
Valiant’s Universal Circuits Revisited: an Overall Improvement

and a Lower Bound

Shuoyao Zhao1,3, Yu Yu1, and Jiang Zhang2

1Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

2State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3PlatON CO., Limited

Abstract

A universal circuit (UC) is a general-purpose circuit that can simulate arbitrary circuits
(up to a certain size n). At STOC 1976 Valiant presented a graph theoretic approach to
the construction of UCs, where a UC is represented by an edge universal graph (EUG) and
is recursively constructed using a dedicated graph object (referred to as supernode). As
a main end result, Valiant constructed a 4-way supernode of size 19 and an EUG of size
4.75n log n (omitting smaller terms), which remained the most size-efficient even to this day
(after more than 4 decades).

Motivated by the emerging applications of UCs in various privacy preserving computa-
tion scenarios, we revisit Valiant’s universal circuits, and propose a 4-way supernode of size
18, and an EUG of size 4.5n log n. As confirmed by our implementations, we reduce the
size of universal circuits (and the number of AND gates) by more than 5% in general , and
thus improve upon the efficiency of UC-based cryptographic applications accordingly. Our
approach to the design of optimal supernodes is computer aided (rather than by hand as in
previous works), which might be of independent interest. As a complement, we give lower
bounds on the size of EUGs and UCs in Valiant’s framework, which significantly improves
upon the generic lower bound on UC size and therefore reduces the gap between theory and
practice of universal circuits.

Universal Circuits Private Function Evaluation Multiparty Computation.

1 Introduction

A universal circuit (UC)1 refers to a circuit that can be programmed to simulate any Boolean
circuit C up to a given size. That is, a UC takes as input program bits pC (that encodes C)
in addition to an input x, and produces as output UC(x, pC) = C(x). This is analogous to a
central processing unit (CPU) that carries out the computations specified by the instructions
of a computer program.

1.1 Applications of Universal Circuits

Universal circuits have received sustained research interests and have been found useful in
various privacy-preserving computation applications. We recall a few below, whose efficiency
would benefit from the improvement of universal circuits.

1As a slight abuse of abbreviation, we use UC as the shorthand for universal circuit, and the readers should
not confuse it with universal composability.
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1.1.1 Program Obfuscation

Garg et al. [GGH+16] used UCs to construct universal branching programs which was in
turn used to build a candidate indistinguishability obfuscation (iO). More recently Zimmerman
[Zim15] proposed an approach to obfuscation by viewing UC as a keyed program for circuit
families.

1.1.2 Private Function Evaluation

Universal circuits are an essential tool to transform a multi-party computation (MPC) protocol
into one for private function evaluation (PFE). UC-based PFE was studied in [KS08b] and was
later improved and extended in [LMS16, BBKL17]. A general framework for PFE protocols
that allows for instantiations from various concrete protocols in different settings was proposed
in [MS13] and was then extended to malicious adversary setting in [MSS14]. Furthermore, the
actively secure non-interactive secure computation (NISC) technique [AMPR14] can be applied
to UC to realize actively secure non-interactive PFE, which is beyond the reach of the framework
of [MS13, MSS14].

1.1.3 Batched Execution of 2PC

Another interesting application of UC is efficient batch execution for secure two-party compu-
tation (2PC). The batch execution techniques [HKK+14, LR15] were originally intended for
amortizing the cost of maliciously secure garbled circuits for the same function, and UCs can
now enable batched execution for circuits of different functions (realized by the same UC).

1.1.4 Universal Models of Computation

Valiant’s UCs motivated the design of universal parallel computers [GP81, Mey83]. Both depth-
optimized [CH85] and size-optimized [Val76] approaches to UCs were adapted in [BFGH10] to
universal quantum circuits.

1.1.5 Other Applications

UCs were used to hide the functions in verifiable computation [FGP14] and multi-hop ho-
momorphic encryption [GHV10], to hide queries in database management systems (DBMSs)
[PKV+14, FVK+15] and to reduce verifier’s preprocessing costs in NIZK argument [GGPR13].
Attrapadung [Att14] used UCs to transform the attribute-based encryption (ABE) schemes for
any polynomial-size circuits [GGH+13, GVW15] into ciphertext-policy ABE. UCs were also
used to build the ABE scheme in [GGHZ14].

1.2 Related Works

Valiant viewed a Boolean circuit as a directed acyclic graph (DAG) and introduced an edge-
universal graph (EUG) that edge embeds arbitrary DAGs (of a certain size) in a way that is
analogous (and can be translated) to a universal circuit and its simulation of arbitrary circuits.
Following Valiant and his follow-up works [Val76, LMS16, KS16, GKS17], we assume WLOG
that the circuit has s inputs, t outputs, g gates of fan-in and fan-out 2, and let n = s+ g be the
main parameter. Valiant gave a recursive construction of EUGs (and UCs) based on a k-way
supernode (a graph object based on EUG, abbreviated as SN) parameterized by some constant
k. As the main results, Valiant constructed a 2-way supernode of size 5 and a 4-way supernode
of size 19, which gives rise to EUGs of size 5n log n and 4.75n log n respectively (and UCs of size
approximately four times that of the corresponding EUGs, all omitting non-dominant terms).
Later Cook and Hoover [CH85] gave a depth-preserving construction of UC with optimal depth
O(d) but larger size O(n3d/ log n), where d is the depth of circuit simulated. More recently,
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Table 1: A comparison of previous results and ours in terms of the sizes of 4-way supernodes,
EUGs, UCs and the number of AND gates, omitting non-dominant terms.

|SN(4)| |EUG2(n)| |UCgs,t| #(AND gates)

Valiant’s UC [Val76] 19 4.75n log n 19n log n 4.75n log n
Kolesnikov et al.[KS08b] N/A 0.25n log2 n n log2 n 0.25n log2 n
Lipmaa et al. [LMS16] 19 4.75n log n 18n log n 4.75n log n
Our result 18 4.5n log n 17.75n log n 4.5n log n

there have been ongoing efforts of implementations and optimizations of UC under Valiant’s
framework. Kolesnikov and Schneider [KS08b] proposed a practical UC with size-complexity
roughly 0.25n log2 n and gave a first implementation of UC-based PFE under the Fairplay 2PC
framework [MNPS04]. Despite not being asymptotically optimal their construction [KS08b]
outperforms Valiant’s UC for small scale circuits. Lipmaa et al. [LMS16, Sad15] further brought
down the size of Valiant 4-way UC from 19n log n to 18 log n by reducing the number of XOR
gates (while keeping the same number of AND gates). Moreover, Lipmaa et al. gave a general
construction of k-way supernode and showed that their design has smallest size when k = 3.147.
Independent of Lipmaa et al.’s work [LMS16], Kiss and Schneider [KS16] mainly focused on PFE,
a prominent application of UC, for which the size of UC (and especially the number of AND
gates) is significantly optimized. Further, they [KS16] borrowed building blocks from [KS08b]
and proposed hybrid constructions of UCs for circuits with long inputs and outputs. Günther
et al. [GKS17] implemented Valiant’s 4-way UC and then provided a hybrid UC construction
with further improved practical efficiency by combining Valiant’s 2-way and 4-way UCs.

