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Abstract. We propose a proof of work protocol that computes the
discrete logarithm of an element in a cyclic group. Individual provers
generating proofs of work perform a distributed version of the Pollard
rho algorithm. Such a protocol could capture the computational power
expended to construct proof-of-work-based blockchains for a more useful
purpose, as well as incentivize advances in hardware, software, or algo-
rithms for an important cryptographic problem. We describe our proposed
construction and elaborate on challenges and potential trade-offs that
arise in designing a practical proof of work.
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1 Introduction

We propose a proof of work scheme that is useful for cryptanalysis, in particular,
computing discrete logarithms. The security of the ECDSA digital signature
scheme is based on the hardness of the elliptic curve discrete log problem. Despite
the problem’s cryptographic importance, the open research community in the
area is small and has limited resources for the engineering work and computation
required to update cryptanalytic records; recent group sizes for elliptic curve
discrete log records include 108 bits in 2002 [12], 112 bits in 2009 [10], and 113
bits in 2014 [35].

We propose a proof of work scheme to harness the gigawatts of energy
spent on Bitcoin mining [34] to advance the state of the art. Jakobsson and
Juels [17] call this a bread pudding proof of work. Like the dessert that makes stale
bread delicious, individual proofs of work produce a useful computation. While
memory-hard functions aim to discourage specialized hardware for cryptocurrency
mining [25], we hope for the exact opposite effect: as Bitcoin has prompted
significant engineering effort to develop efficient FPGAs and ASICs for SHA-256,
we wish to use the lure of financial rewards from cryptocurrency mining to
incentivize special-purpose hardware for cryptanalysis.
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2 Background

Let G be a cyclic group with generator g of order q. We represent the group
operation as multiplication, but every algorithm in our paper applies to a generic
group. Every element h ∈ G can be represented as an integer power of g, ga = h,
0 ≤ a < q. We also assume that every element h of G can be mapped to a
unique representation as a sequence of bits. The discrete logarithm logg(h) is a,
0 ≤ a < q satisfying ga = h. Computing discrete logs is believed to be difficult
for certain groups, including multiplicative groups modulo primes and elliptic
curve groups. The conjectured hardness of discrete log underlies the security of
multiple important cryptographic algorithms, including the Diffie-Hellman key
exchange [13, 5] and the Digital Signature Algorithm [24]. Efficient computation
of a discrete log for a group used for Diffie-Hellman key exchange would allow an
adversary to compute the private key from the public key exchange messages; for
DSA signatures, such an adversary could compute the private signing key from
the public key and forge arbitrary signatures.

2.1 Discrete Log Cryptanalysis

There are two main families of algorithms for solving the discrete log problem.
The first family works over any group, and includes Shanks’s baby step giant step
algorithm [28], and the Pollard rho and lambda algorithms [26]. These algorithms
run in time O(

√
q) for any group of order q. It is this family of algorithms we

target in this paper. A second family of algorithms is based on index calculus and
works only over finite fields; this family includes the number field sieve which has
subexponential running time for large- and medium-characteristic finite fields [16]
and the function field sieve which was recently improved to quasipolynomial
running time for small-characteristic finite fields [4].

In practice, group parameters for Diffie-Hellman and DSA are chosen to
avoid the known families of cryptanalytic attacks. To avoid index calculus-based
attacks in multiplicative groups over finite fields, the minimum recommended
prime modulus size is 2048 bits [19], with a minimum subgroup of order 256
or 224 bits [5, 20]. However, 1024-bit prime moduli with 160-bit subgroups
remain common in practice [31]. Current best practices for elliptic curves are
to use 256-bit curves [5], although 160-bit curves remain supported in some
implementations [32].

Bitcoin miners currently perform around 290 hashes per year and consume
0.33% of the world’s electricity [34]. If this effort were instead focused on discrete
log, a 180-bit curve could be broken in around a year3. Scaling this to discrete
logs in 224-bit groups would require all current electricity production on Earth
for 10,000 years.

