguishing problem with bounded probabilities GDPBλ in Figure 33, issuing
at most qG + 3S queries to |F〉. With the same analysis as in our proofs for cases (¬st) and (¬sk)(see
pages 44 and 54),

|Pr[Ginit
3,b

B ⇒ 1]− Pr[Ginit
4,b

B ⇒ 1]| = |Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ,

and according to Lemma 4,

Pr[GDPBCb

λ,1 = 1]− Pr[GDPBCb

λ,0 = 1]| ≤ 8 · (qG + 3S + 1)2 · δ .

Cb
1 = Db

1
01 (pk, sk)← KG
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

G(m)
05 if F(m) = 0
06 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
07 else
08 G(m) := Sample(Rbad(pk, sk,m); f (m))
09 return G(m)

Cb
2
|F〉, Db

2
|F〉

10 cnt, sID∗ := 0
11 j ′ ←$ [N ]
12 for n ∈ [N ]
13 (pkn , skn)← KG
14 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
15 if ATTACK(sID∗)
16 return 0
17 if |M(sID∗)| 6= 1 ABORT
18 Pick sID∗init ∈ {sID∗, sID′}

s. th. role[sID∗init] = "initiator"
19 if corrupted[holder[sID∗init]] ABORT
20 if holder[sID∗init] 6= j ′
21 return 0
22 return b’

Figure 33: Unbounded quantum adversaries Cb and Db, executed in game GDPBδ(pk,sk), for case (¬sk) of
the proof of Lemma 2. The adversaries only differ in their definition of DERresp, DERinit and H: For
adversaries Cb, DERresp, DERinit and H are defined as in game Ginit

3,b , see Figure 32, while for adversaries
Db, DERresp and DERinit and H are defined as in gameGinit

7,b (also Figure 32).

Recall that the goal is to simulate the game without knowledge of skj′ . To this end, we will first
change the key derivation procedure DERinit for holder j ′ as follows: If ciphertext c̃ already induces
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decryption failure, we will not have to use skj′ any more to check whether cj induces de- or reencryption
failure as well.
Games Ginit

5,b . In both games Ginit
5,b , we change oracle DERinit in line 34 for session holder j ′ as follows:

Whenever c̃ does not decrypt to a message m̃′ s. th. c̃ = Enc(p̃k, m̃′,G(m̃′)), the session key is defined as
K := H′L1(ci ,mj , c̃, i, j,M ,M ′). (Before this change we let K := H′L3(m′i ,mj , c̃, i, j,M ,M ′) in the case that
c̃ fails to decrypt, but ci decrypts correctly.) Due to the same argument as for games G¬sk

6,b (that the
cases are logically distinct, see page 54), B’s view does not change and

Pr[Ginit
4,b

B ⇒ 1] = Pr[Ginit
5,b

B ⇒ 1] .

In the next game, we change key definition of DERinit if both ciphertexts de- and reencrypt correctly,
and key definition of DERresp if cj de-and reencrypts correctly. In these cases, we do note use the
decryptions under skj′ , but the ciphertexts themself. Similar to games G¬sk

7,b (see page 55), we "plug in"
encryption into random oracle H whenever j ′ appears as one of the involved parties.
Games Ginit

6,b . In games Ginit
6,b , the random oracle is changed as follows: Instead of picking H uniformly

random, we pick four random oracles H1
q to H3

q, and H′, and define

H(m1,m2,m3, i, j,M ,M ′)

:=


H1

q(Enc(pkj′ ,m1; G(m1)),m2,m3, j ′, j,M ,M ′) i = j ′ ∧ j 6= j ′
H2

q(m1,Enc(pkj′ ,m2; G(m2)),m3, i, j ′,M ,M ′) i 6= j ′ ∧ j = j ′
H3

q(Enc(pkj′ ,m1; G(m1)),Enc(pkj′ ; G(m2)),m2,m3, j ′, j,M ,M ′) i = j = j ′
H(m1,m2,m3, i, j,M ,M ′) o.w.

,

see lines 72 to 78. Again, since G only samples from good randomness, encryption under public key pkj′
is rendered perfectly correct and hence, injective. Since encryption under public key pkj′ is injective, H
still is uniformly random.

