
New Techniques for Obfuscating Conjunctions

James Bartusek∗

Princeton

Tancrède Lepoint†

SRI International

Fermi Ma‡

Princeton

Mark Zhandry§

Princeton

October 2, 2018

Abstract

A conjunction is a function f(x1, . . . , xn) =
∧
i∈S li where S ⊆ [n] and each li is xi or ¬xi.

Bishop et al. (CRYPTO 2018) recently proposed obfuscating conjunctions by embedding them
in the error positions of a noisy Reed-Solomon codeword and encoding the codeword in a group
exponent. They prove distributional virtual black box (VBB) security in the generic group
model for random conjunctions where |S| ≥ 0.226n. While conjunction obfuscation was known
from LWE [WZ17, GKW17], these constructions rely on substantial technical machinery.

In this work, we conduct an extensive study of simple conjunction obfuscation techniques.

• We abstract the Bishop et al. scheme to obtain an equivalent yet more efficient “dual”
scheme that can handle conjunctions over exponential size alphabets. This scheme ad-
mits a straightforward proof of generic group security, which we combine with a novel
combinatorial argument to obtain distributional VBB security for |S| of any size.

• If we replace the Reed-Solomon code with a random binary linear code, we can prove
security from standard LPN and avoid encoding in a group. This addresses an open
problem posed by Bishop et al. to prove security of this simple approach in the standard
model.

• We give a new construction that achieves information theoretic distributional VBB security
and weak functionality preservation for |S| ≥ n − nδ and δ < 1. Assuming discrete log
and δ < 1/2, we satisfy a stronger notion of functionality preservation for computationally
bounded adversaries while still achieving information theoretic security.

∗bartusek.james@gmail.com. This work was done while the author was an intern at SRI International.
†tancrede.lepoint@gmail.com.
‡fermima1@gmail.com. This work was done while the author was an intern at SRI International.
§mzhandry@princeton.edu.

1

Contents

1 Introduction 3
1.1 This Work: Conjunction Obfuscation . 3
1.2 Technical Overview . 5

1.2.1 Interpretation 1: The Primal . 5
1.2.2 Interpretation 2: The Dual . 6
1.2.3 Moving Out of the Exponent . 8
1.2.4 The Reduction to Structured Error . 10
1.2.5 Distributional VBB Security . 10
1.2.6 Information Theoretic Security . 11
1.2.7 Functionality Preservation Notions . 12

1.3 Related Work . 14

2 Preliminaries 15
2.1 Security Notions for Evasive Circuit Obfuscation . 16
2.2 The Generic Group Model . 17
2.3 Learning Parity with Noise . 17

3 Obfuscating Conjunctions in the Generic Group Model 18
3.1 Generic Group Construction . 18
3.2 General Min-Entropy Distributions . 21
3.3 Extension to Larger Alphabets . 23
3.4 Efficiency Improvements . 25

4 Obfuscating Conjunctions from Constant-Noise LPN 26
4.1 Exact Structured Learning Parity with Noise . 27
4.2 Construction . 28
4.3 Security . 29
4.4 Boosting to Strong Functionality Preservation . 30
4.5 Multi-Bit Output . 32

5 Information-Theoretic Security 34
5.1 Construction . 35
5.2 Security . 37
5.3 Computational Functionality Preservation . 41

6 Acknowledgements 44

A Reduction for Structured Error LPN/RLC 51
A.1 Random Linear Code Problems . 51
A.2 Preliminary Lemmas . 52
A.3 Proof of Theorem 9 . 56

B Efficient Evaluation in [BKM+18] and Our Generic Construction 57

C Extending Min-Entropy Arguments to Larger Alphabets 58

2

1 Introduction

Program obfuscation [BGI+01] scrambles a program in order to hide its implementation details,
while still preserving the program’s functionality. Program obfuscation has recently received con-
siderable attention, yielding new constructions [SW14, BZ14, CLTV15, BP15, DGL+16, MPS16]
and demonstrating many applications throughout cryptography [MO14, BFM15, GPS16, CCC+16].

Much of the recent attention on obfuscation focuses on obfuscating general programs. Such
obfuscation is naturally the most useful, but currently the only known constructions are extremely
inefficient and rely on new uncertain complexity assumptions about cryptographic multilinear
maps [GGH13, CLT13, GGH15]. Despite advances in terms of efficiency [AGIS14, AB15, Zim15] and
security [AJ15, MSZ16, LV16, GMM+16, Lin16, AS17, BISW17, LT17, FRS17, MZ18, BGMZ18],
obfuscating general programs remains far from usable.

For some specific functionalities, it is possible to avoid multilinear maps. A series of works have
shown how to obfuscate point functions (i.e., boolean functions that output 1 on a single input) and
hyperplanes [Can97, LPS04, Wee05, CD08, DKL09, GKPV10, CRV10, YZ16, BS16, KY18]. Brak-
erski, Vaikuntanathan, Wee, and Wichs [BVWW16] showed how to obfuscate conjunctions under a
variant of the Learning with Errors (LWE) assumption. More recently it has been shown how to ob-
fuscate a very general class of evasive functions including conjunctions under LWE [GKW17, WZ17].

1.1 This Work: Conjunction Obfuscation

In this work, we primarily consider obfuscating conjunctions. This class of programs has also
been called pattern matching with wildcards [BKM+18], and in related contexts is known as bit-
fixing [BW13].

A conjunction is any boolean function f(x1, . . . , xn) =
∧
i∈S li for some S ⊆ [n], where each

literal li is either xi or ¬xi. This functionality can be viewed as pattern-matching for a pattern
pat ∈ {0, 1, ∗}n, where the ∗ character denotes a wildcard. An input string x ∈ {0, 1}n matches a
pattern pat if and only if x matches pat at all non-wildcard positions. So for example x = 0100

matches pat = *10* but not pat = 1**0.
We are interested in obfuscating the boolean functions fpat : {0, 1}n → {0, 1} which output 1 if

and only if x matches pat. We additionally give obfuscation constructions for two generalizations
of the pattern matching functionality: multi-bit conjunction functions fpat,m which output a secret
message m ∈ {0, 1}` on an accepting input, and conjunctions over arbitrary size alphabets (rather
than just the binary alphabet).

In particular, we consider the notion of distributional virtual black-box obfuscation which guar-
antees that the obfuscation of a pattern drawn from some distribution can be simulated efficiently,
given only oracle access to the truth table of the function defined by the pattern. We consider this
notion of obfuscation in the evasive setting, where given oracle access to a pattern drawn from
the distribution, a polynomial time algorithm cannot find an accepting input except with negli-
gible probability. Thus our goal will be to produce obfuscations that are easily simulatable given
no information about the underlying pattern. This naturally leads us to the goal of producing
obfuscations that are computationally indistinguishable from random bits.

Recently, Bishop, Kowalczyk, Malkin, Pastro, Raykova, and Shi [BKM+18] gave a simple
and elegant obfuscation scheme for conjunctions, which they prove secure in the generic group
model [Sho97]. Unfortunately, they did not prove security relative to any concrete (efficiently fal-
sifiable [Nao03, GW11]) assumption on cryptographic groups. Before their work, obfuscation for

3

conjunctions was already known from LWE as a consequence of lockable obfuscation (also known
as obfuscation for compute-and-compare programs) [WZ17, GKW17]. However, for the restricted
setting of conjunctions, the Bishop et al. [BKM+18] construction is significantly simpler and more
efficient.

In this work we show how to alter the Bishop et al. construction in various ways in order to:

• Simplify the generic group security analysis and improve the size, efficiency, and generality
of the obfuscation.

• Obtain simple conjunction obfuscation under standard assumptions, or even no assumptions
at all.

Review of the [BKM+18] Construction. We first recall the [BKM+18] scheme for obfuscating
a pattern pat ∈ {0, 1, ∗}n. Begin by fixing a field Fq for a prime q exponential in n. Then sample
uniformly random s1, . . . , sn−1 ← Fq and define the polynomial s(t) :=

∑n−1
k=1 skt

k ∈ Fq[t]. Note
that s(t) is a uniformly random degree n− 1 polynomial conditioned on s(0) = 0.

Visualize a 2 × n grid with columns indexed as i = 1, . . . , n and rows indexed as j = 0, 1.
Correspond the ith character in pat with the ith grid column as follows: pati = 0 points to the top
cell, pati = 1 to the bottom cell, and pati = * to both cells. For example, when n = 5 the pattern
pat = 0*01* naturally corresponds to the gray cells in the 2× 5 grid below:

Next, we evaluate the polynomial s(t) at 2i+ j for each gray cell (i, j). For each white cell, we
sample a uniformly random element r2i+j ← Fq. So for pat = 0*01*, the resulting grid would be

s(2) s(4) s(6) r8 s(10)

r3 s(5) r7 s(9) s(11)

If we stop here and simply output these 2n field elements in the clear, we already have a functional
(although insecure) construction. To evaluate whether or not an input x ∈ {0, 1}n matches the
pattern, we read the n field elements corresponding to the bits of x. In our example, if x = 00011

(an accepting input for pat = 0*01*), we read row j = 0 in columns 1, 2, 3, and row j = 1 in
columns 4 and 5:

s(2) s(4) s(6)

s(9) s(11)

An input is accepting precisely when all n = 5 selected elements are evaluations of the random
degree n − 1 = 4 polynomial s(t). Thus, we can evaluate by simply performing a Lagrange in-
terpolation and evaluating the polynomial at s(0), i.e., we generate reconstruction coefficients
L2, L4, L6, L9, L11 ∈ Fq that satisfy

L2p(2) + L4s(4) + L6s(6) + L9s(9) + L11s(11) = s(0)

4

for any degree 4 polynomial s(t). When we perform this reconstruction for an accepting input,
we recover s(0) = 0. If the input is not accepting, say x = 10010 in our example, then at least
one of the n reconstruction points will be a random field element instead of the correct polynomial
evaluation. With overwhelming probability, the reconstructed field element will not be 0, indicating
x did not match pat.

Bishop et al. [BKM+18] observe that these 2n field elements are essentially a noisy Reed-
Solomon codeword with the white grid cells representing error positions. If the number of error
positions is small enough, an attacker can run any Reed-Solomon error correction algorithm to
recover s(t) and learn pat. The key observation of [BKM+18] is that honest functionality only
requires linear operations on the field elements, whereas all known error-correction algorithms for
Reed-Solomon codes are non-linear. Thus, the final step of their construction is to place the 2n
field elements in the exponent of a group G = 〈g〉 of order q. Evaluation is done by performing the
reconstruction in the exponent and accepting if and only if Lagrange reconstruction yields g0. For
security, they prove the following:

Theorem 1 ([BKM+18]). Let Un,w be the uniform distribution over all patterns in {0, 1, ∗}n with
exactly w wildcards. For any w < 0.774n, this construction attains distributional virtual black box
security in the generic group model.

The proof in [BKM+18] is fairly technical and spans over 10 pages. Bishop et al. do not address
whether the scheme actually becomes insecure for 0.774n < w < n− ω(log n), or if the bound is a
limitation of their analysis.1

1.2 Technical Overview

We provide several new interpretations of the [BKM+18] scheme. Through these interpretations,
we are able to obtain improved security, efficiency, and generality, as well as novel constructions
secure under standard cryptographic assumptions.

1.2.1 Interpretation 1: The Primal

Our first observation is that the 2n field elements generated by the [BKM+18] construction can
be rewritten as a product of a Vandermonde-style matrix (henceforth the “Vandermonde matrix”)
and a random vector, plus a certain “error vector.” So if the pattern is pat = 11*0, instead of
writing the elements in grid form as

r2 r4 s(6) s(8)

s(3) s(5) s(7) r9

1If w = n − O(logn), the distributional virtual black box security notion is vacuous since an attacker can guess
an accepting input and recover pat entirely.

5

we can stack them in a column as

r2

s(3)
r4

s(5)
s(6)
s(7)
s(8)
r9

=

21 22 23

31 32 33

41 42 43

51 52 53

61 62 63

71 72 73

81 82 83

91 92 93

·

s1

s2

s3

+

r′2
0
r′4
0
0
0
0
r′9

.

If s1, s2, s3, r
′
2, r
′
4, r
′
9 are chosen uniformly at random from Fq, the resulting column vector has the

same distribution as the 2n group exponents in the [BKM+18] construction. The product of the

Vandermonde matrix and the random vector s> :=
(
s1 s2 s3

)>
is simply

(
s(2) s(3) · · · s(9)

)>
for the polynomial s(t) := s3t

3 +s2t
2 +s1t. Since r′2, r

′
4, r
′
9 are uniformly random, adding the “error

vector” with these entries is equivalent to replacing the corresponding polynomial evaluations with
random field elements as in the [BKM+18] scheme. For sake of clarity, we use A ·s+e to denote this
view of the scheme, and we write the 2n group elements that result from encoding in the exponent
as gA·s+e ∈ G2n.

So far, nothing has changed — [BKM+18] obfuscation is precisely gA·s+e. But if we revisit the
evaluation procedure in the A · s+ e format, a possible improvement to the construction becomes
apparent. Recall that evaluation is simply polynomial interpolation: on input x ∈ {0, 1}n, the
evaluator generates a vector v ∈ F2n

q where v2i+xi−1 = 0 for all i ∈ [n], and the n non-zero elements
of v are Lagrange coefficients. Notice that for any input x (even ones not corresponding to accepting
inputs), the Lagrange coefficients ensure v satisfies v> · A = 0 ∈ F2n

q and the corresponding scalar

equation v> · A · s = 0. This means an input x is only accepted if v> · (A · s + e) = v> · e = 0.
Indeed, we can verify that if there exists a position i ∈ [n] where xi 6= pati (note that if pati = ∗ we
take this to mean xi = pati), this corresponds to an entry where v is non-zero and e is uniformly
random, making v> · e non-zero with overwhelming probability.

1.2.2 Interpretation 2: The Dual

Notice that evaluation only required the A matrix and e vector. The random degree n−1 polynomial
s(t) generated in the [BKM+18] scheme, whose coefficients form the random s vector, does not play
a role in functionality. This suggests performing the following “dual” transformation to the A ·s+e
scheme. Let B be an (n+ 1)× 2n dimensional matrix whose rows span the left kernel of A. Since

B ·A = 0 ∈ F(n+1)×(n−1)
q , multiplying B ·(A·s+e) yields the n+1 dimensional vector B ·e. We claim

this dual gB·e scheme captures all the information needed for secure generic group obfuscation, but
with n+ 1 group elements rather than 2n.

Evaluation in the Dual. A similar evaluation procedure works for the dual scheme. On input
x, the evaluator solves for a vector k ∈ Fn+1

q so that the 2n-dimensional vector k> ·B is 0 at position
2i + xi − 1 for each i ∈ [n]. Note that such a k exists since we only place n constraints on n + 1
variables. k> · B will play exactly the same role as v> vector from the A · s + e evaluation. On
accepting input, k> · B will be 0 in all the positions where e is non-zero, so k> · B · e = 0. On
rejecting inputs, (k> ·B) will have a non-zero entry where the corresponding entry of e is uniformly
random, so k> ·B · e 6= 0 with overwhelming probability.

6

Solving for k to ensure k> · B is zero in n positions gives an evaluation procedure that in
general requires more than O(n2) time, making it slower to evaluate than the [BKM+18] scheme.
However, we can choose B to enable fast evaluation. In particular, if we simply choose B to
be a Vandermonde style matrix whose (i, j)th entry is ji, solving for k becomes the problem of
computing the coefficients of a polynomial given specified roots. In Appendix B, we show that this
scheme, as well as the [BKM+18] scheme, can be optimized to O(n log2 n) evaluation.

Most importantly, our security analysis will only require that B ∈ F(n+1)×2n
q satisfies the prop-

erty that every (n+ 1)× (n+ 1) submatrix is full rank. The above choice of B guarantees this for
sufficiently large q.

Proving Generic Group Security. Some of the formalism in the [BKM+18] security proof is
dedicated to handling the random polynomial s, which is cleaned out of our dual construction. We
briefly sketch an intuitive security argument for the following theorem, which extends the [BKM+18]
result.

Theorem 2. Let Un,w be the uniform distribution over all patterns in {0, 1, ∗}n with exactly w
wildcards. For any w ≤ n− ω(log n), our dual construction attains distributional virtual black box
security in the generic group model.

Roughly speaking, a generic group model adversary can only learn information about the ob-
fuscated pat by taking linear combinations of the encoded elements and testing whether the result
is g0. In the dual scheme, this means that the adversary can learn whether or not gk

>·(B·e) = g0

for arbitrary k ∈ Fn+1
q .

We argue that for any k the adversary tries, it will fail to get k> · (B · e) = 0. Intuitively, this
means the model leaks no information; with a bit more generic group formalism, we can show this
implies distributional VBB security. To show this, we note that if there exists a position j ∈ [2n]
where (k> ·B)j 6= 0 and ej 6= 0, the scalar k> · (B · e) = 0 is a sum containing a uniformly random
element and will be non-zero with overwhelming probability.

Since the adversary does not know where the non-zero entries of e ∈ F2n
q are, a natural attack

strategy would be to find k such that k> ·B has many zeros. However, any choice of n+ 1 columns
of B are linearly independent, and so for any k, k> ·B ∈ F2n

q has at least n non-zero elements.
The remainder of the proof is a purely combinatorial argument. A uniformly random pattern

with c(n) := n− w non-wildcard bits will produce an e with c(n) random non-zero elements. The
only requirement on the positions of these non-zero elements is that in any index pair (2i − 1, 2i)
for i ∈ [n], at most one of {e2i−1, e2i} can be non-zero (if both are non-zero, the pattern will not
match either of xi = 0 or xi = 1).

The n non-zero positions of k> ·B must inhabit at least n/2 of these index pairs. In expectation,
at least c(n)/2 of these n/2 index pairs (2i − 1, 2i) also correspond to indices where either e2i−1

or e2i is a random non-zero value. A Chernoff bound argument proves this value must be close to
its expectation; concretely, with overwhelming probability at least c(n)/8 index pairs correspond
to both a non-zero position of k> ·B and a non-zero position of e.2

In each of these c(n)/8 pairs, we know at least one of (k> ·B)2i−1 or (k> ·B)2i is non-zero, and
at least one of e2i−1 or e2i is uniformly random. Since the bits of the pattern are picked uniformly
at random, with probability at least 1/2 a non-zero position of (k> · B) and a uniformly random

2In our full proof, we have to be slightly careful applying a Chernoff bound since the associated random variables
are not independent.

7

position of e coincide. To have any non-negligible chance of getting 0, the adversary must avoid
this scenario in each of these c(n)/8 pairs, which happens with probability at most 1/2c(n)/8. For
c(n) = ω(log n), this is negligible.

We can also use similar arguments (minus the Chernoff bound analysis) to obtain security
for distributions satisfying a more general min-entropy requirement. In particular, we consider
distributions over patterns with some fixed number of wildcards w. For any w, our argument gives
a lower bound bw such that obfuscation for a pattern drawn from any distribution over patterns with
w wildcards and min-entropy at least bw is secure in the generic group model. For any w ≤ 0.75n,
the bound bw is less than the min-entropy of the uniform distribution with w wildcards. However,
when w gets too large this is no longer the case and the bound becomes meaningless.

