
Insured MPC: Efficient Secure Computation
with Financial Penalties

Carsten Baum1?, Bernardo David2??, and Rafael Dowsley3? ? ?

1 Aarhus University, Denmark
2 IT University of Copenhagen, Denmark

3 Bar-Ilan University, Israel

Abstract. Fairness in Secure Multiparty Computation (MPC) is known
to be impossible to achieve in the presence of a dishonest majority. Pre-
vious works have proposed combining MPC protocols with Cryptocur-
rencies in order to financially punish aborting adversaries, providing an
incentive for parties to honestly follow the protocol. This approach also
yields privacy-preserving Smart Contracts, where private inputs can be
processed with MPC in order to determine the distribution of funds given
to the contract. The focus of existing work is on proving that this ap-
proach is possible and unfortunately they present monolithic and mostly
inefficient constructions. In this work, we put forth the first modular
construction of “Insured MPC”, where either the output of the private
computation (which describes how to distribute funds) is fairly delivered
or a proof that a set of parties has misbehaved is produced, allowing
for financial punishments. Moreover, both the output and the proof of
cheating are publicly verifiable, allowing third parties to independently
validate an execution.

We present a highly efficient compiler that uses any MPC protocol with
certain properties together with a standard (non-private) Smart Contract
and a publicly verifiable homomorphic commitment scheme to implement
Insured MPC. As an intermediate step, we propose the first construc-
tion of a publicly verifiable homomorphic commitment scheme achieving
composability guarantees and concrete efficiency. Our results are proven
in the Global Universal Composability framework using a Global Ran-
dom Oracle as the setup assumption. From a theoretical perspective, our
general results provide the first characterization of sufficient properties
that MPC protocols must achieve in order to be efficiently combined
with Cryptocurrencies, as well as insights into publicly verifiable proto-
cols. On the other hand, our constructions have highly efficient concrete
instantiations, allowing for fast implementations.

? Part of this work was done while the author was with Bar-Ilan University.
?? Part of this work was done while the authors was with the Tokyo Institute of Tech-

nology. This work was partially supported by a grant from Concordium Foundation
and by DFF grant number 9040-00399B (TrA2C).

? ? ? Part of this work was done while the author was with Aarhus University.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of mutually distrusting
parties to evaluate an arbitrary function on secret inputs. The participating
parties learn nothing beyond the output of the computation, while malicious
behavior at runtime does not alter the output. An intuitive and in practice often
required feature of MPC is that if a cheating party obtains the output, then all
the honest parties should do so as well. Protocols which guarantee this are also
called fair. In his seminal work, Cleve [21] proved that fair MPC with a dishonest
majority is impossible to achieve in the standard communication model. While
the result can be circumvented for certain, specific functions [26, 3, 4] in the two-
party setting, this barrier prevents MPC from being a useful tool for certain
interesting applications.

With the advent of cryptocurrencies, Andrychowicz et al. [2] (and indepen-
dently Bentov & Kumaresan [10]) initiated a line of research that avoids the
aforementioned drawback by imposing financial penalties on misbehaving par-
ties. Such monetary punishments would then incentivize fair behavior of the
protocol participants, assuming that they are rational and that the penalties are
high enough. This is achieved by constructing a protocol which interacts with a
public ledger and digital currency, where the overall structure of their idea is as
follows: (i) The parties run the secure computation, but delay the reconstruction
of the output; (ii) Each party deposits a collateral on the public ledger; (iii) The
parties reconstruct the output. Each party obtains the collateral back if it can
prove that it behaved honestly during the reconstruction; and (iv) If some parties
have cheated, then their share of the collateral is distributed among the honest
participants.

Several works [35, 31, 34] generalized this concept and improved the perfor-
mance with respect to the amount of interaction with the public ledger as well
as the collateral that each party needs to deposit. In particular, Kumaresan et
al. [1, 2, 35] introduced the idea of MPC with cash distribution, in which the
inputs and outputs of the parties consist of both data and money. In this latter
case, the public ledger is used both to enforce financial penalties as well as to
distribute money according to the output of the secure computation.

1.1 Fair Computation vs. Fair Output Delivery

Before presenting our techniques and design choices, it is worthwhile to discuss
first which adversarial behavior should be punishable: it is possible to obtain
protocols that punish deviations at any point of their execution or protocols that
only punish adversaries who learn the output but prevent the honest parties from
learning it. In this second approach, adversaries that abort the protocol but do
not learn the output are not punished. One therefore has to distinguish between
two types of protocols: those that punish all cheating yield Fair Computation
with Penalties, while the second approach only allows Fair Output Delivery with
Penalties. One can roughly classify the state-of-the-art using this distinction.

2

Fair Computation. [2] and [35] follow this line of work, but have high round
and communication complexities overheads. As [31] correctly pointed out, care
must be taken when choosing the “inner” MPC protocol (which is compiled to
obtain financial penalties): to achieve this, the protocol must have a property
called Identifiable Abort (ID-MPC, [29]). As [2, 35] use GMW [25], their specific
construction achieves this property, but not every MPC protocol is suitable for
their approach. On the other hand, [31] requires constant rounds but rely on
expensive generic zero knowledge proofs to achieve the necessary properties.

Fair Output Delivery. This line of work has been independently initiated
by [1, 10] and continued in [33, 34, 36, 11]. Most of the protocols in this line of
work still require several rounds of interaction with the public ledger as well as
storing all MPC protocol messages on the ledger. The currently most efficient
approaches [36, 11] rely on an “inner” MPC protocol that performs the actual
computation and then secret shares the result, outputting not the result itself
but commitments to each of the shares and privately giving to each party the
opening for one of these commitments. The parties subsequently post all (closed)
commitments to the public ledger. After the parties agree that the commitments
posted on the public ledger correspond to those obtained from the MPC protocol,
each party opens its commitment in public. This implicitly has identifiable abort
because all parties can publicly agree if another participant has failed to post a
valid opening to its commitment on the ledger. In particular, the approach of [11]
relies on a smart contract that punishes parties that fail to post valid openings
for their commitments to shares. However, a caveat, both from a theoretical and
practical point of view, is that current protocols compute both the secret sharing
of the result and the commitments to each share inside the MPC in a white-
box way, which adds significant computational and communication overheads.
Moreover, in order to achieve composable security, the expensive preprocessing
phase of a composable commitment scheme would have to be executed as part
of the circuit computed by the “inner” MPC protocol.

Other Related Work. Recently Choudhuri et al. [20] showed how to circum-
vent the impossibility result of [21] and constructed a fair MPC using a Bulletin
Board. As their work either relies on Witness Encryption (which currently re-
quires Indistinguishability Obfuscation to be constructed) or Trusted Hardware
(which we also deem to be a very strong assumption) it does seem to be an
incomparable alternative. The use of MPC for computing on private data in
permissioned ledgers has been suggested in [9], where the authors suggest that
an MPC protocol can have all of its messages posted on a public ledger for
verification. MPC with public verification was introduced in [6, 43]. Both of pro-
tocols come with a significant overhead during the computation phase and are
not suitable in our setting. Ishai et al. [29] showed how to construct ID-MPC
using adaptively secure OT and Zero-Knowledge proofs and subsequent work [7,
44, 22] introduced more efficient approaches. The protocols of [7, 22] can also be
modified to achieve public verification procedure, though with high overheads.

3

1.2 Our Contributions

In this work, we give the first modular construction of MPC achieving fair out-
put delivery with penalties that can be instantiated with a concretely efficient
protocol. While previous works have focused at obtaining protocols that can be
instantiated using the Bitcoin or Ethereum blockchains as a public ledger, we
focus instead on the MPC aspects of such constructions assuming an ideal public
bulletin board. We design a protocol from generic building blocks with security
analysed in the Global Universal Composability framework (GUC). This mod-
ular approach directly pinpoints the properties that the “inner” MPC protocol
and other underlying protocols must have in such constructions, including pre-
cise definitions of the necessary public verifiability properties. Besides shedding
light on theoretical aspects of MPC with fair output delivery with penalties, our
approach also paves the way for concrete implementations, since it uses generic
building blocks that have highly efficient instantiations and combines them in
a way that yields highly efficient constructions. Moreover, due to its modular
nature, our protocol directly benefits from any future efficiency improvements
to its individual building blocks.

New Multiparty Additively Homomorphic Commitment with De-
layed Public Verifiability. This primitive acts as the central hub of our con-
struction. Such commitment schemes are additively homomorphic, allowing one
to open linear combinations of commitments without revealing the individual
commitments themselves. Moreover, they allow for any third party to verify
that a message is a valid opening for a given commitment. These commitments,
when combined with a suitable “inner” MPC protocol, allow us to construct a
highly efficient and modular output secret sharing and reconstruction mecha-
nism. We remark that existing constructions achieving all of these properties do
not have composability guarantees. We introduce a new UC secure scheme that
only needs a small number of publicly verifiable Oblivious Transfers (OTs) that
is independent of the number of commitments to be executed and are performed
in a preprocessing phase, after which only calls to a PRG are used. We believe
that this construction is of independent interest as it improves on [18, 23], which
are not publicly verifiable.

Modular Design. Based on such a commitment scheme and a suitable “in-
ner” MPC, we give a modular approach for constructing “Insured MPC”: first,
we combine the inner MPC with the commitment scheme to achieve MPC with
publicly verifiable output. In this step, we leverage a property of the inner MPC
output phase to avoid computing secret sharing or commitments inside the MPC
itself, instead computing commitments to certain values produced before the ac-
tual output is obtained. Given a (non-private) Smart Contract functionality and
a global clock we can then construct a cheater identifiable output reconstruction
phase in a modular way where the Smart Contract mediates the reconstruc-
tion, receiving openings to the commitments obtained in the previous step. In
case of disagreement during reconstruction, the Smart Contract can identify the
cheaters as the parties who failed to provide commitment openings. This re-
construction phase and posterior public verification of the resulting output are

4

mostly light-weight due to our commitment scheme, which allows for verification
of openings using only calls to a PRG. Our technique adds no overhead to the
circuit being computed inside the MPC (differently from [36, 11]) and little over-
head to the MPC protocol (differently from [31]), since each party only computes
and posts to the public ledger a number of commitments linear in the output
size as opposed to computing and posting expensive NIZKs together with each
MPC protocol message as in [31].

Efficient Instantiation. We show how to instantiate all sub-protocols with
efficient primitives. We modify the approach for constant-round MPC of [27, 45]
to work as the “inner” MPC with essentially the same concrete efficiency. Our
publicly verifiable additively homomorphic commitment scheme only performs
Random Oracle (RO) calls after a small number of base OTs using a publicly
verifiable OT scheme, achieving the same concrete efficiency as the non-publicly
verifiable scheme of [23]. As we use a restricted programmable and observable
global RO [13] we are then still able to prove security of all steps in GUC.

Fig. 1. The Building Blocks of the Additively Homomorphic Multiparty Commitment
with Public Verifiability.

1.3 The Structure of our Protocol

An important building block of our Insured MPC protocol is the multiparty
commitment functionality FHCom (described in Section 3) that is additively ho-
momorphic and that allows delayed public verifiability (i.e., after the opening
phase it is possible for any third party to verify the opening information). FHCom

is GUC-realized with security in the restricted programmable and observable
random oracle model of Camenisch et al. [13] using multiple building blocks
as depicted in Figure 1 and briefly explained below. First, we realize a simple
(non-homomorphic) commitment functionality with public verifiability FCom by
observing that the canonical random oracle based commitment scheme shown to
be UC-secure in [13] is trivially publicly verifiable. FCom is then used to realize
a publicly verifiable equality testing functionality FEQ and a publicly verifiable

5

coin tossing functionality FCT. These functionalities are versions of the function-
alities in Frederiksen et al. [23] that are augmented to allow public verifiability.
We also use an oblivious transfer functionality with delayed public verifiability
FpOT in which the receiver can activate an interface that allows any party to
verify that the receiver used a given choice bit and received a given message. We
show that FpOT can be realized using FCom and the DDH-based OT protocol of
Peikert et al. [40]. A two-party homomorphic commitment with delayed public
verifiability functionality F2HCom is then realized with a construction based on
the scheme of Cascudo et al. [18], which we augment to achieve public verifiabil-
ity by leveraging FpOT. Finally, F2HCom, FEQ and FCT are used to obtain a public
verifiable version of the protocol of Frederiksen et al. [23], yielding a protocol
that realizes the additively homomorphic multiparty commitment functionality
with public verifiability FHCom.

Fig. 2. The Steps Involved in Compiling the MPC Protocol.

In Section 4, we depart from a flavor of MPC that provides a secret-shared
output which can be reconstructed by linear operations on the shares. We capture
this precisely in functionality FMPC−SO. Notice that FMPC−SO can be efficiently
realized, for instance, by a slightly modified version of the constant-round pre-
processed BMR protocol of Hazay et al. [27], which we describe in Appendix B.
We then present a protocol ΠIdent in the FMPC−SO,FHCom,FCT-hybrid model that
implements FIdent, a functionality capturing MPC with publicly verifiable out-
put. This intermediate functionality allows for third parties to verify that either
a given output was indeed obtained from the MPC or a given party has misbe-
haved in the output phase. In Section 5, we present the functionality FSC that
describes the smart contract and an authenticated bulletin board, which are the
final ingredients of our compiler. We then build the FIdent,FSC,FClock-hybrid pro-
tocol ΠCompiler that realizes FOnline, the functionality describing MPC with fair
output delivery with penalties. In this protocol, the smart contract represented
by FSC uses the properties of FIdent to either determine the distribution of funds
according to the final output or punish the parties identified as cheaters. The
relations among the MPC functionalities are summarized in Figure 2.
Caveats and Countermeasures: Notice that the definition of fair output de-
livery with penalties captured by FOnline ensures that cheaters are punished if

6

they abort in the output reconstruction phase but not if they misbehave dur-
ing the computation itself. Hence, our approach still suffers from one of the
caveats in previous protocols [36, 11], i.e. an attacker can start many instances
of MPC with fair output delivery with penalties only to deliberately fail be-
fore the output phase, causing honest parties to waste resources. Approaches to
avoid this caveat [2, 35, 34, 31] have computational and communication costs or-
ders of magnitude higher than ours, requiring computation of expensive NIZKs
and storage of all MPC messages along with these NIZKs on the public ledger.
Non-cryptographic countermeasures can be used to disincentivize such adver-
sarial behavior, meaning the average cost per execution will be much lower in
our approach. For example, such adversaries can be dealt with through heuristic
techniques like reputation systems, which are used to identify trustworthy peers
before engaging in MPC. Another alternative is to charge all parties an initial
fee that is paid regardless of an output being successfully obtained, making this
adversarial strategy financially infeasible.

1.4 Efficiency and Comparison to Previous Works

Our approach preserves the efficiency of the “inner” MPC protocol and the com-
mitment scheme used for our generic construction. No modifications are done
to these components, since our constructions basically consists in executing the
MPC protocol to evaluate the circuit describing the function to be computed and
then executing the commitment scheme to obtain commitments (and later open-
ings) to the MPC protocol’s partial outputs. Hence, the complexity of executing
our generic protocol between n parties is essentially that of executing the “inner”
MPC protocol among n parties in order to evaluate the function and then exe-
cuting n commitments and openings using the commitment scheme. Moreover,
our approach is “optimistic” in the sense that more expensive verification proce-
dures are only executed in case there is a suspicion that a party has cheated. Our
generic construction can be concretely instantiated in the preprocessing model
based on the MPC protocol of [27] and the publicly verifiable additively homo-
morphic commitment scheme that we introduce. In case no party is suspected
to be cheating, our online phase achieves basically the same efficiency as the
MPC protocol of [27], since our commitment scheme’s online phase achieves the
same efficiency as the scheme of [18], which according to the benchmarks of [42]
requires only a few microseconds for commitments/openings. An even better
concrete instantiation can be obtained by employing the new publicly verifiable
additively homomorphic commitment scheme recently introduced in [17].

Composability and Efficiency of Previous Works For an efficient im-
plementation of fair computation, one can use more efficient ID-MPC protocols
(e.g. [7]), but these are significantly less efficient than MPC protocols with-
out that property. Apart from incurring very high computational overheads in
relation to the underlying MPC protocol due to the use of expensive generic
non-interactive zero-knowledge proofs (NIZKs), the best scheme in this line of
work [31] also requires all MPC protocol messages and associated NIZKs to be

7

posted to the ledger at each round, which is prohibitive for practical scenar-
ios.4 With the exception of [31], none of the previous works have been shown to
achieve composability guarantees.

Current protocols for fair output delivery such as [36, 11] compute both the
secret sharing of the result and the commitments to each share inside the MPC
in a white-box way, adding significant computational and communication over-
heads. Moreover, while these works claim that a random oracle (RO) based com-
mitment can be used, this would preclude the resulting protocol from achieving
simulation-based security notions. Notice that computing such a commitment
inside the MPC means that calls to the RO itself would have to be computed
by the MPC, which is not possible since the RO ideal functionality cannot be
represented as a circuit. The alternative for instantiating such protocols with
composabability guarantees would be using universally composable commitment
schemes that can be instantiated from a common reference string, which would
require the MPC to compute tens (if not hundreds) of modular exponentiations,
resulting in enormous overheads.

2 Preliminaries

Let y
$← F (x) denote running the randomized algorithm F with input x and

random coins, and obtaining the output y. When the coins r are specified we
use y ← F (x; r). Similarly, y ← F (x) is used for a deterministic algorithm. For

a set X , let x
$← X denote x chosen uniformly at random from X ; and for a

distribution Y, let y
$← Y denote y sampled according to the distribution Y.

For any k ∈ N we write [k] for the set {1, . . . , k}. A function f(x) is negligi-
ble in x (or negl(x) to denote an arbitrary such function) if f(x) is positive
and for every positive polynomial p(x) ∈ poly(x) there exists a x′ ∈ N such
that ∀x ≥ x′ : f(x) < 1/p(x). Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and
Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are said to be statistically
indistinguishable, denoted by X ≈s Y , if for all z it holds that | Pr[D(Xκ,z) =
1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic algorithm (distin-
guisher) D. In case this only holds for computationally bounded (non-uniform
probabilistic polynomial-time (PPT)) distinguishers we say that X and Y are
computationally indistinguishable and denote it by ≈c.

Let n be the number of parties in an MPC scheme and A be an adversary.
Throughout this work, we will denote with P = {P1, . . . ,Pn} the set of parties
and with I (P the set of corrupted parties. The uncorrupted parties will be
I = P \ I. We denote the ideal-world simulator as S. We use τ to denote the
computational and κ for the statistical security parameter.

Vectors of field elements are denoted by bold lower-case letters and matrices
by bold upper-case letters. Concatenation of vectors is represented by ‖ . For

4 In private communication with the authors of [31] we have confirmed that while
their generic construction achieves optimal round complexity, it does incur very
high computational, communication and public ledger storage overheads that make
it impractical to construct a concrete instantiation or estimate parameters.

8

z ∈ Fk, z[i] denotes the i’th entry of the vector, so that e.g. z[1] is the first
element of z. We denote by 0k the column vector of k components where all
entries are 0. We denote the scalar product of a scalar α ∈ F with a vector
x ∈ Fk by α · x = (α · x[1], . . . , α · x[k]). For a matrix M ∈ Fn×k, we let
M[·, j] denote its j’th column and M[i, ·] denote its i’th row. This work focus
on computations on F2, which will be denote as F for conciseness.

2.1 Coding Theory, Interactive Proximity Testing and Linear Time
Building Blocks

We adopt the notation and definitions from [18], reproduced in almost verbatim
form in the remainder of this section. For a vector x ∈ Fn, we denote the
Hamming-weight of x by ‖x‖0 = |{i ∈ [n] : x[i] 6= 0}|. Let C ⊂ Fn be a linear
subspace of Fn. We say that C is an F-linear [n, k, s] code if C has dimension k
and it holds for every non-zero x ∈ C that ‖x‖0 ≥ s, i.e., the minimum distance
of C is at least s. The distance dist(C,x) between C and a vector x ∈ Fn is
the minimum of ‖c− x‖0 when c ∈ C. The rate of an F-linear [n, k, s] code is
k
n and its relative minimum distance is s

n . A matrix G ∈ Fn×k is a generator
matrix of C if C = {Gx : x ∈ Fk}. The code C is systematic if it has a generator
matrix G such that the submatrix given by the top k rows of G is the identity
matrix I ∈ Fk×k. A matrix P ∈ F(n−k)×n of maximal rank n − k is a parity
check matrix of C if Pc = 0 for all c ∈ C. When we have fixed a parity check
matrix P of C we say that the syndrome of an element v ∈ Fn is Pv. For an
F-linear [n, k, s] code C, we denote by C�m the m-interleaved product of C, which
is defined by C�m = {C ∈ Fn×m : ∀i ∈ [m] : C[·, i] ∈ C}. In other words, C�m

consists of all Fn×m matrices for which all columns are in C. We can think of
C�m as a linear code with symbol alphabet Fm, where we obtain codewords by
taking m arbitrary codewords of C and bundling together the components of
these codewords into symbols from Fm. For a matrix E ∈ Fn×m, ‖E‖0 is the
number of non-zero rows of E, and the code C�m has minimum distance at least
s′ if all non-zero C ∈ C�m satisfy ‖C‖0 ≥ s′. Furthermore, P is a parity-check
matrix of C if and only if PC = 0 for all C ∈ C�m. If C is an F-linear [n, k, s]
code, its square C∗2 is defined as the linear subspace of Fn generated by all the
vectors of the form v ∗w with v,w ∈ C.