Like in games G¬sk
7,b , we also make the change of H explicit in the derivation oracles (see lines 62 to 66

and lines 38 to 42). Due to the same argument as for games G¬sk
7,b (since mi encrypts to ci , or respectively,

mj encrypts to ci , and we are in the cases where m′j reencrypts to cj , or respectively, m′i reencrypts to ci ,
see page 55), all changes are purely conceptual and

Pr[Ginit
5,b

B ⇒ 1] = Pr[Ginit
6,b

B ⇒ 1] .

The final step to get rid of skj′ is to even out the key derivation ciphertexts that are problematic with
respect to secret key skj′ : Similar to games G¬sk

8,b (see page 57), we also use H1
q to H3

q if a ciphertext fails
to de-or reencrypt under skj′ , instead of using the implicit reject oracles.
Games Ginit

7,b . In games Ginit
7,b , we change DERresp in lines 56 to 58 such that if cj fails to de- or reencrypt

and j ′ is the session’s holder, the session key is defined relative to the random oracles H2
q or H3

q instead of
rejecting implicitly, just as if cj had reencrypted correctly. Likewise, we change DERinit in lines 27 to 29
such that if ci fails to de- or reencrypt and j ′ is the session’s holder, but ciphertext c̃ does not decrypt to
⊥, the session key is defined relative to the random oracles H1

q or H3
q instead of rejecting implicitly, just

as if ci had reencrypted correctly. Again, B could only tell the games apart by either

• establishing and revealing two matching sessions such that the keys mismatched in the previous
due to an implicit reject, while in game Ginit

7,b , this difference is evened out by the changes described
above, or by

• establishing a session such that its key resulted from an implicit reject in the previous game, while
the key can be linked to random oracle H in game Ginit

7,b .

Due to the same argument as for games G¬sk
8,b (Gpkj′ ,skj′ only samples good randomness, hence all

mismatching keys are kept and not linked to random oracle values), see page 57, B’s view is identical in
both games and

Pr[Ginit
6,b

B ⇒ 1] = Pr[Ginit
7,b

B ⇒ 1] .
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Game Ginit
8,b . In game Ginit

8,b , we switch back to using G ←$ RM instead of Gpkj′ ,skj′ . With the same
reasoning as for the gamehop from game Pr[Ginit

3,b
B ⇒ 1] to Pr[Ginit

4,b
B ⇒ 1],

|Pr[Ginit
7,b

B ⇒ 1]− Pr[Ginit
8,b

B ⇒ 1]| = |Pr[GDPBD′
λ,0 = 1]− Pr[GDPBD′

λ,1 = 1]|
≤ 8 · (qG + 2qH + 3 · S)2 · δ ,

where adversaries Db also are given in Figure 33.
To upper bound |Pr[Ginit

8,1 ⇒ 1]− Pr[Ginit
8,0 ⇒ 1]|, consider the sequence of games given in Figure 34.

GAMES Ginit
8,b -Ginit

12,b

01 cnt, sID∗ := 0
02 j ′ ←$ [N ]
03 for n ∈ [N ]
04 (pkn , skn)← KG
05 s′ ←$ [S ] �Ginit

9,b -Ginit
12,b

06 b′ ← BO,|G〉,|H〉((pkn)n∈[N])
07 if ATTACK(sID∗)
08 return 0
09 if M(sID∗) 6= ∅ ABORT
10 if role[sID∗] = "responder"
11 ABORT
12 if peer[sID∗] 6= j ′
13 return 0
14 if peer[sID∗] 6= j ′
15 return 0
16 if sID∗ 6= s′
17 return 0 �Ginit

9,b -Ginit
12,b

18 return b′

INIT(sID)
19 if holder[sID] = ⊥ or sent[sID] 6= ⊥
20 return ⊥
21 role[sID] := "initiator"
22 i := holder[sID], j := peer[sID]
23 mj ←$ M
24 cj := Enc(pkj ,mj ; G(mj))
25 if sID = s′
26 cj ← Enc(pkj′) �Ginit