Conjunctions over Large Alphabets. If we go beyond binary alphabets, the dual scheme
actually reduces the obfuscation size by far more than a factor of 2. Suppose the alphabet is [`] for
some integer `, so a conjunction is specified by a length n pattern pat ∈ {[`] ∪ {*}}n. fpat(x) = 1
only if xi = pati on all non-wildcard positions.

There is a natural generalization of the A · s+ e scheme. For an alphabet of size `, we partition
e into the n blocks of length `, corresponding the ith block with the ith pattern position. As in the
binary case, if pati = *, we set every entry of e in the ith block to 0. If pati = j for j ∈ [`], we set
the jth position in the ith block of e to a uniformly random value in Fq, and set the remaining `−1
entries in the ith block to 0. To evaluate on x ∈ [`]n, we solve for v> · A = 0 where v is restricted
to be non-zero only at v(i−1)`+xi for each i ∈ [n]. It is easy to verify correctness of evaluation.3

However, this scheme is fundamentally stuck at polynomial-size alphabets, since A · s+ e contains
n` elements.

If we switch to the dual view, this same scheme can be implemented as gB·e where B ∈
F(n+1)×n`
q , e ∈ Fn`q . But the number of group elements in gB·e is simply n + 1, which has no

dependence on the alphabet size. Of course B will have dimension (n+ 1)× n`, but by once again
choosing B to be a Vandermonde style matrix, we can demonstrate that neither the evaluator nor
the obfuscator ever have to store B or e in entirety, since e is sparse for large `. We simply need q
to grow with log ` to ensure this implicit B satisfies the rank conditions needed for security.

1.2.3 Moving Out of the Exponent

Returning to the A ·s+e view of the scheme for a moment, we see that its form begs an interesting
question:

Can the Vandermonde matrix be replaced with other matrices?

In [BKM+18], the Vandermonde matrix plays at least two crucial roles: it allows for evaluation
by polynomial interpolation and at the same time is vital for their security analysis. However, the
structure of the Vandermonde matrix is what leads to Reed-Solomon decoding attacks on the plain
scheme, necessitating encoding the values in a cryptographic group. Furthermore, observe that our
abstract evaluation procedure described in Section 1.2.1 made no reference to the specific structure
of A; in particular, it works for any public matrix A. In the case of the Vandermonde matrix,
applying this abstract procedure results in the Lagrange coefficients [BKM+18] use, but we can
easily perform evaluation for other matrices.

3We note that if we set ` = 2, this generalization flips the role of 0 and 1, but is functionally equivalent.

8

Furthermore, the matrix form of the scheme is strongly reminiscent of the Learning Parity with
Noise (LPN) problem and in particular its extension to Fq, known as the Random Linear Codes
(RLC) problem [IPS09].

We recall the form of the RLC problem over Fq for noise rate ρ and nc samples. Here, we have
a uniformly random matrix A ← Fnc×nq , a uniformly random column vector s ∈ Fnq , and an error

vector e ∈ Fncq generated as follows. For each i ∈ [nc], set ei = 0 with independent probability 1−ρ,
and otherwise draw ei ← Fq uniformly at random. The search version of this problem is to recover
the secret vector s given (A,A·s+e), and the decision version is to is to distinguish (A,A·s+e) from
(A, v) for uniformly random v ← Fncq . The standard search RLC and decisional RLC assumptions
are that these problems are intractable for any computationally bounded adversary for constant
noise rate 0 < ρ < 1.

This suggests the following approach to obtaining a secure obfuscation scheme from the original
scheme: simply replace A with a random matrix. A would be publicly output along with A · s+ e.
To prove security, the hope would be that we could invoke the RLC assumption to show that even
given A, the obfuscation A ·s+e is computationally indistinguishable from a vector v of 2n random
elements.

Structured Error Distributions. At first glance, there are some difficulties with this approach.
We can immediately see a mismatch between the error vector in the RLC problem and the error
vector in our matrix scheme. To begin with, the entries of the RLC error vector e are chosen
so that each entry is non-zero with independent random probability ρ. In our matrix view, the
number of non-zero terms in the error vector is exactly equal to the number of fixed bits, which is
n−w. Setting ρ = (n−w)/n does not quite simulate the correct error distribution, since the actual
number of non-zero terms in the error is unlikely to be exactly n−w, as needed for our distribution.
Fortunately, this issue can be resolved by considering a decisional “exact RLC” problem (decisional
xRLC for short) in which the number of non-zero error terms is fixed to be ρn. This is completely
analogous to the “decisional exact LPN” problem (decisional xLPN) considered by Jain, Krenn,
Pietrzak and Tentes [JKPT12].

However, even this decisional xRLC problem is insufficient to argue security. The problem lies
in the fact that the error vector in our setting is structured : for any pair of positions e2i−1, e2i for
i ∈ [n], the construction ensures that at least one of e2i−1 or e2i is 0. Recall that if the ith bit of
the pattern is b, then e2i−b = 0 while e2i−(1−b) is drawn randomly from Fq. If the ith bit of the
pattern is ∗, then e2i−1 = e2i = 0. But if both e2i−1 and e2i are random elements from Fq, this
corresponds to a position where the input string can be neither 0 nor 1, which can never arise in
the obfuscation construction.

To the best of our knowledge, the only work that considers this particular structured error
distribution is the work of Arora and Ge [AG11], which shows that this problem is actually insecure
in the binary case (corresponding to a structured error version of LPN). Their attack uses re-
linearization and it is easy to see that it extends to break the problem we would like to assume
hard as long as A has Ω(n2) rows.

This leaves some hope for security, as our construction only requires that A have 2n rows.
Thus, one of the core technical components of this work is a reduction that proves hardness of
the structured error RLC assumption with 2n samples from the hardness of the standard RLC
assumption for polynomially many samples. We note that our reductions handle both the search
and decision variants, both the exact and non-exact variants, and both LPN and RLC. We give a

9

high-level overview of our reduction below.

1.2.4 The Reduction to Structured Error

For our reduction, we return to the B · e view of the scheme and consider the equivalent “dual”
version of the decisional RLC problem4, where the goal is to distinguish (B, e) from (B, v) for

B ← F(nc−n)×nc
q , v ← Fnc−nq , and e as drawn previously.

Note that the problem of distinguishing between (B,B · e) and (B, u) for nc − n samples and
error vector e of dimension nc is equivalent to the setting where the number of samples is n− n1/c

and the error vector is of dimension n. Since this problem is conjectured hard for any constant c,
we set ε = 1/c and assume hardness for any 0 < ε < 1.

We show how to turn an instance of this problem into a structured error RLC instance, where

the challenge is to distinguish between (B,B · e) and (B, u) for uniformly random B ← F(n+1)×2n
q ,

a structured error vector e ∈ F2n
q with noise rate ρ, and uniformly random u ∈ Fn+1

q .
To perform this transformation, we need to somehow inject the necessary structure into the

error vector e, which means introducing a zero element in each pair. The most natural way to do
this given the regular RLC instance (B,B · e) is to draw n new uniformly random columns and
insert them into B at random locations to produce the matrix B′, without changing the value of
B · e. We now have a structured error instance with dimension (n− nε)× 2n, which appears very
close to our goal, but not quite there as we need B to have n + 1 rows. We would like to simply
add nε uniformly random rows to B. Unfortunately, this appears impossible, as it is not clear how
to simulate the extra entries of B′ · e without knowledge of e.

Instead, we add rows b>i that are statistically close to uniformly random but are such that we
know the value of b>i ·e. Observe that we already know n−nε equations over the elements of e. We
can generate new equations by taking random linear combinations of these; however, the resulting
coefficient vectors b>i will certainly not be statistically close to uniform since they will be in the
row space of public matrix B. The final observation is that the reduction algorithm actually knows
the location of n elements of e that are definitely zero (since they were chosen by the algorithm
itself). We can then replace the elements at the corresponding locations of each b>i with uniformly
random elements without changing the product b>i · e. This gives us enough entropy on the b>i ’s to
show that they are statistically close to uniform via a collision probability argument.

1.2.5 Distributional VBB Security

The above reduction implies our “random linear code” obfuscation scheme (outside of any group
exponent) is computationally indistinguishable from random. However, this does not quite give
distributional VBB security, as the definition requires indistinguishability from a simulated obfus-
cation even given any one bit predicate on the circuit. In fact, indistinguishability from random
does not necessarily provide any security at all. Consider for example the distributional point
obfuscator that simply outputs the single accepting point in the clear as the “obfuscation.” To
evaluate, we simply compare the input point with the accepting point. Notice this trivially in-
secure obfuscation is perfectly indistinguishable from random for point functions drawn from the
uniform distribution.

4In the context of LWE this duality/transformation has been observed a number of times, see e.g. [MM11]. For
RLC, this is essentially syndrome decoding.

10

In order to achieve meaningful distributional VBB security, we need to ensure that no predicate
on the hidden circuit is leaked by the obfuscation (note this property is not satisfied by the above
example, which leaks the hidden circuit entirely). For us, it will suffice to prove that our obfuscation
B ·e is indistinguishable from random even if the adversary knows a one bit predicate on the pattern
hidden within e. Mapping this back to RLC, what we want is a version of the above decisional
xRLC problem that is still hard even if the adversary is given a predicate on the error vector e.

A natural attempt to establishing pseudorandomness in this setting is to consider the corre-
sponding (dual) search xRLC problem, where the goal is to find e given B, e,P(e) for some one bit
predicate P. This is clearly as hard as the search problem without the predicate since a reduction
algorithm can simply guess the value of the predicate and be correct with probability at least 1/2.
Since the search problem remains hard under leakage of a one bit predicate, we can try to show
hardness of the decisional version with a compatible search-to-decision reduction.5

Unfortunately, as pointed out in [IPS09], search to decision reductions are only known for
the (regular) RLC problem over polynomially large fields; we would ideally like to make use of
exponentially large fields to keep the same correctness guarantees that we had for the scheme
encoded in a group. We instead restrict our construction to the binary field and make use of the
LPN assumption to establish distributional VBB security. For LPN, sample-preserving search to
decision reductions are known [AIK09] and, combined with the Goldreich-Levin theorem, give the
necessary search to decision reduction for LPN with a one bit predicate [Döt16].

However, now that we are restricted to a binary field, we have to slightly tweak the scheme in
order to maintain correctness. It is straightforward to achieve (weak) functionality preservation by
adding a few rows to B, and we explain how to achieve the stronger form (where the obfuscated
circuit maintains functionality on all inputs simultaneously) with an additional tweak. We note
that our modified LPN-based scheme achieving strong functionality preservation achieves expected
polynomial evaluation time. We leave the question of whether or not one can simultaneously
achieve deterministic polynomial evaluation time and strong functionality preservation from this
LPN approach unresolved. Finally, using the reduction from standard LPN to structured error LPN,
we prove the distributional VBB security of our construction assuming the standard constant-noise
LPN assumption.

1.2.6 Information Theoretic Security

Bishop et al. [BKM+18] motivate the design of their scheme by explaining how an even simpler
idea seems to fail. They informally give the following scheme for point obfuscation. To accept on
input x = 0101, we simply draw uniformly random elements from Fq conditioned on the elements
in grey cells corresponding to 0101 summing to 0.

r1 r3 r5 r7

r2 r4 r6 r8

This can easily be done by setting r7 = −r2 − r3 − r6. While [BKM+18] do not explore this
idea further, distributional virtual black-box security of this scheme follows from the leftover hash
lemma, and this scheme is actually statistically secure.6

5We thank Daniel Wichs for pointing us in this direction; see full acknowledgement details in Section 6.
6We remark that this scheme does not actually satisfy strong functionality preservation, which may preclude its

use in certain settings.

11

However, [BKM+18] point out that the moment we have two gray cells in the same column,
this fails. If we want to extend this idea to 01*1, we have no choice but to set r5 = r6 if we
want to preserve functionality. Then the scheme is trivially insecure, since a wildcard position will
correspond to a column with two repeated elements.

This barrier appears inherent if we are limited to evaluating the scheme by simply summing a
set of elements in Fq and checking if the result is 0. But what if we use matrices in Fq instead of
scalar elements? Evaluation could now involve checking the rank of the resulting matrix sum.

Our construction takes the following form. An obfuscation of a pattern pat ∈ {0, 1, ∗}n consists
of a single full rank matrix F ∈ Fk×kq , and n rank 1 matrices A(i) ∈ Fk×kq for i ∈ [n]. To evaluate
on an n bit string x, we simply compute the sum

F +
∑
i|xi=1

A(i) .

We choose F and A(i) so that if the determinant of this sum is 0, then x must have matched pat.
Observe that if F and {A(i)}i∈[n] were scalars, the A(i) terms corresponding to wildcard positions

i would have to be 0, since the sum must remain unchanged whether or not those A(i) are included.
But since these are matrices, we can set the A(i) corresponding to wildcard positions to be in the
column span of the matrix

F +
∑

i|pati=1

A(i).

Concretely, the construction is the following. To obfuscate pat, we first sample a uniformly
random rank k−1 matrix B. Then for each i where pati = *, we sample a random rank one matrix
A(i) in the column span of B. Finally, we sample random rank one matrices A(i) for all positions
where pati = 0 or 1, and give out F = B −

∑
i|pati=1A

(i). With overwhelming probability, the

resulting F will be full rank.7

We prove security of this scheme by applying the leftover hash lemma (LHL), which shows that
as long as the non-wildcard bits of pat have sufficient min-entropy, the matrix F is statistically
close to a uniformly random matrix. Then the rank deficient matrix B is statistically hidden from
view, so if there are fewer than k wildcards, the A(i) matrices are distributed as uniformly random
rank 1 matrices.8

The number of wildcards this scheme can handle is k−1 where k is the dimension of the matrices
we use. The limitation on k arises in our LHL analysis, which only works for k as large as nδ (for
any δ < 1), so we obtain statistical security for patterns with a sublinear number of wildcards.

1.2.7 Functionality Preservation Notions

Statistical security arguments such as the one above can only hold for schemes that fall short of
strong functionality preservation (i.e. except with negligible probability, correctness holds on all
inputs simultaneously). If we do not relax correctness, statistical virtual black box security is

7A reader familiar with the Learning Subspace with Noise (LSN) problem introduced by Dodis, Kalai, and
Lovett [DKL09] might notice similarities. However, if we map our scheme to their setting, we obtain an LSN/LPN
instance where the number of samples is so restricted that information theoretic security is actually possible.

8In the actual security proof, we need to be a bit more careful, since again, a proof that our scheme is indistin-
guishable from random does not imply distributional VBB security.

12

impossible since a computationally unbounded adversary can recover pat from the truth table of
the obfuscated function.

Thus, our basic sum-of-matrices scheme achieves “weak functionality preservation” (considered
in [GR07, BR17, BKM+18]), which requires that for any pattern pat and any input x, correct-
ness (i.e., O(fpat)(x) = fpat(x)) holds with overwhelming probability over the randomness of the
obfuscation.

A Motivating Scenario from [WZ17]. A natural question to ask is whether weak functionality
preservation is “good enough.” To shed light on this, we take a step back and recall a motivating
example for general evasive circuit obfuscation. Even this might not be immediately obvious: what
good is an obfuscated circuit if a user can never find an accepting input? Wichs and Zirdelis [WZ17]
address precisely this question with the following scenario. Suppose we have a set of users where a
subset of them has access to additional privileged information. If we publicly give out an obfuscated
circuit containing this privileged information, then security assures us that the un-privileged users
cannot find accepting inputs. For them, functionality preservation is unimportant since the circuit
may as well be the all 0’s circuit.9 However, it does matter for the privileged users who may actually
find accepting inputs (for these users, security does not hold).

In this example, a secure obfuscation that only achieves weak functionality preservation is good
enough to ensure the un-privileged users never learn anything about the hidden circuit. However,
it might not be enough to ensure the privileged users are actually given the correct circuit. Weak
functionality preservation does not explicitly rule out the possibility that a user with privileged
information can detect that the obfuscated circuit functionality differs from the intended circuit
functionality.

Computational Functionality Preservation. To address this gap, we use a notion (between
weak and strong) we refer to as computational functionality preservation. In the context of point
obfuscation, this notion is essentially equivalent to the correctness definition for oracle hashing10

considered by Canetti [Can97] (also achieved by Canetti, Micciancio, and Reingold [CMR98] and
Dodis and Smith [DS05]), as observed by Wee [Wee05].11 It is also essentially the same definition
considered by Brakerski and Vaikuntanathan [BV15] for constrained PRFs.

For us, computational functionality preservation guarantees that even a user who knows the
real circuit (in this work, “real circuit” means the obfuscated pattern) cannot find a point x on
which the obfuscated circuit and the real circuit differ, provided they are computationally bounded.

In Section 5.3, we describe a simple modification of our basic sum-of-matrices scheme that
allows us to achieve computational functionality preservation from discrete log. We note that the
resulting construction is still information theoretically secure. Mapping this to the above example,
this means even computationally unbounded un-privileged users cannot learn any predicate on the
hidden pattern. This is only possible because our obfuscated circuit computes the wrong output on
exponentially many inputs. Despite this, a computationally bounded user (who might even know
the hidden pattern) cannot even find one of these incorrect inputs assuming discrete log.

While it might at first seem strange to simultaneously make statistical and computational claims,
this makes sense in the setting where we have two distinct classes of users: the un-privileged users

9This is slightly informal, since it requires a notion of input-hiding obfuscation [BBC+14].
10This was re-named to “perfectly one-way functions” in [CMR98].
11We thank Hoeteck Wee for pointing this out.

13

are modeled as computationally unbounded, but the privileged users as computationally bounded.

1.3 Related Work

Conjunction Obfuscation. Previously, Brakerski and Rothblum had shown how to obfuscate
conjunctions using multilinear maps [BR13]. This was followed by a work of Brakerski et al. which
showed how to obfuscate conjunctions under entropic ring LWE [BVWW16]. More recently, Wichs
and Zirdelis showed how to obfuscate compute-and-compare programs under LWE [WZ17]. Goyal,
Koppula, and Waters concurrently and independently introduced lockable obfuscation and proved
security under LWE [GKW17]. Both of these works easily imply secure obfuscation of conjunctions
under LWE, though with a complicated construction that encodes branching programs in a manner
reminiscent of the GGH15 multilinear map [GGH15]. The main contribution of [BKM+18] then
was the simplicity and efficiency of their conjunction obfuscation scheme. In this work, we provide
constructions and proofs that maintain these strengths while addressing the major weaknesses of
the [BKM+18] construction — lack of generality (to more wildcards, more distributions, and more
alphabet sizes) and lack of security based on a falsifiable assumption.

LWE vs LPN. Given the similarities between LPN and LWE (LWE can be framed as a general-
ization of LPN), it might seem that our conjunction obfuscation result was essentially known as a
consequence of lockable obfuscation [WZ17, GKW17]. To address this point, we briefly recall some
of the deeper qualitative differences between LPN-based and LWE-based cryptography.

Over the past decade, LWE has been shown to imply a rich class of powerful cryptographic
tools such as fully homomorphic encryption [Gen09], inner-product encryption [AFV11], and pri-
vate constrained PRFs [CC17, BTVW17, PS18], just to name a few. In comparison, the applications
of LPN have been somewhat limited. Applebaum, Avron, and Brzuska [AAB15] investigate this
discrepancy and observe that LPN-based constructions tend to admit natural “arithmetic” gener-
alizations. They demonstrate that arithmetic constructions are provably limited in many settings
where LWE is not, suggesting that the limitations of LPN-based cryptography might be inherent.

