
The Landscape of Optimal Card-based Protocols

Alexander Koch

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
alexander.koch@kit.edu

Abstract. In the area of card-based cryptography one devises small and
easy to perform protocols for secure multiparty computation using a deck
of physical playing cards with indistinguishable backs, which can be run
if no trusted computer is available, or in classroom settings to illustrate
privacy notions and secure computations.
Initiated by the “Five-Card Trick” of den Boer (EUROCRYPT 1989) for
computing the AND of two players’ bits, and the work of Crépeau and
Kilian (CRYPTO 1993) introducing committed format protocols which
can be used as building blocks in larger computations, this is a field
with a growing number of simple protocols. This paper devises two new
AND protocols which are card-minimal w.r.t. specific requirements, and
shows the card-minimality of the COPY protocol (necessary in arbitrary
circuits, due to the physical nature of card-encoded bits) of Mizuki and
Sone (FAW 2009) and the AND protocol of Abe et al. (APKC 2018). By
this, we completely determine the landscape of card-minimal protocols
with respect to runtime requirements (finite runtime or Las Vegas be-
havior with/without restarts) and practicality demands on the shuffling
operations.
Moreover, we systematize and extend techniques for proving lower bounds
on the number of cards, which we believe is of independent interest.

Keywords: Card-based protocols · Secure computation · AND · COPY ·
Committed format · Cryptography without computers

1 Introduction

One of the main achievements of modern cryptography is definitively the invention
of secure multiparty computation (MPC), which has become quite practicable in
recent years due to techniques such as precomputation. While the world is full of
opportunities where MPC would pose an elegant and more secure solution to
a practical problem, it remains largely unknown outside of the cryptographic
community. Hence, there is some impetus to us as a community to present our
cryptographic toolset more to the outside world, to practitioners.

Here, card-based cryptography, which implements MPC with just a couple of
playing cards of two colors, ♥ and ♣, and indistinguishable backs, allows to clearly
communicate the underlying ideas to non-experts and a general science-interested
audience. This appeal has motivated researchers to come up with simple and
elegant protocols for the basic building blocks, namely for computing the AND

of two players’ bits, and producing, from a card-encoding of a bit, multiple card
pairs encoding the same bit, here called COPY protocols. Because of the physical
nature of the cards, and because negating a bit is very easy, these protocols are
sufficient and necessary to compute any circuit.

Oftentimes, e.g. in didactic contexts, only a very simple operation, such as
a single AND is needed. An example is the dating problem, where two players
would like to determine whether there is mutual interest (an AND on whether
a person likes the other), without leaking anything about their answers, if the
interest is one-sided only. For really using or explaining card-based cryptography
it is hence good to know which the best (card-minimal) protocol to use are –
depending of course on your needs.

For example, if you want to run an AND protocol that terminates after a
certain number of steps, and want to use only natural shuffles, which permute the
cards according to a permutation subgroup with a uniform distribution, called
uniform closed shuffles in the following, then you need six cards, and the protocol
by Mizuki and Sone [MS09] would be the natural choice. Let us give a short
informal description of the protocol to understand the aims and functioning of
typical card-based protocols.

We start by giving both Alice and Bob two cards, one of each color (♥ and ♣).
Then, the players secretly input their bits via the order of the two cards. Here,
face-down cards in order ♥♣ encode a 1, and the reverse order ♣♥ encodes a
0. The protocol needs two additional helping cards, encoding a 0, that are put
face-down next to the cards of the players. Hence, at the start of the protocol,
we are in one of the following configurations:

♥ ♣︸︷︷︸
a=1

♥ ♣︸︷︷︸
b=1

♣ ♥︸︷︷︸
0

/ ♥ ♣︸︷︷︸
a=1

♣ ♥︸︷︷︸
b=0

♣ ♥︸︷︷︸
0

/ ♣ ♥︸︷︷︸
a=0

♥ ♣︸︷︷︸
b=1

♣ ♥︸︷︷︸
0

/ ♣ ♥︸︷︷︸
a=0

♣ ♥︸︷︷︸
b=0

♣ ♥︸︷︷︸
0

Now, let us note that a ∧ b is equivalent to “if a then b else 0”. If we would
not care about privacy, we could therefore turn over Alice’s cards and if they
show ♥ ♣ = 1, then the result is encoded by Bob’s cards (at positions 3, 4), and
otherwise by the two helping cards encoding a 0 (at positions 5, 6). But privacy
requires us to mask Alice’s bit first.

Observe that a ∧ b is also equivalent to “if ¬a then 0 else b”, i.e. we inverted
the bit of a and exchanged the two branches of the if-statement. We can do so
also with the cards, by swapping Alice’s cards and exchanging Bob’s cards with
the two helping cards, ending in a configuration as follows:

♣ ♥︸︷︷︸
¬a=0

♣ ♥︸︷︷︸
0

♥ ♣︸︷︷︸
b=1

/ ♣ ♥︸︷︷︸
¬a=0

♣ ♥︸︷︷︸
0

♣ ♥︸︷︷︸
b=0

/ ♥ ♣︸︷︷︸
¬a=1

♣ ♥︸︷︷︸
0

♥ ♣︸︷︷︸
b=1

/ ♥ ♣︸︷︷︸
¬a=1

♣ ♥︸︷︷︸
0

♣ ♥︸︷︷︸
b=0

This operation is specified by the permutation (1 2)(3 5)(4 6), mapping 1 7→
2, 2 7→ 1, 3 7→ 5, 5 7→ 3, 4 7→ 6, 6 7→ 4. Hence applying a shuffle on the cards,
which perform the said permutation with probability 1/2 and leave the cards as
is otherwise, effectively randomizes the order of the first two cards, which can
therefore be turned over without leaking Alice’s secret bit. The result is then
under the cards as specified above. Because the helping cards and Bob’s cards

2

are indistinguishable, you also cannot tell which of the two is at the specified
output positions.

Interestingly, this shuffle operation can be performed by a random bisection cut,
which puts the cards evenly in two groups and exchanges them with probability
1/2, as specified in [MS09]. Formally, it is modeled as an operation specified by a
permutation set Π = {id, (1 2)(3 5)(4 6)}, where id is the identity permutation
which does nothing to the cards, and a probability distribution F on Π, such
that a permutation from Π is drawn via F and obliviously applied to the cards.

The random bisection cut has two features which make it particularly easy
to implement, namely that F is the uniform distribution on Π, and that Π
is a permutation group. We call such shuffles uniform and closed, respectively.
Both properties are usually wanted from a protocol, hence it is natural to ask
for lower bounds on cards for AND not only in general, but also when protocols
are restricted to uniform closed shuffling operations. This has first been done in
[KKW+17] for finite-runtime closed shuffle AND protocols.

While finite-runtime shuffle-restricted AND protocols are already well under-
stood w.r.t. their minimal number of cards, respective lower bounds in shuffle-
restricted COPY protocols have so far been unexplored. This is also because
COPY protocols are difficult to analyze: there are (2n + 1)! permutations on
2n+ 1 cards, hence you really need to understand the underlying structure and
cannot explore by just trying out some combinations and generalize from there.
By giving a systematic approach to impossibility proofs, this work gets around
these problems. We show that no closed shuffle protocol can go with less than
2n+ 2 cards, even if we allow Las Vegas behavior with restarts and non-uniform
shuffles. This completely tightens all bounds w.r.t. the runtime (finite-runtime,
Las Vegas with/without restarts) and shuffle parameters. This is our main result.

Additionally, we derive tight lower bounds on the number of cards for AND
protocols in refined settings. As a motivation for this note that for a nice quick
demonstration of a single shot committed-format AND in front of the class, using
exactly four cards is aesthetically most pleasing, as you can go without any
helper cards. In this case you probably care about nice implementability of the
shuffles, but not very much about the runtime behavior. For example, it might be
acceptable to have a small probability of restarting the whole protocol, including
reinserting the inputs. In this setting it would be interesting to know whether
there is a four-card protocol. We show that the contrary is true, namely that you
need five cards, even if restarts are allowed. This shows that the recent protocol
of Abe et al. [AHMS18] is card-minimal for AND protocols restricted to uniform
closed shuffles.