10,b-Ginit
12,b

27 if cj ∈ Enc(pkj′ ,M;R)
28 ABORT �Ginit

11,b-Ginit
12,b

29 (s̃k, p̃k)← KG
30 M := (p̃k, cj)
31 state[sID] := (s̃k,mj ,M )
32 sent[sID] := M
33 return M

TEST(sID) �only one query
34 sID∗ := sID
35 if sKey[sID∗] = ⊥ return ⊥
36 K∗0 := sKey[sID∗] �Ginit

8,b -Ginit
10,b

37 K∗0 ←$ K �Ginit
12,0

38 K∗1 ←$ K
39 return K∗b

Figure 34: Games Ginit
8,b - Ginit

12,b for case (init) of the proof of Lemma 3. All oracles except for INIT and
TEST remain as in game Ginit

8,b (see Figure 32).

We stress that from game Ginit
8,b on, none of the oracles uses skj′ any longer: DERresp and DERinit

were changed accordingly, B would trivially lose if it ever queried CORRUPT on j ′. Since we want to
replace the test session’s ciphertext cj with a fake encryption, we first have to add a guess for sID∗.
Games Ginit

9,b . In games Ginit
9,b , one of the sessions that gets established during execution of B is picked at

random in line 05, and the game returns 0 in line 17 if any other session s′ was picked than test session
sID∗.

Pr[Ginit
8,b

B ⇒ 1] = S · Pr[Ginit
9,b

B ⇒ 1] .

Games Ginit
10,b. In games Ginit

10,b, oracle INIT is changed in line 26 such that for s′, cj is no longer
a ciphertext of the form cj := Enc(pkj ,mj ; G(mj)) for some randomly drawn message mj , but a fake
encryption cj ← Enc(pkj′). Consider the adversaries Ainit

DS,b given in Figure 35. The running time is the
same as in case (¬st), see Equation (6):

Time(Ainit
DS,b) ≤ Time(B) + S · (Time(KG) + 3 · Time(Enc) + 2 · Time(Dec)) + qH + qG + 4S

≈ Time(B) .

Since each adversary Ainit
DS,b perfectly simulates game Ginit

10,b if its input was generated by c ← Enc(pk), and
game Ginit

9,b if its input c was generated by c := Enc(pk,m; G(m)) for some randomly picked message m,

|Pr[Ginit
9,b ⇒ 1]− Pr[Ginit

10,b ⇒ 1]| = AdvDS
T[PKE,G](Ainit

DS,b) ,
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for both bits b. Folding Ainit
DS,0 and Ainit

DS,1 into one adversary Ainit
DS yields

|Pr[Ginit
9,1 ⇒ 1]− Pr[Ginit

9,0 ⇒ 1]| ≤|Pr[G¬sk
10,1 ⇒ 1]− Pr[G¬sk

10,0 ⇒ 1]|
+ 2 ·AdvDS

T[PKE,G](A¬sk
DS ) .

Ainit
DS,b
|H′〉,|Hq〉,|G〉(pk, c)

01 cnt, sID∗ := 0
02 j ′ ←$ [N ]
03 s′ ←$ [S ]
04 for n ∈ [N ] \ {j ′}
05 (pkn , skn)← KG
06 (pkj′ , skj′) := (pk,⊥)
07 b′ ← BO,|RO〉(pk1, · · · , pkN )
08 if ATTACK(sID∗)
09 return 0
10 if M(sID∗) 6= ∅ ABORT
11 if role[sID∗] = "responder"
12 ABORT
13 if peer[sID∗] 6= j ′ return 0
14 if peer[sID∗] 6= j ′ return 0
15 if sID∗ 6= s′ return 0
16 return b’

CORRUPT(i ∈ [N ] \ {j ′})
17 if corrupted[i] return ⊥
18 corrupted[i] := true
19 return ski

INIT(sID)
20 if holder[sID] = ⊥
21 return ⊥
22 if sent[sID] 6= ⊥
23 return ⊥
24 role[sID] := "initiator"
25 i := holder[sID]
26 j := peer[sID]
27 mj ←$ M
28 cj := Enc(pkj ,mj ; G(mj))
29 if sID = s′
30 cj := c
31 (s̃k, p̃k)← KG
32 M := (p̃k, cj)
33 state[sID] := (s̃k,mj ,M )
34 sent[sID] := M
35 return M

Figure 35: Adversaries Ainit
DS,b for case (init) of the proof of Lemma 3, with oracle access to |H′〉, |Hq〉 and

|G〉. All oracles except for INIT and CORRUPT are defined as in game Ginit
9,b (see Figure 34).

