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Abstract

Any d-regular graph on n vertices with spectral expansion λ satisfying n = Ω(d3 log(d)/λ)

yields a O
(
λ3/2

d

)
-non-malleable code for single-bit messages in the split-state model.

1 Introduction
A split-state non-malleable code [DPW10] for single-bit messages consists of randomized en-
coding and decoding algorithms (enc,dec). A message m ∈ {0, 1} is encoded as a pair of
strings (L,R) ∈ {0, 1}k × {0, 1}k, such that dec(L,R) = m. An adversary then specifies an
arbitrary pair of functions g, h : {0, 1}k → {0, 1}k. The code is said to be non-malleable
if, intuitively, the message obtained as dec(g(L), h(R)) is “unrelated” to the original mes-
sage m. In particular, to be ε-non-malleable, it is enough [DKO13] to guarantee that when
the message m is chosen uniformly at random and encoded into (L,R), the probability that
dec(g(L), h(R)) = 1 − m is at most 1

2
+ ε. Since their introduction in 2010 [DPW10], split-

state non-malleable codes have been the subject of intense study within theoretical computer
science [DPW10, DKO13, ADL14, CZ14, CGL16, Li17].

In this work, we show that expander graphs immediately give rise to split-state non-
malleable codes for single-bit messages. Specifically, we show that any d-regular graph on
n = 2k nodes with spectral expansion λ satisfying n = Ω(d3 log(d)/λ) yields a O

(
λ3/2

d

)
-

non-malleable code for single-bit messages in the split-state model. Our proof is elementary,
requiring a little more than two (fullsize) pages to prove, having at its heart two nested appli-
cations of the Expander Mixing Lemma. Furthermore, we only need expanders of high degree
(e.g., d = nε), which can be constructed and analyzed easily (see, e.g., [Tre] or the appendix),
yielding 2−Ω(k)-non-malleable codes.

Comparison with Previous Work. Until our work, all known proofs of security for
explicit split-state non-malleable codes have required complex mathematical proofs, and all
known such proofs either directly or indirectly used the mathematics behind constructions of
two-source extractors [DKO13, ADL14, CZ14, CGL16, Li17]. In fact, after constructing the
first non-malleable code in the split-state model Dziembowski, Kazana, and Obremski wrote:
“This brings a natural question if we could show some relationship between the extractors and
the non-malleable codes in the split-state model. Unfortunately, there is no obvious way of
formalizing the conjecture that non-malleable codes need to be based on extractors” [DKO13].
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We thus simultaneously find the first simple, elementary solution to the problem of designing
single-bit non-malleable codes (our proof being approximately one-third the length of the proof
of security of the single-bit non-malleable code of [DKO13]) and answer in the negative the
implicit conjecture of [DKO13]; it is not necessary to base constructions of non-malleable codes
on the theory of extractors.

Our construction of non-malleable codes from expander graphs thus opens up a new line
of attack in the study of split-state non-malleable codes. It is important to keep in mind that
current constructions of non-malleable codes supporting messages of arbitrary length use many
ideas pioneered in the construction of [DKO13], in particular the use of extractors. While we
do not yet know how to generalize our results beyond single-bit messages, we speculate that
further investigation building upon our work will reveal a deeper connection and more powerful
simple constructions based on expanders.

It should be noted that two-source extractors are well-known to exhibit expansion prop-
erties; however, in all previous proofs, much more than mere expansion was used to argue
non-malleability. Indeed previous proofs apply extractors repeatedly; for instance the proof
of [DKO13] uses the extractor property several times (e.g., in equation (22) and using equation
(43) in [DKO13]). Previous proofs also highlight the nontriviality and care that is required
in applying extractors correctly to yield a valid proof of non-malleability (e.g., the paragraph
beginning with “There are two problems with the above argument.” found below equation
(36) of [DKO13]). With respect to the expansion properties of two-source extractors, it is not
surprising that 1-bit non-malleable codes will have some sort of expansion properties. Our con-
tribution is the converse: that good expansion is sufficient for the construction of non-malleable
codes.