The current state of affairs in obfuscation is no exception. Prior to this work, extremely little
was known from LPN; Yu and Zhang constructed a point obfuscator from sub-exponentially hard
LPN [YZ16], but to the best of our knowledge this is the only obfuscation construction for any non-
trivial functionality known directly from LPN.12 On the other hand, lockable obfuscation [WZ17,
GKW17] allows us to obfuscate a large and expressive class of circuits under LWE.

In this work, we demonstrate that conjunction obfuscation is a problem where LPN-based
obfuscation is not only possible, but actually provides a more natural and intuitive solution than the
known LWE approach. The particular structure of our conjunction obfuscation schemes corresponds
precisely to a structured LPN error vector, allowing us to avoid a construction relying on more
technical machinery (such as branching programs and lattice trapdoors, as required in lockable
obfuscation).

Reader’s Guide In Section 2, we briefly recall security notions for evasive circuit obfuscation,
the definition of the generic group model, and the LPN problem. After that point, Section 3,
Section 4, and Section 5 are self-contained and can be read in any order, though we recommend

12Yu and Zhang [YZ16] improve upon Dodis, Kalai, and Lovett [DKL09], who constructed a point obfuscator from
a related Learning Subspace with Noise (LSN) problem.

14

familiarity with the introduction. All of our generic group constructions and security arguments
are confined to Section 3, Appendix B, and Appendix C. In Section 4, we formally define the
LPN error distributions we consider, and proceed to prove security of our constructions assuming
hardness of decisional “structured-error” exact LPN. We prove that computational intractibility of
this problem follows from the standard constant-noise LPN assumption in Appendix A. This section
is written more generally to handle RLC, as we believe the reduction might be of independent
interest (restricting the field size to q = 2 gives the LPN result needed for our security proof in
Section 4). Our sum-of-matrices construction achieving information theoretic VBB security is in
Section 5, plus an extension that achieves computational functionality preservation.

2 Preliminaries

Notation. Let Z,N be the set of integers and positive integers. For n ∈ N, we let [n] denote the
set {1, . . . , n}. For q ∈ N, denote Z/qZ by Zq, and denote the finite field of order q by Fq. A vector
v in Fq (represented in column form by default) is written as a lower-case letter and its coefficients
vi ∈ Fq are indexed by i; a matrix A is written as a capital letter and its columns (A)j are indexed
by j. We denote by 0n×m the (n,m)-dimensional matrix filled with zeros. For any matrix M , let
colspan(M) denote the column span of M .

If D is a distribution, we denote Supp(D) = {x : D(x) 6= 0} its support. For a set S of finite
weight, we let U(S) denote the uniform distribution on S. The statistical distance between two
distributions D1 and D2 over a countable support S is ∆(D1, D2) := 1

2

∑
x∈S |D1(x)−D2(x)|. We

naturally extend those definitions to random variables.
We use the usual Landau notations. A function f(n) is said to be negligible if it is n−ω(1) and

we denote it by f(n) := negl(n). A probability p(n) is said to be overwhelming if it is 1− n−ω(1).
Let ε > 0. We say that two distributions D1 and D2 are ε-statistically close if ∆(D1, D2) ≤ ε.

We say that D1 and D2 are statistically close, and denote D1 ≈s D2, if there exists a negligible
function ε such that D1 and D2 are ε(n)-statistically close.

The distinguishing advantage of an algorithm A between two distributions D0 and D1 is defined
as AdvA(D0, D1) := |Prx←D0 [A(x) = 1] − Prx←D1 [A(x) = 1]|, where the probabilities are taken
over the randomness of the input x and the internal randomness of A. We say that D1 and D2

are computationally indistinguishable, and denote D1 ≈c D2, if for any non-uniform probabilistic
polynomial-time (PPT) algorithm A, there exists a negligible function ε such that AdvA = ε(n).

Finally, we let x← X denote drawing x uniformly at random from the space X, and define Un,w
to be the uniform distribution over {0, 1, ∗}n with a fixed w number of ∗ (wildcard) characters.

The min-entropy of a random variable X is H∞(X) := − log(maxx Pr[X = x]). The (average)
conditional min-entropy of a random variable X conditioned on a correlated variable Y , denoted
as H∞(X|Y), is defined by

H∞(X|Y) := − log
(
Ey←Y

[
max
x

Pr[X = x|Y = y]
])

.

We recall the leftover hash lemma below.

Lemma 1 (Leftover hash lemma). Let H = {h : X → Y} be a 2-universal hash function family.
Then for any random variable X ∈ X and Z, for ε > 0 such that log(|Y|) ≤ H∞(X|Z)−2 log(1/ε),
the distributions (h, h(X), Z) and (h, U(Y), Z) are ε-statistically close.

15

2.1 Security Notions for Evasive Circuit Obfuscation

We recall the definition of a distributional virtual black-box (VBB) obfuscator. We roughly follow
the definition of Brakerski and Rothblum [BR13], but we include a computational functionality
preservation definition.

Definition 1 (Distributional VBB Obfuscation). Let C = {Cn}n∈N be a family of polynomial-size
circuits, where Cn is a set of boolean circuits operating on inputs of length n, and let Obf be a PPT
algorithm which takes as input an input length n ∈ N and a circuit C ∈ Cn and outputs a boolean
circuit Obf(C) (not necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families Dn
where each D ∈ Dn is a distribution over Cn.

Obf is a distributional VBB obfuscator for the distribution class D over the circuit family C if
it has the following properties:

1. Functionality Preservation: We give three variants:

• (Weak) Functionality Preservation: For every n ∈ N, C ∈ Cn, and x ∈ {0, 1}n, there
exists a negligible function µ such that

Pr[Obf(C, 1n)(x) = C(x)] = 1− µ(n) .

• (Computational) Functionality Preservation: For every PPT adversary A, n ∈ N, and
C ∈ Cn, there exists a negligible function µ such that

Pr[x← A(C,Obf(C, 1n)) : C(x) 6= Obf(C, 1n)(x)] = µ(n) .

• (Strong) Functionality Preservation: For every n ∈ N, C ∈ Cn, there exists a negligible
function µ such that

Pr[Obf(C, 1n)(x) = C(x) ∀x ∈ {0, 1}n] = 1− µ(n) .

2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of Obf(C, 1n) can be
performed in time poly(|C|, n).

3. Distributional Virtual Black-Box: For every PPT adversary A, there exists a (non-uniform)
polynomial size simulator S such that for every n ∈ N, every distribution D ∈ Dn (a distri-
bution over Cn), and every predicate P : Cn → {0, 1}, there exists a negligible function µ such
that ∣∣∣∣ Pr

C←Dn
[A(Obf(C, 1n)) = P(C)]− Pr

C←Dn
[SC(1|C|, 1n) = P(C)]

∣∣∣∣ = µ(n) .

Both weak functionality preservation [GR07, BR17, BKM+18] and strong functionality preser-
vation [BGI+01] have been considered numerous times before in the obfuscation literature.

Computational functionality preservation has appeared before in the obfuscation literature [Wee05,
DS05], and our definition is also the same as the functionality preservation notion considered in
Definition 3.1 of [BV15] in the context of constrained PRFs. We motivate and discuss this definition
in Section 1.2.7, and demonstrate an obfuscation scheme achieving it in Section 5.3.

We now recall the definition of perfect-circuit hiding, introduced by Barak, Bitansky, Canetti,
Kalai, Paneth, and Sahai [BBC+14].

16

Definition 2 (Perfect Circuit-Hiding [BBC+14]). Let C be a collection of circuits. An obfuscator
Obf for a circuit collection C is perfect circuit-hiding if for every PPT adversary A there exists
a negligible function µ such that for every balanced predicate P, every n ∈ N and every auxiliary
input z ∈ {0, 1}poly(n) to A:

Pr
C←Cn

[A(z,Obf(C)) = P(C)] ≤ 1

2
+ µ(n) ,

where the probability is also over the randomness of Obf.

Barak et al. [BBC+14] prove that perfect-circuit hiding security is equivalent to distributional
virtual black-box security, i.e. property 3 in Definition 1 is equivalent to Definition 2. We rely on
this equivalence to simplify the proof of Theorem 6.

2.2 The Generic Group Model

We analyze one of the presented obfuscation constructions in the generic group model [Sho97],
which assumes that the adversary interacts with the group elements that comprise the scheme in
a generic way. To model this, it is common to associate each group element with an independent
and uniformly random string (drawn from a sufficiently large space) with we refer to as a “handle.”
The adversary has access to a generic group oracle which maintains the mapping between group
elements and handles. The adversary is initialized with the handles corresponding to the group
elements that comprise the scheme in question. It can query its generic group oracle with two
handles, after which the oracle performs the group operation on the associated group elements and
returns the handle associated with the resulting group element.

It will be convenient to associate each of these group operation queries performed by the adver-
sary to a linear combination over the initial handles that it receives. The adversary can also request
a “ZeroTest” operation on a handle, to which the oracle replies with a bit indicating whether or
not that handle is associated with the identity element of the group. See [BBG05] for examples
and more details.

There is a natural extension of the notion of distributional VBB security to the generic group
model. In Definition 1, we simply give the obfuscation Obf and adversary A access to the generic
group oracle G. We refer to this definition as Distributional VBB Obfuscation in the Generic Group
Model.

2.3 Learning Parity with Noise

We give the precise definition of the Learning Parity with Noise (LPN) problem in its dual for-
mulation. Let ρ > 0 and m be an integer. Let Bmρ denote the distribution on Fm2 for which each
component of the output independently takes the value 1 with probability ρ and 0 with probability
1− ρ (i.e., each component is sampled according to the Bernoulli distribution with parameter ρ).

Definition 3. Let n,m be integers and ρ ∈ [0, 1]. The Decisional Learning Parity with Noise
(DLPN) problem with parameters n,m, ρ, denoted DLPN(n,m, ρ), is hard if, for every probabilistic
polynomial-time (in n) algorithm A, there exists a negligible function µ such that∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B,B · u) = 1

∣∣∣∣ ≤ µ(n),

where B ← F(m−n)×m
2 , e← Bmρ , and u← Fm−n2 .

17

Remark 1. The primal version of the above problem is, for A ← Fm×n2 , s ← Fn2 , e ← Bmρ , and
v ← Fm2 , to distinguish between (A,As+e) and (A, v). These problems are equivalent for any error
distribution when m = n+ ω(log n), as discussed for example in [MM11, Sec. 4.2].

3 Obfuscating Conjunctions in the Generic Group Model

In this section, we present our generalized dual scheme for obfuscating conjunctions in the generic
group model. We then show a simple proof of security in the generic group model that applies to
the uniform distribution over binary patterns with any fixed number of wildcards. In particular,
our distributional VBB security result holds for up to n − ω(log n) wildcards, but distributional
VBB security is vacuously satisfied for w > n−O(log n) wildcards. This extends the generic model
analysis of [BKM+18] that proved security up to w < .774n. We note that the combinatorial
argument we give can be used to show that the original [BKM+18] construction achieves security
for all values of w as well.

We then extend our security analysis to handle more general distributions with sufficient min-
entropy, which had not been considered in [BKM+18]. We then extend our scheme to handle ex-
ponential size alphabets, and demonstrate other efficiency improvements resulting from our “dual”
scheme.

Here and throughout the remainder of paper, the length n of the pattern will double as the
security parameter.

3.1 Generic Group Construction

Throughout this section, we will refer to a fixed matrix B.

Definition 4. Let Bn+1,k,q ∈ Z(n+1)×k
q be the matrix whose (i, j)th entry is ji:

Bn+1,k,q =

1 2 . . . k
1 22 . . . k2

...
...

...
...

1 2n+1 . . . kn+1

 .

Construction.

• Setup(n). Let G be a group of prime order q > 2n with generator g. We let B := Bn+1,2n,q

where Bn+1,2n,q is as in Definition 4.

• Obf(pat ∈ {0, 1, ∗}n). Set e ∈ Z2n×1
q as follows. For each i ∈ [n]:

– If pati = ∗, set e2i−1 = e2i = 0.

– If pati = b, sample e2i−b ← Zq and set e2i−(1−b) = 0.

Output
gB·e ∈ Gn+1 .

18

• Eval(v ∈ Gn+1, x ∈ {0, 1}n). Define Bx to be the (n+ 1)× n matrix where column j is set as

(Bx)j := (B)2j−xj .

Solve tBx = 0 for a non-zero t ∈ Z1×(n+1)
q (see Appendix B for a description of how to do this

in O(n log2(n)) time). Compute
n+1∏
i=1

vtii

and accept if and only if the result is g0.

Alternative Setup. For concreteness (and efficiency), we define Obf and Eval to use the matrix

Bn+1,2n,q. However, Setup can be modified to output any B ∈ Z(n+1)×2n
q with the property that

any n+ 1 columns of B form a full rank matrix (with overwhelming probability), and Obf and Eval
will work as above with the matrix B (albeit, the efficiency gain of Appendix B may no longer
apply).

Functionality Preservation. We first state a useful lemma.

Lemma 2. If k < q, any set of n+ 1 columns of Bn+1,k,q are linearly independent over Zq.

Proof. This follows from inspecting the form of the determinant of the Vandermonde matrix, and
noting that none of the factors of the determinant will divide q as long as k < q.

Fix an x which matches pat and let t be the row vector computed in the Eval procedure. By
construction, the vector tB is zero in all of the positions for which e is non-zero and thus

n+1∏
i=1

vtii = gtBe = g0 .

On the other hand, for an x which does not match pat, by construction there is at least one
index i ∈ [2n] such that (B)i is not part of Bx and ei is a uniformly random field element. Then
appealing to Lemma 2, t(B)i 6= 0 since otherwise the n+ 1 columns Bx and (B)i would be linearly
dependent. Then the product t(B)iei is distributed as a uniformly random field element, which
means that tBe is as well. Thus x is only accepted with probability 1/q = negl(n).13

Security. We prove the distributional virtual black-box security of our construction.

Theorem 3. Fix any function w(n) ≤ n. The above construction is a distributional VBB obfuscator
in the generic group model for the distribution Un,w(n) over strings {0, 1, ∗}n.

Proof. First we consider the case where w(n) = n − ω(log(n)). Let c(n) = n − w(n) = ω(log(n)).
Let H be the space of handles used in the generic group instantiation of the obfuscation and let
|H| > 2n so that two uniformly drawn handles collide with negligible probability. For any adversary
A, we consider the simulator S that acts as the generic group model oracle and initializes A with

13As noted in [BKM+18], we can boost this to strong functionality preservation by setting q > 22n.

19

n+ 1 uniformly random handles. On a group operation query by A, S responds with a uniformly
random handle unless A had previously requested the same linear combination of initial elements,
in which case S responds with the same handle as before. S can easily implement this with a
lookup table. We assume without loss of generality that A only submits linear combinations over
initial elements that are not identically zero. On any ZeroTest query by A, S will return “not
zero”. Finally, S will output whatever A outputs after it has finished interacting with the generic
group model simulation.

We show that with all but negligible probability, A’s view of the generic group model oracle
that is honestly implementing the obfuscation is identical to its view of the simulated oracle, which
completes the proof of security. Observe that the only way that A’s view diverges is if when
interacting with the honest oracle, A either gets a successful ZeroTest, or receives the same handle
on two group operation queries corresponding to different linear combinations of the initial handles.
In the first case, A has formed a non-trivial linear combination of the initial n+ 1 group elements
that evaluates to zero. Likewise, in the second case, if we subtract these two linear combinations,
we see that A has also formed a non-trivial linear combination of the initial n + 1 elements that
evaluates to zero. Consider the first time that this occurs. We show that the probability of this
happening over the randomness of the pattern and of the obfuscation is negligible.

Let e ∈ Z2n×1
q be the vector drawn in the Obf procedure on input a pattern pat drawn

from Un,n−c(n). Denote the vector of coefficients in the adversary’s linear combination as k =

(k1, . . . , kn+1) ∈ Z1×(n+1)
q , so the resulting evaluation is equal to kBe. Since these coefficients are

specified by A before its view has diverged from the simulated view, we can treat k as completely
independent of e. Now by Lemma 2, any n+ 1 columns of B form a full rank matrix, so the vector
kB ∈ Z1×2n

q is 0 in at most n positions. If there exists i ∈ [2n] for which (kB)i is non-zero and
ei is uniformly random, then with overwhelming probability kBe 6= 0 over the randomness of the
obfuscation.

To complete the proof, we show that for any fixed set S ⊂ [2n] of n indices, there exists an
i ∈ S for which ei is uniformly random with overwhelming probability (over the randomness of the
pattern). Partition e into the n pairs {e2j−1, e2j}j∈[n]. At least n/2 of these pairs must contain
at least one ei such that i ∈ S. Sampling pat from Un,n−c(n) corresponds to uniformly randomly
picking c(n) of the pairs to have one uniformly random e component, and then within each of these
c(n) sets, picking either e2j−1 or e2j with probability 1/2 to be the uniformly random component.

So among these n/2 pairs, an expected c(n)/2 of them have a uniformly random e component.
This random variable is an instance of a hypergeometric random variable, and in Lemma 3 we use
a Chernoff bound to show that it is greater than c(n)/8 except with negligible probability. Now for
each of these n/2 pairs that contains a uniformly random component ei, we have that i ∈ S with
probability 1/2. Then the probability that there does not exist any i ∈ S such that ei is uniformly
random is at most (1/2)c(n)/8 + negl(n) which is negl(n) for c(n) = ω(log n).

Now we handle the case where w(n) = n−O(log(n)). In this parameter regime, distributional
VBB security is a vacuous security notion since a random input will satisfy the pattern with
1/poly(n) probability. Thus a polynomial time simulator S can find an accepting input with
overwhelming probability. Then it simply varies the accepting input one bit at a time in queries to
the function oracle, and recovers the pattern in full. At this point it can run the obfuscation itself
and simulate A on the honest obfuscation.

We now state and prove Lemma 3. While tail bounds are known for hypergeometric random

20

variables, we were unable to find bounds strong enough for our parameter settings. In particular,
plugging in the bounds summarized by Skala [Ska13] into the proof of Theorem 3 imply security
when c(n) is as small as 1/nε for ε < 1/2. Using Lemma 3, we obtain c(n) = ω(log n). We note
that our bound is specifically tailored for our application and should not be misinterpreted as a
strengthening of known bounds on hypergeometric random variables.

Lemma 3. A bag initially contains n balls, of which c(n) are black and n− c(n) are white. If n/2
balls are randomly drawn without replacement, then

Pr

[
black balls drawn ≥ c(n)

8

]
≥ 1− e−c(n)/12 .

Proof. Instead of considering randomly selected white and black balls, consider an alternative setup
where white balls are randomly painted black. Starting from n white balls, draw n/2 of them and
call this set of balls D. Now consider two procedures to paint the balls:

• Procedure 1. For c(n) iterations, pick a white ball at random and paint it black.

• Procedure 2. While the number of black balls in D is less than c(n)/8, pick a white ball at
random and paint it black.