Game Ginit
11,b. In game Ginit

11,b, we abort in line 28 if the fake ciphertext cj that was picked during execution
of INIT(s′init) lies within the range of encryption under pkj′ , i.e., if cj ∈ Enc(pkj′ ,M;R). Since PKE is
εdis-disjoint,

|Pr[Ginit
10,1 ⇒ 1]− Pr[Ginit

10,0 ⇒ 1]| ≤ |Pr[Ginit
11,1 ⇒ 1]− Pr[Ginit

11,0 ⇒ 1]|+ 2 · εdis .

Game Ginit
12,b0. In game Ginit

12,0, we change oracle TEST in line 37 such that it returns a random value
instead of sKey[sID∗]. Again,

|Pr[Ginit
10,1 ⇒ 1]− Pr[Ginit

10,0 ⇒ 1]| = |Pr[Ginit
12,0

B ⇒ 1]− Pr[Ginit
11,0

B ⇒ 1]| .

It remains to upper bound |Pr[Ginit
12,0

B ⇒ 1] − Pr[Ginit
11,0

B ⇒ 1]|, which means upper bounding the
probability that B obtained the test session’s key in game Ginit

11,0 by queries to REVEAL or to H.
Note that similar to previous cases, since both M and M ′ are hashed, B could not create a "responder"

session that derives the same key without creating a match and hence, triggering an abort. Furthermore,
to create an "initiator" session that derives the same key, its initialisation would have to output the same
message M = (p̃k∗, c∗j ) that was returned by the initialisation of sID∗. But since c∗j is a fake encryption
and we abort if c∗j lies within the range of Enc(pkj′ ,−;−), this is impossible.

With an argument similar to the previous cases, we can show that none of the quantum answers of |H〉
could contain the session key: Since the test session’s peer is j ′, encryption is plugged in for the second
argument of H. To trigger a query to |Hq〉 such that its answer contains the key, B would need to come
up with a message m such that Enc(pkj′ ,m; G(m)) = c∗j , which is impossible.

Pr[Ginit
12,0

B ⇒ 1] = Pr[Ginit
11,0

B ⇒ 1] .
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Collecting the probabilities, we obtain

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|
≤ 2 · SN ·AdvDS

T[PKE,G](Ainit
DS ) + 32 ·N · (qG + 2qH + 3S)2 · δ + 2 · SN · εdis .

Case (resp). Intuition is as follows: While B could pick message (cj , p̃k) on its own (thereby being able
to control both mj and m̃), the test session’s peer remains uncorrupted throughout the game. Therefore,
at least message mi (that was randomly picked by DERresp(sID∗, (cj , p̃k))) cannot be computed trivially.
The proof differs from case (init) only in the following way: instead of changing INIT(sID∗) such that it
outputs a fake encryption cj , we change DERresp(sID∗,m) such that it outputs a fake encryption ci . In
the last game, ci does not lie in the range of Enc(pki′ ,−;−)) any more. Therefore, it is impossible to
recreate the test session, hence the key can neither be revealed nor hit by a random oracle query. We
obtain the same upper bound: there exists an adversary Aresp

DS such that

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "responder"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "responder"]|
≤ 2 · SN ·AdvDS

T[PKE,G](A
resp
DS ) + 32 ·N · (qG + 2qH + 3S)2 · δ + 2 · SN · εdis .

Collecting the probabilities, and folding Ainit
DS and Aresp

DS into one adversary A′, we obtain

|Pr[IND-StAAB
1 ⇒ 1 ∧M(sID∗) = ∅]− Pr[IND-StAAB

0 ⇒ 1 ∧M(sID∗) = ∅]|
≤ 4 · SN ·AdvDS

T[PKE,G](A′) + 64 ·N · (qG + qH + 3S)2 · δ + 4 · SN εdis ,

the upper bound bound given in Lemma 3.