Definition 1 (Almost Universal Linear Hashing [18]). We say that a fam-
ily H of linear functions Fn → Fs is ε-almost universal, if it holds for every
non-zero x ∈ Fn that

Pr
H

$←H
[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the family H. We say that H is
universal, if it is |F|−s-almost universal. We will identify functions H ∈ H with
their transformation matrix and write H(x) = H · x.

The interactive proximity testing technique (as introduced in [18]) consists
in the following argument: suppose we sample a function H from a family of

9

almost universal linear hash functions (from Fm to F`), and we apply H to each
of the rows of a matrix X ∈ Fn×m, obtaining another matrix X′ ∈ Fn×`; because
of linearity, if X belonged to an interleaved code C�m, then X′ belongs to the
interleaved code C�`. The following Theorem (from [18]) states that we can test
whether X is close to C�m by testing instead if X′ is close to C�` (with high
probability over the choice of the hash function) and moreover, if these elements
are close to the respective codes, the set of rows that have to be modified in each
of the matrices in order to correct them to codewords are the same.

Theorem 1 ([18]). Let H : Fm → F2s+t be a family of |F|−2s-almost universal
F-linear hash functions. Further let C be an F-linear [n, k, s] code. Then for every
X ∈ Fn×m at least one of the following statements holds, except with probability

|F|−s over the choice of H
$← H:

1. XH> has distance at least s from C�(2s+t).
2. For every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that XH> −C′ and

X−C have the same row support.

Remark 1 ([18]). If the first item in the statement of Theorem 1 does not hold,
the second one must and we can efficiently recover a codeword C with distance
at most s− 1 from X using erasure correction, given a codeword C′ ∈ C�(2s+t)

with distance at most s − 1 from XH>. More specifically, we compute the row
support of XH> − C′, erase the corresponding rows of X and recover C from
X using erasure correction5. The last step is possible as the distance between X
and C is at most s− 1.

2.2 UC Framework and Functionalities

In this work, the (Global) Universal Composability or (G)UC framework [14, 15]
is used to analyze security. Due to space constraints, we refer interested readers
to the aforementioned works for more details. We generally use F to denote an
ideal functionality and Π for a protocol. We work in the restricted programmable
and observable global random oracle model GrpoRO of [13] (see Figure 3 for the
description).

Several functionalities in this work allow public verifiability. To model this, we
follow the approach of Badertscher et al. [5] and allow the set of verifiers V to be
dynamic by adding register and de-register instructions as well as instructions
that allow S to obtain the list of registered verifiers. All functionalities with
public verifiability include the following interfaces (which are omitted henceforth
for simplicity):

Register: Upon receiving (Register, sid) from some verifier Vi, set V = V∪Vi
and return (Registered, sid,Vi) to Vi.
Deregister: Upon receiving (Deregister, sid) from some verifier Vi, set V =
V \ Vi and return (Deregistered, sid,Vi) to Vi.
5 Erasure correction for linear codes can be done efficiently via Gaussian elimination.

10

Functionality GrpoRO

GrpoRO is parameterized by an output size function ` and keeps initially empty lists
ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}`(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s 6= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.
3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.

Program: On input (Program-RO,m, h) with h ∈ {0, 1}`(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}`(τ) where (m,h′) ∈ ListH and h 6= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.

IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s 6= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 3. Functionality GrpoRO from [13].

Is Registered: Upon receiving (Is-Registered, sid) from Vi, return
(Is-Registered, sid, b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.

Get Registered: Upon receiving (Get-Registered, sid) from the ideal ad-
versary S, the functionality returns (Get-Registered, sid,V) to S.

The above instructions can also be used by other functionalities to register as a
verifier of a publicly verifiable functionality.

As some parts of our work are inherently synchronous, we model the different
“rounds” of it using a global clock functionality FClock (see Figure 4), following
the ideas of [5, 31, 30]. For simplicity, we do not introduce a session management
in FClock as it is not necessary to state our result. Our clock is not only used to
synchronize the protocol between multiple functionalities and parties, but more-
over simulates some “inherent” delay ρ. As we use a public ledger functionality,
we will have to grant parties some time until certain messages are posted on it
and acted upon by the smart contract. Such a delay is difficult to model in UC.
Therefore adding this delay ρ to represent “wall clock-time” to the functionality
seems to be a good compromise. That also means that FClock will not hand over
to the simulator directly after an update was sent by a party or functionality,
but before a new value of the clock is read by one of them.
FClock is assumed to be a global functionality, which means that other ideal

functionalities will be granted access to it. And while in the real protocol execu-
tion all parties send messages to and receive them from FClock, in the simulated
case only the ideal functionality, other global functionalities as well as the dis-

11

Functionality FClock

FClock is parameterized by a variable ν, sets P,F of parties and functionalities re-
spectively, as well as by a “wall clock delay” ρ. It keeps a Boolean variable dJ for
each J ∈ P ∪F , a counter ν as well as an additional variable update. All dJ , ν and
update are initialized as 0.

Clock Update: Upon receiving a message (Update) from J ∈ P ∪ F :
1. Set dJ = 1.

2. If dF = 1 for all F ∈ F and dp = 1 for all honest p ∈ P, then set update← 1 if
it is 0.

Clock Read: Upon receiving a message (Read) from any entity:
1. If update = 1 and has been set so ≥ ρ time ago, then first send (Tick, sid) to
S. Next set ν ← ν + 1, reset dJ to 0 for all J ∈ P ∪ F and reset update to 0.

2. Answer the entity with (Read, ν).

Fig. 4. Functionality FClock for a Global Clock.

honest parties will do so6. A complication that arises from this is that the ideal
functionality in such a setting might directly change the visible state of FClock,
so special care must be taken during the simulation-based proof such that the
publicly available state of FClock is indistinguishable.

2.3 Secure Multiparty Computation with Punishable Abort and
Cash Distribution

We focus on Secure Multiparty Computation with security against a static, rush-
ing and malicious adversary A corrupting up to n− 1 of the n parties. For this
setting, it is known that fairness cannot be achieved [21]. Instead, we let the func-
tionality compute the result y, but it will only output it if every party Pi sent
coins coins(d) to the functionality. The functionality will hand these coins back
if every party obtained y. A will be able to block honest parties from receiving
the output, but only at the expense of losing money to the honest parties. We
call this MPC with Punishable Abort or Insured MPC. Additionally, in the case
where no party was punished, we let the parties redistribute additional coins
based on y. To formalize this step, we define a Cash Distribution Function.

Definition 2 (Cash Distribution Function). Let g : Fm×Nn → Nn be such
that ∀y ∈ Fm, t(1), . . . , t(n) ∈ N it holds that

∑
i t

(i) =
∑
i e

(i) for (e(1), . . . , e(n))←
g(y, t(1), . . . , t(n)). Then g is called a Cash Distribution Function.

In Figure 5 we formally define functionality FOnline that captures MPC which
has both properties. This functionality allows the adversary to delay the delivery
of the correct output by some time, which is necessary for technical reasons. At
the same time, it allows the adversary to punish himself. While being unlikely

6 Hybrid functionalities in the simulation might also be given access, but this is not
necessary in our setting.

12

Functionality FOnline

This functionality interacts with the parties P1, . . . ,Pn as well as the global func-
tionality FClock. It is parameterized by a circuit C representing the computation, the
compensation amount q, the security deposit d ≥ (n − 1)q and a cash distribution
function g. S specifies a set I ⊂ [n] of corrupted parties.

Input: Upon first input (Input, sid, i, x(i)) by Pi and (Input, sid, i, ·) by all other
parties the functionality stores the value (i, x(i)) internally. Every further such mes-
sage with the same sid and i is ignored.

Evaluate: Upon input (Compute, sid) by all parties and if the inputs (i, x(i))i∈[n]
for all parties have been received, compute y = C(x(1), . . . , x(n)). If S sends (Abort,
sid) during Input or Evaluate then send (Abort, sid) to all parties and stop.

Deposit: Wait for each party Pi to send (Deposit, sid, coins(d + t(i))) containing
the d coins of the security deposit as well as the t(i) ≥ 0 coins that Pi wants to
use as financial input in the computation. Send (Deposited, sid,Pi, d + t(i)) to S
upon receiving it. If all honest parties sent their deposit then send (Update, sid) to
FClock. Then query FClock until ν = 1. If by ν = 1 some parties j ∈ I sent coins(c(j))
with c(j) < d then return the collateral to all honest parties and S. Afterwards send
(Abort, sid) to the honest parties and abort. If all went ok, then activate Reveal.

Reveal: Send (Output, sid,y) to S, (Update, sid) to FClock and wait until ν = 2.
S may now either send (No-Output, sid) or (Ok, sid,y). Afterwards send (Update,
sid) to FClock and activate Resolve.

Resolve: Query FClock until ν = 3. Then send (Update, sid) to FClock and query
until ν = 4.
1. Wait for the message (Punish, sid, punish) from S where punish ⊆ I. If S sent

(No-Output, sid,y) in Reveal then ∅ 6= punish.

2. Depending on punish do the following:
– If punish = ∅ then compute e(1), . . . , e(n) ← g(y, t(1), . . . , t(n)).

– Otherwise set e(i) ← d + t(i) + |punish| · q for each party Pi ∈ P \ punish
and e(i) ← d− q · (n− |punish|) + t(i) for each Pi ∈ punish.

3. For each Pi ∈ P send (Payout, sid,Pi, coins(e(i))) to Pi and (Payout,
sid,Pi, e(i)) to each other party.

4. If S sent (Ok, sid,y) in Reveal then send (Output, sid,y) to each honest party,
otherwise send (No-Output, sid).

Fig. 5. Functionality FOnline for Secure Multiparty Computation with Punishable Abort
and Cash Distribution.

in practice, this must still be possible for the security proofs to go through. This
MPC runs in the presence of a GUC functionality FClock. One would obviously
like to get a result in terms of wall-clock time, but this is difficult to specify in
UC. Instead, we implement FOnline using a Smart Contract functionality. Such
Smart Contracts can emulate wall-clock time to a certain extend.

13

2.4 Authenticated Bulletin Boards and Smart Contracts

Bulletin Boards and Smart Contracts are primitives which form the backbone
of our result. A Bulletin Board is a publicly readable storage for messages which
cannot be erased after being posted. We use an authenticated Bulletin Board,
which means that messages that are posted can be related to specific parties.
These can be implemented from a standard Bulletin Board and signatures.7

As we focus on the MPC aspects rather than compatibility with a blockchain
based public ledger, we model the public ledger as an ideal Bulletin Board that
allows for parties to immediately write and read messages. We also assume that
there exists a Smart Contract functionality that incorporates this ideal Bulletin
Board. We defer the full definition of this functionality to Section 5 and until
then only use the two simple interfaces of the Bulletin Board as defined below.
The Bulletin Board is aware of the set of parties P and has an initially empty
list M of messages and two interfaces:

Post to Bulletin Board: Upon receiving a message (Post, sid,Off,m) from
some party Pi ∈ P, if there is no message (Pi, sid,Off,m′) ∈ M, append
(Pi, sid,Off,m) to the list M of authenticated messages that were posted in
the public bulletin board. Then send (Posted, sid,Pi,Off,m) to S.

Read from Bulletin Board: Upon receiving a message (Read, sid) from some
party, return M.

3 Multiparty Homomorphic Commitments with Delayed
Public Verifiability

One of the main building blocks of our secure multiparty computation protocol is
a (multiparty) additively homomorphic commitment scheme with delayed public
verifiability, meaning that the receiver can prove that he received a (potentially)
invalid opening to a given commitment after it has been opened. In order to
construct such a scheme efficiently, we depart from the multiparty homomor-
phic commitment scheme of [23], which is in turn realized based on a two-party
homomorphic commitment functionality, an equality testing functionality and
a coin tossing functionality. In order to augment the construction of [23] with
delayed public verifiability, we need to also augment the functionalities it is
based on with similar properties. To that end, we present a two-party homo-
morphic commitment with delayed public verifiability functionality F2HCom, a
publicly verifiable coin tossing functionality FCT and a publicly verifiable equal-
ity testing functionality FEQ. We realize F2HCom with a construction based on
an instantiation of the scheme of [18] with an oblivious transfer with delayed
public verifiability FpOT. We show that FpOT can be realized in the restricted
programmable and observable random oracle model of [13] by the construction
of [40] plus a publicly verifiable (non-homomorphic) commitment functionality
FCom, which is also instrumental in realizing FEQ and FCT.

7 There exist impossibility results on realizing this primitive [38, 24], but we avoid
these by allowing for setup, which is also necessary for UC secure MPC [16].

14

Public Verification. In our modeling of public verification, we denote the parties
who actively participate in executing a protocol by P and the parties who later
verify the output of an execution of the protocol by V = {V1, . . . ,V`}. In the case
of functionalities with delayed public verification, the functionality’s interface
providing public verification is only activated after a subset of (or all) parties
in P agree with its activation. This delayed activation models the fact that
the protocols realizing these functionalities require that a subset (or all) of P
reveal private information (e.g. private randomness or inputs) in order for the
public verification procedure to be executed given publicly available transcripts
and outputs. All messages broadcast by parties P to parties V in the protocols
described in this section are in fact sent to the smart contract functionality FSC,
which makes them accessible to verifiers at any later point. This eliminates the
need for V to be involved in the protocol execution of P, as V can later retrieve
relevant messages from the smart contract. When a protocol in this section says
a message m is broadcast, the party broadcasting m sends (Post, sid,Off,m)
to FSC, posting the message to a bulletin board and increases the identifier Off.
All parties that expect to receive a broadcast message send (Read, sid) to FSC

and retrieve the message from the contents of the authenticated bulletin board.

3.1 Publicly Verifiable Commitments

In order to adapt the construction of [23], it is necessary to also realize function-
alities for equality testing and for coin tossing with delayed public verifiability,
which can be done from simple (non-homomorphic) commitments with public
verifiability. We define a functionality for Publicly Verifiable Commitments FCom

in Figure 6 and will show that this functionality can be realized in the restricted
programmable and observable random oracle model of [13]. The basic insight
here is to observe that the canonical random oracle based commitment scheme
proven UC-secure in [13] is trivially publicly verifiable, since any party can verify
the validity of a given commitment/opening pair by querying the global random
oracle. We describe protocol ΠCom in Figure 7. The security of ΠCom is stated in
Theorem 2.

Theorem 2. Protocol ΠCom GUC-realizes FCom in the GrpoRO,FSC hybrid model.

Proof (Sketch). The fact that the Commit and Open steps of protocol ΠCom re-
alize the corresponding interfaces of FCom in the GrpoRO and FAuth hybrid model
(FAuth is the functionality for authenticated channels) is proven in [13]. In our
case FAuth is substituted by the authenticated bulleting board through which
broadcasts are carried out. Public verification follows in a straightforward man-
ner since parties V receive the same messages as parties P and perform the exact
same procedures of an honest receiver to verify the validity of such messages.
Notice that the strategy taken by the simulator described in [13] in exploring
the restricted programmability and observability of GrpoRO allows it to equivo-
cate commitment openings towards V as well. Hence, since GrpoRO is global the
output obtained by V in the public verification procedure is 1 if and only if the

15

Functionality FCom

FCom keeps an internal (initially empty) list C and interacts with a set of parties
P = {P1, . . . ,Pn}, a set of verifiers V and an adversary S through the following
interfaces:

Commit: Upon receiving (Commit, sid,Pi, cid,x) from Pi ∈ P (where x ∈ Fτ)
check if (cid, ·, ·) ∈ C. If yes, ignore the message, else add (cid,Pi,x) to C and send
a public delayed output (Committed, sid,Pi, cid) to all remaining parties in P.

Open: Upon receiving (Open, sid,Pi, cid) from Pi ∈ P, if (cid,Pi,x) ∈ C, send a
delayed output (Open, sid,Pi, cid,x) to all parties V and all Pj ∈ P for j 6= i.

Verify: Upon receiving (Verify, sid, cid,Pi,x) from Vj ∈ V, if (cid,Pi,x) ∈ C set
f = 1, otherwise, set f = 0. Send (Verified, sid, cid,Pi,x, f) to Vj .

Fig. 6. Functionality FCom for Publicly Verifiable Multiparty Commitments.

Protocol ΠCom

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and with GrpoRO as
follows:

Commit: On input (Commit, sid,Pi, cid,xi), a party Pi ∈ P uniformly sam-

ples r
$← {0, 1}κ and queries GrpoRO on (sid, cid, r,xi) to obtain c. Pi broadcasts

(Committed, sid,Pi, cid, c). All parties Pj ∈ P for j 6= i output (Committed,
sid,Pi, cid) upon receiving this message.

Open: On input (Open, sid,Pi, cid), Pi broadcasts (Open, sid,Pi, cid, r′,x′i). Upon
receiving (Open, sid,Pi, cid, r′,x′i), each party Pj queries GrpoRO on (sid, cid, r′,x′i)
and checks that the answer is equal to c and that (sid, r′,x′i) is not programmed
by sending (IsProgrammed, sid, cid, r′,x′i) to GrpoRO, aborting if the answer is
(IsProgrammed, sid, 0). Output (Open, sid,Pi, cid,x′i).
Verify: On input (Verify, sid, cid,Pi,x), Vj ∈ V checks that x = x′i in (Open,
sid,Pi, cid, r′,x′i), aborting otherwise. Vj queries GrpoRO on (sid, cid, r′,x′i) and
checks that the answer is equal to c and that (sid, r′,x′i) is not programmed
by sending (IsProgrammed, sid, cid, r′,x′i) to GrpoRO, setting f = 0 if the an-
swer is (IsProgrammed, sid, 0) and, otherwise, setting f = 1. Output (Verified,
sid, cid,Pi,x, f).

Fig. 7. Protocol ΠCom for Publicly Verifiable Multiparty Commitments.

output x was really obtained from a valid opening of the commitment identified
by cid. ut

3.2 Publicly Verifiable Equality Testing

The functionality for Equality Testing as defined in [23] but augmented with
Public Verifiability is presented in Figure 8. Notice the functionality for Equality
Testing FEQ leaks the inputs of all parties to the adversary after it provides its
inputs. Hence, it must not be used with inputs that must remain private after

16

equality testing is performed. Nevertheless, this relaxed guarantee is enough for
realizing the construction of [23] and the functionality FEQ itself can be realized
using FCom. The basic idea as proposed in [23] is to have all parties commit to the
values whose equality will be tested and, after all commitments are performed,
open their commitments and compare the values locally. Since FCom is publicly
verifiable, the commitments and openings can be publicly verified to check the
validity of the equality test. We describe protocol ΠEQ in Figure 9. The security
of ΠCom is stated in Theorem 3.

Functionality FEQ

FEQ interacts with a set of parties P = {P1, . . . ,Pn}, a set of verifiers V and an
adversary S through the following interfaces:

Equality: Upon receiving (Equal, sid,Pi,xi), where xi ∈ Fm, from each party
Pi ∈ P (or from S in case Pi is corrupted), if x1 = . . . = xn, send (Equal, sid) to
S. Otherwise, send (Not-Equal, sid,x1, . . . ,xn) to S. Proceed as follows according
to the answer of S:

– If S answers with (Deliver, sid), send (Equal, sid) to all parties in P if x1 =
. . . = xn and otherwise send (Not-Equal, sid,x1, . . . ,xn) to them.

– If S answers with (Abort, sid), then send (Abort, sid) to all parties.

Verify: Upon receiving (Verify, sid,x1, . . . ,xn) from Vj ∈ V, if messages (Equal,
sid,Pi,xi) (with xi ∈ Fm) have been received from each Pi ∈ P and S delivered the
resulting message, then send (Verified, sid) to Vj .

Fig. 8. Functionality FEQ for Publicly Verifiable Equality Testing.

Protocol ΠEQ

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and with FCom as
follows:

Equality: On input (Equal, sid,Pi,xi), each party Pi proceeds as follows:

1. Samples a fresh unused cidi and send (Commit, sid,Pi, cidi,xi) to FCom.
2. After receiving (Committed, sid,Pj , cidj) from FCom for all j ∈ [n] with j 6= i,

send (Open, sid,Pi, cidi) to FCom.
3. Upon receiving (Open, sid,Pj , cidj ,xj) from FCom for all j ∈ [n] with j 6= i,

output (Equal, sid) if x1 = . . . = xn, otherwise, (Not-Equal, sid,x1, . . . ,xn).
If (Open, sid,Pa, cida,xa) is not received for some a ∈ [n], output (Abort, sid).

Verify: On input (Verify, sid,x1, . . . ,xn), Vj ∈ V sends (Verify, sid, cidi,xi) to
FCom for all i ∈ [n]. If Vj receives (Verified, sid, cid,Pi,xi, 1) for all i ∈ [n], it
outputs (Verified, sid).

Fig. 9. Protocol ΠEQ for Publicly Verifiable Equality Testing.

Theorem 3. Protocol ΠEQ GUC-realizes FEQ in the FCom-hybrid model.