Pr[# black balls drawn ≥ c(n)/8] is equivalent to the probability that at least c(n)/8 balls in D
are colored black at the conclusion of Procedure 1. Observe that Procedure 1 and Procedure 2 are
equivalent except for their stopping conditions. The probability that fewer than c(n)/8 balls in D
are black at the conclusion of Procedure 1 is equal to the probability that fewer than c(n)/8 balls
in D are black after c(n) steps of the second procedure. In other words, the probability that fewer
than c(n)/8 balls in D are black is equal to the probability the second procedure requires more than
c(n) steps.

For each i = 1, . . . , c(n), let Bi be a binary random variable that equals 1 if on the ith iteration
of Procedure 2, a white ball in D is painted black. For the same range of i, let Ci be a binary

random variable that equals 1 with probability 3/8. Define the random variable C :=
∑c(n)

i=1 Ci with
expectation E[C] = 3c(n)/8.

First we show that Pr[Bi = 1] ≥ Pr[Ci = 1]. To see this, note that at most c(n)/8 balls in D are
black at any point during Procedure 2, so at least n/k − c(n)/8 ≥ 3n/8 balls in D are always white.
Thus, the probability a ball in D is selected at any step in Procedure 2 is at least 3/8.

Collecting all of the above claims, we have

Pr

[
black balls drawn <

c(n)

8

]
= Pr

c(n)∑
i=1

Bi <
c(n)

8

 ≤ Pr

c(n)∑
i=1

Ci <
c(n)

8

= Pr

[
C < (1− 2

3
)E[C]

]
≤ e−(1/2)(2/3)2E[C] = e−c(n)/12,

where the final inequality follows from a Chernoff bound.

3.2 General Min-Entropy Distributions

The above proof shows security for a specific distribution Un,w, which has min-entropy log
(
n
w

)
+n−

w. We show here (again considering distributions over patterns with a fixed number of wildcards w),

21

that we can obtain security for any distribution over {0, 1, ∗}n that satisfies a certain min-entropy
requirement. We then note that this bound gives an improvement over Un,w for any w ≤ cn where
c is some constant in the range [0.75, 0.821].

Lemma 4. The above construction is a distributional VBB obfuscator in the generic group model
for any distribution D over strings {0, 1, ∗}n with exactly w wildcards such that D has min-entropy
at least

• log
(
n
w

)
+ ω(log(n)) if w ≤ n/2;

• log
(

2(n−w)
n−w

)
+ 2w − n+ ω(log(n)) if 3n/4 ≥ w > n/2;

• log
(n/2
w−n/2

)
+ n/2 + ω(log(n)) if w > 3n/4.

Proof. Fix a distribution D over patterns with w ≤ n wildcards that satisfies the above min-entropy
requirement. Let e be as drawn in Obf(pat) for pat← D. Assume towards contradiction that there
exists some set S ⊂ [2n] of n indices such that ei = 0 for all i ∈ S with probability 1/p(n) for
some polynomial p (where the probability is over pat← D). Note that if there does not exist such
a set then we get security in the generic group model by the same arguments as in the proof of
Theorem 3. Partition e into the n pairs {e2j−1, e2j}j∈[n]. Say that 2k of the n indices in S are
in the same pair, for some k ∈ [0, ..., w]. We want to calculate the maximum number of possible
patterns which satisfy ei = 0 for all i ∈ S. This fixes k indices of pat to be ∗, n− 2k indices to be
either in the set {0, ∗} or the set {1, ∗}, and leaves k indices to be in the set {0, 1, ∗}. So we can
pick any w − k wildcard locations among n − k indices and then (overcounting slightly) pick any
length k binary string. So we want to find

max
k∈[0,...,w]

(
n− k
w − k

)
2k .

Just as in the analysis in [BKM+18, Lemma 14], since w−k
n−k is monotonically decreasing in k, the

quantity is maximized for the largest k such that w−k
n−k ≥ 1/2. For w ≤ n/2, this maximum is

attained at k = 0, for n/2 < w ≤ 3n/4, the maximum is attained at k = 2w − n ≤ n/2, and for
w > 3n/4, the maximum is obtained at k = n/2.

For w ≤ n/2, this shows that the maximum number of matching patterns over all possible sets
of n elements is

(
n
w

)
. By averaging, there must be some pattern that occurs with probability at

least 1
p(n)(nw)

which implies the min-entropy of the distribution is log
(
n
w

)
+ O(log(n)). The same

averaging argument gives the results for the cases where w > n/2.

Remark 2. The proof of [BKM+18, Lemma 14] shows that our min-entropy bound is an im-
provement over the uniform distribution for fixed number of wildcards w = cn when c ≤ 3/4.
Note that the bound improves (gets farther from the uniform distribution) as w decreases. Since
log(

(
n
cn

)
) ∼ H(c)n (where H is Shannon entropy) for constant c, we get an improvement over the

uniform distribution by a factor of about 1−c+H(c)
H(c) for c ≤ 1/2. Furthermore, when w is a constant,

the bound becomes ω(log(n)), which is optimal.

22

Remark 3. For c ≥ 0.821, the proposed bound becomes higher than the min-entropy of the uniform
distribution. Indeed, it holds that

log

(
n/2

w − n/2

)
− log

(
n

w

)
= log

(
w(w − 1) · · · (w − n/2 + 1)

n(n− 1) · · · (n/2 + 1)

)
≥ n

2
log

(
w − n/2
n/2

)
=
n

2
log(2c− 1) ,

and for c ≥ 0.821, it holds that log(2c− 1) > (1− 2c); hence we get

log

(
n/2

w − n/2

)
− log

(
n

w

)
>
n

2
(1− 2c) = (n− w)− n

2
.

Hence for that parameter regime, we need to appeal to the Chernoff bound analysis above to get
security for the uniform distribution.

3.3 Extension to Larger Alphabets

We generalize the construction to obfuscate patterns over any alphabet Σ of size `. For a pattern
length n, we choose the field size q to be a prime of size at least max{n`, 2n}. Then the size
of the obfuscation is O(n log(q)) and the running time of Obf and Eval is O(n2 log(q)). We let
Σ∗ := Σ ∪ {∗}.

Construction.

• Setup(n,Σ). Let G be a group of prime order q > max{n|Σ|, 2n} with generator g.

• Obf(pat ∈ Σn
∗): We associate the characters in Σ with the integers [`]. Let w be the number of

wildcards in pat, and for j ∈ [n−w], let ind(j) be the index of the jth non-wildcard element of

pat. Let the integer αj := (ind(j)− 1)`+ patind(j) for j ∈ [n−w]. Define Bpat ∈ Z(n+1)×(n−w)
q

as follows:

Bpat :=

α1 α2 . . . αn−w

(α1)2 (α2)2 . . . (αn−w)2

...
... . . .

...
(α1)n+1 (α2)n+1 . . . (αn−w)n+1

 .

Draw e← Zn−wq and output

gBpat·e ∈ Gn+1 .

• Eval(v ∈ Gn+1, x ∈ Σn): Define Bx ∈ Z(n+1)×n
q as follows:

Bx :=

x1 `+ x2 . . . (n− 1)`+ xn

(x1)2 (`+ x2)2 . . . ((n− 1)`+ xn)2

...
... . . .

...
(x1)n+1 (`+ x2)n+1 . . . ((n− 1)`+ xn)n+1

 .

23

Solve for a non-zero t ∈ Z1×(n+1)
q such that t ·Bx = 0. Compute

n+1∏
i=1

vtii

and accept if and only if the result is g0.

Functionality Preservation. Fix an x which matches pat, let Bpat and e be as computed in
the Obf procedure, and let t and Bx be as computed in the Eval procedure. By construction, each
column of Bpat is a column of Bx, so since t ·Bx = 0, t ·Bpat = 0 and thus gt·Bpat·e = g0.

Now fix an x which does not match pat. Then by construction there is a column (Bpat)i of
Bpat such that (Bpat)i is not a column of Bx. Then t · (Bpat)i 6= 0, otherwise the n + 1 columns
[Bx|(Bpat)i] would not be linearly independent and violate Lemma 2. Thus, t · (Bpat)i · ei is a
uniformly random field element, which implies that t · Bpat · e is as well, so Eval will only accept
with probability 1/q = negl(n).

Security. We first note that there is an equivalent (yet inefficient) representation of the Obf
procedure, and we use it to prove distributional virtual black-box security of our construction.

Remark 4. We can define an equivalent (inefficient) Obf procedure. On input a pat ∈ Σn
∗ , where

|Σ| = `, Obf draws the error vector ê ∈ Zn`q as follows (again associating characters in Σ with [`]).
For each i ∈ [n]:

• If pati = *, set ê(i−1)`+1 = ê(i−1)`+2 = · · · = êi` = 0

• Otherwise, set ê(i−1)`+pati
← Zq and ê(i−1)`+a = 0 for a ∈ [`] \ {pati}.

The output of Obf will be g(Bn+1,n`,q)·ê, where Bn+1,n`,q is the (n+ 1)× n` matrix defined at the
beginning of this section. Note that this procedure now has running time linear in the alphabet size
rather than logarithmic. We will use the fact that this procedure produces an equivalent obfuscation
as the procedure in the construction, namely, Bpat · e = Bn+1,n`,q · ê where Bpat and e are as drawn
in the Obf procedure above on input pat.

Theorem 4. Let Σ be an alphabet of arbitrary size and let UΣ,α
n,w be the set of distributions over Σn

∗
with the following properties:

• There are a fixed number of wildcard locations w;

• The w wildcard locations are uniformly distributed;

• Each non-wildcard character can be guessed independently with probability at most 1− α.

Then the above construction is a distributional VBB obfuscator in the generic group model for any
distribution D ∈ UΣ,α

n,w(n) for any w(n) = n− ω(log(n)) and constant α > 0.

Proof. We follow the same argument as in the proof of Theorem 3 up until the point where the

adversary A has specified n + 1 coefficients k = (k1, . . . , kn+1) ∈ Z1×(n+1)
q (while interacting with

the generic group oracle implementing the honest obfuscation). Following the remark above, we
view the obfuscation as Bn+1,n`,q · ê and again by Lemma 2, k · Bn+1,n`,q ∈ Z1×n`

q is 0 in at most

24

n positions. Now we argue in the same manner that there must exist some i ∈ [n`] for which
(k ·Bn+1,n`,q)i is non-zero and êi is uniformly random.

We show that for any fixed set S ⊂ [n`] of n` − n indices, there exists an i ∈ S for which
êi is uniformly random with overwhelming probability. This follows by partitioning ê into n sets
{ê(j−1)`+1, . . . , êj`}j∈[n] and noting that at least n/2 of these sets must contain at least n − 1
elements êi for which i ∈ S. Then since we are considering distributions that induce a uniform
distribution over wildcard positions, the same hypergeometric tail bound from Lemma 3 applies. So
with overwhelming probability, we have that at least c(n)/8 of these sets correspond to a uniformly
random ei (for c(n) = n− w(n)).

Guessing the position of the uniformly random ei in each of these sets is equivalent to guessing
the character in a particular non-wildcard position. Therefore, there does not exist any i ∈ [n`]
such that (k ·Bn,n`,q) is non-zero and êi is uniformly random with probability at most (1−α)c(n)/8 +
negl(n) = negl(n) for c(n) = ω(log(n)).

In Appendix C, we show how to extend our result for general min-entropy distributions to the
case where the alphabet size is ` > 2; in particular we show that Lemma 4 works for any size
alphabet `.

3.4 Efficiency Improvements

Observe that our generalized construction for arbitrary alphabet size has an equivalent interpreta-
tion in the primal (A · s+ e) or “grid” view of the original [BKM+18] construction. However, this
gives an A of dimension n` × (n − 1) where ` is the alphabet size, or equivalently a grid of total
size n`. Thus, viewing the [BKM+18] construction as a dual scheme (B · e) allows us to reduce the
size of the generalized construction from n` group elements to n + 1 group elements, and reduce
the running time of Obf and Eval from linear in ` to logarithmic in `. In the binary alphabet
case (the only case considered by [BKM+18]), it may appear that this savings in space (from 2n
group elements to n+ 1) comes at the cost of slower evaluation time. The [BKM+18] construction
makes no mention of running time, though following their exact evaluation procedure to compute
n Lagrange reconstruction coefficients suggests an O(n2) runtime.

On the other hand, evaluation of our scheme requires solving a system of n linear equations,
which is O(nω) time in general (where here ω refers to the matrix multiplication constant, for which
the best known bound is ω < 2.373 [Wil14]). However, we show in Appendix B that evaluation in
both the [BKM+18] construction and our construction can be done in O(n log2 n). The key insight
to improving the evaluation time of our construction is that when

B :=

1 1 · · · 1
1 21 · · · (2n)1

...
...

. . .
...

1 2n · · · (2n)n

 ,

solving t · B = 0 for t becomes the problem of finding the coefficients of a polynomial given its
roots.

25

4 Obfuscating Conjunctions from Constant-Noise LPN

In this section, we consider a second construction: we show that replacing the fixed B matrix over
Fq with a random matrix allows us to take our construction out of the group exponent and prove
security in the standard model. Our security will be based on the standard constant-noise LPN
assumption.

LPN vs. RLC. We note that under the Random Linear Codes (RLC) assumption (i.e., a gen-
eralization of LPN to Fq for q ≥ 2; see Appendix A or [IPS09]), we could use the techniques from
this section to prove that our construction over large fields is indistinguishable from random. But
as explained in Section 1.2.5, indistinguishability from random does not imply distributional VBB
security.14 The problem arises from the fact that distributional VBB security requires indistin-
guishability from a simulated obfuscation even if the adversary knows a one bit predicate on the
circuit (the pattern/conjunction in our case). This requires us to prove that the decisional “struc-
tured error” LPN/RLC problem is indistinguishable from random even if the adversary knows
a predicate on the positions of the non-zero error vector entries, which encode the pattern. We
show how to do this by modifying an appropriate search-to-decision reduction. Unfortunately, no
search-to-decision reductions are known for RLC with super-polynomial modulus q, preventing our
approach from extending beyond polynomial size q.

Our presentation is therefore structured as follows. We give a core technical reduction from
standard RLC to structured error RLC that works for q up to size 2n

γ
in Appendix A. We then

argue in Section 4.3 that we can modify this result to hold even if arbitrary predicates on the error
vector are known, provided q = 2. Thus, the results for larger q given in Appendix A are not
strictly necessary for our construction; we simply state them for maximum generality, as we believe
this structured-error hardness may be of independent interest. As discussed in the introduction,
we give all our results for the dual versions of the LPN and RLC problems in order to achieve a
more efficient construction. For an in-depth discussion on the equivalence between the dual and
primal formulations, refer to Micciancio and Mol [MM11] (they consider the LWE setting, but their
transformations apply here).

Strong Functionality Preservation. We note that simply plugging our reduction into our
obfuscation scheme only gives us weak functionality preservation (Definition 1). Other works such
as [BKM+18] address this issue by increasing the size of the field, but this will not work here since
LPN restricts us to q = 2. Fortunately, we can still boost our scheme and satisfy strong functionality
preservation by making use of additional regular (as opposed to structured) LPN samples (as we
describe in Section 4.4). This modification has one caveat: the evaluation is polynomial-time in
expectation, requiring a slight relaxation of the polynomial slowdown requirement in Definition 1.

Multi-bit Output. Even after achieving strong functionality preservation, our scheme suffers
from a noticeable weakness: it can handle random conjunctions where a constant fraction ρ of the
bits are wildcards, but it cannot handle a sub-constant fraction of wildcards. This is surprising,
since obfuscation for evasive functionalies should intuitively get easier as we reduce the number of

14In the generic group model, indistinguishability from random does imply distributional VBB. However as discussed
in Section 1.2.5, trivial counterexamples to this claim exist in the standard model.

26

accepting inputs. However, our construction is completely broken if there are no wildcards, and in
fact there is an attack on our scheme for any ρ = 1−O(logn/n).15

We fix this problem by extending our obfuscator to support multi-bit output. In this setting,
the obfuscator can embed a fixed message into the obfuscation, which an evaluator recovers upon
finding an accepting input. We show how to leverage well-known leakage-resilience properties of
LPN to extend our construction to the multi-bit setting, which then allow us to handle conjunctions
with a sub-constant (or even zero) fraction of wildcards. The rough idea is to arbitrarily set some
of the non-wildcard bits to be wildcards, and then use the multi-bit output to specify the true
settings of those bits.

4.1 Exact Structured Learning Parity with Noise

Exact (Unstructured) Learning Parity with Noise. We begin by recalling the decisional
Exact Learning Parity with Noise (DxLPN) problem considered by Jain et al. [JKPT12]. The word
“exact” modifies the standard decisional Learning Parity with Noise (DLPN) problem by changing
the sampling procedure for the error vector. Instead of setting each component of e ∈ Fmq to
be 1 with independent probability ρ, we sample e uniformly from the set of error vectors with
exactly bρmc entries set to 1 (we refer to these as vectors of weight bρmc). DLPN is polynomially
equivalent to the exact version following the search to decision reduction given in [AIK09], as noted
in [JKPT12, Döt16]. We give the precise definition in its dual formulation.

Let ρ ∈ [0, 1] and m > 0 be an integer. Let χmρ denote the distribution on Fm2 which outputs
uniformly random vectors in Fm2 of weight bρmc.

Definition 5 (Exact Learning Parity with Noise). Let n,m be integers and ρ ∈ [0, 1]. The (dual)
Decisional Exact Learning Parity with Noise (DxLPN) problem with parameters n,m, ρ, denoted
DxLPN(n,m, ρ), is hard if, for every probabilistic polynomial-time (in n) algorithm A, there exists
a negligible function µ such that∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B, u) = 1]

∣∣∣∣ ≤ µ(n)

where B ← F(m−n)×m
2 , e← χmρ , and u← Fm−n2 .

Exact Structured LPN. We now introduce a modification of the Exact Learning Parity with
Noise (DxLPN) problem where we enforce that the error vector is structured. Concretely, the error
vector e is now 2m-dimensional, and we enforce that in any of the pairs (2i− 1, 2i) for i ∈ [m], at
least one of e2i−1 and e2i is 0. As we are considering the exact version of the problem, we enforce
that bρmc components of e are non-zero. Note that while the error vector has doubled in size, the
number of non-zero components is unchanged. As described in Section 1.2.3, we take advantage of
this particular error structure to encode a conjunction over a binary alphabet.

15The idea of the no wildcard attack is easy to see in the A · s+ e view of the scheme: if there are no wildcards, the
error vector is guaranteed to have exactly one 1 entry and one 0 entry in each pair of indices (2i − 1, 2i). Then by
summing every pair of equations (2i−1, 2i), the error is completely known and we can solve for s. For ρ = 1−O(logn/n),
we can guess which pairs of equations do not have this structured error with noticeable probability.

27

We first introduce some notation. For a distribution D on Fm2 , we define the distribution

σ(D) =

s1

s2

s3

s4
...

s2m−1

s2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x← {0, 1}m
e′ ← D

for all i ∈ [m],

{
s2i−xi = e′i
s2i−(1−xi) = 0

.

Definition 6 (Exact Structured LPN). The (dual) Decisional Exact Structured Learning Parity
with Noise (DxSLPN) problem with parameters n, 2m, ρ, denoted DxSLPN(n, 2m, ρ), is hard if for
every probabilistic polynomial-time (in n) algorithm A, there exists a negligible function µ such that∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B, u) = 1]

∣∣∣∣ ≤ µ(n)

where B ← F(2m−n)×2m
2 , e← σ(χmρ), and u← F2m−n

2 .