Beside answering these questions, we systematize and strengthen the toolset
of impossibility proofs on card-based protocols. Apart from the more simple
setting of [KKW+17, Sect. 8], this paper contains the first impossibility proof
that takes into account restarts. Hence, we also show some useful properties
for protocols in this setting. Note however that in general restarting protocols
are very impractical for larger composed protocols, as a failure would mean
that you have to rerun the larger protocol. Nevertheless, we believe that our

3

Table 1: Minimum number of cards required by committed format AND and
n-COPY protocols, subject to the requirements specified in the first two columns.
The second column specifies shuffle restrictions. See also Fig. 6.
Runtime Shuffle Restr. #Cards Protocol Lower Bound

AND Protocols:

restart-free LV closed 4 [KWH15, Sect. 4] – (trivial)
restart-free LV uniform 4 Theorem 3 – (trivial)
restarting LV uniform closed }

5 [AHMS18, Sect. 2] Theorem 2 (generalizes
[KKW+17, Sect. 7])restart-free LV uniform closed

finite runtime – }
5 Theorem 4 [KWH15, Sect. 6]finite runtime uniform

finite runtime closed }
6 [MS09, Sect. 3] [KKW+17, Sect. 6]finite runtime uniform closed

COPY Protocols:

restarting LV – }
2n + 1 [NNH+18, Sect. 5] [KKW+17, Sect. 8]restart-free LV uniform

restarting LV closed }
2n + 2 [MS09, Sect. 5] Theorem 1,

[KKW+17, Sect. 9]finite runtime –
finite runtime uniform closed

systematization also helps to prove lower bounds on protocols for more complex
(e.g., three-input majority, [NMS13]) or even arbitrary n-ary boolean functions.
For the latter, e.g., [NHMS15] provides protocols using 2n+ 6 and 2n+ 2 cards
for arbitrary and symmetric n-ary boolean functions, respectively, in the finite
runtime, uniform closed shuffle setting.

On the positive side, we tweak two AND protocols from the literature to
have better properties with regard to their shuffles, completing the search for
tight bounds also for AND protocols. Furthermore, we believe that there is also a
purely theoretical motivation to get the table filled with tight bounds only.

Contribution. In this paper, we

– introduce a backwards calculus on sets of states which allows to more system-
atically prove lower bounds on the number of cards in card-based protocols.
For this, we provide some useful properties of the defined notions.

– give two new protocols which are optimal w.r.t. their parameters. More
precisely, we specify a five-card finite-runtime and a four-card restart-free
Las Vegas AND protocol which use only uniform (non-closed) shuffles. (Note
that these are variations of the protocols from [KWH15].)

– We prove that five cards are necessary for AND protocols restricted to uniform
closed shuffles, even if it is allowed to restart. This bound is tight due to
[AHMS18].

– We prove that 2n + 2 cards are necessary for producing n copies of a bit,
when restricted to closed shuffles. This bound is tight due to [MS09].

4

Hence, in summary this paper can be seen as the remaining puzzle piece for
tight bounds on the number of cards for AND and COPY protocols w.r.t. all the
interesting parameters: runtime (finite runtime, restart-free Las Vegas, restarting
Las Vegas), shuffle uniformity and closedness. For comparison, see Table 1.

Concurrent and Independent Related Work. Very recently, Ruangwises
and Itoh [RI18] posted (equivalent versions of) the two uniform AND protocols
from Section 6 on arXiv. This constitutes concurrent and independent work.

Outline. In Section 2 we introduce the necessary notions for card-based cryp-
tography, including protocol trees. As an important analysis tool, we define our
“backwards calculus” on state sets in Section 3. We use this to prove a lower
bound of 2n + 2 cards for n-COPY protocols with closed shuffles in Section 4.
We provide a proof that five cards are necessary for AND with uniform closed
shuffles, even if we allow restarts, in Section 5. Moreover, Section 6 gives two
AND protocols, which are card-minimal with respect to a restriction to uniform
shuffles and to different runtime requirements.

Notation. In the paper we use the following notation.

– Permutations. Sn denotes the symmetric group on {1, . . . , n}. For elements
x1, . . . , xk ∈ {1, . . . , n} the cycle (x1 x2 . . . xk) is the cyclic permutation
π with π(xi) = xi+1 for 1 ≤ i < k, π(xk) = x1 and π(x) = x for all x not
occurring in the cycle. Every permutation can be written as a composition of
pairwise disjoint cycles. For example, (1 2 3)(4 5) maps elements as follows:
1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 5, 5 7→ 4.

– For a sequence x, let x[i] denote its i-th entry.

2 Preliminaries

Card-based protocols operate on a deck of cards, which is specified by a multiset
D of symbols from {♥,♣}. As in the informal description of the six-card AND
protocol, we have essentially four operations, namely we can i) look under cards,
learning their hidden symbols, ii) deterministically permute the cards on the
table, iii) shuffle the cards in some controlled way to introduce randomness and
obscure which card is which, and iv) terminate with a list of card positions which
specify the output of the protocol. For completeness, we consider one additional
operation, namely v) a restart which can help in cases where the protocol run
hits some unwanted cases where we cannot evaluate to the end result any longer.
Protocols using this operation are necessary Las Vegas and prompt the user for
the input bits again, which makes them relatively impractical.

For introducing the computational model more formally, we make use of an
equivalence of card-based protocols as defined in [MS14; MS17] to state trees of
[KWH15] (also called KWH trees), due to Kastner et al. [KKW+17, Sections 3,
4]. See the latter reference for a more thorough explanation.

5

Hence, a protocol is given by a tree, where the nodes are the possible states
of a protocol. The states are enriched in that they contain which of the card
sequences are possible at that time of the protocol run, with an annotation of the
symbolic probability of the sequence in terms of the probabilities for the protocol
inputs. More formally, for each possible input i ∈ {0, 1}k to a k-ary function that
is computed by the protocol, we have a variable Xi which encodes the symbolic
probability that i was the input to the protocol. The state is then given by a map
µ from the set of sequences on the deck D to certain polynomials with variables
in Xi, for all inputs i ∈ {0, 1}k.

As a reference, see the tree of the six-card AND protocol in Fig. 1. The state
tree is directed, with annotations at the outgoing edges of the state, specifying
the action that is performed next. These are defined next. Here, let µ be the
state with the outgoing annotation:

i. (turn, T) branches the tree into states µv for each observation v possible
by looking under the cards at positions from the set T ⊆ {1, . . . , |D|}. µv
contains the sequences from µ which are compatible with the observation
v. For each sequence s compatible with v, we have µv(s) = µ(s)/ρ, where
ρ ∈ [0, 1] is the probability of observing ρ.

ii. (perm, π) just permutes the sequences of the state according to π. Formally,
this is defined via (shuffle, {π}), as described next.

iii. (shuffle, Π,F) leads to a state µ′ given by µ′(s′) =
∑
π∈Π F(π) · µ(π−1(s′)),

where Π is a set of permutations from S|D|, and F is a probability distribution
on Π. If the distribution F is not specified, it is assumed to be the uniform
distribution on Π.

iv. (result, p1, . . . , pr) halts the protocol and specifies that the output is at card
positions p1, . . . , pr.

v. (restart) restarts the protocol.

We want to specify what it means for a protocol to compute a Boolean
function. For this, we say that two (face-down) cards of symbols ♥ and ♣
represent a commitment to 1, if they are in order ♥♣, and 0 otherwise. We
extend this to sequences x = (x1, . . . , x2k) as follows: x encodes a bit string
b ∈ {0, 1}k, if x2i−1 x2i represents b[i] for all 1 ≤ i ≤ k. Then, our protocol
computes a function f : {0, 1}k → {0, 1}`, k, ` ∈ N, if the deck D is a superset of
[max(k, `) · ♥,max(k, `) · ♣], the start state (root of the tree) contains sequences
for/encoding each b ∈ {0, 1}k in the first 2k cards (the remaining cards being
independent of b), and in the leaf nodes of the protocol for the positions given
by the result operation, we have that these encode a value o ∈ {0, 1}` if all Xi

occurring in µ(s) for the sequence s it holds that f(i) = o (Correctness).
The protocol is secure if at any turn operation, the probability for each

observation v sums to a constant ρ ∈ [0, 1] (using
∑
i∈{0,1}k Xi = 1). This is

equivalent to the usual definition of hiding both input and output from any
observations you make during the protocol run, due to [KKW+17]. The security
condition effectively states that for any turn operation in the tree, the state
before the turn needs to be turnable at that position. For a state µ and an index

6

♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10

♣♥♥♣♣♥ X01

♣♥♣♥♣♥ X00

♥♣♥♣♣♥ 1/2X11

♣♥♣♥♥♣ 1/2X11

♥♣♣♥♣♥ 1/2X10 + 1/2X00

♣♥♣♥♣♥ 1/2X10 + 1/2X00

♣♥♥♣♣♥ 1/2X01

♥♣♣♥♥♣ 1/2X01

(shuffle, {id, (1 2)(3 5)(4 6)})

♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10 +X00

♥♣♣♥♥♣ X01

♣♥♣♥♥♣ X11

♣♥♣♥♣♥ X10 +X00

♣♥♥♣♣♥ X01

(turn, {1, 2})
♥♣???? ♣♥????