Valiant’s 4-way universal circuits remained to date the most efficient construction (i.e.,
4.75n log n). Motivated by aforementioned UC-based cryptographic applications, the efficiency
improvement efforts towards making them practical and the trend of circuit size towards 10-
million-gate or even billion-gate scale (e.g., [ABF+17, ZCSH18]), it is natural to raise the
following question:

Can we build more efficient UCs with better constant factors (i.e., smaller than 4.75) and
is there a tighter bound on the size of EUG in Valiant’s framework?

1.3 Our Contributions

We propose an algorithm that automates the search for optimal k-way supernodes (practical
for k ≤ 4), which yields a 4-way supernode of size 18 and depth 13 (as shown in Figure 1),
improving upon the counterpart by Valiant [Val76] of size 19 and depth 14. Plugging it into
Valiant’s framework immediately brings down the size complexity of Valiant’s UC (resp., EUG)
from 19n log n (resp., 4.75n log n) to 18n log n (resp., 4.5n log n), where the size of UC 18n log n
can be further reduced to 17.75n log n using the techniques from [LMS16]. In general, our 4-way
supernode achieves an overall improvement of more than 5% in graph (circuit) size, along with
a reduction of over 6% in graph (circuit) depth as a by-product. We refer to Table 1 for a
detailed comparison with related works. As far as secure computation scenarios such as MPC
and PFE are concerned, a practical efficiency indicator would be the number of AND gates (i.e.,
excluding XOR gates) and in this respect our work is also currently the best (more than 5%
improvement over previous works). We implement our UC [Zha18a], evaluate its performance
with a comparison to existing implementations (see Table 3) based on circuits of basic functions
suitable for MPC and FHE, suggested by Tillich and Smart [TS15].

Furthermore, our supernode can be plugged into Valiant’s 4-way UC or any applications
that use the 4-way supernode as a blackbox to achieve improvements accordingly. For example,
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Figure 1: A 4-way supernode that consists of 18 nodes (excluding inputs and outputs).

our 4-way supernode was used in the recent hybrid UC [AGKS19], which was based on the
hybrid UC from [GKS17] by replacing Valiant’s 4-way counterpart. The engineering efforts
of adapting the existing implementations to ours are affordable by replacing the supernode
components, thanks to the modularity of Valiant’s framework.

Our approach to the design of supernodes is computer aided (rather than by hand as in previ-
ous works), which could be of independent interest. Although not specific to 4-way supernodes,
the time complexity of our algorithm when used in search of optimal k-way supernodes for k ≥ 5
becomes impractically large. We stress that the implementations of k-way UC for k ≥ 5, even if
they exist with smaller size, are less desirable in practice. This is because the complexity of the
conversion from an arbitrary circuit to the corresponding UC (which includes EUG generation,
edge embedding, etc.) blows up dramatically with respect to k. This justifies why Valiant’s
2-way UCs were implemented in [KS16] earlier than its 4-way counterpart in [GKS17] despite
that the latter has slightly smaller circuit size. Still, for theoretical interests, we give a lower
bound on the size of k-way supernodes (over all k’s) as a complement, which in turn implies
a lower bound on the size of universal circuit in Valiant’s framework. That is, the size of an
EUG2(n) (resp., UC) is lower bounded by 3.644n log n (resp., 14.576n log n). We note that a
generic lower bound on UC size Ω(n log n) was folklore, where the hidden constant (implicit in
[Weg87, Theorem 8.1]) is quite small (about 1 as sketched in Section 4.1). We attribute this
gap (14.576 vs. 1) to that either the generic bound is not tight or Valiant’s approach to UC
construction, despite its generality and modularity, might be only asymptotically optimal (i.e.,
not having a good constant factor). Given that most existing UC constructions were built upon
Valiant’s framework, we believe that our lower bound can be of practical relevance. Finally, it
is left as an interesting open problem whether the gap between our construction and proved
lower bound, 4.5n log n vs. 3.644n log n, can be further reduced.

2 Preliminaries and Valiant’s UC Construction

In this section, we give basic notations and definitions about universal circuits and explain
Valiant’s construction of universal circuits for completeness and accessibility. We refer to
[LMS16] for an excellent exposition on Valiant’s framework.

2.1 Notations and Definitions

2.1.1 Notations

|G| (resp., |C|) refers to the size of a graph G (resp., circuit C), namely, the number of nodes
(resp., gates) in G (resp., C). In this paper, we stick to the graph theoretical (rather than the
standard electronics) terminology, where a circuit is represented by a Directed Acyclic Graph
(DAG), inputs, outputs and gates are considered as nodes and wires are seen as edges of the
DAG. Cgs,t denotes a circuit with s inputs, t outputs and size up to g, and UCgs,t denotes a
universal circuit which simulates arbitrary Cgs,t. DAGd(n) is a DAG of size n and fan-in (and
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Figure 2: A high-level view of Valiant universal circuit construction [LMS16].

fan-out) d. Valiant [Val76] introduced Edge-Universal Graph (EUG) as defined in Definition 2.2
below. Loosely speaking, Universal Circuits to circuits are like Edge-Universal Graphs to Di-
rected Acyclic Graphs. We use EUGd(n) to denote an edge-universal graph that edge-embeds
arbitrary DAGd(n). Note that we have |UCgs,t| > g (resp., |EUGd(n)| > n) because UCgs,t (resp.,
EUGd(n)) simulates (resp., edge-embeds) any Cgs,t (resp., DAGd(n)). We refer to the nodes of
EUGd(n) which are mapped from the corresponding vertices in DAGd(n) as “poles” and other
nodes which are used to simulate the structure of DAGd(n) as common nodes.

Definition 2.1 (Universal Circuit) A circuit UCgs,t is called a universal circuit, if for any
circuit with s inputs, t outputs, size up to g (denoted by Cgs,t), there exists a set of program bits
p ∈ {0, 1}m such that UCgs,t can be programmed to realize Cgs,t, i.e., ∀x ∈ {0, 1}s,UCgs,t(x, p) =
Cgs,t(x).