F IND-StAA AKE without disjoint simulatability.
Recall that transformation Punc punctures the message space at one message and samples encryptions of
this message as fake encryptions, see Figure 4, and that plugging transformation Punc into transformation
T achieves DS and CPA security from CPA security (see Appendix D):

Corollary F.1 (DS security of TPunc). For all adversaries A issuing at most qG queries to |G〉, there
exist two adversaries B1 and B2 such that

AdvDS
T[Punc[PKE0,m̂],G](A) ≤ AdvIND-CPA

PKE0
(B1) + 2 ·

√
qG ·AdvIND-CPA

PKE0
(B2) +

4q2
G

|M| − 1 ,

and the running time of each adversary is about that of B.

F.1 Proof of Theorem 4
The following theorem establishes that FOAKE ◦ Punc turns IND-CPA security into IND-StAA security, in
the quantum random oracle model, as long as PKE is γ-spread.

Theorem (CCA security of FO 6⊥m ◦ Punc.). Assume PKE0 to be δ-correct and γ-spread, and let m̂ ∈ M.
Let AKE := FOAKE[Punc[PKE, m̂],G,H]. Then, for any IND-StAA adversary B that establishes S sessions
and issues at most qR (classical) queries to REVEAL, at most qG (quantum) queries to random oracle G
and at most qH (quantum) queries to random oracle H, there exist adversaries B1 and B2 such that

AdvIND-StAA
AKE (B) ≤ 2S · (S + 3 ·N ) ·

(
AdvIND-CPA

PKE0
(B1) + 2

√
q ·AdvIND-CPA

PKE0
(B2)

)
+ (S + 3N ) ·

(
8q2 · (S + 4) + S

)
· δ + S · (S + 3N ) · 2−γ

+ S(8q · (S + 3N ) + S2)√
|M| − 1

+ S · (3S2 + 2) · µ(KG) ,

and the running time of B1 and B2 is about that of B.
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Proof. Similar to our KEM proof given in D, we can proceed in any of the cases until just before the last
gamehop, and achieve the upper bounds

|Pr[GB
2,1 ⇒ 1∧¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]|
≤ S2 · |Pr[G¬st

12,0 ⇒ 1]− Pr[G¬st
12,1 ⇒ 1]|+ 2S2 ·AdvIND-CPA

PKE0
(B¬st

1 )

+ 4S2 ·

√
(qG + qH + 3S + 1) ·AdvIND-CPA

PKE0
(B¬st

2 ) + 4(qG + qH + 3S + 1)2

|M| − 1

+ 32 · S · (qG + qH + 3S + 1)2 · δ + 2S2 · µ(KG) ,

|Pr[GB
2,1 ⇒ 1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]|
≤ SN · |Pr[G¬sk

12,1 ⇒ 1]− Pr[G¬sk
12,0 ⇒ 1]|+ 32 ·N · (qG + 2qH + 3 · S + 1)2 · δ

+ 2 · SN ·AdvIND-CPA
PKE0

(B¬sk
1 )

+ 4SN ·

√
(qG + 2qH + 3 · S + 1) ·AdvIND-CPA

PKE0
(B¬sk

2 ) + 4(qG + 2qH + 3 · S + 1)2

|M| − 1 ) ,

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|
≤ SN · |Pr[Ginit

10,1 ⇒ 1]− Pr[Ginit
10,0 ⇒ 1]|+ 2 · SN ·AdvIND-CPA

PKE0
(Binit

1 )

+ 4SN ·

√
(qG + 2qH + 3 · S + 1) ·AdvIND-CPA

PKE0
(Binit

2 ) + 4(qG + 2qH + 3 · S + 1)2

|M| − 1

+ 32 ·N · (qG + 2qH + 3S)2 · δ ,

and

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "responder"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "responder"]|
≤ SN · |Pr[Gresp

10,1 ⇒ 1]− Pr[Gresp
10,0 ⇒ 1]|+ 2 · SN · (AdvIND-CPA

PKE0
(B1)

+ 4SN ·

√
(qG + 2qH + 3 · S + 1) ·AdvIND-CPA

PKE0
(B2) + 4(qG + 2qH + 3 · S + 1)2

|M| − 1

+ 32 ·N · (qG + 2qH + 3S)2 · δ .