2 Preliminaries
We shall assume familiarity with the basics of codes and non-malleable codes. A cursory review
of relevant definitions can be found in the appendix.

Notation 1 (Graphs). A graph G = (V,E) consists of vertices V and edges E ⊂ V × V . In
this exposition every graph is undirected and n = |V | always denotes the number of vertices of
the graph in question.

• For any v ∈ V we denote by N(v) the set of neighbors of v in G.

• For any two subsets S, T ⊆ V we denote by E(S, T ) the set of (directed) edges from S to
T in G. I.e. E(S, T ) = {(v, u) ∈ S × T | (v, u) ∈ E}.

Definition 1 (Spectral Expander). Let G = (V,E) be a d-regular graph, AG be its adjacency
matrix, and λ1 ≥ · · · ≥ λn be the eigenvalues of AG. We say that G is a λ spectral expander if
λ ≥ max{|λ2| , . . . , |λn|}.
Theorem 2 (Expander Mixing Lemma). Suppose that G = (V,E) is a λ spectral expander.
Then for every pair of subsets S, T ⊂ V we have∣∣∣∣|E(S, T )| − d · |S| · |T |

n

∣∣∣∣ ≤ λ√|S| · |T |.
Our results will rely on the following characterization of 1-bit non-malleable codes by Dziem-

bowski, Kazana, and Obremski found in [DKO13].

Theorem 3. Let (enc, dec) be a coding scheme with enc: {0, 1} → X and dec: X → {0, 1}.
Further, let F be a set of functions f : X → X . Then (enc, dec) is ε-non-malleable with respect
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to F if and only if for every f ∈ F ,

Pr
b

u←−{0,1}
(dec(f(enc(b))) = 1− b) ≤ 1

2
+ ε,

where the probability is over the uniform choice of b and the randomness of enc.

3 Results
We first formally introduce our candidate code and then prove that it is a non-malleable code.

3.1 Candidate Code
From a graph we can very naturally construct a coding scheme as follows.

Definition 4 (Graph Code). Let G = (V,E) be a graph. The associated graph code, (encG, decG),
consists of the functions

encG : {0, 1} → V × V, decG : V × V → {0, 1}

which are randomized and deterministic, respectively, and given by

encG(b) =

{
(u, v)

u←− (V × V ) \ E, b = 0,

(u, v)
u←− E, b = 1,

decG(v1, v2) =

{
0, (v1, v2) 6∈ E,
1, (v1, v2) ∈ E.

3.2 Non-Malleability of Expander Graph Codes
Finally, arriving at the core of the matter, we first establish the following lemma casting the
expression of Theorem 3 in terms of graph properties.

Proposition 5. Let G = (V,E) be a graph, functions g, h : V → V be given, and f =
(g, h) : V × V → V × V satisfy f(u, v) = (g(u), h(v)). For the probability that f flips a random
bit encoded by encG, write

T = Pr
b

u←−{0,1}
(decG(f(encG(b))) = 1− b)

where the probability is taken over the randomness of encG and the sampling of b. Then

T =
1

2
+

1

2d(n− d)

∑
(v,u)∈E

(
d
∣∣g−1(v)

∣∣ · ∣∣h−1(u)
∣∣

n
−
∣∣E(g−1(v), h−1(u))

∣∣) .
Proof. For b ∈ {0, 1} denote by Qb the probability

Qb = Pr(decG(f(encG(b))) = 1− b)

taken over the randomness of encG. It is clear that T = Q0+Q1
2

and that by definition

Q0 = Pr
(v,u)

u←−V×V \E
[(g(v), h(u)) ∈ E] , Q1 = Pr

(v,u)
u←−E

[(g(v), h(u)) 6∈ E] .
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First, for b = 0 we see that the number of non-edges that are mapped by f to any given
(v, u) ∈ E is given by

∣∣g−1(v)
∣∣ · ∣∣h−1(u)

∣∣− ∣∣E(g−1(v), h−1(u))
∣∣. There are n(n− d) non-edges

in G so it follows that

Q0 =

∑
(v,u)∈E

∣∣g−1(v)
∣∣ · ∣∣h−1(u)

∣∣− ∣∣E(g−1(v), h−1(u))
∣∣

n(n− d)
.