Definition 2.2 (Edge-Universal Graphs) An edge-embedding % of G = (V,E) into G∗ =
(V ∗, E∗) is a mapping that maps V into V ∗ one to one, and E into directed paths in G∗ (i.e.,
(i, j) ∈ E maps to a path from %(i) to %(j)) that are pairwise edge-disjoint. A graph G∗ is
an edge-universal graph for DAGd(n) if it has distinguished poles P1, . . . , Pn such that every
G ∈ DAGd0(n0), with d0 ≤ d and n0 ≤ n, can be edge-embedded into G∗ by a mapping % such
that %(i) = Pi for each i ∈ V . This should hold for any labeling of G.

2.2 From Edge-Universal Graphs to Universal Circuits

As depicted in Fig 2, Valiant’s UC construction consists of the following steps:

1. Construct a UCgs,t from an EUG2(n), where n = g + s;

2. Construct an EUG2(n) from an EUG1(n);

3. Construct an EUG1(n) given an EUG1(dn/ke − 1) for some constant k;

4. Repeat Step 3 recursively until reaching an EUG of some small size that can be trivially
constructed.

2.2.1 Construct UCgs,t from EUG2(n)

To build a universal circuit UCgs,t from a EUG2(n) 2, each node in EUG2(n) should be imple-
mented by Boolean gates and each edge is a wire of UCgs,t. The details are as follows.

• Each pole is implemented by a universal gate (UG). A 2-input UG supports any of the
16 possible gate types represented by the 4 control bits of the gate table (c1, c2, c3, c4). It
computes function ug: {0, 1}2 × {0, 1}4 → {0, 1} as follows:

ug(x1, x2, c1, c2, c3, c4) = x1x2c1 + x1x2c2 + x1x2c3 + x1x2c4 (1)

A UG can be implemented with 3 AND and 6 XOR gates [LMS16]. The control bits
c1, c2, c3, c4 are part of the program bits of the universal circuit.

2Definition 2.2 puts no limits on the fan-in/fan-out of EUG, but Valiant’s UC construction requires the
underlying EUG to be a DAG2.
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Figure 3: Switching gates and their circuit implementations.

• Each common node with indegree and outdegree both 2 can be implemented by an X-
switching gate [KS08a], that computes fX : {0, 1}2 × {0, 1} → {0, 1}2 (Figure 3a). The
inputs of an X-switching gate are forwarded to its outputs, switched or not switched,
depending on control bit c. This block can be implemented with 1 AND gate and 3 XOR
gates (Figure 3c).

• Each common node with indegree 2 and outdegree 1 can be implemented by a Y-switching
gate [KS08a] , that computes fY : {0, 1}2 × {0, 1} → {0, 1} (Figure 3b). A Y-switching
gate takes as input two bits and produces one of them as output, depending on control
bit c. This block can be implemented with 1 AND gate and 2 XOR gates (Figure 3d).

• Each common node with indegree 1 and outdegree 2 (i.e., splitter gate) is replaced by two
outgoing wires to copy its input to the two outputs.

• Each common node with indegree 1 and outdegree 1 is replaced by a wire.

This completes the construction of UCgs,t from EUG2(n). It remains to show how UCgs,t
simulates a given circuit Cgs,t (as intended for a universal circuit), where simulation is essentially
setting the input wires and the program (and control) bits for all universal gates and switching
gates.

2.2.2 Simulate Cgs,t using UCgs,t

Following [Val76, LMS16, GKS17], we assume WLOG that the circuits have fan-in/fan-out
bounded by two, and it is well-known that any circuit of unbounded fan-in/fan-out can be trans-
formed into a functionally equivalent one by paying reasonable prices in size (Cgs,t ⊂ C2g+t,2

s,t ).
[Val76, Cor 3.1].

We model the circuit Cgs,t as a graph GC = (VC , EC) where each input wire and each gate
are represented as a node and each wire is represented by an edge in the graph. The derived
graph is a DAG2(n) with n = s+g. By Deition 2.2, it is possible to embed GC into an EUG2(n),
such that for every edge (vi, vj) ∈ EC , there is a path from vi to vj that is edge-disjoint to other
paths. These paths constitute set Q = {Q1, Q2, . . . , Q|EC |}, which will be used to determine the
control bits of the switching gates in UCgs,t, the universal circuit corresponding to the EUG2(n)
above. We set the control bits and input wires as follow.
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• Control bits of switching gates. For an X-(/Y-)switching gate GS of UCgs,t, we denote
by NS the corresponding node in EUG2(n). If a path Qi ∈ Q passes through NS , we set
the control bit of GS to satisfy the direction of Qi through NS .3 If no paths go through
NS , we can set arbitrary binary value for the control bit of GS .

• Control bits of universal gates and input wires of universal circuit. For a
universal gate GU of UCgs,t, we denote by NU the corresponding pole in EUG2(n). If NU

represents a gate of the given circuit Cgs,t, we set the control bits of GU to realize the gate.
If NU represents an input of Cgs,t, we can set arbitrary binary values for the control bits
of GU and set the output wire of GU as an input wire of UCgs,t.

This completes the simulation. Now we analyze the complexity of UCgs,t.

Lemma 2.1 |UCgs,t| ≤ 4|EUG2(n)|+ 5n, where n = s+ g

Proof. From the construction of UCgs,t, we know that the size of UCgs,t is related to the numbers
of X-switching gates (denoted by nX), Y-switching gates (denoted by nY ) and the universal
gates (exactly n), which can be expressed as: |UCgs,t| = 4nX +3nY +9n ≤ 4(nX +nY +n)+5n ≤
4|EUG2(n)|+ 5n, as switching gates (which amount to nX +nY ) are part of the common nodes
in EUG2(n). �

In Valiant’s supernode design, the fan-in/fan-out of every common node is two, meaning that
there are no Y-switching gates and splitters in the corresponding UC (i.e., nY = 0). In that
case, the inequality in Lemma 2.1 can be used as an equality. Later, the supernode designed
by Lipmaa et al. [LMS16] additionally utilized Y-switching gates and splitters to reduce the
number of XOR gates, which we will elaborate in the next section. In summary, we reduce the
construction of UC to that of EUG2(n), which will be our focus for the remainder of this section.

2.3 Edge-Universal Graphs: from EUG1(n) to EUG2(n)

Next we show how to construct from EUG1(n) to EUG2(n).

Lemma 2.2 (Lemma 2.1 from [Val76]) For any DAGd(n) = (V,E), E can be regarded as
the union of d disjoint set Ei, i.e., E = ∪di=1Ei, such that each (V,Ei) is a DAG1(n).

Lemma 2.3 ([LMS16]) An EUG2(n) can be constructed from two instances of EUG1(n).