17

Proof (Sketch). We’ll sketch a simulator S running an internal copy of the real
world adversary A such that an execution with S and FEQ is indistinguish-
able from an execution of ΠEQ with A to the environment Z. S interacts with
A emulating the honest parties of the protocol and FCom. On inputs (Equal,
sid,Pi,xi), where Pi is a corrupted party, S sends (Committed, sid,Pj , cidj)
from each simulated honest party Pj emulating a commitment to a random
message from FCom to A and waits for A to send a (Commit, sid,Pi, cidi,xi) to
FCom. For each corrupted party Pi, S sends (Equal, sid,Pi,xi) to FEQ. Upon
receiving (Equal, sid) from FEQ, if all commitments from A have been opened
with messages (Open, sid,Pi, cidi) from A to FCom, S opens the emulated com-
mitments from honest parties by sending A a message (Open, sid,Pj , cidj ,x)
with x equal to value xi contained in the messages (Commit, sid,Pi, cidi,xi)
from A to FCom and sends (Deliver, sid) to FEQ. Upon receiving (Not-Equal,
sid,x1, . . . ,xn) from FEQ, if all commitments from A have been opened with
messages (Open, sid,Pi, cidi) from A to FCom, S opens the emulated commit-
ments from honest parties by sending A a message (Open, sid,Pj , cidj ,xj) with
the corresponding xj according to x1, . . . ,xn received from FEQ. Upon receiving
a message (Verify, sid,x1, . . . ,xn) from a party Vi, S emulates ΠEQ exactly,
given the commitment openings programmed into FCom. ut

3.3 Publicly Verifiable Coin Tossing

The functionality for Publicly Verifiable Coin Tossing FCT (described in Fig-
ure 10) can also be implemented using FCom. The basic coin tossing interface is
realized in the standard manner: (i) each party Pi ∈ P commits to a random ele-
ment ri ∈ F (ii) wait for all other parties to perform their commitments (iii) open
the commitment and obtain the opening of all other parties; and (iv) define the
final random element x =

∑
i ri. The public verifiability is achieved by relying on

the public verifiability of FCom, which allows parties to check that the openings
to each commitment were presented correctly and to locally compute the final
random value. We describe the protocol ΠCT in Figure 11. The security of ΠCom

is stated in Theorem 4.

Theorem 4. Protocol ΠCT GUC-realizes FCT in the FSC,FCom-hybrid model.

Proof (Sketch). We’ll sketch a simulator S running an internal copy of the real
world adversary A such that an execution with S and FCT is indistinguishable
from an execution of ΠCT with A to the environment Z. S interacts with A em-
ulating the honest parties of the protocol and FCom. On input (Toss, sid,m,F),
S sends (Toss, sid,m,F) to FCT on behalf of the corrupted parties and emulates

commitments from each honest party Pi by uniformly sampling xi,1, . . . , xi,m
$←

F and fresh unused identifiers cidi,k, and sending (Commit, sid,Pi, cidi,k, xi,k)
to A for k ∈ [m]. Upon receiving (Tossed, sid,m,F, x1, . . . , xm) from FCT, if A
opened all of its commitments by sending (Open, sid,Pi, cidi,k) to the emulated
FCom for all corrupted parties Pi and k ∈ [m], S emulates openings from the
honest parties towards A with messages (Open, sid,Pj , cidj,k, xj,k) from FCom

18

Functionality FCT

FCT interacts with a set of parties P = {P1, . . . ,Pn}, a set of verifiers V and an
adversary S through the following interfaces:

Toss: Upon receiving (Toss, sid,m,F) from all parties in P where m ∈ N and F is

a description of a field, uniformly sample m random elements x1, . . . , xm
$← F and

send (Tossed, sid,m,F, x1, . . . , xm) to S. Proceed as follows according to the answer
of S:

– If S answers with (Deliver, sid), send (Tossed, sid,m,F, x1, . . . , xm) to all par-
ties in P.

– If S answers with (Abort, sid), then send (Abort, sid) to all parties.

Verify: Upon receiving (Verify, sid,m,F, x1, . . . , xm) from Vj ∈ V, if (Tossed,
sid,m,F, x1, . . . , xm) has been sent to all parties in P set f = 1, otherwise, set
f = 0. Send (Verified, sid,m,F, x1, . . . , xm, f) to Vj .

Fig. 10. Functionality FCT for Publicly Verifiable Coin Tossing.

Protocol ΠCT

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and with FCom as
follows:

Toss: On input (Toss, sid,m,F) where m ∈ N and F is a description of a field, each
party Pi proceeds as follows:

1. Uniformly sample m random elements xi,1, . . . , xi,m
$← F, and for all k ∈ [m],

sample fresh unused identifiers cidi,k and send (Commit, sid,Pi, cidi,k, xi,k) to
FCom.

2. After receiving (Committed, sid,Pj , cidj,k) from FCom for all k ∈ [m] and all
j ∈ [n] with i 6= j, send (Open, sid,Pi, cidi,k) to FCom for all k ∈ [m].

3. Upon receiving (Open, sid,Pj , cidj,k, xj,k) from FCom for all k ∈ [m] and all
j ∈ [n] with i 6= j, output (Tossed, sid,m,F, x1, . . . , xm) where xk =

∑n
j=1 xj,k.

If a message (Open, sid,Pj , cidj,k, xj,k) is not received for any value of j or k,
outputs (Abort, sid).

Verify: On input (Verify, sid,m,F, x1, . . . , xm), Vj ∈ V sends (Verify, sid,
cidi,k, xi,k) to FCom for i ∈ [n] and k ∈ [m]. If Vj receives (Verified, sid,
cidi,k,Pi, xi,k, 1) for all i and k, and xk =

∑n
j=1 xj,k for k ∈ [m], Vj sets f = 1,

otherwise it sets f = 0. Output (Verified, sid,m,F, x1, . . . , xm, f).

Fig. 11. Protocol ΠCT For Publicly Verifiable Coin Tossing.

with values xj,k such that xk =
∑n
j=1 xj,k given values xi,k generated by A for

k ∈ [m]. Upon input (Verify, sid,m,F, x1, . . . , xm), S exactly emulates ΠCT

given the openings programmed into the emulated FCom. ut

3.4 Oblivious Transfer with Delayed Public Verifiability

In order to realize F2HCom, we will require an oblivious transfer functionality with
delayed public verifiability with an interface that, when activated by the receiver,

19

allows parties to check that the receiver used a given choice bit (obtaining a
given message). The basic 1-out-of-2 string OT functionality FpOT augmented
with public verifiability is presented in Figure 12. This functionality can be
realized by having the receiver use FCom to commit to all of its randomness
(including the choice bit) before the OT protocol is executed and opening this
commitment after the protocol is complete. In order for this construction to work,
the OT protocol must be such that the receiver cannot generate two alternative
randomness values such that each of these values results in the same (fixed)
protocol messages for the receiver but in different outputs being obtained given
the (fixed) sender’s messages. We will show that the protocol of [40] has this
property. Moreover, since we only require static security and are willing to use a
protocol with more than two rounds, we will show how to use FCT to generate a
CRS for the scheme of [40], which can be done in two extra rounds in the GrpoRO-
hybrid model using Protocol ΠCT to realize FCT. We use the scheme of [40] along
with FCom to construct Protocol ΠpOT presented in Figure 13. The security of
ΠpOT is stated in Theorem 5.

Functionality FpOT

FpOT is parameterized by λ ∈ N, which is publicly known. FpOT interacts with a
sender Pi, a receiver Pj , a set of verifiers V and an adversary S, proceeding as
follows:

Transfer: Upon receiving a message (Send, sid,x0,x1) from Pi, where x0,x1 ∈
Fλ, store the tuple (sid,x0,x1) and send (Send, sid) to Pi and Pj . Ignore further
messages from Pi with the same sid.

Choose: Upon receiving a message (Receive, sid, c) from Pj , where c ∈ {0, 1},
check if a tuple (sid,x0,x1) was recorded. If yes, send (sid,xc) to Pj and (Received,
sid) to S, and ignore further messages form Pj with the same sid. Otherwise, send
nothing, but continue running.

Initialize Verification: Upon receiving a message (Verification-Start, sid)
from Pj , ignore all other messages but start responding to messages (Verify,
sid, c,x) in the Public Verification interface.

Public Verification: Upon receiving a message (Verify, sid, c,x) from Vk ∈ V
where c ∈ {0, 1} and x ∈ Fλ, if verification was not activated with a message
(Verification-Start, sid) from Pj or if no (Receive, sid, c) was received from Pj ,
answer with (Verification-Fail, sid,Pj). If there is no tuple (sid,x0,x1) recorded,
send (Verification-Fail, sid,Pi) to Vk. Otherwise, if a message (Receive, sid, c)
was received from Pj and a tuple (sid,x0,x1) where xc = x was recorded, set f = 1,
otherwise, set f = 0. Send (Verified, sid, c,x, f) to Vk.

Fig. 12. Functionality FpOT For Publicly Verifiable Oblivious Transfer.

Theorem 5. Protocol ΠpOT GUC-realizes FpOT in the FCom,FSC,FCT-hybrid
model.

20

Protocol ΠpOT

Parties Pi,Pj and verifiers V interact with each other, with FCom and with FCT as
follows:

1. Generate CRS: When first activated, both Pi and Pj send (Toss, sid, 4,G)
to FCT.a If FCT answers with (Tossed, sid,m,G, g0, g1, h0, h1), both Pi and Pj set
crs = (g0, g1, h0, h1). If FCT answers with (Abort, sid), both Pi and Pj output
(Abort, sid) and halt.

2. Choose: On input (Receive, sid, c), Pj uniformly samples a fresh identifier cidj

and r
$← Zp, and sends (Commit, sid,Pj , cidj , c||r) to FCom. Pj computes pk =

(grc , h
r
c), sk = r and broadcasts (sid, pk).

3. Transfer: On input (Send, sid, x0, x1), upon receiving (sid, pk) from Pj , Pi out-
puts (Abort, sid) and halts if it has not received (Committed, sid,Pj , cidj) from

FCom. Otherwise, Pi parses pk = (g, h) and, for c ∈ {0, 1}, samples s, t
$← Zp, com-

putes u = gsch
t
c, v = gsht and ctc = (u, xc · v). Pi broadcasts (sid, ct0, ct1).

4. Finalize Transfer: Upon receiving (sid, ct0, ct1) from Pi, Pj parses ctc =

(c̃t0, c̃t1) and computes xc = c̃t1
c̃tsk

0
. Pj outputs (Received, sid).

Initialize Verification: On input (Verification-Start, sid), Pj sends (Open,
sid,Pj , cidj) to FCom.

Public Verification: On input (Verify, sid, c, x), Vk ∈ V outputs
(Verification-Fail, sid,Pj) if it has not received (Open, sid,Pj , cidj , c||r)
from FCom or (sid, pk) from Pj . If it has not received (sid, ct0, ct1) from Pi, Vk
outputs (Verification-Fail, sid,Pi). Otherwise, if it has received (sid, pk) from Pj
and (sid, ct0, ct1) from Pi, and x = c̃t1

c̃tsk
0

, Vk sets f = 1 (otherwise, it sets f = 0) and

outputs (Verified, sid, c, x, f).

a We abuse notation and assume that FCT also handles representations of a group
G, which can be done by Protocols ΠCT and ΠCom using a GrpoRO where the domain
is G.

Fig. 13. Protocol ΠpOT for Publicly Verifiable Oblivious Transfer.

Proof (Sketch). We’ll sketch a simulator S running an internal copy of the real
world adversary A such that an execution with S and FpOT is indistinguishable
from an execution of ΠpOT with A to the environment Z. S operates exactly as
the simulator of [40] in order to simulate the steps “2. Choose”, “3. Transfer”
and “4. Finalize Transfer”. In the “1. Generate CRS” step, if Pi is malicious,

S samples x, y
$← Zp and g0

$← Zp, and emulates FCT in such a way that
it outputs g0, g

y
0 , g

x
0 , g

xy
0 , which will allow the simulator from [40] to extract

Pi’s messages. On the other hand, if Pj is malicious, S samples a, b
$← Zp and

g0, g1
$← G, and emulates FCT in such a way that it outputs g0, g1, g

a
0 , g

b
1, which

will allow the simulator from [40] to extract Pj ’s choice bit. When simulating the
“Start Verification” step, S allows Pj to open its commitment with the emulated
FCom. If S is emulating Pj in an execution with an internal A, it will have sent
pk = (gr0, h

r
0) as the first message to A and emulate a commitment to a random

21

string instead of r. If it obtains c = 0 from FpOT, S emulates an opening of
this commitment to the actual r used in computing pk. Otherwise, if it obtains
c = 1 from FpOT, it emulates an opening of this commitment to r

y , where y is
the trapdoor in the CRS. Notice that revealing its randomness this way allows
S to successfully pass the verification step regardless of the value of c. In step
“Public Verification”, notice that Vi learns sk = r, c from FCom and that it has
also learned (sid, pk = (g, h)) and (sid, ct0, ct1) if those messages have been
sent. Hence, it can trivially check that both Pi and Pj have participated in the
protocol and that Pj has activated the public verification procedure by opening
its commitment. Notice that given a fixed value for pk = (g, h), Pj cannot
claim a different value of sk = (r) and vice versa. Given a fixed value of ctc =
(gsch

t
c, g

sht ·m) and a fixed r (as argued before), the decryption check performed
by Vi only passes if the c obtained from the commitment is the same that was

used in the protocol, which results in the relation gsht·m
(gsch

t
c)
r =

(grc)
s(hrc)

t·m
(gsch

t
c)
r . Hence,

Vi only outputs (Verified, sid, c, x, 1) if Pj has indeed used c and received x in
the session identified by sid.

3.5 Homomorphic Two-Party Commitments with Delayed Public
Verifiability

We will realize homomorphic two-party commitments with delayed public veri-
fiability, which will serve as the main building block for our multiparty commit-
ment constructions. The functionality F2HCom, described in Figure 16, performs
the usual actions of a two-party homomorphic commitment but is augmented
with an interface that, when activated by the receiver, allows parties to verify
that the receiver obtained a given message from a given valid opening of a com-
mitment. We will show how to use the construction of [18] together with FpOT to
efficiently realize F2HCom. The main idea is that the receiver can reveal his view
of the watchlist used by the scheme of [18] (i.e. the random seeds received from
FROT), which can be publicly verified with FROT. Given the receiver’s view of
the watchlist, a commitment and corresponding opening information, any party
can run the procedures of an honest receiver in the construction of [18] to verify
that the commitments were indeed opened to the messages the receiver claims
(or that an invalid opening was given by the sender).

Protocol Π2HCom We describe protocol Π2HCom in Figure 17 and Figure 18.
This protocol is basically the protocol of [18] in almost verbatim form with an
interface for computing linear combinations (instead of individual additions) and
added public verification steps, which are constructed using the public verifica-
tion interfaces of FROT as described above. The security of Π2HCom is stated in
Theorem 6.

Theorem 6. Protocol Π2HCom GUC-realizes F2HCom in the FSC,FROT-hybrid
model.

22

Functionality FROT

FROT interacts with a sender Pi, a receiver Pj , a set of verifiers V and an adversary
S, proceeding as follows:

Both parties are honest: FROT waits for messages (Sender, sid) and (Receiver,

sid) from Pi and Pj , respectively. Then FROT samples random bits (b1, . . . , bn)
$←

{0, 1}n and two random matrices R0,R1
$← {0, 1}n×m with n rows and m columns.

It computes a matrix S such that for i ∈ [n]: S[i, ·] = Rbi [i, ·].
a It sends (sid,R0,R1)

to Pi and (sid, b1, . . . , bn,S) to Pj . That is, for each row-position, Pj learns a row of
R0 or of R1, but Pi does not know the selection. Record tuples (sid,R0,R1) and
(sid, b1, . . . , bn,S).

Pi is corrupted: FROT waits for messages (Receiver, sid) from Pj and

(adversary, sid,R0,R1) from S. FROT samples (b1, . . . , bn)
$← {0, 1}n, sets S[i, ·] =

Rbi [i, ·] for i ∈ [n] and sends (sid, b1, . . . , bn,S) to Pj . Record tuples (sid,R0,R1)
and (sid, b1, . . . , bn,S).

Pj is corrupted: FROT waits for messages (Sender, sid) from Pi and (Adversary,

sid, b1, . . . , bn,S) from S. FROT samples random matrices R0,R1
$← {0, 1}n×m ,

subject to S[i, ·] = Rbi [i, ·], for i ∈ [n]. FROT sends (sid,R0,R1) to Pi. Record
tuples (sid,R0,R1) and (sid, b1, . . . , bn,S).

Initialize Verification: Upon receiving a message (Verification-Start, sid)
from Pj , ignore all other messages but start responding to messages (Verify,
sid, b1, . . . , bn,S) in the Public Verification interface.

Public Verification: Upon receiving a message (Verify, sid, b1, . . . , bn,S) from
Vk ∈ V, if verification was not activated with a message (Verification-Start,
sid) from Pj or if no (Receiver, sid) (resp. (Adversary, sid, b1, . . . , bn,S)) was
received from Pj (resp. S), answer with (Verification-Fail, sid,Pj). If there is no
tuple (sid,R0,R1) recorded, send (Verification-Fail, sid,Pi) to Vk. Otherwise, if
a tuple (sid, b′1, . . . , b

′
n,S

′) where (b′1, . . . , b
′
n,S

′) = (b1, . . . , bn,S) was recorded, set
f = 1, otherwise, set f = 0. Send (Verified, sid, b1, . . . , bn,S, f) to Vk.

a Notice that S can equivalently be specified as S = ∆R1 + (I−∆)R0, where I is
the identity matrix and ∆ is the diagonal matrix with b1, . . . , bn on the diagonal.

Fig. 14. Functionality FROT.

Proof (Sketch). In order to prove this protocol secure we observe that there exists
a simulator S running an internal copy of the real world adversary A such that
an execution with S and F2HCom is indistinguishable from an execution of Π2HCom

with A to the environment Z. S operates exactly as the simulator of [18] in order
to simulate the Commit, Linear Combination and Opening phases. Although
the protocol of [18] only handles individual additions, its proof techniques can
be trivially extended to handle a linear combination, which simply consists of
multiple additions of commitments.

The main difference in protocol Π2HCom is that it provides a public verifica-
tion procedure. We will show that this procedure only succeeds if the protocol
was correctly executed and only pinpoints a party as responsible for a failure

23

Protocol ΠROT

We assume that all parties have access to a pseudorandom number generator PRG.
A sender Pi, a receiver Pj and verifiers V interact with each other and with FpOT as
follows:

1. OT Phase: For i ∈ [n], Pi samples random r0,i, r1,i
$← {0, 1}κ and

sends (Send, sidi, r0,i, r1,i) to FpOT, while Pj samples bi
$← {0, 1} and sends

(Receive, sidi, bi) to FpOT.

2. Seed Expansion Phase: For i ∈ [n], Pi sets R0[i, ·] = PRG(r0,i) and R1[i, ·] =
PRG(r1,i), while Pj sets S[i, ·] = PRG(rbi,i). Pi outputs (R0,R1) and Pj outputs
(b1, . . . , bn,S).

Initialize Verification: On input (Verification-Start, sid), Pj sends
(Verification-Start, sid) to FpOT.

Public Verification: On input (verify, sid, b1, . . . , bn,S), Vk ∈ V sends (Verify,
sid, bi,S[i, ·]) to FpOT for i ∈ [n]. Upon receiving (Verification-Fail, sid,Pi) or
(Verification-Fail, sid,Pj) from FpOT for any i ∈ [n], Vk outputs the same message.
Upon receiving (Verified, sid, bi,S[i, ·], 0) for any i ∈ [n], Vk outputs (Verified,
sid, b1, . . . , bn,S, 0). Upon receiving (Verified, sid, bi,S[i, ·], 1) for all i ∈ [n], Vk
outputs (Verified, sid, b1, . . . , bn,S, 1).

Fig. 15. Protocol ΠROT.

if this party indeed disrupted an honest execution. First, we observe that all
the messages exchanged during the protocol are broadcast to the verifier par-
ties V, making it impossible for either Pi or Pj to later provide an alternative
protocol transcript for verification. However, the private view of Pj consisting
of b1, . . . , bn,B is only revealed once the verification procedure is initialized. No-
tice that the public verification procedure of FROT guarantees that Pj ’s view as
broadcast in the verification initialization procedure of Π2HCom is correct. Given
that the protocol transcript received by parties V through the broadcast channel
are immutable and that the values b1, . . . , bn,B are guaranteed by FROT to be
correct, a verifier V following the instructions of an honest receiver Pj will only
output (Verified, sid, cid, f) if a valid opening for the commitment identified
by cid was provided by Pi. Moreover, observing the transcript, any verifier V
can readily check whether Pi has failed to provide valid messages or whether Pj
has claimed an opening that is invalid. ut

3.6 Homomorphic Multiparty Commitments with Delayed Public
Verifiability

In Figure 19, we present a functionality for multiparty commitments with delayed
public verifiability based on the functionality of [23]. As shown in [23], versions of
F2HCom, FEQ and FCT without delayed public verifiability can be used to realize
a version of FHCom also without delayed public verifiability. We will focus on
showing how delayed public verifiability can be added to the construction of

24

Functionality F2HCom

F2HCom is parameterized by k ∈ N. F2HCom interacts with parties Pi,Pj , a set of
verifiers V and an adversary S (who may abort at any time) through the following
interfaces:

Init: Upon receiving (Init, sid) from parties Pi,Pj , initialize empty lists raw and
actual.