In other words, the error vector e ∈ F2m
2 in the DxSLPN problem can be derived from the error

vector e′ ∈ Fm2 of the DxLPN problem; for each i ∈ [m], randomly set one of e2i−1 or e2i to e′i and
the other to 0.

We prove the following theorem in Appendix A. We stress that DxLPN(nε, n, ρ) hardness follows
from standard LPN hardness for polynomially many samples as noted in [JKPT12, Döt16], so this
theorem implies DxSLPN(n− nδ, 2n, ρ) hardness from the standard LPN assumption.

Theorem 5. Fix constants ε, δ,∈ [0, 1/2) and constant ρ ∈ (0, 1). If DxLPN(nε, n, ρ) is hard, then
DxSLPN(n− nδ, 2n, ρ) is hard.

4.2 Construction

The following construction is parameterized by a pattern length n and a constant δ ∈ [0, 1/2).

• Obf(pat ∈ {0, 1, ∗}n): Draw B ← {0, 1}(n+nδ)×2n and e ∈ {0, 1}2n as follows. For each i ∈ [n]

– If pati = ∗, e2i−1 = e2i = 0

– If pati = b, e2i−b = 1, e2i−(1−b) = 0

Output (B,Be).

• Eval((B, v), x): Define Bx to be the (n + nδ) × n matrix where column j is set as (Bx)j :=

(B)2j−xj . Solve for a full rank matrix T ∈ {0, 1}nδ×(n+nδ) such that T · Bx = 0. Compute

T · v and if the result is 0n
δ×1 output 1 and otherwise output 0.

28

Weak Functionality Preservation. We show that for all pat ∈ {0, 1, ∗}n and x ∈ {0, 1}n, it
holds that

Pr[Eval(Obf(pat), x) = fpat(x)] = 1− negl(n) ,

over the randomness of the Obf procedure. Let B, e be drawn as in the Obf procedure. Let T,Bx
be as defined in the Eval procedure and Bx be the n columns of B not in Bx. Let ex be defined
analogously. First, if fpat(x) = 1, then ex = 0 by construction. Then

T · v = T ·B · e = (T ·Bx) · ex = 0 .

Hence, Eval(Obf(pat), x) = 1 with probability 1. Now if fpat(x) = 0, then ex 6= 0 by construction.
Since T ·Bx is a uniformly random rank nδ matrix independent of ex, it holds that

Pr[T · v = 0] =
1

2nδ
= negl(n) .

4.3 Security

Lemma 5. Fix any predicate P : {0, 1, ∗}n → {0, 1}. If DxSLPN(n, 2m, ρ) is computationally hard,
then the problem of distinguishing (B,Be,P(e)) from (B, u,P(e)) is computationally hard, where

B ← F(2m−n)×2m
2 , e← σ(χmρ), and u← F2m−n

2 .

Proof. First, we introduce the two search variants of the problems considered in the lemma state-
ment. Search xSLPN (or SxSLPN) will be defined as the problem of returning e with non-negligible
probability, given (B,Be) as drawn in the definition of DxSLPN. This problem is clearly at least
as hard as DxSLPN. Next, we define “SxSLPN with a one bit predicate”, where the adversary must
find e with non-negligible probability, given (B,Be,P(e)) for any fixed predicate P. This problem
is at least as hard as regular SxSLPN since the adversary for SxSLPN, which receives (B,Be) as
input, can simply guess the value of P(e), be correct with probability at least 1/2, and forward
(B,Be,P(e)) as input to the adversary for SxSLPN with a one bit predicate. To complete the proof
of the lemma, we argue that DxSLPN with a one bit predicate is at least as hard as SxSLPN with
a one bit predicate.

The proof of this fact follows from the proof of Lemma 5 in [Döt16] (equivalence of search
and decision “leaky LPN”)16, where we let the underlying problem be structured LPN rather than
regular LPN and consider the special case of leakage functions corresponding to one bit predicates.
We can use this proof, which relies on the Goldreich-Levin theorem, to conclude that an adversary
with advantage ε in breaking DxSLPN with a one bit predicate can be used to produce an adversary
with advantage ε2/8 in breaking SxSLPN with a one bit predicate. In particular, an adversary with
non-negligible advantage in breaking DxSLPN with a one bit predicate implies an adversary with
non-negligible advantage in breaking SxSLPN with a one bit predicate.

Theorem 6. Fix any constant ρ ∈ (0, 1). Assuming the computational hardness of DLPN(nε, n, ρ)17

for some ε < 1/2, the above obfuscation with parameters (n, δ) for δ < 1/2 is Distributional-VBB
secure for patterns pat← Un,n−ρn.

16The main component of this proof is a very slight tweak of the search-to-decision reduction presented in [AIK09].
We note that this proof is presented for the As + e version of LPN, but the same technique works for the dual Be
version, as shown for example in the proof of Lemma 2.3 in [HOSS18].

17As previously noted, the DLPN and DxLPN problems are polynomially equivalent

29

Proof. We show that the above obfuscator satisfies the definition of Perfect Circuit-Hiding (Def-
inition 2), which implies Distributional VBB security [BBC+14]. We want to show that for any
probabilistic polynomial-time adversary A and any balanced predicate P : {0, 1, ∗}n → {0, 1} (that
is, P takes the values 0 and 1 with probability 1/2 over the randomness of pat← Un,n−ρn),

Pr
pat←Un,n−ρn

[A(Obf(pat)) = P(pat)] =
1

2
+ negl(n) .

We know by assumption and from Theorem 5 and Lemma 5 that, for any predicate P : {0, 1, ∗} →
{0, 1} and for all probabilistic polynomial-time B,∣∣∣∣ Pr

pat←Un,n−ρn
[B(Obf(pat),P(pat)) = 1]− Pr

pat←Un,n−ρn
[B((B, u),P(pat)) = 1]

∣∣∣∣ = negl(n) ,

where B ← {0, 1}(n+nδ)×2n and u← {0, 1}n+nδ .
Now assume that there exists a balanced predicate P such that there exists a probabilistic

polynomial-time adversary A that breaks the above Perfect Circuit-Hiding definition for predicate
P with non-negligible advantage µ(n). Consider an adversary B that receives ((B, u),P(pat)),
runs A on (B, u) and outputs 1 if A(B, u) = P(pat) and 0 otherwise. If (B, u) was an honest
obfuscation, then B outputs 1 with probability 1

2 + µ(n). If (B, u) was uniformly random, then
A(B, u) is independent of P(pat), so since P is balanced, B outputs 1 with probability exactly
1/2. Thus, B’s advantage in distinguishing (Obf(pat),P(pat)) from ((B ← {0, 1}(n+nδ)×2n, u ←
{0, 1}n+nδ),P(pat)) is µ(n) which is non-negligible. This is a contradiction, which completes the
proof.

4.4 Boosting to Strong Functionality Preservation

In this section, we describe how to tweak our obfuscation construction to satisfy the notion of strong
functionality preservation from Definition 1. To do this, we had to modify our construction and
evaluation scheme so that evaluation is polynomial-time in expectation, requiring a slight relaxation
of the polynomial slowdown requirement in Definition 1 (namely that, for any input x, the expected
running time of the evaluation procedure is polynomial over the randomness of the obfuscation).

Indeed, while our weak functionality preservation argument guarantees correctness on any input
x with overwhelming probability, the chance of error is 1/2n

δ . Since there are 2n possible inputs, we
cannot simply apply a union bound to achieve the stronger notion, as done in [BR17, BKM+18].
Roughly speaking, it stems from the fact that, given (B,B · e) as generated above where e is
determined by some pattern pat with w wildcards, there will be some other e′ determined by
pattern pat′ with w wildcards such that B · e = B · e′. Then given v = B · e = B · e′, the obfuscation
of pat is identical to an obfuscation of pat′. The most natural way to circumvent this issue would be
to increase the number of rows of B until B ·e uniquely determines e with overwhelming probability.
Unfortunately, making this argument work would require about Θ(n) additional rows, but we are
constrained by a step in our reduction (Lemma 12) that only permits us to introduce nδ additional
rows for δ < 1/2.

Boosting with Exact LPN Samples. However, we observe that we can add rows to B if we
correspondingly increase the number of columns. Note that each additional column we add to B
requires adding an element to the error vector e. In order to preserve security, these elements will

30

have to be standard exact LPN samples (with unstructured error). For concreteness, we set the
error rate to 1/16 and add 16n extra columns; since these are exact LPN samples, note that exactly
n of the last 16n components of e will be set to 1.

• Obf(pat ∈ {0, 1, ∗}n): Draw B ← {0, 1}17n×18n. Set e′ ∈ {0, 1}2n as follows. For each i ∈ [n] :

– If pati = ∗, e′2i−1 = e′2i = 0

– If pati = b, e′2i−b = 1, e′2i−(1−b) = 0

Draw ê← χ16n
1/16, let e =

(
e′

ê

)
and output (B,Be)

• Eval((B, v), x ∈ {0, 1}n): Define Bx to be the 17n × n matrix where column j is set as
(Bx)j := (B)2j−xj . Define B̂ to be the 17n× 16n matrix consisting of the final 16n columns

of B. Now solve for the affine space S ⊆ {0, 1}17n of solutions [Bx|B̂]s = v for s ∈ S, iterate
over all vectors s ∈ S and accept if and only if the final 16n components of some s has
Hamming weight at most n.

Security. We can base security for the distribution Un,n−ρn on the computational hardness of
DxLPN(nε, 17n,min(ρ, 1/16)) for some ε < 1/2. This follows from a small tweak to the proof of
Theorem 5, where in proving the indistinguishability of distributions D1 and D2, we transform just
the left-most n columns of B into a length 2n “structured error” instance (instead of performing
the transformation on the entire matrix B).

Strong Functionality Preservation. We begin by showing that over the random choice of B ←
{0, 1}17n×18n, with overwhelming probability, there does not exist two vectors e(1), e(2) ∈ {0, 1}18n

such that Be(1) = Be(2) and such that the final 16n components of each has Hamming weight at
most n. If this were the case, then there must exist some e∗ ∈ {0, 1}18n with Hamming weight at
most 2n among its final 16n components such that Be∗ = 0. Let B′ be the first 2n columns of B
and B̂ be the final 16n columns. Then there must be 2n columns B∗ of B̂ such that the matrix
[B′|B∗] is not full rank. There are

(
16n
2n

)
choices for B∗, and each choice gives a 17n × 4n binary

matrix, which by a union bound is not full rank with probability at most 4n/213n. Then applying a
union bound over all choices for B∗ gives that a non-full rank matrix [B′|B∗] exists with probability
at most

4n
(

16n
2n

)
213n

≤ 4n(8e)2n

213n
= 2(2 log(8e)−13)n+2 log(n) ≤ 22 log(n)−4n = negl(n) .

Now, let B be drawn as in the Obf procedure, and assume that the above property is true. Let

e =

(
e′

ê

)
be as drawn in the Obf procedure for pattern pat and fix an x matching pat. Let Bx and

B̂ be as defined in the Eval procedure and Bx be the n out of the first 2n columns of B not in Bx.
Now let ex be the n components of e′ corresponding to the columns in Bx and ex be the other n
components of e′. Then for an x that matches pat, ex = 0 by construction, so

v = B

(
e′

ê

)
= [Bx|B̂]

(
ex
ê

)
,

31

and thus

(
ex
ê

)
is in the space of vectors solved for during Eval and ê has Hamming weight n. Thus

x will be accepted.
Now fix an x that does not match the pattern. For x to be (incorrectly) accepted, there must

exist s ∈ {0, 1}17n with Hamming weight at most n among its final 16n components such that

[Bx | B̂]s = v .

From s, we construct a vector s′ ∈ {0, 1}18n as follows. On the n indices corresponding to Bx,
place the first n entries of s. On the n indices corresponding to Bx, place 0’s. Then let the
last 16n components of s′ equal the last 16n components of s. By construction, we have that
Bs′ = [Bx | B̂]s = v = Be.

On the other hand, we know that s′ 6= e, since ex 6= 0, whereas sx = 0. Since these are two
distinct vectors such that the Hamming weight of the final 16n components of each is at most n,
we obtain a contradiction.

Expected Polynomial Slowdown. Note that, during Eval, we can solve for the space S by
first finding a matrix K which spans the kernel of (the square matrix) [Bx|B̂] and then shifting the
space by some solution s that satisfies [Bx|B̂]s = v. These steps are clearly polynomial time, but
now we have to iterate over the all vectors in the column space of K, of which there are exactly 2d,
where d is the rank deficiency of [Bx|B̂]. We now show that the expected value of this number is
at most 2n2 + n over the randomness of the Obf procedure.

For each value of d ∈ [17n], we can union bound to derive an upper bound on the probability
that [Bx|B̂] is rank deficient by exactly d:(

17n
d

)
2d2

≤
(

17en

d2d

)d
.

Then, we sum to calculate the expected number of vectors 2d, upper bounding the above probability
by 1 for all d ≤ 2 log(n):

2 log(n)∑
d=0

2d +
n∑

d=2 log(n)+1

2d
(

17en

d2d

)d
≤ 2n2 + n

(
17e

n log(n)

)log(n)

≤ 2n2 + n ,

where the last inequalities hold for n sufficiently large.

4.5 Multi-Bit Output

We show how to extend our construction to obfuscate functions of the form fpat,m(x) = m if
x matches pat and ⊥ otherwise. To obtain this, we XOR the message m with the output of a
polynomial stretch PRG, whose seed we embed in the error vector of the structured LPN instance.

The following construction is parameterized by a pattern length n, a message length function
`(n) which is polynomial in n, a constant δ ∈ [0, 1/2), and a constant κ such that κ < δ. We let
G : {0, 1}nκ → {0, 1}`(n) be a polynomial stretch PRG.

• Obf(pat ∈ {0, 1, ∗}n,m ∈ {0, 1}`(n)): Sample a PRG seed s← {0, 1}nκ and

B ← {0, 1}(n+nδ)×(2n+nκ). Fix e′ ∈ {0, 1}2n as follows. For each i ∈ [n]

32

– If pati = ∗, e′2i−1 = e′2i = 0

– If pati = b, e′2i−b = 1, e′2i−(1−b) = 0

Now let e =

(
e′

s

)
and output (B,Be,G(s)⊕m).

• Eval((B, v, c), x): Define B̂ to be the last nκ columns of B. Define Bx to be the (n +
nδ) × n matrix where column j is set as (Bx)j := (B)2j−xj . Solve for a full rank matrix

T ∈ {0, 1}(nδ−nκ)×(n+nδ) such that T · [Bx|B̂] = 0. If T · v = 0(nδ−nκ)×1, solve for an e such
that [Bx|B̂] · e = v, let s be the last nκ elements of e, and output G(s)⊕ c; otherwise output
⊥.

Functionality Preservation. We show that for all pat ∈ {0, 1, ∗}n,m ∈ {0, 1}`(n), and x ∈
{0, 1}n,

Pr[Eval(Obf(pat,m)) = fpat,m(x)] = 1− negl(n) .

Let Bx be as defined in the Obf procedure. Define Bx to be the other n columns out of the first
2n columns of B and ex to be the corresponding elements of e. If fpat,m(x) = m, then ex = 0n by

construction. Thus, B · e = v = [Bx|B̂] · e. Moreover, by a union bound, with probability at least
1− n+nκ

2nδ−nκ
= 1− negl(n) (for δ > κ), the matrix [Bx|B̂] is full rank. Then e is the unique solution

to this equation, so the evaluator will successfully recover the PRG seed s and thus the message m.
Now if fpat,m(x) = ⊥, then ex 6= 0n×1 by construction. Then since T ·Bx is a uniformly random

rank nδ − nκ matrix independent of ex̄,

Pr[T · u = 0] =
1

2nδ−nκ
= negl(n)

for δ > κ.

Lemma 6. Assuming the computational hardness of DxLPN(nε, n, ρ) for some ε < 1/2, the above
obfuscation with parameters (n, `(n), δ, κ) is Distributional-VBB secure for functions fpat,m where
pat ← Un,n−ρn and m is drawn from an arbitrary distribution M over {0, 1}`(n), independently of
pat.

Proof. We introduce a series of three distributions. Let P : {0, 1}n+nκ → {0, 1} be any fixed
predicate.

D0 is the uniform distribution over the set(O,P(pat,m)
)∣∣∣∣∣∣

pat← Un,n−ρn
m←M
O ← Obf(pat,m)

D1 is the uniform distribution over the set

(
(B, u,G(s)⊕m),P(pat,m)

)
∣∣∣∣∣∣∣∣∣∣∣

pat← Un,n−ρn
m←M
B ← {0, 1}(n+nδ)×(2n+nκ)

u← {0, 1}n+nδ

s← {0, 1}nκ

33

D2 is the uniform distribution over the set
(

(B, u, v),P(pat,m)
)
∣∣∣∣∣∣∣∣∣∣∣

pat← Un,n−ρn
m←M
B ← {0, 1}(n+nδ)×(2n+nκ)

u← {0, 1}n+nδ

v ← {0, 1}`(n)

Note that computational indistinguishability of D0 and D2 is sufficient to prove Distributional-VBB
via the same arguments as in the proof of Theorem 6. Now, for some predicate P, assume that
there exists an adversary A that distinguishes D0 and D1 with non-negligible advantage ε. Then
there must exist some fixed m such that A’s distinguishing advantage given this fixed m rather
than m drawn fromM is at least ε. Hard-coding m into P produces a predicate P ′ over patterns in
{0, 1, ∗}n. Now A can be used to distinguish between (Obf(pat),P ′(pat)) and (B, u,P ′(pat)) with
advantage ε (where Obf refers to the construction in 4.3 with parameters (n, δ)). The reduction

simply draws s for itself, appends B̂ ← {0, 1}(n+nδ)×(nκ) to B, and adds B̂ · s to u. However, this is
ruled out by Theorem 5 and Lemma 5, assuming the computational hardness of DxLPN(nε, n, ρ) for
some ε < 1/2. Distributions D1 and D2 are indistinguishable by the security of the PRG G, which
completes the proof.

Security for Patterns with Sub-constant Error Rate. Note that Theorem 3 gives security
for patterns with a fixed bρnc wildcards for any constant ρ (assuming the hardness of the appropriate
LPN instance). However, we would like to have security for patterns with less wildcards, which
intuitively should be no more difficult to obfuscate. This follows from the above construction, where
to obfuscate a pattern with w(n) wildcards where w(n) is a sub-constant function of n, we draw
pat′ ← Un,n−ρn and m← Un−ρn,w(n). Letting m correspond to the wildcard locations of pat′ defines
a pattern pat with w(n) wildcards. If the evaluator gets an accepting input x for pat′, he recovers
m and can see if m matches x on its non wildcard positions.

5 Information-Theoretic Security

In this section, we consider a third construction, which relies on subset sums of random rank one
matrices. To obfuscate a pattern pat ∈ {0, 1, ∗}n, we sample a uniformly random B ∈ Fk×kq with
rank k − 1. Then for each i ∈ [n] where pati 6= *, we sample a uniformly random rank one matrix
A(i) ∈ Fk×kq , and for all i where pati = *, we sample a random rank one matrix A(i) ∈ Fk×kq with its

columns in the column span of B. Finally, we set F := B−
∑

i|pati=1A
(i) and give out F, {A(i)}i∈[n].