Second, for b = 1 the number of edges of G that are mapped to non-edges by f is given
by
∑

(v,u)6∈E

∣∣E(g−1(v), h−1(u))
∣∣. Since there are dn edges of G to choose from when encoding

the bit b = 1,

Q1 =

∑
(v,u)6∈E

∣∣E(g−1(v), h−1(u))
∣∣

dn
.

Now, observing that the number of (directed) edges in the graph is dn and that {g−1(v)}v∈V
and {h−1(u)}u∈V are both partitions of V , we get

Q1 =
dn−

∑
(v,u)∈E

∣∣E(g−1(v), h−1(u))
∣∣

dn
= 1−

∑
(v,u)∈E

∣∣E(g−1(v), h−1(u))
∣∣

dn
.

Putting it all together,

T =

∑
(v,u)∈E

∣∣g−1(v)
∣∣ · ∣∣h−1(u)

∣∣− ∣∣E(g−1(v), h−1(u))
∣∣

2n(n− d)
+

1

2
−
∑

(v,u)∈E

∣∣E(g−1(v), h−1(u))
∣∣

2dn

=
1

2
+

1

2d(n− d)

∑
(v,u)∈E

(
d
∣∣g−1(v)

∣∣ · ∣∣h−1(u)
∣∣

n
−
∣∣E(g−1(v), h−1(u))

∣∣) .

We proceed immediately with the main theorem, which concludes the exposition. In order to
keep this presentation short and to the point, more elaborate calculations, which save a few
log-factors, have been placed in the appendix as Theorem 9.

Theorem 6. Let G = (V,E) be d-regular with spectral expansion λ satisfying n = Ω(d3 log(d)4/λ).
Then (encG,decG) is an Õ

(
λ3/2

d

)
-non-malleable code in the split-state model.

Proof. Let f = (g, h) : V × V → V × V be given. By Theorem 3 and Proposition 5 we just
need to show that

R =
1

2d(n− d)
·
∑

(v,u)∈E

(
d
∣∣g−1(v)

∣∣ · ∣∣h−1(u)
∣∣

n
−
∣∣E(g−1(v), h−1(u))

∣∣)

is bounded by Õ
(
λ3/2

d

)
. Define the sets

G1 =
{
v ∈ V |

∣∣g−1(v)
∣∣ > n

d2

}
, H1 =

{
u ∈ V |

∣∣h−1(u)
∣∣ > n

d2

}
,

G2 =
{
v ∈ V |

∣∣g−1(v)
∣∣ ≤ n

d2

}
, H2 =

{
u ∈ V |

∣∣h−1(u)
∣∣ ≤ n

d2

}
,

for i, j ∈ {1, 2} write

Ri,j =
1

2d(n− d)

∑
(v,u)∈E∩(Gi×Hj)

(
d
∣∣g−1(v)

∣∣ · ∣∣h−1(u)
∣∣

n
−
∣∣E(g−1(v), h−1(u))

∣∣) ,
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and observe that R =
∑

1≤i,j≤2 Ri,j .
Consider the case when i = 2. Simply bounding the terms of the form

∣∣g−1(v)
∣∣ · ∣∣h−1(u)

∣∣
by using that each vertex has only d neighbours, we get

R2,1 +R2,2 ≤
1

2n(n− d)

∑
(v,u)∈E∩(G2×V )

∣∣g−1(v)
∣∣ · ∣∣h−1(u)

∣∣
≤ 1

2n(n− d)
· d ·

∑
u∈V

n

d2
·
∣∣h−1(u)

∣∣ =
n

2(n− d)d
.