(result, 3, 4)

X
(result, 5, 6)

X

Fig. 1: The six-card AND protocol from [MS09].

j ∈ {1, . . . , |D|}, this can be defined more formally as follows: for any c ∈ D,
there is a constant ρ ∈ (0, 1], such that

∑
s with s[j] = c

µ(s) = ρ
∑

i∈{0,1}k

Xi.

We say that the protocol has finite runtime if the protocol tree is finite. A
protocol is a Las Vegas protocol, if it is not finite runtime, but the expected
length of any path in its tree is finite. It is restart-free if it does not contain any
restart operations, and restarting otherwise. We take the liberty of drawing edges
to earlier states if the protocol tree is self-similar, as in Fig. 4.

For searching protocols, it is useful to note that deterministically permuting
does not lead to an essentially new state, hence we want to identify states that
are just a permuted version of each other. We call these (reduced) states similar.
If one interprets a state as a matrix of symbols with annotated rows (as displayed
in the state trees), states are similar, if there is a permutation on the columns
mapping one state to the other.

Reduced State Trees. As in [KKW+17, Definition 3] we can define reduced
states, where states are not annotated by their symbolic probabilities, but by the
result that is specified by their inputs. This is to simplify impossibility results,
as reducing information allows us to make sense of which types of states are
reachable without caring about the exact probabilities, and it actually makes the

7

search space of (reachable) states finite. Any such reduced tree captures only a
weak form of security, namely possibilistic security, where each output (reachable
in principle) needs to be still possible. Showing that a protocol is impossible even
in this weak setting implies its general impossibility. This is the general strategy
which we pursue for our impossibility proofs.

Here, to obtain a reduced state tree, we project all the symbolic probabilities
of the sequences in a state tree to a type (representing the possible future output
associated with the sequence in a correct protocol, see below), which can be
any o ∈ {0, 1}` and also ⊥ if no clear output can be generated. For this, let
P be a protocol computing a function f : {0, 1}k → {0, 1}` and µ is a state in
the state tree. For any sequence s with µ(s) being a polynomial with positive
coefficients for the variables Xb1 , . . . , Xbi

(i ≥ 1), set µ̂(s) = o ∈ {0, 1}` if
o = f(b1) = f(b2) = . . . = f(bi) in the resulting reduced state µ̂. If there are b, b′
with positive coefficients for variables Xb, Xb′ which do not evaluate to the same
output under f , i.e. f(b) 6= f(b′), set µ̂(s) = ⊥. We call sequences in µ̂ according
to their type o-sequences or ⊥-sequences. Alternatively, we say they are of type o
or of type ⊥, respectively. As no ambiguities can arise, the 1`- and 0`-sequences
of COPY protocols are additionally called 1- and 0-sequences, respectively.

Note that turnability of a position i in a reduced state µ̂ of a possibilistically
secure protocol is defined as follows: For each symbol c ∈ D occurring in column
i, among sequences with s[i] = c an r-sequence for all r ∈ {0, 1}` in the image of
the function computed by the protocol, or a ⊥-sequence. This essentially means
that all outputs are still possible, hence captures what we mean by possibilistic
(output) security.

Semi-reduced States and their Partitions. In this paper, we introduce a
new representation, which is an intermediate between states and reduced states,
but captures the distinctness of sequence probabilities that is not contained in
(fully) reduced states. We make use of this additional information in impossibility
proofs for protocols which are restricted to (uniform) closed shuffles. As an
intermediary step, we need to introduce partitions of a state. We refer the reader
to Fig. 2 for an example and illustration of what our definitions in this section
aim at.

A partition P (µ) of a state µ arises by putting all sequences of the state into
the same set, which evaluate to the same symbolic probability. (More formally, it
arises from the equivalence relation of having the same µ(·) value). Moreover, a
type partition T (µ) of µ is defined similarly, putting all sequences of the same
type (i.e. the associated output value or a ⊥-symbol) into a set.
Example 1. The state of Fig. 2 (left), let us call it µ, has a partition

P (µ) = {{♥♥♣♣,♥♣♥♣}, {♣♥♥♣,♥♣♣♥}, {♣♥♣♥,♣♣♥♥}}
(which is also encoded in its semi-reduced representation as exactly the sequences
with the same annotation end up in a common set of the partition), and a type
partition

T (µ) = {{♥♥♣♣,♥♣♥♣}, {♣♥♥♣,♥♣♣♥,♣♥♣♥,♣♣♥♥}}.

8

♥♥♣♣ 1/2X11
♥♣♥♣ 1/2X11
♣♥♥♣ 1/2X10 + 1/2X01
♥♣♣♥ 1/2X10 + 1/2X01
♣♥♣♥ 1/2X00
♣♣♥♥ 1/2X00

♥♥♣♣ 11
♥♣♥♣ 11
♣♥♥♣ 01
♥♣♣♥ 01
♣♥♣♥ 02
♣♣♥♥ 02

♥♥♣♣ 1
♥♣♥♣ 1
♣♥♥♣ 0
♥♣♣♥ 0
♣♥♣♥ 0
♣♣♥♥ 0

Fig. 2: A state from Fig. 4 given in three forms. Left: the full (non-reduced)
form, middle: its semi-reduced form, where the four 0-sequences are divided into
two parts because they are assigned distinct symbolic probabilities, and right:
its reduced form, which no longer carries the information about these distinct
probabilities. The state is turnable at the second position.

We aim to represent the partition P (µ) of a state in its semi-reduced form. For
this, we introduce as many copies of types as there are partitions with sequences
of this type, and add a subscript from N to distinguish these, cf. Fig. 2 (middle).
(If there is only one partition of a type, we nevertheless give it the subscript 1).
The concrete order of these subscripts will be irrelevant for our purposes.

This semi-reduced form of a state can be generated by appropriately projecting
the sequence probabilities to these indexed type symbols.

Turn-Split Representation of a (Semi-)Reduced State. For turnable
states, we would like to introduce an additional, compressed method to de-
pict the state, where we are only interested in the partitioning of the state and
how it behaves relative to the split of the state due to the turn. For this, let us
regard empty sequences (sequences not in the state, i.e. with probability 0) as a
sequence of type ∅. We sort the state according to a column i (usually a turnable
column) and assume that the deck is chosen over an alphabet c1, . . . , c`, which
carries some ordering c1 ≤ · · · ≤ c`. The ordering inside the blobs for each ck is
irrelevant, and we may only assume an ordering by type.

For this, we will use the following rough representation of a state (but will
soon add a representation of the partition to the depiction)

c1

|
t1,1 · · · t1,n1

· · ·
| · · · · · · · · ·

c`

|
t`,1 · · · t`,n` |

where t1,1, . . . , t1,n1 , . . . , t`,1, . . . , t`,n`
are (indexed) types of corresponding se-

quences. Due to the indicated ordering if the state is turnable at the position of
the ordering, ti,j belong to the ci-branch of a turn at the respective position.

As an example, let us depict the state from Fig. 2 (left) via this split-state
representation w.r.t. the turnable column 2:

♥
|
11 01 02

♣
|
11 01 02 |

9

We will make more heavy use of this representation at the end of the next
subsection, after we derived a criterion for states that can arise via a closed
shuffle.

2.1 Properties of Closed Shuffles

The set Π of a closed shuffle on deck D is a subgroup of S|D|. Hence, we would like
to exploit the algebraic structure that arises when permutations of Π act on the
card sequences by reordering them according to their permutation specification.
For this, let us introduce the necessary notions from group theory.

Definition 1 (Group action, e.g. [DM96, Sect. 1.3]). Let X be a nonempty
set, G a group, and ϕ : G × X → X a function given as g(x) := ϕ(g, x) for
g ∈ G, x ∈ X. G acts on X, or G is a group action on X if

– id(x) = x for all x ∈ X, where id denotes the neutral element in G,
– (g ◦ h)(x) = g(h(x)) for all x ∈ X and all g, h ∈ G.

Let G be a group acting on a set X. Then we define the orbit of an x ∈ X as
G(x) := {g(x) : g ∈ G}, i.e. all elements in X that are reachable from x via some
g ∈ G. Note that orbits G(x), G(y) of x, y ∈ X are either disjoint or equal. Hence
the orbits form a partition of X, called the orbit partition of X through G. (A
partition of X is a set of disjoint subsets from X, such that their union gives you
X again.) In our setting, G = Π is a permutation subgroup from a shuffle and
X is the set of sequences on a deck D, and Π acts on X naturally via applying
the permutations π ∈ Π on the card sequences x ∈ X.

The stabilizer subgroup Stabx(G) of a group G with respect to an x ∈ X, is
defined as Stabx(G) = {g ∈ G : g(x) = x}, i.e. the group of all g ∈ G that fix x,
meaning that g(x) = x. Let us give two interesting facts about orbit partitions
in the following lemma.