To evaluate on x, we simply compute F +
∑

i|xi=1A
(i) and accept if the determinant is 0.

Correctness follows from the fact that on an accepting input, this sum is simply B plus a sum
of A(i) matrices corresponding to wildcard positions; these A(i) matrices are chosen in the column
span of B, so its rank remains at most k− 1. On a rejecting input, we rely on the fact that a rank
k − 1 matrix plus an independently random rank one matrix will be full rank with overwhelming
probability. For security, we can support nδ wildcards by setting k = nδ + 1. We show that if
the pattern has sufficient min-entropy on the non-wildcard positions, B is information theoretically
hidden. With a bit more effort, we turn this into a formal proof of statistical virtual black box
security.

34

Remark 5. This scheme is reminiscent of the Learning Subspace with Noise problem introduced
by Dodis et al. [DKL09] where we correspond the column span of B with the hidden subspace and
the wildcard matrices A(i) with samples from the subspace. Dodis et al. [DKL09] observe that this
problem is equivalent to LPN if the hidden subspace is rank deficient by 1 (since q is large in our
scheme, it is more analogous to the Random Linear Code (RLC) problem over Fq). However, we
are able to obtain statistical security arguments by limiting the number of samples to only give out
k − 1 vectors from the (k − 1)-dimensional subspace.

However, statistical security requires us to sacrifice strong functionality preservation, i.e., we
cannot ensure Obf(fpat)(x) = fpat(x) holds simultaneously for all x. This follows from the fact
that if strong functionality preservation holds, then a computationally unbounded adversary can
simply recover the entire truth table and learn pat in the clear. Thus, security relies on the fact
that Obf(fpat)(x) 6= fpat(x) on exponentially many x. However, we still satisfy weak functionality
preservation, which ensures that for any x, Obf(fpat)(x) = fpat(x) with overwhelming probability.

In Section 5.3, we show how to modify this base construction to achieve an intermediate notion
of computational functionality preservation, assuming the (computational) discrete log assumption.
The resulting scheme has the curious property of being distributional-VBB secure against compu-
tationally unbounded adversaries, but functionality preserving in the view of any computationally
bounded adversary (even those who know pat).

5.1 Construction

We now present the construction informally sketched above. We note that we will draw the rank
deficient matrix B by choosing its first k − 1 rows at random, and then picking its last row in the
row span of the first k−1. It is easy to see that this is statistically indistinguishable from sampling
a uniformly random B with rank k − 1. However, “pushing” the rank deficiency to the last row of
B will simplify both the security analysis and the modified construction in Section 5.3.

Notation. We will frequently write a matrix M as(
M
M

)
,

where M is the submatrix of M consisting of everything except the bottom row, and M denotes
the bottom row.

Construction. The following is parameterized by a pattern length n and field size q = 2n
γ

for a
γ > 0. We let Fq denote a field of size q.

• Obf(pat ∈ {0, 1, ∗}n). Partition [n] into S0 ∪ S1 ∪ S∗ so that

S0 = {i | pati = 0}, S1 = {i | pati = 1}, S∗ = {i | pati = ∗} .

– Let k = |S∗|+ 1;

– Draw B ← F(k−1)×k
q , r ← F1×(k−1)

q and let18

B :=

(
B

r ·B

)
18We could instead simply draw B as a uniformly distributed rank k − 1 matrix, but for ease of presentation we

draw it with this structure.

35

– For each i ∈ S0 ∪ S1, sample a uniformly random rank 1 matrix A(i) ∈ Fk×kq ;

– For each i ∈ S∗, sample a uniformly random rank 1 matrix A
(i) ∈ F(k−1)×k

q , and let19

A(i) :=

(
A

(i)

r ·A(i)

)

– Define

F := B −
∑
i∈S1

A(i),

and output (F,A(1), . . . , A(n)).

• Eval((F,A(1), . . . , A(n)), x ∈ {0, 1}n). Output 1 if

det

F +
∑
i|xi=1

A(i)

 = 0,

and 0 otherwise.

Weak Functionality Preservation. By construction, for an x that matches pat, we have that

colspan

F +
∑
i|xi=1

A(i)

 = colspan

B +
∑

i|xi=1∧pati=∗

A(i)

 ⊆ colspan(B) .

It then follows that det(F +
∑

i|xi=1A
(i)) = 0 since B has rank k−1. For an x that does not match

pat, consider the matrix

F +
∑
i|xi=1

A(i) = B +
∑

i|xi=1∧pati=∗

A(i)

︸ ︷︷ ︸
B′

+
∑

i|xi=1∧pati=0

A(i) −
∑

i|xi=0∧pati=1

A(i)

︸ ︷︷ ︸
A′

=

(
B
′
+A

′

B′ +A′

)
.

Since the first k − 1 rows of B are all uniformly random, the same is true of B
′
. Furthermore,

we know by construction that there exists at least one i such that pati 6= xi and pati ∈ {0, 1},
so A′ contains at least one of these A(i) matrices. Note that the last row of A(i) (and hence A′)

is uniformly random and independent of B
′
. Thus F +

∑
i|xi=1A

(i) is distributed as a uniformly
random matrix, so its determinant is non-zero with overwhelming probability 1−k/q = 1−negl(n)
by the Schwartz–Zippel lemma.

19We could instead draw A(i) as a random rank 1 matrix whose columns are in the column span of B, but again
for ease of presentation we draw it with this structure

36

5.2 Security

First we give precise definitions of statistical security for obfuscated functionalities. The following
definition is mostly the same as the definition for Distributional VBB Security so we just describe
the differences with Definition 1.

Definition 7 (ε-Statistical Distributional VBB Obfuscation). Let Obf be as defined in Defini-
tion 1 and ε(n) be a function of n. We require the same notions of Functionality Preservation and
Polynomial Slowdown, but alter the definition of Distributional Virtual Black-Box as follows:

3. ε-Statistical Distributional Virtual Black-Box: For every (unbounded) adversary A, there ex-
ists a PPT simulator S such that for every n ∈ N, every distribution D ∈ Dn (a distribution
over Cn), and every predicate P : Cn → {0, 1}:∣∣∣∣ Pr

C←Dn,A
[A(Obf(C, 1n)) = P(C)]− Pr

C←Dn,S
[SC(1|C|, 1n) = P(C)]

∣∣∣∣ ≤ ε(n) .

We say a construction achieves statistical distributional VBB security if it is ε-statistical distri-
butional VBB secure for some ε(n) = negl(n).

Remark 6. As discussed in the introduction, if strong functionality preservation holds, then a
computationally unbounded adversary can learn the entire truth table of the original function. Thus,
distributional VBB security is only possible if we consider strictly weaker notions of correctness such
as weak functionality preservation or computational functionality preservation (cf. Section 5.3).

For any pattern pat ∈ {0, 1, ∗}n, define pat−1(∗) := {j | patj = ∗} the positions of the wildcards
and let b ∈ {0, 1}n−w denote the fixed bits of pat.

Theorem 7. The above construction with field size q is ε(n)-Statistically Distributional VBB secure
for any distribution over patterns with w ≤ n wildcards such that H∞(b|pat−1(∗)) ≥ (w+1) log(q)+
2 log(1/ε(n)) + 1

Corollary 1. Fix any δ ∈ [0, 1). The above construction can be used to satisfy Statistical Dis-
tributional VBB security for any distribution over patterns with w = nδ wildcards such that
H∞(b|pat−1(∗)) ≥ n1−γ for some γ < 1− δ.

Proof. Let k = w + 1 and Fq be a field of size q. It suffices to show the following two distributions
are ε(n)-statistically close

(F,A(1), . . . , A(n),P(pat)) and (U,U1, . . . , Un,P(pat)) ,

where P is any fixed one bit predicate over patterns, F,A(1), . . . , A(n) are the matrices output by
Obf with field size q on pattern pat where pat has w wildcard positions, U is a uniformly random
matrix in Fk×kq , and U1, . . . , Un are uniformly random rank 1 matrices in Fk×kq .

We start with the following lemma.

Lemma 7. Let ε(n) be a function. For any one bit predicate P over patterns, the following distri-
butions are ε(n)-statistically close

37

• Distribution D0. Sample pat with w wildcards such that the fixed coefficients b ∈ {0, 1}n−w
(where bi denotes the ith bit of b) of pat have min-entropy H∞(b|pat−1(∗)) ≥ (w+1) log(q)+
2 log(1/ε(n))+1. For i = 1, . . . , n−w, sample independently random vectors vi ∈ Fkq . Output

v1, . . . , vn−w,
∑

i∈[n−w]

bivi, pat
−1(∗),P(pat).

• Distribution D1. This is the same as D0, except replace
∑

i∈[n−w] bivi with uniformly random

u← Fkq . Output

v1, . . . , vn−w, u, pat
−1(∗),P(pat).

Proof. We show indistinguishability of D0 and D1 by introducing two additional distributions, F0,
and F1. We claim that for any fixed Boolean predicate P ′, the following two distributions are
ε(n)-statistically close:

• Distribution F0. Sample a random b ∈ {0, 1}n−w withH∞(b) ≥ (w+1) log(q)+2 log(1/ε(n))+
1. For i = 1, . . . , n− 1, sample independently random vectors vi ∈ Fkq . Output

v1, . . . , vn−w,
∑

i∈[n−w]

bivi,P ′(b).

• Distribution F1. Same as F0, except
∑

i∈[n−w] bivi is replaced with random u ∈ Fkq . Output

v1, . . . , vn−w, u,P ′(b).

Define the hash function family

hv1,...,vn−w(b) =
∑

i∈[n−w]

bivi.

This hash function family is 2-universal, since for b 6= b′,

Pr
v1,...,vn−w

[hv1,...,vn−w(b) = hv1,...,vn−w(b′)] =
1

qk
.

Furthermore, its range size is qk. Then since P ′(b) leaks at most 1 bit of the entropy of b, and
H∞(b) − 1 ≥ k log(q) + 2 log(1/ε(n)), by the leftover hash lemma (Lemma 1), it holds that the
distributions F0 and F1 are ε(n)-statistically close.

Now, we use these distributions Fi to show that D0 and D1 are ε(n)-statistically close. Assume
towards contradiction that an adversary can distinguish between D0 and D1 with non-negligible
advantage for some predicate P. Note that by simply hard-coding in the wildcard positions, we can
turn predicate P : {0, 1, ∗}n → {0, 1} (where the number of ∗ is fixed to be w) into a predicate into
a predicate P ′ : {0, 1}n−w → {0, 1}. Then, there must exist some setting of the wildcard positions
for which the resulting P ′ is a distinguishing predicate for F0 and F1, which is a contradiction.

38

To complete the proof, we show how to post-process the distributions D0 and D1 from Lemma 7.
The following procedure Proc outputs (F,A(1), . . . , A(n),P(pat)) on input distribution D0, and
outputs (U,U1, . . . , Un,P(pat)) on input distribution D1.

Before explaining Proc, we re-write the sampling procedure in Obf, giving each element an
explicit name. First, we can re-write B as

B :=

b1,1 · · · b1,k
...

. . .
...

bk−1,1 · · · bk−1,k
k−1∑
j=1

rjbj,1 · · ·
k−1∑
j=1

rjbj,k

Now, for each i ∈ S0∪S1, we can imagine sampling c

(i)
1 , . . . , c

(i)
k , d

(i)
1 , . . . , d

(i)
k all uniformly at random

from Fq and letting

A(i) :=

c
(i)
1
...

c
(i)
k

(d(i)
1 · · · d

(i)
k

)
, ∀i ∈ S0 ∪ S1.

Finally, for each i ∈ S∗, we can imagine sampling c
(i)
1 , . . . , c

(i)
k−1, d

(i)
1 , . . . , d

(i)
k all uniformly at random

from Fq and letting

A(i) :=

c

(i)
1
...

c
(i)
k−1∑k−1

j=1 rjc
(i)
j

(
d

(i)
1 · · · d

(i)
k

)
, ∀i ∈ S∗.

It will be convenient to write F =
(
(F)1 · · · (F)k

)
, where the column (F)t for t ∈ [k] is as

follows:

(F)t =

b1,t −
∑
i∈S1

c
(i)
1 d

(i)
t

...

bk−1,t −
∑
i∈S1

c
(i)
k−1d

(i)
t

k−1∑
j=1

rjbj,t −
∑
i∈S1

c
(i)
k d

(i)
t

=

b′1,t
...

b′k−1,t
k−1∑
j=1

rjb
′
j,t +

k−1∑
j=1

rj
∑
i∈S1

c
(i)
j d

(i)
t −

∑
i∈S1

c
(i)
k d

(i)
t

 .

where the b′s,t are uniformly random field elements.

We will now describe the procedure Proc. The input to Proc is a sample from Db of the form

v1, . . . , vn−w, v, pat
−1(∗),P(pat),

where v is either
∑

i∈[n−w] bivi (if drawn from D0) or the uniform vector u (if drawn from D1). The
procedure is as follows:

39

1. Sample r1, . . . , rk−1 ← Fq uniformly at random.

2. Let p[i] denote the index j ∈ [n] of the i-th fixed bit of pat. Then for all i ∈ [n− w], we let

A(p[i]) =

c
(p[i])
1
...

c
(p[i])
k

(d(p[i])
1 · · · d

(p[i])
k

)
∀i ∈ [n− w].

where c
(p[i])
1 , . . . , c

(p[i])
k are sampled uniformly at random from Fq, and for each t ∈ [k], setting

d
(p[i])
t := (vi)t

k−1∑
j=1

rjc
(p[i])
j − c(p[i])

k

−1

.

Not that since each (vi)t is sampled uniformly at random, each d
(p[i])
t is distributed uniformly.

3. Set S∗ := pat−1(∗). For each wildcard slot i ∈ S∗, we sample c
(i)
1 , . . . , c

(i)
k−1 and d

(i)
1 , . . . , d

(i)
k

uniformly at random. Then we set

A(i) :=

c

(i)
1
...

c
(i)
k−1∑k−1

j=1 rjc
(i)
j

(
d

(i)
1 · · · d

(i)
k

)
∀i ∈ S∗.

4. Finally, generate uniformly random b′s,t for all s ∈ [k − 1], t ∈ [k] and set B′ (column t
highlighted) as

B′ =

· · · b′1,t · · ·
...

· · · b′k−1,t · · ·

· · ·
k−1∑
j=1

rjb
′
j,t + (v)t · · ·

 .

5. Output B′, A(1), . . . , A(n),P(pat).

When v =
∑

i∈[n−w] bivi, the matrix B′ is distributed exactly as F since we have that

(v)t =
∑

i∈[n−w]

bi(vi)t =
∑

i∈[n−w]

bid
(p[i])
t

k−1∑
j=1

rjc
(p[i])
j − c(p[i])

k

 =

k−1∑
j=1

rj
∑
i∈S1

d
(i)
t c

(i)
j −

∑
i∈S1

d
(i)
t c

(i)
k .

Furthermore, the matrices A(1), . . . , A(n) are generated exactly as they are in the honest procedure.
When v = u, F is a uniformly random matrix U . Furthermore, there are at most w ≤ k − 1

wildcards and the only information about the r1, . . . , rk−1 is now in the A(i) matrices for i ∈
pat−1(∗). Since we only see k− 1 samples of the form

∑k−1
j=1 rjc

(i)
j , we can replace these values with

uniformly random values c
(i)
k without any change in the distribution.

40

5.3 Computational Functionality Preservation

We now consider the notion of computational functionality preservation from Definition 1, which is
strictly weaker than strong functionality preservation, and strictly stronger than weak functionality
preservation.20 Refer to Section 1.2.7 for general discussion motivating this definition.

Remark 7. For the setting of conjunction obfuscation, computational functionality preservation
combined with distributional VBB security imply that a computationally bounded adversary can
never find an accepting input to the obfuscated program.21 If the adversary can find an accepting
input to the program that actually matches the hidden pattern pat, the adversary can learn a pred-
icate on pat, violating distributional VBB. If they find an accepting input to the program that does
not match the hidden pattern, they violate computational functionality preservation.

We show how to achieve computational functionality preservation under the discrete log assump-
tion (for patterns with bounded number of wildcards) with a small tweak to the above obfuscation.

Placing a Row in the Exponent. We show that if we place the bottom row of each matrix in the
exponent of some group G = 〈g〉, then we can base computational functionality preservation of this
scheme on the hardness of solving discrete log in G. The only difference between this construction
and our previous construction is that we move some elements into the exponent, so it will still
satisfy statistical distributional VBB security. We will slightly modify the evaluation procedure,
but we note that this will not change the actual matrices and will therefore not affect security.
We only describe the differences between this construction and our standard information-theoretic
construction.

• Modification 1: All of the matrices F,A(1), . . . , A(n) have their last row encoded in the
exponent of the group.

• Modification 2: On evaluation, we first check if rank(F +
∑

i|xi=1A
(i)

) = k − 1 (i.e. the
first k − 1 rows have full row rank), and if not, immediately reject.

Our security proof will use a reduction from the representation problem, introduced by Brands [Bra94],
which we denote as FIND-REP following [Pei06].

Instance: A group G of order q, and uniformly random gs1 , . . . , gsn ← G.

Problem: Find non-trivial d1, . . . , dn ∈ Zq such that g
∑n
i=1 disi = g0.

Brands [Bra94] proves that solving FIND-REP in G is as hard as solving discrete log in G. For
completeness, we recall Brands’s proof.

Proposition 1 (Proposition 3, [Bra94]). If there exists a PPT algorithm A that solves FIND-REP
with non-negligible probability in G, then there exists a PPT algorithm A′ that solves discrete log
in G with non-negligible probability.

20To see this informally, consider any obfuscation scheme for an evasive functionality given by (Obf,Eval) that
achieves weak functionality preservation. Now define (Obf′,Eval′) where Obf′(C) samples a random y from the input
space and then outputs Obf(C), y. Then Eval(Obf′, x) returns Eval(Obf, x) if x 6= y, but returns 1 if x = y. It is not
hard to see that this scheme still satisfies weak functionality preservation, but now an adversary can easily tell that
functionality preservation is violated at y, so computational functionality preservation is violated.

21We note that this is reminiscent of the notion of input-hiding obfuscation [BBC+14], but different in that we
require the adversary cannot find an accepting input for the obfuscated circuit rather than the original circuit.

41

Proof. On a discrete log challenge ga, A′ samples uniformly random s1, . . . , sn, t1, . . . , tn ← Zq and
runs the FIND-REP algorithm A on gs1+at1 , . . . , gsn+atn . If A is successful, it outputs d1, . . . , dn
satisfying g

∑n
i=1 di(si+ati) = g0. Then A′ outputs −(

∑n
i=1 disi)/(

∑n
i=1 diti).

Conditioned on A solving FIND-REP, A′ solves discrete log with overwhelming probability. We
note that this algorithm only fails if

∑n
i=1 diti = 0, but for any t1, . . . , tn we can pick a corresponding

s1, . . . , sn that leaves the view of A unchanged. Thus
∑n

i=1 diti = 0 is a distributed uniformly in
Zq, and is non-zero with probability (q − 1)/q.