Commit: Upon receiving (Commit, sid, I) from Pi where I is a set of unused iden-
tifiers, send (Commit, sid, I) to S and proceed as follows:
1. If S sends (Corrupt, sid, {(cid,xcid)}cid∈I) and Pi is corrupted, ignore the next

step and proceed to Step 3.

2. If S answers (No-Corrupt, sid, I), for every cid ∈ I, sample xcid
$← Fk.

3. Set raw[cid] = xcid, send (Commit-Recorded, sid, I, {(cid,xcid)}cid∈I) to Pi
and send (Commit-Recorded, sid, I) to Pj and S.

Input: Upon receiving a message (Input, sid,Pi, cid,y) from Pi, if raw[cid] =
xcid 6=⊥, set actual[cid] = y, set raw[cid] =⊥, and send (Input-Recorded,
sid,Pi, cid) to Pj and S. Otherwise broadcast (Abort, sid) and halt.

Random: Upon receiving a message (Random, sid, cid) from Pi, if raw[cid] =
xcid 6=⊥, set actual[cid] = xcid, set raw[cid] =⊥, and send (Random-Recorded,
sid, cid) to Pj and S. Otherwise broadcast (Abort, sid) and halt.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I , β, cid′)
where all αcid ∈ F and β ∈ Fk from Pi, if actual[cid] = xcid 6=⊥ for all cid ∈ I
and raw[cid′] = actual[cid′] =⊥, set actual[cid′] = β +

∑
cid∈I αcid · xcid and send

(Linear-Recorded, sid, {(cid, αcid)}cid∈I , β, cid′) to Pj and S. Otherwise broad-
cast (Abort, sid) and halt.

Open: Upon receiving (Open, sid, cid) from Pi, if actual[cid] = xcid 6=⊥, send
(Open, sid, cid,xcid) to S. If S does not abort, send (Open, sid, cid,xcid) to Pj and
send (Open, sid, cid) to all verifiers V.

Initialize Verification: Upon receiving (Verification-Start, sid) from Pi and
Pj , stop responding to all messages with this sid in all other interfaces but Public
Verification.

Public Verification: Upon receiving (Verify, sid, cid,x′cid) from a party Vv ∈ V,
if Pi/Pj has not sent a message (Verification-Start, sid), send (Verify-Fail,
sid,Pi)/(Verify-Fail, sid,Pj) to Vv. Otherwise, if a message (Open, sid, cid) has
not been received from Pi, send (Verify-Fail, sid,Pi) to Vv. Otherwise, if a message
(Open, sid, cid) has been received from Pi and actual[cid] = xcid = x′cid, set f = 1
(otherwise set f = 0) and send (Verified, sid, cid, f) to Vv.

Fig. 16. Functionality F2HCom For Homomorphic Two-party Commitment With De-
layed Public Verifiability.

[23] assuming the underlying functionalities also have this property. The public
verification mechanisms of F2HCom, FEQ and FCT are used to obtain the full view
of the receiving parties (including secret states). Given that the verifiers know
the full transcript of the protocol and are guaranteed to have obtained the view

25

Protocol Π2HCom (Commitment Phase)

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter. Let H be a family of linear almost universal hash functions H : {0, 1}m →
{0, 1}`. A sender Pi, a receiver Pj and verifiers V interact with each other and FROT,
proceeding as follows:

Init: On input (Init, sid), Pi initializes empty lists raw = actual = ∅.
Commit: On input (Commit, sid, I), where I = {cid1, . . . , cidm−`}, Pi and Pj
proceed as follows:

1. Pi and Pj send (Sender, sid) and (Receiver, sid) to FpOT, respectively. Pi
receives (sid,R0,R1) from FROT and sets R = R0 + R1. Pj receives (
sid, b1, . . . , bn,S) from FROT and sets the diagonal matrix ∆ such that it con-
tains b1, . . . , bn on the diagonal. R will contain in the top k rows the data to
commit to. Note that R0,R1 form an additive secret sharing of R, and in each
row Pj knows shares from either R0 or R1.

2. Pi now adjusts the bottom n− k rows of R so that all columns are codewords in
C, and Pj will adjust his shares accordingly, as follows: Pi constructs a matrix
W with dimensions as R and 0s in the top k rows, such that A := R+W ∈ C�m

(recall that C is systematic). Pi broadcasts (sid,W) (of course, only the bottom
n− k rows need to be sent).

3. Pi sets A0 = R0,A1 = R1 + W and Pj sets B = ∆W + S. Note that now we
have

A = A0 + A1, B = ∆A1 + (I−∆)A0, A ∈ C�m ,

i.e., A is additively shared and for each row index, Pj knows either a row from
A0 or from A1.

4. Pj chooses a seed H ′ for a random function H ∈ H and broadcasts (sid,H ′), we
identify the function with its matrix (recall that all functions in H are linear).

5. Pi computes T0 = A0H,T1 = A1H and broadcasts (sid,T0,T1). Note that
AH = A0H + A1H = T0 + T1, and AH ∈ C�`. So we can think of T0,T1 as
an additive sharing of AH, where again Pj knows some of the shares, namely
the rows of BH.

6. Pj checks that ∆T0 + (I−∆)T1 = BH and that T0 + T1 ∈ C�`. If any check
fails, he aborts.

7. We sacrifice some of the columns in A to protect Pi’s privacy: Note that each
column j in AH is a linear combination of some of the columns in A, we let A(j)
denote the index set for these columns. Now for each j the parties choose an index
a(j) ∈ A(j) such that all a(j)’s are distinct. Pi and Pj now discard all columns
in A,A0,A1 and B indexed by some a(j). For simplicity in the following, we
renumber the remaining columns from 1.

8. Pi saves A,A0 and A1, and Pj saves B and ∆ (all of which now have m − `
columns). Pi stores the k top rows of each column A[·, ı] in rawi[cidı] and Pj sets
rawj [cidı] = > and actualj [cidı] =⊥, for ı ∈ [m− `].

Fig. 17. Protocol Π2HCom (Commitment Phase).

26

Protocol Π2HCom (Linear Combination, Opening and Public Verification)

After the Commit phase, the parties proceed as follows:

Input: On input (Input, sid,Pi, cid,xcid), if raw[cid] 6=⊥, Pi computes w = xcid −
rawi[cid], sets actuali[cid] = rawi[cid], sets rawi[cid] =⊥, and broadcasts (Input,
sid, cid,w). Upon receiving (Input, sid, cid,w) from Pi, Pj sets rawj [cid] =⊥ and
actualj [cid] = w.
Rand: On input (Random, sid, cid), if raw[cid] 6=⊥, Pi sets actuali[cid] = rawi[cid]
and rawi[cid] =⊥, and broadcasts (Random, sid, cid). Upon receiving (Input,
sid, cid,w) from Pi, if rawj [cid] = >, Pj sets rawj [cid] =⊥, actualj [cid] = 0k.
Linear Combination:
1. On input (Linear, sid, {(cidı, αcidı)}ı∈[m′], β, cid′) where m′ is the current num-

ber of columns in A,A0,A1 and all αcid ∈ F and β ∈ Fk, if actuali[cidı] =
xcidı 6=⊥ for ı ∈ [m′] and cid′ is unused, Pi appends column C(β)+

∑
ı∈[m′] αcidı ·

A[·, ı] to A where C(β) is an encoding of β under C, likewise appending to A0

and A1 the corresponding linear combination of columns. Pi broadcasts (Linear,
sid, {(cidı, αcidı)}ı∈[m′], β, cid′).

2. Upon receiving (Linear, sid, {(cidı, αcidı)}ı∈[m′], β, cid′) from Pi, if
actualj [cidı] = xcidı 6=⊥ for ı ∈ [m′] and cid′ is unused, Pj computes
actualj [cid′] = β+

∑
ı∈[m′] αcidı ·actual

j [cidı] appends C(β)+
∑
ı∈[m′] αcidı ·B[·, ı] to

B. Note that this maintains the properties A = A0+A1, B = ∆A1+(I−∆)A0,

and A ∈ C�m′ , where m′ is the new current number of columns.
Opening Phase:
1. To open the commitment identified by cidı, Pi broadcasts (sid,A0[·, ı],A1[·, ı]).
2. Pj checks that A0[·, ı] + A1[·, ı] ∈ C and that for ∈ [n], it holds that B[, ı] =

Ab [, ı] (recall that b is the ’th entry on the diagonal of ∆). If this check fails,
Pj aborts outputting (sid,⊥). Otherwise, Pj computes xcid, the first k entries in
A0[·, ı] + A1[·, ı] + actualj [cid] ‖0n−k, and outputs (Open, sid, cid,xcid).

Initialize Verification: On input (Verification-Start, sid), Pj sends
(Verification-Start, sid) to FROT and broadcasts (sid, b1, . . . , bn,B).
Public Verification: On input (Verify, sid, cidı,x

′
cidı), a party Vv ∈ V

outputs (Verification-Fail, sid,Pj) if (sid, b1, . . . , bn,B) has not been broad-
cast by Pj . Otherwise, Vv sends (Verify, sid, b1, . . . , bn,B) to FROT. Upon re-
ceiving (Verification-Fail, sid,Pi) or (Verification-Fail, sid,Pj) from FROT

for any i ∈ [n], Vv outputs the same message. Upon receiving (Verified,
sid, b1, . . . , bn,S, 0) from FpOT, Vv outputs (Verification-Fail, sid,Pj). Otherwise,
if a message (sid,A0[·, cidı],A1[·, cidı]) has not been broadcast by Pi, output
(Verification-Fail, sid,Pi). Otherwise, Vv executes the procedures of an honest Pj
using b1, . . . , bn,S and the messages broadcast throughout protocol execution in order
to verify that the commitment identified by cidı was correctly opened to x′cidı . If any
of the checks performed in the steps of an honest Pj fail, output (Verification-Fail,
sid,Pi). If all of the checks performed in the steps of an honest Pj succeed but the
opened message is xcidı such that x′cidı 6= xcidı , set f = 0. Otherwise, if x′cidı = xcidı ,
set f = 1. Output (Verified, sid, cidı, f).

Fig. 18. Protocol Π2HCom (Linear Combination, Opening and Public Verification).

27

of the receiving parties, they can run the procedure of honest verifying parties to
check that a commitment was opened to a specific message. We describe Protocol
ΠHCom in Figures 20 and 21 and the security is proven in Theorem 7.

Functionality FHCom

FHCom is parameterized by k ∈ N. FHCom interacts with a set of parties P =
{P1, . . . ,Pn}, a set of verifiers V and an adversary S (who may abort at any time)
through the following interfaces:

Init: Upon receiving (Init, sid) from parties P, initialize empty lists raw and actual.

Commit: Upon receiving (Commit, sid, I) from Pi ∈ P where I is a set of unused

identifiers, for every cid ∈ I, sample a random xcid
$← Fk, set raw[cid] = xcid and

send (Commit-Recorded, sid, I) to all parties P and S.

Input: Upon receiving a message (Input, sid,Pi, cid,y) with y ∈ Fk from Pi ∈ P
and messages (Input, sid,Pi, cid) from every party in P other than Pi, if a mes-
sage (Commit, sid, I) was previously received from Pi and raw[cid] = xcid 6=⊥, set
raw[cid] =⊥, set actual[cid] = y and send (Input-Recorded, sid,Pi, cid) to all par-
ties in P and S. Otherwise broadcast (Abort, sid) and halt.

Random: Upon receiving a message (Random, sid, cid) from all parties P,
if raw[cid] = xcid 6=⊥, set actual[cid] = xcid, set raw[cid] =⊥ and send
(Random-Recorded, sid, cid) to all parties P and S. Otherwise broadcast (Abort,
sid) and halt.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I , β, cid′)
where all αcid ∈ F and β ∈ Fk from all parties P, if actual[cid] = xcid 6=⊥ for
all cid ∈ I and raw[cid′] = actual[cid′] =⊥, set actual[cid′] = β +

∑
cid∈I αcid · xcid

and send (Linear-Recorded, sid, {(cid, αcid)}cid∈I , β, cid′) to all parties P and S.
Otherwise broadcast (Abort, sid) and halt.

Open: Upon receiving (Open, sid, cid) from all parties P, if actual[cid] = xcid 6=⊥,
send (Open, sid, cid,xcid) to S. If S does not abort, send (Open, sid, cid,xcid) to all
parties P.

Check Opening: Upon receiving (Check-Not-Open, sid, cid) from Pi ∈ P ∪ V,
if parties {p̂1, . . . , p̂k} ⊂ P did not send (Open, sid, cid), send (Check-Not-Open,
sid, {p̂1, . . . , p̂k}) to Pi.
Initialize Verification: Upon receiving a message (Verification-Start, sid,Pi)
from a party Pi ∈ P, send (Verification-Start, sid,Pi) to all parties P and
V and ignore all messages with this sid in all other interfaces but messages
(Check-Not-Open, sid, cid) in the Check Opening interface and messages (Verify,
sid, cid,x′cid) in the Public Verification interface.

Public Verification: Upon receiving (Verify, sid, cid,x′cid) from a party Vj ∈ V,
if a set of parties {P ′1, . . . ,P ′m} ⊆ P has not sent a message (Verification-Start,
sid), send (Verify-Fail, sid, {P ′1, . . . ,P ′m}) to Vj . Otherwise, if a message (Open,
sid, cid) has been received from all parties P and actual[cid] = xcid = x′cid, set f = 1
(otherwise set f = 0) and send (Verified, sid, cid, f) to Vj .

Fig. 19. Functionality FHCom For Homomorphic Multiparty Commitment With De-
layed Public Verifiability.

28

Protocol ΠHCom (Commitments)

Parties P = {P1, . . . ,Pn} and verifiers V interact with each other and F2HCom, FEQ

and FCT, proceeding as follows:

Init: On input (Init, sid), each pair of parties Pi and Pj invokes the command
(Init, sid) of functionality F2HCom to initialize an instance denoted by F i,j2HCom.

Commit: On input (Commit, sid, I) where I = {cid1, . . . , cidγ} parties P proceed
as follows:
1. All parties P agree on a set of γ + κ unused identifiers I′.
2. For all j 6= i, Pi sends (Commit, sid, I′) to F i,j2HCom, receiving

(Commit-Recorded, sid, I′, {(cid,xcid)}cid∈I′) in response and proceeding af-
ter receiving (Commit-Recorded, sid, I′) from Fj,i2HCom for every j 6= i.

3. For all cid ∈ I′ and every j ∈ [n], j 6= i, party Pi samples xi
$← Fk, sends

(Input, sid,Pi, cid,xi) to F i,j2HCom and waits for (Input-Recorded, sid,Pj , cid)
from Fj,i2HCom.

4. All parties P agree on sets I and K such that |I| = γ, |K| = κ, I ∩ K = ∅ and
I ∪ K = I′.

5. All parties P send (Toss, sid, κ · γ,F) to FCT. They continue to the next step
upon receiving (Tossed, sid, κ · γ,R) where R ∈ Fκ×γ from FCT.

6. Identifying each column of R with a unique cid ∈ I, for every q ∈ K, every party
Pi samples a fresh identifier cid′q and, for every j ∈ [n], j 6= i, sends (Linear,
sid, {{(cid,R[q, cid])}cid∈I},0k, cid′q) to F i,j2HCom, waits for (Linear-Recorded,
sid, {{(cid,R[q, cid])}cid∈I},0k, cid′) from Fj,i2HCom, sends (Open, sid, cid′q) to
F i,j2HCom and waits for (Open, sid, cid′q, s

j
q) from Fj,i2HCom.

7. For every q ∈ K, each party Pi computes ciq =
∑
j∈[n] s

j
q and sends (Equal,

sid,Pi, ciq) to FEQ. Upon receiving (Abort, sid) or (Not-Equal, sid, c1
q, . . . , c

n
q)

from FEQ, Pi aborts. Otherwise Pi outputs (Committed, sid, I), sets rawi[cid] =
> and actuali[cid] =⊥ for cid ∈ I.

Input: On input (Input, sid, cid,y) for Pi and input (Input, sid,Pj , cid) for every
Pj for j 6= i, parties P proceed as follows:

1. For every j ∈ [n], j 6= i, Pj aborts if rawj [cid] 6= >. Otherwise, Pj sends (Open,
sid, cid) to Fj,i2HCom.

2. Upon receiving (Open, sid, cid,xj) from Fj,i2HCom for every j ∈ [n], j 6= i, Pi
computes xcid =

∑
j∈[n] x

j
cid, wcid = y−xcid and broadcasts (sid,Pi, cid,wcid).

3. Every party Pi sets rawj [cid] =⊥ and actualj [cid] = wcid.

Random: On input (Random, sid, cid), if rawi[cid] = >, each party Pi sets
rawi[cid] =⊥ and actuali[cid] = 0k. Otherwise output (Abort, sid) and halt.

Fig. 20. Protocol ΠHCom (Commitments).

Theorem 7. Protocol ΠHCom GUC-realizes FHCom in the F2HCom,FEQ,FSC,FCT-
hybrid model.

29

Protocol ΠHCom (Linear Combination, Opening and Public Verificationn)

Linear Combination: On input (Linear, sid, {(cid, αcid)}cid∈I , β, cid′) where all
αcid ∈ F and β ∈ Fk, if actuali[cid] 6=⊥ for all cid ∈ I and cid′ is unused, each party
Pi ∈ P computes actuali[cid′] = β +

∑
cid∈I αcid · actual

i[cid] and sends (Linear,

sid, {(cid, αcid)}cid∈I , β, cid′) to F i,j2HCom . Otherwise broadcast (Abort, sid) and halt.

Open: On input (Open, sid, cid), each party Pi sends (Open, sid, cid) to F i,j2HCom for
j ∈ [n], j 6= i. Upon receiving (Open, sid, cid,xj) from Fj,i2HCom for every j ∈ [n], j 6= i,
Pi computes y =

∑
j∈[n] x

j
cid + actuali[cid] and outputs (Open, sid, cid,y).

Check Opening: On input (Check-Not-Open, sid, cid), j, i ∈ [n], j 6= i, each
party Pi adds Pj to set P̂ if it did not receive (Open, sid, cid,xj) or (Open, sid, cid)
from Fj,i2HCom and outputs (Check-Not-Open, sid, cid, {p̂}p̂∈P̂).

Initialize Verification: On input (Verification-Start, sid), each party Pi ∈ P
sends (Verification-Start, sid) to F2HCom, FEQ and FCT. Moreover, each party
Pi ∈ P broadcasts R and sjq for j 6= i.

Public Verification: On input (Verify, sid, cid,x′cid), a party Vj ∈ V first uses
the public verification interfaces of F2HCom, FEQ and FCT to check that the Commit
phase was successfully completed. If any of these functionalities return (Verify-Fail,
sid,P ′), for each of these cases Vj adds P ′ to set P̂ and if F i,j2HCom returns (Verified,
sid, cid, 0) upon receiving (Verify, sid, cid,xicid) (where xicid is obtained from the
opening broadcasts), add Pj to P̂. If P̂ 6= ∅, Vj outputs (Verify-Fail, sid, P̂).
Otherwise, return (Verified, sid, cid, 1)

Fig. 21. Protocol ΠHCom (Linear Combination, Opening and Public Verification).

Proof (Sketch). In order to prove this protocol secure we observe that there
exists a simulator S running an internal copy of the real world adversary A such
that an execution with S and FHCom is indistinguishable from an execution of
ΠHCom with A to the environment Z. S operates exactly as the simulator of [23]
in order to simulate the Commit, Linear Combination and Opening phases.
We will show that public verification holds given that F2HCom, FEQ, FCT also
have delayed public verification interfaces: Notice that all the secret state kept
by the receiving parties consists of random values sent through F2HCom, FEQ,
FCT. Hence, when this state is revealed in the verification initialization phase,
the verifying parties can check that all its components were correctly obtained
from F2HCom, FEQ, FCT. Moreover, all the protocol transcript is received by
the verifying parties V through the broadcast mechanism, guaranteeing that no
party can later provide an alternative version. Using the revealed secret states
of the receiving parties and the protocol transcript obtained through broadcast,
the verifying parties can then run the procedures of an honest receiving party in
order to verify that a given commitment was opened to a specific message. ut

Efficiency: The commitment phase in ΠHCom requires n2 calls to F2HCom’s com-
mitment phase and then n2 commitments to γ + κ arbitrary messages through
F2HCom, where n is the number of parties. Each call to F2HCom phase amounts
to n′ calls FpOT, where s is the security parameter and the underlying code
is C[n′, k, s]. This amounts to a concrete communication complexity of roughly

30

(6n′|G|+(γ+5s)n′+(γ+k)·s)n2 considering protocols ΠpOT and Π2HCom for real-
izing functionalities FpOT and F2HCom, respectively. Here, |G| is the bit-length of
the group elements sent in ΠpOT. The cost of the underlying commitments when
realized by ΠCom is small since it employs random oracles to achieve commit-
ments of constant communication complexity. Notice that the communication
cost of the commitment phase can be amortized over many messages, but it is
still prohibitive given that our protocols need to store the messages on FSC for
verification. In order to solve this issue, we can define a compact representation
of the messages in the commitment phase of ΠHCom by observing that all mes-
sages sent in this phase are random. Hence, instead of having all parties post
their messages on the authenticated bulletin board we instead have them commit
to uniformly random seeds with ΠCom. Since ΠCom generates compact commit-
ments, the total size of these initial commitment seeds will be simply the output
size of the underlying random oracle times the number of parties. The parties
then stretch these seeds using a PRG to deterministically generate the public
coins of the protocols. Moreover, each party commits to the messages generated
from private coins that it would post to the public ledger using ΠCom, posts only
the compact commitment to the public ledger and sends the messages directly
to the other parties. Upon receiving the messages, each party checks that they
correspond to the posted commitments, aborting otherwise. Later on, the parties
can open the commitments in order to allow for public verification.