Proof. An EUG2(n) is constructed from two EUG1(n), which can be achieved by merging every
two poles in the same positions of the two EUG1(n). Then we prove that any DAG2(n) = (V,E)
can be edge-embedded into the EUG2(n). By Lemma 2.2 we can divide E into two sets E1 and
E2 such that each (V,Ei) is a DAG1(n), and therefore we can embed each in a separate EUG1(n).
The edge-embedding from (V,E) to EUG2(n) is the combination of two edge-embeddings from
(V,Ei) to the respective EUG1(n). This completes the EUG2(n) construction. �

As we mentioned before, when constructing a UCs,tg we need the EUG2(n) to be a DAG2. So
the EUG1(n) used to construct this EUG2(n) also needs to be a DAG2 and the indegree (outde-
gree) of poles of EUG1(n) should be 1. Therefore, when we talk about Valiant’s construction,
the edge-universal graphs EUG1(n) and EUG2(n) should meet the requirements above.

3 Since NS is a common node, it cannot be an endpoint of a path. For a X-switching gate GS , there may be
two paths passing through NS , for which only a single control bit is needed as paths in Q are edge-disjoint by
definition.
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2.4 Edge-Universal Graphs: from EUG1(dn/ke − 1) to EUG1(n)

Now that we reduce the construction of UCgs,t to the design of EUG1(n). What we will show
next is a reduction of EUG1(n) to itself of smaller sizes (which can be done recursively until
reaching an EUG1 of trivial size we have on hand). The recursion relies on an essential building
block called supernode (see Definition 2.3) and we use it to reduce EUG1(n) to EUG1(n/k) in
each step.

Definition 2.3 (Supernode) A k-way supernode SN(k) is an edge-universal-graph with k in-
puts {in1, . . . , ink}, k outputs {out1, . . . , outk}, k poles P = {P1, . . . , Pk} and m other nodes
(called common nodes), such that any graph G = (V,E) ∈ DAG1(3k), where V = {in1, . . . , ink}
∪ {P1, . . . , Pk}∪{out1, . . . , outk}, and every edge e = (v1, v2) ∈ E satisfies the conditions below:

1. If v1 ∈ {in1, . . . , ink} then v2 ∈ P .

2. If v2 ∈ {out1, . . . , outk} then v1 ∈ P .

3. v1 /∈ {out1, . . . , outk}.

4. v2 /∈ {in1, . . . , ink}.

can be edge embedded into SN(k). The size4 of SN(k) is the defined as m+ k.

As an example, Figure 1 is a 4-way supernode. Given a k-way supernode, we can reduce the
problem of EUG construction to itself (of smaller sizes) in a recursive way. This is stated as the
theorem below and for self-containedness we sketch its main idea (visualized in Figure 4) and
refer to the appendix for a full proof. That is, given an EUG1(dnk e− 1) and SN(k), we construct
a EUG1(n) as follows. We connect dnk e k-way supernodes together by merging the inputs and
outputs of two adjacent supernodes one by one (e.g. merge out11 and in21 into one 5). We divide
those merged nodes into k groups and invoke EUG1(dnk e − 1) for each group (see Figure 4).

Theorem 2.1 ([Val76, LMS16]) Given an EUG1(dnk e − 1) and a k-way supernode SN(k),
there exists an explicit construction of EUG1(n) of size

k · |EUG1(d
n

k
e − 1)|+ dn

k
e · |SN(k)| .

With SN(k) we recursively reduce the problem to itself of smaller sizes, and we just need
an EUG1 of small size, say EUG1(k), at initialization. Note that EUG1(k) is already implied by
and can be extracted from SN(k). In summary, SN(k) can be used to build EUGs of arbitrary
size. We refer to this approach to UC construction (from supernodes) as Valiant’s construction
(or Valiant’s framework) and see Figure 4 for the high-level overview. Clearly, the complexity
of Valiant framework is related to the size of the supernode used, which will be analyzed in the
next subsection.

2.5 Circuit Complexity in Valiant’s Framework

Valiant’s approach to universal circuits remains the most efficient to date, and thus we consider
the complexity of UC and EUG constructed in Valiant’s framework. The following equations are
from Theorem 2.1 and Lemma 2.3:

|EUG2(n)| = 2|EUG1(n)| − n , (2)

4 As a slight abuse of definition, the size of a supernode is different from that of a graph by excluding input
and output nodes. As we will see, it comes in handy when composing the components to build a large EUG and
calculating its size.

5 ini
j (outij) denotes the j-th input (output) of the i-th supernode (denoted by SN(k)i)
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Figure 4: Valiant’s construction of EUG1(n) based on EUG1(dnk e − 1) and SN(k).

|EUG1(n)| = k|EUG1(d
n

k
e − 1)|+ dn

k
e|SN(k)| . (3)

By using recurrence relation above, we get

|EUG2(n)| = 2|SN(k)|
k log k

n log n−O(n) , (4)

|CircuitEUG2(n)| = 2|CircuitSN(k)|
k log k

n log n−O(n) , (5)

where CircuitEUGd(n) denotes the circuit counterpart of EUG2(n) in Equation 4. The size of
UC can be estimated by combining Equation 4 with Lemma 2.1 [Val76]:

|UCgs,t| =
8|SN(k)|
k log k

n log n−O(n),where n = s+ t+ 2g . (6)

Next, we consider depth and from Figure 4 we know:

depth(EUG1(n)) = dn
k
edepth(SN(k)) + (dn

k
e − 1)

=
n

k
(depth(SN(k)) + 1) +O(1) .

(7)

Combining with Lemma 2.3, we have:

depth(UCgs,t) = depth(CircuitEUG1(n))

= dn
k
edepth(CircuitSN(k)) + (dn

k
e − 1)depth(X-switching) .

(8)

The depth of the circuit of SN(k) is 3 × depth(SN(k)) 6 as the X- and Y-switching gates are
both of depth 3 (see Figure 3). Thus, its depth complexity is:

depth(UCgs,t) =
3× depth(SN(k)) + 3

k
n+O(1) . (9)

We summarize in Table 2 known results about the size and depth of supernode and corre-
sponding UCs. As we can see, the size and depth of Valiant’s universal circuits crucially depend
on the respective size and depth of the underlying k-way supernode. This motivates our search
for a smaller supernode for some practical value of k.

6Similar to the size of supernode, we define the depth of SN(k) as the length of the longest path minus 2 (i.e.,
excluding inputs and outputs), denoted by depth(SN(k)).
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Table 2: The known results of UC size and depth.

k Supernode size Supernode
depth

|UCgs,t| depth(UCgs,t)

2-way 5 5 20n log n[Val76] 9n
3-way 12 7 20.19n log n

[GKS17]
8n

Valiant’s 4-way 19 14 19n log n[Val76,
GKS17]

11.25n

Our 4-way 18 13 18n log n 10.5n

3 A New Design of Supernode via Automated Search

In this section, we introduce an automated approach to the design of supernodes. As a main
end result, we get a better 4-way supernode with an overall improvement of more than 5% on
the efficiency of UC constructions and their applications, stated as the theorem below. We refer
to the external link [Zha18b] for a lengthy (computer generated) proof that Figure 1 gives a
4-way supernode, where all effective DAGs are exhausted and their edge-embeddings into the
supernode are provided. As we will show, it is already size optimal (as a 4-way supernode) as
4-way supernodes of size 17 do not exist.