3 We note elliptic curve point multiplications take about 210 times longer than SHA-256
on a modern CPU.
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2.2 Pollard Rho with Distinguished Points

The protocols we study in this paper compute the discrete log of an element h by
finding a collision gahb = ga

′
hb

′
with b 6≡ b′ mod q. Given such an equivalence,

the discrete log of h can be computed as (a′ − a)/(b− b′) mod q. In other words,
given two elements whose bitwise representations collide, we can compute the
discrete logarithm from their group representations. Our proof of work is based
on a parallelized version of the Pollard rho algorithm due to Van Oorschot and
Wiener [33], called the method of distinguished points

The Pollard rho algorithm. Pollard’s rho algorithm for discrete logarithms [26]
works for any cyclic group G of order q. The main idea is to take a deterministic
pseudorandom walk inside of the group until the same element is encountered
twice along the walk. By the birthday bound, such an element will be found with
high probability after Θ(

√
q) steps. The non-parallelized version of this algorithm

uses a cycle-finding algorithm to discover this collision, and computes the log as
above.

We base our proof of work on Van Oorschot and Wiener’s [33] parallelized
Pollard rho algorithm using the method of distinguished points. A distinguished
point is an element whose bitwise representation matches some easily-identifiable
condition, such having d leading zeros. Each individual process j independently
chooses a random starting point gajhbj and generates a psuedorandom walk
sequence from this starting element. When the walk reaches a distinguished point,
the point is saved to a central repository and the process starts over again from
a new random starting point until a collision is found.

The number of steps required to compute the discrete log is independent of
d, which we call the difficulty parameter below; d only determines the storage
required. We expect to find a collision after Θ(

√
q) steps by all processes. With

m processes running in parallel, the calendar running time is O(
√
q/m).

Pseudorandom Walks. The pseudorandom walk produces a deterministic
sequence within the group from some starting value. Given a group generator
g and a target h, the walk generates a random starting point x0 = ga0hb0 by
choosing random exponents a0, b0. The original walk introduced by Pollard
divides G into a disjoint partition T0, T1, T2 and defines the function:

Wρ(x) =


gx x ∈ T0
x2 x ∈ T1
hx x ∈ T2

(1)

At each point xi = gaihbi , the known exponents ai, bi are updated according
to this formula. For multiplicative groups mod p, the sets T0, T1, and T2 are
typically set to be T0 = [1, . . . , p/3), T1 = [p/3, . . . , 2p/3), and T2 = [2p/3, . . . , p).

In practice, most implementations use the linear pseudorandom walk intro-
duced by Teske [30]. Given a disjoint partition of G with 20 sets of equal size
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T1, . . . , T20 parameterized by the bitwise representation of an element, choose
ms, ns ∈ {1, q} at random and define Ms = gmshns for s ∈ [1, 20]. Then we can
define the walk W(x) = Ms ∗ x for x ∈ Ts.

2.3 Discrete Log Records

The parallelized Pollard rho algorithm has been used to set a number of elliptic
curve discrete log records. Monico computed a 109-bit elliptic curve discrete log
from the 1997 Elliptic Curve Cryptosystem Challenge [12] in 2002 using 10,000
CPU users over 549 days. Monico also solved a separate 109-bit challenge in 2004,
with 2600 CPU users over 17 months using Teske’s linear walk [30].

Bos et al. [10] solved a 112-bit elliptic curve discrete logarithm in 2012 using
200 Sony Playstation 3 game consoles in around 6 months, using an optimized
version of the method of distinguished points. Wenger and Wolfger used 10
FPGAs to solve a 113-bit elliptic curve discrete logarithm [35] in 2016 in around
2.5 months using a random walk due to Wiener and Zuccherato [36].

2.4 Proofs of Work

A proof of work [14, 17] protocol allows a prover to demonstrate to a verifier
that they have executed an amount of work. We use the definition from [3].