Lemma 1 (Orbit-Stabilizer theorem). Let G be a group, X a nonempty
set and let G act on X as specified above. Then, |G(x)| = |G|/|Stabx(G)| for
all x ∈ X.

Proof. The simple proof is given e.g. in [DM96, Thm. 1.4A].

For an analysis of a “backwards shuffle” (to be introduced in Section 3), we make
use of the state partitions as defined above. To state our criterion in a formal way,
we define the (natural) ordering on partitions as follows: Given two partitions
P, P ′ on some set M , we say that P is finer than P ′, or equivalently, that P ′ is
coarser than P , if every set in P is subset of a set in P ′. For example, for any
state µ, its partition P (µ) is finer than its type partition T (µ).

As an example, we have that in Example 1 µ’s partition P (µ) is finer than
T (µ), as {♥♥♣♣,♥♣♥♣} is contained in both sets, and both {♣♥♥♣,♥♣♣♥}
and {♣♥♣♥,♣♣♥♥} are subsets of the larger four-element set of T (µ).

Using these, let us give a rephrasing of relevant results from [KKW+17, Sect. 5],
using our new vocabulary.

10

Lemma 2 ([KKW+17, Lemmas 2, 3]). Let µ be transformed into µ′ via some
shuffle with permutation group Π. Then the orbit partition of Π is (non-strictly)
finer than type partition T (µ′) of µ′. Moreover, if the shuffle is uniform, the
orbit partition of Π is (non-strictly) finer than partition P (µ′) of µ′.

Proof. Let µ be transformed into µ′ via some shuffle with permutation group Π.
Assume to the contrary, that there are two sequences in the same orbit of Π,
but with distinct type (where type includes ∅ and ⊥). This is a contradiction to
[KKW+17, Lemma 2]. In the same way, if the shuffle is uniform, there cannot be
two sequences in the same orbit of Π with distinct probabilities due to [KKW+17,
Lemma 3].

Note that the case that it is strictly finer occurs, if the sequences of two distinct
orbits of the shuffle subgroup happen to have the same symbolic probability or
type, respectively, after the shuffle.

Enriching Split-State Representations with Orbit Partitions. As we just
saw, a necessary prerequisite to show that we can reach a state µ′ via a uniform
closed shuffle, is to show that it is compatible with an orbit partition, i.e. that
there is a Π with an orbit partition that is finer than the partition of µ′. Hence,
we want to depict a possible orbit partition in a simple way that makes it is
obvious that it is finer than the partition of the state.

We do this via connecting horizontal brackets between the sequences rep-
resenting the orbit decomposition of an admissible shuffle. Here, all connected
sequences are meant to be in the same orbit. A single line drawn downward will
mean that the sequence is in an orbit of size 1.

We use our previous example of Fig. 2 in a split-state representation w.r.t.
the turnable position 2. We depict two possible orbit decompositions (on the
left with three sets of size two, on the right with on orbit split into two, which
are represented by single lines pointing downwards). It shows that the state is
generateable from such an orbit decomposition, as it is not coarser than the
partition of the state (specified by the indices).

♥
|
11 01 02

♣
|
11 01 02 |

♥
|
11 01 02

♣
|
11 01 02 |

While the example abstracts from many details and from the form of Π, but if
one can already show (and we do so in Section 5) that there is no orbit partition
coarser than the state partition, then direct reachability via a closed uniform
shuffle is impossible.

3 A Backwards Calculus for Card-based Protocols

In this section we give our technical contribution, by defining a systematic way
to determine all states that can reach the final states (or a specified state set)

11

of a protocol by an allowed set of actions. This happens by an iterative process,
which, if it terminates, allows to check if the start state is contained in the set. If
this is not the case, we know that the final state is not reachable from the start
state, showing impossibility of a protocol for the allowed actions.

We define the following set of operations

– shuf−1
∗ (G) for a set of states G and ∗ ∈ {∅,u, c,uc} which we omit if ∗ = ∅.

This is the set of states that shuffle into a state in G by a shuffle that is i)
general if ∗ = ∅, ii) closed if ∗ = c, iii) uniform if ∗ = u and iv) uniform
closed if ∗ = uc. Here, the trivial shuffle is allowed, i.e. G is a subset of this
set. If G = {µ} is an one-element set, we just write shuf−1

∗ (µ).
– turn−1

? (G) for a set of states G and ? ∈ {∅, r, f} which we omit if ? = ∅. This
is the set of states from G or states that have a turnable position i such that
if ? = ∅: a state from G is on one of the branches of a turn at i (as immediate

child).
if ? = r: a state from G is on one of the branches of a turn at i (as immediate

child) and all other branches are ⊥-free.
if ? = f: all immediate successor states from a turn at i are in G.
Using this, we can derive a very general high-level strategy for proving lower

bounds on the number of cards for general functionalities. For this, let G be the
set of final states of the respective protocol and note that they do not include any
states that contain a ⊥-sequence. Let ∗ ∈ {∅,u, c,uc} and ? ∈ {∅, r, f}. Define
by cl?,∗(G) the closure of turn−1

? (·) and shuf−1
∗ (·) operations on G. If the start

state is not contained in cl?,∗(G), then no protocol exists for the runtime/shuffle
restrictions ? and ∗, as specified above.

Note that we can define this backwards calculus for both detail levels of state
trees, namely for (semi-)reduced states and for normal states. However, in this
paper we only need it for (semi-)reduced states, and assume this to be the case
throughout the document. If the start state is found in the set derived from the
calculus, one may take a closer look and see at which state and by which order
of operations it has been added, possibly leading to a protocol, if one switches
to the non-reduced version of the calculus. If the process constitutes a search
for finite-runtime protocols, the protocol can be directly derived from the steps.
Otherwise, we can at least guarantee a restarting Las Vegas protocol, as we can
recover at least one protocol path leading to a final state. All branches which
leave this path could be replaced with a restart operation, giving a complete
protocol.

Remark 1. The closures are well-defined, i.e. it does not depend on the order of
turn and shuffle backwards steps. Moreover, shuf−1

∗ (·), turn−1
? (·) and cl?,∗(·) are

(inclusion-)monotone functions.

In impossibility proofs we can use the monotonicity to deliberately enlarge the
sets of states, as long as the impossibility still holds. This helps to simplify the
proofs.

In the following we derive two lemmas which make calculating turn−1
? (·) and

shuf−1
∗ (·) easier. They are based on the simple fact that states that are not

12

reachable by a turn or shuffle operation need not be considered when determining
the respective backwards calculus state sets.

Lemma 3. Let G be a set of states, and let cc(G) be the subset of G with states
that have a constant column. Then, turn−1

? (G) = G∪turn−1
? (cc(G)) for ? ∈ {∅, r, f}.

Proof. Monotony of turn−1
? (·), cc(G) ⊆ G, and G ⊆ turn−1

? (G) directly implies
G ∪ turn−1

? (cc(G)) ⊆ turn−1
? (G). For the other direction, observe that any state µ

in turn−1
? (G) (not already in G) arises from a state µ′ ∈ G which is at one of the

branches when turning a position in µ, by definition. For this we need to have
µ′ ∈ cc(G).

We derive a similar statement for reverse shuffle steps, which will be useful
in the proof of Theorem 2. In the following, a state is generateable via uniform
closed shuffles, if it has a partition that is non-strictly coarser than that of a
permissible orbit partition of a subgroup Π, and generateable via closed shuffles,
if it has a type partition that is non-strictly coarser than that of a permissible
orbit partition of a subgroup Π.

Lemma 4. Let G be a set of states, and let genc(G) and genuc(G) be the subset
of G that contains all states that are generateable via a closed and uniform closed
shuffles, respectively. Then,

shuf−1
∗ (G) = G ∪ shuf−1

∗ (gen∗(G)), for ∗ ∈ {c,uc}.

Proof. For G ∪ shuf−1
∗ (gen∗(G)) ⊆ shuf−1

∗ (G) observe that shuf−1
∗ (·) is monotone,

gen∗(G) ⊆ G, and G ∈ shuf−1
∗ (G). The other direction follows, as any state µ in

shuf−1
∗ (G) must either be in G, or it arises from a state µ′ ∈ G such that there is

a shuffle of type ∗ that produces µ′ from µ. Let Π be the permutation group of
such a shuffle. We obtain generateablility of µ′ via a shuffle of type ∗ with group
Π directly from Lemma 2.

4 Impossibility of Closed-Shuffle COPY with 2n+1 Cards

This section contains our main result. We apply the techniques from the previous
section to show a strong impossibility result for closed-shuffle COPY protocols
with 2n+ 1 cards, where n ≥ 2. This implies that in this setting, the protocol of
[MS09] using 2n+ 2 cards is optimal.

Theorem 1. There is no (possibilistically) secure (2n+1)-card n-COPY protocol
using only closed shuffles and two colors.