Theorem 3.1 (4-way SN and EUG, revisited) The graph in Figure 1 is a 4-way supern-
ode with 18 nodes (excluding inputs and outputs), which implies an EUG2(n) of size 4.5n log n−
O(n) and depth 3.5n+O(1).

3.1 Construction of Supernodes

While giving constructions of 2-way and 4-way supernodes in his work [Val76], Valiant gave no
details on how the constructions were obtained. Lipmaa et al. [LMS16] formalized and explained
the k-way supernode construction methodology in a modular and intuitive way. As depicted
in the right-hand of Figure 5, a general design of k-way supernode consists of two layers of
permutation-networks (PNs) at both ends and an EUG augmented with k− 1 additional nodes
in between. For k = 4, the size of SN(4) following the general design is

2|PN|+ |EUG1(k)|+ k − 1 = 10 + 7 + 3 = 20 .

Looking back, Valiant’s 4-way supernode can be regarded as an optimized version of the general
design by saving a node from one of the permutation networks (see the comparison in Figure 5).
One might think that by exploiting the symmetry it is possible to save two nodes (one from each
permutation network) to get a 4-way supernode of smaller size (i.e., 18). Unfortunately, this
intuition does not work because the resulting graph would not be a supernode any more, which
was refuted by our supernode testing algorithm (presented in the next subsection). It remained
open if one can construct more size-efficient supernodes. Next we will present an algorithm for
testing whether a graph is supernode or not, and an automated searching algorithm for more
size-efficient supernodes.

3.2 Supernode Test for Graphs

As the first step, we propose a method to check whether a graph (with k inputs, k outputs,
k poles and m common nodes) is a k-way supernode or not. A k-way supernode is an edge-
universal-graph that edge embeds any graph G ∈ DAG1(3k) (see Definition 2.3) and thus it
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Figure 5: A comparison of Valiant’s SN(4) and the general design of SN(k) from [LMS16].

seems necessary to enumerate all G ∈ DAG1(3k). For efficiency, we observe that it suffices to
enumerate over a special type of graph called pole-complete graphs, and the remaining graphs
can be omitted as they are already implied. As we will see in the next section, the notion of
pole-complete graphs will also be useful for proving the lower bound.

Definition 3.1 (Pole-complete Graph) For G = (V,E) ∈ DAG1(3k) with k inputs, k out-
puts, and k poles P1, . . . , Pk that are topologically ordered, we say that G is pole-complete if

1 Every edge of G satisfies the four properties stated in Definition 2.3;

2 For any pole p ∈ {P1, . . . , Pk}, there exist e1 = (v1, v2), e2 = (v3, v4) ∈ E such that v2 = p
and v3 = p.

We denote by Fk the number of all the k-way pole-complete graphs G ∈ DAG1(3k).

Informally, for any G = (V,E) ∈ DAG1(3k) to be edge-embedded into the candidate supernode
(Definition 2.3), we can see G as a set of paths. We call G pole-complete if for each path its
start-node is an input (from {in1, . . . , ink}), the middle-nodes (poles) are topological sorted,
and its end-node is an output. “Pole-complete” means that all the k poles are in the paths.

Lemma 3.1 A graph G0 with k inputs {in1, . . . , ink}, k outputs {out1, . . . , outk}, and k poles
P = {P1, . . . , Pk} is a SN(k) if any pole-complete graph G ∈ DAG1(3k) can be edge-embedded
into G0.

11



Proof. First, we observe that if graph G = (V,E) can be edge-embedded into graph G0, then
so can any subgraph G′ = (V ′, E′) of G since the edge-embedding of G′ is implied by that of
G by ignoring those edges e ∈ E \ E′ (recall E′ ⊂ E). Next, we prove that for any graph
G′ = (V ′, E′) ∈ DAG1(3k) satisfying Definition 2.3 but is not pole-complete, there exists a pole-
complete G ∈ DAG1(3k) such that G′ is a subgraph of G. We construct such G by adding edges
into G′. As mentioned before, G′ ∈ DAG1(3k) can be regarded as a set of several paths. Since
G′ is not pole-complete, there must be one or more isolated poles not in the paths, or there are
one or more paths start (or end) with poles, called starting poles (or ending poles). We put
all isolated poles in a path and add the path to G′. Then, for each starting pole (or ending
pole), we add an edge that connects an isolated input to (or output from) it. Note that we can
always find such isolated input/output nodes as the number of input/output nodes equals to
the number of poles. At last, we construct a supergraph of G′ which is pole-complete. �

We use a depth-first-search algorithm to find an edge-embedding of pole-complete G, and
repeat the process on all pole-complete ones. In a pole-complete graph, the precursor-node
(abbreviated as pre-node) of the first pole P1 should reside in the k inputs, denoted by ini,
and the pre-node of P2 should be in {P1, in1, . . . , ini−1, ini+1, . . . , ink}, with k possibilities as
well. Therefore, the pre-node of every pole each has k different possibilities and there are kk

possibilities to enumerate. Then, we connect inputs and the poles to form several (no greater
than k) paths. Finally, we enumerate the arrangement of outputs for the paths to get the
pole-complete graph G.