Definition 1. A (t(n), δ(n))-Proof of Work (PoW) consists of three algorithms
(Gen,Solve,Verify) that satisfy the following properties:

– Efficiency:
• Gen(1n) runs in time Õ(n).
• For any c← Gen(1n), Solve(c) runs in time Õ(t(n)).
• For any c← Gen(1n) and any π, Verify(c, π) runs in time Õ(n).

– Completeness: For any c← Gen(1n) and any π ← Solve(c),

Pr[Verify(c, π) = accept] = 1.

– Hardness: For any polynomial `, any constant ε > 0, and any algorithm
Solve∗` that runs in time `(n)t(n)1−ε when given as input `(n) challenges
{ci ← Gen(1n)}i∈[`(n)],

Pr
[
∀iVerify(ci, πi) = accept | (π1, . . . , π`(n))← Solve∗` (c1, . . . , c`(n))

]
< δ(n)

We can describe the hash puzzle proof of work [2] used by Bitcoin [23] and
other cryptocurrencies in this framework as follows. The challenge generated by
Gen is the hash of the previous block. Solve is parameterized by a difficulty d;
individual miners search for a nonce n such that SHA-256(c, n) ≤ 2256−d when
mapped to an integer. Assuming that SHA-256 acts like a random function,
miners must brute force search random values of n; the probability that a random
fixed-length integer is below the difficulty threshold is 2−d, so the conjectured
running time for Solve is t(n) = O(2d). Verify accepts if SHA-256(c, n) ≤ 2256−d;
this algorithm is constant time.
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There are several proposals for “useful” proofs of work. Primecoin [18] proofs
contain prime chains, which may be of scientific interest. The culmination of
DDoSCoin [37] proofs of work can result in a denial of service attack. TorPath [6]
incentivizes miners to improve bandwidth on the Tor network. Ball et al. [3]
describe theoretical proof-of-work schemes based on worst-case hardness assump-
tions from computational complexity theory. SpaceMint [1] and Permacoin [22]
incentivize miners to consume storage or store meaningful data. Lochter [21]
independently posted a preprint outlining a discrete log proof of work similar to
ours.

3 Proof of work for discrete log

We aim to construct a proof of work scheme where the combined work of the
proofs solve a discrete log. Bitcoin miners have executed more than 280 hashes;
an efficient scheme could set a computational record for a discrete log in a
160-bit group. We present the general idea behind our proposed scheme, explain
limitations of the simple model, and describe possible avenues to fix the gap.

3.1 Strawman Pollard rho proof of work proposal

In our rho-inspired proof of work scheme, workers compute a pseudorandom walk
from a starting point partially determined by the input challenge and produce
a distinguished point. The parameters defining the group G, group generator
g, discrete log target h, and deterministic pseudorandom walk function W, are
global for all workers and chosen prior to setup. A distinguished point x at
difficulty d is defined as having d leading zeros in the bitwise representation,
where d is a difficulty parameter provided by the challenge generator.

In the terminology of Definition 1, Gen produces a challenge bit string c; when
used in a blockchain, c can be the hash of the previous block.

To execute the Solve function, miners generate a starting point for their walk,
for example by generating a pair of integers (a0, b0) = H(c||n) where n is a
nonce chosen by a miner and H is a cryptographically secure hash function, and
computing the starting point P0 = ga0hb0 . Workers then iteratively compute
Pi = W(Pi−1) until they encounter a distinguished point PD = gaDhbD of
difficulty d, and output π = (n, aD, bD, PD). A single prover expects to take
O(2d) steps before a distinguished point is encountered.

It is tempting to hope that Verify can simply verify that PD = gaDhbD and
has d leading zeros. This confirms that PD is distinguished, but does not verify
that the point PD lies on the random walk of length ` starting at the point
determined by (a0, b0). Without this check, a miner can pre-mine a distinguished
point and lie about its relationship to the starting point. A verifier can prevent
this by verifying every step of the random walk, but this does not satisfy the
efficiency constraints of Definition 1.