Proof. We proceed by using the backwards calculus technique as developed in
Section 3, i.e. we would like show that the start state is not contained in the closure
clc(G0), where G0 is the set of final states in (2n+ 1)-card n-COPY protocols. For
this, we apply turn−1(·) and shuf−1

c (·) operations to the growing set of states,
starting from G0, until this process becomes stationary. Our analysis will show
that this already happens after one reverse turn and one reverse shuffle step. We

13

assume w.l.o.g. that the helping card is ♥, yielding the deck D = [(n+1) ·♥, n ·♣].
Let G0 be the set of final states for n-COPY and note that these look in reduced
form (up to similarity of states) like this:

♥(♣♥)n 0
♥(♥♣)n 1.

The start state of an n-COPY protocol on deck D looks w.l.o.g. as follows:

♣♥(♥♣)n−1♥ 0
♥♣(♥♣)n−1♥ 1

As in [KKW+17, Theorem 3], we know that final states are not reachable by
a shuffle, because there is only one 0-sequence and only one 1-sequence, and
we cannot take any proper subset of these. Hence, let us look at the set G1 :=
turn−1(G0), i.e. the states that are turnable and have a state from G0 at one of
its branches.

The newly added states, i.e. the states from G1 \ G0, look (up to similarity)
as follows:

f ′0 : ♥(♣♥)n 0
f ′1 : ♥(♥♣)n 1
♣. ?
... ?
♣. ?,

where ? can be of type 0, 1, ⊥, and we have at least one sequence starting with ♣
(if it is a ⊥-sequence; otherwise we have at least one 0- and one 1-sequence, due
to turnability). Let us call them prefinal. As they have at least three sequences,
the start state is not among them. Because they do not have a constant column,
a new reverse turn does not yield any additional states, i.e., G1 = turn−1(G1). Let
us denote the 0-sequence in the first row by f ′0, and the 1-sequence in the second
row by f ′1.

For the main step of the proof, let G2 := shuf−1
c (G1) = shuf−1

c (G1 \ G0). These
are the states that reach a prefinal state via a closed shuffle. Note that if f ′0 and
f ′1 is the only 0- and 1-sequence, resp., all other sequences need to be of type ⊥
and any subset of the state (as in a reverse shuffle) need to contain at least f ′0,
f ′1. These states are again prefinal or even final.

Hence, we assume w.l.o.g. that there are at least two 0-sequences (i.e., the
type partition of type 0 has more than one sequence), and assume that the shuffle
step creates one of these. More formally, let Π be the shuffle subgroup from a
state µ ∈ G2 to a prefinal state µ′ ∈ G1 \ G0 as specified above, such that µ′
contains at least one additional 0-sequence, which we can also w.l.o.g. assume to
be f ′0. Let f0 ∈ µ, such that there is a π̃ ∈ Π with π̃(f0) = f ′0, and let us consider
the state µ̃ := π̃(µ) that is similar to µ but contains f ′0. Due to the closedness of
the shuffle, it is retained that µ̃ shuffles to µ′ via Π.

14

We can deduce that µ̃ looks as follows:

♥(♣♥)n 0
♣. ?
... ?
♣. ?,

where none of the other rows contains a ♥ in the first position. Assume the
contrary, namely that there is a sequence s 6= f ′0, with a ♥ in the first position.
If it would be of type 0 or ⊥, then this does not shuffle into µ′, as id ∈ Π and
there is no other 0-sequence in µ′. Otherwise, an s of type 1 would mean that
either µ̃ is identical to µ′ (in the case that s = f ′1), or similarly to before this
does not shuffle into µ′ via Π. Hence, the form is as specified above.

Note that another reverse shuffle does not yield any new states. This is,
because the states we described did not assume anything about the concrete
orbit partition, and taking another subset of the sequences does not help.

Hence, it remains to show that we cannot reach the states in G2 \ G1 via a
turn, i.e. that G2 = turn−1(G2). We proceed by showing that the newly added
states from G2 \ G1 do not have a constant column. For this, let us assume the
contrary, namely there is a constant column, at position p 6= 1. Let us distinguish
two cases by the parity of p:

Case 1: p = 2`+ 2 is even. In this case we get a constant ♣ column, and the
state µ̃ looks like this (with at least two sequences in total):

f ′0 : ♥(♣♥)`♣♥(♣♥)n−`−1 0
f1 : ♣.♣. 1

... ?
♣.♣. ?

Let f1 ∈ µ̃ be a sequence that is mapped to f ′1 = ♥(♥♣)n ∈ µ′ by some π ∈ Π.
As indicated, because of the constant column, f1 has at least two ♣s which are in
positions, where there is a ♥ in f ′1, namely positions 1 and p. Let us look at π−1,
which is also in Π due to the closedness of the shuffle and which maps f ′1 to f1.

For the general proof idea, we show that π−1 needs to have certain features,
which imply that it maps the 0-sequence f ′0 to a sequence of type 0 with a ♥ at
positions 1 and p, leading to the contradiction, as the only 0-sequence with a ♥
in the first position has to be f ′0, which has a ♣ at even positions.

For this, note that to get ♣s into positions 1 and p via π−1, there need to be
odd positions u, v 6= 1 (which contain ♣ in f ′1 = ♥(♥♣)n), such that π−1(u) = p,
and π−1(v) = 1. Let us look at the sequence s′ = π−1(f ′0). f ′0 has a ♥ at all
the odd positions, hence, s′ does have a ♥ in positions 1 and p, leading to the
contradiction as discussed above.

15

Case 2: p = 2` + 3 is odd. In this case we get a constant ♥ column, and the
state looks like this:

f ′0 : ♥(♣♥)`♣♥(♣♥)n−`−1 0
f1 : ♣. ♥. 1

... ?
♣. ♥. ?

Our argumentation is similar to above, but slightly more involved, as f ′0 has a ♥
also in the first position. As before let f1 ∈ µ̃ be a sequence that is mapped to
f ′1 = ♥(♥♣)n ∈ µ′ by some π ∈ Π. Here, f1 has a ♣ at the first position which
needs to be a ♥ in f ′1, and a ♥ at the odd position p, which should become a ♣
through π. Again, π−1 ∈ Π and maps f ′1 to f1.

To fulfill this, we need a position u which is even or 1, such that π−1(u) = p,
and an odd position v 6= 1, such that π−1(v) = 1. Here again, let us analyze
s′ = π−1(f ′0). s′ is a 0-sequence with a ♥ in the first position. If u would be even,
then s′ has a ♣ in position p, already leading to the same contradiction as above.
Hence, u = 1. Then, for prefinality of µ′, s′ = f ′0 (otherwise, we would have two
0-sequences, starting with ♥), and π, π−1 ∈ Stabf ′

0
(S2n+1).

In this case, we can deduce that f1 = ♣(♥♣)`♥♥(♥♣)n−`−1, i.e. that the
state µ̃ looks more closely as follows:

f ′0 : ♥(♣♥)`♣♥(♣♥)n−`−1 0
f1 : ♣(♥♣)`♥♥(♥♣)n−`−1 1
♣. ♥. ?

... ?
♣. ♥. ?,

where we have at least three sequences, as otherwise we would have a final state.
By [KKW+17, Lemma 1], because π−1(1) = p as described above, after

shuffling with Π, we obtain the same number of ♥, and ♣ in columns 1 and p in
the resulting prefinal state µ′. Because the prefinal state has exactly 2 ♥s in the
first column, the same holds for column p in the prefinal states reachable from µ̃
via Π. The same has to hold for µ̃, i.e. in column p only two ♥ are allowed. But
by assumption this is the constant column which may only contain ♥s. Hence,
there would be at most two sequences in µ̃. As discussed before, this would then
be already final.

As the start state has a constant column, contrary to the states in G2 \ G0, it
is not contained in the closure clc(G0). Hence, no final state is reachable from the
start state. ut

16

5 Impossibility of Four-Card AND Protocols with
Uniform Closed Shuffles

In this section we generalize the impossibility result regarding four-card AND
protocols restricted to uniform closed shuffles of [KKW+17, Theorem 2] to restart-
ing protocols. This, together with the impossibility result of Section 4 and the
four-card restart-free AND protocol using only uniform (non-closed) shuffles,
shows that restarts are unnecessary for realizing AND and COPY with a minimal
number of cards. This shows that allowing restarts is relatively powerless, except
possibly for protocols that directly compute more complex Boolean functions.