3.3 Search for More Size-efficient k-way Supernodes

As given in Definition 2.3, we define the size of a supernode SN(k) as the sum of the numbers
of poles and common nodes and we find it convenient to compute the size of EUG in Valiant’s
framework (see Footnote 4). Thus, the supernode of size n has n+2k nodes (k inputs, k outputs,
k poles and n−k common nodes). To search for SN(k) of size n, we number the nodes in SN(k)
as N1, N2, . . . , Nn+2k with N1, N2, . . . , Nk as inputs, Nn+k+1, Nn+k+2, . . . , Nn+2k as outputs and
Nk+1, Nk+2, . . . , Nn+k as poles and common nodes (collectively referred to as middle nodes).
The idea of searching for a SN(k) of size n is to enumerate the pre-nodes of each node in
the graph, and output if it is a supernode (using the supernode test method from the last
subsection). For example, if the inputs have no pre-nodes, we can just set the k inputs as
isolated nodes at initialization. For a middle node Ni (k < i < n + k + 1), the number of its
pre-nodes can be one (if Ni is a pole) or two (otherwise), so we must consider both possibilities.
Upon the enumeration of Nj as Ni’s pre-node candidate, we should check whether Nj is legal or
not, in particular, if Nj ’s out-degree is 2 or Nj is an input or pole and its out-degree is 1, then
Nj is not a pre-node of Ni (because the SN(k)’s fan-out is 2 and the out-degree of an input or
pole must be 1). This condition for Nj is described as “Nj ’s out-degree is not full” in line 8
and line 18 of Algorithm 3.3. At last, we add the k outputs as the successor nodes of the nodes
whose out-degree is not full. The steps above allow for an automated search over all candidates.
However, the above search is not efficient as it enumerates all candidates, many of which could
have been ruled out from supernode tests. So we add the pruning method to improve efficiency.
After choosing a middle node as the j-th pole, we check whether graph G we construct can be
a part of SN(k) or not, for which we need to enumerate all the DAG1(k+ j) (with k inputs and
j poles, see Definition 2.3) and check whether those DAG1(k + j)s can be edge-embedded into
G or not. We refer to Algorithm 3.3 for the pseudocode of search for supernode SN(k) of size
n, where the pruning method is invoked in line 10.

3.4 New Constructions

We run the automated tool on a PC to search for k-way supernodes. We start with 3-way
supernodes (the case of k = 2 is trivial). The search for SN(3) of size 11 failed, and an outcome

12



Algorithm 1 The search algorithm for SN(k) of size n

Require: k, n
Ensure: All k-way supernodes of size n (if exists)

1: Initialize the graph G
2: ADDNODE(G,k + 1)
3:

4: function Addnode(G, i)
5: if i ≥ k + n then
6: if #(G’s pole)< k then
7: for j = 1→ i− 1 do
8: if Nj ’s outdegree is not full then
9: Addedge(Nj , Ni) to G

10: if G passes the pruning method test then
11: ADDNODE(G,i+ 1)
12: end if
13: end if
14: end for
15: end if
16: for j = 1→ i− 1 do
17: for k = 1→ j − 1 do
18: if (Nj ’s outdgree is not full) and (Nk’s outdgree is not full) then
19: Addedge(Nj , Ni) to G
20: Addedge(Nk, Ni) to G
21: ADDNODE(G, i+ 1)
22: end if
23: end for
24: end for
25: else
26: Add the output nodes for G;
27: if G is a Supernode then
28: output G;
29: end if
30: end if
31: end function

in3

in2

in1
P1 P2 P3

out3

out2

out1

Figure 6: A 3-way supernode that consists of 12 nodes.
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Figure 7: The 4-way split supernode construction from [LMS16], where each green node can be
implemented by a Y-switching gate.

of SN(3) of size 12 is illustrated in Figure 6, which is already known in literature [GKS17].
We proceed to the case k = 4. For the 4-way supernode of size 17, the search exits in a

couple of minutes without any outcome, meaning that no such exist. For the 4-way supernode of
size 18, the search runs in a number of minutes and returns the outcomes 7, which are depicted
in the Figure 1. This beats the best previously known result by Valiant [Val76] of size 19. As a
result, we improve the size of EUG2(n) from 4.75n log n to 4.5n log n (omitting smaller terms).

Moving from k = 4 to k = 5 seems a tiny step. However, for k = 5 the search algorithm is
not terminating due to the substantially higher time complexity. For the 4-way supernode of
size 18, we search for 6859734 candidate graphs (already after pruning) and for each candidate
we should enumerate 5056 DAG1(3×4)s to decide whether it is a supernode or not. That justifies
why it takes several minutes to get the results. Nevertheless, for k = 5 we target at supernodes
of size 26 (any 5-way supernode with size 27 or more yields an EUG2(n) of size greater than
4.5n log n), then the number of candidate graphs grows rapidly to almost 247 , and for each
candidate we need to enumerate about 218 DAG1(3× 5)s, where the product 265 is beyond the
reach of a PC. We did try other methods (e.g. SAT solvers) to improve the efficiency for k = 5.
But the attempt failed due to the difficulty of finding out the SAT formula determining whether
a DAG can be embedded into a supernode candidate or not.

By replacing each common node with an X-switching gate and each pole with a universal
gate, we immediately convert the EUG2(n) to a universal circuit of size 18n log n+O(n) and thus
improve upon the Valiant’s UC of size 19n log n. However, while our UC size seems the same
as 18n log n achieved by Lipmaa et al. [LMS16], their UC construction was based on Valiant’s
supernode and decreased its total number of gates by replacing 4 X-switching gates with 4
Y-switching gates (see Figure 7). In other words, their construction reduces only the number of
XOR gates (and that of AND gates remain the same as [Val76]) and thus the improvement may
not be appreciated by applications such as MPC and PFE with UC, where XOR gates can be
evaluated for free [KS08b]. Further, we can use the same idea from [LMS16] to save some XOR
gates. For example, based on our supernode we change an X-switching gate to Y-switching gate
(the black node in Figure 8), and the size of universal circuit now becomes 17.75n log n+O(n),
which is better than [LMS16].

At last, our 4-way UCs are also shallower than the counterparts in literature [Val76, LMS16].
The depth of Valiant’s SN(4) is 14 but ours is 13. From Equation 7 and Equation 9, we know
that the depth of the EUG (resp. UC) based on our 4-way supernode is 3.5n (resp. 10.5n),
which is better than (and improves by 6.67%) Valiant’s 3.75n (resp. 11.25n). However, if one
only cares about depth, then he would just use 3-way supernode of depth 7 (see Figure 6) to
get a UC of depth 8n. Otherwise said, the depth improvement on 4-way UC is considered as a
by-product (instead of a main advantage) of our UC construction.

7The search algorithm outputs a few hundred of outcomes many of which are isomorphic to each other, but
our verification is by hand and is certainly not exhaustive.
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Figure 8: Our 4-way supernode can be improved (in the sense of circuit size) by replacing an
X-switching gate with a Y-Switching gate at the black node.

Table 3: A comparison (in terms of the number of AND gates) of the (Kiss et al.’s 2-way,
Günther et al.’s 4-way and hybrid, and our 4-way) UC implementations to simulate sample
circuits from [TS15].