4 MPC with Publicly Verifiable Output

In this section we first introduce in Section 4.1 a functionality FIdent which de-
scribes MPC with publicly verifiable output. Here, the parties can verify that
the computation until the output reconstruction was done correctly. If so, then
they run a subcomputation which reconstructs the output and which further-
more allows to determine if a party aborted or provided incorrect shares. We
then present in Section 4.2 a protocol that realizes FIdent.

4.1 Identifiable Output and How to Compile

FIdent (described in Figure 22 and Figure 23) provides a secret-sharing of the
output value: given all shares, any party can use it to obtain the output value
while even n− 1 shares do not reveal any information about it. To reconstruct,
a special function f for the reconstruction process must be used. We call this
function f a Reconstruction Function, whose definition and use was already
implicit in previous work [28, 41].

Definition 3 (Reconstruction Function). Let f : (Fm)n+1 → Fm be a func-
tion. We call f a reconstruction function if for all ȳ ∈ Fm, for all i ∈ [n]

and for all s(1), . . . s(n−1) ∈ Fm, the induced function f̂i : Fm → Fm such that
f̂i(·) = f(ȳ, s(1), . . . , s(i−1), ·, s(i), . . . , s(n−1)) is a bijection which is poly-time
computable in both directions.

31

The function f depends on FIdent, i.e. the MPC scheme that we use inside the
compiler. In the case of the instantiation presented in Appendix B, the recon-
struction function is simply the XOR between all the s(i), but more sophisticated
functions might be plausible.

Functionality FIdent (part 1)

FIdent interacts with the parties P and also provides an interface to register external
verifiers V. It is parameterized by a circuit C (with inputs x(1), . . . , x(n) and output
y ∈ Fm) and a reconstruction function f . S provides a set I ⊂ [n] of corrupt parties.

Throughout Init, Input, Evaluate and Share, S can at any point send (Abort,
sid) to the functionality, upon which it sends (Abort, sid,⊥) to all parties and ter-
minates. Throughout Reveal and Verify, S at any point is allowed to send (Abort,
sid, J) to the functionality. If J ⊆ I then FIdent will send (Abort, sid, J) to all honest
parties and terminate.

Init: Upon first input (Init, sid) by all parties in P initialize the sets
rev, ver, ref(1), . . . , ref(n) ← ∅.
Input: Upon first input (Input, sid, i, x(i)) by Pi and input (Input, sid, i, ·) by all
other parties the functionality stores the value (i, x(i)) internally. Every further such
message with the same sid and i is ignored.

Evaluate: Upon first input (Compute, sid) by all parties in P and if the inputs
(i, x(i))i∈[n] for all parties have been stored internally, compute y← C(x(1), . . . , x(n))
and store y locally.

Share: Upon first input (Share, sid) by Pi ∈ P and if Evaluate was finished:

1. For each Pi ∈ P sample s(i)
$← Fm uniformly at random and store it locally.

Then send s(i) for each i ∈ I to S.

2. Upon (Deliver-Share, sid, i) from S for i ∈ I send (Output, sid, s(i)) to Pi.
3. Sample ȳ ∈ Fm such that f(ȳ, s(1), . . . , s(n)) = y.

4. Send (Output, sid, ȳ) to S. If S sends (Deliver-Output, sid, ȳ) then send
(Output, sid, ȳ) to all Pi ∈ I.

Fig. 22. Functionality FIdent for an MPC with Publicly Verifiable Output.

4.2 Realizing FIdent

We now describe a protocol ΠIdent which implements FIdent. We construct it from
a functionality FMPC−SO that captures MPC with secret-shared output and that
supports linear operations on the secret sharing. We describe this functional-
ity in Figure 24, which uses the XOR function over Fm as the reconstruction
function, but can be generalized to other functions easily. ΠIdent implements
FIdent (with the XOR function over Fm as the reconstruction function) in the
FMPC−SO,FHCom,FCT-hybrid model. In it, the parties obtain shares of the output

32

Functionality FIdent (part 2)

Reveal: Upon input (Reveal, sid, i) by Pi, if i 6∈ rev and ref(i) = ∅ send (Reveal,
sid, i, s(i)) to S.

– If S sends (Reveal-Ok, sid, i) then set rev ← rev ∪ {i}, send (Reveal,
sid, i, s(i)) to all parties in P.

– If S sends (Reveal-Not-Ok, sid, i, J) with J ⊆ I then send (Reveal-Fail,
sid, i) to all parties in P and set ref(i) ← J .

Test Reveal: Upon input (Test-Reveal, sid) from a party in P∪V define ref
(i)

=

ref(i) if i ∈ rev and ref
(i) ← ref(i) ∪ {i} otherwise. Then send (Reveal-Fail,

sid, ref
(1)
, . . . , ref

(n)
) to P and V.

Allow Verify: Upon input (Start-Verify, sid, i) from party Pi ∈ P set ver ←
ver∪{i}. If ver = [n] then deactivate all interfaces except Test Reveal and Verify.

Verify: Upon input (Verify, sid, z(1), . . . , z(n)) by Vi ∈ V with z(j) ∈ Fm:
– If ver 6= [n] then return (Verify-Fail, sid, [n] \ ver).

– If ver = [n] and rev 6= [n] then send to Vi what Test Reveal sends.

– If ver = rev = [n] then compute the set ws← {j ∈ [n] | z(j) 6= s(j)} and return
(Open-Fail, sid, ws).

Fig. 23. Functionality FIdent for an MPC with Publicly Verifiable Output (continued).

as well as advice, such that the actual output can be obtained by combining all of
these values. To make this verifiable, the parties use FHCom to make them avail-
able in a publicly verifiable way. As parties may cheat during the commitment
phase, we check consistency by computing random linear combinations both on
the commitments and the shares inside FMPC−SO and testing for equality.

A proof that a slightly modified version of the BMR-protocol of Hazay et
al. [27] realizes FMPC−SO is presented in Appendix B. The protocol ΠIdent is
described in Figure 25 and Figure 26. Note that for this application FCT must
not be publicly verifiable. For z ∈ F, we use êz to denote the vector in Fk that
is z in all k positions. We can then prove that ΠIdent realizes FIdent.

Theorem 8. Protocol ΠIdent UC-securely implements FIdent (with XOR over Fm
as the reconstruction function) against a static malicious adversary corrupting
up to n− 1 parties in the FMPC−SO,FHCom,FCT-hybrid model with broadcast.

Proof (Sketch). Define a simulator S which will simulate FCT,FHCom globally and
FMPC−SO locally (meaning the former two functionalities can be global function-
alities) and which itself simulates the protocol ΠIdent with A. In the full proof
will first show that if a party obtains values rh, sj from FMPC−SO but commits
to differing values towards FHCom, then it can pass the test in Step 8 only with
probability O(2−κ). We then use the fact that we can equivocate FHCom to open
the commitments according to the outputs of FIdent. Furthermore, we can alter
the shares of the output of FMPC−SO so that the advice released by it is consis-
tent with the advice of FIdent. See Appendix A.1 for the full proof. ut

33

Functionality FMPC−SO

This functionality interacts with the parties P. It is parametrized by a circuit C with
inputs x(1), . . . , x(n) and output y = (y1, . . . , ym) ∈ Fm. S provides a set I ⊂ [n] of
corrupt parties. Let the reconstruction function f be the XOR over F. S can at any
point send (Abort, sid) to the functionality, upon which it sends (Abort, sid,⊥) to
all parties and terminates.

Input: Upon input (Input, sid, i, x(i)) by Pi and input (Input, sid, i, ·) by all other
parties the functionality stores the value (sid, i, x(i)) internally. Every further such
message with the same sid and i is ignored.

Evaluate: Upon input (Compute, sid) by all parties in P and if the in-
puts (sid, i, x(i))i∈[n] for all parties have been stored internally, compute y =

(y1, . . . , ym)← C(x(1), . . . , x(n)) and store (sid,y) locally.

Share Output: Upon input (Share-Output, sid) and if Evaluate was finished:
1. For each h ∈ [m], pick an unused cidh and send (Request-Shares,

sid, {cidh}h∈[m]) to S. For each i ∈ I S sends (Output-Shares,

sid, {(cidh, s(i)cidh)}h∈[m]). Then for i ∈ I sample s
(i)
cidh

$← F, store

(sid, cidh, i, s
(i)
cidh

) and send (Output-Shares, sid, {(cidh, s(i)cidh)}h∈[m]) to Pi.

2. For each h ∈ [m], sample zcidh ∈ F such that f(zcidh , s
(1)
cidh

, . . . , s
(n)
cidh

) = yh and
store (sid, cidh, zcidh). Send (Share-Advices, sid, {(cidh, zcidh)}h∈[m]) to S. If
S sends (Deliver-Advices, sid, {cidh}h∈[m]), then send (Share-Advices, sid,
{(cidh, zcidh)}h∈[m]) to all Pi ∈ I.

Share Random Value: Upon input (Share-Random, sid), pick z
$← F and an

unused cid, set zcid = 0 and send (Request-Shares, sid, cid) to S. For each i ∈
I S sends (Share, sid, cid, s

(i)
cid). Then sample s

(i)
cid

$← F for i ∈ I such that z =

f(zcid, s
(1)
cid, . . . , s

(n)
cid), store (sid, cid, i, s

(i)
cid) and send (Share, sid, cid, s

(i)
cid) to Pi.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈I , cid′) from all
parties P, if all αcid ∈ F, all cid ∈ I have stored values and cid′ is un-
used, set s

(i)

cid′ ←
∑
cid∈I αcid · s

(i)
cid for each i ∈ [n], zcid′ ←

∑
cid∈I αcid ·

zcid, record {(sid, cid′, i, s(i)cid′)}i∈[n], (sid, cid′, zcid′), and send (Linear-Recorded,
sid, {(cid, αcid)}cid∈I , cid′) to all parties P and S.

Reveal: Upon input (Reveal, sid, cid, i) by Pi, send (Reveal, sid, cid, i, s
(i)
cid) to S.

If S sends (Deliver-Reveal, sid, cid, i), send (Reveal, sid, cid, i, s
(i)
cid) to all parties.

Private Reveal: Upon input (Reveal, sid, cid, i, j) by Pi:
– if Pi ∈ I or Pj ∈ I then send (Reveal, sid, cid, i, s

(i)
cid) to S. If S sends

(Deliver-Reveal, sid, cid, i, j), send (Reveal, sid, cid, i, s
(i)
cid) to Pj .

– else send (Reveal, sid, cid, i, s
(i)
cid) to Pj .

Fig. 24. Functionality FMPC−SO for MPC with Secret-Shared Output and Linear Secret
Share Operations.

5 Compiling Multiparty Computation to Punish Aborts

We now describe our approach for compiling a generic protocol with publicly
verifiable output to a protocol with punishable abort (FOnline). The compiler

34

Protocol ΠIdent

The parties evaluate the circuit C with inputs x(1), . . . , x(n) and m outputs
y1, . . . , ym. For FHCom we assume that k ≥ max{κ,m}. Let êz ∈ {0, 1}k be the
vector that is z in all k positions. The reconstruction function f associated with
FMPC−SO is the XOR over F and the one used by the protocol is the XOR over Fm.

Init: The parties set up the functionality FHCom by sending (Init, sid).

Input: Each Pi sends (Input, sid, i, x(i)) to FMPC−SO.

Evaluate: Each Pi sends (Compute, sid) to FMPC−SO.

Share: The parties generate a random blinding of the output and commitments:
1. Each Pi sends (Share-Output, sid) to FMPC−SO and waits to get the re-

sponses (Output-Shares, sid, {(cidh, s(i)cidh)}h∈[m]) and (Share-Advices, sid,
{(cidh, zcidh)}h∈[m]).

2. The parties send n(m + κ) messages (Share-Random, sid) to FMPC−SO to get
shares of random values. We order the secret-shared values such that (m + κ)

distinct values are associated with each party Pi. Let cid
(i)
r,j for j ∈ [κ] and cid

(i)
s,h

for h ∈ [m] denote the respective identifiers. Let I be the set of all cid obtained
in this step. Each Pi sends (Commit, sid, I) to FHCom.

3. For i ∈ [n], each party P` sends messages (Reveal, sid, ·, `, i) to FMPC−SO for all

cid
(i)
r,j , j ∈ [κ] and all cid

(i)
s,h, h ∈ [m] to open the shares towards Pi. Pi uses the

reconstruction function f to get the secret-shared values. Let r
(i)
j for j ∈ [κ] and

s
(i)
h for h ∈ [m] denote the respective secret-shared values.

4. For j ∈ [κ] each party Pi sends (Input, sid,Pi, cid(i)r,j , êr(i)j
) to FHCom. Moreover,

each Pi for h ∈ [m] sends (Input, sid,Pi, cid(i)s,h, ês(i)
h

) to FHCom.

5. Each Pi sends (Toss, sid,m · κ,F) to FCT. They obtain bits {αh,j}h∈[m],j∈[κ].

6. For i ∈ [n], j ∈ [κ] set lini,j ← {cid(i)s,h, αh,j}h∈[m] ∪ {cid(i)r,j , 1}. Each party

sends (Linear, sid, lini,j , ê0, cid
(i)
b,j) to FHCom and (Linear, sid, lini,j , cid

(i)
b,j) to

FMPC−SO.

7. For i ∈ [n], j ∈ [κ] each party P` (i) sends (Open, sid, cid
(i)
b,j) to FHCom, which

outputs o
(i)
j . If o

(i)
j = êz for some z ∈ F then set out

(i)
j = z, otherwise abort; and

(ii) sends (Reveal, sid, cid
(i)
b,j , `) to FMPC−SO and after getting the shares of all

parties reconstruct the value using the reconstruction function f and denote the
reconstructed element as out

(i)
j .

8. If for any i ∈ [n], j ∈ [κ] it holds that out
(i)
j 6= out

(i)
j then abort.

9. For each h ∈ [m], set linh ← {cid(i)s,h,−1}i∈[n] ∪ {cidh, 1}. Each party sends
(Linear, sid, linh, cidyh) to FMPC−SO. Then each party Pi sends (Reveal,
sid, cidyh , i) to FMPC−SO and after receiving all shares uses the reconstruction

function f to obtain yh. Pi sets its share of the output as s(i) ← (s
(i)
1 , . . . , s

(i)
m)

and the advice as y← (y1, . . . , ym).

Fig. 25. Protocol ΠIdent Implementing FIdent.

35

Protocol ΠIdent (continuation)

Reveal: Combine the commitments and open them unreliably. Each party Pi for
each j ∈ [n], h ∈ [m] sends (Open, sid, cid

(j)
s,h) to FHCom. Each Pi eventually learns

ê
s
(i)
h

and reconstructs s
(i)
h using the first element of the vector.

Test Reveal: Run Reveal() and return its output.

Allow Verify: Each party Pi sends (Verification-Start, sid) to FHCom.

Verify: Party Vi ∈ V with input (z(1), . . . , z(n)), z(i) ∈ Fm does the following:

1. For j ∈ [n], h ∈ [m] send (Verify, sid, cid
(j)
s,h, êz(j)[h] ∈ Fk) to FHCom.

2. If FHCom returns (Verify-Fail, sid, J) then return (Verify-Fail, sid, J). Other-

wise, for each j ∈ [n], h ∈ [m] FHCom it returns (Verified, sid, cid
(j)
s,h, f

(j)
h).

3. Let (J(1), . . . , J(n)) ← Reveal(). If ∅ 6=
⋃
i∈[n] J

(i) then return (Reveal-Fail,

sid, J(1), . . . , J(n)). Else, return (Open-Fail, sid, {i ∈ [n] | ∃h ∈ [m] : f
(i)
h = 0}).

Procedure Reveal :
1. For each i ∈ [n], h ∈ [m] send (Check-Not-Open, sid, cid

(i)
s,h) to FHCom and

obtain (Check-Not-Open, sid, J
(i)
h). Set J(i) =

⋃
h∈[m] J

(i)
h .

2. Return (J(1), . . . , J(n)).

Fig. 26. Protocol ΠIdent Implementing FIdent (continued).

works in the following two steps: (i) We fully describe in Figure 27 the function-
ality FSC which was already mentioned in Section 2. It contains both the smart
contract and the authenticated bulletin board that we use. For technical reasons,
it is defined using the non-interactive verification interface of FIdent. (ii) FIdent

and FSC are then compiled using a global clock functionality FClock into a new
protocol that allows to punish aborts and cheating during the output phase.

Identifiable Output and How to Compile: FIdent will provide both the advice ȳ
and shares s(i) that are necessary for the reconstruction. To reliably reconstruct
y, each party Pi sends ȳ as well as coins(d+ t(i)) to FSC. The coins coins(d) are
used to reimburse other parties in case Pi aborts, while coins(t(i)) is the input of
Pi into the cash distribution function g. In the next step, FIdent is used by each
party Pi to reveal its share s(i) to all other parties. Furthermore, z(i) is posted
on FSC (where z(i) might be different from s(i) if the adversary cheats). We use
FClock to determine if all parties opened/posted their shares in time.

If a party cheats during the opening phase, the protocol instructs all parties to
post a complaint on FSC within a limited time period (enforced by FClock). Once
the parties have reacted to such complaints by activating verification, FSC will
then contact FIdent to verify the correctness of the z(i). An adversary may now
withhold his share or provide an incorrect one, thus preventing both FSC and the
honest parties from obtaining the correct result. In such a case, let punish ⊆ I
be the set of aborting or cheating parties, and reimburse = P \ punish. Each
party from reimburse will be reimbursed by coins(d − q · |reimburse| + t(i)),

36

whereas the rest is fairly distributed among the non-cheating parties, which
obtain coins(d+ q · |punish|+ t(i)).

If all parties open the correct shares, then FSC uses the cash distribution
function g to send the correct payoffs to all parties. This also happens if parties
cheat by not revealing the correct value to another party, but posting the correct
value on FSC. This is because we cannot distinguish if in such a situation a
dishonest party did not reveal the correct share towards an honest party (which
sends a complaint) from a dishonest party trying to frame an honest party.

We now give a protocol ΠCompiler which formalizes the aforementioned idea
and that implements FOnline in the FIdent,FSC,FClock-hybrid model. The compiler
protocol, as depicted in ΠCompiler in Figure 28, runs in 5 rounds, which means
that we require FClock to tick 4 times. The function of each round is as follows:

Counter ν What the Protocol and the Smart Contract does

0− 1 Each Pi posts coins and y on DL.
Beginning of 1 FSC checks that each Pi sent coins and the same y.

Otherwise reimburse each party and abort.

1− 2 Each Pi posts its output share as z(i) on DL

Beginning of 2 FSC checks that each Pi posted an output z(i).
Otherwise, it later punishes parties that don’t.

2− 3 Each Pi posts a complaint if the output was deemed incorrect.
Beginning of 3 FSC collects complaints.

3− 4 If complaints occur, each party activates verification in FIdent.

If complaints occurred, FSC checks the values z(i) against FIdent.
Beginning of 4 If cheating was identified, it punishes the respective parties.

Otherwise coins are redistributed according to the function g.

Theorem 9. The protocol ΠCompiler UC-securely implements FOnline in the FIdent,
FSC-hybrid model with global FClock against a static, active and rushing adversary
corrupting up to n− 1 parties.

Proof (Sketch). We construct a simulator S which will interact with the hybrid-
world adversary A in the presence of FOnline. S will simulate a protocol instance
of ΠCompiler and internally run copies of FIdent and FSC. Most of what S does
is keeping consistency between the actions of A concerning the collateral in the
protocol and how it is used in FOnline. It ensures that if the adversary does
not allow for a correct opening, then some cheating parties will be identified
and such information be sent to FOnline. Furthermore, the output of FOnline is
properly encoded into the shares of the simulated honest parties, which we can
do given Definition 3. See Appendix A.2 for the full proof. ut

Hiding the Output y while distributing cash. It is immediate that our
protocol ΠCompiler leaks the value y to any user of the DL. By the construction
of FSC, we can keep it private if one only wants to obtain MPC with fair output
delivery with penalties (without cash distribution). If cash distribution is indeed

37

Functionality FSC

FSC interacts with the parties P and the global functionalities FIdent,FClock. It is
parameterized by the values of the compensation q, the security deposit d ≥ (n−1)q,
the reconstruction function f and the cash distribution function g. FSC has a listM of
messages posted to the authenticated public bulletin board, which is initially empty.