The proof demonstrates the developed backwards calculus and how to deal
with ⊥-sequences in impossibility arguments. Before we start, let us note some
general facts about orbit partitions on the four-card deck:

Lemma 5. Let D = [♥,♥,♣,♣] be a deck of cards, X the set of all sequences
on D and Π a non-trivial subgroup of S4. Then,

1. the size of the stabilizer on an x ∈ X is at most 4.
2. If there is an orbit of size 1, then there are exactly two orbits of size 1. In

this case, the corresponding sequences have distance 4. Moreover, any orbit
partition of a closed non-trivial shuffle on D of maximal fineness has orbit
set sizes 1, 1, 2, and 2. (This upper-bounds the number of orbits to 4.)

Proof. 1. Let us first show that |Stabs(S4)| = 4, the statement then follows
from Stabs(Π) ⊆ Stabs(S4). For this, note that for any sequence on D there
are exactly four permutations that leave the sequence fixed, namely id, the
swap of the two ♥, the swap of the two ♣, and the combination of both.

2. For this, assume there is an orbit of size 1, inhabited by a sequence s ∈ X.
This implies that Π is a subset of the stabilizer Stabs(S4) of s. Determine
the unique sequence s of maximum distance 4 by exchanging ♥ and ♣, and
note that it has the same stabilizer, i.e. Stabs(S4) = Stabs(S4). We can infer
that s also has an orbit of size 1.
By this argument, we can deduce that the number of orbits of size 1 is
even. Assume there are two distinct sequences s1, s2, such that s2 6= s1.
Hence, s1, s2, s1, s2 are four distinct sequences and s1, s2 have distance 2.
Now observe that the stabilizers of s1 and s2 have trivial intersection, i.e.
Stabs1(S4) ∩ Stabs2(S4) = {id}. As above, note that Π is a subset of both
stabilizers, leading to Π ⊆ {id}, which contradicts the assumption that Π
was non-trivial. This restricts the number of orbits of size 1 to 2. From this,
the last statement follows directly.

Using this, and the techniques from Section 3 we can now prove the following:

Theorem 2. There is no secure (restarting) four-card AND protocol in commit-
ted format if shuffling is restricted to uniform closed shuffles.

Proof. As before, we start by iteratively expanding the set of good states, starting
from the final states, and in each step adding all the states that are able to reach

17

the good-states-so-far by a shuffle or turn, to the set. We show that this process
terminates, and the resulting set does not include the start state, showing that
no final state is reachable at all.

Note that, contrary to the proof of [KKW+17, Theorem 2], we again need to
take ⊥-sequences into account, which complicates the proof quite a bit. Moreover,
it is important to make some use of both the uniformity and the closedness of
the shuffles, hence to look at the more concrete probabilities of the states, as
there are four-card protocols in the closed-shuffle setting ([KWH15, Sect. 4]), and
in the uniform-shuffle setting (Theorem 3). We want to avoid working with very
concrete probabilities, for reasons of simplicity, hence we make only use of the
type-annotated partition of the states, which already carries a lot of information,
as introduced in the form the semi-reduced variants of states in Section 2.

Moreover, for ⊥-sequences we may distinguish two versions, namely those,
which are assigned a constant probability, by ⊥c, and those which are assigned
a non-constant (but result-mixed) probability, by ⊥nc. For example, 1/3(X00 +
X01 +X10 +X11) is of type ⊥c, where as 1/3X00 + 2/3X11 would be of type ⊥nc.
We write ⊥ if we do not differentiate the types.

Note that as our deck is [♥,♥,♣,♣], we can form at most 6 sequences shown
in Fig. 3a.

Fig. 3:

♥ ♥ ♣ ♣
♥ ♣ ♥ ♣
♣ ♥ ♥ ♣
♥ ♣ ♣ ♥
♣ ♥ ♣ ♥
♣ ♣ ♥ ♥

(a) All sequences with four cards.

♥ ♣ ♥ ♣ 1
♥ ♣ ♣ ♥ 1
♣ ♥ ♥ ♣ 0
♣ ♥ ♣ ♥ 0

(b) A reduced, sequence-maximal final
state with four cards, where the first
two positions encode the result.

Final and Prefinal States. The state of Fig. 3b is (up to similarity) the largest
final state. Up to similarity, we obtain all final states by choosing a subset of
the sequences of this state with the restriction of having at least one 1- and one
0-sequence. The set of final states is denoted by G0. It is easy to see that the
start state is not already final.

As G0 does not contain any states with a ⊥-sequence, but each state has at
least one 1- and one 0-sequence, any state which shuffles into G0 contains a subset
of the sequences of a state in G0, with the same restriction of having at least one
1- and one 0-sequence, as we cannot create 0-/1-sequences by a shuffle out of
nothing. Hence, shuf−1(G0) = G0.

18

Hence, the prefinal states are the non-final states that reach the set of final
states by a turn. W.l.o.g. they look as follows:

♥ ♣ ♣ ♥ 1
♣ ♥ ♣ ♥ 0
♣ ♥ ♥ ♣ ?
♥ ♣ ♥ ♣ ?
♣ ♣ ♥ ♥ ?

where the sequences marked by ? can be any of 1, 0,⊥ or empty, as long as there
is at least one of the sequences present (otherwise, it would already be a final
state). These need to be turnable at the third or fourth column, of course. The
general form of the state is because the only final states with a constant column
are the 1/1-states (above the rule), and they can be combined with any state
with a constant position (of the other symbol) at the same index, leading to at
least one and at most three additional sequences (below the rule).

Note that the start state is not a prefinal state. For this you would need
to choose two of the sequences below the rule to be 0 and the other absent.
But then the state is no longer turnable, because for this, there would need to
be at least one additional 1- or ⊥-sequence below the rule. For notation, set
G1 := turn−1(G0).

Second Enlargement, by reverse-turn. We enlarge the set of good states
(G1) by the states that can reach them with a turn operation. Denote these by
G2 := turn−1(G1). These look as follows:

♥ ♣ ♣ ♥ 1
♣ ♥ ♣ ♥ 0
♣ ♣ ♥ ♥ ⊥c

♥ ♣ ♥ ♣ ?
♣ ♥ ♥ ♣ ?
♥ ♥ ♣ ♣ ?

Here again the sequences marked by ? can be any of 1, 0,⊥ or empty, as long
as there is at least one of the sequences present (otherwise, it would already
be a prefinal state). These need to be turnable at the fourth column, of course.
(The first three sequences constitute a state with a constant column from G1 \ G0,
turnable at the third position, if looked at in isolation.) As the newly-added
states have a ⊥-sequence, they cannot be the start state. Moreover, note that
an additional reverse-turn on G2 is futile, as states from G2 \ G1 all have at least
four sequences, and hence no constant column.

Third Enlargement, by reverse-shuffle. The difficult part is to consider the
states which will lead to any of the currently-good states (G2) via a uniform

19

closed shuffle. Denote them by G3 := shuf−1
uc (G2). As id is present in any shuffle,

these states are subsets of their resulting states, with the additional possibility of
splitting two (or more) ⊥-sequences into a 1- and a 0-sequence (and possibly more
1-, 0-, or ⊥-sequences) beforehand. (As in the forward-process two sequences of
different types can mix into a ⊥-sequence.)

As we saw before, the final states cannot be reached by a shuffle. Hence, by
Lemma 4, we only need to consider the generate-able states from G2 \ G0. By
Lemma 5, the orbit sizes of a finest partition that can be generated are 1, 1, 2, 2
and there are at most 2 orbits of size 1. Moreover, note that generate-able states
have at least 4 sequences.

We will use the split-state representation of a state, as introduced in Section 2:

♥
|
t♥,1 t♥,2 t♥,3

♣
|
t♣,1 t♣,2 t♣,3

|

where t♥,1, . . . , t♥,3, t♣,1, . . . , t♣,3 are types of sequences denoted by s♥,1, . . . , s♥,3,
s♣,1, . . . , s♣,3, the first three belonging to the ♥-branch of a possible turn (the
state was assumed to be turnable), and the last three at the ♣-branch of a turn.
The connecting brackets between the sequences (from which we abstract by this
drawing) represent a possible orbit decomposition of a shuffle, namely connected
sequences are in the same orbit. A single line drawn downward will mean that
the sequence is in an orbit of size 1. By Lemma 5, we know that we cannot have
both sequences in an orbit of size 1 on the same side of the turn, as they would
not have distance 4 then.

We think it is instructive to take a closer look at the possible generate-
able states from G2 \ G0. Note that all of these are turnable. Let us do a case
distinction on the number of sequences in a state and start with the minimum
of four sequences. Using our abstract notation observe that we are in one of the
following situations:

♥
|
11 01 ∅

♣
|
11 01 ∅ |

♥
|
11 01 ∅

♣
|
11⊥nc

1 ∅ |

This is because turnability requires µ(s♥,1)+µ(s♥,2) = p and µ(s♣,1)+µ(s♣,2) =
1− p, for p ∈ [0, 1], where s♥,1, s♥,2 are sequences in one part of the turn branch,
and s♣,1, s♣,2 in the other. Moreover, we can only choose one of the two orbit
combinations (where on the right the 0 was w.l.o.g. be chosen to be in the orbit
with only one element). Hence, the orbit partition implies that µ(s♥,1) = µ(s♣,1),
or µ(s♥,2) = µ(s♣,2), let us assume w.l.o.g. the first. Then we can deduce that if
p = 1/2, we are in the situation to the left, and if p < 1/2 in the situation to the
right.