Thus, R2,1 + R2,2 = O
(
d−1

)
. By symmetry, R1,2 = O

(
d−1

)
. It only remains to show that

R1,1 = Õ
(
λ3/2

d

)
. To this end, partition G1 and H1, respectively, as

Gk1 =
{
v ∈ G1 |

n

2k−1
≥
∣∣g−1(v)

∣∣ > n

2k

}
, Hl

1 =
{
v ∈ H1 |

n

2l−1
≥
∣∣h−1(u)

∣∣ > n

2l

}
for 1 ≤ k, l ≤

⌈
log2

(
d2
)⌉
. Now, focusing on each pair Gk1 and Hl

1, we write

Sk,l =
1

2d(n− d)

∑
(v,u)∈E∩(Gk

1×H
l
1)

(
d
∣∣g−1(v)

∣∣ · ∣∣h−1(u)
∣∣

n
−
∣∣E(g−1(v), h−1(u))

∣∣)

and apply first the mixing lemma then the Cauchy-Schwartz inequality to get

2d(n− d)Sk,l =
∑
v∈Gk

1

d ∣∣g−1(v)
∣∣ ·∑u∈N(v)∩Hl

1

∣∣h−1(u)
∣∣

n
−

∣∣∣∣∣∣E
g−1(v),

⋃
u∈N(v)∩Hl

1

h−1(u)

∣∣∣∣∣∣


≤
∑
v∈Gk

1

λ
√
|g−1(v)| ·

∑
u∈N(v)∩Hl

1

|h−1(u)|

≤ λ

√
n

2k−1
· n

2l−1
·
∑
v∈Gk

1

√∣∣N(v) ∩Hl
1

∣∣
≤ 2λn · 2−

l+k
2 ·

√∣∣Gk1∣∣ ·√∣∣E(Gk1 , H
l
1)
∣∣.

We use the fact that
∣∣Gk1∣∣ ≤ 2k,

∣∣Hl
1

∣∣ ≤ 2l, apply the mixing lemma to the last factor, and
wield Jensen’s inequality on the arising square root to obtain

d(n− d)Sk,l ≤ λn · 2−
l+k
2 ·

√∣∣Gk1∣∣ ·
√
d ·
∣∣Gk1∣∣ · ∣∣Hl

1

∣∣
n

+ λ
√∣∣Gk1∣∣ · ∣∣Hl

1

∣∣
≤ λ
√

2kdn+ 2
k−l
4 λ3/2n ≤ λ ·

√
d3n+ 2

k−l
4 λ3/2n.

By symmetry of k and l, d(n− d)Sk,l ≤ λ ·
√
d3n+ 2

l−k
4 λ3/2n. Thus,

R1,1 =
∑

1≤k,l≤dlog2(d2)e
Sk,l

≤ O

(
λ log(d)2 ·

√
d√

n

)
+O

(
λ3/2

d

)
·

∑
1≤k,l≤dlog2(d2)e

2−
|k−l|

4

= O

(
log(d)λ3/2

d

)
.
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A Definitions for Split-State Non-Malleable Codes
Here, we recall the basic definition of a split-state non-malleable code due to [DPW10].

Definition 7 (Coding scheme). We define a coding scheme to be a pair of functions (enc, dec).
The encoding function enc: M → X is randomized while the decoding function dec: X →
M∪ {⊥} is deterministic. Further, for all s ∈M the pair satisfies

Pr[dec(enc(s)) = s] = 1

where the probability is taken over the randomness of enc.

Definition 8 (Split State Non-Malleable Code). A coding scheme (enc, dec), enc: M→ L×R
and dec: L × R → M ∪ {⊥}, is ε-non-malleable in the split state model if for every pair of
functions g : L → L, h : R → R and writing f = (g, h) there exists a distribution Df supported
onM∪{∗,⊥} such that for every s ∈M the two random variables defined by the experiments

Asf =
{

(L,R)←enc(s);
Output dec(g(L),h(R))

}
Bsf =

{
s̃←Df ;

If s̃=∗ output s else output s̃

}
have statistical distance at most ε.