Circuit n = g + s 2-way UC[KS16] 4-way UC [GKS17] Hybrid UC[GKS17] Our 4-way UC

Credit Checking 82 1.50 · 103 1.51 · 103 1.49 · 103 1.50 · 103

Mobile Code 160 3.65 · 103 3.88 · 103 3.61 · 103 3.82 · 103

ADD-32 342 9.58 · 103 9.55 · 103 9.44 · 103 9.30 · 103

MULT-32X32 12202 6.54 · 105 6.50 · 105 6.35 · 105 6.24 · 105

AES-exp 38518 2.39 · 106 2.38 · 106 2.31 · 106 2.27 · 106

DES-exp 32207 1.98 · 106 1.94 · 106 1.90 · 106 1.87 · 106

SHA-256 201206 1.49 · 107 1.46 · 107 1.44 · 107 1.39 · 107

3.5 Implementation and Performance Evaluation

As we mentioned before, the universal circuits based on our 4-way supernode have smaller
circuit size than other constructions especially for large n (when emulating large-size circuits).
We implement our 4-way construction [Zha18a] and compare it with the implementations of
Valiant’s 2-way [KS16], 4-way and their hybrid [GKS17]. Table 3 evaluates the performances
based on circuits of basic functions suitable for MPC and FHE, provided by Tillich and Smart
[TS15]. In particular, Table 3 compares the number of AND gates in our universal circuits with
other works8, where our work is tabulated in the last column of Table 3 and the statistics of
other works are picked from [GKS17, Table 5].

As seen from Table 3, our construction has no advantage over (and is even worse than) the
implementations of Kiss et al.s and Günther et al.’s for small circuits (n up to up to a few
hundreds). But with the growth of circuit size, our construction starts to outperform the rest
by a few percentage points. Curiously, in the case of SHA-256, the number of AND gates in our
4-way universal circuit is about 1.39 · 107 and Valiant’ 4-way is 1.46 · 107. Their ratio is about
0.952, which is very close to 18/19 and therefore confirms our analysis that the constant factor
(in the of number of AND gates, as well as the size of the EUG) has been improved from 4.75
to 4.5. Even taking into consideration the optimization (e.g., using the hybrid of 2-way and
4-way) [GKS17], our construction still has its advantage [AGKS19].

4 A Lower Bound on Circuit Size in Valiant’s Framework

Our search algorithm is intended for arbitrary k-way supernodes, but the time complexity is
too large to be practical for k ≥ 5. In this section, we aim to find a lower bound (for all k’s) on
the size of Valiant’s EUG (and UC), which is in turn based on that of the supernode.

8Recall that the number of AND gates of Lipmaa et al.’s circuits (Fig 7) remains the same with Valiant’s
4-way construction since it saves only XOR gates, so the comparison does not include the Lipmaa et al.’s work.
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4.1 A Generic Lower Bound on Circuit Size

Valiant showed a generic bound Ω(n log n) to argue the asymptotic optimality of his construction
[Val76], where constant behind Ω could be extracted from Wegener’s book [Weg87, Theorem
8.1] by carefully checking its (somewhat nested) proof. We mention that this could be seen
directly from a counting argument which we informally sketch below (and stress that it is not
a proof and refer to [Weg87] for formal details). That is, consider an arbitrary Cgs,t with inputs
and gates topologically sorted (inputs followed by gates), i.e., in1, · · · , inn, gs+1, · · · , gn=s+g,
and assume that they are c different symmetric gates (e.g., XOR and AND) of fan-in 2. Then,
for each gi (i > s) there are

(
i−1
2

)
choices of inputs and therefore the logarithm of the cardinality:

log |Cgs,t| ≥ log
((n!)2 · ( c2)n−s

n!

)
= n log n−O(n) ,

where the n! in the denominator accounts for that the topological sorting of inputs and gates are
not unique (but up to the permutation of the nodes). Finally, the input length of the universal
circuit is lower bounded by log |Cgs,t| and so is the size of UC. Apparently, there are some loose
steps, such as the order of gates cannot be arbitrarily permuted but this does not affect the
lower bound by a factor of more than 2. A major lossy step is that we only require the size of
the UC (of fan-in 2) to be at least the same as that of the input (in order for every input to
contribute to the output the UC must be a connected DAG). In fact, a UC would need much
more gates than its inputs to accomplish the simulation, and therefore additional knowledge
about a specific UC framework could be helpful to improve this generic bound.

There remains a substantial gap between the constant factor in the generic (not specific to
Valiant’s UC framework) lower bound (i.e., 1) and that of known constructions (19 for Valiant’s
UC [Val76] and reduced to 18 in this work). Further, the generic bound sheds no light on the
lower bound on the size of Valiant’s EUG. Motivated by that most existing UCs are constructed
under Valiant’s framework, we aim to find a better (much lifted) lower bound on the size of
EUG (and UC) in Valiant’s framework.

4.2 Size of k-way Supernode

Recall that sizes of EUG and UC can both be based on that of the supernode (see Equation 4
and Equation 6 reproduced below):

|EUG2(n)| = 2|SN(k)|
k log k

n log n−O(n) ,

|UCgs,t| =
8|SN(k)|
k log k

n log n−O(n) ,

where the smaller term O(n) is often omitted. Thus, our task is to lower bound 2|SN(k)|
k log k by some

constant. Recall that Fk denotes the number of all the k-way pole-complete graphs (Definition
3.1). We use the following lemma to reduce our task to the approximation of Fk.

Lemma 4.1 |SN(k)| ≥ dlog(Fk) + ke.

Proof.
Every pole-complete graph G can be configured (by setting the control bits) to be edge-

embedded into SN(k), and the common nodes should be switching gates. Therefore, for an
SN(k) we need set the control bits of its |SN(k)|−k common nodes to cater for all pole-complete
graphs (amount to Fk), i.e., 2|SN(k)|−k ≥ Fk, where |SN(k)| is an integer. This completes the
proof. �

|EUG2(n)| = 2|SN(k)|
k log k n log n−O(n) ≥ 2dlog(Fk)+ke

k log k n log n−O(n)

Our next job is to lower bound g(k)
def
= 2dlog(Fk)+ke

k log k as a function of k ∈ N+.

16



Table 4: The values of dlog(Fk) + ke and g(k) for k < 100.
k 2 3 4 5 . . . 68 69 70 . . . 98 99

dlog(Fk) + ke 5 11 17 23 . . . 755 768 782 . . . 1182 1197

g(k) = 2dlog(Fk)+ke
k log k 5 4.63 4.25 3.96 . . . 3.6478 3.6442 3.6453 . . . 3.6468 3.6477

4.3 A Guess for the Constant Factor

In order to lower bound g(k), it would be ideal to give an approximation of Fk and then take
the minimum over all k’s. However, a general closed-form expression for Fk seems difficult. We
further define Ai,k in Definition 4.1 and give the relation between Fk and Ai,k in Lemma 4.2.
We also provide a recursion formula for Ai,k in Lemma 4.3, which facilitates the computation
of Ai,k (by dynamic programming) for small values of i and k. With the above, we are able to
compute g(k) for k up to a few thousand (see Table 4 for values when k < 100). Based on the
values computed, we have the guess that g(k) > 3.644, where g(k) is monotonically decreasing
for k ≤ 69 and monotonically increasing for k ≥ 69 with minimum g(k) ≈ 3.6442 achieved at
k = 69. The former (monotonic decreasing) statement is verified by computing all g(k) for all
k ≤ 69 and a proof of the latter (monotonic increasing) is deferred to the next subsection.