Lock-in Deposits: Upon receiving the message (Lock-In, sid, coins(d+ t(i))) from
Pi containing the d coins of the security deposit and the t(i) ≥ 0 coins that the party
wants to use as monetary input in the computation: Query FClock with (Read, sid).
If ν > 0 then return the money, otherwise accept it. Furthermore, if this was the first
message (Lock-In, sid) then send (Update, sid) to FClock.

Check Deposits: If (Read, sid) to FClock returns ν = 1 for the first time: If
(Pi, sid,Output-Scrambled,y) ∈ M for each i ∈ [n] with the same y and each
Pi sent (Lock-In, sid, coins(d+ t(i))) then send (Update, sid) to FClock. If not then
reimburse all parties that sent coins and abort.

Check Outputs: If (Read, sid) to FClock returns ν = 2 for the first time: Let J1 be
the maximal set such that ∀i ∈ J1 : (Pi, sid,Output-Share, z(i)) /∈M. Then send
(Update, sid) to FClock.

Challenge Outputs: If (Read, sid) to FClock returns ν = 3 for the first time: Let
J2 be the maximal set of parties such that ∀i ∈ J2 : (Pi, sid,Challenge,>) ∈ M.
Send (Update, sid) to FClock.

Obtain Verification Data: If (Read, sid) to FClock returns ν = 4 for the first time:
1. If J1 6= ∅ then run Punish(J1) and stop.

2. If J2 = ∅ then run CompPay() and stop.

3. If J2 6= ∅ then send (Verify, sid, z(1), . . . , z(n)) to FIdent.
– If FIdent returns (Verify-Fail, sid, J3) then run Punish(J3) and stop.

– If FIdent returns (Reveal-Fail, sid, ref(1), . . . , ref(n)) then set J3 ←⋃
i∈[n] ref

(i). Run Punish(J3) and stop.

– If FIdent returns (Open-Fail, sid, J3) and J3 6= ∅ then run Punish(J3) and
stop. If J3 = ∅ then run CompPay().

Post to Bulletin Board: Upon receiving a message (Post, sid,Off,m) from some
party Pi ∈ P, if there is no message (Pi, sid,Off,m′) ∈M, append (Pi, sid,Off,m)
to the listM of authenticated messages that were posted in the public bulletin board.

Read from Bulletin Board: Upon receiving a message (Read, sid) from some
party, return M.

Macro Punish(punish): Let punish ⊂ [n] and reimburse = [n]\punish. Define e(i)

as d− q · |reimburse|+ t(i) if i ∈ punish and d+ q · |punish|+ t(i) if i ∈ reimburse

and then run Pay(e(1), . . . , e(n)).

Macro CompPay: Compute y ← f(y, z(1), . . . , z(n)) and (e(1), . . . , e(n)) ←
g(y, t(1), . . . , t(n)). Then run Pay(d+ e(1), . . . , d+ e(n)).

Macro Pay(e(1), . . . , e(n)): For each Pi ∈ P send (Payout, sid,Pi, coins(e(i))) to Pi
and (Payout, sid,Pi, e(i)) to each other party.

Fig. 27. The stateful contract functionality FSC that is used to enforce penalties on
parties that misbehave in the multiparty computation protocol and to distribute money.

required, then we can augment the MPC input by t(1), . . . , t(n), the output by

38

Protocol ΠCompiler

If any party sends (Abort, sid) during Init, Input or Evaluate then abort. Initialize
FClock with P and FSC.

Init: All parties send (Init, sid) to FIdent.

Input: Upon input x(i) ∈ F each party Pi sends (Input, sid, i, x(i)) to FIdent. It
furthermore sends (Input, sid, j, ·) for all Pj ∈ P \ {Pi}.
Evaluate: All parties send (Compute, sid) to FIdent. Afterwards, each party Pi
sends (Share, sid) to FIdent and obtains s(i) as well as y.

Deposit:
1. Each Pi sends (Post, sid,Output-Scrambled,y) and (Lock-In, sid, coins(d+

t(i))) to FSC. Then it sends (Update, sid) to FClock.

2. If ν = 1 then each Pi checks if FSC aborts or continues. If FSC aborts then reclaim
the coins and abort as well.

Reveal:
1. Each party Pi sends (Reveal, sid, i) to FIdent. Then it sends (Post,

sid,Output-Share, s(i)) to FSC and (Update, sid) to FClock.

2. If ν = 2 each Pi checks if it obtained (Reveal, sid, j, s(j)) from each j ∈ [n] and
if the same value is posted as z(j) on FSC. If s(j) 6= z(j) or z(j) was posted but
(Reveal, sid, j, s(j)) was not obtained then send (Post, sid,Challenge,>) to
FSC. Send (Update, sid) to FClock in either case.

3. If ν = 3 and (Pj , sid,Challenge,>) was posted on FSC by some party then each
Pi sends (Start-Verify, sid, i) to FIdent and (Update, sid) to FClock.

Resolve: If ν = 4 then obtain the payout from FSC. If CompPay was used by FSC

then compute y ← f(ȳ, z(1), . . . , z(n)) based on the z(i) from FSC and output y as
well as the coins.

Fig. 28. The Compiler Protocol ΠCompiler

e(1), . . . , e(n) and compute the latter based on g,y inside the MPC. During the
output phase we only publish the “public” part of the advice on FSC, which can
then perform the cash distribution reliably.

Acknowledgements

This work has been supported by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bu-
reau in the Prime Minister’s Office, the European Research Council (ERC) under
the European Unions’ Horizon 2020 research and innovation programme under
grant agreement No 669255 (MPCPRO) and the DFF under grant agreement
number 9040-00399B (TrA2C).

39

References

1. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Fair two-party computations via bitcoin deposits. In Rainer Böhme,
Michael Brenner, Tyler Moore, and Matthew Smith, editors, FC 2014 Workshops,
volume 8438 of LNCS, pages 105–121. Springer, Heidelberg, March 2014.

2. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 443–458. IEEE Computer Society Press, May 2014.

3. Gilad Asharov. Towards characterizing complete fairness in secure two-party com-
putation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
291–316. Springer, Heidelberg, February 2014.

4. Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete
characterization of fairness in secure two-party computation of Boolean functions.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume
9014 of LNCS, pages 199–228. Springer, Heidelberg, March 2015.

5. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin
as a transaction ledger: A composable treatment. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356.
Springer, Heidelberg, August 2017.

6. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure
multi-party computation. In Michel Abdalla and Roberto De Prisco, editors, SCN
14, volume 8642 of LNCS, pages 175–196. Springer, Heidelberg, September 2014.

7. Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty
computation with identifiable abort. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 461–490. Springer, Heidelberg,
October / November 2016.

8. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12,
pages 784–796. ACM Press, October 2012.

9. F. Benhamouda, S. Halevi, and T. Halevi. Supporting private data on hyperledger
fabric with secure multiparty computation. In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 357–363, April 2018.

10. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 421–439. Springer, Heidelberg, August 2014.

11. Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II,
volume 10625 of LNCS, pages 410–440. Springer, Heidelberg, December 2017.

12. Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian
Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P.
Smart. High performance multi-party computation for binary circuits based
on oblivious transfer. Cryptology ePrint Archive, Report 2015/472, 2015.
http://eprint.iacr.org/2015/472.

13. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 280–312. Springer, Heidelberg, April / May 2018.

14. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

40

15. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

16. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Hei-
delberg, August 2001.

17. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, Rafael Dowsley,
and Irene Giacomelli. Efficient UC commitment extension with homomorphism
for free (and applications). In ASIACRYPT 2019, Part II, pages 606–635, 2019.

18. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, and Jesper Buus
Nielsen. Rate-1, linear time and additively homomorphic UC commitments. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 179–207. Springer, Heidelberg, August 2016.

19. Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On
the security of the “free-XOR” technique. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 39–53. Springer, Heidelberg, March 2012.

20. Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and
Ian Miers. Fairness in an unfair world: Fair multiparty computation from pub-
lic bulletin boards. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 17, pages 719–728. ACM Press, October / Novem-
ber 2017.

21. Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In 18th ACM STOC, pages 364–369. ACM Press, May
1986.

22. Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. Catching MPC
cheaters: Identification and openability. In Junji Shikata, editor, ICITS 17, volume
10681 of LNCS, pages 110–134. Springer, Heidelberg, November / December 2017.

23. Tore K. Frederiksen, Benny Pinkas, and Avishay Yanai. Committed MPC - mali-
ciously secure multiparty computation from homomorphic commitments. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 587–619. Springer, Heidelberg, March 2018.

24. Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round
complexity of authenticated broadcast with a dishonest majority. In 48th FOCS,
pages 658–668. IEEE Computer Society Press, October 2007.

25. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

26. S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete
fairness in secure two-party computation. In Richard E. Ladner and Cynthia
Dwork, editors, 40th ACM STOC, pages 413–422. ACM Press, May 2008.

27. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round
MPC combining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 598–
628. Springer, Heidelberg, December 2017.

28. Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining
privacy with guaranteed output delivery in secure multiparty computation. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 483–500.
Springer, Heidelberg, August 2006.

29. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computa-
tion with identifiable abort. In Juan A. Garay and Rosario Gennaro, editors,

41

CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386. Springer, Heidel-
berg, August 2014.

30. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477–498. Springer, Heidelberg, March 2013.

31. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Heidelberg, May 2016.

32. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008, Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July
2008.

33. Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct
computations. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS
14, pages 30–41. ACM Press, November 2014.

34. Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penal-
ties. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 16, pages 418–429. ACM Press, Octo-
ber 2016.

35. Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play
decentralized poker. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15, pages 195–206. ACM Press, October 2015.

36. Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-
provements to secure computation with penalties. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 16, pages 406–417. ACM Press, October 2016.

37. Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-
party computation for binary circuits. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 495–512. Springer,
Heidelberg, August 2014.

38. Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authen-
ticated byzantine agreement. In 34th ACM STOC, pages 514–523. ACM Press, May
2002.

39. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 681–700. Springer, Heidelberg, August 2012.

40. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

41. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM
Press, May 1989.

42. Peter Rindal and Roberto Trifiletti. Splitcommit: Implementing and analyzing ho-
momorphic uc commitments. Cryptology ePrint Archive, Report 2017/407, 2017.
https://eprint.iacr.org/2017/407.

43. Berry Schoenmakers and Meilof Veeningen. Universally verifiable multiparty com-
putation from threshold homomorphic cryptosystems. In Tal Malkin, Vladimir

42

Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS 15,
volume 9092 of LNCS, pages 3–22. Springer, Heidelberg, June 2015.

44. Gabriele Spini and Serge Fehr. Cheater detection in SPDZ multiparty computation.
In Anderson C. A. Nascimento and Paulo Barreto, editors, ICITS 16, volume 10015
of LNCS, pages 151–176. Springer, Heidelberg, August 2016.

45. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multi-
party computation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 17, pages 39–56. ACM Press, October / November
2017.

46. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

43

A Detailed Proofs for MPC Compilation Steps

In this appendix we provide the full proofs for the compilers from Sections 4 and
5.

A.1 MPC with Publicly Verifiable Output

An important part of the proof is to show that the commitments which each
party Pi gives are indeed well-formed. To establish this, we will later need the
following lemma.

Lemma 1. Fix values s1, . . . , sm, r1, . . . , rκ ∈ F and s1, . . . , sm, r1, . . . , rκ ∈ Fk.

Then pick αh,j
$← F for h ∈ [m], j ∈ [κ] uniformly at random. If for all j ∈ [κ]

there is a tj such that

tj = rj +
∑
h∈[m]

αh,j · sh and êtj = rj +
∑
h∈[m]

αh,j · sh ,

then sh = êsh for all h ∈ [m] and rj = êrj for all j ∈ [κ], except with probability
O(2−κ).

Proof. For the sake of argument, assume that the conclusion is false. Then there
are three mutually distinct cases:

1. There exists h ∈ [m], ` ∈ [k − 1] such that sh[`] 6= sh[`+ 1].
2. There exists h ∈ [m] such that sh = êz for z = 1− sh.
3. For all h ∈ [m] it holds that sh = êsh but there exists j ∈ [κ] such that

rj 6= êrj .

It is easy to see that the third case is impossible, so we will only consider the
first two.

In the first case, w.l.o.g. let h = ` = 1, then s1[1] + s1[2] = 1. By assumption,

r1[1] +
∑
h∈[m]

αh,1 · sh[1] = r1[2] +
∑
h∈[m]

αh,1 · sh[2]

and therefore

α1,1 +
∑

h∈[m]\{1}

αh,1 · (sh[1] + sh[2]) = r1[1] + r1[2].

Assume that for h ∈ [m]\{1}, j ∈ [κ] the values αh,j would be fixed ahead of the
above experiment. Then

∑
h∈[m]\{1} αh,j · (sh[1] + sh[2]) + rj [1] + rj [2] uniquely

predetermines the κ uniformly random values α1,j . This holds with probability
at most 2−κ and choosing αh,j for h ∈ [m] \ {1}, j ∈ [κ] randomly after s·, r· are
fixed does not increase the chance of winning the above game.

44

In the second case, this immediately implies that also rj ∈ {ê0, ê1}. By letting
ŝh, r̂j ∈ F such that êŝh = sh and êr̂j = rj , we then have that

r̂j +
∑

h∈[m]
αh,j · ŝh = rj +

∑
h∈[m]

αh,j · sh.

Now there must exist a h ∈ [m] such that sh 6= ŝh. By the same argument as in
case one, this boils down to predicting all αh,j which is true with probability at
most 2−κ. ut

Using this Lemma, the proof of Theorem 8 works as follows:

Proof. The simulator S proceeds as follows in the different phases of the protocol:

Init: Set up FHCom,FCT for the simulation. Initialize FMPC−SO with the set I of
corrupted parties.

Input: S simulates the execution of the input phase of ΠIdent with A and for-
wards the messages that A sends to the simulated FMPC−SO to FIdent.

Evaluate: S simulates the execution of the evaluate phase of ΠIdent with A and
forwards the messages that A sends to the simulated FMPC−SO to FIdent.

Share: Obtain the s(i)-shares of dishonest parties from FIdent and simulate the
protocol to get these and yh right.

1. Start by simulating FMPC−SO to generate the random shares s
(i)
h , r

(i)
j hon-

estly. If all parties obtain their shares, send (Share, sid) in the name of all
dishonest parties to FIdent.

2. Upon obtaining s(i) ∈ Fm for Pi ∈ I from FIdent, fix an honest party and

change its share of s
(i)
h for h ∈ [m] such that s

(i)
h = s(i)[h].

3. Run the opening of the values s
(i)
h , r

(i)
j honestly with the adjusted share of one

honest party. For any Pi ∈ I, if A does not reveal the necessary values using
FMPC−SO, then send (Abort, sid) to FIdent, otherwise send (Deliver-Share,
sid, i) to FIdent.

4. For the simulated honest parties Pi use FHCom to commit to ê
s
(i)
h

, ê
r
(i)
j

as in

the protocol using FHCom. If A commits to a value that is inconsistent with
the values obtained from FMPC−SO then set abort← >.

5. Run steps 5− 8 honestly, but if abort = >, then abort in step 8.

6. Obtain (Output, sid,y) with y = (y1, . . . , ym) from FIdent. For each yh
adjust one of the shares of a simulated honest party according to the value to
be revealed and simulate the opening using FMPC−SO. If A does not reveal the
necessary values using FMPC−SO, then send (Abort, sid) to FIdent, otherwise
send (Deliver-Output, sid,y) to FIdent.

Reveal: Simulate correct opening of the shares to be consistent. Obtain (Reveal,
sid, i, s(i)) from FIdent and then:
1. If i ∈ I then S equivocates in FHCom for all h ∈ [m] the values associated with

cid
(i)
s,h so that they open to the correct values. It also keeps this consistent

with Verify.

45

2. Let J (i) be the set of parties that did not send (Open, sid, cid
(i)
s,h) to FHCom

for some h ∈ [m]. If J (i) = ∅ then send (Reveal-Ok, sid, i) to FIdent, else
send (Reveal-Not-Ok, sid, i, J (i)).

Test Reveal: Send (Test-Reveal, sid) to FIdent and output what it outputs.

Allow Verify: For each dishonest Pi ∈ I that sends (Verification-Start,
sid,Pi) to FHCom send (Start-Verify, sid, i) to FIdent. For each simulated hon-
est party, send (Verification-Start, sid,Pi) to FHCom.

Verify: Forward the query to FIdent and output what it outputs.

We now argue why each individual part of the protocol simulation is indistin-
guishable.

Init, Input, Evaluate: Trivially a perfect simulation.

Share: The adversary obtains output from FIdent instead of FMPC−SO, but the
values are equally distributed. There are special cases in which S aborts where
it differs from the protocol, but observe that this is a superset of those cases in
which the protocol would abort. We first show that the difference in the abort
probability is negligible. The protocol aborts in case that A commits towards
FHCom to a value which differs from the value it should commit to according to
ΠIdent (i.e. if abort = >). By Lemma 1 we observe that in this case the protocol
will only continue after passing step 8 with probability at most O(2−κ). Con-
cerning the values which A obtains during the protocol, ŷ is the same as y that
is also provided by FIdent to the real honest parties in the protocol. Furthermore,
the shares s(i) which A obtains are consistent with those from FIdent. The values

out(i), out
(i)

which A obtains during the simulation are identical, as the simula-
tor otherwise aborted before. Each such out(i) contains a linear combination of
secret values s

(i)
h , XOR-ed with a uniformly-random but secret r

(i)
j and therefore

leaks no information about s
(i)
h .

Reveal: The values s(i) for i ∈ I are consistent with those of FIdent in any
further interaction. They differ from what the simulated parties committed to
originally but each s(i) is equally likely, as any previously opened value that was

derived from s(i) was blinded by a uniformly random r
(i)
j .

Test Reveal: The sets that are provided by FIdent are identical with those of
FHCom by construction.

Allow Verify: There is no output that A obtains in this step.

Verify: Due to Allow Verify, the parties that activated verification are identi-
cal in both FIdent,FHCom and (Verify-Fail, sid) is sent with the same content by
both. The same holds for the parties that aborted openings as this information is
provided to FIdent during the simulation of Reveal, so also (Reveal-Fail, sid)-
messages coincide. Moreover, the shares of the honest parties from FIdent have
been programmed into FHCom, thus also (Open-Fail, sid)-messages are consis-
tent. Therefore, the output of FIdent,FHCom is identical and we can in a hybrid
argument change one for the other.

ut

46

A.2 Punishing Aborts in MPC

We now present the proof for Theorem 9.

Proof. We construct a simulator S which will interact with the hybrid-world
adversary A in the presence of FOnline,FClock. S will simulate a protocol instance
of ΠCompiler and internally run copies of FIdent and FSC. It therefore simulates
honest parties to communicate with the functionalities and the parties that are
controlled by A. At the same time, it keeps consistency of the output of FClock

with the behavior in the protocol.

Init: Send messages in the name of the honest parties as in the protocol, send
an abort message to FOnline if A aborts.

Input: Sample random inputs for the simulated honest parties and input these
into FIdent during the simulation of the protocol. Furthermore, intercept inputs
that A sends to FIdent for the dishonest parties and send these to FOnline. Send
an abort message to FOnline if A aborts.

Evaluate: Run this step as in the protocol and obtain s(i) as well as y for each
simulated honest party from FIdent. Send an abort message to FOnline if A aborts.

Deposit: For each (Deposit, sid, coins(d+t(i))) from FOnline for an honest party
run Step 1 honestly as in the protocol with the same coins(d+ t(i)) towards FSC.
Upon receiving (Tick, sid) from FClock forward all the coins(c(i)), i ∈ I from FSC

to FOnline. Next read all (Pi, sid,Output-Scrambled,y) and check if they are
identical. If not, then send (Abort, sid) to FOnline. Otherwise continue if FOnline

continues, and repay the dishonest parties if FOnline repays them.

Reveal: Obtain (Result, sid,y) from FOnline. Let Pj be a simulated honest
party, then using y compute a new share ŝ(j) using the fact that f is a recon-
struction function and fixing all inputs and the output of f except ŝ(j). Then,
run the protocol honestly and send (Reveal, sid, i) in the name of each simu-
lated honest party and for each Pi ∈ P to FIdent, but let FIdent change the share
of Pj to ŝ(j) for consistency. Upon obtaining the next (Tick, sid) from FClock

check if z(i) as posted on FSC by A is present and the same as s(i). If yes then
send (Ok, sid,y) to FOnline, otherwise send (No-Output, sid) to FOnline.
Upon next activation of S during ν = 2 run Step 2 as in the protocol, but also
send a complaint if z(i) for i ∈ I disagrees with the value A obtained from FIdent.
Upon next activation of S during ν = 3 run Step 3 as in the protocol.

Resolve: Upon receiving (Tick, sid) from FClock check if FSC would run
Punish(punish) or CompPay. If it will run Punish then send (Punish, sid, punish)
to FOnline, otherwise send (Punish, sid, ∅). Then follow the rest of the protocol.

It is easy to see that the output which A obtains during the protocol is
consistent with FOnline, and so are the shares as it does not see s(i) for i ∈ I
until the output y is known to the simulator. The coins-values which A sends
are consistent with those from the protocol both FOnline,FSC abort in the same
cases.