B Deliver Us from Log Factors
A more thorough analysis of the sums in the proof of Theorem 6 allows us to get slightly better
bounds. The technicalities are of little interest to the big picture and were hence omitted in
the body of the paper. The addition consists of an alternative ending to the proof of Theorem
6.

Theorem 9. Let G = (V,E) be d-regular with spectral expansion λ satisfying n = Ω(d3 log(d)/λ).
Then (encG, decG) is an O

(
λ3/2

d

)
-non-malleable code in the split-state model.

Proof. At the very end of the proof of Theorem 6, we arrived at

d(n− d)Sk,l ≤ 2−
l+k
2 λn ·

√∣∣Gk1∣∣ ·
√
d ·
∣∣Gk1∣∣ · ∣∣Hl

1

∣∣
n

+ λ ·
√∣∣Gk1∣∣ · ∣∣Hl

1

∣∣.
Applying Jensen’s inequality, we get

Sk,l ≤ O
(

λ√
dn

)
· 2−

l+k
2 ·

∣∣∣Gk1∣∣∣ ·√∣∣Hl
1

∣∣+O

(
λ3/2

d

)
· 2−

l+k
2 · 4

√∣∣Gk1∣∣3 · ∣∣Hl
1

∣∣ (1)

with the functions hidden by the O-notation being independent of k, l.
Now, note that∣∣∣g−1(Gk1)

∣∣∣ ≥ n ·
∣∣Gk1∣∣
2k

∣∣∣h−1(Hl
1)
∣∣∣ ≥ n ·

∣∣Hl
1

∣∣
2l

(2)

and for all k ≤
⌈
log2(d2)

⌉
we have |G

k
1 |

2k/2 ≤ 2d. We shall bound each of the terms of (1)
separately.
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First, write

L =
∑

1≤k,l≤dlog2(d2)e

(
2−

l+k
2 ·

∣∣∣Gk1∣∣∣ ·√∣∣Hl
1

∣∣) .
Using the Cauchy-Schwartz inequality in the second inequality,

L ≤ 2d ·
∑

1≤l≤dlog2(d2)e

√
2−l

∣∣Hl
1

∣∣
≤ O

(
d ·
√

log(d)
)
·
√√√√ ∑

1≤l≤dlog2(d2)e
2−l ·

∣∣Hl
1

∣∣

≤ O
(
d ·
√

log(d)
)
·

√√√√√ ∑
1≤l≤dlog2(d2)e

∣∣h−1(Hl
1)
∣∣

n

= O
(
d ·
√

log(d)
)

since the Hl
1 are disjoint subsets of V . In conclusion,

O

(
λ√
dn

)
·

∑
1≤k,l≤dlog2(d2)e

2−
l+k
2 ·

∣∣∣Gk1∣∣∣ ·√∣∣Hl
1

∣∣ = O

(
λ ·
√
d · log(d)√
n

)

= O

(
λ3/2

d

)
.

Second, let k ≤ l and write t = l − k. We now bound the sum using (2). Write

K =
∑

1≤k<l≤dlog2(d2)e
2−

l+k
2 · 4

√∣∣Gk1∣∣3 · ∣∣Hl
1

∣∣.
Then

K ≤
∑

1≤k<l≤dlog2(d2)e

(
2

k−l
4

n
· 4

√∣∣g−1(Gk1)
∣∣3 · ∣∣h−1(Hl

1)
∣∣)

≤
dlog2(d2)e∑

t=0

2−
t
4

n

dlog2(d2)e∑
l=t

4

√∣∣g−1(Gl−t1 )
∣∣3 · ∣∣h−1(Hl

1)
∣∣


≤
dlog2(d2)e∑

t=0

2−
t
4

n

dlog2(d2)e∑
l=t

∣∣∣g−1(Gl−t1 )
∣∣∣


3/4

·

dlog2(d2)e∑
l=t

∣∣∣h−1(Hl
1)
∣∣∣


1/4
≤
dlog2(d2)e∑

t=0

2−
t
4 = O(1),

where the third inequality is established using Hölder’s inequalty.
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It now follows that ∑
1≤k≤l≤dlog2(d2)e

Sk,l = O

(
λ3/2

d

)
.