Definition 4.1 Let Ai,k denote the number of ways to spread k different balls into i (i ≤ k)
identical boxes with the condition that no boxes are empty.

Lemma 4.2 Fk =
∑k

i=1(
k!

(k−i)!)
2Ai,k.

Proof. If G = (V,E) ∈ DAG1(3k) is a k-way pole-complete graph, by Definition 3.1, we know
that G can be regarded as a set of paths. It remains to sum up the numbers of pole-complete
graphs for 1 ≤ i ≤ k paths: the number of ways to “put” k poles into i paths is Ai,k by Definition
4.1, and there are k!

(k−i)! ways to link i start-nodes (resp., end-nodes) to k inputs (resp., outputs)

for these paths. Thus, ( k!
(k−i)!)

2Ai,k different pole-complete graphs for each value of i and we

sum up (for i = 1 to i = k) to get the final result. �

Lemma 4.3 1. A1,k = 1, ∀k ∈ N+;

2. Ai,k =
∑k−i

j=0

(
k−1
j

)
Ai−1,k−j−1.

Proof. The first statement is trivial and we just need to prove the second one. Recall that in
Definition 4.1 balls are all distinct while boxes are identical. We assume WLOG that ball #1
is in box #1, and let j be the number of other balls (in addition to ball #1) in box #1, where
j ≤ k− i is required to make sure that no boxes are empty. After choosing these j balls (

(
k−1
j

)
different choices), it remains to put the rest k− j−1 balls into the remaining i−1 boxes, which
can be done in Ai−1,k−j−1 different ways by definition. �

We compute the values of g(k) and other functions of k for k up to a few thousand, and
list only partial results (up to k = 99) in Table 4 due to lack of space, from which we guess
g(k) > 3.644 (recall that g(69) is actually greater than 3.644). Note that it is tight at k = 2
(g(2) = 5) but not tight at k = 4 as g(4)=4.25 but the constant factor of our size optimal UC
is 4.5.

4.4 The Lower Bound

We proceed to the proof of g(k) = 2dlog(Fk)+ke
k log k > 3.644 for k ≥ 69. We give its proof in

Lemma 4.4 but only for k ≥ 1478, and gap (values of g(k) for 70 ≤ k ≤ 1477) is verified
by computer. Note that there is nothing special with 1478, which is attributed to the loss of
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Figure 9: The graph of h(k) as a function of k.

tightness by some inequality applied in its proof (such that 3.644 can only be obtained when
k = 1478 in the right-hand of the inequality).

Lemma 4.4 g(k) = 2dlog(Fk)+ke
k log k > 3.644 for all k ≥ 1478.

Proof. From Lemma 4.2, we have

Fk =
k∑
i=1

(
k!

(k − i)!
)2Ai,k ≥

k∑
i=k−1

(
k!

(k − i)!
)2Ai,k = (Ak−1,k +Ak,k)(k!)2 ,

and Ak,k = 1, Ak−1,k =
(
k
2

)
= (k−1)k

2 (Definition 4.1). Thus, Fk ≥ ( (k−1)k2 + 1)(k!)2. It follows

from Stirling’s formula k! ≥
√

2πk(ke )k that

Fk ≥ (2πk)
((k − 1)k

2
+ 1
)(k

e

)2k

,

and therefore

g(k) ≥ 2 log(Fk) + k

k log k
≥

2 log(πk((k − 1)k + 2)(ke )2k) + k

k log k

= 4− (4 log e− 1)k − log(πk((k − 1)k + 2))

k log k

def
= h(k) ,

where by taking the derivative we know that h(k) in the right-hand is monotonically increasing
for k ≥ 2, as also visualized in Figure 9, and the conclusion follows by finding the threshold T
such that h(k) ≥ h(T ) ≈ 3.644 for all k ≥ T . By enumeration we find out T = 1478. Recall
that values of g(k) for 70 ≤ k ≤ 1477 have been verified by computer. �

Combining Equation 4, Lemma 4.1 and Lemma 4.4, we have the following theorem:

Theorem 4.1 We have the following lower bound on the size of EUG2(n):

|EUG2(n)| > 3.644n log n ,

for all sufficiently large n.
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5 Concluding remarks

We revisit Valiant’s graph theoretic approach to the construction of universal circuits, and show
that its supernode can be improved in both size and depth, which yields more efficient universal
circuits (with a more than 5% improvement). We give a lower bound on the size of UC to
complement our explicit constructions, which reduces the gap between theory and practice of
UCs.
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A Proofs omitted in the main body

A.1 Proof of Theorem 2.1

To prove the graph in Figure 4 is an EUG1(n), we need to prove that any DAG1(n) = (V,E) can
be edge-embedded into it. At first, we sort the nodes of a given DAG1(n) in their topological
order: V1, V2, . . . , Vn. And the edge-embed mapping % can be defined as: %(Vi) is the i-th pole of
the supernodes from top to bottom, or formally, the (imod k)-th pole of SN(k)d i

k
e. For each node

Vi in the DAG1(n), it may have a precursor-node (denote by V pre
i ) and a successor-node (denote

by V suc
i ). Then we assign the [Vi]in-th input and the [Vi]out-th output of SN(k)d i

k
e ( in

d i
k
e

[Vi]in

and out
d i
k
e

[Vi]out
) to Vi to make sure that [Vi]in = [V pre

i ]out, [Vi]out = [V suc
i ]in and no inputs and

outputs of supernodes are reused. The method for assignment can be find in [GKS17]. At last,
for every edge (Vi, Vj) ∈ E (i < j due to the topological sorting), we give an edge-disjoint path
from %(Vi) to %(Vj) as follow. Due to V suc

i = Vj and V pre
j = Vi, we know that [Vi]out = [Vj ]in,

which means out
d i
k
e

[Vi]out
and in

d j
k
e

[Vj ]in
are both in the edge-universal graph: EUG1(dnk e−1)[Vi]out , so

there is an edge-disjoint path from out
d i
k
e

[Vi]out
to in

d j
k
e

[Vj ]in
. As SN(k)d i

k
e is a supernode, there must

be a edge-disjoint path from %(Vi) to out
d i
k
e

[Vi]out
. Similarly, the edge-disjoint path from in

d j
k
e

[Vj ]in
to

%(Vi) can also be found. We connect these three paths to complete edge-embedding.
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