20

In the case of five sequences, the only turnable and generate-able states look
as follows:

♥
|
11 01 ⊥c

1
♣
|
11 01 ∅ |

This is, similarly to the proof in [KKW+17], because we have to choose the
single empty sequence to be in an orbit of size one, forcing the pairs of 1-
and 0-sequences each into an orbit of size two. By turnability we have that
µ(s♥,1) + µ(s♥,2) + µ(s♥,3) = p and µ(s♣,1) + µ(s♣,2) = 1− p for some p ∈ [0, 1].
The orbit decomposition implies µ(s♥,1) = µ(s♥,1) and µ(s♥,2) = µ(s♣,2) which,
if plugged into the second equation implies that µ(s♥,3) is a constant, because
µ(s♥,1) + µ(s♥,2) = 1− p and µ(s♥,1) + µ(s♥,2) + µ(s♥,3) = 1− p+ µ(s♥,3) =
p⇔ µ(s♥,3) = 2p− 1.

For states with six sequences, we are in one of the following configurations:

♥
|
11 01 ⊥c

1
♣
|
11 01 ⊥c

1|
♥
|
11 01 ⊥c

1
♣
|
11 01 ⊥c

2|

♥
|
11 01 ⊥c

1
♣
|
11⊥nc

1 ⊥c
1|

Note that a state with two or three 0-sequences and only one 1-sequence cannot
result in a state with sequences of the types ⊥, 1 and 0 by a uniform closed
shuffle. This is because for ⊥ you need at least one 1- and one 0-sequence which
are mixed together, and one additional 1- and 0-sequence in different orbits which
are not mixed together, so that you need at least two 1-sequences.

By the claim, it follows that the start state – which has three 0-sequences
and one 1-sequence – would only be added to the set, if it shuffles into a good
state without a ⊥-sequence. For this to happen, the start state has to be a proper
subset of the resulting state (cf. Lemma 5 of [KKW+17]). Given that we are in
one of the scenarios as argued above, this cannot happen, as non of the states
has three 0-sequences.

A Fourth Enlargement is Futile. Now let us observe that a reverse-turn
does not lead to any new states. For this, note that we need to only consider
states that have been added in the last enlargement. For a reverse-turn, we can
only reach those which have a constant column, and hence have at most three
sequences. Note that by the same argument as before, states with two 0-sequences
and one 1-sequence or the other way round, with a constant column have not
been added in the last step, as the only ⊥-free configuration of the above list
cannot have a constant column. (We did not add any new states with a constant
column to G2.) Hence G3 = turn−1(G3).

We want to show G3 = shuf−1
uc (G3). For this note that no arising state has

more than two sequences of the same type (except for the three ⊥-sequences
that may arise in states with 6 sequences). The additional power of successive
shuf−1

uc (·)-steps comes only into play, if there are more than two sequences of the

21

same type, as we are only possibly restricted by the shuffle when taking a subset
of the sequences. ut

6 Card-minimal AND Protocols with Uniform Shuffles

Theorem 3. There is a secure four-card restart-free Las Vegas protocols for
AND using only uniform shuffles.

The protocol is given in Fig. 4. It is a slight modification of the protocol of
[KWH15], where the non-uniform but closed shuffle was replaced by a uniform
but non-closed shuffle with the same effect.

Using this modification, we can tweak the idea further to also get five-card
finite-runtime protocol with uniform shuffles. This is because the five-card protocol
from [KWH15] is an adaptation of its four-card protocol, where at one point of
the protocol the additional card is used, via a non-uniform non-closed shuffle to
break out of the loop. Hence, we have the following.

Theorem 4. There is a secure five-card finite-runtime protocol for AND using
only uniform shuffles.

Figure 5 shows the five-card protocol. It is a slight modification of the protocol of
[KWH15], where the non-uniform (non-closed) shuffle was replaced by a uniform
(non-closed) shuffle on the left branch, and the same replacement as in Fig. 4
was performed on the right branch.

7 Conclusion

For the two central building blocks in composite card-based protocols, AND and
COPY, we complete the picture on the necessary number of cards in committed
format protocols with respect to all combinations of practicality requirements.
With this work, all bounds are tight, as shown in Fig. 6 and Table 1. Hence, this
paper provides a reference showing the best protocol for a used setting, and one
can compare whether to trade fewer cards with different characteristics of the
runtime or shuffles.

Using our developed systematic technique to impossibility results, we can
interpret other results on lower bounds from the literature in our framework. For
example, in [KWH15, Sect. 6], the set of good states is a superset of clf(G0), where
G0 is as in Theorem 2. More exactly, clf(G0) = turn−1

f (G0) =: G1, i.e. the process
stops after one step and shuf−1(G1) = turn−1

f (G1) = G1. The same holds for the
proof of [KKW+17, Sect. 7], i.e. clr,uc(G0) = turn−1

r (G0) =: G′1 and the proof stops
after one step as shuf−1

uc (G′1) = turn−1
r (G′1) = G′1. Regarding the lower bounds for

COPY in [KKW+17, Sects. 8, 9], the process stops even earlier. Both impossibility
proofs show that the set of final states constitutes already the backwards calculus
closure clf(·) and cl(·), respectively.

This comparison explains the relative complexity of our new proofs. More
specifically, our proof in Section 4 shows that clc(G) = shuf−1

c (turn−1(G)) for the

22

♥♣♥♣ X11

♥♣♣♥ X10

♣♥♥♣ X01

♣♥♣♥ X00

♥♣♥♣ X11

♣♥♥♣ 1/2X10 + 1/2X01

♥♣♣♥ 1/2X10 + 1/2X01

♣♥♣♥ X00

(shuffle, {id, (1 3)(2 4)})

♥♥♣♣ 1/2X11

♥♣♥♣ 1/2X11

♣♥♥♣ 1/2X10 + 1/2X01

♥♣♣♥ 1/2X10 + 1/2X01

♣♥♣♥ 1/2X00

♣♣♥♥ 1/2X00

(shuffle, {id, (2 3)})

♥♥♣♣ X11

♣♥♥♣ X10 +X01

♣♥♣♥ X00

♥♥♣♣ X1

♣♥♥♣ 1/2X0

♣♥♣♥ 1/2X0

(shuffle, {id, (3 4)})

♥♥♣♣ 1/3X1

♣♣♥♥ 2/3X1

♣♥♥♣ 1/6X0

♥♣♣♥ 1/3X0

♣♥♣♥ 1/2X0

(shuffle,{id, (1 3)(2 4), (1 3 2 4)})

♥♥♣♣ X1

♥♣♣♥ X0

(result, 2, 4)

X

♣♣♥♥ X1

♣♥♥♣ 1/4X0

♣♥♣♥ 3/4X0

(turn, {1})
♣??? ♥???

♣♣♥♥ X1

♣♥♥♣ 1/2X0

♣♥♣♥ 1/2X0

(shuffle, {id, (3 4)})

♥♣♥♣ X11

♥♣♣♥ X10 +X01

♣♣♥♥ X00

♥♣♥♣ X1

♥♣♣♥ 1/2X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 3)})

♥♣♥♣ 1/3X1

♣♥♣♥ 2/3X1

♥♣♣♥ 1/6X0

♣♥♥♣ 1/3X0

♣♣♥♥ 1/2X0

(shuffle,{id, (1 2)(3 4), (4 3 2 1)})

♥♣♥♣ X1

♣♥♥♣ X0

(result, 1, 2)

X

♣♥♣♥ X1

♥♣♣♥ 1/4X0

♣♣♥♥ 3/4X0

(turn, {4})

???♣ ???♥

♣♥♣♥ X1

♥♣♣♥ 1/2X0

♣♣♥♥ 1/2X0

(shuffle, {id, (1 3)})

(turn, {2})

?♣?? ?♥??

(perm, (1 3 4 2))(perm, (1 2 4 3))

Fig. 4: A modification of the four-card AND protocol from [KWH15], where the
shuffle after the second state of the protocol after branching, has been replaced
by a uniform non-closed shuffle operation.