Now we prove a theorem similar to Theorem 7, but with different parameters than Corollary 1.

Theorem 8. Fix any δ ∈ [0, 1
2). Assuming discrete log, this construction satisfies computa-

tional functionality preservation for any distribution over patterns with w = nδ wildcards such
that H∞(b|pat−1(∗)) ≥ n1−ε for some ε < 1− 2δ.

Proof. We prove that a PPT adversary that can find some point x for which fpat(x) 6= Obf(fpat)(x),
even given Obf(fpat), can solve discrete log in G. We break up the analysis into two cases: we denote
inputs x for which fpat(x) = 1 and Obf(fpat)(x) = 0 as false negatives, and denote inputs for which
fpat(x) = 0 and Obf(fpat)(x) = 1 as false positives.

For δ ∈ [0, 1/2) we pick δ′ > δ and set the field size q used in the construction to 2n
δ′

.

Lemma 8. For our choice of parameters q = 2n
δ′

and w = nδ where δ′ > δ, with overwhelming
probability our construction has no false negatives.

Proof. For any x where fpat(x) = 1, Obf(fpat)(x) can only evaluate to 0 if

rank

B +
∑

i|xi=1,pati=∗

A
(i)

 < k − 1.

Recall from the construcion that B is sampled as a uniformly random matrix, and for i where

pati = ∗, A(i)
is sampled as a uniformly random rank 1 matrix. Thus, each of the 2n

δ
possible

(k − 1) × k subset sums is distributed as uniformly random (k − 1) × k matrix, and is thus rank

deficient with probability at most k−1
q2

. Since we set q to be at least 2n
δ′

for δ′ > δ, the probability

that any of these subset sum matrices is rank deficient is at most (k−1)·2nδ

q2
= negl(n).

Thus with overwhelming probability, an adversary that finds an x where fpat(x) 6= Obf(fpat)(x)
must return a false positive. We show that finding a false positive is as hard as solving FIND-REP.

Lemma 9. If there exists an algorithm A that finds a false positive with non-negligible probability,
there exists an algorithm A′ that solves FIND-REP with non-negligible probability.

Proof. On input gs1 , . . . , gsn , A′ constructs an obfuscation for a pattern pat with w = nδ wildcards
drawn from an arbitrary distribution. Given pat, define the same sets S0, S1, and S∗ and as before,
let k = w + 1. Note that throughout this proof, when we add/subtract matrices that include
group elements, we multiply/divide the group element components of the matrices. Likewise, when
we multiply a vector of group elements by a scalar, we actually raise each group element to the
appropriate power. A constructs the obfuscation as follows.

42

• Let r ∈ gZ
1×(k−1)
q = [. . . gsj . . .] for j ∈ S∗, draw B ← Z(k−1)×k

q , and let

B :=

(
B

r ·B

)

• For each i ∈ S0 ∪ S1, sample a uniformly random rank 1 matrix A
(i) ∈ F(k−1)×k

q , and let

A(i) :=

(
A

(i)

gsi ·A(i)
1

)

• For each i ∈ S∗, sample ci ← Fk−1
q and di ← F1×k

q , and let

A(i) :=

(
ci
r · ci

)
· di

• Define
F := B −

∑
i∈S1

A(i)

and output (F,A(1), . . . , A(n))

So A′ sends (F,A(1), . . . , A(n), pat) to A and if A is successful, A′ receives back a set T with the
following properties:

• det(F +
∑

i∈T A
(i)) = 0

• det(F +
∑

i∈T A
(i)

) 6= 0

• T \ S∗ 6= S1

The determinant polynomial reduces to a linear combination of the elements in the last row
of F +

∑
i∈T A

(i). By the second property above, this linear combination is not identically zero.
Now A′ will multiply by the random values it multiplied the group elements by to recover a linear
combination over s1, . . . , sn that evaluates to zero, by the first property above. It then submits this
linear combination to the FIND-REP challenger.

So it just remains to show that this final linear combination is not identically zero. As in our
weak functionality preservation proof, we can re-write the summation as

F +
∑
i∈T

A(i) = B +
∑

i∈T∩S∗

A(i)

︸ ︷︷ ︸
B′

+
∑

i∈T∩S0

A(i) −
∑

i∈([n]\T)∩S1

A(i)

︸ ︷︷ ︸
A′

.

By the third property above, there exists some i such that A′ includes the matrix A(i). We show
that with overwhelming probability, this implies that there is some setting of s1, . . . , sn that pro-
duces a non-zero evaluation, which shows that the final linear combination must not be identically
zero.

43

We condition on the fact that with overwhelming probability, for each of the 2n
δ

possible sets
T ∩ S∗, and each i /∈ S∗, the row span of A(i) is outside of the row span of B

′
. Indeed, this fails to

happen with probability at most

n2n
δ

q
= negl(n)

Thus since A′ must include a row from some A(i), we conclude that the row B′ + A′ could be
anything in the entire k dimensional space, depending on the values of s1, . . . , sn. In particular it
could be outside of the k− 1 dimensional space spanned by A

′
+B

′
, in which case the determinant

polynomial would evaluate to non-zero.

Together, Lemma 8, Lemma 9, and Corollary 1 imply that any adversary that breaks compu-
tational functionality preservation can solve discrete log in G.

6 Acknowledgements

We thank Daniel Wichs for sharing his proof of decisional LPN hardness (with an arbitrary one-
bit predicate on the error vector) from hardness of search LPN. Wichs’s proof does not appear
in the paper, as we later discovered the claim follows from the proof of Lemma 5 in a work of
Döttling [Döt16].

We thank Allison Bishop for providing suggestions and feedback on an early draft of this work.
We also thank Zvika Brakerski, Brent Carmer, Benjamin Fuller, Yuval Ishai, Aayush Jain, Luke
Johnson, Tal Malkin, Mariana Raykova, and Hoeteck Wee for helpful discussions. This material
is based upon work supported by the ARO and DARPA under Contract No. W911NF-15-C-0227.
Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the ARO and DARPA.

References

[AAB15] Benny Applebaum, Jonathan Avron, and Christina Brzuska. Arithmetic cryptography:
Extended abstract. In Tim Roughgarden, editor, ITCS 2015, pages 143–151. ACM,
January 2015.

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 528–556. Springer, Heidelberg, March 2015.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Dong Hoon Lee
and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 21–40.
Springer, Heidelberg, December 2011.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume
6755 of LNCS, pages 403–415. Springer, Heidelberg, July 2011.

44

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14, pages 646–658. ACM Press, November 2014.

[AIK09] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. Journal of Cryptology, 22(4):429–469, October 2009.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
August 2015.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Obfuscation for evasive functions. In Yehuda Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 26–51. Springer, Heidelberg, February 2014.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015, 2005.
https://ia.cr/2005/015.

[BFM15] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Random-oracle uninstan-
tiability from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 428–455. Springer,
Heidelberg, March 2015.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg,
August 2001.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15:
Provable security against zeroizing attacks. In TCC 2018, 2018.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and
their application to more efficient obfuscation. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 247–277. Springer, Heidelberg, April / May 2017.

[BKM+18] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova, and
Kevin Shi. A simple obfuscation scheme for pattern-matching with wildcards. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 731–752. Springer, Heidelberg, August 2018.

45

https://ia.cr/2005/015

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, ed-
itors, TCC 2015, Part II, volume 9015 of LNCS, pages 401–427. Springer, Heidelberg,
March 2015.

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
416–434. Springer, Heidelberg, August 2013.

[BR17] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. Journal of Cryp-
tology, 30(1):289–320, January 2017.

[Bra94] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract).
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318.
Springer, Heidelberg, August 1994.

[BS16] Mihir Bellare and Igors Stepanovs. Point-function obfuscation: A framework and
generic constructions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A,
Part II, volume 9563 of LNCS, pages 565–594. Springer, Heidelberg, January 2016.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin, edi-
tors, TCC 2017, Part I, volume 10677 of LNCS, pages 264–302. Springer, Heidelberg,
November 2017.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating
conjunctions under entropic ring LWE. In Madhu Sudan, editor, ITCS 2016, pages
147–156. ACM, January 2016.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II,
volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gen-
naro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 480–499. Springer,
Heidelberg, August 2014.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS,
pages 455–469. Springer, Heidelberg, August 1997.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 446–476. Springer, Heidelberg, April / May 2017.

46

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai
Lin, and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability
obfuscation. In Madhu Sudan, editor, ITCS 2016, pages 179–190. ACM, January 2016.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit
output. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
489–508. Springer, Heidelberg, April 2008.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493. Springer, Heidelberg, August 2013.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, ed-
itors, TCC 2015, Part II, volume 9015 of LNCS, pages 468–497. Springer, Heidelberg,
March 2015.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic
hash functions (preliminary version). In 30th ACM STOC, pages 131–140. ACM Press,
May 1998.

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane mem-
bership. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 72–89.
Springer, Heidelberg, February 2010.

[DGL+16] Dana Dachman-Soled, S. Dov Gordon, Feng-Hao Liu, Adam O’Neill, and Hong-Sheng
Zhou. Leakage-resilient public-key encryption from obfuscation. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II,
volume 9615 of LNCS, pages 101–128. Springer, Heidelberg, March 2016.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with
auxiliary input. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 621–630.
ACM Press, May / June 2009.

[Döt16] Nico Döttling. Low noise LPN: key dependent message secure public key encryption
an sample amplification. IET Information Security, 10(6):372–385, 2016.

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial infor-
mation. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
654–663. ACM Press, May 2005.

[FRS17] Rex Fernando, Peter M. R. Rasmussen, and Amit Sahai. Preventing CLT attacks
on obfuscation with linear overhead. In Tsuyoshi Takagi and Thomas Peyrin, edi-
tors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 242–271. Springer,
Heidelberg, December 2017.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

47

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Robustness of the learning with errors assumption. In Andrew Chi-Chih Yao, editor,
ICS 2010, pages 230–240. Tsinghua University Press, January 2010.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 58th
FOCS, pages 612–621. IEEE Computer Society Press, 2017.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
241–268. Springer, Heidelberg, October / November 2016.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P. Vad-
han, editor, TCC 2007, volume 4392 of LNCS, pages 194–213. Springer, Heidelberg,
February 2007.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 99–108. ACM Press, June 2011.

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.
TinyKeys: A new approach to efficient multi-party computation. Cryptology ePrint
Archive, Report 2018/208, 2018. https://ia.cr/2018/208.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation
with no honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 294–314. Springer, Heidelberg, March 2009.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments
and efficient zero-knowledge proofs from learning parity with noise. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 663–680.
Springer, Heidelberg, December 2012.

[KY18] Ilan Komargodski and Eylon Yogev. Another step towards realizing random oracles:
Non-malleable point obfuscation. Cryptology ePrint Archive, Report 2018/149, 2018.
https://ia.cr/2018/149.

48

https://ia.cr/2018/208
https://ia.cr/2018/149

[lec] Lecture notes: Extractors and the leftover hash lemma. https://www.cs.bu.edu/

~reyzin/teaching/s11cs937/notes-leo-1.pdf.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for
obfuscation. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 20–39. Springer, Heidelberg, May 2004.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg,
August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS,
pages 11–20. IEEE Computer Society Press, October 2016.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 465–484. Springer, Heidelberg, August 2011.

[MO14] Antonio Marcedone and Claudio Orlandi. Obfuscation → (IND-CPA security 6→ cir-
cular security). In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume
8642 of LNCS, pages 77–90. Springer, Heidelberg, September 2014.

[MPS16] Antonio Marcedone, Rafael Pass, and Abhi Shelat. Bounded KDM security from iO
and OWF. In Vassilis Zikas and Roberto De Prisco, editors, SCN 16, volume 9841 of
LNCS, pages 571–586. Springer, Heidelberg, August / September 2016.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages
629–658. Springer, Heidelberg, August 2016.

[MZ18] Fermi Ma and Mark Zhandry. The mmap strikes back: Obfuscation and new multi-
linear maps immune to CLT13 zeroizing attacks. In TCC 2018, 2018.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Heidel-
berg, August 2003.

[Pei06] Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 167–183. Springer, Heidelberg, March
2006.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the
LWE way. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume
10770 of LNCS, pages 675–701. Springer, Heidelberg, March 2018.

49

https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer,
Heidelberg, May 1997.

[Ska13] Matthew Skala. Hypergeometric tail inequalities: ending the insanity. arXiv preprint
arXiv:1311.5939, 2013.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald Fagin,
editors, 37th ACM STOC, pages 523–532. ACM Press, May 2005.

[Wil14] Virginia Vassilevska Williams. Multiplying matrices in O(n2.373) time. 2014.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
LWE. In 58th FOCS, pages 600–611. IEEE Computer Society Press, 2017.

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor
from constant-noise LPN. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 214–243. Springer, Heidelberg,
August 2016.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467.
Springer, Heidelberg, April 2015.

50

A Reduction for Structured Error LPN/RLC

In this section, we establish the hardness of decisional structured exact LPN based on the regular
exact LPN.

Theorem (Restatement of Theorem 5). Fix constants ε, δ ∈ [0, 1/2) and constant ρ ∈ [0, 1). If
DxLPN(nε, n, ρ) is hard, then DxSLPN(n+ nδ, 2n, ρ) is hard.

We will actually prove a more general reduction between extensions of DxLPN and DxSLPN
to larger fields (Theorem 9, cf. below)22. We believe this reduction to be of independent interest,
which is why we state it for random linear codes rather than LPN; the LPN result we use for
security follows from plugging in q = 2.

A.1 Random Linear Code Problems

Let us define the exact Random Linear Code (RLC) and exact structured RLC problems. Let m, q
be integers and ρ ∈ [0, 1]. We denote χmρ (Fq) the distribution on Fn where a uniformly randomly
selected set of bρmc coordinates are set to a uniformly random non-zero field element and the rest
of the coordinates are zero. In the case where q = 2, we have χmρ (F2) = χmρ as defined in Section 2.3.

Definition 8 (Exact RLC). The (dual) Decisional Exact Random Linear Code (DxRLC) problem
with parameters n,m, γ, ρ, denoted DxRLC(n,m, γ, ρ), is hard if, for every probabilistic polynomial-
time (in n) algorithm A running, there exists a negligible function µ such that∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B, u) = 1]

∣∣∣∣ ≤ µ(n) ,

where q = 2n
γ
, Fq is a field of size q, B ← F(m−n)×m

q , e← χmρ (Fq), and u← Fm−nq .

Remark 8. We can define a non-exact variant of the above problem, where the error vector does
not have a fixed ρm number of non-zero entries, but rather each entry is non-zero independently
with probability ρ. This problem has been considered previously in the literature under the name
RLC [IPS09, AAB15].

Definition 9 (Structured error RLC). The (dual) Decisional Exact Structured Random Linear
Code (DxSLPN) problem with parameters n, 2m, γ, ρ, denoted DxSLPN(n, 2m, γ, ρ), is hard if for
every probabalistic polynomial-time (in n) algorithm A, there exists a negligible function µ such
that ∣∣∣∣Pr

B,e
[A(B,B · e) = 1]− Pr

B,u
[A(B, u) = 1]

∣∣∣∣ ≤ µ(n)

where q = 2n
γ
, Fq is a field of size q, B ← F(2m−n)×2m

q , e← σ(χmρ (Fq)), and u← F2m−n
q .

The rest of this Section proves the following theorem.

Theorem 9. Fix constants ε, δ, γ, ρ ∈ [0, 1) such that 2ε+γ < 1 and 2δ+γ < 1. If DxRLC(nε, n, γ, ρ)
is hard, then DxSLPN(n+ nδ, 2n, γ, ρ) is hard.

22Setting γ = 0 in Theorem 9 gives the exact statement of Theorem 5.

51

A.2 Preliminary Lemmas

The proof will use the following technical lemmatas.

Lemma 10. Let i, j, k ∈ N. It holds that

Pr

[
AB = 0

∣∣∣∣∣ A← Fi×jq

B ← Fj×kq

]
≤ 1

qki
+

i−1∑
`=0

(
j
`

)
qk`q(i−`)(j−`) .

Proof. Note that if A has full rank, then each column of B is in the kernel of A independently with
probability 1/qi. We split the probability into two terms, depending on whether or not A has full
rank i.

Pr

[
AB = 0

∣∣∣∣∣ A← Fi×jq

B ← Fj×kq

]
=

(
1

qi

)k
· Pr

[
rank(A) = i

∣∣A← Fi×jq

]
+ Pr

AB = 0

∣∣∣∣∣∣
A← Fi×jq

rank(A) < i

B ← Fj×kq

 .
Now, if rank(A) = ` for ` ∈ [0, i − 1], we can bound the probability that AB = 0 for a random B
by (1/q`)k. It follows that

Pr

AB = 0

∣∣∣∣∣∣
A← Fi×jq

rank(A) = `

B ← Fj×kq

 ≤ 1

qk`
· Pr

[
rank(A) = `

∣∣A← Fi×jq

]
.

Finally, for any ` ∈ [0, i − 1], we can bound Pr
[
rank(A) = `

∣∣∣A← Fi×jq

]
by using the following

argument. If the rank of A is `, there must be some set S of ` linearly independent columns of A
such that each of the other j − ` columns are in the column span of S (of cardinality ≤ q`); we
then union bound over all the possibilities for S:

Pr
[
rank(A) = `

∣∣A← Fi×jq

]
≤
∑
S⊂[j]
|S|=`

(
q`

qi

)j−`
=

(
j
`

)
q(i−`)(j−`) .

Note that the previous equation accounts for the case where j < ` using the convention that
(
j
`

)
= 0

for ` > j.

Lemma 11. Let ε > 0 and Xε be a random variable over a countable set Y such that Prx,y←Xε [x =
y] = (1 + ε2)/|Y|. Then it holds that the distribution induced by Xε is ε/2-statistically close to the
uniform distribution over Y.

Adapted from [lec]. Let Y be the uniformly distributed random variable over Y, and denote Z =
Xε − Y . By Cauchy–Schwarz, it holds that ‖Z‖1 ≤ ‖Z‖2 · ‖sign(Z)‖2 ≤ ‖Z‖2 · |Y|1/2. Now

‖Z‖22 =
∑
x∈Y

(Pr[Xε = x]− Pr[Y = x])2

=
∑
x∈Y

(
Pr[Xε = x]2 − 2

|Y|
Pr[Xε = x] +

1

|Y|2

)
≤ ε2

|Y|
.

The proof follows by observing that ∆(Xε, Y) = 1/2‖Z‖1.

52

Before giving our next lemma, we have the following definitions. First, let S ⊆ [n] be a subset
of cardinality k ≤ n and y ∈ {0, 1}k. Let x|S ∈ {0, 1}|S| denote the substring formed by taking
the indices of x corresponding to the elements of S. We define X|S,y ⊆ {0, 1}n to be the set of all
binary strings

{x ∈ {0, 1}n : x|S = y}

with the substring corresponding to the indices in S fixed to be y. Second, let Y0, Y1 ∈ Fn×m2 be
two matrices and let x ∈ {0, 1}n be a bitstring, and define

σx(Y0, Y1) :=

...

...
...

...
...

...
(Yx1)1 (Y1−x1)1 (Yx2)2 (Y1−x2)2 · · · (Yxn)n (Y1−xn)n

...
...