As described in Section 2.2, a discrete log in a group of order q takes
√
q steps

to compute. A single honest prover expects to perform 2d work per proof and



6 Marcella Hastings, Nadia Heninger, and Eric Wustrow

store
√
q/2d proofs, for a total of

√
q work. If m honest miners are working in

parallel, they will perform O(2d) expected work together per proof. If all miners
have equal computational power, the winning miner will find a distinguished
point after expected O(2d/m) individual work. This construction expects to store√
qm/2d distinguished points in a block chain before a collision is found; the total

amount of work performed by all miners for all blocks to compute the discrete
log is

√
qm. For each distinguished point, (m− 1)/m of the work performed by

miners is wasted, since it does not contribute to the published distinguished
point.

We next examine several modified proof-of-work schemes based on this idea
that attempt to solve the problems of verification and wasted work.

3.2 Reducing the cost of wasted work

To reduce wasted work, we can allow miners that do not achieve the first block
to announce their blocks and receive a partial block reward. One technique is to
use the Greedy Heaviest-Observed Sub-Tree method [29] to determine consensus,
which has been adopted by Ethereum in the form of Uncle block rewards [15].

In this consensus method, the main (heaviest) chain is defined as the sub-tree
of blocks containing the most work, rather than the longest chain. This allows
stale blocks to contribute to the security of a single chain, and allocates rewards
to their producers. In Ethereum, this supports faster block times and lowers
orphan rates [11], but we could use it to incentivize miners to publish their useful
work rather than discard it when each new block is found.

3.3 Limiting the length of the pseudorandom walk

We attempt to reduce the cost of the Verify function by limiting the length of the
random walk in a proof to at most 2` steps for some integer `. Individual miners
derive a starting point from the challenge c and a random nonce n. They walk
until they either find a distinguished point or pass 2` steps. If no distinguished
point has been found within 2` steps, the miner chooses another random nonce
n and restarts the walk from the corresponding new starting point.

Solve requires miners to produce a proof π = (n,L, aD, bD) that satisfies
four criteria: (1) the walk begins at the point found by hashing the nonce with
the hash of the previous block ((a0, b0) = H(c||n)) (2) walking from this initial
point for L steps leads to the specified endpoint (WL(ga0hb0) = gaDhbD ) (3) the
bitwise representation of the endpoint gaDhbD is distinguished and (4) the walk
does not exceed the maximum walk length (L < 2`). An individual miner expects
Solve to run in time O(2d).

Verify retraces the short walk and runs in O(2`) steps.

Analysis. Overall, fixing a maximum walk length forces more total work to
be done, since walks over 2` steps are never published. The probability that a
length 2` random walk contains a distinguished point of difficulty d is 2`−d, so
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a prover expects to perform 2d−` random walks before finding a distinguished
point. An individual prover in a group of order q can expect to store O(

√
q/2`)

distinguished points before a collision is found. With 2d work performed per
distinguished point stored, the total amount of work is O(2d−`

√
q). For m� 2d−`

miners working in parallel, the work wasted by parallel mining is subsumed by
that of discarded long walks.

Bitcoin miners currently compute around 290 hashes per year To target a 160-
bit group, the total amount of work performed by miners would be 290 < 2d−`280,
or 10 < d − `, with a total of 280−` distinguished points. If we allow 1 GB =
8 · 109 storage4, this allows up to 225 160-bit distinguished points, so we have
` = 55, and thus we set the difficulty d = 65. This amount of work is is feasible:
at Bitcoin’s current hash rate, miners produce nearly 275 hashes per block.

3.4 Efficiently verifying pseudorandom walks

In theory, a SNARK [7] solves the efficient verification problem for the proof of
work. Provers would compute the SNARK alongside the pseudorandom walk,
and include the SNARK with the proof of work. Verification can be done in
constant time. Unfortunately, generating a SNARK is thousands of times more
expensive than performing the original computation. Verifiable delay functions [9]
could also be used to solve this problem, but existing solutions appear to take
advantage of algebraic structure that we do not have in our pseudorandom walk.