Since we do not want to make use of εdis-disjointness, we will use PKE is γ-spread and hence, the
probability that m̂ deterministically encrypts to c∗ is negligible. Switching G to its correctness-inducing
version renders c∗ being hit by any query to H impossible unless c∗ decrypts incorrectly, which happens
with probability δ. We obtain

|Pr[G¬st
12,0 ⇒ 1]− Pr[G¬st

12,1 ⇒ 1]| ≤ 2−γ + (8 · (qG + qH + 3S + 2)2 + 1) · δ + S
|M| − 1 ,

|Pr[G¬sk
12,1 ⇒ 1]− Pr[G¬sk

12,0 ⇒ 1]| ≤ 2−γ + (8 · (qG + qH + 3S + 2)2 + 1) · δ
+ Sµ(KG) · µ(Enc) ,

and

|Pr[Ginit
10,1 ⇒ 1]− Pr[Ginit

10,0 ⇒ 1]|, |Pr[Gresp
10,1 ⇒ 1]− Pr[Gresp

10,0 ⇒ 1]|
≤ 2−γ + (8 · (qG + qH + 3S + 2)2 + 1) · δ .

Collecting the probabilities and letting q := qG + qH + 3S + 2, we obtain

|Pr[GB
2,1 ⇒ 1 ∧ ¬st]− Pr[GB

2,0 ⇒ 1 ∧ ¬st]|

≤ 2S2 ·
(

AdvIND-CPA
PKE0

(B¬st
1 ) + 2

√
q ·AdvIND-CPA

PKE0
(B¬st

2 )
)

+ S · (8q2 · (S + 4) + S) · δ + S2 · (2−γ + 2 · µ(KG)) + S2 · (S + 8q)√
|M| − 1

,
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|Pr[GB
2,1 ⇒1 ∧ ¬sk]− Pr[GB

2,0 ⇒ 1 ∧ ¬sk]|

≤ 2SN ·
(

AdvIND-CPA
PKE0

(B¬sk
1 ) + 2

√
q ·AdvIND-CPA

PKE0
(B¬sk

2 )
)

+ N ·
(
8q2 · (S + 4) + S

)
· δ + SN ·

(
2−γ + S · µ(KG) · µ(Enc) + 8 · q√

|M| − 1

)
,

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "initiator"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "initiator"]|

≤ 2SN ·
(

AdvIND-CPA
PKE0

(Binit
1 ) + 2

√
q ·AdvIND-CPA

PKE0
(Binit

2 )
)

+ N ·
(
8q2 · (S + 4) + S

)
· δ + SN ·

(
2−γ + 8 · q√

|M| − 1

)
,

and

|Pr[GB
1,1 ⇒ 1 ∧ role[sID∗] = "responder"]− Pr[GB

1,0 ⇒ 1 ∧ role[sID∗] = "responder"]|

≤ 2SN ·
(

AdvIND-CPA
PKE0

(Bresp
1 ) + 2

√
q ·AdvIND-CPA

PKE0
(Bresp

2 )
)

+ N ·
(
8q2 · (S + 4) + S

)
· δ + SN ·

(
2−γ + 8 · q√

|M| − 1

)
.

Folding the adversaries, we obtain

|Pr[IND-StAAB
1 ⇒ 1]− Pr[IND-StAAB

0 ⇒ 1]|

≤ 2S · (S + 3 ·N ) ·
(

AdvIND-CPA
PKE0

(B1) + 2
√
q ·AdvIND-CPA

PKE0
(B2)

)
+ (S + 3N ) ·

(
8q2 · (S + 4) + S

)
· δ + S · (S + 3N ) · 2−γ

+ S(8q · (S + 3N ) + S2)√
|M| − 1

+ S · (3S2 + 2) · µ(KG) .
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