23

♥♣♥♣♥ X11

♥♣♣♥♥ X10

♣♥♥♣♥ X01

♣♥♣♥♥ X00

♥♣♥♣♥ X11

♣♥♥♣♥ 1/2X10 + 1/2X01

♥♣♣♥♥ 1/2X10 + 1/2X01

♣♥♣♥♥ X00

(shuffle, {id, (1 3)(2 4)})

♥♥♣♣♥ 1/2X11

♥♣♥♣♥ 1/2X11

♣♥♥♣♥ 1/2X10 + 1/2X01

♥♣♣♥♥ 1/2X10 + 1/2X01

♣♥♣♥♥ 1/2X00

♣♣♥♥♥ 1/2X00

(shuffle, {id, (2 3)})

♥♥♣♣♥ X11

♣♥♥♣♥ X10 +X01

♣♥♣♥♥ X00

♥♥♣♣♥ X1

♣♥♥♣♥ 1/2X0

♣♥♣♥♥ 1/2X0

(shuffle, {id, (3 4)})

♥♥♣♣♥ 1/3X1

♣♣♥♥♥ 2/3X1

♣♥♥♣♥ 1/6X0

♥♣♣♥♥ 1/3X0

♣♥♣♥♥ 1/2X0

(shuffle,{id, (1 3)(2 4), (1 3 2 4)})

♥♥♣♣♥ X1

♥♣♣♥♥ X0

(result, 2, 4)

X

♣♣♥♥♥ X1

♣♥♥♣♥ 1/4X0

♣♥♣♥♥ 3/4X0

(turn, {1})
♣???? ♥????

♣♣♥♥♥ X1

♣♥♥♣♥ 1/2X0

♣♥♣♥♥ 1/2X0

(shuffle, {id, (3 4)})

♥♣♥♣♥ X11

♥♣♣♥♥ X10 +X01

♣♣♥♥♥ X00

♥♣♥♣♥ X1

♥♣♣♥♥ 1/2X0

♣♣♥♥♥ 1/2X0

(shuffle, {id, (1 3)})

♣♥♥♣♥ X1

♥♥♣♣♥ 1/2X0

♥♥♥♣♣ 1/2X0

(perm, (1 5 2 4))

♣♥♥♣♥ 2/3X1

♥♥♣♥♣ 1/3X1

♥♥♣♣♥ 1/2X0

♥♣♣♥♥ 1/6X0

♥♥♥♣♣ 1/3X0

(shuffle,{id, (3 5), (5 4 3 2 1)})

♥♥♣♥♣ X1

♥♥♥♣♣ X0

(result, 4, 3)

X

♣♥♥♣♥ X1

♥♥♣♣♥ 3/4X0

♥♣♣♥♥ 1/4X0

(result, 3, 1)

X

(turn, {5})
????♣ ????♥

(turn, {2})

?♣??? ?♥???

(perm, (1 2 4 3))

Fig. 5: Finite-runtime five-card AND protocol, changed shuffles are in bold.

24

set of n-COPY final states G on 2n+ 1 cards. Likewise, the proof in Section 5
shows that cluc(G) = shuf−1

uc (turn−1(turn−1(G))) for 4-card AND final states G.

f, u, c:
x = 6

f, c:
x = 6

f, u:
x = 5

u, c:
x = 5f: x = 5

c: x = 4 u: x = 4

∅: x = 4

r: x = 4

r, c:
x = 4

r, u:
x = 4

r, u, c:
x = 5

(a) AND protocols

f, u, c:
x = 2n + 2

f, c:
x = 2n + 2

f, u:
x = 2n + 2

u, c:
x = 2n + 2

f:
x = 2n + 2

c:
x = 2n + 2

u:
x = 2n + 1

∅:
x = 2n + 1

r:
x = 2n + 1

r, c:
x = 2n + 2

r, u:
x = 2n + 1

r, u, c:
x = 2n + 2

(b) COPY protocols

Fig. 6: The number of cards necessary and sufficient for committed format proto-
cols for AND and COPY, given as a Hasse diagram. The nodes/corners specify
the different requirement combinations: f is finite-runtime, r is restart-free LV, c
and u are restrictions to closed and uniform shuffles, respectively. A line between
two nodes in the lattice specifies that the configuration given by the node above
has more restrictions (requiring at least as many cards). New results are in bold.

Open Problems. An interesting remaining open problem is whether a helping
card of an additional color, say ♠, may circumvent some of the impossibility
results. More specifically, we would be keen to know whether there is a three-color
five-card AND protocol with (uniform) closed shuffles in finite runtime, and
whether there is a 2n+ 1-card n-COPY protocol with a third using only closed
shuffles.

Acknowledgments. I would like to thank Stefan Walzer for invaluable discus-
sions on the topic, and Akin Ünal for helpful comments on the manuscript.

References

[AHMS18] Y. Abe, Y.-i. Hayashi, T. Mizuki, and H. Sone. “Five-Card AND
Protocol in Committed Format Using Only Practical Shuffles”. In:
Proceedings of the 5rd ACM International Workshop on ASIA Public-
Key Cryptography (APKC 2018). ACM, 2018. url: http://www.tains.
tohoku.ac.jp/netlab/mizuki/conf/card5coa apkc2018 web.pdf.

25

http://www.tains.tohoku.ac.jp/netlab/mizuki/conf/card5coa_apkc2018_web.pdf
http://www.tains.tohoku.ac.jp/netlab/mizuki/conf/card5coa_apkc2018_web.pdf

[CK93] C. Crépeau and J. Kilian. “Discreet Solitary Games”. In: CRYPTO
’93. Ed. by D. R. Stinson. LNCS 773. Springer, 1993, pp. 319–330.

[dBoe89] B. den Boer. “More Efficient Match-Making and Satisfiability: The
Five Card Trick”. In: EUROCRYPT ’89. Ed. by J. Quisquater and
J. Vandewalle. LNCS 434. Springer, 1989, pp. 208–217.

[DM96] J. D. Dixon and B. Mortimer. Permutation groups. Graduate texts
in mathematics; 163. New York: Springer, 1996.

[KKW+17] J. Kastner, A. Koch, S. Walzer, D. Miyahara, Y.-i. Hayashi, T.
Mizuki, and H. Sone. “The Minimum Number of Cards in Practical
Card-based Protocols”. In: ASIACRYPT 2017, Proceedings, Part
III. Ed. by T. Takagi and T. Peyrin. LNCS 10626. Springer, 2017,
pp. 126–155.

[KWH15] A. Koch, S. Walzer, and K. Härtel. “Card-based Cryptographic
Protocols Using a Minimal Number of Cards”. In: ASIACRYPT
2015, Part I. Ed. by T. Iwata and J. H. Cheon. LNCS 9452. Springer,
2015, pp. 783–807.

[MS09] T. Mizuki and H. Sone. “Six-Card Secure AND and Four-Card
Secure XOR”. In: FAW 2009. Ed. by X. Deng, J. E. Hopcroft, and
J. Xue. LNCS 5598. Springer, 2009, pp. 358–369.

[MS14] T. Mizuki and H. Shizuya. “A formalization of card-based crypto-
graphic protocols via abstract machine”. In: International Journal
of Information Security 13.1 (2014), pp. 15–23.

[MS17] T. Mizuki and H. Shizuya. “Computational Model of Card-Based
Cryptographic Protocols and Its Applications”. In: IEICE Trans-
actions 100-A.1 (2017), pp. 3–11. url: http://search.ieice.org/bin/
summary.php?id=e100-a 1 3.

[NHMS15] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. “Card-Based Pro-
tocols for Any Boolean Function”. In: TAMC 2015. Ed. by R. Jain,
S. Jain, and F. Stephan. LNCS 9076. Springer, 2015, pp. 110–121.

[NHMS16] A. Nishimura, Y.-i. Hayashi, T. Mizuki, and H. Sone. “An Implemen-
tation of Non-Uniform Shuffle for Secure Multi-Party Computation”.
In: Workshop on ASIA Public-Key Cryptography, Proceedings. Asi-
aPKC ’16. New York, NY, USA: ACM, 2016, pp. 49–55.

[NMS13] T. Nishida, T. Mizuki, and H. Sone. “Securely Computing the Three-
Input Majority Function with Eight Cards”. In: TPNC 2013. Ed. by
A. H. Dediu, C. Martín-Vide, B. Truthe, and M. A. Vega-Rodríguez.
LNCS 8273. Springer, 2013, pp. 193–204.

[NNH+18] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. “Card-
based protocols using unequal division shuffles”. In: Soft Comput.
22.2 (2018), pp. 361–371.

[RI18] S. Ruangwises and T. Itoh. “AND Protocols Using Only Uniform
Shuffles”. In: ArXiv e-prints (Oct. 2, 2018). id: 1810.00769 [cs.CR].

26

http://search.ieice.org/bin/summary.php?id=e100-a_1_3
http://search.ieice.org/bin/summary.php?id=e100-a_1_3
http://arxiv.org/abs/1810.00769

	The Landscape of Optimal Card-based Protocols