We attempted to emulate a verifiable delay function by defining an alternate
pseudorandom walk. We experimented with several possibilities, for example
a “rotating” walk that performs a set of multiplications and exponentiations in
sequence. A walk of this type has the convenient algebraic property that it is
simple to verify for a given start point, end point, and length L, that the end point
is L steps from the start. Unfortunately, this walk has terrible pseudorandom
properties: collisions are either trivial or occur after O(q) steps.

There appears to be a tension between the pseudorandomness properties
required for the Pollard rho algorithm to achieve O(

√
q) running time and the

algebraic structure that would allow for efficient verification of the walk. The
random walk has the property that each step is determined by the bitwise
representation of a given element independent of its group element representation
gaihbi , but this independence makes it difficult to reconstruct or efficiently
summarize the group steps without repeating the entire computation. We leave
the discovery of a pseudorandom walk that satisfies these criteria to future work.

3.5 Distributed verification

An alternate block chain formulation has miners accept blocks unless they see
a proof that it is invalid, and incentivizes other validators to produce such
proofs. This technique has been proposed for verifying off-chain transactions in

4 Bitcoin’s blockchain is roughly 183 GB as of Sep 2018
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Ethereum Plasma [27]. We extend this idea to allow validators to prove a miner
has submitted an invalid block and offer rewards for such discoveries.

In this scheme, the Verify function accompanies a reject decision with a proof
of falsification f , and can take as long as mining: Õ(t(n)). We define a function
Check(c, f) to check whether this proof of falsification is accurate, which runs in
time Õ(n). In a block chain, miners Solve proofs of work and dedicated verifiers
Verify. If a verifier produces a proof of falsification f (that is, finds an invalid
block) it broadcasts (c, f) to all participants, who must Check the falsification.

To increase verification cost, there must be a matching increase in incentive.
One option has miners offer a bounty when they produce a new block. After
a specified amount of time, the miner receives both the bounty and the block
reward. A verifier who publishes a valid falsification before the time limit can
collect a portion of the miner’s bounty; the remaining bounty and the entire block
reward are destroyed. This scheme aims to prevent collusion between miners and
verifiers to collect rewards and bounty for no useful work. Next, we present two
ideas for distributed verification and outline the limitations of each approach.

Walk summaries. A first idea modifies the proof of work π to include inter-
mediate points spaced at regular intervals along the walk. The Verify function
picks a random subset of these intermediate points and retraces the shorter walks
between them. An invalid proof must have the property that at least one interval
does not have a valid path between the endpoints. For a walk with I intervals
of length `, a verifier that checks k intervals has probability k/I of detecting an
invalid proof with work kI. However, checking a claimed falsification f requires `
work. A lying verifier can force other participants to perform arbitrary amounts
of work by reporting incorrect falsifications. To fix this, we need to have more
succinct or efficiently checkable falsifications.

Bloom filters for secondary validation. One approach to efficiently checkable
proof falsifications uses Bloom filters [8], a probabilistic data structure that tests
set membership. It may return false positives, but never false negatives. We
modify our walk summary proof of work π above to also include a Bloom filter
containing every point on the walk. The Verify function chooses a random interval
and takes ` walk steps. If an element ei on the walk is not present in the filter, the
verifier broadcasts the sequence of points f = (ei−k, . . . , ei). Verification takes
work `. The Check function confirms that the broadcast points are a correctly
generated random walk and that all points except ei are contained in the Bloom
filter. This takes time k. The short sequence prevents a malicious verifier from
invalidating a correct block by taking advantage of false positives in Bloom filters.

A Bloom filter containing every element in a random walk for a reasonable
difficulty value will be too large (we estimate at least 150 TB for a walk of length
260). To shrink the filter, we could store hashes of short sub-walks of length `′,
rather than every step. To Check, a participant must walk `′ steps for each of the
k broadcast sub-walks. This increases the runtime to k`′, but decreases Bloom
filter size by a factor of `′.
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