By symmetry of k and l,

R1,1 =
∑

1≤k,l≤dlog2(d2)e
Sk,l = O

(
λ3/2

d

)
,

which completes the proof.

C Instantiating Our Construction
Using our results to instantiate an efficient, secure split-state non-malleable code, we require a
family of graphs {Gk}k∈N, where each Gk = (Vk, Ek) is dk-regular with spectral expansion λk,
satisfying the following:

1. The function ε(k) =
λ
3/2
k
dk

is negligible.

2. We have nk = |V (Gk)| = Ω(d3
k log(dk)/λk)

3. Both sampling an edge (u, v)
u←− Ek and sampling a non-edge (u, v)

u←− (Vk×Vk) \Ek can
be done in time polynomial in k.

4. Determining membership of a pair (u, v) ∈ V ×V in E(Gk) can be done deterministically
in time polynomial in k.

Given such a family of graphs it is clear that the corresponding graph code (encGk , decGk ) is
an efficiently computable non-malleable code.

C.1 Instantiation with High-Degree Cayley Graphs
Explicit constructions of such families of graphs do indeed exist. We shall here give an example
from [Tre] from the class of graphs known as Cayley graphs. The construction is as follows.

Definition 10. For p a prime and 1 ≤ t < p let the graph LDp,t have vertex set Ft+1
p and edge

set

E(LDp,t) =
{

(x, x+ (b, ab, a2b, . . . , atb)) | x ∈ Ft+1
p , a, b ∈ Fp

}
,

i.e. x, y ∈ V (LDp,T ) are connected by an edge if and only if there exists a, b ∈ Fp such that
y = x+ (b, ab, a2b, . . . , atb).

It is worth nothing that the graph LDp,t is LDp,t is p2-regular and that it is undirected as
x is connected to y if and only if y is connected to x.

Now, let t = 5 and for each k ∈ N let pk be some k-bit prime. We consider the family of
graphs {LDpk,5}k∈N for our instantiation. In the following, we shall check the criteria from the
beginning of the section point by point.

1. The family of graphs LDp,t has great expander properties.

Theorem 11 (Trevisan [Tre]). For 1 < t < p, the graph LDp,t is a pt-spectral expander.

9



This fact allows us to note that for our particular choice of graphs, ε(k) = (pkt)
3/2

p2
k

< 12√
pk

,

which in fact is 2−Ω(k) and the representation size is O(k) bits.

2. We have Ω
(
d3k log(dk)

λk

)
= Ω(p5 log(p)) such that indeed,

nk = |V (LDpk,5)| = p6 = Ω

(
d3
k log(dk)

λk

)
.

3. Sampling an edge (u, v)
u←− E(LDpk,t) is simply a question of picking x ∈ Ft+1

pk , a, b ∈ Fpk
uniformly at random and then outputting the edge (x, x+ (b, ab, a2b, . . . , atb)).
To pick a non-edge, simply sample two random vertices u, v ∈ Ft+1

pk uniformly at random
and check (with the procedure to be specified below) whether (u, v) ∈ E(LDpk,t). Since for
t > 1 the probability of hitting an edge with such a random choice is ≤ 1/pk, the expected
number of repetitions is constant and hence the procedure takes expected polynomial time.

4. To test membership of some (u, v) ∈
(
Ft+1
pk

)2 in E(LDpk,t), perform the following opera-
tion: Compute x = u − v and write x = (x0, . . . , xt). It is now trival to check whether(

1, x1
x0
, . . . , xt

x0

)
is of the form (1, a, a2, . . . , at).
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