47

If the simulated honest parties obtain exactly the same shares that A ob-
tained from FIdent then they will not complain to FSC, but these are by defini-
tion identical with those sent by Reveal. Therefore, the simulator lets the real
honest parties obtain the output in that situation. Observe that S can compare
here with what A saw from FIdent so that FOnline outputs y as long as the shares
on FSC are correct, which is consistent with the protocol. If A makes one of the
parties abort or send an incorrect message, then this will be detected by FSC

and S will keep consistency between it and FOnline. We see that by construction
if FSC calls Punish then the set given to the macro is non-empty. Furthermore,
FSC either punishes parties that do not send z(i), do not activate verification or
where verification of the value z(i) fails. All of these can only occur for dishonest
parties. ut

B Instantiating FMPC−SO

We now show that a slightly modified version of the BMR-protocol due to Hazay
et al. [27] realizes FMPC−SO in the FOffline-hybrid model.

The MPC protocol evaluates a circuit C over F on inputs x(1), . . . , x(n) ∈ F
as a preprocessing protocol which consists of three phases: (i) a constant-round
circuit-independent offline phase which depends on |C|, τ, κ, (ii) a constant-round
circuit-dependent offline phase which depends on C and the previous phase;
and (iii) a constant-round online phase which depends on x(1), . . . , x(n) and the
previous phases. The first part of our protocol is identical with that of HSS, who
run a multiparty version of the TinyOT [39, 37, 12] MPC scheme (see below).
This TinyOT protocol is then used to generate a garbled circuit in a distributed
way, while the online phase evaluates this garbled circuit on the actual inputs. In
the following, we will describe the structure of this garbling that is generated in
the circuit-dependent preprocessing as well as some necessary information about
computations with the TinyOT MPC scheme. Using this, we will describe the
online phase of our protocol. The security of the circuit-dependent preprocessing
can be found in Appendix B.5.

B.1 Representations

A value x ∈ F is called additively shared if each party Pi has a value x(i) such
that x =

∑
i x

(i). Each party Pi has a private secret ∆(i) ∈ Fτ . We define the
[·]-representation of x as

[x] =
(
x(i), {χ(i)

j , ψ
(i)
j }j∈[n]\{i}

)
i∈[n]

where χ
(i)
j = ψ

(j)
i + x(i) ·∆(j). In the [x]-representation the party Pi holds x(i)

together with the n−1 MACs χ
(i)
j as well as n−1 keys ψ

(i)
j protecting the share

x(j) of each other party Pj using Pi’s secret key ∆(i). It is easy to see that this
representation is linear: given

[x] = (x(i), {χ(i)
j , ψ

(i)
j }), [y] = (y(i), {χ̂(i)

j , ψ̂
(i)
j }),

48

the sharing [x+ y] can be computed without interaction as

[x+ y] = (x(i) + y(i), {χ(i)
j + χ̂

(i)
j , ψ

(i)
j + ψ̂

(i)
j })

Similarly, for [x], c ∈ F if

P1 sets (x(1) + c, {χ(1)
j , ψ

(1)
j }j∈[n]\{1})

and each Pi, i 6= 1 sets

(x(i), {(χ(i)
1 , ψ

(i)
1 + c ·∆(i))} ∪ {χ(i)

j , ψ
(i)
j }j∈[n]\{1,i})

then this is a valid sharing of [x + c] and obtained with local operations only.
Multiplications of two [·]-shared values are also possible (using preprocessed data
from TinyOT), but we will only introduce and use the necessary protocol ΠMult

in Appendix B.5. For the online phase, we only need to be able to reliably open
[x]-representations, i.e. open them such that sending incorrect shares can be
detected.

Protocol ΠOpen

The parties open a sharing [x] publicly.

1. Each party Pi broadcasts x(i) and sends χ
(i)
j to Pj for each i 6= j.

2. Each party Pi checks for all j 6= i that χ
(j)
i = ψ

(i)
j + x(j) ·∆(i) and broadcasts ⊥

otherwise.

3. Each party computes x←
∑
i x

(i).

Fig. 29. Protocol ΠOpen To Open A [·]-Representation Publicly.

To achieve this, we use the protocols ΠOpen as described in Figure 29 and
ΠPOpen from Figure 30.

Protocol ΠPOpen

The parties open a sharing [x] in private to party Pj .

1. Each party Pi sends x(i), χ
(i)
j to party pj .

2. Party Pj checks if, for all i 6= j it holds that χ
(i)
j = ψ

(j)
i + x(i) ·∆(j). Otherwise,

it broadcasts ⊥.

3. Pj locally computes x←
∑
i x

(i).

Fig. 30. Protocol ΠPOpen To Open A [·]-Representation Privately.

49

B.2 Multiparty Free-XOR Garbling

We assume that the circuit C, which is evaluated by our MPC protocol, consists
of n input wires and m output wires as well as a set of gates G. C can be
viewed as a directed acyclic graph where the edges are wires and the vertices
are the gates. Each gate g ∈ G is either an AND- or a XOR-gate and has two
input wires u, v as well as one output wire w, which may be input to multiple
subsequent gates. Each input wire of a gate is either one of the n input wires of
C or an output wire of another gate. Evaluating C in plain is done by assigning
x(1), . . . , x(n) ∈ F to the n input wires and recursively applying the gate function
for each gate that has inputs assigned to its input wires. Then, the values that
are assigned to the m output wires y(1), . . . , y(m) form the output of C when
evaluated on this specific input.

To garble C classically with only one garbler, it first permutes the truth-table
of the function of each gate, assigns keys kh,a ∈ {0, 1}τ to each h ∈ {u, v, w}, a ∈
{0, 1} according to the wire h and the truth-value a as denoted in the truth-table,
and then encrypts for each row of the truth table each output key kw,· (based on
the output bit of this row) under the two appropriate input keys ku,·,kv,· [46,
8]. It was shown in [32] that by fixing kh,0 + kh,1 = ∆ to a constant value for
the whole garbled circuit, one only has to garble the AND-gates and can obtain
the garbled XOR-gates by linearity.

For n parties with individual global differences ∆(i) ∈ {0, 1}τ , the garbling
for AND-gates in HSS then works as follows: for each AND-gate g ∈ G, let
u, v be the input wires and w be the output wire, λu, λv, λw ∈ {0, 1} be secret
wire masks (that encrypt the actual value of the truth values of a gate), and

k
(i)
u,a,k

(i)
v,b,k

(i)
w,0 ∈ {0, 1}τ be keys known to Pi. The garbling information for a

gate g can be computed as the 4n values

d
(i)
a,b(g) =

(∑n

j=1
F
k
(j)
u,a,k

(j)
v,b

(g ‖ i)
)

+ k
(i)
w,0+(

∆(i)((λu + a)(λv + b) + λw)
)
,

where (a, b) ∈ {0, 1}2, i ∈ [n] and F is a double-keyed 2-correlation robust Pseu-
dorandom Function (PRF)8. Choosing keys, wire masks as well as computing the

values d
(i)
a,b(g) is done during the circuit-dependent preprocessing phase FOffline

as depicted in Figure 31 and Figure 32. In Appendix B.5, we then describe how
to implement FOffline in the FTinyOT-hybrid model, as our FOffline differs from the
version provided in HSS.

B.3 Intuition of the Online Phase

We now describe how to use the encryptions d
(i)
a,b(g) from the offline phase,

which are known to each party in the protocol, to perform a secure multiparty
computation.

8 This stronger requirement is necessary to support the garbling-free XOR gates. We
do not give a definition for this primitive in this work as we will invoke the security
proof of [27] for these details. See [19] for more information on these special PRFs.

50

Functionality FOffline (part 1)

This functionality is used by a set of parties P and the adversary S specifies a set
I ⊂ P of corrupt parties. Let F be a circular 2-correlation robust PRF. The circuits
that are generated consist of AND- and XOR-gates.

Init: On input (Init, sid) from all parties P1, . . . ,Pn and if this message has not
been sent before for this sid:
1. Wait for S to send ∆(i) for each Pi ∈ I.

2. Choose strings ∆(i) $← Fτ uniformly at random for each honest party Pi ∈ I.

Garble: On input (Garble, sid, C) from all parties where C is a circuit with the
set of wires W and the set of AND-gates G and if Init was run before but Garble
was not, the functionality does the following:
1. For each wire w ∈W in the circuit C we do the following:

– If w is an input wire of C or the output wire of an AND-gate then sample

λw
$← F uniformly at random. For each Pi ∈ I wait for k

(i)
w,0 ∈ Fτ from S,

and choose k
(i)
w,0

$← Fτ uniformly at random for each honest party Pi ∈ I.

Then for each i ∈ [n] set k
(i)
w,1 ← k

(i)
w,0 + ∆(i).

– If w is the output wire of an XOR-gate, where the input wires u, v are already
assigned, then set λw ← λu+λv. Moreover, for i ∈ [n] set k

(i)
w,0 ← k

(i)
u,0 +k

(i)
v,0

and k
(i)
w,1 ← kw,0 + ∆(i).

2. For every AND-gate g ∈ G compute the garbled gate as

d
(i)
a,b(g) =

(∑n
j=1 Fk

(j)
u,a,k

(j)
v,b

(g ‖ i)
)

+ k
(i)
w,0 +(

∆(i)((λu + a)(λv + b) + λw)
)

for each a, b ∈ {0, 1} and i ∈ [n]. Then set da,b(g) = (d
(1)
a,b(g) ‖ · · · ‖d

(n)
a,b (g)).

3. For each wire w ∈W send k
(i)
w,0 to each honest party Pi ∈ I.

4. For each input wire wi wait until S sends (Ok, sid, wi). Then send λwi to Pi.
5. For each output wire wh of the circuit C with permutation bit λwh :

(a) Let S input λ
(i)
wh

for each i ∈ I.

(b) Sample uniformly random λ
(i)
wh

$← F for each honest Pi subject to the con-

straint λwh =
∑
i λ

(i)
wh

.

(c) Run [λwh]← Bracket(λ
(1)
wh
, . . . , λ

(n)
wh

) and output [λwh].

Fig. 31. Functionality FOffline For The Preprocessing Of The MPC Protocol.

For each input ` ∈ [n] the input keys k
(1)
w`,Λw`

, . . . ,k
(n)
w`,Λw`

are published by

the respective parties, which works as follows: first, party Pi that holds the
input computes the encrypted wire value Λw` based on its actual input x(`) and
the permutation bit λw` as Λw` = λw` + x(`). Here, λw` is fixed for input `
and known to Pi in advance. Pi then broadcasts Λw` to all parties, whereupon

51

Functionality FOffline (part 2)

Open Garbling: On input (Open-Garbling, sid) from all parties, if Garble was
run successfully and Open Garbling was not run before:
1. Send da,b(g) for all g ∈ G to S.

2. If S sends an additive error e = {ea,b(g)} for a, b ∈ {0, 1}, g ∈ G then output
d̃a,b(g) = ea,b(g) + da,b(g) to all honest parties, otherwise send da,b(g).

Generate Random: On input (Random, sid, `) by each Pi and if Init was run

before send (Random, sid, `) to S. Upon input b
(i)
j for j ∈ [`], i ∈ I by S sample

b
(i)
j

$← F for each i ∈ I, j ∈ [`], compute [bj] ← Bracket(b
(1)
j , . . . , b

(n)
j) for j ∈ [`] and

output ([b1], . . . , [b`]).

Macro Bracket: On input x(1), . . . , x(n) compute [x] for each Pi
– if i ∈ I then ∀j ∈ [n] \ {i} wait for χ

(i)
j from S, then compute ψ

(j)
i ← χ

(i)
j +x(i) ·

∆(j)

– if i ∈ I then ∀j ∈ I wait for ψ
(j)
i from S and choose ψ

(j)
i honestly for all

j ∈ I \ {i}. Then compute χ
(i)
j ← ψ

(j)
i + x(i) ·∆(j).

Output (x(i), {χ(i)
j , ψ

(i)
j }j∈[n]\{i}) to each Pi.

Key Queries: Upon receiving (i,∆) for i ∈ [n] from the adversary and if Init was
run before, return 1 if ∆ = ∆(i) and 0 otherwise.

Fig. 32. Functionality FOffline For The Preprocessing Of The MPC Protocol (contin-
ued).

each party Pj reacts by broadcasting its key k
(j)
w`,Λw`

. Once the input keys and

encrypted wire values for each input of the circuit have been provided, these
can be used to evaluate the garbled circuit: for each gate g with input wires u, v

and respective encrypted wire values a, b as well as known keys {k(i)
u,a,k

(i)
v,b}i∈[n]

each party locally then computes the encrypted wire value c as well as the keys

{k(i)
w,c}i∈[n] for the output wire w as follows:

– If g is an XOR gate then set c← a+ b and k
(i)
w,c ← k

(i)
u,a + k

(i)
v,b for all i ∈ [n].

– If g is an AND gate then for all i ∈ [n] compute

k(i)
w,c ← d̃

(i)
a,b(g) +

∑
j∈[n]

F
k
(j)
u,a,k

(j)
v,b

(g ‖ i).

Then set c = 0 if k
(i)
w,c = k

(i)
w,0 and c = 1 otherwise9.

Ultimately, each party obtains the output keys {k(i)
w1,γ1

, . . . ,k
(i)
wm,γm

}i∈[n].
These keys represent an encryption γ1, . . . , γm of the actual outputs y1, . . . , ym
of the circuit, and the actual outputs can be recovered using the (secret) per-
mutation bits of the outputs.

9 We assume here that d̃
(i)
a,b(g) was generated correctly.

52

B.4 The Protocol

We now specify the protocol ΠHSS which implements FMPC−SO in the FOffline-
hybrid model. The reconstruction function f (according to Definition 3) that we
use in this protocol is the XOR-function. The protocol uses auxiliary subproto-
cols ΠOpen, ΠPOpen as given in Figure 29, Figure 30 to open either a [·]-share in
public or privately, but verifiably. The specific construction of Share Output
is an artifact of the generality of FMPC−SO - as its definition shall also capture
MPC protocols that e.g. have a secret-sharing based online phase.

Protocol ΠHSS (part 1)

The parties evaluate the circuit C with inputs x(1), . . . , x(n) and m outputs y =
(y1, . . . , ym).

Init: Set up functionalities and garble.
1. The parties set up the functionality FOffline. They send (Init, sid,) to FOffline and

in return each Pi obtains ∆(i) from FOffline.

2. Send (Garble, sid, C) to FOffline. Each Pi obtains the 0-keys k
(i)
w,0 for all wires as

well as λw` for its input wires. Moreover, the parties obtain sharings [λw`] of the
output permutation bits λw` .

Input: Send input keys. For each input wire ` ∈ [n]:
1. The party Pi that holds that input bit x(`) computes the encrypted wire value

as Λw` = λw` + x(`) and broadcasts it to all parties.

2. Each party Pj broadcasts k
(j)
w`,Λw`

.

Evaluate: Exchange garbling and evaluate.
1. The parties send (Open-Garbling, sid) to FOffline to obtain d̃

(i)
a,b(g) for i ∈ [n], g ∈

G, a, b ∈ {0, 1}.
2. Traverse the circuit in topological order. For each gate g with inputs u, v having

the public values a, b and keys k
(i)
u,a,k

(i)
v,b we compute the assignment c to the

output wire w as well as the keys k
(i)
w,c as follows:

– If g is an XOR gate then set c← a+ b and k
(i)
w,c ← k

(i)
u,a + k

(i)
v,b for all i ∈ [n].

– If g is an AND gate then for all i ∈ [n] compute k
(i)
w,c ← d̃

(i)
a,b(g) +∑

j∈[n] Fk
(j)
u,a,k

(j)
v,b

(g ‖ i). Pi checks if k
(i)
w,c ∈ {k(i)

w,0,k
(i)
w,0 + ∆(i)}. If so then Pi

sets c = 0 if k
(i)
w,c = k

(i)
w,0 and c = 1 otherwise. Afterwards set (k

(1)
w,c, . . . ,k

(n)
w,c)

as keys of the wire w. If instead k
(i)
w,c 6∈ {k(i)

w,0,k
(i)
w,0 + ∆(i)} then Pi sends

abort to all parties.

3. Let w1, . . . , wm be the output wires of the circuit. Each party Pi holds output
keys k

(i)
w1,γ1

, . . . ,k
(i)
wm,γm

as well as public values γ1, . . . , γm.

Fig. 33. Protocol ΠHSS Implementing FMPC−SO.

53

Protocol ΠHSS (part 2)

Share Output:
1. Send (Random, sid,m) to FOffline. Let these sharings be {[rh]}h∈[m].

2. Run ΠOpen of [λwh + rh]← [λwh] + [rh] for each h ∈ [m] to obtain γ̂h.

3. Output [rh] and γh + γ̂h for each h ∈ [m].

Share Random Value: Send (Random, sid, 1) to FOffline to obtain the sharing [z]
for a fresh cid.

Linear Combination: The parties locally compute [scid′]←
∑
cid∈I αcid · [scid].

Reveal: To open the share s
(i)
cid of the sharing cid to all parties:

1. Party Pi broadcasts x(i) and sends χ
(i)
j to Pj for each i 6= j.

2. Each party Pj ∈ P \ {Pi} checks that χ
(i)
j = ψ

(j)
i + x(i) ·∆(j) and broadcasts ⊥

otherwise.

Private Reveal: The party Pi opens the share s
(i)
cid of the sharing cid to party Pj .

1. Party Pi sends x(i), χ
(i)
j to party Pj .

2. Party Pj checks if it holds that χ
(i)
j = ψ

(j)
i +x(i) ·∆(j). Otherwise, it broadcasts

⊥.

Fig. 34. Protocol ΠHSS Implementing FMPC−SO (continued).

Theorem 10. The protocol ΠHSS UC-securely implements FMPC−SO against a
static malicious adversary corrupting up to n − 1 parties in the FOffline-hybrid
model with broadcast.

We first define a simulator S which will simulate FOffline locally. We then
argue why no environment Z using A can distinguish the distribution generated
by ΠHSS and A from S which uses FMPC−SO.

Proof. Define the following simulator S:

Init: Set up FOffline for the simulation. Initialize FOffline with the set I of cor-
rupted parties.

1. Start simulating an honest protocol instance with A where the inputs of the
honest parties are 0. Keep the values ∆(i), i ∈ I which A provides for the
corrupted parties.

2. Run (Garble, sid, C) in FOffline with the adversary for the circuit C with
wires W and gates G. Therefore, for all w ∈ W that is output of an AND-

gate or an input wire record k
(i)
w,0 which was provided for each Pi ∈ I by A.

Moreover, sample uniformly random λw
$← F.

3. For each input wire wi: if A sends (Ok, sid, wi) then forward λwi which was
chosen above.

4. For each output wire wh run the interaction with FOffline and keep track of
[λwh].

54

Input: Extract inputs and send these to FMPC−SO. Therefore, run the protocol
with A.
– For each honest party Pi send (Input, sid, i, ·) to FMPC−SO in the name of

the dishonest parties. Then send Λwi = λwi as well as honestly sampled

k̃
(j)
wi,Λwi

for j ∈ I to A. Store each obtained k̃
(j)
wi,Λwi

for j ∈ I from A.

– For each dishonest party Pi the adversary sends Λwi . Set x(i) ← Λwi + λwi
and send (Input, sid, i, x(i)) for Pi and (Input, sid, i, ·) for all Pj , j ∈ I \{i}.
Keep the values k̃

wi,Λ
(j)
wi

for j ∈ I provided by A and sample k̃
(j)
wi,Λwi

for j ∈ I
honestly.

After this step, all the input keys k̃
(j)
wi,Λwi

that should be used during evaluation

as well as the public wire values Λwi are fixed.

Evaluate:
1. For each honest party Pi and for each output wire of an AND-gate w ∈ W

sample k
(i)
w,Λw

$← Fτ .

2. For every output wire w of an AND-gate sample Λw
$← F.

3. For every XOR-gate with input wires u, v and output wire w we set Λw ←
Λu +Λv. Moreover, set k

(i)
w,0 ← k

(i)
u,0 + k

(i)
v,0 as well as k

(i)
w,1 ← k

(i)
w,0 + ∆(i) for

all i ∈ [n].

4. For the outputs10 of the circuit wh compute γh ← Λwh .

5. Next, we generate the keys that are observed by A when evaluating the
circuit. Therefore, for each AND-gate g with public values (Λu, Λv) compute

d
(j)
Λu,Λv

(g)← k
(j)
w,Λw

+
∑

i∈[n]
F
k
(i)
u,Λu

,k
(i)
v,Λv

(g ‖ j)

d
(j)
1−Λu,Λv (g),d

(j)
Λu,1−Λv (g),d

(j)
1−Λu,1−Λv (g)

$← Fτ

for all j ∈ [n]. Then for a, b ∈ {0, 1} we set da,b(g)← d
(1)
a,b(g) ‖ . . . ‖d

(n)
a,b (g).

6. On input (Open-Garbling, sid) by A we send {da,b(g)} for a, b ∈ {0, 1}, g ∈
G. Obtain the additive error e = {ea,b(g)} and set d̃a,b(g)← da,b(g)+ea,b(g).