...
...

...
...

 ,

that is a matrix in Fn×2m
2 where its (2i− 1)th column is the ith column of Yxi and its 2ith column

if the ith column of Y1−xi . Note that the distribution σ introduced in Section 4.1 is such that

σ(D) =

s1

s2

s3

s4
...

s2n−1

s2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x← {0, 1}m
e′ ← D

for all i ∈ [n],

{
s2i−xi = e′i
s2i−(1−xi) = 0

=

{
(σx(01×m, e′

>
))>
∣∣∣∣ x← {0, 1}me′ ← D

}
.

Lemma 12. Fix constants ε, γ, δ ≥ 0 such that 2ε + γ < 1 and 2δ + γ < 1, and let q = 2n
γ
. Let

c ∈ (0, 1] and fix a subset S ⊂ [n] of cardinality n− cn and a string y ∈ {0, 1}n−cn. Denote by VS,y
the set

VS,y :=

V
∣∣∣∣∣∣∣
V ← σx(Y, 0(nε+nδ)×n)

Y ← F(nε+nδ)×n
q

x← X|S,y

 .

The following distributions are statistically indistinguishable:
([

B
RB

]
+

[
0
V

]
, S, y

)∣∣∣∣∣∣∣
B ← F(n−nε)×2n

q

R← F(nε+nδ)×(n−nε)
q

V ← VS,y

 ,

and {
(U, S, y)

∣∣∣ U ← F(n+nδ)×2n
q

}
.

Proof. By Lemma 11, it suffices to show that there exists a negligible function ε such that

Pr

[[
B0

R0B0 + V0

]
=

[
B1

R1B1 + V1

]]
=

1 + ε(n)

q2n(n+nδ)
,

where the probability is over the choices of B0, B1 ← F(n−nε)×2n
q , R0, R1 ← F(nε+nδ)×(n−nε)

q , V0, V1 ←
VS,y.

53

First, note that PrB0,B1 [B0 = B1] = 1/q2n(n−nε). Hence, it holds that

Pr

[[
B0

R0B0 + V0

]
=

[
B1

R1B1 + V1

]]
= Pr

[[
(B0 −B1)

(R0B0 −R1B1) + (V0 − V1)

]
= 0

]
=

1

q2n(n−nε) · Pr [RB + (V0 − V1) = 0]︸ ︷︷ ︸
:=p(n)

,

where the probabilities are over the choices of B0, B1, R0, R1, V0, V1 with the same distributions as

above, B ← F(n−nε)×2n
q , and R← F(nε+nδ)×(n−nε)

q .
Denote V − := {V0 − V1 : V0, V1 ← VS,y}. Let i ∈ [n], and consider the distribution of the

columns V2i−1, V2i of the elements of V −. By definition, if i ∈ S, the (2i − yi)th column of the
matrices in VS,y is 0 and the (2i − (1 − yi))th column is randomly distributed. If i /∈ S, denote

x
(0)
i and x

(1)
i the ith bit of the bitstrings used to sample V0, V1 ← VS,y. If x

(0)
i = x

(1)
i , then the

(2i− x(0)
i)th column of V := V0 − V1 is 0 and the (2i− (1− x(0)

i))th column is uniformly randomly

distributed. If x
(0)
i 6= x

(1)
i , both the (2i − 1)th and 2ith columns of V are uniformly randomly

distributed. Therefore, the matrices in V − have n − cn + k zero columns where k is distributed
as a binomial distribution of probability 1/2 with cn = |[n] \ S| repetitions. Hence, we split the
probability p(n) we are interested in according to k and the n− cn+ k zero columns:

p(n) =
cn∑
k=0

(
cn
k

)
2cn

Pr

RB(0) = 0 ∧RB(1) = V

∣∣∣∣∣∣∣∣∣∣
R← F(nε+nδ)×(n−nε)

q

B(0) ← F(n−nε)×(n−cn+k)
q

B(1) ← F(n−nε)×(n+cn−k)
q

V ← F(nε+nδ)×(n+cn−k)
q

=

1

2cn

cn∑
k=0

(
cn
k

)
q(n+cn−k)(nε+nδ)

Pr

[
RB = 0

∣∣∣∣∣ B ← F(n−nε)×(n−cn+k)
q

R← F(nε+nδ)×(n−nε)
q

]
.

We use Lemma 10 to bound the probability that the product RB is 0:

Pr [RB = 0] ≤ 1

q(n−cn+k)(nε+nδ)
+
nε+nδ−1∑
`=0

(
n−nε
`

)
q(n−cn+k)`q(nε+nδ−`)(n−nε−`) .

where the distribution is over B ← F(n−nε)×(n−cn+k)
q and R ← F(nε+nδ)×(n−nε)

q . Finally, this gives
that

p(n) ≤ 1 + µ(n)

q2n(nε+nδ)
,

where

µ(n) :=
q2n(nε+nδ)

2cn

cn∑
k=0

(
cn
k

)
q(n+cn−k)(nε+nδ)

nε+nδ−1∑
`=0

(
n−nε
`

)
q(n−cn+k)`+(nε+nδ−`)(n−nε−`) .

To conclude the proof, it remains to show that µ is a negligible function. First, let us focus on the
term

(
n−nε
`

)
. Since ε, δ < 1, for n sufficiently large and any ` ∈ [0, nε + nδ − 1], it holds that(

n− nε

`

)
≤
(
n− nε

nε + nδ

)
.

54

We assume n sufficiently large in what follows. Let t ∈ [0, cn] to be determined later. We get

µ(n) ≤
(
n−nε
nε+nδ

)
2cn

cn−t∑
k=0

(
cn

k

) nε+nδ−1∑
`=0

qQk(`)

︸ ︷︷ ︸
:=µ1(n)

+

(
n−nε
nε+nδ

)
2cn

cn∑
k=0

(
cn

k

) nε+nδ−1∑
`=0

qQk(`)

︸ ︷︷ ︸
:=µ2(n)

,

where

Qk(`) := 2n(nε + nδ)− (n+ cn− k)(nε + nδ)− (n− cn+ k)`− (nε + nδ − `)(n− nε − `)
= (nε + nδ)(2n− n− cn+ k − n+ nε)− `(n− cn+ k − nε − nδ − n+ nε + `)

= (nε + nδ)(nε − cn+ k) + `(cn− k + nδ − `) .

We will prove that µ1 and µ2 are negligible.
In order to bound µ1, we will upper bound Qk(`). The derivative of Qk is Q′k(`) = 2`−cn+k−nδ.

In order for Qk to be nondecreasing on [0, nε + nδ − 1], we solve Q′k(n
ε + nδ) ≥ 0, which gives the

condition cn − 2nε − nδ ≥ k. Assume that t ≥ 2nε + nδ. For all k ≤ cn − t, we have that
k ≤ cn− 2nε − nδ, and hence that

Qk(`) ≤ (nε + nδ)(nε − cn+ k) + (nε + nδ − 1)(cn− k − nε + 1)

= (nε + nδ)− (cn− k − nε + 1)

= 2nε + nδ − cn+ k − 1 .

Since
(
n−nε
nε+nδ

)
≤ nnε+nδ , it follows that

µ1(n) ≤ nn
ε+nδ

2cn

cn−t∑
k=0

(
cn

k

)
(nε + nδ)q2nε+nδ−cn+k−1

≤ q2nε+nδ+t−1 (nε + nδ)nn
ε+nδ

2cn

cn−t∑
k=0

(
cn

k

)
≤ 2n

γ(2nε+nδ−t−1)+log(nε+nδ)+(nε+nδ) log(n) .

For this to be negligible, it suffices to set t = n2ε + n2δ.
In order to bound µ2, for cn− k ≥ 0, we bound Qk,` by

Qk,` ≤ (nε + nδ)(nε − cn+ k) + (nε + nδ)(cn− k + nδ) ≤ (nε + nδ)2 .

Now, we use the fact that
(
cn
k

)
=
(
cn

cn−k
)
≤ nt because cn−k ≤ t, and by evaluating in t = n2ε+n2δ,

we get

µ2(n) ≤ nn
ε+nδ

2cn

cn∑
k=cn−t+1

(
cn

k

)
(nε + nδ)q(nε+nδ)2

≤ nn
ε+nδ

2cn
tnt(nε + nδ)q(nε+nδ)2

≤ 2−cn+nγ ·(nε+nδ)2+log(nε+nδ)+log(n2ε+n2δ)+(nε+nδ+n2ε+n2δ) log(n) .

which is negligible for 2ε+ γ < 1 and 2δ + γ < 1.

55

A.3 Proof of Theorem 9

Let q = 2n
γ
. We will show by introducing hybrid distributions that, assuming the hardness of

DxRLC(nε, n, γ, ρ), the distribution Dn+nδ,2n,q,ρ is computationally indistinguishable from the uni-
form distribution over Fn×2m

q × F2m
q . The result follows directly from Lemma 13, Lemma 14, and

Lemma 15 below.

Let us introduce the following distributions:

D0 is the uniform distribution over the set{([
B
]
,
[
Be
])∣∣∣∣∣ B ← F(n+nδ)×2n

q

e← σ(χnρ (Fq))

}
.

D1 is the uniform distribution over the set
([

B̂

RB̂ + V

]
,

[
B̂

RB̂

]
·
[
e
])
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B̂ ← F(n−nε)×2n
q

e← σ(χnρ (Fq))
R← F(nε+nδ)×(n−nε)

q

V ← σx(Y, 0(nε+nδ)×n)

Y ← F(nε+nδ)×n
q

x← {0, 1}n

.

D2 is the uniform distribution over the set
([

B̂

RB̂ + V

]
,

[
u′

Ru′

])
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B̂ ← F(n−nε)×2n
q

u′ ← Fn−nεq

R← F(nε+nδ)×(n−nε)
q

V ← σx(Y, 0(nε+nδ)×n)

Y ← F(nε+nδ)×n
q

x← {0, 1}n

.

D3 is the uniform distribution over the set{([
B
]
,
[
Bu
])∣∣∣∣∣ B ← F(n+nδ)×2n

q

u← Fn+nδ
q

}
.

Lemma 13. It holds that D0 ≈s D1.

Proof. Let S ⊂ [n] be a uniformly randomly chosen subset of size ρn and y ← {0, 1}ρn. Then
Lemma 12 shows that ([

B̂

B̂′

]
, S, y

)
≈s
([

B̂

RB̂ + V

]
, S, y

)
where B̂ ← F(n−nε)×2n

q , B̂′ ← F(nε+nδ)×2n
q , R← F(nε+nδ)×(n−nε)

q and V ← VS,y. We can post-process
these distributions to obtain D0 and D1. First we draw e′ ∈ Fnq as follows: e′i ← Fq \ {0},∀i ∈ S

56

and e′i = 0,∀i /∈ S. Note that e′ is distributed according to χnρ (Fq). Then we draw x← X(S,y), and
set e = σx(01×n, e′). Note that e is distributed according to σ(χnρ (Fq)) and that all of the indices
of e that contain a non-zero element correspond to columns of V that are zero (this follows from
how V is drawn according to the statement of Lemma 12). Then([

B̂

B̂′

]
,

[
B̂

B̂′

]
·
[
e
])

is distributed identically to D0 and([
B̂

RB̂

]
+

[
0

V

]
,

[
B̂

RB̂

]
·
[
e
])

is distributed identically to D1 since V e = 0.

Lemma 14. Assume there exists a polynomial-time algorithm A that distinguishes between D1 and
D2 with advantage ε(n). Then, there exists a polynomial-time algorithm that solves DxRLC(nε, n, γ, ρ)
with advantage ε(n).

Proof. Let (B, v) ∈ F(n−nε)×n
q × Fn−nεq be the DxRLC(nε, n, γ, ρ) sample. Draw x ← {0, 1}n, B′ ←

F(n−nε)×n
q , and R, V as in the distributions D2 and D3. Send([

σx(B′, B)
Rσx(B′, B)

]
+

[
0
V

]
,

[
v
Rv

])
to A and outputs what A outputs. If v was uniform, the distribution is identical to D2. If v = Be
for a e← χmρ (Fq), then if we set B̂ := σx(B′, B) and e′ := (σx(01×n, e>))>, we have v = Be = B̂e′

and the distribution is identical to D1.

Lemma 15. It holds that D2 ≈s D3.

Proof. Lemma 12 shows that([
B
RB

]
+

[
0
V

]
, {n+ 1}, 1

)
≈s
([

B
B′

]
, {n+ 1}, 1

)
,

where B ← F(n−nε)×(2n+2)
q , R ← F(nε+nδ)×(n−nε)

q , B′ ← F(nε+nδ)×(2n+2)
q , V ← V({n+1},1). The result

follows from the fact that the first 2n + 1 columns of

[
B

RB + V

]
are distributed identically to D2

and the first 2n+ 1 columns of

[
B
B′

]
are distributed identically to D3.

B Efficient Evaluation in [BKM+18] and Our Generic Construc-
tion

In this section, we rely on the fact that computing the coefficients of a (monic) degree n polynomial
given n of its roots can be done in O(n log2 n) operations, and similarly, evaluating a degree n

57

polynomial at n arbitrary points can also be done in O(n log2 n) operations.

Evaluating [BKM+18] in O(n log2 n) time. Recall that the task is to compute, given x1, . . . , xn,
the coefficients for reconstructing f(x0) from f(x1), . . . , f(xn):

Li =
∏

j∈[n],j 6=i

−xj
xi − xj

All n numerators can be computed in O(n) operations by simply computing N =
∏
j∈[n]−xj , and

then letting the ith numerator as N
−xj .

The n denominators can be computed in O(n log2 n) operations as follows. Observe that the
term in the denominator of Li is the evaluation of p(x) =

∑
i∈[n]

∏
j∈[n],j 6=i(x − xj) at x = xi.

Computing the coefficients of p(x) can be done in O(n log2 n) time by observing that p(x) is
d
dx

∏
j∈[n](x − xj). We can compute the coefficients of

∏
j∈[n](x − xj) in O(n log2 n) operations

since we know its roots are x1, . . . , xn. Deriving the coefficient vector of the derivative is then an
additional O(n) operations. Finally, given the coefficients of p(x), we can evaluate it at x1, . . . , xn
in O(n log2 n) time.

Evaluating Our Construction in O(n log2 n) time. Similarly, our scheme can be evaluated in
O(n log2 n) non-group operations followed by O(n) group operations. Recall that we set

B :=

1 1 · · · 1
1 21 · · · (2n)1

...
...

. . .
...

1 2n · · · (2n)n

 .

and for any x ∈ {0, 1}n, evaluation is done by selecting the (n + 1) × (n + 1) submatrix Bx, and

solving for t ∈ F1×(n+1)
q satisfying t ·Bx = 0. Writing out the equation explicitly as

(
t1 · · · tn+1

)

1 1 · · · 1
(1 + x1)1 (3 + x2)1 · · · (2n− 1 + xn)1

...
...

. . .
...

(1 + x1)n (3 + x2)n · · · (2n− 1 + xn)n

 =
(
0 · · · 0

)
,

shows that this is equivalent to finding the coefficients of a degree n polynomial polynomial pt(z) =∑n
i=0 ti+1z

i given that it has roots at

1 + x1, 3 + x2, . . . , 2n− 1 + xn.

So given n roots r1, . . . , rn, we compute the coefficients of a (monic) degree n polynomial with
these roots in O(n log2 n) time. Finally we evaluate a dot product in O(n) group operations.

C Extending Min-Entropy Arguments to Larger Alphabets

We demonstrate that for any alphabet Σ of arbitrary size `, security in the generic group model
actually holds for any distribution over Σn

∗ satisfying the same min-entropy bounds derived in

58

Section 3.2. Note that these bounds are independent of the alphabet size `. Hence, for ` � n
we get significant improvements (in all three wildcard regimes outlined above) over the uniform
distribution over Σn

∗ with w wildcards, which has min-entropy log
(
n
w

)
+ (n− w) log(`).

Claim 1 (Informal). Lemma 4 works for any size alphabet `.

Proof. We show how to modify the proof of Lemma 4 to work for conjunctions of arbitrary size
alphabets `. Assume towards contradiction that there exists some set S ⊂ [n`] of n` − n indices
such that êi = 0 for all i ∈ S with inverse polynomial probability. Again we partition the indices
of ê into n sets {ê(j−1)`+1, . . . , êj`}j∈[n] so that we associate the jth set with the jth position of the
pattern.

We can imagine adversarially choosing how many of the n (non-zero) indices S := [n`] \ S are
a part of each of the n sets just defined and deriving the number of patterns that can give rise
to an error vector ê that has all of its n − w non-zero indices contained in these n indices. Note
that since the pattern is drawn from a distribution with a fixed number of w wildcards, there can
be at most w sets (out of the n sets) that contain none of the indices in S. Let k represent the
number of sets that contain no indices in S and we maximize the number of satisfying patterns over
k ∈ [0, . . . , w]. So we have fixed k positions of the pattern to be wildcards and assign one index
in S to each of the remaining positions of the pattern. Once we fix these k positions to wildcards,
we have

(
n−k
w−k

)
choices for the positions of the remaining wildcards. After fixing some set of these

remaining wildcard positions, we have at most k indices in S to assign to the remaining n − w
sets, so we overcount and assume that we have exactly k. Before assigning these k indices, we
have exactly one pattern that matches the non-zero error vector indices since we have fixed all w
wildcards and assigned just one non-zero index to each of the remaining n−w sets. Each index we
add to one of the n − w sets increases the number of possible characters at that position by one.
So we want to maximize the expression

k∏
i=1

(ai + 1) such that
k∑
i=1

ai = k and ai ≥ 0, ∀i .

We can apply the arithmetic mean-geometric mean inequality to show that

k∏
i=1

(ai + 1) ≤
(∑k

i=1(ai + 1)

k

)k
=

(
2k

k

)k
= 2k .

Hence we derive the same expression as in the proof of Lemma 4, that there are at most

max
k∈[0,...,w]

(
n− k
w − k

)
2k,

patterns which match the n chosen non-zero indices. The remainder of the proof is then identical.

59

	Introduction
	This Work: Conjunction Obfuscation
	Technical Overview
	Interpretation 1: The Primal
	Interpretation 2: The Dual
	Moving Out of the Exponent
	The Reduction to Structured Error
	Distributional VBB Security
	Information Theoretic Security
	Functionality Preservation Notions

	Related Work

	Preliminaries
	Security Notions for Evasive Circuit Obfuscation
	The Generic Group Model
	Learning Parity with Noise

	Obfuscating Conjunctions in the Generic Group Model
	Generic Group Construction
	General Min-Entropy Distributions
	Extension to Larger Alphabets
	Efficiency Improvements

	Obfuscating Conjunctions from Constant-Noise LPN
	Exact Structured Learning Parity with Noise
	Construction
	Security
	Boosting to Strong Functionality Preservation
	Multi-Bit Output

	Information-Theoretic Security
	Construction
	Security
	Computational Functionality Preservation

	Acknowledgements
	Reduction for Structured Error LPN/RLC
	Random Linear Code Problems
	Preliminary Lemmas
	Proof of theorem:reduction-RLC-general

	Efficient Evaluation in C:BKMPRS18 and Our Generic Construction
	Extending Min-Entropy Arguments to Larger Alphabets