7. Evaluate the circuit defined by d̃a,b(g) using the public inputs Λwi as well

as the input keys k̃
(j)
wi,Λwi

for i, j ∈ [n]. During evaluation, for every wire w

obtained check if for each i ∈ I the key k
(i)
w,Λw

is the pre-programmed key
from above for this public value.

Share Output: Make a new randomized sharing of the output.
1. Send (Share-Output, sid) to FMPC−SO and obtain {cidh}h∈[m] from it.

10 These values cannot simply be chosen at random as the simulation might then be
inconsistent. This can happen e.g. if the outputs of two AND-gates are XOR-ed
together two times, where both XORs are outputs of the circuit. If the public values
of the XORs were chosen at random, then this cannot be reached during correct
evaluation of the circuit.

55

2. Send (Random, sid,m) for all simulated honest parties to FOffline and observe

which bij A sends. Then send (Output-Shares, sid, {(cidh, b(i)cidh)}) for i ∈ I
to FMPC−SO.

3. Obtain the share advices zcidh for h ∈ [m] from FMPC−SO.

4. Simulate ΠOpen for each [λwh+rh] by adjusting the opened share of one simu-
lated honest party, such that the honestly reconstructed result is γh+zcidh . If
the dishonest parties follow the protocol honestly, send (Deliver-Advices,
sid, {cidh}h∈[m]) to FMPC−SO. Otherwise send (Abort, sid).

Share Random Value:
1. Send (Share-Random, sid) in the name of the dishonest parties to FMPC−SO.

2. Upon receiving cid from FMPC−SO run Generate Random of FOffline hon-
estly. Extract the shares b(i) for i ∈ I that A sends to FOffline and send
(Share, sid, cid, b(i)) to FMPC−SO for each i ∈ I.

Linear Combination: Send (Linear, sid, {(cid, αcid)}cid∈I , cid′) for all i ∈ I
to FMPC−SO. Then apply the linear operation to the shares of the simulated
honest parties locally.

Reveal: Send (Reveal, sid, cid, i) for the dishonest parties to FMPC−SO.
– If i ∈ I simulate the protocol honestly with A. If A sends incorrect shares,

then send (Abort, sid) to FMPC−SO, otherwise send (Deliver-Reveal,
sid, cid, i) to FMPC−SO.

– If i 6∈ I then obtain (Reveal, sid, cid, i, s
(i)
cid) from FMPC−SO. Simulate Pi to

consistently open s
(i)
cid to all parties. If A aborts then send (Abort, sid) to

FMPC−SO, otherwise send (Deliver-Reveal, sid, cid, i).

Private Reveal:
– If i ∈ I, j ∈ I send (Reveal, sid, cid, i, j) to FMPC−SO and run the protocol

with A. If A sends incorrect values send (Abort, sid) to FMPC−SO, otherwise
send (Deliver-Reveal, sid, cid, i, j).

– If i ∈ I, j ∈ I then obtain s
(i)
cid from FMPC−SO. Then simulate the honest

party in the protocol to open s
(i)
cid consistently. If A aborts, send (Abort,

sid) to FMPC−SO, otherwise send (Deliver-Reveal, sid, cid, i, j).

We will argue why each individual protocol part is indistinguishable.

Init: A only obtains outputs so this is trivially indistinguishable.

Input: All public values Λwi as well as keys k
(j)
wi,Λwi

which A obtains are dis-

tributed as they are in the protocol, as these are there also chosen uniformly at
random.

Evaluate: Our simulation for evaluation is built on top of the simulator of
[27], and performs the exact same computation (except for hard-wiring different
output values). This allows us to deduce directly that the garbled circuit which
is generated is distributed correctly if no party aborts, meaning that all honest
parties obtain the same output values if they do not abort (which is the output
γ1, . . . , γm). This follows directly from [27, Lemma 5.4, 5.5 and 5.6] and F being
a 2-correlation robust PRF. See the referenced works for details.

56

Share Output: The adversary obtains output from FMPC−SO instead of FOffline,
but the values are equally distributed. There are special cases in which S aborts
where it differs from the protocol, but observe that this is a superset of those
cases in which the protocol would abort. We first show that the difference in the
abort probability is negligible. The abort happens whenever A sends incorrect
shares during ΠOpen, ΠPOpen. It follows from the security of the TinyOT protocol
that this only happens with probability 2−τ , as A would have to guess ∆(i) of

an honest party Pi correctly. As we take the shares s
(i)
cidh

that A uses in ΠHSS

and input them into FMPC−SO these will be consistent. We open each [λwh + rh]
such that the outputs obtained by A are consistent with the advice obtained
from FMPC−SO.

Share Random Value: As we take the shares s
(i)
cid that A sends to FOffline and

input them into FMPC−SO these shares will be consistent.

Linear Combination: This operation is entirely local.

Reveal: In the simulation, if the opened share comes from an honest party
then we open to the value that FMPC−SO provides which makes the simulation
consistent with the functionality. If Pi is controlled by A then we abort whenever
A sends a value which it did not obtain from FOffline or which it did not derive
correctly, which is distinguishable from ΠHSS only if A could have guessed a
∆(j).

Private Reveal: This is the same as for the case of Reveal.

ut

In the above we were actually a bit inaccurate, as what is proven is that ΠHSS

implements FMPC−SO with a Key Query functionality (whereas FMPC−SO as such
has no such property). This gives an additional distinguishing advantage of q/2τ

to the environment, where q is the number of Key Queries which A can do
(which is polynomial in κ). This additional advantage is thus negligible in the
computational security parameter.

B.5 Implementing the Offline Functionality

We present here an implementation of the functionality FOffline. For this, we use
a multiparty version of the TinyOT MPC protocol FTinyOT [39, 37, 12], which is
depicted in Figure 35. These works implement this functionality using the same
building blocks as the commitments from Section 3 (namely secure equality
testing, commitments and OT) as well as hash functions. Therefore, we can
reuse FpOT,FEQ,FCom in the construction. In practice, one would choose lighter
variants as public verifiability is not necessary to implement FTinyOT.

It was observed in [27, 45] that a [x]-representation (like the random [·]-shares
generated by Random Bits) can be converted into additive shares r(1), . . . , r(n)

57

Functionality FTinyOT

This functionality interacts with parties P and an adversary S. Let I ⊂ P denote
the set of dishonest parties chosen by S.

Setup: On input (Setup, sid)
1. Receive ∆(i) ∈ Fτ for each i ∈ I from S.

2. For each honest party Pi ∈ I sample ∆(i) $← Fτ and send it to Pi.
Random Bits: On input (Bits, sid, k) from all parties

1. For i ∈ I, j ∈ [k] wait for b
(i)
j ∈ F from S.

2. For i ∈ I, j ∈ [k] sample b
(i)
j

$← F.

3. For j ∈ [k] run [bj]← Bracket(b
(1)
j , · · · , b(n)j).

Triples: On input (Triples, sid, k) from all parties

1. For i ∈ I, j ∈ [k] wait for a
(i)
j , b

(i)
j , c

(i)
j ∈ F from S.

2. For i ∈ I, j ∈ [k] sample a
(i)
j , b

(i)
j

$← F at random and c
(i)
j

$← F with the constraint

that (
∑
i∈[n] a

(i)
j) · (

∑
i∈[n] b

(i)
j) =

∑
i∈[n] c

(i)
j .

3. For j ∈ [k] run [aj] ← Bracket(a
(1)
j , . . . , a

(n)
j), [bj] ← Bracket(b

(1)
j , . . . , b

(n)
j) and

[cj]← Bracket(c
(1)
j , . . . , c

(n)
j).

Macro Bracket: On input x(1), . . . , x(n) compute [x] for each Pi
– if Pi ∈ I then ∀j ∈ [n]\{i} wait for χ

(i)
j from S, then compute ψ

(j)
i = χ

(i)
j +x(i) ·

∆(j).

– if Pi ∈ I then ∀j ∈ I wait for ψ
(j)
i from S and choose ψ

(j)
i honestly for all

j ∈ I \ {i}. Then compute χ
(i)
j = ψ

(j)
i + x(i) ·∆(j).

Output (x(i), {χ(i)
j , ψ

(i)
j }j∈[n]\{i}) to each Pi.

Key Queries: Upon receiving (i,∆) for i ∈ [n] from S and if Setup was run before
return 1 if ∆ = ∆(i) and 0 otherwise.

Fig. 35. Functionality FTinyOT For The Multiparty Computation Protocol TinyOT.

of x ·∆(i) for each i ∈ [n] as

Pi sets r(i) = x(i) ·∆(i) +
∑

k∈[n],k 6=i

ψ
(i)
k

Pj , i 6= j sets r(j) = χ
(j)
i

This is then repeated to obtain shares for each product x ·∆(i) of x with all
secrets ∆(i).

Proposition 1. A representation [x] can be converted locally into additive shares
of x ·∆(i) for each i ∈ [n] by the above method.

Proof. See e.g. [27, Claim 4.1] ut

Our preprocessing protocol ΠOffline is a modified version of [27]. We never-
theless provide a full proof here.

58

Theorem 11. The protocol ΠOffline UC-securely implements FOffline against a
static, malicious adversary corrupting up to n− 1 parties in the FTinyOT-hybrid
model with a broadcast channel.

Protocol ΠMult

Let ([a], [b], [c]) be a triple such that c = a · b. On input [x], [y] the parties compute
a sharing [z] such that z = x · y as follows.

1. Each party locally computes [ρ] = [a] + [x] as well as [τ] = [b] + [y].
2. Run ΠOpen to open both ρ, τ reliably.
3. Each party locally computes [z] = [c] + ρ · [b] + τ · [a] + ρ · τ .

Fig. 36. Protocol ΠMult For The Multiplication Of Two [·]-Representations Using Mul-
tiplication Triples.

Proof. To prove this statement, we construct a simulator S in the presence of
FOffline which interacts with the PPT real-world adversary A, and show that any
PPT environment Z cannot distinguish the setting S,A,FOffline from A, ΠHSS,
FTinyOT. The adversaryA corrupts a set I ⊂ [n] at the beginning of the execution,
and S will simulate honest parties as well as an instance of FTinyOT. As S sees the
random string which A obtains from the environment, S internally simulates the
messages that we would expect the parties in I to send, but of course security
does not rely on this as A may send arbitrary messages.
S simulates honest parties throughout the protocol, and then adjusts the

output obtained during Open Garbling accordingly. It works as follows:

Init:
1. Set up an instance of FTinyOT and simulate it honestly, except for every Key

Query of A to FTinyOT which S forwards to FOffline.

2. Forward the set of corrupted parties I to this functionality and to FOffline.
Send (Setup, sid) from all honest parties to FTinyOT and forward any such
messages from A.

3. Wait for ∆(i) from A for each Pi ∈ I and store these internally. Keep ∆(i)

for the honest Pi as obtained from FTinyOT.

4. Send (Init, sid) from all dishonest parties to FOffline. Then send ∆(i) for each
i ∈ I.

Garble:
1. Send (Garble, sid, C) in the name of all dishonest parties to FOffline. Denote

with W the set of wires and G the set of AND-gates.

2. For each w ∈ W that is an input wire or an output wire of an AND-gate,
send (Bits, sid, 1) to FTinyOT in the name of the simulated honest parties
to obtain the shares of [λw]. If w instead is an output of a XOR-gate, set
[λw]← [λu] + [λv] where u, v are the input wires.

59

Protocol ΠOffline (part 1)

The parties P start by running an instance of FTinyOT. For the circuit C we let G
be the set of gates. Let G : Fτ → F4nτ |G| be a PRG and F : F2τ × Fτ → Fτ be a
circular 2-correlation robust PRF.

Init: If this has not been run before, then all parties send (Setup, sid) to FTinyOT.
Party Pi obtains ∆(i).

Garble: If this has not been run before and Init ran successfully, then all parties
do the following:
1. All parties go through the wires of the circuit C topologically. For each wire w

they do the following:
– If w is an input wire of the circuit or an output wire of an AND-gate, then

all parties send (Bits, sid, 1) to FTinyOT and obtain a value [λw]. Then each

party Pi samples k
(i)
w,0

$← Fτ and sets k
(i)
w,1 ← k

(i)
w,0 + ∆(i).

– If w is the output of a XOR-gate with input wires u, v then the parties set
[λw] ← [λu] + [λv]. Moreover, each Pi sets k

(i)
w,0 ← k

(i)
u,0 + k

(i)
v,0 as well as

k
(i)
w,1 ← k

(i)
w,0 + ∆(i).

2. For each AND-gate g ∈ G with input wires u, v and output wire w the parties
do the following
(a) The parties send (Triples, sid, 1) to FTinyOT to obtain a triple ([a], [b], [c]).

Then, they run ΠMult with (([a], [b], [c]), [λu], [λv]) to compute [λuv] and set
[λuv + λw]← [λuv] + [λw] afterwards.

(b) For each j ∈ [n] the parties use Proposition 1 to convert [λu], [λv], [λuv +λw]

into additive shares of λu ·∆(j), λv ·∆(j), (λuv + λw) ·∆(j). Write r
(i)
u,j for

the share that Pi holds of λu ·∆(j), and similarly define r
(i)
v,j , r

(i)
uv+w,j .

(c) For each j ∈ [n] and a, b ∈ {0, 1} each Pi sets

ρ
(i)
a,b,j(g)←

{
a · r(i)v,j + b · r(i)u,j + r

(i)
uv+w,j if i 6= j

a · r(i)v,j + b · r(i)u,j + r
(i)
uv+w,j + a · b ·∆(i) if i = j

3. For each AND-gate g ∈ G, each a, b ∈ {0, 1} and each j ∈ [n] party Pi computes

its share of (d
(j)
a,b(g))(i) as

(d
(j)
a,b(g))(i) ←

ρ
(i)
a,b,j + F

k
(i)
u,a,k

(i)
v,b

(g ‖ j) + k
(i)
w,0 if i = j

ρ
(i)
a,b,j + F

k
(i)
u,a,k

(i)
v,b

(g ‖ j) else

4. For each party Pi let wi be the input wire corresponding to its input. Then run
ΠPOpen on [λwi] towards Pi.

5. For each wh ∈ W which is an output wire of the circuit, define [λwh] to be the
sharing of the permutation bit λwh .

Fig. 37. Protocol ΠOffline Implementing The Offline Phase FOffline.

3. For the PRF-keys k
(i)
w,· for each w ∈W , if w is an input wire or an output of

an AND-gate then choose a uniformly random k
(i)
w,0

$← Fτ for each simulated

60

Protocol ΠOffline (part 2)

Open Garbling: This can only be run once and if Garble ran successfully. Each
Pi has a share C̃(i) = {(d(j)

a,b(g))(i)}j,a,b,g of length 4nτ |G| from Garble.

1. Each Pi samples n− 1 random seeds s
(i)
j = Fτ for all j 6= i and sends s

(i)
j to Pj .

2. Each Pi computes S
(i)
i =

∑
i 6=j G(s

(i)
j) and S

(j)
i = G(s

(j)
i) for j 6= i.

3. For i ∈ [n] \ {1} the party Pi sends T (i) = C̃(i) +
∑n
j=1 S

(j)
i to P1.

4. P1 computes C̃ ← C̃(1) +
∑n
j=1 S

(j)
1 +

∑n
i=2 T

(i) and broadcasts it to all parties.

Generate Random: If Init ran successfully, then each party sends (Bits, sid, `)
to FTinyOT to obtain the ` shares ([r1], . . . , [r`]).

Fig. 38. Protocol ΠOffline Implementing The Offline Phase FOffline(continued).

honest Pi and compute k
(i)
w,0 of the dishonest Pi from the input tape of the

party. Then, set k
(i)
w,1 = k

(i)
w,0 + ∆(i) for each i ∈ [n].

4. For each AND-gate g ∈ G with input wires u, v and output wire w do the
following:
(a) Send (Triples, sid, 1) from each simulated honest party to FTinyOT, then

obtain shares of the triple ([a], [b], [c]).

(b) Run ΠMult as in ΠOffline to compute [λuv]. During either instance of ΠOpen

in ΠMult, abort if A provides shares for any dishonest party which are
inconsistent with the shares of [a+λu] = [a]+ [λu] and [b+λv]+ [b]+ [λv]
which A obtained from FTinyOT.

(c) If no abort due to the above event occurred, then set the shares [λuv +
λw] = [λuv] + [λw] for each simulated honest party.

5. If no abort occurred, then send k
(i)
w,0 for each i ∈ I and each w ∈W which is

either an input-wire or the output of an AND-gate to FOffline.

6. For each input wire w do the following:
– If w belongs to an honest party, wait for the shares of [λw] that A sends

during ΠPOpen. If any of these are inconsistent with the shares that it
should have, then abort. Else, send (Ok, sid, w) to FOffline.

– If w belongs to a dishonest party, then send (Ok, sid, w) to FOffline to

obtain λw. If λw =
∑
i λ

(i)
w where λ

(i)
w is the share of Pi of [λw] then run

ΠPOpen correctly as in the protocol. Else, for one simulated honest party
Pj adjust the share and the MACs such that the above equation holds
based on ∆(i) of the dishonest parties that S has, and then run ΠPOpen.

7. For each output wire w of the circuit C:

(a) For each dishonest party Pi compute λ
(i)
w as well as {χ(i)

j , ψ
(i)
j }j∈[n]\{i}}

based on the values that Pi obtained from FTinyOT, ΠMult.

(b) Send λ
(i)
w to FOffline as shares of the permutation bit λw. During Bracket

send {χ(i)
j , ψ

(i)
j }j∈[n]\{i}} for each dishonest Pi.

61

Open Garbling:
1. Based on the random tapes of the dishonest parties as well as the outputs

that A obtained from FTinyOT and during ΠMult compute the share C̃(i) of
each dishonest Pi as in the protocol.

2. For each j ∈ I, i ∈ I sample S
(j)
i

$← Fτ uniformly at random and send these
to A.

3. Send (Open-Garbling, sid) for all dishonest parties to FOffline, and obtain
C̃ in return.

4. For i ∈ I sample uniformly random shares C̃(i) subject to the constraint that
C̃ =

∑
j∈[n] C̃

(j). Then use these shares to run the protocol honestly.

5. In the protocol, P1 broadcasts the circuit Ĉ. Compute ea,b(g) from C̃ + Ĉ
and send it to FOffline.

Generate Random: Obtain inputs A sends to FTinyOT, then forward these to
FOffline.
1. Send (Bits, sid, `) to FTinyOT for all simulated honest parties. Let (x

(i)
r ,

{χ(i)
j,r, ψ

(i)
j,r}j∈[n]\i) be the values that A provides for Pi ∈ I to generate the

rth random bit via Bracket in FTinyOT for r ∈ [`].

2. Send (Random, sid, `) for all dishonest parties to FOffline. For each Pi ∈ I

and for r ∈ [`] send (x
(i)
r , {χ(i)

j,r, ψ
(i)
j,r}j∈[n]\i) to FOffline.

We now argue indistinguishability of the outputs, both to the honest parties
of FOffline and to A.

Init: Only the honest parties receive outputs, and these have the same distri-
bution in both cases.

Garble: While we run S with A we essentially run ΠOffline with simulated par-
ties, thus every output that A obtains has the same distribution as in the pro-
tocol. The permutation bits of the inputs which the dishonest parties obtain are
consistent with FOffline and the adversary can abort also in the simulation by
providing incorrect openings. The shares of the permutation bits of the outputs
are consistent as in the simulation the shares of A as well as the MACs and keys
are provided to FOffline, and the global difference ∆(i) of dishonest parties is the
same both in FTinyOT and FOffline.

Open Garbling: Both in the simulation an the real protocol, the seeds of the
PRG have the same distribution. In both cases, the shares of the circuit sum up to
the correct output, constrained on the shares of the circuit which the adversary
has. Moreover, in case of more than one honest party the shares individually
appear uniformly random in the protocol as Z then does not see at least one
PRG seed. The error ea,b(g), which is introduced by A, is moreover identical in
both cases.

Generate Random: Here, the adversary only gives inputs. Moreover, the shared
values are uniformly random in both cases and the distribution of the shares,
MACs and MAC keys which the honest parties obtain is the same for both
FOffline,FTinyOT, also constrained of the values that A possesses.

62

S has two remaining differences to ΠOffline when considering its abort behav-
ior, namely with respect to ΠOpen and the Key Queries. We show that a hybrid
argument allows to remove these:

1. In the first hybrid where we depart from the original S, change S to always
return 0 to A if queried for ∆(i) an honest party. This is within distance
(q + 1)/2τ of S (where q is the number of Key Queries), which is negligible
for any PPT A.

2. In the next step, remove the aborting constraint in case A provides incorrect
shares during ΠOpen, ΠPOpen and only abort if the equations do not match. It
is easy to see that this amounts toA correctly guessing ∆(i) of a Pi ∈ I, which
was chosen uniformly at random. As the number of openings throughout the
protocol is polynomial, this hybrid is statistically close to the previous one.

3. Now forward all key queries to FTinyOT. As argued before, this is statistically
close to the previous hybrid. Moreover, this is now the identical setting as in
ΠOffline.

ut

The offline functionality allows garbling to happen only once for a fixed
instance of FTinyOT, but one can change the functionality and the security proof
to allow to generate multiple garblings for the same FTinyOT-instance.

63

